xref: /openbmc/linux/kernel/bpf/cpumap.c (revision 160b8e75)
1 /* bpf/cpumap.c
2  *
3  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
4  * Released under terms in GPL version 2.  See COPYING.
5  */
6 
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 
23 #include <linux/sched.h>
24 #include <linux/workqueue.h>
25 #include <linux/kthread.h>
26 #include <linux/capability.h>
27 #include <trace/events/xdp.h>
28 
29 #include <linux/netdevice.h>   /* netif_receive_skb_core */
30 #include <linux/etherdevice.h> /* eth_type_trans */
31 
32 /* General idea: XDP packets getting XDP redirected to another CPU,
33  * will maximum be stored/queued for one driver ->poll() call.  It is
34  * guaranteed that setting flush bit and flush operation happen on
35  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
36  * which queue in bpf_cpu_map_entry contains packets.
37  */
38 
39 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
40 struct xdp_bulk_queue {
41 	void *q[CPU_MAP_BULK_SIZE];
42 	unsigned int count;
43 };
44 
45 /* Struct for every remote "destination" CPU in map */
46 struct bpf_cpu_map_entry {
47 	u32 cpu;    /* kthread CPU and map index */
48 	int map_id; /* Back reference to map */
49 	u32 qsize;  /* Queue size placeholder for map lookup */
50 
51 	/* XDP can run multiple RX-ring queues, need __percpu enqueue store */
52 	struct xdp_bulk_queue __percpu *bulkq;
53 
54 	/* Queue with potential multi-producers, and single-consumer kthread */
55 	struct ptr_ring *queue;
56 	struct task_struct *kthread;
57 	struct work_struct kthread_stop_wq;
58 
59 	atomic_t refcnt; /* Control when this struct can be free'ed */
60 	struct rcu_head rcu;
61 };
62 
63 struct bpf_cpu_map {
64 	struct bpf_map map;
65 	/* Below members specific for map type */
66 	struct bpf_cpu_map_entry **cpu_map;
67 	unsigned long __percpu *flush_needed;
68 };
69 
70 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
71 			     struct xdp_bulk_queue *bq);
72 
73 static u64 cpu_map_bitmap_size(const union bpf_attr *attr)
74 {
75 	return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
76 }
77 
78 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
79 {
80 	struct bpf_cpu_map *cmap;
81 	int err = -ENOMEM;
82 	u64 cost;
83 	int ret;
84 
85 	if (!capable(CAP_SYS_ADMIN))
86 		return ERR_PTR(-EPERM);
87 
88 	/* check sanity of attributes */
89 	if (attr->max_entries == 0 || attr->key_size != 4 ||
90 	    attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
91 		return ERR_PTR(-EINVAL);
92 
93 	cmap = kzalloc(sizeof(*cmap), GFP_USER);
94 	if (!cmap)
95 		return ERR_PTR(-ENOMEM);
96 
97 	bpf_map_init_from_attr(&cmap->map, attr);
98 
99 	/* Pre-limit array size based on NR_CPUS, not final CPU check */
100 	if (cmap->map.max_entries > NR_CPUS) {
101 		err = -E2BIG;
102 		goto free_cmap;
103 	}
104 
105 	/* make sure page count doesn't overflow */
106 	cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
107 	cost += cpu_map_bitmap_size(attr) * num_possible_cpus();
108 	if (cost >= U32_MAX - PAGE_SIZE)
109 		goto free_cmap;
110 	cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
111 
112 	/* Notice returns -EPERM on if map size is larger than memlock limit */
113 	ret = bpf_map_precharge_memlock(cmap->map.pages);
114 	if (ret) {
115 		err = ret;
116 		goto free_cmap;
117 	}
118 
119 	/* A per cpu bitfield with a bit per possible CPU in map  */
120 	cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr),
121 					    __alignof__(unsigned long));
122 	if (!cmap->flush_needed)
123 		goto free_cmap;
124 
125 	/* Alloc array for possible remote "destination" CPUs */
126 	cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
127 					   sizeof(struct bpf_cpu_map_entry *),
128 					   cmap->map.numa_node);
129 	if (!cmap->cpu_map)
130 		goto free_percpu;
131 
132 	return &cmap->map;
133 free_percpu:
134 	free_percpu(cmap->flush_needed);
135 free_cmap:
136 	kfree(cmap);
137 	return ERR_PTR(err);
138 }
139 
140 static void __cpu_map_queue_destructor(void *ptr)
141 {
142 	/* The tear-down procedure should have made sure that queue is
143 	 * empty.  See __cpu_map_entry_replace() and work-queue
144 	 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
145 	 * gracefully and warn once.
146 	 */
147 	if (WARN_ON_ONCE(ptr))
148 		page_frag_free(ptr);
149 }
150 
151 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
152 {
153 	if (atomic_dec_and_test(&rcpu->refcnt)) {
154 		/* The queue should be empty at this point */
155 		ptr_ring_cleanup(rcpu->queue, __cpu_map_queue_destructor);
156 		kfree(rcpu->queue);
157 		kfree(rcpu);
158 	}
159 }
160 
161 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
162 {
163 	atomic_inc(&rcpu->refcnt);
164 }
165 
166 /* called from workqueue, to workaround syscall using preempt_disable */
167 static void cpu_map_kthread_stop(struct work_struct *work)
168 {
169 	struct bpf_cpu_map_entry *rcpu;
170 
171 	rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
172 
173 	/* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
174 	 * as it waits until all in-flight call_rcu() callbacks complete.
175 	 */
176 	rcu_barrier();
177 
178 	/* kthread_stop will wake_up_process and wait for it to complete */
179 	kthread_stop(rcpu->kthread);
180 }
181 
182 /* For now, xdp_pkt is a cpumap internal data structure, with info
183  * carried between enqueue to dequeue. It is mapped into the top
184  * headroom of the packet, to avoid allocating separate mem.
185  */
186 struct xdp_pkt {
187 	void *data;
188 	u16 len;
189 	u16 headroom;
190 	u16 metasize;
191 	struct net_device *dev_rx;
192 };
193 
194 /* Convert xdp_buff to xdp_pkt */
195 static struct xdp_pkt *convert_to_xdp_pkt(struct xdp_buff *xdp)
196 {
197 	struct xdp_pkt *xdp_pkt;
198 	int metasize;
199 	int headroom;
200 
201 	/* Assure headroom is available for storing info */
202 	headroom = xdp->data - xdp->data_hard_start;
203 	metasize = xdp->data - xdp->data_meta;
204 	metasize = metasize > 0 ? metasize : 0;
205 	if (unlikely((headroom - metasize) < sizeof(*xdp_pkt)))
206 		return NULL;
207 
208 	/* Store info in top of packet */
209 	xdp_pkt = xdp->data_hard_start;
210 
211 	xdp_pkt->data = xdp->data;
212 	xdp_pkt->len  = xdp->data_end - xdp->data;
213 	xdp_pkt->headroom = headroom - sizeof(*xdp_pkt);
214 	xdp_pkt->metasize = metasize;
215 
216 	return xdp_pkt;
217 }
218 
219 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
220 					 struct xdp_pkt *xdp_pkt)
221 {
222 	unsigned int frame_size;
223 	void *pkt_data_start;
224 	struct sk_buff *skb;
225 
226 	/* build_skb need to place skb_shared_info after SKB end, and
227 	 * also want to know the memory "truesize".  Thus, need to
228 	 * know the memory frame size backing xdp_buff.
229 	 *
230 	 * XDP was designed to have PAGE_SIZE frames, but this
231 	 * assumption is not longer true with ixgbe and i40e.  It
232 	 * would be preferred to set frame_size to 2048 or 4096
233 	 * depending on the driver.
234 	 *   frame_size = 2048;
235 	 *   frame_len  = frame_size - sizeof(*xdp_pkt);
236 	 *
237 	 * Instead, with info avail, skb_shared_info in placed after
238 	 * packet len.  This, unfortunately fakes the truesize.
239 	 * Another disadvantage of this approach, the skb_shared_info
240 	 * is not at a fixed memory location, with mixed length
241 	 * packets, which is bad for cache-line hotness.
242 	 */
243 	frame_size = SKB_DATA_ALIGN(xdp_pkt->len) + xdp_pkt->headroom +
244 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
245 
246 	pkt_data_start = xdp_pkt->data - xdp_pkt->headroom;
247 	skb = build_skb(pkt_data_start, frame_size);
248 	if (!skb)
249 		return NULL;
250 
251 	skb_reserve(skb, xdp_pkt->headroom);
252 	__skb_put(skb, xdp_pkt->len);
253 	if (xdp_pkt->metasize)
254 		skb_metadata_set(skb, xdp_pkt->metasize);
255 
256 	/* Essential SKB info: protocol and skb->dev */
257 	skb->protocol = eth_type_trans(skb, xdp_pkt->dev_rx);
258 
259 	/* Optional SKB info, currently missing:
260 	 * - HW checksum info		(skb->ip_summed)
261 	 * - HW RX hash			(skb_set_hash)
262 	 * - RX ring dev queue index	(skb_record_rx_queue)
263 	 */
264 
265 	return skb;
266 }
267 
268 static int cpu_map_kthread_run(void *data)
269 {
270 	struct bpf_cpu_map_entry *rcpu = data;
271 
272 	set_current_state(TASK_INTERRUPTIBLE);
273 
274 	/* When kthread gives stop order, then rcpu have been disconnected
275 	 * from map, thus no new packets can enter. Remaining in-flight
276 	 * per CPU stored packets are flushed to this queue.  Wait honoring
277 	 * kthread_stop signal until queue is empty.
278 	 */
279 	while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
280 		unsigned int processed = 0, drops = 0, sched = 0;
281 		struct xdp_pkt *xdp_pkt;
282 
283 		/* Release CPU reschedule checks */
284 		if (__ptr_ring_empty(rcpu->queue)) {
285 			set_current_state(TASK_INTERRUPTIBLE);
286 			/* Recheck to avoid lost wake-up */
287 			if (__ptr_ring_empty(rcpu->queue)) {
288 				schedule();
289 				sched = 1;
290 			} else {
291 				__set_current_state(TASK_RUNNING);
292 			}
293 		} else {
294 			sched = cond_resched();
295 		}
296 
297 		/* Process packets in rcpu->queue */
298 		local_bh_disable();
299 		/*
300 		 * The bpf_cpu_map_entry is single consumer, with this
301 		 * kthread CPU pinned. Lockless access to ptr_ring
302 		 * consume side valid as no-resize allowed of queue.
303 		 */
304 		while ((xdp_pkt = __ptr_ring_consume(rcpu->queue))) {
305 			struct sk_buff *skb;
306 			int ret;
307 
308 			skb = cpu_map_build_skb(rcpu, xdp_pkt);
309 			if (!skb) {
310 				page_frag_free(xdp_pkt);
311 				continue;
312 			}
313 
314 			/* Inject into network stack */
315 			ret = netif_receive_skb_core(skb);
316 			if (ret == NET_RX_DROP)
317 				drops++;
318 
319 			/* Limit BH-disable period */
320 			if (++processed == 8)
321 				break;
322 		}
323 		/* Feedback loop via tracepoint */
324 		trace_xdp_cpumap_kthread(rcpu->map_id, processed, drops, sched);
325 
326 		local_bh_enable(); /* resched point, may call do_softirq() */
327 	}
328 	__set_current_state(TASK_RUNNING);
329 
330 	put_cpu_map_entry(rcpu);
331 	return 0;
332 }
333 
334 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
335 						       int map_id)
336 {
337 	gfp_t gfp = GFP_ATOMIC|__GFP_NOWARN;
338 	struct bpf_cpu_map_entry *rcpu;
339 	int numa, err;
340 
341 	/* Have map->numa_node, but choose node of redirect target CPU */
342 	numa = cpu_to_node(cpu);
343 
344 	rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
345 	if (!rcpu)
346 		return NULL;
347 
348 	/* Alloc percpu bulkq */
349 	rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
350 					 sizeof(void *), gfp);
351 	if (!rcpu->bulkq)
352 		goto free_rcu;
353 
354 	/* Alloc queue */
355 	rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
356 	if (!rcpu->queue)
357 		goto free_bulkq;
358 
359 	err = ptr_ring_init(rcpu->queue, qsize, gfp);
360 	if (err)
361 		goto free_queue;
362 
363 	rcpu->cpu    = cpu;
364 	rcpu->map_id = map_id;
365 	rcpu->qsize  = qsize;
366 
367 	/* Setup kthread */
368 	rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
369 					       "cpumap/%d/map:%d", cpu, map_id);
370 	if (IS_ERR(rcpu->kthread))
371 		goto free_ptr_ring;
372 
373 	get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
374 	get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
375 
376 	/* Make sure kthread runs on a single CPU */
377 	kthread_bind(rcpu->kthread, cpu);
378 	wake_up_process(rcpu->kthread);
379 
380 	return rcpu;
381 
382 free_ptr_ring:
383 	ptr_ring_cleanup(rcpu->queue, NULL);
384 free_queue:
385 	kfree(rcpu->queue);
386 free_bulkq:
387 	free_percpu(rcpu->bulkq);
388 free_rcu:
389 	kfree(rcpu);
390 	return NULL;
391 }
392 
393 static void __cpu_map_entry_free(struct rcu_head *rcu)
394 {
395 	struct bpf_cpu_map_entry *rcpu;
396 	int cpu;
397 
398 	/* This cpu_map_entry have been disconnected from map and one
399 	 * RCU graze-period have elapsed.  Thus, XDP cannot queue any
400 	 * new packets and cannot change/set flush_needed that can
401 	 * find this entry.
402 	 */
403 	rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
404 
405 	/* Flush remaining packets in percpu bulkq */
406 	for_each_online_cpu(cpu) {
407 		struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
408 
409 		/* No concurrent bq_enqueue can run at this point */
410 		bq_flush_to_queue(rcpu, bq);
411 	}
412 	free_percpu(rcpu->bulkq);
413 	/* Cannot kthread_stop() here, last put free rcpu resources */
414 	put_cpu_map_entry(rcpu);
415 }
416 
417 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
418  * ensure any driver rcu critical sections have completed, but this
419  * does not guarantee a flush has happened yet. Because driver side
420  * rcu_read_lock/unlock only protects the running XDP program.  The
421  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
422  * pending flush op doesn't fail.
423  *
424  * The bpf_cpu_map_entry is still used by the kthread, and there can
425  * still be pending packets (in queue and percpu bulkq).  A refcnt
426  * makes sure to last user (kthread_stop vs. call_rcu) free memory
427  * resources.
428  *
429  * The rcu callback __cpu_map_entry_free flush remaining packets in
430  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
431  * preemption, cannot call kthread_stop() to make sure queue is empty.
432  * Instead a work_queue is started for stopping kthread,
433  * cpu_map_kthread_stop, which waits for an RCU graze period before
434  * stopping kthread, emptying the queue.
435  */
436 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
437 				    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
438 {
439 	struct bpf_cpu_map_entry *old_rcpu;
440 
441 	old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
442 	if (old_rcpu) {
443 		call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
444 		INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
445 		schedule_work(&old_rcpu->kthread_stop_wq);
446 	}
447 }
448 
449 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
450 {
451 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
452 	u32 key_cpu = *(u32 *)key;
453 
454 	if (key_cpu >= map->max_entries)
455 		return -EINVAL;
456 
457 	/* notice caller map_delete_elem() use preempt_disable() */
458 	__cpu_map_entry_replace(cmap, key_cpu, NULL);
459 	return 0;
460 }
461 
462 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
463 			       u64 map_flags)
464 {
465 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
466 	struct bpf_cpu_map_entry *rcpu;
467 
468 	/* Array index key correspond to CPU number */
469 	u32 key_cpu = *(u32 *)key;
470 	/* Value is the queue size */
471 	u32 qsize = *(u32 *)value;
472 
473 	if (unlikely(map_flags > BPF_EXIST))
474 		return -EINVAL;
475 	if (unlikely(key_cpu >= cmap->map.max_entries))
476 		return -E2BIG;
477 	if (unlikely(map_flags == BPF_NOEXIST))
478 		return -EEXIST;
479 	if (unlikely(qsize > 16384)) /* sanity limit on qsize */
480 		return -EOVERFLOW;
481 
482 	/* Make sure CPU is a valid possible cpu */
483 	if (!cpu_possible(key_cpu))
484 		return -ENODEV;
485 
486 	if (qsize == 0) {
487 		rcpu = NULL; /* Same as deleting */
488 	} else {
489 		/* Updating qsize cause re-allocation of bpf_cpu_map_entry */
490 		rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
491 		if (!rcpu)
492 			return -ENOMEM;
493 	}
494 	rcu_read_lock();
495 	__cpu_map_entry_replace(cmap, key_cpu, rcpu);
496 	rcu_read_unlock();
497 	return 0;
498 }
499 
500 static void cpu_map_free(struct bpf_map *map)
501 {
502 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
503 	int cpu;
504 	u32 i;
505 
506 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
507 	 * so the bpf programs (can be more than one that used this map) were
508 	 * disconnected from events. Wait for outstanding critical sections in
509 	 * these programs to complete. The rcu critical section only guarantees
510 	 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
511 	 * It does __not__ ensure pending flush operations (if any) are
512 	 * complete.
513 	 */
514 	synchronize_rcu();
515 
516 	/* To ensure all pending flush operations have completed wait for flush
517 	 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
518 	 * Because the above synchronize_rcu() ensures the map is disconnected
519 	 * from the program we can assume no new bits will be set.
520 	 */
521 	for_each_online_cpu(cpu) {
522 		unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu);
523 
524 		while (!bitmap_empty(bitmap, cmap->map.max_entries))
525 			cond_resched();
526 	}
527 
528 	/* For cpu_map the remote CPUs can still be using the entries
529 	 * (struct bpf_cpu_map_entry).
530 	 */
531 	for (i = 0; i < cmap->map.max_entries; i++) {
532 		struct bpf_cpu_map_entry *rcpu;
533 
534 		rcpu = READ_ONCE(cmap->cpu_map[i]);
535 		if (!rcpu)
536 			continue;
537 
538 		/* bq flush and cleanup happens after RCU graze-period */
539 		__cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
540 	}
541 	free_percpu(cmap->flush_needed);
542 	bpf_map_area_free(cmap->cpu_map);
543 	kfree(cmap);
544 }
545 
546 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
547 {
548 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
549 	struct bpf_cpu_map_entry *rcpu;
550 
551 	if (key >= map->max_entries)
552 		return NULL;
553 
554 	rcpu = READ_ONCE(cmap->cpu_map[key]);
555 	return rcpu;
556 }
557 
558 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
559 {
560 	struct bpf_cpu_map_entry *rcpu =
561 		__cpu_map_lookup_elem(map, *(u32 *)key);
562 
563 	return rcpu ? &rcpu->qsize : NULL;
564 }
565 
566 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
567 {
568 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
569 	u32 index = key ? *(u32 *)key : U32_MAX;
570 	u32 *next = next_key;
571 
572 	if (index >= cmap->map.max_entries) {
573 		*next = 0;
574 		return 0;
575 	}
576 
577 	if (index == cmap->map.max_entries - 1)
578 		return -ENOENT;
579 	*next = index + 1;
580 	return 0;
581 }
582 
583 const struct bpf_map_ops cpu_map_ops = {
584 	.map_alloc		= cpu_map_alloc,
585 	.map_free		= cpu_map_free,
586 	.map_delete_elem	= cpu_map_delete_elem,
587 	.map_update_elem	= cpu_map_update_elem,
588 	.map_lookup_elem	= cpu_map_lookup_elem,
589 	.map_get_next_key	= cpu_map_get_next_key,
590 };
591 
592 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
593 			     struct xdp_bulk_queue *bq)
594 {
595 	unsigned int processed = 0, drops = 0;
596 	const int to_cpu = rcpu->cpu;
597 	struct ptr_ring *q;
598 	int i;
599 
600 	if (unlikely(!bq->count))
601 		return 0;
602 
603 	q = rcpu->queue;
604 	spin_lock(&q->producer_lock);
605 
606 	for (i = 0; i < bq->count; i++) {
607 		void *xdp_pkt = bq->q[i];
608 		int err;
609 
610 		err = __ptr_ring_produce(q, xdp_pkt);
611 		if (err) {
612 			drops++;
613 			page_frag_free(xdp_pkt); /* Free xdp_pkt */
614 		}
615 		processed++;
616 	}
617 	bq->count = 0;
618 	spin_unlock(&q->producer_lock);
619 
620 	/* Feedback loop via tracepoints */
621 	trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
622 	return 0;
623 }
624 
625 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
626  * Thus, safe percpu variable access.
627  */
628 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_pkt *xdp_pkt)
629 {
630 	struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
631 
632 	if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
633 		bq_flush_to_queue(rcpu, bq);
634 
635 	/* Notice, xdp_buff/page MUST be queued here, long enough for
636 	 * driver to code invoking us to finished, due to driver
637 	 * (e.g. ixgbe) recycle tricks based on page-refcnt.
638 	 *
639 	 * Thus, incoming xdp_pkt is always queued here (else we race
640 	 * with another CPU on page-refcnt and remaining driver code).
641 	 * Queue time is very short, as driver will invoke flush
642 	 * operation, when completing napi->poll call.
643 	 */
644 	bq->q[bq->count++] = xdp_pkt;
645 	return 0;
646 }
647 
648 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
649 		    struct net_device *dev_rx)
650 {
651 	struct xdp_pkt *xdp_pkt;
652 
653 	xdp_pkt = convert_to_xdp_pkt(xdp);
654 	if (unlikely(!xdp_pkt))
655 		return -EOVERFLOW;
656 
657 	/* Info needed when constructing SKB on remote CPU */
658 	xdp_pkt->dev_rx = dev_rx;
659 
660 	bq_enqueue(rcpu, xdp_pkt);
661 	return 0;
662 }
663 
664 void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit)
665 {
666 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
667 	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
668 
669 	__set_bit(bit, bitmap);
670 }
671 
672 void __cpu_map_flush(struct bpf_map *map)
673 {
674 	struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
675 	unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
676 	u32 bit;
677 
678 	/* The napi->poll softirq makes sure __cpu_map_insert_ctx()
679 	 * and __cpu_map_flush() happen on same CPU. Thus, the percpu
680 	 * bitmap indicate which percpu bulkq have packets.
681 	 */
682 	for_each_set_bit(bit, bitmap, map->max_entries) {
683 		struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]);
684 		struct xdp_bulk_queue *bq;
685 
686 		/* This is possible if entry is removed by user space
687 		 * between xdp redirect and flush op.
688 		 */
689 		if (unlikely(!rcpu))
690 			continue;
691 
692 		__clear_bit(bit, bitmap);
693 
694 		/* Flush all frames in bulkq to real queue */
695 		bq = this_cpu_ptr(rcpu->bulkq);
696 		bq_flush_to_queue(rcpu, bq);
697 
698 		/* If already running, costs spin_lock_irqsave + smb_mb */
699 		wake_up_process(rcpu->kthread);
700 	}
701 }
702