xref: /openbmc/linux/kernel/bpf/cpumap.c (revision 35b1b1fd96388d5e3cf179bf36bd8a4153baf4a3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /**
8  * DOC: cpu map
9  * The 'cpumap' is primarily used as a backend map for XDP BPF helper
10  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
11  *
12  * Unlike devmap which redirects XDP frames out to another NIC device,
13  * this map type redirects raw XDP frames to another CPU.  The remote
14  * CPU will do SKB-allocation and call the normal network stack.
15  */
16 /*
17  * This is a scalability and isolation mechanism, that allow
18  * separating the early driver network XDP layer, from the rest of the
19  * netstack, and assigning dedicated CPUs for this stage.  This
20  * basically allows for 10G wirespeed pre-filtering via bpf.
21  */
22 #include <linux/bitops.h>
23 #include <linux/bpf.h>
24 #include <linux/filter.h>
25 #include <linux/ptr_ring.h>
26 #include <net/xdp.h>
27 
28 #include <linux/sched.h>
29 #include <linux/workqueue.h>
30 #include <linux/kthread.h>
31 #include <linux/completion.h>
32 #include <trace/events/xdp.h>
33 #include <linux/btf_ids.h>
34 
35 #include <linux/netdevice.h>   /* netif_receive_skb_list */
36 #include <linux/etherdevice.h> /* eth_type_trans */
37 
38 /* General idea: XDP packets getting XDP redirected to another CPU,
39  * will maximum be stored/queued for one driver ->poll() call.  It is
40  * guaranteed that queueing the frame and the flush operation happen on
41  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
42  * which queue in bpf_cpu_map_entry contains packets.
43  */
44 
45 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
46 struct bpf_cpu_map_entry;
47 struct bpf_cpu_map;
48 
49 struct xdp_bulk_queue {
50 	void *q[CPU_MAP_BULK_SIZE];
51 	struct list_head flush_node;
52 	struct bpf_cpu_map_entry *obj;
53 	unsigned int count;
54 };
55 
56 /* Struct for every remote "destination" CPU in map */
57 struct bpf_cpu_map_entry {
58 	u32 cpu;    /* kthread CPU and map index */
59 	int map_id; /* Back reference to map */
60 
61 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
62 	struct xdp_bulk_queue __percpu *bulkq;
63 
64 	struct bpf_cpu_map *cmap;
65 
66 	/* Queue with potential multi-producers, and single-consumer kthread */
67 	struct ptr_ring *queue;
68 	struct task_struct *kthread;
69 
70 	struct bpf_cpumap_val value;
71 	struct bpf_prog *prog;
72 
73 	atomic_t refcnt; /* Control when this struct can be free'ed */
74 	struct rcu_head rcu;
75 
76 	struct work_struct kthread_stop_wq;
77 	struct completion kthread_running;
78 };
79 
80 struct bpf_cpu_map {
81 	struct bpf_map map;
82 	/* Below members specific for map type */
83 	struct bpf_cpu_map_entry __rcu **cpu_map;
84 };
85 
86 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
87 
88 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
89 {
90 	u32 value_size = attr->value_size;
91 	struct bpf_cpu_map *cmap;
92 
93 	/* check sanity of attributes */
94 	if (attr->max_entries == 0 || attr->key_size != 4 ||
95 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
96 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
97 	    attr->map_flags & ~BPF_F_NUMA_NODE)
98 		return ERR_PTR(-EINVAL);
99 
100 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
101 	if (attr->max_entries > NR_CPUS)
102 		return ERR_PTR(-E2BIG);
103 
104 	cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
105 	if (!cmap)
106 		return ERR_PTR(-ENOMEM);
107 
108 	bpf_map_init_from_attr(&cmap->map, attr);
109 
110 	/* Alloc array for possible remote "destination" CPUs */
111 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
112 					   sizeof(struct bpf_cpu_map_entry *),
113 					   cmap->map.numa_node);
114 	if (!cmap->cpu_map) {
115 		bpf_map_area_free(cmap);
116 		return ERR_PTR(-ENOMEM);
117 	}
118 
119 	return &cmap->map;
120 }
121 
122 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
123 {
124 	atomic_inc(&rcpu->refcnt);
125 }
126 
127 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
128 {
129 	/* The tear-down procedure should have made sure that queue is
130 	 * empty.  See __cpu_map_entry_replace() and work-queue
131 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
132 	 * gracefully and warn once.
133 	 */
134 	void *ptr;
135 
136 	while ((ptr = ptr_ring_consume(ring))) {
137 		WARN_ON_ONCE(1);
138 		if (unlikely(__ptr_test_bit(0, &ptr))) {
139 			__ptr_clear_bit(0, &ptr);
140 			kfree_skb(ptr);
141 			continue;
142 		}
143 		xdp_return_frame(ptr);
144 	}
145 }
146 
147 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
148 {
149 	if (atomic_dec_and_test(&rcpu->refcnt)) {
150 		if (rcpu->prog)
151 			bpf_prog_put(rcpu->prog);
152 		/* The queue should be empty at this point */
153 		__cpu_map_ring_cleanup(rcpu->queue);
154 		ptr_ring_cleanup(rcpu->queue, NULL);
155 		kfree(rcpu->queue);
156 		kfree(rcpu);
157 	}
158 }
159 
160 /* called from workqueue, to workaround syscall using preempt_disable */
161 static void cpu_map_kthread_stop(struct work_struct *work)
162 {
163 	struct bpf_cpu_map_entry *rcpu;
164 
165 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
166 
167 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
168 	 * as it waits until all in-flight call_rcu() callbacks complete.
169 	 */
170 	rcu_barrier();
171 
172 	/* kthread_stop will wake_up_process and wait for it to complete */
173 	kthread_stop(rcpu->kthread);
174 }
175 
176 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
177 				     struct list_head *listp,
178 				     struct xdp_cpumap_stats *stats)
179 {
180 	struct sk_buff *skb, *tmp;
181 	struct xdp_buff xdp;
182 	u32 act;
183 	int err;
184 
185 	list_for_each_entry_safe(skb, tmp, listp, list) {
186 		act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
187 		switch (act) {
188 		case XDP_PASS:
189 			break;
190 		case XDP_REDIRECT:
191 			skb_list_del_init(skb);
192 			err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
193 						      rcpu->prog);
194 			if (unlikely(err)) {
195 				kfree_skb(skb);
196 				stats->drop++;
197 			} else {
198 				stats->redirect++;
199 			}
200 			return;
201 		default:
202 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
203 			fallthrough;
204 		case XDP_ABORTED:
205 			trace_xdp_exception(skb->dev, rcpu->prog, act);
206 			fallthrough;
207 		case XDP_DROP:
208 			skb_list_del_init(skb);
209 			kfree_skb(skb);
210 			stats->drop++;
211 			return;
212 		}
213 	}
214 }
215 
216 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
217 				    void **frames, int n,
218 				    struct xdp_cpumap_stats *stats)
219 {
220 	struct xdp_rxq_info rxq;
221 	struct xdp_buff xdp;
222 	int i, nframes = 0;
223 
224 	xdp_set_return_frame_no_direct();
225 	xdp.rxq = &rxq;
226 
227 	for (i = 0; i < n; i++) {
228 		struct xdp_frame *xdpf = frames[i];
229 		u32 act;
230 		int err;
231 
232 		rxq.dev = xdpf->dev_rx;
233 		rxq.mem = xdpf->mem;
234 		/* TODO: report queue_index to xdp_rxq_info */
235 
236 		xdp_convert_frame_to_buff(xdpf, &xdp);
237 
238 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
239 		switch (act) {
240 		case XDP_PASS:
241 			err = xdp_update_frame_from_buff(&xdp, xdpf);
242 			if (err < 0) {
243 				xdp_return_frame(xdpf);
244 				stats->drop++;
245 			} else {
246 				frames[nframes++] = xdpf;
247 				stats->pass++;
248 			}
249 			break;
250 		case XDP_REDIRECT:
251 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
252 					      rcpu->prog);
253 			if (unlikely(err)) {
254 				xdp_return_frame(xdpf);
255 				stats->drop++;
256 			} else {
257 				stats->redirect++;
258 			}
259 			break;
260 		default:
261 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
262 			fallthrough;
263 		case XDP_DROP:
264 			xdp_return_frame(xdpf);
265 			stats->drop++;
266 			break;
267 		}
268 	}
269 
270 	xdp_clear_return_frame_no_direct();
271 
272 	return nframes;
273 }
274 
275 #define CPUMAP_BATCH 8
276 
277 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
278 				int xdp_n, struct xdp_cpumap_stats *stats,
279 				struct list_head *list)
280 {
281 	int nframes;
282 
283 	if (!rcpu->prog)
284 		return xdp_n;
285 
286 	rcu_read_lock_bh();
287 
288 	nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
289 
290 	if (stats->redirect)
291 		xdp_do_flush();
292 
293 	if (unlikely(!list_empty(list)))
294 		cpu_map_bpf_prog_run_skb(rcpu, list, stats);
295 
296 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
297 
298 	return nframes;
299 }
300 
301 static int cpu_map_kthread_run(void *data)
302 {
303 	struct bpf_cpu_map_entry *rcpu = data;
304 
305 	complete(&rcpu->kthread_running);
306 	set_current_state(TASK_INTERRUPTIBLE);
307 
308 	/* When kthread gives stop order, then rcpu have been disconnected
309 	 * from map, thus no new packets can enter. Remaining in-flight
310 	 * per CPU stored packets are flushed to this queue.  Wait honoring
311 	 * kthread_stop signal until queue is empty.
312 	 */
313 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
314 		struct xdp_cpumap_stats stats = {}; /* zero stats */
315 		unsigned int kmem_alloc_drops = 0, sched = 0;
316 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
317 		int i, n, m, nframes, xdp_n;
318 		void *frames[CPUMAP_BATCH];
319 		void *skbs[CPUMAP_BATCH];
320 		LIST_HEAD(list);
321 
322 		/* Release CPU reschedule checks */
323 		if (__ptr_ring_empty(rcpu->queue)) {
324 			set_current_state(TASK_INTERRUPTIBLE);
325 			/* Recheck to avoid lost wake-up */
326 			if (__ptr_ring_empty(rcpu->queue)) {
327 				schedule();
328 				sched = 1;
329 			} else {
330 				__set_current_state(TASK_RUNNING);
331 			}
332 		} else {
333 			sched = cond_resched();
334 		}
335 
336 		/*
337 		 * The bpf_cpu_map_entry is single consumer, with this
338 		 * kthread CPU pinned. Lockless access to ptr_ring
339 		 * consume side valid as no-resize allowed of queue.
340 		 */
341 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
342 					       CPUMAP_BATCH);
343 		for (i = 0, xdp_n = 0; i < n; i++) {
344 			void *f = frames[i];
345 			struct page *page;
346 
347 			if (unlikely(__ptr_test_bit(0, &f))) {
348 				struct sk_buff *skb = f;
349 
350 				__ptr_clear_bit(0, &skb);
351 				list_add_tail(&skb->list, &list);
352 				continue;
353 			}
354 
355 			frames[xdp_n++] = f;
356 			page = virt_to_page(f);
357 
358 			/* Bring struct page memory area to curr CPU. Read by
359 			 * build_skb_around via page_is_pfmemalloc(), and when
360 			 * freed written by page_frag_free call.
361 			 */
362 			prefetchw(page);
363 		}
364 
365 		/* Support running another XDP prog on this CPU */
366 		nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
367 		if (nframes) {
368 			m = kmem_cache_alloc_bulk(skbuff_cache, gfp, nframes, skbs);
369 			if (unlikely(m == 0)) {
370 				for (i = 0; i < nframes; i++)
371 					skbs[i] = NULL; /* effect: xdp_return_frame */
372 				kmem_alloc_drops += nframes;
373 			}
374 		}
375 
376 		local_bh_disable();
377 		for (i = 0; i < nframes; i++) {
378 			struct xdp_frame *xdpf = frames[i];
379 			struct sk_buff *skb = skbs[i];
380 
381 			skb = __xdp_build_skb_from_frame(xdpf, skb,
382 							 xdpf->dev_rx);
383 			if (!skb) {
384 				xdp_return_frame(xdpf);
385 				continue;
386 			}
387 
388 			list_add_tail(&skb->list, &list);
389 		}
390 		netif_receive_skb_list(&list);
391 
392 		/* Feedback loop via tracepoint */
393 		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
394 					 sched, &stats);
395 
396 		local_bh_enable(); /* resched point, may call do_softirq() */
397 	}
398 	__set_current_state(TASK_RUNNING);
399 
400 	put_cpu_map_entry(rcpu);
401 	return 0;
402 }
403 
404 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
405 				      struct bpf_map *map, int fd)
406 {
407 	struct bpf_prog *prog;
408 
409 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
410 	if (IS_ERR(prog))
411 		return PTR_ERR(prog);
412 
413 	if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
414 	    !bpf_prog_map_compatible(map, prog)) {
415 		bpf_prog_put(prog);
416 		return -EINVAL;
417 	}
418 
419 	rcpu->value.bpf_prog.id = prog->aux->id;
420 	rcpu->prog = prog;
421 
422 	return 0;
423 }
424 
425 static struct bpf_cpu_map_entry *
426 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
427 		      u32 cpu)
428 {
429 	int numa, err, i, fd = value->bpf_prog.fd;
430 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
431 	struct bpf_cpu_map_entry *rcpu;
432 	struct xdp_bulk_queue *bq;
433 
434 	/* Have map->numa_node, but choose node of redirect target CPU */
435 	numa = cpu_to_node(cpu);
436 
437 	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
438 	if (!rcpu)
439 		return NULL;
440 
441 	/* Alloc percpu bulkq */
442 	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
443 					   sizeof(void *), gfp);
444 	if (!rcpu->bulkq)
445 		goto free_rcu;
446 
447 	for_each_possible_cpu(i) {
448 		bq = per_cpu_ptr(rcpu->bulkq, i);
449 		bq->obj = rcpu;
450 	}
451 
452 	/* Alloc queue */
453 	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
454 					   numa);
455 	if (!rcpu->queue)
456 		goto free_bulkq;
457 
458 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
459 	if (err)
460 		goto free_queue;
461 
462 	rcpu->cpu    = cpu;
463 	rcpu->map_id = map->id;
464 	rcpu->value.qsize  = value->qsize;
465 
466 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
467 		goto free_ptr_ring;
468 
469 	/* Setup kthread */
470 	init_completion(&rcpu->kthread_running);
471 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
472 					       "cpumap/%d/map:%d", cpu,
473 					       map->id);
474 	if (IS_ERR(rcpu->kthread))
475 		goto free_prog;
476 
477 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
478 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
479 
480 	/* Make sure kthread runs on a single CPU */
481 	kthread_bind(rcpu->kthread, cpu);
482 	wake_up_process(rcpu->kthread);
483 
484 	/* Make sure kthread has been running, so kthread_stop() will not
485 	 * stop the kthread prematurely and all pending frames or skbs
486 	 * will be handled by the kthread before kthread_stop() returns.
487 	 */
488 	wait_for_completion(&rcpu->kthread_running);
489 
490 	return rcpu;
491 
492 free_prog:
493 	if (rcpu->prog)
494 		bpf_prog_put(rcpu->prog);
495 free_ptr_ring:
496 	ptr_ring_cleanup(rcpu->queue, NULL);
497 free_queue:
498 	kfree(rcpu->queue);
499 free_bulkq:
500 	free_percpu(rcpu->bulkq);
501 free_rcu:
502 	kfree(rcpu);
503 	return NULL;
504 }
505 
506 static void __cpu_map_entry_free(struct rcu_head *rcu)
507 {
508 	struct bpf_cpu_map_entry *rcpu;
509 
510 	/* This cpu_map_entry have been disconnected from map and one
511 	 * RCU grace-period have elapsed.  Thus, XDP cannot queue any
512 	 * new packets and cannot change/set flush_needed that can
513 	 * find this entry.
514 	 */
515 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
516 
517 	free_percpu(rcpu->bulkq);
518 	/* Cannot kthread_stop() here, last put free rcpu resources */
519 	put_cpu_map_entry(rcpu);
520 }
521 
522 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
523  * ensure any driver rcu critical sections have completed, but this
524  * does not guarantee a flush has happened yet. Because driver side
525  * rcu_read_lock/unlock only protects the running XDP program.  The
526  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
527  * pending flush op doesn't fail.
528  *
529  * The bpf_cpu_map_entry is still used by the kthread, and there can
530  * still be pending packets (in queue and percpu bulkq).  A refcnt
531  * makes sure to last user (kthread_stop vs. call_rcu) free memory
532  * resources.
533  *
534  * The rcu callback __cpu_map_entry_free flush remaining packets in
535  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
536  * preemption, cannot call kthread_stop() to make sure queue is empty.
537  * Instead a work_queue is started for stopping kthread,
538  * cpu_map_kthread_stop, which waits for an RCU grace period before
539  * stopping kthread, emptying the queue.
540  */
541 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
542 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
543 {
544 	struct bpf_cpu_map_entry *old_rcpu;
545 
546 	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
547 	if (old_rcpu) {
548 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
549 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
550 		schedule_work(&old_rcpu->kthread_stop_wq);
551 	}
552 }
553 
554 static long cpu_map_delete_elem(struct bpf_map *map, void *key)
555 {
556 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
557 	u32 key_cpu = *(u32 *)key;
558 
559 	if (key_cpu >= map->max_entries)
560 		return -EINVAL;
561 
562 	/* notice caller map_delete_elem() use preempt_disable() */
563 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
564 	return 0;
565 }
566 
567 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
568 				u64 map_flags)
569 {
570 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
571 	struct bpf_cpumap_val cpumap_value = {};
572 	struct bpf_cpu_map_entry *rcpu;
573 	/* Array index key correspond to CPU number */
574 	u32 key_cpu = *(u32 *)key;
575 
576 	memcpy(&cpumap_value, value, map->value_size);
577 
578 	if (unlikely(map_flags > BPF_EXIST))
579 		return -EINVAL;
580 	if (unlikely(key_cpu >= cmap->map.max_entries))
581 		return -E2BIG;
582 	if (unlikely(map_flags == BPF_NOEXIST))
583 		return -EEXIST;
584 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
585 		return -EOVERFLOW;
586 
587 	/* Make sure CPU is a valid possible cpu */
588 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
589 		return -ENODEV;
590 
591 	if (cpumap_value.qsize == 0) {
592 		rcpu = NULL; /* Same as deleting */
593 	} else {
594 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
595 		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
596 		if (!rcpu)
597 			return -ENOMEM;
598 		rcpu->cmap = cmap;
599 	}
600 	rcu_read_lock();
601 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
602 	rcu_read_unlock();
603 	return 0;
604 }
605 
606 static void cpu_map_free(struct bpf_map *map)
607 {
608 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
609 	u32 i;
610 
611 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
612 	 * so the bpf programs (can be more than one that used this map) were
613 	 * disconnected from events. Wait for outstanding critical sections in
614 	 * these programs to complete. The rcu critical section only guarantees
615 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
616 	 * It does __not__ ensure pending flush operations (if any) are
617 	 * complete.
618 	 */
619 
620 	synchronize_rcu();
621 
622 	/* For cpu_map the remote CPUs can still be using the entries
623 	 * (struct bpf_cpu_map_entry).
624 	 */
625 	for (i = 0; i < cmap->map.max_entries; i++) {
626 		struct bpf_cpu_map_entry *rcpu;
627 
628 		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
629 		if (!rcpu)
630 			continue;
631 
632 		/* bq flush and cleanup happens after RCU grace-period */
633 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
634 	}
635 	bpf_map_area_free(cmap->cpu_map);
636 	bpf_map_area_free(cmap);
637 }
638 
639 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
640  * by local_bh_disable() (from XDP calls inside NAPI). The
641  * rcu_read_lock_bh_held() below makes lockdep accept both.
642  */
643 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
644 {
645 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
646 	struct bpf_cpu_map_entry *rcpu;
647 
648 	if (key >= map->max_entries)
649 		return NULL;
650 
651 	rcpu = rcu_dereference_check(cmap->cpu_map[key],
652 				     rcu_read_lock_bh_held());
653 	return rcpu;
654 }
655 
656 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
657 {
658 	struct bpf_cpu_map_entry *rcpu =
659 		__cpu_map_lookup_elem(map, *(u32 *)key);
660 
661 	return rcpu ? &rcpu->value : NULL;
662 }
663 
664 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
665 {
666 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
667 	u32 index = key ? *(u32 *)key : U32_MAX;
668 	u32 *next = next_key;
669 
670 	if (index >= cmap->map.max_entries) {
671 		*next = 0;
672 		return 0;
673 	}
674 
675 	if (index == cmap->map.max_entries - 1)
676 		return -ENOENT;
677 	*next = index + 1;
678 	return 0;
679 }
680 
681 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags)
682 {
683 	return __bpf_xdp_redirect_map(map, index, flags, 0,
684 				      __cpu_map_lookup_elem);
685 }
686 
687 static u64 cpu_map_mem_usage(const struct bpf_map *map)
688 {
689 	u64 usage = sizeof(struct bpf_cpu_map);
690 
691 	/* Currently the dynamically allocated elements are not counted */
692 	usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *);
693 	return usage;
694 }
695 
696 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
697 const struct bpf_map_ops cpu_map_ops = {
698 	.map_meta_equal		= bpf_map_meta_equal,
699 	.map_alloc		= cpu_map_alloc,
700 	.map_free		= cpu_map_free,
701 	.map_delete_elem	= cpu_map_delete_elem,
702 	.map_update_elem	= cpu_map_update_elem,
703 	.map_lookup_elem	= cpu_map_lookup_elem,
704 	.map_get_next_key	= cpu_map_get_next_key,
705 	.map_check_btf		= map_check_no_btf,
706 	.map_mem_usage		= cpu_map_mem_usage,
707 	.map_btf_id		= &cpu_map_btf_ids[0],
708 	.map_redirect		= cpu_map_redirect,
709 };
710 
711 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
712 {
713 	struct bpf_cpu_map_entry *rcpu = bq->obj;
714 	unsigned int processed = 0, drops = 0;
715 	const int to_cpu = rcpu->cpu;
716 	struct ptr_ring *q;
717 	int i;
718 
719 	if (unlikely(!bq->count))
720 		return;
721 
722 	q = rcpu->queue;
723 	spin_lock(&q->producer_lock);
724 
725 	for (i = 0; i < bq->count; i++) {
726 		struct xdp_frame *xdpf = bq->q[i];
727 		int err;
728 
729 		err = __ptr_ring_produce(q, xdpf);
730 		if (err) {
731 			drops++;
732 			xdp_return_frame_rx_napi(xdpf);
733 		}
734 		processed++;
735 	}
736 	bq->count = 0;
737 	spin_unlock(&q->producer_lock);
738 
739 	__list_del_clearprev(&bq->flush_node);
740 
741 	/* Feedback loop via tracepoints */
742 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
743 }
744 
745 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
746  * Thus, safe percpu variable access.
747  */
748 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
749 {
750 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
751 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
752 
753 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
754 		bq_flush_to_queue(bq);
755 
756 	/* Notice, xdp_buff/page MUST be queued here, long enough for
757 	 * driver to code invoking us to finished, due to driver
758 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
759 	 *
760 	 * Thus, incoming xdp_frame is always queued here (else we race
761 	 * with another CPU on page-refcnt and remaining driver code).
762 	 * Queue time is very short, as driver will invoke flush
763 	 * operation, when completing napi->poll call.
764 	 */
765 	bq->q[bq->count++] = xdpf;
766 
767 	if (!bq->flush_node.prev)
768 		list_add(&bq->flush_node, flush_list);
769 }
770 
771 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
772 		    struct net_device *dev_rx)
773 {
774 	/* Info needed when constructing SKB on remote CPU */
775 	xdpf->dev_rx = dev_rx;
776 
777 	bq_enqueue(rcpu, xdpf);
778 	return 0;
779 }
780 
781 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
782 			     struct sk_buff *skb)
783 {
784 	int ret;
785 
786 	__skb_pull(skb, skb->mac_len);
787 	skb_set_redirected(skb, false);
788 	__ptr_set_bit(0, &skb);
789 
790 	ret = ptr_ring_produce(rcpu->queue, skb);
791 	if (ret < 0)
792 		goto trace;
793 
794 	wake_up_process(rcpu->kthread);
795 trace:
796 	trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
797 	return ret;
798 }
799 
800 void __cpu_map_flush(void)
801 {
802 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
803 	struct xdp_bulk_queue *bq, *tmp;
804 
805 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
806 		bq_flush_to_queue(bq);
807 
808 		/* If already running, costs spin_lock_irqsave + smb_mb */
809 		wake_up_process(bq->obj->kthread);
810 	}
811 }
812 
813 static int __init cpu_map_init(void)
814 {
815 	int cpu;
816 
817 	for_each_possible_cpu(cpu)
818 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
819 	return 0;
820 }
821 
822 subsys_initcall(cpu_map_init);
823