1 // SPDX-License-Identifier: GPL-2.0-only 2 /* bpf/cpumap.c 3 * 4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. 5 */ 6 7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper 8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. 9 * 10 * Unlike devmap which redirects XDP frames out another NIC device, 11 * this map type redirects raw XDP frames to another CPU. The remote 12 * CPU will do SKB-allocation and call the normal network stack. 13 * 14 * This is a scalability and isolation mechanism, that allow 15 * separating the early driver network XDP layer, from the rest of the 16 * netstack, and assigning dedicated CPUs for this stage. This 17 * basically allows for 10G wirespeed pre-filtering via bpf. 18 */ 19 #include <linux/bpf.h> 20 #include <linux/filter.h> 21 #include <linux/ptr_ring.h> 22 #include <net/xdp.h> 23 24 #include <linux/sched.h> 25 #include <linux/workqueue.h> 26 #include <linux/kthread.h> 27 #include <linux/capability.h> 28 #include <trace/events/xdp.h> 29 30 #include <linux/netdevice.h> /* netif_receive_skb_core */ 31 #include <linux/etherdevice.h> /* eth_type_trans */ 32 33 /* General idea: XDP packets getting XDP redirected to another CPU, 34 * will maximum be stored/queued for one driver ->poll() call. It is 35 * guaranteed that queueing the frame and the flush operation happen on 36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() 37 * which queue in bpf_cpu_map_entry contains packets. 38 */ 39 40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ 41 struct bpf_cpu_map_entry; 42 struct bpf_cpu_map; 43 44 struct xdp_bulk_queue { 45 void *q[CPU_MAP_BULK_SIZE]; 46 struct list_head flush_node; 47 struct bpf_cpu_map_entry *obj; 48 unsigned int count; 49 }; 50 51 /* Struct for every remote "destination" CPU in map */ 52 struct bpf_cpu_map_entry { 53 u32 cpu; /* kthread CPU and map index */ 54 int map_id; /* Back reference to map */ 55 u32 qsize; /* Queue size placeholder for map lookup */ 56 57 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ 58 struct xdp_bulk_queue __percpu *bulkq; 59 60 struct bpf_cpu_map *cmap; 61 62 /* Queue with potential multi-producers, and single-consumer kthread */ 63 struct ptr_ring *queue; 64 struct task_struct *kthread; 65 struct work_struct kthread_stop_wq; 66 67 atomic_t refcnt; /* Control when this struct can be free'ed */ 68 struct rcu_head rcu; 69 }; 70 71 struct bpf_cpu_map { 72 struct bpf_map map; 73 /* Below members specific for map type */ 74 struct bpf_cpu_map_entry **cpu_map; 75 }; 76 77 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list); 78 79 static int bq_flush_to_queue(struct xdp_bulk_queue *bq); 80 81 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) 82 { 83 struct bpf_cpu_map *cmap; 84 int err = -ENOMEM; 85 u64 cost; 86 int ret; 87 88 if (!bpf_capable()) 89 return ERR_PTR(-EPERM); 90 91 /* check sanity of attributes */ 92 if (attr->max_entries == 0 || attr->key_size != 4 || 93 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE) 94 return ERR_PTR(-EINVAL); 95 96 cmap = kzalloc(sizeof(*cmap), GFP_USER); 97 if (!cmap) 98 return ERR_PTR(-ENOMEM); 99 100 bpf_map_init_from_attr(&cmap->map, attr); 101 102 /* Pre-limit array size based on NR_CPUS, not final CPU check */ 103 if (cmap->map.max_entries > NR_CPUS) { 104 err = -E2BIG; 105 goto free_cmap; 106 } 107 108 /* make sure page count doesn't overflow */ 109 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *); 110 111 /* Notice returns -EPERM on if map size is larger than memlock limit */ 112 ret = bpf_map_charge_init(&cmap->map.memory, cost); 113 if (ret) { 114 err = ret; 115 goto free_cmap; 116 } 117 118 /* Alloc array for possible remote "destination" CPUs */ 119 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * 120 sizeof(struct bpf_cpu_map_entry *), 121 cmap->map.numa_node); 122 if (!cmap->cpu_map) 123 goto free_charge; 124 125 return &cmap->map; 126 free_charge: 127 bpf_map_charge_finish(&cmap->map.memory); 128 free_cmap: 129 kfree(cmap); 130 return ERR_PTR(err); 131 } 132 133 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 134 { 135 atomic_inc(&rcpu->refcnt); 136 } 137 138 /* called from workqueue, to workaround syscall using preempt_disable */ 139 static void cpu_map_kthread_stop(struct work_struct *work) 140 { 141 struct bpf_cpu_map_entry *rcpu; 142 143 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq); 144 145 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier, 146 * as it waits until all in-flight call_rcu() callbacks complete. 147 */ 148 rcu_barrier(); 149 150 /* kthread_stop will wake_up_process and wait for it to complete */ 151 kthread_stop(rcpu->kthread); 152 } 153 154 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu, 155 struct xdp_frame *xdpf, 156 struct sk_buff *skb) 157 { 158 unsigned int hard_start_headroom; 159 unsigned int frame_size; 160 void *pkt_data_start; 161 162 /* Part of headroom was reserved to xdpf */ 163 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom; 164 165 /* Memory size backing xdp_frame data already have reserved 166 * room for build_skb to place skb_shared_info in tailroom. 167 */ 168 frame_size = xdpf->frame_sz; 169 170 pkt_data_start = xdpf->data - hard_start_headroom; 171 skb = build_skb_around(skb, pkt_data_start, frame_size); 172 if (unlikely(!skb)) 173 return NULL; 174 175 skb_reserve(skb, hard_start_headroom); 176 __skb_put(skb, xdpf->len); 177 if (xdpf->metasize) 178 skb_metadata_set(skb, xdpf->metasize); 179 180 /* Essential SKB info: protocol and skb->dev */ 181 skb->protocol = eth_type_trans(skb, xdpf->dev_rx); 182 183 /* Optional SKB info, currently missing: 184 * - HW checksum info (skb->ip_summed) 185 * - HW RX hash (skb_set_hash) 186 * - RX ring dev queue index (skb_record_rx_queue) 187 */ 188 189 /* Until page_pool get SKB return path, release DMA here */ 190 xdp_release_frame(xdpf); 191 192 /* Allow SKB to reuse area used by xdp_frame */ 193 xdp_scrub_frame(xdpf); 194 195 return skb; 196 } 197 198 static void __cpu_map_ring_cleanup(struct ptr_ring *ring) 199 { 200 /* The tear-down procedure should have made sure that queue is 201 * empty. See __cpu_map_entry_replace() and work-queue 202 * invoked cpu_map_kthread_stop(). Catch any broken behaviour 203 * gracefully and warn once. 204 */ 205 struct xdp_frame *xdpf; 206 207 while ((xdpf = ptr_ring_consume(ring))) 208 if (WARN_ON_ONCE(xdpf)) 209 xdp_return_frame(xdpf); 210 } 211 212 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu) 213 { 214 if (atomic_dec_and_test(&rcpu->refcnt)) { 215 /* The queue should be empty at this point */ 216 __cpu_map_ring_cleanup(rcpu->queue); 217 ptr_ring_cleanup(rcpu->queue, NULL); 218 kfree(rcpu->queue); 219 kfree(rcpu); 220 } 221 } 222 223 #define CPUMAP_BATCH 8 224 225 static int cpu_map_kthread_run(void *data) 226 { 227 struct bpf_cpu_map_entry *rcpu = data; 228 229 set_current_state(TASK_INTERRUPTIBLE); 230 231 /* When kthread gives stop order, then rcpu have been disconnected 232 * from map, thus no new packets can enter. Remaining in-flight 233 * per CPU stored packets are flushed to this queue. Wait honoring 234 * kthread_stop signal until queue is empty. 235 */ 236 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { 237 unsigned int drops = 0, sched = 0; 238 void *frames[CPUMAP_BATCH]; 239 void *skbs[CPUMAP_BATCH]; 240 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC; 241 int i, n, m; 242 243 /* Release CPU reschedule checks */ 244 if (__ptr_ring_empty(rcpu->queue)) { 245 set_current_state(TASK_INTERRUPTIBLE); 246 /* Recheck to avoid lost wake-up */ 247 if (__ptr_ring_empty(rcpu->queue)) { 248 schedule(); 249 sched = 1; 250 } else { 251 __set_current_state(TASK_RUNNING); 252 } 253 } else { 254 sched = cond_resched(); 255 } 256 257 /* 258 * The bpf_cpu_map_entry is single consumer, with this 259 * kthread CPU pinned. Lockless access to ptr_ring 260 * consume side valid as no-resize allowed of queue. 261 */ 262 n = ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH); 263 264 for (i = 0; i < n; i++) { 265 void *f = frames[i]; 266 struct page *page = virt_to_page(f); 267 268 /* Bring struct page memory area to curr CPU. Read by 269 * build_skb_around via page_is_pfmemalloc(), and when 270 * freed written by page_frag_free call. 271 */ 272 prefetchw(page); 273 } 274 275 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs); 276 if (unlikely(m == 0)) { 277 for (i = 0; i < n; i++) 278 skbs[i] = NULL; /* effect: xdp_return_frame */ 279 drops = n; 280 } 281 282 local_bh_disable(); 283 for (i = 0; i < n; i++) { 284 struct xdp_frame *xdpf = frames[i]; 285 struct sk_buff *skb = skbs[i]; 286 int ret; 287 288 skb = cpu_map_build_skb(rcpu, xdpf, skb); 289 if (!skb) { 290 xdp_return_frame(xdpf); 291 continue; 292 } 293 294 /* Inject into network stack */ 295 ret = netif_receive_skb_core(skb); 296 if (ret == NET_RX_DROP) 297 drops++; 298 } 299 /* Feedback loop via tracepoint */ 300 trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched); 301 302 local_bh_enable(); /* resched point, may call do_softirq() */ 303 } 304 __set_current_state(TASK_RUNNING); 305 306 put_cpu_map_entry(rcpu); 307 return 0; 308 } 309 310 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu, 311 int map_id) 312 { 313 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; 314 struct bpf_cpu_map_entry *rcpu; 315 struct xdp_bulk_queue *bq; 316 int numa, err, i; 317 318 /* Have map->numa_node, but choose node of redirect target CPU */ 319 numa = cpu_to_node(cpu); 320 321 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa); 322 if (!rcpu) 323 return NULL; 324 325 /* Alloc percpu bulkq */ 326 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq), 327 sizeof(void *), gfp); 328 if (!rcpu->bulkq) 329 goto free_rcu; 330 331 for_each_possible_cpu(i) { 332 bq = per_cpu_ptr(rcpu->bulkq, i); 333 bq->obj = rcpu; 334 } 335 336 /* Alloc queue */ 337 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa); 338 if (!rcpu->queue) 339 goto free_bulkq; 340 341 err = ptr_ring_init(rcpu->queue, qsize, gfp); 342 if (err) 343 goto free_queue; 344 345 rcpu->cpu = cpu; 346 rcpu->map_id = map_id; 347 rcpu->qsize = qsize; 348 349 /* Setup kthread */ 350 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, 351 "cpumap/%d/map:%d", cpu, map_id); 352 if (IS_ERR(rcpu->kthread)) 353 goto free_ptr_ring; 354 355 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */ 356 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */ 357 358 /* Make sure kthread runs on a single CPU */ 359 kthread_bind(rcpu->kthread, cpu); 360 wake_up_process(rcpu->kthread); 361 362 return rcpu; 363 364 free_ptr_ring: 365 ptr_ring_cleanup(rcpu->queue, NULL); 366 free_queue: 367 kfree(rcpu->queue); 368 free_bulkq: 369 free_percpu(rcpu->bulkq); 370 free_rcu: 371 kfree(rcpu); 372 return NULL; 373 } 374 375 static void __cpu_map_entry_free(struct rcu_head *rcu) 376 { 377 struct bpf_cpu_map_entry *rcpu; 378 379 /* This cpu_map_entry have been disconnected from map and one 380 * RCU grace-period have elapsed. Thus, XDP cannot queue any 381 * new packets and cannot change/set flush_needed that can 382 * find this entry. 383 */ 384 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu); 385 386 free_percpu(rcpu->bulkq); 387 /* Cannot kthread_stop() here, last put free rcpu resources */ 388 put_cpu_map_entry(rcpu); 389 } 390 391 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to 392 * ensure any driver rcu critical sections have completed, but this 393 * does not guarantee a flush has happened yet. Because driver side 394 * rcu_read_lock/unlock only protects the running XDP program. The 395 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a 396 * pending flush op doesn't fail. 397 * 398 * The bpf_cpu_map_entry is still used by the kthread, and there can 399 * still be pending packets (in queue and percpu bulkq). A refcnt 400 * makes sure to last user (kthread_stop vs. call_rcu) free memory 401 * resources. 402 * 403 * The rcu callback __cpu_map_entry_free flush remaining packets in 404 * percpu bulkq to queue. Due to caller map_delete_elem() disable 405 * preemption, cannot call kthread_stop() to make sure queue is empty. 406 * Instead a work_queue is started for stopping kthread, 407 * cpu_map_kthread_stop, which waits for an RCU grace period before 408 * stopping kthread, emptying the queue. 409 */ 410 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, 411 u32 key_cpu, struct bpf_cpu_map_entry *rcpu) 412 { 413 struct bpf_cpu_map_entry *old_rcpu; 414 415 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu); 416 if (old_rcpu) { 417 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free); 418 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop); 419 schedule_work(&old_rcpu->kthread_stop_wq); 420 } 421 } 422 423 static int cpu_map_delete_elem(struct bpf_map *map, void *key) 424 { 425 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 426 u32 key_cpu = *(u32 *)key; 427 428 if (key_cpu >= map->max_entries) 429 return -EINVAL; 430 431 /* notice caller map_delete_elem() use preempt_disable() */ 432 __cpu_map_entry_replace(cmap, key_cpu, NULL); 433 return 0; 434 } 435 436 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value, 437 u64 map_flags) 438 { 439 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 440 struct bpf_cpu_map_entry *rcpu; 441 442 /* Array index key correspond to CPU number */ 443 u32 key_cpu = *(u32 *)key; 444 /* Value is the queue size */ 445 u32 qsize = *(u32 *)value; 446 447 if (unlikely(map_flags > BPF_EXIST)) 448 return -EINVAL; 449 if (unlikely(key_cpu >= cmap->map.max_entries)) 450 return -E2BIG; 451 if (unlikely(map_flags == BPF_NOEXIST)) 452 return -EEXIST; 453 if (unlikely(qsize > 16384)) /* sanity limit on qsize */ 454 return -EOVERFLOW; 455 456 /* Make sure CPU is a valid possible cpu */ 457 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) 458 return -ENODEV; 459 460 if (qsize == 0) { 461 rcpu = NULL; /* Same as deleting */ 462 } else { 463 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ 464 rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id); 465 if (!rcpu) 466 return -ENOMEM; 467 rcpu->cmap = cmap; 468 } 469 rcu_read_lock(); 470 __cpu_map_entry_replace(cmap, key_cpu, rcpu); 471 rcu_read_unlock(); 472 return 0; 473 } 474 475 static void cpu_map_free(struct bpf_map *map) 476 { 477 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 478 u32 i; 479 480 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 481 * so the bpf programs (can be more than one that used this map) were 482 * disconnected from events. Wait for outstanding critical sections in 483 * these programs to complete. The rcu critical section only guarantees 484 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map. 485 * It does __not__ ensure pending flush operations (if any) are 486 * complete. 487 */ 488 489 bpf_clear_redirect_map(map); 490 synchronize_rcu(); 491 492 /* For cpu_map the remote CPUs can still be using the entries 493 * (struct bpf_cpu_map_entry). 494 */ 495 for (i = 0; i < cmap->map.max_entries; i++) { 496 struct bpf_cpu_map_entry *rcpu; 497 498 rcpu = READ_ONCE(cmap->cpu_map[i]); 499 if (!rcpu) 500 continue; 501 502 /* bq flush and cleanup happens after RCU grace-period */ 503 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */ 504 } 505 bpf_map_area_free(cmap->cpu_map); 506 kfree(cmap); 507 } 508 509 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) 510 { 511 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 512 struct bpf_cpu_map_entry *rcpu; 513 514 if (key >= map->max_entries) 515 return NULL; 516 517 rcpu = READ_ONCE(cmap->cpu_map[key]); 518 return rcpu; 519 } 520 521 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) 522 { 523 struct bpf_cpu_map_entry *rcpu = 524 __cpu_map_lookup_elem(map, *(u32 *)key); 525 526 return rcpu ? &rcpu->qsize : NULL; 527 } 528 529 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 530 { 531 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); 532 u32 index = key ? *(u32 *)key : U32_MAX; 533 u32 *next = next_key; 534 535 if (index >= cmap->map.max_entries) { 536 *next = 0; 537 return 0; 538 } 539 540 if (index == cmap->map.max_entries - 1) 541 return -ENOENT; 542 *next = index + 1; 543 return 0; 544 } 545 546 const struct bpf_map_ops cpu_map_ops = { 547 .map_alloc = cpu_map_alloc, 548 .map_free = cpu_map_free, 549 .map_delete_elem = cpu_map_delete_elem, 550 .map_update_elem = cpu_map_update_elem, 551 .map_lookup_elem = cpu_map_lookup_elem, 552 .map_get_next_key = cpu_map_get_next_key, 553 .map_check_btf = map_check_no_btf, 554 }; 555 556 static int bq_flush_to_queue(struct xdp_bulk_queue *bq) 557 { 558 struct bpf_cpu_map_entry *rcpu = bq->obj; 559 unsigned int processed = 0, drops = 0; 560 const int to_cpu = rcpu->cpu; 561 struct ptr_ring *q; 562 int i; 563 564 if (unlikely(!bq->count)) 565 return 0; 566 567 q = rcpu->queue; 568 spin_lock(&q->producer_lock); 569 570 for (i = 0; i < bq->count; i++) { 571 struct xdp_frame *xdpf = bq->q[i]; 572 int err; 573 574 err = __ptr_ring_produce(q, xdpf); 575 if (err) { 576 drops++; 577 xdp_return_frame_rx_napi(xdpf); 578 } 579 processed++; 580 } 581 bq->count = 0; 582 spin_unlock(&q->producer_lock); 583 584 __list_del_clearprev(&bq->flush_node); 585 586 /* Feedback loop via tracepoints */ 587 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); 588 return 0; 589 } 590 591 /* Runs under RCU-read-side, plus in softirq under NAPI protection. 592 * Thus, safe percpu variable access. 593 */ 594 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) 595 { 596 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 597 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); 598 599 if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) 600 bq_flush_to_queue(bq); 601 602 /* Notice, xdp_buff/page MUST be queued here, long enough for 603 * driver to code invoking us to finished, due to driver 604 * (e.g. ixgbe) recycle tricks based on page-refcnt. 605 * 606 * Thus, incoming xdp_frame is always queued here (else we race 607 * with another CPU on page-refcnt and remaining driver code). 608 * Queue time is very short, as driver will invoke flush 609 * operation, when completing napi->poll call. 610 */ 611 bq->q[bq->count++] = xdpf; 612 613 if (!bq->flush_node.prev) 614 list_add(&bq->flush_node, flush_list); 615 616 return 0; 617 } 618 619 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp, 620 struct net_device *dev_rx) 621 { 622 struct xdp_frame *xdpf; 623 624 xdpf = xdp_convert_buff_to_frame(xdp); 625 if (unlikely(!xdpf)) 626 return -EOVERFLOW; 627 628 /* Info needed when constructing SKB on remote CPU */ 629 xdpf->dev_rx = dev_rx; 630 631 bq_enqueue(rcpu, xdpf); 632 return 0; 633 } 634 635 void __cpu_map_flush(void) 636 { 637 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list); 638 struct xdp_bulk_queue *bq, *tmp; 639 640 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { 641 bq_flush_to_queue(bq); 642 643 /* If already running, costs spin_lock_irqsave + smb_mb */ 644 wake_up_process(bq->obj->kthread); 645 } 646 } 647 648 static int __init cpu_map_init(void) 649 { 650 int cpu; 651 652 for_each_possible_cpu(cpu) 653 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu)); 654 return 0; 655 } 656 657 subsys_initcall(cpu_map_init); 658