1 /* bpf/cpumap.c 2 * 3 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 4 * Released under terms in GPL version 2. See COPYING. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bpf.h> 20 #include <linux/filter.h> 21 #include <linux/ptr_ring.h> 22 23 #include <linux/sched.h> 24 #include <linux/workqueue.h> 25 #include <linux/kthread.h> 26 #include <linux/capability.h> 27 #include <trace/events/xdp.h> 28 29 #include <linux/netdevice.h> /* netif_receive_skb_core */ 30 #include <linux/etherdevice.h> /* eth_type_trans */ 31 32 /* General idea: XDP packets getting XDP redirected to another CPU, 33 * will maximum be stored/queued for one driver ->poll() call. It is 34 * guaranteed that setting flush bit and flush operation happen on 35 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 36 * which queue in bpf_cpu_map_entry contains packets. 37 */ 38 39 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 40 struct xdp_bulk_queue { 41 void *q[CPU_MAP_BULK_SIZE]; 42 unsigned int count; 43 }; 44 45 /* Struct for every remote "destination" CPU in map */ 46 struct bpf_cpu_map_entry { 47 u32 cpu; /* kthread CPU and map index */ 48 int map_id; /* Back reference to map */ 49 u32 qsize; /* Queue size placeholder for map lookup */ 50 51 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 52 struct xdp_bulk_queue __percpu *bulkq; 53 54 /* Queue with potential multi-producers, and single-consumer kthread */ 55 struct ptr_ring *queue; 56 struct task_struct *kthread; 57 struct work_struct kthread_stop_wq; 58 59 atomic_t refcnt; /* Control when this struct can be free'ed */ 60 struct rcu_head rcu; 61 }; 62 63 struct bpf_cpu_map { 64 struct bpf_map map; 65 /* Below members specific for map type */ 66 struct bpf_cpu_map_entry **cpu_map; 67 unsigned long __percpu *flush_needed; 68 }; 69 70 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu, 71 struct xdp_bulk_queue *bq); 72 73 static u64 cpu_map_bitmap_size(const union bpf_attr *attr) 74 { 75 return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long); 76 } 77 78 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 79 { 80 struct bpf_cpu_map *cmap; 81 int err = -ENOMEM; 82 u64 cost; 83 int ret; 84 85 if (!capable(CAP_SYS_ADMIN)) 86 return ERR_PTR(-EPERM); 87 88 /* check sanity of attributes */ 89 if (attr->max_entries == 0 || attr->key_size != 4 || 90 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE) 91 return ERR_PTR(-EINVAL); 92 93 cmap = kzalloc(sizeof(*cmap), GFP_USER); 94 if (!cmap) 95 return ERR_PTR(-ENOMEM); 96 97 bpf_map_init_from_attr(&cmap->map, attr); 98 99 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 100 if (cmap->map.max_entries > NR_CPUS) { 101 err = -E2BIG; 102 goto free_cmap; 103 } 104 105 /* make sure page count doesn't overflow */ 106 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *); 107 cost += cpu_map_bitmap_size(attr) * num_possible_cpus(); 108 if (cost >= U32_MAX - PAGE_SIZE) 109 goto free_cmap; 110 cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; 111 112 /* Notice returns -EPERM on if map size is larger than memlock limit */ 113 ret = bpf_map_precharge_memlock(cmap->map.pages); 114 if (ret) { 115 err = ret; 116 goto free_cmap; 117 } 118 119 /* A per cpu bitfield with a bit per possible CPU in map */ 120 cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr), 121 __alignof__(unsigned long)); 122 if (!cmap->flush_needed) 123 goto free_cmap; 124 125 /* Alloc array for possible remote "destination" CPUs */ 126 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 127 sizeof(struct bpf_cpu_map_entry *), 128 cmap->map.numa_node); 129 if (!cmap->cpu_map) 130 goto free_percpu; 131 132 return &cmap->map; 133 free_percpu: 134 free_percpu(cmap->flush_needed); 135 free_cmap: 136 kfree(cmap); 137 return ERR_PTR(err); 138 } 139 140 static void __cpu_map_queue_destructor(void *ptr) 141 { 142 /* The tear-down procedure should have made sure that queue is 143 * empty. See __cpu_map_entry_replace() and work-queue 144 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 145 * gracefully and warn once. 146 */ 147 if (WARN_ON_ONCE(ptr)) 148 page_frag_free(ptr); 149 } 150 151 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 152 { 153 if (atomic_dec_and_test(&rcpu->refcnt)) { 154 /* The queue should be empty at this point */ 155 ptr_ring_cleanup(rcpu->queue, __cpu_map_queue_destructor); 156 kfree(rcpu->queue); 157 kfree(rcpu); 158 } 159 } 160 161 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 162 { 163 atomic_inc(&rcpu->refcnt); 164 } 165 166 /* called from workqueue, to workaround syscall using preempt_disable */ 167 static void cpu_map_kthread_stop(struct work_struct *work) 168 { 169 struct bpf_cpu_map_entry *rcpu; 170 171 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 172 173 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 174 * as it waits until all in-flight call_rcu() callbacks complete. 175 */ 176 rcu_barrier(); 177 178 /* kthread_stop will wake_up_process and wait for it to complete */ 179 kthread_stop(rcpu->kthread); 180 } 181 182 /* For now, xdp_pkt is a cpumap internal data structure, with info 183 * carried between enqueue to dequeue. It is mapped into the top 184 * headroom of the packet, to avoid allocating separate mem. 185 */ 186 struct xdp_pkt { 187 void *data; 188 u16 len; 189 u16 headroom; 190 u16 metasize; 191 struct net_device *dev_rx; 192 }; 193 194 /* Convert xdp_buff to xdp_pkt */ 195 static struct xdp_pkt *convert_to_xdp_pkt(struct xdp_buff *xdp) 196 { 197 struct xdp_pkt *xdp_pkt; 198 int metasize; 199 int headroom; 200 201 /* Assure headroom is available for storing info */ 202 headroom = xdp->data - xdp->data_hard_start; 203 metasize = xdp->data - xdp->data_meta; 204 metasize = metasize > 0 ? metasize : 0; 205 if (unlikely((headroom - metasize) < sizeof(*xdp_pkt))) 206 return NULL; 207 208 /* Store info in top of packet */ 209 xdp_pkt = xdp->data_hard_start; 210 211 xdp_pkt->data = xdp->data; 212 xdp_pkt->len = xdp->data_end - xdp->data; 213 xdp_pkt->headroom = headroom - sizeof(*xdp_pkt); 214 xdp_pkt->metasize = metasize; 215 216 return xdp_pkt; 217 } 218 219 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu, 220 struct xdp_pkt *xdp_pkt) 221 { 222 unsigned int frame_size; 223 void *pkt_data_start; 224 struct sk_buff *skb; 225 226 /* build_skb need to place skb_shared_info after SKB end, and 227 * also want to know the memory "truesize". Thus, need to 228 * know the memory frame size backing xdp_buff. 229 * 230 * XDP was designed to have PAGE_SIZE frames, but this 231 * assumption is not longer true with ixgbe and i40e. It 232 * would be preferred to set frame_size to 2048 or 4096 233 * depending on the driver. 234 * frame_size = 2048; 235 * frame_len = frame_size - sizeof(*xdp_pkt); 236 * 237 * Instead, with info avail, skb_shared_info in placed after 238 * packet len. This, unfortunately fakes the truesize. 239 * Another disadvantage of this approach, the skb_shared_info 240 * is not at a fixed memory location, with mixed length 241 * packets, which is bad for cache-line hotness. 242 */ 243 frame_size = SKB_DATA_ALIGN(xdp_pkt->len) + xdp_pkt->headroom + 244 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 245 246 pkt_data_start = xdp_pkt->data - xdp_pkt->headroom; 247 skb = build_skb(pkt_data_start, frame_size); 248 if (!skb) 249 return NULL; 250 251 skb_reserve(skb, xdp_pkt->headroom); 252 __skb_put(skb, xdp_pkt->len); 253 if (xdp_pkt->metasize) 254 skb_metadata_set(skb, xdp_pkt->metasize); 255 256 /* Essential SKB info: protocol and skb->dev */ 257 skb->protocol = eth_type_trans(skb, xdp_pkt->dev_rx); 258 259 /* Optional SKB info, currently missing: 260 * - HW checksum info (skb->ip_summed) 261 * - HW RX hash (skb_set_hash) 262 * - RX ring dev queue index (skb_record_rx_queue) 263 */ 264 265 return skb; 266 } 267 268 static int cpu_map_kthread_run(void *data) 269 { 270 struct bpf_cpu_map_entry *rcpu = data; 271 272 set_current_state(TASK_INTERRUPTIBLE); 273 274 /* When kthread gives stop order, then rcpu have been disconnected 275 * from map, thus no new packets can enter. Remaining in-flight 276 * per CPU stored packets are flushed to this queue. Wait honoring 277 * kthread_stop signal until queue is empty. 278 */ 279 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 280 unsigned int processed = 0, drops = 0, sched = 0; 281 struct xdp_pkt *xdp_pkt; 282 283 /* Release CPU reschedule checks */ 284 if (__ptr_ring_empty(rcpu->queue)) { 285 set_current_state(TASK_INTERRUPTIBLE); 286 /* Recheck to avoid lost wake-up */ 287 if (__ptr_ring_empty(rcpu->queue)) { 288 schedule(); 289 sched = 1; 290 } else { 291 __set_current_state(TASK_RUNNING); 292 } 293 } else { 294 sched = cond_resched(); 295 } 296 297 /* Process packets in rcpu->queue */ 298 local_bh_disable(); 299 /* 300 * The bpf_cpu_map_entry is single consumer, with this 301 * kthread CPU pinned. Lockless access to ptr_ring 302 * consume side valid as no-resize allowed of queue. 303 */ 304 while ((xdp_pkt = __ptr_ring_consume(rcpu->queue))) { 305 struct sk_buff *skb; 306 int ret; 307 308 skb = cpu_map_build_skb(rcpu, xdp_pkt); 309 if (!skb) { 310 page_frag_free(xdp_pkt); 311 continue; 312 } 313 314 /* Inject into network stack */ 315 ret = netif_receive_skb_core(skb); 316 if (ret == NET_RX_DROP) 317 drops++; 318 319 /* Limit BH-disable period */ 320 if (++processed == 8) 321 break; 322 } 323 /* Feedback loop via tracepoint */ 324 trace_xdp_cpumap_kthread(rcpu->map_id, processed, drops, sched); 325 326 local_bh_enable(); /* resched point, may call do_softirq() */ 327 } 328 __set_current_state(TASK_RUNNING); 329 330 put_cpu_map_entry(rcpu); 331 return 0; 332 } 333 334 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu, 335 int map_id) 336 { 337 gfp_t gfp = GFP_ATOMIC|__GFP_NOWARN; 338 struct bpf_cpu_map_entry *rcpu; 339 int numa, err; 340 341 /* Have map->numa_node, but choose node of redirect target CPU */ 342 numa = cpu_to_node(cpu); 343 344 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa); 345 if (!rcpu) 346 return NULL; 347 348 /* Alloc percpu bulkq */ 349 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq), 350 sizeof(void *), gfp); 351 if (!rcpu->bulkq) 352 goto free_rcu; 353 354 /* Alloc queue */ 355 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa); 356 if (!rcpu->queue) 357 goto free_bulkq; 358 359 err = ptr_ring_init(rcpu->queue, qsize, gfp); 360 if (err) 361 goto free_queue; 362 363 rcpu->cpu = cpu; 364 rcpu->map_id = map_id; 365 rcpu->qsize = qsize; 366 367 /* Setup kthread */ 368 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 369 "cpumap/%d/map:%d", cpu, map_id); 370 if (IS_ERR(rcpu->kthread)) 371 goto free_ptr_ring; 372 373 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 374 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 375 376 /* Make sure kthread runs on a single CPU */ 377 kthread_bind(rcpu->kthread, cpu); 378 wake_up_process(rcpu->kthread); 379 380 return rcpu; 381 382 free_ptr_ring: 383 ptr_ring_cleanup(rcpu->queue, NULL); 384 free_queue: 385 kfree(rcpu->queue); 386 free_bulkq: 387 free_percpu(rcpu->bulkq); 388 free_rcu: 389 kfree(rcpu); 390 return NULL; 391 } 392 393 static void __cpu_map_entry_free(struct rcu_head *rcu) 394 { 395 struct bpf_cpu_map_entry *rcpu; 396 int cpu; 397 398 /* This cpu_map_entry have been disconnected from map and one 399 * RCU graze-period have elapsed. Thus, XDP cannot queue any 400 * new packets and cannot change/set flush_needed that can 401 * find this entry. 402 */ 403 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 404 405 /* Flush remaining packets in percpu bulkq */ 406 for_each_online_cpu(cpu) { 407 struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu); 408 409 /* No concurrent bq_enqueue can run at this point */ 410 bq_flush_to_queue(rcpu, bq); 411 } 412 free_percpu(rcpu->bulkq); 413 /* Cannot kthread_stop() here, last put free rcpu resources */ 414 put_cpu_map_entry(rcpu); 415 } 416 417 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 418 * ensure any driver rcu critical sections have completed, but this 419 * does not guarantee a flush has happened yet. Because driver side 420 * rcu_read_lock/unlock only protects the running XDP program. The 421 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 422 * pending flush op doesn't fail. 423 * 424 * The bpf_cpu_map_entry is still used by the kthread, and there can 425 * still be pending packets (in queue and percpu bulkq). A refcnt 426 * makes sure to last user (kthread_stop vs. call_rcu) free memory 427 * resources. 428 * 429 * The rcu callback __cpu_map_entry_free flush remaining packets in 430 * percpu bulkq to queue. Due to caller map_delete_elem() disable 431 * preemption, cannot call kthread_stop() to make sure queue is empty. 432 * Instead a work_queue is started for stopping kthread, 433 * cpu_map_kthread_stop, which waits for an RCU graze period before 434 * stopping kthread, emptying the queue. 435 */ 436 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 437 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 438 { 439 struct bpf_cpu_map_entry *old_rcpu; 440 441 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu); 442 if (old_rcpu) { 443 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 444 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 445 schedule_work(&old_rcpu->kthread_stop_wq); 446 } 447 } 448 449 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 450 { 451 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 452 u32 key_cpu = *(u32 *)key; 453 454 if (key_cpu >= map->max_entries) 455 return -EINVAL; 456 457 /* notice caller map_delete_elem() use preempt_disable() */ 458 __cpu_map_entry_replace(cmap, key_cpu, NULL); 459 return 0; 460 } 461 462 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 463 u64 map_flags) 464 { 465 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 466 struct bpf_cpu_map_entry *rcpu; 467 468 /* Array index key correspond to CPU number */ 469 u32 key_cpu = *(u32 *)key; 470 /* Value is the queue size */ 471 u32 qsize = *(u32 *)value; 472 473 if (unlikely(map_flags > BPF_EXIST)) 474 return -EINVAL; 475 if (unlikely(key_cpu >= cmap->map.max_entries)) 476 return -E2BIG; 477 if (unlikely(map_flags == BPF_NOEXIST)) 478 return -EEXIST; 479 if (unlikely(qsize > 16384)) /* sanity limit on qsize */ 480 return -EOVERFLOW; 481 482 /* Make sure CPU is a valid possible cpu */ 483 if (!cpu_possible(key_cpu)) 484 return -ENODEV; 485 486 if (qsize == 0) { 487 rcpu = NULL; /* Same as deleting */ 488 } else { 489 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 490 rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id); 491 if (!rcpu) 492 return -ENOMEM; 493 } 494 rcu_read_lock(); 495 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 496 rcu_read_unlock(); 497 return 0; 498 } 499 500 static void cpu_map_free(struct bpf_map *map) 501 { 502 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 503 int cpu; 504 u32 i; 505 506 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 507 * so the bpf programs (can be more than one that used this map) were 508 * disconnected from events. Wait for outstanding critical sections in 509 * these programs to complete. The rcu critical section only guarantees 510 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 511 * It does __not__ ensure pending flush operations (if any) are 512 * complete. 513 */ 514 synchronize_rcu(); 515 516 /* To ensure all pending flush operations have completed wait for flush 517 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus. 518 * Because the above synchronize_rcu() ensures the map is disconnected 519 * from the program we can assume no new bits will be set. 520 */ 521 for_each_online_cpu(cpu) { 522 unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu); 523 524 while (!bitmap_empty(bitmap, cmap->map.max_entries)) 525 cond_resched(); 526 } 527 528 /* For cpu_map the remote CPUs can still be using the entries 529 * (struct bpf_cpu_map_entry). 530 */ 531 for (i = 0; i < cmap->map.max_entries; i++) { 532 struct bpf_cpu_map_entry *rcpu; 533 534 rcpu = READ_ONCE(cmap->cpu_map[i]); 535 if (!rcpu) 536 continue; 537 538 /* bq flush and cleanup happens after RCU graze-period */ 539 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 540 } 541 free_percpu(cmap->flush_needed); 542 bpf_map_area_free(cmap->cpu_map); 543 kfree(cmap); 544 } 545 546 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 547 { 548 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 549 struct bpf_cpu_map_entry *rcpu; 550 551 if (key >= map->max_entries) 552 return NULL; 553 554 rcpu = READ_ONCE(cmap->cpu_map[key]); 555 return rcpu; 556 } 557 558 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 559 { 560 struct bpf_cpu_map_entry *rcpu = 561 __cpu_map_lookup_elem(map, *(u32 *)key); 562 563 return rcpu ? &rcpu->qsize : NULL; 564 } 565 566 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 567 { 568 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 569 u32 index = key ? *(u32 *)key : U32_MAX; 570 u32 *next = next_key; 571 572 if (index >= cmap->map.max_entries) { 573 *next = 0; 574 return 0; 575 } 576 577 if (index == cmap->map.max_entries - 1) 578 return -ENOENT; 579 *next = index + 1; 580 return 0; 581 } 582 583 const struct bpf_map_ops cpu_map_ops = { 584 .map_alloc = cpu_map_alloc, 585 .map_free = cpu_map_free, 586 .map_delete_elem = cpu_map_delete_elem, 587 .map_update_elem = cpu_map_update_elem, 588 .map_lookup_elem = cpu_map_lookup_elem, 589 .map_get_next_key = cpu_map_get_next_key, 590 }; 591 592 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu, 593 struct xdp_bulk_queue *bq) 594 { 595 unsigned int processed = 0, drops = 0; 596 const int to_cpu = rcpu->cpu; 597 struct ptr_ring *q; 598 int i; 599 600 if (unlikely(!bq->count)) 601 return 0; 602 603 q = rcpu->queue; 604 spin_lock(&q->producer_lock); 605 606 for (i = 0; i < bq->count; i++) { 607 void *xdp_pkt = bq->q[i]; 608 int err; 609 610 err = __ptr_ring_produce(q, xdp_pkt); 611 if (err) { 612 drops++; 613 page_frag_free(xdp_pkt); /* Free xdp_pkt */ 614 } 615 processed++; 616 } 617 bq->count = 0; 618 spin_unlock(&q->producer_lock); 619 620 /* Feedback loop via tracepoints */ 621 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 622 return 0; 623 } 624 625 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 626 * Thus, safe percpu variable access. 627 */ 628 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_pkt *xdp_pkt) 629 { 630 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 631 632 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 633 bq_flush_to_queue(rcpu, bq); 634 635 /* Notice, xdp_buff/page MUST be queued here, long enough for 636 * driver to code invoking us to finished, due to driver 637 * (e.g. ixgbe) recycle tricks based on page-refcnt. 638 * 639 * Thus, incoming xdp_pkt is always queued here (else we race 640 * with another CPU on page-refcnt and remaining driver code). 641 * Queue time is very short, as driver will invoke flush 642 * operation, when completing napi->poll call. 643 */ 644 bq->q[bq->count++] = xdp_pkt; 645 return 0; 646 } 647 648 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 649 struct net_device *dev_rx) 650 { 651 struct xdp_pkt *xdp_pkt; 652 653 xdp_pkt = convert_to_xdp_pkt(xdp); 654 if (unlikely(!xdp_pkt)) 655 return -EOVERFLOW; 656 657 /* Info needed when constructing SKB on remote CPU */ 658 xdp_pkt->dev_rx = dev_rx; 659 660 bq_enqueue(rcpu, xdp_pkt); 661 return 0; 662 } 663 664 void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit) 665 { 666 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 667 unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed); 668 669 __set_bit(bit, bitmap); 670 } 671 672 void __cpu_map_flush(struct bpf_map *map) 673 { 674 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 675 unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed); 676 u32 bit; 677 678 /* The napi->poll softirq makes sure __cpu_map_insert_ctx() 679 * and __cpu_map_flush() happen on same CPU. Thus, the percpu 680 * bitmap indicate which percpu bulkq have packets. 681 */ 682 for_each_set_bit(bit, bitmap, map->max_entries) { 683 struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]); 684 struct xdp_bulk_queue *bq; 685 686 /* This is possible if entry is removed by user space 687 * between xdp redirect and flush op. 688 */ 689 if (unlikely(!rcpu)) 690 continue; 691 692 __clear_bit(bit, bitmap); 693 694 /* Flush all frames in bulkq to real queue */ 695 bq = this_cpu_ptr(rcpu->bulkq); 696 bq_flush_to_queue(rcpu, bq); 697 698 /* If already running, costs spin_lock_irqsave + smb_mb */ 699 wake_up_process(rcpu->kthread); 700 } 701 } 702