xref: /openbmc/linux/kernel/bpf/cpumap.c (revision 2a24da4cf6753ee4c1f5b9e16d526a4a115e8562)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 
7 /**
8  * DOC: cpu map
9  * The 'cpumap' is primarily used as a backend map for XDP BPF helper
10  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
11  *
12  * Unlike devmap which redirects XDP frames out to another NIC device,
13  * this map type redirects raw XDP frames to another CPU.  The remote
14  * CPU will do SKB-allocation and call the normal network stack.
15  */
16 /*
17  * This is a scalability and isolation mechanism, that allow
18  * separating the early driver network XDP layer, from the rest of the
19  * netstack, and assigning dedicated CPUs for this stage.  This
20  * basically allows for 10G wirespeed pre-filtering via bpf.
21  */
22 #include <linux/bitops.h>
23 #include <linux/bpf.h>
24 #include <linux/filter.h>
25 #include <linux/ptr_ring.h>
26 #include <net/xdp.h>
27 
28 #include <linux/sched.h>
29 #include <linux/workqueue.h>
30 #include <linux/kthread.h>
31 #include <linux/completion.h>
32 #include <trace/events/xdp.h>
33 #include <linux/btf_ids.h>
34 
35 #include <linux/netdevice.h>   /* netif_receive_skb_list */
36 #include <linux/etherdevice.h> /* eth_type_trans */
37 
38 /* General idea: XDP packets getting XDP redirected to another CPU,
39  * will maximum be stored/queued for one driver ->poll() call.  It is
40  * guaranteed that queueing the frame and the flush operation happen on
41  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
42  * which queue in bpf_cpu_map_entry contains packets.
43  */
44 
45 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
46 struct bpf_cpu_map_entry;
47 struct bpf_cpu_map;
48 
49 struct xdp_bulk_queue {
50 	void *q[CPU_MAP_BULK_SIZE];
51 	struct list_head flush_node;
52 	struct bpf_cpu_map_entry *obj;
53 	unsigned int count;
54 };
55 
56 /* Struct for every remote "destination" CPU in map */
57 struct bpf_cpu_map_entry {
58 	u32 cpu;    /* kthread CPU and map index */
59 	int map_id; /* Back reference to map */
60 
61 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
62 	struct xdp_bulk_queue __percpu *bulkq;
63 
64 	/* Queue with potential multi-producers, and single-consumer kthread */
65 	struct ptr_ring *queue;
66 	struct task_struct *kthread;
67 
68 	struct bpf_cpumap_val value;
69 	struct bpf_prog *prog;
70 
71 	struct completion kthread_running;
72 	struct rcu_work free_work;
73 };
74 
75 struct bpf_cpu_map {
76 	struct bpf_map map;
77 	/* Below members specific for map type */
78 	struct bpf_cpu_map_entry __rcu **cpu_map;
79 };
80 
81 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
82 
83 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
84 {
85 	u32 value_size = attr->value_size;
86 	struct bpf_cpu_map *cmap;
87 
88 	/* check sanity of attributes */
89 	if (attr->max_entries == 0 || attr->key_size != 4 ||
90 	    (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
91 	     value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
92 	    attr->map_flags & ~BPF_F_NUMA_NODE)
93 		return ERR_PTR(-EINVAL);
94 
95 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
96 	if (attr->max_entries > NR_CPUS)
97 		return ERR_PTR(-E2BIG);
98 
99 	cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE);
100 	if (!cmap)
101 		return ERR_PTR(-ENOMEM);
102 
103 	bpf_map_init_from_attr(&cmap->map, attr);
104 
105 	/* Alloc array for possible remote "destination" CPUs */
106 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
107 					   sizeof(struct bpf_cpu_map_entry *),
108 					   cmap->map.numa_node);
109 	if (!cmap->cpu_map) {
110 		bpf_map_area_free(cmap);
111 		return ERR_PTR(-ENOMEM);
112 	}
113 
114 	return &cmap->map;
115 }
116 
117 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
118 {
119 	/* The tear-down procedure should have made sure that queue is
120 	 * empty.  See __cpu_map_entry_replace() and work-queue
121 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
122 	 * gracefully and warn once.
123 	 */
124 	void *ptr;
125 
126 	while ((ptr = ptr_ring_consume(ring))) {
127 		WARN_ON_ONCE(1);
128 		if (unlikely(__ptr_test_bit(0, &ptr))) {
129 			__ptr_clear_bit(0, &ptr);
130 			kfree_skb(ptr);
131 			continue;
132 		}
133 		xdp_return_frame(ptr);
134 	}
135 }
136 
137 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
138 				     struct list_head *listp,
139 				     struct xdp_cpumap_stats *stats)
140 {
141 	struct sk_buff *skb, *tmp;
142 	struct xdp_buff xdp;
143 	u32 act;
144 	int err;
145 
146 	list_for_each_entry_safe(skb, tmp, listp, list) {
147 		act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
148 		switch (act) {
149 		case XDP_PASS:
150 			break;
151 		case XDP_REDIRECT:
152 			skb_list_del_init(skb);
153 			err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
154 						      rcpu->prog);
155 			if (unlikely(err)) {
156 				kfree_skb(skb);
157 				stats->drop++;
158 			} else {
159 				stats->redirect++;
160 			}
161 			return;
162 		default:
163 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
164 			fallthrough;
165 		case XDP_ABORTED:
166 			trace_xdp_exception(skb->dev, rcpu->prog, act);
167 			fallthrough;
168 		case XDP_DROP:
169 			skb_list_del_init(skb);
170 			kfree_skb(skb);
171 			stats->drop++;
172 			return;
173 		}
174 	}
175 }
176 
177 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
178 				    void **frames, int n,
179 				    struct xdp_cpumap_stats *stats)
180 {
181 	struct xdp_rxq_info rxq = {};
182 	struct xdp_buff xdp;
183 	int i, nframes = 0;
184 
185 	xdp_set_return_frame_no_direct();
186 	xdp.rxq = &rxq;
187 
188 	for (i = 0; i < n; i++) {
189 		struct xdp_frame *xdpf = frames[i];
190 		u32 act;
191 		int err;
192 
193 		rxq.dev = xdpf->dev_rx;
194 		rxq.mem = xdpf->mem;
195 		/* TODO: report queue_index to xdp_rxq_info */
196 
197 		xdp_convert_frame_to_buff(xdpf, &xdp);
198 
199 		act = bpf_prog_run_xdp(rcpu->prog, &xdp);
200 		switch (act) {
201 		case XDP_PASS:
202 			err = xdp_update_frame_from_buff(&xdp, xdpf);
203 			if (err < 0) {
204 				xdp_return_frame(xdpf);
205 				stats->drop++;
206 			} else {
207 				frames[nframes++] = xdpf;
208 				stats->pass++;
209 			}
210 			break;
211 		case XDP_REDIRECT:
212 			err = xdp_do_redirect(xdpf->dev_rx, &xdp,
213 					      rcpu->prog);
214 			if (unlikely(err)) {
215 				xdp_return_frame(xdpf);
216 				stats->drop++;
217 			} else {
218 				stats->redirect++;
219 			}
220 			break;
221 		default:
222 			bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
223 			fallthrough;
224 		case XDP_DROP:
225 			xdp_return_frame(xdpf);
226 			stats->drop++;
227 			break;
228 		}
229 	}
230 
231 	xdp_clear_return_frame_no_direct();
232 
233 	return nframes;
234 }
235 
236 #define CPUMAP_BATCH 8
237 
238 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
239 				int xdp_n, struct xdp_cpumap_stats *stats,
240 				struct list_head *list)
241 {
242 	int nframes;
243 
244 	if (!rcpu->prog)
245 		return xdp_n;
246 
247 	rcu_read_lock_bh();
248 
249 	nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
250 
251 	if (stats->redirect)
252 		xdp_do_flush();
253 
254 	if (unlikely(!list_empty(list)))
255 		cpu_map_bpf_prog_run_skb(rcpu, list, stats);
256 
257 	rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
258 
259 	return nframes;
260 }
261 
262 static int cpu_map_kthread_run(void *data)
263 {
264 	struct bpf_cpu_map_entry *rcpu = data;
265 	unsigned long last_qs = jiffies;
266 
267 	complete(&rcpu->kthread_running);
268 	set_current_state(TASK_INTERRUPTIBLE);
269 
270 	/* When kthread gives stop order, then rcpu have been disconnected
271 	 * from map, thus no new packets can enter. Remaining in-flight
272 	 * per CPU stored packets are flushed to this queue.  Wait honoring
273 	 * kthread_stop signal until queue is empty.
274 	 */
275 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
276 		struct xdp_cpumap_stats stats = {}; /* zero stats */
277 		unsigned int kmem_alloc_drops = 0, sched = 0;
278 		gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
279 		int i, n, m, nframes, xdp_n;
280 		void *frames[CPUMAP_BATCH];
281 		void *skbs[CPUMAP_BATCH];
282 		LIST_HEAD(list);
283 
284 		/* Release CPU reschedule checks */
285 		if (__ptr_ring_empty(rcpu->queue)) {
286 			set_current_state(TASK_INTERRUPTIBLE);
287 			/* Recheck to avoid lost wake-up */
288 			if (__ptr_ring_empty(rcpu->queue)) {
289 				schedule();
290 				sched = 1;
291 				last_qs = jiffies;
292 			} else {
293 				__set_current_state(TASK_RUNNING);
294 			}
295 		} else {
296 			rcu_softirq_qs_periodic(last_qs);
297 			sched = cond_resched();
298 		}
299 
300 		/*
301 		 * The bpf_cpu_map_entry is single consumer, with this
302 		 * kthread CPU pinned. Lockless access to ptr_ring
303 		 * consume side valid as no-resize allowed of queue.
304 		 */
305 		n = __ptr_ring_consume_batched(rcpu->queue, frames,
306 					       CPUMAP_BATCH);
307 		for (i = 0, xdp_n = 0; i < n; i++) {
308 			void *f = frames[i];
309 			struct page *page;
310 
311 			if (unlikely(__ptr_test_bit(0, &f))) {
312 				struct sk_buff *skb = f;
313 
314 				__ptr_clear_bit(0, &skb);
315 				list_add_tail(&skb->list, &list);
316 				continue;
317 			}
318 
319 			frames[xdp_n++] = f;
320 			page = virt_to_page(f);
321 
322 			/* Bring struct page memory area to curr CPU. Read by
323 			 * build_skb_around via page_is_pfmemalloc(), and when
324 			 * freed written by page_frag_free call.
325 			 */
326 			prefetchw(page);
327 		}
328 
329 		/* Support running another XDP prog on this CPU */
330 		nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
331 		if (nframes) {
332 			m = kmem_cache_alloc_bulk(skbuff_cache, gfp, nframes, skbs);
333 			if (unlikely(m == 0)) {
334 				for (i = 0; i < nframes; i++)
335 					skbs[i] = NULL; /* effect: xdp_return_frame */
336 				kmem_alloc_drops += nframes;
337 			}
338 		}
339 
340 		local_bh_disable();
341 		for (i = 0; i < nframes; i++) {
342 			struct xdp_frame *xdpf = frames[i];
343 			struct sk_buff *skb = skbs[i];
344 
345 			skb = __xdp_build_skb_from_frame(xdpf, skb,
346 							 xdpf->dev_rx);
347 			if (!skb) {
348 				xdp_return_frame(xdpf);
349 				continue;
350 			}
351 
352 			list_add_tail(&skb->list, &list);
353 		}
354 		netif_receive_skb_list(&list);
355 
356 		/* Feedback loop via tracepoint */
357 		trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
358 					 sched, &stats);
359 
360 		local_bh_enable(); /* resched point, may call do_softirq() */
361 	}
362 	__set_current_state(TASK_RUNNING);
363 
364 	return 0;
365 }
366 
367 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
368 				      struct bpf_map *map, int fd)
369 {
370 	struct bpf_prog *prog;
371 
372 	prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
373 	if (IS_ERR(prog))
374 		return PTR_ERR(prog);
375 
376 	if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
377 	    !bpf_prog_map_compatible(map, prog)) {
378 		bpf_prog_put(prog);
379 		return -EINVAL;
380 	}
381 
382 	rcpu->value.bpf_prog.id = prog->aux->id;
383 	rcpu->prog = prog;
384 
385 	return 0;
386 }
387 
388 static struct bpf_cpu_map_entry *
389 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
390 		      u32 cpu)
391 {
392 	int numa, err, i, fd = value->bpf_prog.fd;
393 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
394 	struct bpf_cpu_map_entry *rcpu;
395 	struct xdp_bulk_queue *bq;
396 
397 	/* Have map->numa_node, but choose node of redirect target CPU */
398 	numa = cpu_to_node(cpu);
399 
400 	rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
401 	if (!rcpu)
402 		return NULL;
403 
404 	/* Alloc percpu bulkq */
405 	rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
406 					   sizeof(void *), gfp);
407 	if (!rcpu->bulkq)
408 		goto free_rcu;
409 
410 	for_each_possible_cpu(i) {
411 		bq = per_cpu_ptr(rcpu->bulkq, i);
412 		bq->obj = rcpu;
413 	}
414 
415 	/* Alloc queue */
416 	rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
417 					   numa);
418 	if (!rcpu->queue)
419 		goto free_bulkq;
420 
421 	err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
422 	if (err)
423 		goto free_queue;
424 
425 	rcpu->cpu    = cpu;
426 	rcpu->map_id = map->id;
427 	rcpu->value.qsize  = value->qsize;
428 
429 	if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
430 		goto free_ptr_ring;
431 
432 	/* Setup kthread */
433 	init_completion(&rcpu->kthread_running);
434 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
435 					       "cpumap/%d/map:%d", cpu,
436 					       map->id);
437 	if (IS_ERR(rcpu->kthread))
438 		goto free_prog;
439 
440 	/* Make sure kthread runs on a single CPU */
441 	kthread_bind(rcpu->kthread, cpu);
442 	wake_up_process(rcpu->kthread);
443 
444 	/* Make sure kthread has been running, so kthread_stop() will not
445 	 * stop the kthread prematurely and all pending frames or skbs
446 	 * will be handled by the kthread before kthread_stop() returns.
447 	 */
448 	wait_for_completion(&rcpu->kthread_running);
449 
450 	return rcpu;
451 
452 free_prog:
453 	if (rcpu->prog)
454 		bpf_prog_put(rcpu->prog);
455 free_ptr_ring:
456 	ptr_ring_cleanup(rcpu->queue, NULL);
457 free_queue:
458 	kfree(rcpu->queue);
459 free_bulkq:
460 	free_percpu(rcpu->bulkq);
461 free_rcu:
462 	kfree(rcpu);
463 	return NULL;
464 }
465 
466 static void __cpu_map_entry_free(struct work_struct *work)
467 {
468 	struct bpf_cpu_map_entry *rcpu;
469 
470 	/* This cpu_map_entry have been disconnected from map and one
471 	 * RCU grace-period have elapsed. Thus, XDP cannot queue any
472 	 * new packets and cannot change/set flush_needed that can
473 	 * find this entry.
474 	 */
475 	rcpu = container_of(to_rcu_work(work), struct bpf_cpu_map_entry, free_work);
476 
477 	/* kthread_stop will wake_up_process and wait for it to complete.
478 	 * cpu_map_kthread_run() makes sure the pointer ring is empty
479 	 * before exiting.
480 	 */
481 	kthread_stop(rcpu->kthread);
482 
483 	if (rcpu->prog)
484 		bpf_prog_put(rcpu->prog);
485 	/* The queue should be empty at this point */
486 	__cpu_map_ring_cleanup(rcpu->queue);
487 	ptr_ring_cleanup(rcpu->queue, NULL);
488 	kfree(rcpu->queue);
489 	free_percpu(rcpu->bulkq);
490 	kfree(rcpu);
491 }
492 
493 /* After the xchg of the bpf_cpu_map_entry pointer, we need to make sure the old
494  * entry is no longer in use before freeing. We use queue_rcu_work() to call
495  * __cpu_map_entry_free() in a separate workqueue after waiting for an RCU grace
496  * period. This means that (a) all pending enqueue and flush operations have
497  * completed (because of the RCU callback), and (b) we are in a workqueue
498  * context where we can stop the kthread and wait for it to exit before freeing
499  * everything.
500  */
501 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
502 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
503 {
504 	struct bpf_cpu_map_entry *old_rcpu;
505 
506 	old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
507 	if (old_rcpu) {
508 		INIT_RCU_WORK(&old_rcpu->free_work, __cpu_map_entry_free);
509 		queue_rcu_work(system_wq, &old_rcpu->free_work);
510 	}
511 }
512 
513 static long cpu_map_delete_elem(struct bpf_map *map, void *key)
514 {
515 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
516 	u32 key_cpu = *(u32 *)key;
517 
518 	if (key_cpu >= map->max_entries)
519 		return -EINVAL;
520 
521 	/* notice caller map_delete_elem() uses rcu_read_lock() */
522 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
523 	return 0;
524 }
525 
526 static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
527 				u64 map_flags)
528 {
529 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
530 	struct bpf_cpumap_val cpumap_value = {};
531 	struct bpf_cpu_map_entry *rcpu;
532 	/* Array index key correspond to CPU number */
533 	u32 key_cpu = *(u32 *)key;
534 
535 	memcpy(&cpumap_value, value, map->value_size);
536 
537 	if (unlikely(map_flags > BPF_EXIST))
538 		return -EINVAL;
539 	if (unlikely(key_cpu >= cmap->map.max_entries))
540 		return -E2BIG;
541 	if (unlikely(map_flags == BPF_NOEXIST))
542 		return -EEXIST;
543 	if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
544 		return -EOVERFLOW;
545 
546 	/* Make sure CPU is a valid possible cpu */
547 	if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
548 		return -ENODEV;
549 
550 	if (cpumap_value.qsize == 0) {
551 		rcpu = NULL; /* Same as deleting */
552 	} else {
553 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
554 		rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
555 		if (!rcpu)
556 			return -ENOMEM;
557 	}
558 	rcu_read_lock();
559 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
560 	rcu_read_unlock();
561 	return 0;
562 }
563 
564 static void cpu_map_free(struct bpf_map *map)
565 {
566 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
567 	u32 i;
568 
569 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
570 	 * so the bpf programs (can be more than one that used this map) were
571 	 * disconnected from events. Wait for outstanding critical sections in
572 	 * these programs to complete. synchronize_rcu() below not only
573 	 * guarantees no further "XDP/bpf-side" reads against
574 	 * bpf_cpu_map->cpu_map, but also ensure pending flush operations
575 	 * (if any) are completed.
576 	 */
577 	synchronize_rcu();
578 
579 	/* The only possible user of bpf_cpu_map_entry is
580 	 * cpu_map_kthread_run().
581 	 */
582 	for (i = 0; i < cmap->map.max_entries; i++) {
583 		struct bpf_cpu_map_entry *rcpu;
584 
585 		rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
586 		if (!rcpu)
587 			continue;
588 
589 		/* Stop kthread and cleanup entry directly */
590 		__cpu_map_entry_free(&rcpu->free_work.work);
591 	}
592 	bpf_map_area_free(cmap->cpu_map);
593 	bpf_map_area_free(cmap);
594 }
595 
596 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
597  * by local_bh_disable() (from XDP calls inside NAPI). The
598  * rcu_read_lock_bh_held() below makes lockdep accept both.
599  */
600 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
601 {
602 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
603 	struct bpf_cpu_map_entry *rcpu;
604 
605 	if (key >= map->max_entries)
606 		return NULL;
607 
608 	rcpu = rcu_dereference_check(cmap->cpu_map[key],
609 				     rcu_read_lock_bh_held());
610 	return rcpu;
611 }
612 
613 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
614 {
615 	struct bpf_cpu_map_entry *rcpu =
616 		__cpu_map_lookup_elem(map, *(u32 *)key);
617 
618 	return rcpu ? &rcpu->value : NULL;
619 }
620 
621 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
622 {
623 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
624 	u32 index = key ? *(u32 *)key : U32_MAX;
625 	u32 *next = next_key;
626 
627 	if (index >= cmap->map.max_entries) {
628 		*next = 0;
629 		return 0;
630 	}
631 
632 	if (index == cmap->map.max_entries - 1)
633 		return -ENOENT;
634 	*next = index + 1;
635 	return 0;
636 }
637 
638 static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags)
639 {
640 	return __bpf_xdp_redirect_map(map, index, flags, 0,
641 				      __cpu_map_lookup_elem);
642 }
643 
644 static u64 cpu_map_mem_usage(const struct bpf_map *map)
645 {
646 	u64 usage = sizeof(struct bpf_cpu_map);
647 
648 	/* Currently the dynamically allocated elements are not counted */
649 	usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *);
650 	return usage;
651 }
652 
653 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
654 const struct bpf_map_ops cpu_map_ops = {
655 	.map_meta_equal		= bpf_map_meta_equal,
656 	.map_alloc		= cpu_map_alloc,
657 	.map_free		= cpu_map_free,
658 	.map_delete_elem	= cpu_map_delete_elem,
659 	.map_update_elem	= cpu_map_update_elem,
660 	.map_lookup_elem	= cpu_map_lookup_elem,
661 	.map_get_next_key	= cpu_map_get_next_key,
662 	.map_check_btf		= map_check_no_btf,
663 	.map_mem_usage		= cpu_map_mem_usage,
664 	.map_btf_id		= &cpu_map_btf_ids[0],
665 	.map_redirect		= cpu_map_redirect,
666 };
667 
668 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
669 {
670 	struct bpf_cpu_map_entry *rcpu = bq->obj;
671 	unsigned int processed = 0, drops = 0;
672 	const int to_cpu = rcpu->cpu;
673 	struct ptr_ring *q;
674 	int i;
675 
676 	if (unlikely(!bq->count))
677 		return;
678 
679 	q = rcpu->queue;
680 	spin_lock(&q->producer_lock);
681 
682 	for (i = 0; i < bq->count; i++) {
683 		struct xdp_frame *xdpf = bq->q[i];
684 		int err;
685 
686 		err = __ptr_ring_produce(q, xdpf);
687 		if (err) {
688 			drops++;
689 			xdp_return_frame_rx_napi(xdpf);
690 		}
691 		processed++;
692 	}
693 	bq->count = 0;
694 	spin_unlock(&q->producer_lock);
695 
696 	__list_del_clearprev(&bq->flush_node);
697 
698 	/* Feedback loop via tracepoints */
699 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
700 }
701 
702 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
703  * Thus, safe percpu variable access.
704  */
705 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
706 {
707 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
708 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
709 
710 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
711 		bq_flush_to_queue(bq);
712 
713 	/* Notice, xdp_buff/page MUST be queued here, long enough for
714 	 * driver to code invoking us to finished, due to driver
715 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
716 	 *
717 	 * Thus, incoming xdp_frame is always queued here (else we race
718 	 * with another CPU on page-refcnt and remaining driver code).
719 	 * Queue time is very short, as driver will invoke flush
720 	 * operation, when completing napi->poll call.
721 	 */
722 	bq->q[bq->count++] = xdpf;
723 
724 	if (!bq->flush_node.prev)
725 		list_add(&bq->flush_node, flush_list);
726 }
727 
728 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
729 		    struct net_device *dev_rx)
730 {
731 	/* Info needed when constructing SKB on remote CPU */
732 	xdpf->dev_rx = dev_rx;
733 
734 	bq_enqueue(rcpu, xdpf);
735 	return 0;
736 }
737 
738 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
739 			     struct sk_buff *skb)
740 {
741 	int ret;
742 
743 	__skb_pull(skb, skb->mac_len);
744 	skb_set_redirected(skb, false);
745 	__ptr_set_bit(0, &skb);
746 
747 	ret = ptr_ring_produce(rcpu->queue, skb);
748 	if (ret < 0)
749 		goto trace;
750 
751 	wake_up_process(rcpu->kthread);
752 trace:
753 	trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
754 	return ret;
755 }
756 
757 void __cpu_map_flush(void)
758 {
759 	struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
760 	struct xdp_bulk_queue *bq, *tmp;
761 
762 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
763 		bq_flush_to_queue(bq);
764 
765 		/* If already running, costs spin_lock_irqsave + smb_mb */
766 		wake_up_process(bq->obj->kthread);
767 	}
768 }
769 
770 static int __init cpu_map_init(void)
771 {
772 	int cpu;
773 
774 	for_each_possible_cpu(cpu)
775 		INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
776 	return 0;
777 }
778 
779 subsys_initcall(cpu_map_init);
780