xref: /openbmc/linux/kernel/bpf/cpumap.c (revision 36fe4655)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 #include <net/xdp.h>
23 
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
29 
30 #include <linux/netdevice.h>   /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
32 
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34  * will maximum be stored/queued for one driver ->poll() call.  It is
35  * guaranteed that queueing the frame and the flush operation happen on
36  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37  * which queue in bpf_cpu_map_entry contains packets.
38  */
39 
40 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
41 struct bpf_cpu_map_entry;
42 struct bpf_cpu_map;
43 
44 struct xdp_bulk_queue {
45 	void *q[CPU_MAP_BULK_SIZE];
46 	struct list_head flush_node;
47 	struct bpf_cpu_map_entry *obj;
48 	unsigned int count;
49 };
50 
51 /* Struct for every remote "destination" CPU in map */
52 struct bpf_cpu_map_entry {
53 	u32 cpu;    /* kthread CPU and map index */
54 	int map_id; /* Back reference to map */
55 
56 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
57 	struct xdp_bulk_queue __percpu *bulkq;
58 
59 	struct bpf_cpu_map *cmap;
60 
61 	/* Queue with potential multi-producers, and single-consumer kthread */
62 	struct ptr_ring *queue;
63 	struct task_struct *kthread;
64 
65 	struct bpf_cpumap_val value;
66 	struct bpf_prog *prog;
67 
68 	atomic_t refcnt; /* Control when this struct can be free'ed */
69 	struct rcu_head rcu;
70 
71 	struct work_struct kthread_stop_wq;
72 };
73 
74 struct bpf_cpu_map {
75 	struct bpf_map map;
76 	/* Below members specific for map type */
77 	struct bpf_cpu_map_entry **cpu_map;
78 };
79 
80 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
81 
82 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
83 {
84 	u32 value_size = attr->value_size;
85 	struct bpf_cpu_map *cmap;
86 	int err = -ENOMEM;
87 
88 	if (!bpf_capable())
89 		return ERR_PTR(-EPERM);
90 
91 	/* check sanity of attributes */
92 	if (attr->max_entries == 0 || attr->key_size != 4 ||
93 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
94 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
95 	    attr->map_flags & ~BPF_F_NUMA_NODE)
96 		return ERR_PTR(-EINVAL);
97 
98 	cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT);
99 	if (!cmap)
100 		return ERR_PTR(-ENOMEM);
101 
102 	bpf_map_init_from_attr(&cmap->map, attr);
103 
104 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
105 	if (cmap->map.max_entries > NR_CPUS) {
106 		err = -E2BIG;
107 		goto free_cmap;
108 	}
109 
110 	/* Alloc array for possible remote "destination" CPUs */
111 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
112 					   sizeof(struct bpf_cpu_map_entry *),
113 					   cmap->map.numa_node);
114 	if (!cmap->cpu_map)
115 		goto free_cmap;
116 
117 	return &cmap->map;
118 free_cmap:
119 	kfree(cmap);
120 	return ERR_PTR(err);
121 }
122 
123 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
124 {
125 	atomic_inc(&rcpu->refcnt);
126 }
127 
128 /* called from workqueue, to workaround syscall using preempt_disable */
129 static void cpu_map_kthread_stop(struct work_struct *work)
130 {
131 	struct bpf_cpu_map_entry *rcpu;
132 
133 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
134 
135 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
136 	 * as it waits until all in-flight call_rcu() callbacks complete.
137 	 */
138 	rcu_barrier();
139 
140 	/* kthread_stop will wake_up_process and wait for it to complete */
141 	kthread_stop(rcpu->kthread);
142 }
143 
144 static struct sk_buff *cpu_map_build_skb(struct xdp_frame *xdpf,
145 					 struct sk_buff *skb)
146 {
147 	unsigned int hard_start_headroom;
148 	unsigned int frame_size;
149 	void *pkt_data_start;
150 
151 	/* Part of headroom was reserved to xdpf */
152 	hard_start_headroom = sizeof(struct xdp_frame) +  xdpf->headroom;
153 
154 	/* Memory size backing xdp_frame data already have reserved
155 	 * room for build_skb to place skb_shared_info in tailroom.
156 	 */
157 	frame_size = xdpf->frame_sz;
158 
159 	pkt_data_start = xdpf->data - hard_start_headroom;
160 	skb = build_skb_around(skb, pkt_data_start, frame_size);
161 	if (unlikely(!skb))
162 		return NULL;
163 
164 	skb_reserve(skb, hard_start_headroom);
165 	__skb_put(skb, xdpf->len);
166 	if (xdpf->metasize)
167 		skb_metadata_set(skb, xdpf->metasize);
168 
169 	/* Essential SKB info: protocol and skb->dev */
170 	skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
171 
172 	/* Optional SKB info, currently missing:
173 	 * - HW checksum info		(skb->ip_summed)
174 	 * - HW RX hash			(skb_set_hash)
175 	 * - RX ring dev queue index	(skb_record_rx_queue)
176 	 */
177 
178 	/* Until page_pool get SKB return path, release DMA here */
179 	xdp_release_frame(xdpf);
180 
181 	/* Allow SKB to reuse area used by xdp_frame */
182 	xdp_scrub_frame(xdpf);
183 
184 	return skb;
185 }
186 
187 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
188 {
189 	/* The tear-down procedure should have made sure that queue is
190 	 * empty.  See __cpu_map_entry_replace() and work-queue
191 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
192 	 * gracefully and warn once.
193 	 */
194 	struct xdp_frame *xdpf;
195 
196 	while ((xdpf = ptr_ring_consume(ring)))
197 		if (WARN_ON_ONCE(xdpf))
198 			xdp_return_frame(xdpf);
199 }
200 
201 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
202 {
203 	if (atomic_dec_and_test(&rcpu->refcnt)) {
204 		if (rcpu->prog)
205 			bpf_prog_put(rcpu->prog);
206 		/* The queue should be empty at this point */
207 		__cpu_map_ring_cleanup(rcpu->queue);
208 		ptr_ring_cleanup(rcpu->queue, NULL);
209 		kfree(rcpu->queue);
210 		kfree(rcpu);
211 	}
212 }
213 
214 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
215 				    void **frames, int n,
216 				    struct xdp_cpumap_stats *stats)
217 {
218 	struct xdp_rxq_info rxq;
219 	struct xdp_buff xdp;
220 	int i, nframes = 0;
221 
222 	if (!rcpu->prog)
223 		return n;
224 
225 	rcu_read_lock_bh();
226 
227 	xdp_set_return_frame_no_direct();
228 	xdp.rxq = &rxq;
229 
230 	for (i = 0; i < n; i++) {
231 		struct xdp_frame *xdpf = frames[i];
232 		u32 act;
233 		int err;
234 
235 		rxq.dev = xdpf->dev_rx;
236 		rxq.mem = xdpf->mem;
237 		/* TODO: report queue_index to xdp_rxq_info */
238 
239 		xdp_convert_frame_to_buff(xdpf, &xdp);
240 
241 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
242 		switch (act) {
243 		case XDP_PASS:
244 			err = xdp_update_frame_from_buff(&xdp, xdpf);
245 			if (err < 0) {
246 				xdp_return_frame(xdpf);
247 				stats->drop++;
248 			} else {
249 				frames[nframes++] = xdpf;
250 				stats->pass++;
251 			}
252 			break;
253 		case XDP_REDIRECT:
254 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
255 					      rcpu->prog);
256 			if (unlikely(err)) {
257 				xdp_return_frame(xdpf);
258 				stats->drop++;
259 			} else {
260 				stats->redirect++;
261 			}
262 			break;
263 		default:
264 			bpf_warn_invalid_xdp_action(act);
265 			fallthrough;
266 		case XDP_DROP:
267 			xdp_return_frame(xdpf);
268 			stats->drop++;
269 			break;
270 		}
271 	}
272 
273 	if (stats->redirect)
274 		xdp_do_flush_map();
275 
276 	xdp_clear_return_frame_no_direct();
277 
278 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
279 
280 	return nframes;
281 }
282 
283 #define CPUMAP_BATCH 8
284 
285 static int cpu_map_kthread_run(void *data)
286 {
287 	struct bpf_cpu_map_entry *rcpu = data;
288 
289 	set_current_state(TASK_INTERRUPTIBLE);
290 
291 	/* When kthread gives stop order, then rcpu have been disconnected
292 	 * from map, thus no new packets can enter. Remaining in-flight
293 	 * per CPU stored packets are flushed to this queue.  Wait honoring
294 	 * kthread_stop signal until queue is empty.
295 	 */
296 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
297 		struct xdp_cpumap_stats stats = {}; /* zero stats */
298 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
299 		unsigned int drops = 0, sched = 0;
300 		void *frames[CPUMAP_BATCH];
301 		void *skbs[CPUMAP_BATCH];
302 		int i, n, m, nframes;
303 
304 		/* Release CPU reschedule checks */
305 		if (__ptr_ring_empty(rcpu->queue)) {
306 			set_current_state(TASK_INTERRUPTIBLE);
307 			/* Recheck to avoid lost wake-up */
308 			if (__ptr_ring_empty(rcpu->queue)) {
309 				schedule();
310 				sched = 1;
311 			} else {
312 				__set_current_state(TASK_RUNNING);
313 			}
314 		} else {
315 			sched = cond_resched();
316 		}
317 
318 		/*
319 		 * The bpf_cpu_map_entry is single consumer, with this
320 		 * kthread CPU pinned. Lockless access to ptr_ring
321 		 * consume side valid as no-resize allowed of queue.
322 		 */
323 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
324 					       CPUMAP_BATCH);
325 		for (i = 0; i < n; i++) {
326 			void *f = frames[i];
327 			struct page *page = virt_to_page(f);
328 
329 			/* Bring struct page memory area to curr CPU. Read by
330 			 * build_skb_around via page_is_pfmemalloc(), and when
331 			 * freed written by page_frag_free call.
332 			 */
333 			prefetchw(page);
334 		}
335 
336 		/* Support running another XDP prog on this CPU */
337 		nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats);
338 		if (nframes) {
339 			m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
340 			if (unlikely(m == 0)) {
341 				for (i = 0; i < nframes; i++)
342 					skbs[i] = NULL; /* effect: xdp_return_frame */
343 				drops += nframes;
344 			}
345 		}
346 
347 		local_bh_disable();
348 		for (i = 0; i < nframes; i++) {
349 			struct xdp_frame *xdpf = frames[i];
350 			struct sk_buff *skb = skbs[i];
351 			int ret;
352 
353 			skb = cpu_map_build_skb(xdpf, skb);
354 			if (!skb) {
355 				xdp_return_frame(xdpf);
356 				continue;
357 			}
358 
359 			/* Inject into network stack */
360 			ret = netif_receive_skb_core(skb);
361 			if (ret == NET_RX_DROP)
362 				drops++;
363 		}
364 		/* Feedback loop via tracepoint */
365 		trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched, &stats);
366 
367 		local_bh_enable(); /* resched point, may call do_softirq() */
368 	}
369 	__set_current_state(TASK_RUNNING);
370 
371 	put_cpu_map_entry(rcpu);
372 	return 0;
373 }
374 
375 bool cpu_map_prog_allowed(struct bpf_map *map)
376 {
377 	return map->map_type == BPF_MAP_TYPE_CPUMAP &&
378 	       map->value_size != offsetofend(struct bpf_cpumap_val, qsize);
379 }
380 
381 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
382 {
383 	struct bpf_prog *prog;
384 
385 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
386 	if (IS_ERR(prog))
387 		return PTR_ERR(prog);
388 
389 	if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
390 		bpf_prog_put(prog);
391 		return -EINVAL;
392 	}
393 
394 	rcpu->value.bpf_prog.id = prog->aux->id;
395 	rcpu->prog = prog;
396 
397 	return 0;
398 }
399 
400 static struct bpf_cpu_map_entry *
401 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
402 		      u32 cpu)
403 {
404 	int numa, err, i, fd = value->bpf_prog.fd;
405 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
406 	struct bpf_cpu_map_entry *rcpu;
407 	struct xdp_bulk_queue *bq;
408 
409 	/* Have map->numa_node, but choose node of redirect target CPU */
410 	numa = cpu_to_node(cpu);
411 
412 	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
413 	if (!rcpu)
414 		return NULL;
415 
416 	/* Alloc percpu bulkq */
417 	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
418 					   sizeof(void *), gfp);
419 	if (!rcpu->bulkq)
420 		goto free_rcu;
421 
422 	for_each_possible_cpu(i) {
423 		bq = per_cpu_ptr(rcpu->bulkq, i);
424 		bq->obj = rcpu;
425 	}
426 
427 	/* Alloc queue */
428 	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
429 					   numa);
430 	if (!rcpu->queue)
431 		goto free_bulkq;
432 
433 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
434 	if (err)
435 		goto free_queue;
436 
437 	rcpu->cpu    = cpu;
438 	rcpu->map_id = map->id;
439 	rcpu->value.qsize  = value->qsize;
440 
441 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
442 		goto free_ptr_ring;
443 
444 	/* Setup kthread */
445 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
446 					       "cpumap/%d/map:%d", cpu,
447 					       map->id);
448 	if (IS_ERR(rcpu->kthread))
449 		goto free_prog;
450 
451 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
452 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
453 
454 	/* Make sure kthread runs on a single CPU */
455 	kthread_bind(rcpu->kthread, cpu);
456 	wake_up_process(rcpu->kthread);
457 
458 	return rcpu;
459 
460 free_prog:
461 	if (rcpu->prog)
462 		bpf_prog_put(rcpu->prog);
463 free_ptr_ring:
464 	ptr_ring_cleanup(rcpu->queue, NULL);
465 free_queue:
466 	kfree(rcpu->queue);
467 free_bulkq:
468 	free_percpu(rcpu->bulkq);
469 free_rcu:
470 	kfree(rcpu);
471 	return NULL;
472 }
473 
474 static void __cpu_map_entry_free(struct rcu_head *rcu)
475 {
476 	struct bpf_cpu_map_entry *rcpu;
477 
478 	/* This cpu_map_entry have been disconnected from map and one
479 	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
480 	 * new packets and cannot change/set flush_needed that can
481 	 * find this entry.
482 	 */
483 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
484 
485 	free_percpu(rcpu->bulkq);
486 	/* Cannot kthread_stop() here, last put free rcpu resources */
487 	put_cpu_map_entry(rcpu);
488 }
489 
490 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
491  * ensure any driver rcu critical sections have completed, but this
492  * does not guarantee a flush has happened yet. Because driver side
493  * rcu_read_lock/unlock only protects the running XDP program.  The
494  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
495  * pending flush op doesn't fail.
496  *
497  * The bpf_cpu_map_entry is still used by the kthread, and there can
498  * still be pending packets (in queue and percpu bulkq).  A refcnt
499  * makes sure to last user (kthread_stop vs. call_rcu) free memory
500  * resources.
501  *
502  * The rcu callback __cpu_map_entry_free flush remaining packets in
503  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
504  * preemption, cannot call kthread_stop() to make sure queue is empty.
505  * Instead a work_queue is started for stopping kthread,
506  * cpu_map_kthread_stop, which waits for an RCU grace period before
507  * stopping kthread, emptying the queue.
508  */
509 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
510 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
511 {
512 	struct bpf_cpu_map_entry *old_rcpu;
513 
514 	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
515 	if (old_rcpu) {
516 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
517 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
518 		schedule_work(&old_rcpu->kthread_stop_wq);
519 	}
520 }
521 
522 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
523 {
524 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
525 	u32 key_cpu = *(u32 *)key;
526 
527 	if (key_cpu >= map->max_entries)
528 		return -EINVAL;
529 
530 	/* notice caller map_delete_elem() use preempt_disable() */
531 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
532 	return 0;
533 }
534 
535 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
536 			       u64 map_flags)
537 {
538 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
539 	struct bpf_cpumap_val cpumap_value = {};
540 	struct bpf_cpu_map_entry *rcpu;
541 	/* Array index key correspond to CPU number */
542 	u32 key_cpu = *(u32 *)key;
543 
544 	memcpy(&cpumap_value, value, map->value_size);
545 
546 	if (unlikely(map_flags > BPF_EXIST))
547 		return -EINVAL;
548 	if (unlikely(key_cpu >= cmap->map.max_entries))
549 		return -E2BIG;
550 	if (unlikely(map_flags == BPF_NOEXIST))
551 		return -EEXIST;
552 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
553 		return -EOVERFLOW;
554 
555 	/* Make sure CPU is a valid possible cpu */
556 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
557 		return -ENODEV;
558 
559 	if (cpumap_value.qsize == 0) {
560 		rcpu = NULL; /* Same as deleting */
561 	} else {
562 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
563 		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
564 		if (!rcpu)
565 			return -ENOMEM;
566 		rcpu->cmap = cmap;
567 	}
568 	rcu_read_lock();
569 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
570 	rcu_read_unlock();
571 	return 0;
572 }
573 
574 static void cpu_map_free(struct bpf_map *map)
575 {
576 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
577 	u32 i;
578 
579 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
580 	 * so the bpf programs (can be more than one that used this map) were
581 	 * disconnected from events. Wait for outstanding critical sections in
582 	 * these programs to complete. The rcu critical section only guarantees
583 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
584 	 * It does __not__ ensure pending flush operations (if any) are
585 	 * complete.
586 	 */
587 
588 	bpf_clear_redirect_map(map);
589 	synchronize_rcu();
590 
591 	/* For cpu_map the remote CPUs can still be using the entries
592 	 * (struct bpf_cpu_map_entry).
593 	 */
594 	for (i = 0; i < cmap->map.max_entries; i++) {
595 		struct bpf_cpu_map_entry *rcpu;
596 
597 		rcpu = READ_ONCE(cmap->cpu_map[i]);
598 		if (!rcpu)
599 			continue;
600 
601 		/* bq flush and cleanup happens after RCU grace-period */
602 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
603 	}
604 	bpf_map_area_free(cmap->cpu_map);
605 	kfree(cmap);
606 }
607 
608 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
609 {
610 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
611 	struct bpf_cpu_map_entry *rcpu;
612 
613 	if (key >= map->max_entries)
614 		return NULL;
615 
616 	rcpu = READ_ONCE(cmap->cpu_map[key]);
617 	return rcpu;
618 }
619 
620 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
621 {
622 	struct bpf_cpu_map_entry *rcpu =
623 		__cpu_map_lookup_elem(map, *(u32 *)key);
624 
625 	return rcpu ? &rcpu->value : NULL;
626 }
627 
628 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
629 {
630 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
631 	u32 index = key ? *(u32 *)key : U32_MAX;
632 	u32 *next = next_key;
633 
634 	if (index >= cmap->map.max_entries) {
635 		*next = 0;
636 		return 0;
637 	}
638 
639 	if (index == cmap->map.max_entries - 1)
640 		return -ENOENT;
641 	*next = index + 1;
642 	return 0;
643 }
644 
645 static int cpu_map_btf_id;
646 const struct bpf_map_ops cpu_map_ops = {
647 	.map_meta_equal		= bpf_map_meta_equal,
648 	.map_alloc		= cpu_map_alloc,
649 	.map_free		= cpu_map_free,
650 	.map_delete_elem	= cpu_map_delete_elem,
651 	.map_update_elem	= cpu_map_update_elem,
652 	.map_lookup_elem	= cpu_map_lookup_elem,
653 	.map_get_next_key	= cpu_map_get_next_key,
654 	.map_check_btf		= map_check_no_btf,
655 	.map_btf_name		= "bpf_cpu_map",
656 	.map_btf_id		= &cpu_map_btf_id,
657 };
658 
659 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
660 {
661 	struct bpf_cpu_map_entry *rcpu = bq->obj;
662 	unsigned int processed = 0, drops = 0;
663 	const int to_cpu = rcpu->cpu;
664 	struct ptr_ring *q;
665 	int i;
666 
667 	if (unlikely(!bq->count))
668 		return;
669 
670 	q = rcpu->queue;
671 	spin_lock(&q->producer_lock);
672 
673 	for (i = 0; i < bq->count; i++) {
674 		struct xdp_frame *xdpf = bq->q[i];
675 		int err;
676 
677 		err = __ptr_ring_produce(q, xdpf);
678 		if (err) {
679 			drops++;
680 			xdp_return_frame_rx_napi(xdpf);
681 		}
682 		processed++;
683 	}
684 	bq->count = 0;
685 	spin_unlock(&q->producer_lock);
686 
687 	__list_del_clearprev(&bq->flush_node);
688 
689 	/* Feedback loop via tracepoints */
690 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
691 }
692 
693 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
694  * Thus, safe percpu variable access.
695  */
696 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
697 {
698 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
699 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
700 
701 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
702 		bq_flush_to_queue(bq);
703 
704 	/* Notice, xdp_buff/page MUST be queued here, long enough for
705 	 * driver to code invoking us to finished, due to driver
706 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
707 	 *
708 	 * Thus, incoming xdp_frame is always queued here (else we race
709 	 * with another CPU on page-refcnt and remaining driver code).
710 	 * Queue time is very short, as driver will invoke flush
711 	 * operation, when completing napi->poll call.
712 	 */
713 	bq->q[bq->count++] = xdpf;
714 
715 	if (!bq->flush_node.prev)
716 		list_add(&bq->flush_node, flush_list);
717 }
718 
719 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
720 		    struct net_device *dev_rx)
721 {
722 	struct xdp_frame *xdpf;
723 
724 	xdpf = xdp_convert_buff_to_frame(xdp);
725 	if (unlikely(!xdpf))
726 		return -EOVERFLOW;
727 
728 	/* Info needed when constructing SKB on remote CPU */
729 	xdpf->dev_rx = dev_rx;
730 
731 	bq_enqueue(rcpu, xdpf);
732 	return 0;
733 }
734 
735 void __cpu_map_flush(void)
736 {
737 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
738 	struct xdp_bulk_queue *bq, *tmp;
739 
740 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
741 		bq_flush_to_queue(bq);
742 
743 		/* If already running, costs spin_lock_irqsave + smb_mb */
744 		wake_up_process(bq->obj->kthread);
745 	}
746 }
747 
748 static int __init cpu_map_init(void)
749 {
750 	int cpu;
751 
752 	for_each_possible_cpu(cpu)
753 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
754 	return 0;
755 }
756 
757 subsys_initcall(cpu_map_init);
758