1 /* bpf/cpumap.c 2 * 3 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 4 * Released under terms in GPL version 2. See COPYING. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bpf.h> 20 #include <linux/filter.h> 21 #include <linux/ptr_ring.h> 22 #include <net/xdp.h> 23 24 #include <linux/sched.h> 25 #include <linux/workqueue.h> 26 #include <linux/kthread.h> 27 #include <linux/capability.h> 28 #include <trace/events/xdp.h> 29 30 #include <linux/netdevice.h> /* netif_receive_skb_core */ 31 #include <linux/etherdevice.h> /* eth_type_trans */ 32 33 /* General idea: XDP packets getting XDP redirected to another CPU, 34 * will maximum be stored/queued for one driver ->poll() call. It is 35 * guaranteed that setting flush bit and flush operation happen on 36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 37 * which queue in bpf_cpu_map_entry contains packets. 38 */ 39 40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 41 struct xdp_bulk_queue { 42 void *q[CPU_MAP_BULK_SIZE]; 43 unsigned int count; 44 }; 45 46 /* Struct for every remote "destination" CPU in map */ 47 struct bpf_cpu_map_entry { 48 u32 cpu; /* kthread CPU and map index */ 49 int map_id; /* Back reference to map */ 50 u32 qsize; /* Queue size placeholder for map lookup */ 51 52 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 53 struct xdp_bulk_queue __percpu *bulkq; 54 55 /* Queue with potential multi-producers, and single-consumer kthread */ 56 struct ptr_ring *queue; 57 struct task_struct *kthread; 58 struct work_struct kthread_stop_wq; 59 60 atomic_t refcnt; /* Control when this struct can be free'ed */ 61 struct rcu_head rcu; 62 }; 63 64 struct bpf_cpu_map { 65 struct bpf_map map; 66 /* Below members specific for map type */ 67 struct bpf_cpu_map_entry **cpu_map; 68 unsigned long __percpu *flush_needed; 69 }; 70 71 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu, 72 struct xdp_bulk_queue *bq, bool in_napi_ctx); 73 74 static u64 cpu_map_bitmap_size(const union bpf_attr *attr) 75 { 76 return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long); 77 } 78 79 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 80 { 81 struct bpf_cpu_map *cmap; 82 int err = -ENOMEM; 83 u64 cost; 84 int ret; 85 86 if (!capable(CAP_SYS_ADMIN)) 87 return ERR_PTR(-EPERM); 88 89 /* check sanity of attributes */ 90 if (attr->max_entries == 0 || attr->key_size != 4 || 91 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE) 92 return ERR_PTR(-EINVAL); 93 94 cmap = kzalloc(sizeof(*cmap), GFP_USER); 95 if (!cmap) 96 return ERR_PTR(-ENOMEM); 97 98 bpf_map_init_from_attr(&cmap->map, attr); 99 100 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 101 if (cmap->map.max_entries > NR_CPUS) { 102 err = -E2BIG; 103 goto free_cmap; 104 } 105 106 /* make sure page count doesn't overflow */ 107 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *); 108 cost += cpu_map_bitmap_size(attr) * num_possible_cpus(); 109 if (cost >= U32_MAX - PAGE_SIZE) 110 goto free_cmap; 111 cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; 112 113 /* Notice returns -EPERM on if map size is larger than memlock limit */ 114 ret = bpf_map_precharge_memlock(cmap->map.pages); 115 if (ret) { 116 err = ret; 117 goto free_cmap; 118 } 119 120 /* A per cpu bitfield with a bit per possible CPU in map */ 121 cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr), 122 __alignof__(unsigned long)); 123 if (!cmap->flush_needed) 124 goto free_cmap; 125 126 /* Alloc array for possible remote "destination" CPUs */ 127 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 128 sizeof(struct bpf_cpu_map_entry *), 129 cmap->map.numa_node); 130 if (!cmap->cpu_map) 131 goto free_percpu; 132 133 return &cmap->map; 134 free_percpu: 135 free_percpu(cmap->flush_needed); 136 free_cmap: 137 kfree(cmap); 138 return ERR_PTR(err); 139 } 140 141 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 142 { 143 atomic_inc(&rcpu->refcnt); 144 } 145 146 /* called from workqueue, to workaround syscall using preempt_disable */ 147 static void cpu_map_kthread_stop(struct work_struct *work) 148 { 149 struct bpf_cpu_map_entry *rcpu; 150 151 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 152 153 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 154 * as it waits until all in-flight call_rcu() callbacks complete. 155 */ 156 rcu_barrier(); 157 158 /* kthread_stop will wake_up_process and wait for it to complete */ 159 kthread_stop(rcpu->kthread); 160 } 161 162 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu, 163 struct xdp_frame *xdpf) 164 { 165 unsigned int frame_size; 166 void *pkt_data_start; 167 struct sk_buff *skb; 168 169 /* build_skb need to place skb_shared_info after SKB end, and 170 * also want to know the memory "truesize". Thus, need to 171 * know the memory frame size backing xdp_buff. 172 * 173 * XDP was designed to have PAGE_SIZE frames, but this 174 * assumption is not longer true with ixgbe and i40e. It 175 * would be preferred to set frame_size to 2048 or 4096 176 * depending on the driver. 177 * frame_size = 2048; 178 * frame_len = frame_size - sizeof(*xdp_frame); 179 * 180 * Instead, with info avail, skb_shared_info in placed after 181 * packet len. This, unfortunately fakes the truesize. 182 * Another disadvantage of this approach, the skb_shared_info 183 * is not at a fixed memory location, with mixed length 184 * packets, which is bad for cache-line hotness. 185 */ 186 frame_size = SKB_DATA_ALIGN(xdpf->len + xdpf->headroom) + 187 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 188 189 pkt_data_start = xdpf->data - xdpf->headroom; 190 skb = build_skb(pkt_data_start, frame_size); 191 if (!skb) 192 return NULL; 193 194 skb_reserve(skb, xdpf->headroom); 195 __skb_put(skb, xdpf->len); 196 if (xdpf->metasize) 197 skb_metadata_set(skb, xdpf->metasize); 198 199 /* Essential SKB info: protocol and skb->dev */ 200 skb->protocol = eth_type_trans(skb, xdpf->dev_rx); 201 202 /* Optional SKB info, currently missing: 203 * - HW checksum info (skb->ip_summed) 204 * - HW RX hash (skb_set_hash) 205 * - RX ring dev queue index (skb_record_rx_queue) 206 */ 207 208 return skb; 209 } 210 211 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 212 { 213 /* The tear-down procedure should have made sure that queue is 214 * empty. See __cpu_map_entry_replace() and work-queue 215 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 216 * gracefully and warn once. 217 */ 218 struct xdp_frame *xdpf; 219 220 while ((xdpf = ptr_ring_consume(ring))) 221 if (WARN_ON_ONCE(xdpf)) 222 xdp_return_frame(xdpf); 223 } 224 225 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 226 { 227 if (atomic_dec_and_test(&rcpu->refcnt)) { 228 /* The queue should be empty at this point */ 229 __cpu_map_ring_cleanup(rcpu->queue); 230 ptr_ring_cleanup(rcpu->queue, NULL); 231 kfree(rcpu->queue); 232 kfree(rcpu); 233 } 234 } 235 236 static int cpu_map_kthread_run(void *data) 237 { 238 struct bpf_cpu_map_entry *rcpu = data; 239 240 set_current_state(TASK_INTERRUPTIBLE); 241 242 /* When kthread gives stop order, then rcpu have been disconnected 243 * from map, thus no new packets can enter. Remaining in-flight 244 * per CPU stored packets are flushed to this queue. Wait honoring 245 * kthread_stop signal until queue is empty. 246 */ 247 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 248 unsigned int processed = 0, drops = 0, sched = 0; 249 struct xdp_frame *xdpf; 250 251 /* Release CPU reschedule checks */ 252 if (__ptr_ring_empty(rcpu->queue)) { 253 set_current_state(TASK_INTERRUPTIBLE); 254 /* Recheck to avoid lost wake-up */ 255 if (__ptr_ring_empty(rcpu->queue)) { 256 schedule(); 257 sched = 1; 258 } else { 259 __set_current_state(TASK_RUNNING); 260 } 261 } else { 262 sched = cond_resched(); 263 } 264 265 /* Process packets in rcpu->queue */ 266 local_bh_disable(); 267 /* 268 * The bpf_cpu_map_entry is single consumer, with this 269 * kthread CPU pinned. Lockless access to ptr_ring 270 * consume side valid as no-resize allowed of queue. 271 */ 272 while ((xdpf = __ptr_ring_consume(rcpu->queue))) { 273 struct sk_buff *skb; 274 int ret; 275 276 skb = cpu_map_build_skb(rcpu, xdpf); 277 if (!skb) { 278 xdp_return_frame(xdpf); 279 continue; 280 } 281 282 /* Inject into network stack */ 283 ret = netif_receive_skb_core(skb); 284 if (ret == NET_RX_DROP) 285 drops++; 286 287 /* Limit BH-disable period */ 288 if (++processed == 8) 289 break; 290 } 291 /* Feedback loop via tracepoint */ 292 trace_xdp_cpumap_kthread(rcpu->map_id, processed, drops, sched); 293 294 local_bh_enable(); /* resched point, may call do_softirq() */ 295 } 296 __set_current_state(TASK_RUNNING); 297 298 put_cpu_map_entry(rcpu); 299 return 0; 300 } 301 302 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu, 303 int map_id) 304 { 305 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 306 struct bpf_cpu_map_entry *rcpu; 307 int numa, err; 308 309 /* Have map->numa_node, but choose node of redirect target CPU */ 310 numa = cpu_to_node(cpu); 311 312 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa); 313 if (!rcpu) 314 return NULL; 315 316 /* Alloc percpu bulkq */ 317 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq), 318 sizeof(void *), gfp); 319 if (!rcpu->bulkq) 320 goto free_rcu; 321 322 /* Alloc queue */ 323 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa); 324 if (!rcpu->queue) 325 goto free_bulkq; 326 327 err = ptr_ring_init(rcpu->queue, qsize, gfp); 328 if (err) 329 goto free_queue; 330 331 rcpu->cpu = cpu; 332 rcpu->map_id = map_id; 333 rcpu->qsize = qsize; 334 335 /* Setup kthread */ 336 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 337 "cpumap/%d/map:%d", cpu, map_id); 338 if (IS_ERR(rcpu->kthread)) 339 goto free_ptr_ring; 340 341 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 342 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 343 344 /* Make sure kthread runs on a single CPU */ 345 kthread_bind(rcpu->kthread, cpu); 346 wake_up_process(rcpu->kthread); 347 348 return rcpu; 349 350 free_ptr_ring: 351 ptr_ring_cleanup(rcpu->queue, NULL); 352 free_queue: 353 kfree(rcpu->queue); 354 free_bulkq: 355 free_percpu(rcpu->bulkq); 356 free_rcu: 357 kfree(rcpu); 358 return NULL; 359 } 360 361 static void __cpu_map_entry_free(struct rcu_head *rcu) 362 { 363 struct bpf_cpu_map_entry *rcpu; 364 int cpu; 365 366 /* This cpu_map_entry have been disconnected from map and one 367 * RCU graze-period have elapsed. Thus, XDP cannot queue any 368 * new packets and cannot change/set flush_needed that can 369 * find this entry. 370 */ 371 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 372 373 /* Flush remaining packets in percpu bulkq */ 374 for_each_online_cpu(cpu) { 375 struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu); 376 377 /* No concurrent bq_enqueue can run at this point */ 378 bq_flush_to_queue(rcpu, bq, false); 379 } 380 free_percpu(rcpu->bulkq); 381 /* Cannot kthread_stop() here, last put free rcpu resources */ 382 put_cpu_map_entry(rcpu); 383 } 384 385 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 386 * ensure any driver rcu critical sections have completed, but this 387 * does not guarantee a flush has happened yet. Because driver side 388 * rcu_read_lock/unlock only protects the running XDP program. The 389 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 390 * pending flush op doesn't fail. 391 * 392 * The bpf_cpu_map_entry is still used by the kthread, and there can 393 * still be pending packets (in queue and percpu bulkq). A refcnt 394 * makes sure to last user (kthread_stop vs. call_rcu) free memory 395 * resources. 396 * 397 * The rcu callback __cpu_map_entry_free flush remaining packets in 398 * percpu bulkq to queue. Due to caller map_delete_elem() disable 399 * preemption, cannot call kthread_stop() to make sure queue is empty. 400 * Instead a work_queue is started for stopping kthread, 401 * cpu_map_kthread_stop, which waits for an RCU graze period before 402 * stopping kthread, emptying the queue. 403 */ 404 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 405 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 406 { 407 struct bpf_cpu_map_entry *old_rcpu; 408 409 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu); 410 if (old_rcpu) { 411 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 412 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 413 schedule_work(&old_rcpu->kthread_stop_wq); 414 } 415 } 416 417 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 418 { 419 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 420 u32 key_cpu = *(u32 *)key; 421 422 if (key_cpu >= map->max_entries) 423 return -EINVAL; 424 425 /* notice caller map_delete_elem() use preempt_disable() */ 426 __cpu_map_entry_replace(cmap, key_cpu, NULL); 427 return 0; 428 } 429 430 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 431 u64 map_flags) 432 { 433 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 434 struct bpf_cpu_map_entry *rcpu; 435 436 /* Array index key correspond to CPU number */ 437 u32 key_cpu = *(u32 *)key; 438 /* Value is the queue size */ 439 u32 qsize = *(u32 *)value; 440 441 if (unlikely(map_flags > BPF_EXIST)) 442 return -EINVAL; 443 if (unlikely(key_cpu >= cmap->map.max_entries)) 444 return -E2BIG; 445 if (unlikely(map_flags == BPF_NOEXIST)) 446 return -EEXIST; 447 if (unlikely(qsize > 16384)) /* sanity limit on qsize */ 448 return -EOVERFLOW; 449 450 /* Make sure CPU is a valid possible cpu */ 451 if (!cpu_possible(key_cpu)) 452 return -ENODEV; 453 454 if (qsize == 0) { 455 rcpu = NULL; /* Same as deleting */ 456 } else { 457 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 458 rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id); 459 if (!rcpu) 460 return -ENOMEM; 461 } 462 rcu_read_lock(); 463 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 464 rcu_read_unlock(); 465 return 0; 466 } 467 468 static void cpu_map_free(struct bpf_map *map) 469 { 470 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 471 int cpu; 472 u32 i; 473 474 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 475 * so the bpf programs (can be more than one that used this map) were 476 * disconnected from events. Wait for outstanding critical sections in 477 * these programs to complete. The rcu critical section only guarantees 478 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 479 * It does __not__ ensure pending flush operations (if any) are 480 * complete. 481 */ 482 483 bpf_clear_redirect_map(map); 484 synchronize_rcu(); 485 486 /* To ensure all pending flush operations have completed wait for flush 487 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. 488 * Because the above synchronize_rcu() ensures the map is disconnected 489 * from the program we can assume no new bits will be set. 490 */ 491 for_each_online_cpu(cpu) { 492 unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu); 493 494 while (!bitmap_empty(bitmap, cmap->map.max_entries)) 495 cond_resched(); 496 } 497 498 /* For cpu_map the remote CPUs can still be using the entries 499 * (struct bpf_cpu_map_entry). 500 */ 501 for (i = 0; i < cmap->map.max_entries; i++) { 502 struct bpf_cpu_map_entry *rcpu; 503 504 rcpu = READ_ONCE(cmap->cpu_map[i]); 505 if (!rcpu) 506 continue; 507 508 /* bq flush and cleanup happens after RCU graze-period */ 509 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 510 } 511 free_percpu(cmap->flush_needed); 512 bpf_map_area_free(cmap->cpu_map); 513 kfree(cmap); 514 } 515 516 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 517 { 518 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 519 struct bpf_cpu_map_entry *rcpu; 520 521 if (key >= map->max_entries) 522 return NULL; 523 524 rcpu = READ_ONCE(cmap->cpu_map[key]); 525 return rcpu; 526 } 527 528 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 529 { 530 struct bpf_cpu_map_entry *rcpu = 531 __cpu_map_lookup_elem(map, *(u32 *)key); 532 533 return rcpu ? &rcpu->qsize : NULL; 534 } 535 536 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 537 { 538 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 539 u32 index = key ? *(u32 *)key : U32_MAX; 540 u32 *next = next_key; 541 542 if (index >= cmap->map.max_entries) { 543 *next = 0; 544 return 0; 545 } 546 547 if (index == cmap->map.max_entries - 1) 548 return -ENOENT; 549 *next = index + 1; 550 return 0; 551 } 552 553 const struct bpf_map_ops cpu_map_ops = { 554 .map_alloc = cpu_map_alloc, 555 .map_free = cpu_map_free, 556 .map_delete_elem = cpu_map_delete_elem, 557 .map_update_elem = cpu_map_update_elem, 558 .map_lookup_elem = cpu_map_lookup_elem, 559 .map_get_next_key = cpu_map_get_next_key, 560 .map_check_btf = map_check_no_btf, 561 }; 562 563 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu, 564 struct xdp_bulk_queue *bq, bool in_napi_ctx) 565 { 566 unsigned int processed = 0, drops = 0; 567 const int to_cpu = rcpu->cpu; 568 struct ptr_ring *q; 569 int i; 570 571 if (unlikely(!bq->count)) 572 return 0; 573 574 q = rcpu->queue; 575 spin_lock(&q->producer_lock); 576 577 for (i = 0; i < bq->count; i++) { 578 struct xdp_frame *xdpf = bq->q[i]; 579 int err; 580 581 err = __ptr_ring_produce(q, xdpf); 582 if (err) { 583 drops++; 584 if (likely(in_napi_ctx)) 585 xdp_return_frame_rx_napi(xdpf); 586 else 587 xdp_return_frame(xdpf); 588 } 589 processed++; 590 } 591 bq->count = 0; 592 spin_unlock(&q->producer_lock); 593 594 /* Feedback loop via tracepoints */ 595 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 596 return 0; 597 } 598 599 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 600 * Thus, safe percpu variable access. 601 */ 602 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 603 { 604 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 605 606 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 607 bq_flush_to_queue(rcpu, bq, true); 608 609 /* Notice, xdp_buff/page MUST be queued here, long enough for 610 * driver to code invoking us to finished, due to driver 611 * (e.g. ixgbe) recycle tricks based on page-refcnt. 612 * 613 * Thus, incoming xdp_frame is always queued here (else we race 614 * with another CPU on page-refcnt and remaining driver code). 615 * Queue time is very short, as driver will invoke flush 616 * operation, when completing napi->poll call. 617 */ 618 bq->q[bq->count++] = xdpf; 619 return 0; 620 } 621 622 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 623 struct net_device *dev_rx) 624 { 625 struct xdp_frame *xdpf; 626 627 xdpf = convert_to_xdp_frame(xdp); 628 if (unlikely(!xdpf)) 629 return -EOVERFLOW; 630 631 /* Info needed when constructing SKB on remote CPU */ 632 xdpf->dev_rx = dev_rx; 633 634 bq_enqueue(rcpu, xdpf); 635 return 0; 636 } 637 638 void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit) 639 { 640 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 641 unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed); 642 643 __set_bit(bit, bitmap); 644 } 645 646 void __cpu_map_flush(struct bpf_map *map) 647 { 648 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 649 unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed); 650 u32 bit; 651 652 /* The napi->poll softirq makes sure __cpu_map_insert_ctx() 653 * and __cpu_map_flush() happen on same CPU. Thus, the percpu 654 * bitmap indicate which percpu bulkq have packets. 655 */ 656 for_each_set_bit(bit, bitmap, map->max_entries) { 657 struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]); 658 struct xdp_bulk_queue *bq; 659 660 /* This is possible if entry is removed by user space 661 * between xdp redirect and flush op. 662 */ 663 if (unlikely(!rcpu)) 664 continue; 665 666 __clear_bit(bit, bitmap); 667 668 /* Flush all frames in bulkq to real queue */ 669 bq = this_cpu_ptr(rcpu->bulkq); 670 bq_flush_to_queue(rcpu, bq, true); 671 672 /* If already running, costs spin_lock_irqsave + smb_mb */ 673 wake_up_process(rcpu->kthread); 674 } 675 } 676