1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bpf.h> 20 #include <linux/filter.h> 21 #include <linux/ptr_ring.h> 22 #include <net/xdp.h> 23 24 #include <linux/sched.h> 25 #include <linux/workqueue.h> 26 #include <linux/kthread.h> 27 #include <linux/capability.h> 28 #include <trace/events/xdp.h> 29 30 #include <linux/netdevice.h> /* netif_receive_skb_core */ 31 #include <linux/etherdevice.h> /* eth_type_trans */ 32 33 /* General idea: XDP packets getting XDP redirected to another CPU, 34 * will maximum be stored/queued for one driver ->poll() call. It is 35 * guaranteed that queueing the frame and the flush operation happen on 36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 37 * which queue in bpf_cpu_map_entry contains packets. 38 */ 39 40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 41 struct bpf_cpu_map_entry; 42 struct bpf_cpu_map; 43 44 struct xdp_bulk_queue { 45 void *q[CPU_MAP_BULK_SIZE]; 46 struct list_head flush_node; 47 struct bpf_cpu_map_entry *obj; 48 unsigned int count; 49 }; 50 51 /* Struct for every remote "destination" CPU in map */ 52 struct bpf_cpu_map_entry { 53 u32 cpu; /* kthread CPU and map index */ 54 int map_id; /* Back reference to map */ 55 56 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 57 struct xdp_bulk_queue __percpu *bulkq; 58 59 struct bpf_cpu_map *cmap; 60 61 /* Queue with potential multi-producers, and single-consumer kthread */ 62 struct ptr_ring *queue; 63 struct task_struct *kthread; 64 65 struct bpf_cpumap_val value; 66 struct bpf_prog *prog; 67 68 atomic_t refcnt; /* Control when this struct can be free'ed */ 69 struct rcu_head rcu; 70 71 struct work_struct kthread_stop_wq; 72 }; 73 74 struct bpf_cpu_map { 75 struct bpf_map map; 76 /* Below members specific for map type */ 77 struct bpf_cpu_map_entry **cpu_map; 78 }; 79 80 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 81 82 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 83 { 84 u32 value_size = attr->value_size; 85 struct bpf_cpu_map *cmap; 86 int err = -ENOMEM; 87 88 if (!bpf_capable()) 89 return ERR_PTR(-EPERM); 90 91 /* check sanity of attributes */ 92 if (attr->max_entries == 0 || attr->key_size != 4 || 93 (value_size != offsetofend(struct bpf_cpumap_val, qsize) && 94 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || 95 attr->map_flags & ~BPF_F_NUMA_NODE) 96 return ERR_PTR(-EINVAL); 97 98 cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT); 99 if (!cmap) 100 return ERR_PTR(-ENOMEM); 101 102 bpf_map_init_from_attr(&cmap->map, attr); 103 104 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 105 if (cmap->map.max_entries > NR_CPUS) { 106 err = -E2BIG; 107 goto free_cmap; 108 } 109 110 /* Alloc array for possible remote "destination" CPUs */ 111 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 112 sizeof(struct bpf_cpu_map_entry *), 113 cmap->map.numa_node); 114 if (!cmap->cpu_map) 115 goto free_cmap; 116 117 return &cmap->map; 118 free_cmap: 119 kfree(cmap); 120 return ERR_PTR(err); 121 } 122 123 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 124 { 125 atomic_inc(&rcpu->refcnt); 126 } 127 128 /* called from workqueue, to workaround syscall using preempt_disable */ 129 static void cpu_map_kthread_stop(struct work_struct *work) 130 { 131 struct bpf_cpu_map_entry *rcpu; 132 133 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 134 135 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 136 * as it waits until all in-flight call_rcu() callbacks complete. 137 */ 138 rcu_barrier(); 139 140 /* kthread_stop will wake_up_process and wait for it to complete */ 141 kthread_stop(rcpu->kthread); 142 } 143 144 static struct sk_buff *cpu_map_build_skb(struct xdp_frame *xdpf, 145 struct sk_buff *skb) 146 { 147 unsigned int hard_start_headroom; 148 unsigned int frame_size; 149 void *pkt_data_start; 150 151 /* Part of headroom was reserved to xdpf */ 152 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom; 153 154 /* Memory size backing xdp_frame data already have reserved 155 * room for build_skb to place skb_shared_info in tailroom. 156 */ 157 frame_size = xdpf->frame_sz; 158 159 pkt_data_start = xdpf->data - hard_start_headroom; 160 skb = build_skb_around(skb, pkt_data_start, frame_size); 161 if (unlikely(!skb)) 162 return NULL; 163 164 skb_reserve(skb, hard_start_headroom); 165 __skb_put(skb, xdpf->len); 166 if (xdpf->metasize) 167 skb_metadata_set(skb, xdpf->metasize); 168 169 /* Essential SKB info: protocol and skb->dev */ 170 skb->protocol = eth_type_trans(skb, xdpf->dev_rx); 171 172 /* Optional SKB info, currently missing: 173 * - HW checksum info (skb->ip_summed) 174 * - HW RX hash (skb_set_hash) 175 * - RX ring dev queue index (skb_record_rx_queue) 176 */ 177 178 /* Until page_pool get SKB return path, release DMA here */ 179 xdp_release_frame(xdpf); 180 181 /* Allow SKB to reuse area used by xdp_frame */ 182 xdp_scrub_frame(xdpf); 183 184 return skb; 185 } 186 187 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 188 { 189 /* The tear-down procedure should have made sure that queue is 190 * empty. See __cpu_map_entry_replace() and work-queue 191 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 192 * gracefully and warn once. 193 */ 194 struct xdp_frame *xdpf; 195 196 while ((xdpf = ptr_ring_consume(ring))) 197 if (WARN_ON_ONCE(xdpf)) 198 xdp_return_frame(xdpf); 199 } 200 201 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 202 { 203 if (atomic_dec_and_test(&rcpu->refcnt)) { 204 if (rcpu->prog) 205 bpf_prog_put(rcpu->prog); 206 /* The queue should be empty at this point */ 207 __cpu_map_ring_cleanup(rcpu->queue); 208 ptr_ring_cleanup(rcpu->queue, NULL); 209 kfree(rcpu->queue); 210 kfree(rcpu); 211 } 212 } 213 214 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, 215 void **frames, int n, 216 struct xdp_cpumap_stats *stats) 217 { 218 struct xdp_rxq_info rxq; 219 struct xdp_buff xdp; 220 int i, nframes = 0; 221 222 if (!rcpu->prog) 223 return n; 224 225 rcu_read_lock_bh(); 226 227 xdp_set_return_frame_no_direct(); 228 xdp.rxq = &rxq; 229 230 for (i = 0; i < n; i++) { 231 struct xdp_frame *xdpf = frames[i]; 232 u32 act; 233 int err; 234 235 rxq.dev = xdpf->dev_rx; 236 rxq.mem = xdpf->mem; 237 /* TODO: report queue_index to xdp_rxq_info */ 238 239 xdp_convert_frame_to_buff(xdpf, &xdp); 240 241 act = bpf_prog_run_xdp(rcpu->prog, &xdp); 242 switch (act) { 243 case XDP_PASS: 244 err = xdp_update_frame_from_buff(&xdp, xdpf); 245 if (err < 0) { 246 xdp_return_frame(xdpf); 247 stats->drop++; 248 } else { 249 frames[nframes++] = xdpf; 250 stats->pass++; 251 } 252 break; 253 case XDP_REDIRECT: 254 err = xdp_do_redirect(xdpf->dev_rx, &xdp, 255 rcpu->prog); 256 if (unlikely(err)) { 257 xdp_return_frame(xdpf); 258 stats->drop++; 259 } else { 260 stats->redirect++; 261 } 262 break; 263 default: 264 bpf_warn_invalid_xdp_action(act); 265 fallthrough; 266 case XDP_DROP: 267 xdp_return_frame(xdpf); 268 stats->drop++; 269 break; 270 } 271 } 272 273 if (stats->redirect) 274 xdp_do_flush_map(); 275 276 xdp_clear_return_frame_no_direct(); 277 278 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */ 279 280 return nframes; 281 } 282 283 #define CPUMAP_BATCH 8 284 285 static int cpu_map_kthread_run(void *data) 286 { 287 struct bpf_cpu_map_entry *rcpu = data; 288 289 set_current_state(TASK_INTERRUPTIBLE); 290 291 /* When kthread gives stop order, then rcpu have been disconnected 292 * from map, thus no new packets can enter. Remaining in-flight 293 * per CPU stored packets are flushed to this queue. Wait honoring 294 * kthread_stop signal until queue is empty. 295 */ 296 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 297 struct xdp_cpumap_stats stats = {}; /* zero stats */ 298 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 299 unsigned int drops = 0, sched = 0; 300 void *frames[CPUMAP_BATCH]; 301 void *skbs[CPUMAP_BATCH]; 302 int i, n, m, nframes; 303 304 /* Release CPU reschedule checks */ 305 if (__ptr_ring_empty(rcpu->queue)) { 306 set_current_state(TASK_INTERRUPTIBLE); 307 /* Recheck to avoid lost wake-up */ 308 if (__ptr_ring_empty(rcpu->queue)) { 309 schedule(); 310 sched = 1; 311 } else { 312 __set_current_state(TASK_RUNNING); 313 } 314 } else { 315 sched = cond_resched(); 316 } 317 318 /* 319 * The bpf_cpu_map_entry is single consumer, with this 320 * kthread CPU pinned. Lockless access to ptr_ring 321 * consume side valid as no-resize allowed of queue. 322 */ 323 n = __ptr_ring_consume_batched(rcpu->queue, frames, 324 CPUMAP_BATCH); 325 for (i = 0; i < n; i++) { 326 void *f = frames[i]; 327 struct page *page = virt_to_page(f); 328 329 /* Bring struct page memory area to curr CPU. Read by 330 * build_skb_around via page_is_pfmemalloc(), and when 331 * freed written by page_frag_free call. 332 */ 333 prefetchw(page); 334 } 335 336 /* Support running another XDP prog on this CPU */ 337 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats); 338 if (nframes) { 339 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs); 340 if (unlikely(m == 0)) { 341 for (i = 0; i < nframes; i++) 342 skbs[i] = NULL; /* effect: xdp_return_frame */ 343 drops += nframes; 344 } 345 } 346 347 local_bh_disable(); 348 for (i = 0; i < nframes; i++) { 349 struct xdp_frame *xdpf = frames[i]; 350 struct sk_buff *skb = skbs[i]; 351 int ret; 352 353 skb = cpu_map_build_skb(xdpf, skb); 354 if (!skb) { 355 xdp_return_frame(xdpf); 356 continue; 357 } 358 359 /* Inject into network stack */ 360 ret = netif_receive_skb_core(skb); 361 if (ret == NET_RX_DROP) 362 drops++; 363 } 364 /* Feedback loop via tracepoint */ 365 trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched, &stats); 366 367 local_bh_enable(); /* resched point, may call do_softirq() */ 368 } 369 __set_current_state(TASK_RUNNING); 370 371 put_cpu_map_entry(rcpu); 372 return 0; 373 } 374 375 bool cpu_map_prog_allowed(struct bpf_map *map) 376 { 377 return map->map_type == BPF_MAP_TYPE_CPUMAP && 378 map->value_size != offsetofend(struct bpf_cpumap_val, qsize); 379 } 380 381 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd) 382 { 383 struct bpf_prog *prog; 384 385 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 386 if (IS_ERR(prog)) 387 return PTR_ERR(prog); 388 389 if (prog->expected_attach_type != BPF_XDP_CPUMAP) { 390 bpf_prog_put(prog); 391 return -EINVAL; 392 } 393 394 rcpu->value.bpf_prog.id = prog->aux->id; 395 rcpu->prog = prog; 396 397 return 0; 398 } 399 400 static struct bpf_cpu_map_entry * 401 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value, 402 u32 cpu) 403 { 404 int numa, err, i, fd = value->bpf_prog.fd; 405 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 406 struct bpf_cpu_map_entry *rcpu; 407 struct xdp_bulk_queue *bq; 408 409 /* Have map->numa_node, but choose node of redirect target CPU */ 410 numa = cpu_to_node(cpu); 411 412 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa); 413 if (!rcpu) 414 return NULL; 415 416 /* Alloc percpu bulkq */ 417 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq), 418 sizeof(void *), gfp); 419 if (!rcpu->bulkq) 420 goto free_rcu; 421 422 for_each_possible_cpu(i) { 423 bq = per_cpu_ptr(rcpu->bulkq, i); 424 bq->obj = rcpu; 425 } 426 427 /* Alloc queue */ 428 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp, 429 numa); 430 if (!rcpu->queue) 431 goto free_bulkq; 432 433 err = ptr_ring_init(rcpu->queue, value->qsize, gfp); 434 if (err) 435 goto free_queue; 436 437 rcpu->cpu = cpu; 438 rcpu->map_id = map->id; 439 rcpu->value.qsize = value->qsize; 440 441 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd)) 442 goto free_ptr_ring; 443 444 /* Setup kthread */ 445 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 446 "cpumap/%d/map:%d", cpu, 447 map->id); 448 if (IS_ERR(rcpu->kthread)) 449 goto free_prog; 450 451 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 452 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 453 454 /* Make sure kthread runs on a single CPU */ 455 kthread_bind(rcpu->kthread, cpu); 456 wake_up_process(rcpu->kthread); 457 458 return rcpu; 459 460 free_prog: 461 if (rcpu->prog) 462 bpf_prog_put(rcpu->prog); 463 free_ptr_ring: 464 ptr_ring_cleanup(rcpu->queue, NULL); 465 free_queue: 466 kfree(rcpu->queue); 467 free_bulkq: 468 free_percpu(rcpu->bulkq); 469 free_rcu: 470 kfree(rcpu); 471 return NULL; 472 } 473 474 static void __cpu_map_entry_free(struct rcu_head *rcu) 475 { 476 struct bpf_cpu_map_entry *rcpu; 477 478 /* This cpu_map_entry have been disconnected from map and one 479 * RCU grace-period have elapsed. Thus, XDP cannot queue any 480 * new packets and cannot change/set flush_needed that can 481 * find this entry. 482 */ 483 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 484 485 free_percpu(rcpu->bulkq); 486 /* Cannot kthread_stop() here, last put free rcpu resources */ 487 put_cpu_map_entry(rcpu); 488 } 489 490 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 491 * ensure any driver rcu critical sections have completed, but this 492 * does not guarantee a flush has happened yet. Because driver side 493 * rcu_read_lock/unlock only protects the running XDP program. The 494 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 495 * pending flush op doesn't fail. 496 * 497 * The bpf_cpu_map_entry is still used by the kthread, and there can 498 * still be pending packets (in queue and percpu bulkq). A refcnt 499 * makes sure to last user (kthread_stop vs. call_rcu) free memory 500 * resources. 501 * 502 * The rcu callback __cpu_map_entry_free flush remaining packets in 503 * percpu bulkq to queue. Due to caller map_delete_elem() disable 504 * preemption, cannot call kthread_stop() to make sure queue is empty. 505 * Instead a work_queue is started for stopping kthread, 506 * cpu_map_kthread_stop, which waits for an RCU grace period before 507 * stopping kthread, emptying the queue. 508 */ 509 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 510 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 511 { 512 struct bpf_cpu_map_entry *old_rcpu; 513 514 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu); 515 if (old_rcpu) { 516 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 517 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 518 schedule_work(&old_rcpu->kthread_stop_wq); 519 } 520 } 521 522 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 523 { 524 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 525 u32 key_cpu = *(u32 *)key; 526 527 if (key_cpu >= map->max_entries) 528 return -EINVAL; 529 530 /* notice caller map_delete_elem() use preempt_disable() */ 531 __cpu_map_entry_replace(cmap, key_cpu, NULL); 532 return 0; 533 } 534 535 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 536 u64 map_flags) 537 { 538 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 539 struct bpf_cpumap_val cpumap_value = {}; 540 struct bpf_cpu_map_entry *rcpu; 541 /* Array index key correspond to CPU number */ 542 u32 key_cpu = *(u32 *)key; 543 544 memcpy(&cpumap_value, value, map->value_size); 545 546 if (unlikely(map_flags > BPF_EXIST)) 547 return -EINVAL; 548 if (unlikely(key_cpu >= cmap->map.max_entries)) 549 return -E2BIG; 550 if (unlikely(map_flags == BPF_NOEXIST)) 551 return -EEXIST; 552 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ 553 return -EOVERFLOW; 554 555 /* Make sure CPU is a valid possible cpu */ 556 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 557 return -ENODEV; 558 559 if (cpumap_value.qsize == 0) { 560 rcpu = NULL; /* Same as deleting */ 561 } else { 562 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 563 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu); 564 if (!rcpu) 565 return -ENOMEM; 566 rcpu->cmap = cmap; 567 } 568 rcu_read_lock(); 569 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 570 rcu_read_unlock(); 571 return 0; 572 } 573 574 static void cpu_map_free(struct bpf_map *map) 575 { 576 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 577 u32 i; 578 579 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 580 * so the bpf programs (can be more than one that used this map) were 581 * disconnected from events. Wait for outstanding critical sections in 582 * these programs to complete. The rcu critical section only guarantees 583 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 584 * It does __not__ ensure pending flush operations (if any) are 585 * complete. 586 */ 587 588 bpf_clear_redirect_map(map); 589 synchronize_rcu(); 590 591 /* For cpu_map the remote CPUs can still be using the entries 592 * (struct bpf_cpu_map_entry). 593 */ 594 for (i = 0; i < cmap->map.max_entries; i++) { 595 struct bpf_cpu_map_entry *rcpu; 596 597 rcpu = READ_ONCE(cmap->cpu_map[i]); 598 if (!rcpu) 599 continue; 600 601 /* bq flush and cleanup happens after RCU grace-period */ 602 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 603 } 604 bpf_map_area_free(cmap->cpu_map); 605 kfree(cmap); 606 } 607 608 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 609 { 610 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 611 struct bpf_cpu_map_entry *rcpu; 612 613 if (key >= map->max_entries) 614 return NULL; 615 616 rcpu = READ_ONCE(cmap->cpu_map[key]); 617 return rcpu; 618 } 619 620 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 621 { 622 struct bpf_cpu_map_entry *rcpu = 623 __cpu_map_lookup_elem(map, *(u32 *)key); 624 625 return rcpu ? &rcpu->value : NULL; 626 } 627 628 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 629 { 630 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 631 u32 index = key ? *(u32 *)key : U32_MAX; 632 u32 *next = next_key; 633 634 if (index >= cmap->map.max_entries) { 635 *next = 0; 636 return 0; 637 } 638 639 if (index == cmap->map.max_entries - 1) 640 return -ENOENT; 641 *next = index + 1; 642 return 0; 643 } 644 645 static int cpu_map_btf_id; 646 const struct bpf_map_ops cpu_map_ops = { 647 .map_meta_equal = bpf_map_meta_equal, 648 .map_alloc = cpu_map_alloc, 649 .map_free = cpu_map_free, 650 .map_delete_elem = cpu_map_delete_elem, 651 .map_update_elem = cpu_map_update_elem, 652 .map_lookup_elem = cpu_map_lookup_elem, 653 .map_get_next_key = cpu_map_get_next_key, 654 .map_check_btf = map_check_no_btf, 655 .map_btf_name = "bpf_cpu_map", 656 .map_btf_id = &cpu_map_btf_id, 657 }; 658 659 static void bq_flush_to_queue(struct xdp_bulk_queue *bq) 660 { 661 struct bpf_cpu_map_entry *rcpu = bq->obj; 662 unsigned int processed = 0, drops = 0; 663 const int to_cpu = rcpu->cpu; 664 struct ptr_ring *q; 665 int i; 666 667 if (unlikely(!bq->count)) 668 return; 669 670 q = rcpu->queue; 671 spin_lock(&q->producer_lock); 672 673 for (i = 0; i < bq->count; i++) { 674 struct xdp_frame *xdpf = bq->q[i]; 675 int err; 676 677 err = __ptr_ring_produce(q, xdpf); 678 if (err) { 679 drops++; 680 xdp_return_frame_rx_napi(xdpf); 681 } 682 processed++; 683 } 684 bq->count = 0; 685 spin_unlock(&q->producer_lock); 686 687 __list_del_clearprev(&bq->flush_node); 688 689 /* Feedback loop via tracepoints */ 690 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 691 } 692 693 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 694 * Thus, safe percpu variable access. 695 */ 696 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 697 { 698 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 699 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 700 701 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 702 bq_flush_to_queue(bq); 703 704 /* Notice, xdp_buff/page MUST be queued here, long enough for 705 * driver to code invoking us to finished, due to driver 706 * (e.g. ixgbe) recycle tricks based on page-refcnt. 707 * 708 * Thus, incoming xdp_frame is always queued here (else we race 709 * with another CPU on page-refcnt and remaining driver code). 710 * Queue time is very short, as driver will invoke flush 711 * operation, when completing napi->poll call. 712 */ 713 bq->q[bq->count++] = xdpf; 714 715 if (!bq->flush_node.prev) 716 list_add(&bq->flush_node, flush_list); 717 } 718 719 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 720 struct net_device *dev_rx) 721 { 722 struct xdp_frame *xdpf; 723 724 xdpf = xdp_convert_buff_to_frame(xdp); 725 if (unlikely(!xdpf)) 726 return -EOVERFLOW; 727 728 /* Info needed when constructing SKB on remote CPU */ 729 xdpf->dev_rx = dev_rx; 730 731 bq_enqueue(rcpu, xdpf); 732 return 0; 733 } 734 735 void __cpu_map_flush(void) 736 { 737 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 738 struct xdp_bulk_queue *bq, *tmp; 739 740 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 741 bq_flush_to_queue(bq); 742 743 /* If already running, costs spin_lock_irqsave + smb_mb */ 744 wake_up_process(bq->obj->kthread); 745 } 746 } 747 748 static int __init cpu_map_init(void) 749 { 750 int cpu; 751 752 for_each_possible_cpu(cpu) 753 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 754 return 0; 755 } 756 757 subsys_initcall(cpu_map_init); 758