xref: /openbmc/linux/kernel/bpf/core.c (revision fc28ab18)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 
32 #include <asm/unaligned.h>
33 
34 /* Registers */
35 #define BPF_R0	regs[BPF_REG_0]
36 #define BPF_R1	regs[BPF_REG_1]
37 #define BPF_R2	regs[BPF_REG_2]
38 #define BPF_R3	regs[BPF_REG_3]
39 #define BPF_R4	regs[BPF_REG_4]
40 #define BPF_R5	regs[BPF_REG_5]
41 #define BPF_R6	regs[BPF_REG_6]
42 #define BPF_R7	regs[BPF_REG_7]
43 #define BPF_R8	regs[BPF_REG_8]
44 #define BPF_R9	regs[BPF_REG_9]
45 #define BPF_R10	regs[BPF_REG_10]
46 
47 /* Named registers */
48 #define DST	regs[insn->dst_reg]
49 #define SRC	regs[insn->src_reg]
50 #define FP	regs[BPF_REG_FP]
51 #define ARG1	regs[BPF_REG_ARG1]
52 #define CTX	regs[BPF_REG_CTX]
53 #define IMM	insn->imm
54 
55 /* No hurry in this branch
56  *
57  * Exported for the bpf jit load helper.
58  */
59 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
60 {
61 	u8 *ptr = NULL;
62 
63 	if (k >= SKF_NET_OFF)
64 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
65 	else if (k >= SKF_LL_OFF)
66 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
67 
68 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
69 		return ptr;
70 
71 	return NULL;
72 }
73 
74 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
75 {
76 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
77 			  gfp_extra_flags;
78 	struct bpf_prog_aux *aux;
79 	struct bpf_prog *fp;
80 
81 	size = round_up(size, PAGE_SIZE);
82 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
83 	if (fp == NULL)
84 		return NULL;
85 
86 	kmemcheck_annotate_bitfield(fp, meta);
87 
88 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
89 	if (aux == NULL) {
90 		vfree(fp);
91 		return NULL;
92 	}
93 
94 	fp->pages = size / PAGE_SIZE;
95 	fp->aux = aux;
96 	fp->aux->prog = fp;
97 
98 	return fp;
99 }
100 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
101 
102 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
103 				  gfp_t gfp_extra_flags)
104 {
105 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
106 			  gfp_extra_flags;
107 	struct bpf_prog *fp;
108 	u32 pages, delta;
109 	int ret;
110 
111 	BUG_ON(fp_old == NULL);
112 
113 	size = round_up(size, PAGE_SIZE);
114 	pages = size / PAGE_SIZE;
115 	if (pages <= fp_old->pages)
116 		return fp_old;
117 
118 	delta = pages - fp_old->pages;
119 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
120 	if (ret)
121 		return NULL;
122 
123 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
124 	if (fp == NULL) {
125 		__bpf_prog_uncharge(fp_old->aux->user, delta);
126 	} else {
127 		kmemcheck_annotate_bitfield(fp, meta);
128 
129 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
130 		fp->pages = pages;
131 		fp->aux->prog = fp;
132 
133 		/* We keep fp->aux from fp_old around in the new
134 		 * reallocated structure.
135 		 */
136 		fp_old->aux = NULL;
137 		__bpf_prog_free(fp_old);
138 	}
139 
140 	return fp;
141 }
142 
143 void __bpf_prog_free(struct bpf_prog *fp)
144 {
145 	kfree(fp->aux);
146 	vfree(fp);
147 }
148 
149 int bpf_prog_calc_tag(struct bpf_prog *fp)
150 {
151 	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
152 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
153 	u32 digest[SHA_DIGEST_WORDS];
154 	u32 ws[SHA_WORKSPACE_WORDS];
155 	u32 i, bsize, psize, blocks;
156 	struct bpf_insn *dst;
157 	bool was_ld_map;
158 	u8 *raw, *todo;
159 	__be32 *result;
160 	__be64 *bits;
161 
162 	raw = vmalloc(raw_size);
163 	if (!raw)
164 		return -ENOMEM;
165 
166 	sha_init(digest);
167 	memset(ws, 0, sizeof(ws));
168 
169 	/* We need to take out the map fd for the digest calculation
170 	 * since they are unstable from user space side.
171 	 */
172 	dst = (void *)raw;
173 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
174 		dst[i] = fp->insnsi[i];
175 		if (!was_ld_map &&
176 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
177 		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
178 			was_ld_map = true;
179 			dst[i].imm = 0;
180 		} else if (was_ld_map &&
181 			   dst[i].code == 0 &&
182 			   dst[i].dst_reg == 0 &&
183 			   dst[i].src_reg == 0 &&
184 			   dst[i].off == 0) {
185 			was_ld_map = false;
186 			dst[i].imm = 0;
187 		} else {
188 			was_ld_map = false;
189 		}
190 	}
191 
192 	psize = bpf_prog_insn_size(fp);
193 	memset(&raw[psize], 0, raw_size - psize);
194 	raw[psize++] = 0x80;
195 
196 	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
197 	blocks = bsize / SHA_MESSAGE_BYTES;
198 	todo   = raw;
199 	if (bsize - psize >= sizeof(__be64)) {
200 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
201 	} else {
202 		bits = (__be64 *)(todo + bsize + bits_offset);
203 		blocks++;
204 	}
205 	*bits = cpu_to_be64((psize - 1) << 3);
206 
207 	while (blocks--) {
208 		sha_transform(digest, todo, ws);
209 		todo += SHA_MESSAGE_BYTES;
210 	}
211 
212 	result = (__force __be32 *)digest;
213 	for (i = 0; i < SHA_DIGEST_WORDS; i++)
214 		result[i] = cpu_to_be32(digest[i]);
215 	memcpy(fp->tag, result, sizeof(fp->tag));
216 
217 	vfree(raw);
218 	return 0;
219 }
220 
221 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
222 {
223 	return BPF_CLASS(insn->code) == BPF_JMP  &&
224 	       /* Call and Exit are both special jumps with no
225 		* target inside the BPF instruction image.
226 		*/
227 	       BPF_OP(insn->code) != BPF_CALL &&
228 	       BPF_OP(insn->code) != BPF_EXIT;
229 }
230 
231 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
232 {
233 	struct bpf_insn *insn = prog->insnsi;
234 	u32 i, insn_cnt = prog->len;
235 
236 	for (i = 0; i < insn_cnt; i++, insn++) {
237 		if (!bpf_is_jmp_and_has_target(insn))
238 			continue;
239 
240 		/* Adjust offset of jmps if we cross boundaries. */
241 		if (i < pos && i + insn->off + 1 > pos)
242 			insn->off += delta;
243 		else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
244 			insn->off -= delta;
245 	}
246 }
247 
248 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
249 				       const struct bpf_insn *patch, u32 len)
250 {
251 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
252 	struct bpf_prog *prog_adj;
253 
254 	/* Since our patchlet doesn't expand the image, we're done. */
255 	if (insn_delta == 0) {
256 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
257 		return prog;
258 	}
259 
260 	insn_adj_cnt = prog->len + insn_delta;
261 
262 	/* Several new instructions need to be inserted. Make room
263 	 * for them. Likely, there's no need for a new allocation as
264 	 * last page could have large enough tailroom.
265 	 */
266 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
267 				    GFP_USER);
268 	if (!prog_adj)
269 		return NULL;
270 
271 	prog_adj->len = insn_adj_cnt;
272 
273 	/* Patching happens in 3 steps:
274 	 *
275 	 * 1) Move over tail of insnsi from next instruction onwards,
276 	 *    so we can patch the single target insn with one or more
277 	 *    new ones (patching is always from 1 to n insns, n > 0).
278 	 * 2) Inject new instructions at the target location.
279 	 * 3) Adjust branch offsets if necessary.
280 	 */
281 	insn_rest = insn_adj_cnt - off - len;
282 
283 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
284 		sizeof(*patch) * insn_rest);
285 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
286 
287 	bpf_adj_branches(prog_adj, off, insn_delta);
288 
289 	return prog_adj;
290 }
291 
292 #ifdef CONFIG_BPF_JIT
293 struct bpf_binary_header *
294 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
295 		     unsigned int alignment,
296 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
297 {
298 	struct bpf_binary_header *hdr;
299 	unsigned int size, hole, start;
300 
301 	/* Most of BPF filters are really small, but if some of them
302 	 * fill a page, allow at least 128 extra bytes to insert a
303 	 * random section of illegal instructions.
304 	 */
305 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
306 	hdr = module_alloc(size);
307 	if (hdr == NULL)
308 		return NULL;
309 
310 	/* Fill space with illegal/arch-dep instructions. */
311 	bpf_fill_ill_insns(hdr, size);
312 
313 	hdr->pages = size / PAGE_SIZE;
314 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
315 		     PAGE_SIZE - sizeof(*hdr));
316 	start = (get_random_int() % hole) & ~(alignment - 1);
317 
318 	/* Leave a random number of instructions before BPF code. */
319 	*image_ptr = &hdr->image[start];
320 
321 	return hdr;
322 }
323 
324 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
325 {
326 	module_memfree(hdr);
327 }
328 
329 int bpf_jit_harden __read_mostly;
330 
331 static int bpf_jit_blind_insn(const struct bpf_insn *from,
332 			      const struct bpf_insn *aux,
333 			      struct bpf_insn *to_buff)
334 {
335 	struct bpf_insn *to = to_buff;
336 	u32 imm_rnd = get_random_int();
337 	s16 off;
338 
339 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
340 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
341 
342 	if (from->imm == 0 &&
343 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
344 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
345 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
346 		goto out;
347 	}
348 
349 	switch (from->code) {
350 	case BPF_ALU | BPF_ADD | BPF_K:
351 	case BPF_ALU | BPF_SUB | BPF_K:
352 	case BPF_ALU | BPF_AND | BPF_K:
353 	case BPF_ALU | BPF_OR  | BPF_K:
354 	case BPF_ALU | BPF_XOR | BPF_K:
355 	case BPF_ALU | BPF_MUL | BPF_K:
356 	case BPF_ALU | BPF_MOV | BPF_K:
357 	case BPF_ALU | BPF_DIV | BPF_K:
358 	case BPF_ALU | BPF_MOD | BPF_K:
359 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
360 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
361 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
362 		break;
363 
364 	case BPF_ALU64 | BPF_ADD | BPF_K:
365 	case BPF_ALU64 | BPF_SUB | BPF_K:
366 	case BPF_ALU64 | BPF_AND | BPF_K:
367 	case BPF_ALU64 | BPF_OR  | BPF_K:
368 	case BPF_ALU64 | BPF_XOR | BPF_K:
369 	case BPF_ALU64 | BPF_MUL | BPF_K:
370 	case BPF_ALU64 | BPF_MOV | BPF_K:
371 	case BPF_ALU64 | BPF_DIV | BPF_K:
372 	case BPF_ALU64 | BPF_MOD | BPF_K:
373 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
374 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
375 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
376 		break;
377 
378 	case BPF_JMP | BPF_JEQ  | BPF_K:
379 	case BPF_JMP | BPF_JNE  | BPF_K:
380 	case BPF_JMP | BPF_JGT  | BPF_K:
381 	case BPF_JMP | BPF_JGE  | BPF_K:
382 	case BPF_JMP | BPF_JSGT | BPF_K:
383 	case BPF_JMP | BPF_JSGE | BPF_K:
384 	case BPF_JMP | BPF_JSET | BPF_K:
385 		/* Accommodate for extra offset in case of a backjump. */
386 		off = from->off;
387 		if (off < 0)
388 			off -= 2;
389 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
390 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
391 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
392 		break;
393 
394 	case BPF_LD | BPF_ABS | BPF_W:
395 	case BPF_LD | BPF_ABS | BPF_H:
396 	case BPF_LD | BPF_ABS | BPF_B:
397 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
398 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
399 		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
400 		break;
401 
402 	case BPF_LD | BPF_IND | BPF_W:
403 	case BPF_LD | BPF_IND | BPF_H:
404 	case BPF_LD | BPF_IND | BPF_B:
405 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
406 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
407 		*to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
408 		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
409 		break;
410 
411 	case BPF_LD | BPF_IMM | BPF_DW:
412 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
413 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
414 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
415 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
416 		break;
417 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
418 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
419 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
420 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
421 		break;
422 
423 	case BPF_ST | BPF_MEM | BPF_DW:
424 	case BPF_ST | BPF_MEM | BPF_W:
425 	case BPF_ST | BPF_MEM | BPF_H:
426 	case BPF_ST | BPF_MEM | BPF_B:
427 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
428 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
429 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
430 		break;
431 	}
432 out:
433 	return to - to_buff;
434 }
435 
436 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
437 					      gfp_t gfp_extra_flags)
438 {
439 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
440 			  gfp_extra_flags;
441 	struct bpf_prog *fp;
442 
443 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
444 	if (fp != NULL) {
445 		kmemcheck_annotate_bitfield(fp, meta);
446 
447 		/* aux->prog still points to the fp_other one, so
448 		 * when promoting the clone to the real program,
449 		 * this still needs to be adapted.
450 		 */
451 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
452 	}
453 
454 	return fp;
455 }
456 
457 static void bpf_prog_clone_free(struct bpf_prog *fp)
458 {
459 	/* aux was stolen by the other clone, so we cannot free
460 	 * it from this path! It will be freed eventually by the
461 	 * other program on release.
462 	 *
463 	 * At this point, we don't need a deferred release since
464 	 * clone is guaranteed to not be locked.
465 	 */
466 	fp->aux = NULL;
467 	__bpf_prog_free(fp);
468 }
469 
470 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
471 {
472 	/* We have to repoint aux->prog to self, as we don't
473 	 * know whether fp here is the clone or the original.
474 	 */
475 	fp->aux->prog = fp;
476 	bpf_prog_clone_free(fp_other);
477 }
478 
479 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
480 {
481 	struct bpf_insn insn_buff[16], aux[2];
482 	struct bpf_prog *clone, *tmp;
483 	int insn_delta, insn_cnt;
484 	struct bpf_insn *insn;
485 	int i, rewritten;
486 
487 	if (!bpf_jit_blinding_enabled())
488 		return prog;
489 
490 	clone = bpf_prog_clone_create(prog, GFP_USER);
491 	if (!clone)
492 		return ERR_PTR(-ENOMEM);
493 
494 	insn_cnt = clone->len;
495 	insn = clone->insnsi;
496 
497 	for (i = 0; i < insn_cnt; i++, insn++) {
498 		/* We temporarily need to hold the original ld64 insn
499 		 * so that we can still access the first part in the
500 		 * second blinding run.
501 		 */
502 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
503 		    insn[1].code == 0)
504 			memcpy(aux, insn, sizeof(aux));
505 
506 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
507 		if (!rewritten)
508 			continue;
509 
510 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
511 		if (!tmp) {
512 			/* Patching may have repointed aux->prog during
513 			 * realloc from the original one, so we need to
514 			 * fix it up here on error.
515 			 */
516 			bpf_jit_prog_release_other(prog, clone);
517 			return ERR_PTR(-ENOMEM);
518 		}
519 
520 		clone = tmp;
521 		insn_delta = rewritten - 1;
522 
523 		/* Walk new program and skip insns we just inserted. */
524 		insn = clone->insnsi + i + insn_delta;
525 		insn_cnt += insn_delta;
526 		i        += insn_delta;
527 	}
528 
529 	return clone;
530 }
531 #endif /* CONFIG_BPF_JIT */
532 
533 /* Base function for offset calculation. Needs to go into .text section,
534  * therefore keeping it non-static as well; will also be used by JITs
535  * anyway later on, so do not let the compiler omit it.
536  */
537 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
538 {
539 	return 0;
540 }
541 EXPORT_SYMBOL_GPL(__bpf_call_base);
542 
543 /**
544  *	__bpf_prog_run - run eBPF program on a given context
545  *	@ctx: is the data we are operating on
546  *	@insn: is the array of eBPF instructions
547  *
548  * Decode and execute eBPF instructions.
549  */
550 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
551 {
552 	u64 stack[MAX_BPF_STACK / sizeof(u64)];
553 	u64 regs[MAX_BPF_REG], tmp;
554 	static const void *jumptable[256] = {
555 		[0 ... 255] = &&default_label,
556 		/* Now overwrite non-defaults ... */
557 		/* 32 bit ALU operations */
558 		[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
559 		[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
560 		[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
561 		[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
562 		[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
563 		[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
564 		[BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
565 		[BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
566 		[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
567 		[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
568 		[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
569 		[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
570 		[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
571 		[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
572 		[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
573 		[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
574 		[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
575 		[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
576 		[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
577 		[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
578 		[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
579 		[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
580 		[BPF_ALU | BPF_NEG] = &&ALU_NEG,
581 		[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
582 		[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
583 		/* 64 bit ALU operations */
584 		[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
585 		[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
586 		[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
587 		[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
588 		[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
589 		[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
590 		[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
591 		[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
592 		[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
593 		[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
594 		[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
595 		[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
596 		[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
597 		[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
598 		[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
599 		[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
600 		[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
601 		[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
602 		[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
603 		[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
604 		[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
605 		[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
606 		[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
607 		[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
608 		[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
609 		/* Call instruction */
610 		[BPF_JMP | BPF_CALL] = &&JMP_CALL,
611 		[BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
612 		/* Jumps */
613 		[BPF_JMP | BPF_JA] = &&JMP_JA,
614 		[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
615 		[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
616 		[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
617 		[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
618 		[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
619 		[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
620 		[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
621 		[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
622 		[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
623 		[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
624 		[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
625 		[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
626 		[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
627 		[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
628 		/* Program return */
629 		[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
630 		/* Store instructions */
631 		[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
632 		[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
633 		[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
634 		[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
635 		[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
636 		[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
637 		[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
638 		[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
639 		[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
640 		[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
641 		/* Load instructions */
642 		[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
643 		[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
644 		[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
645 		[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
646 		[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
647 		[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
648 		[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
649 		[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
650 		[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
651 		[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
652 		[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
653 	};
654 	u32 tail_call_cnt = 0;
655 	void *ptr;
656 	int off;
657 
658 #define CONT	 ({ insn++; goto select_insn; })
659 #define CONT_JMP ({ insn++; goto select_insn; })
660 
661 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
662 	ARG1 = (u64) (unsigned long) ctx;
663 
664 select_insn:
665 	goto *jumptable[insn->code];
666 
667 	/* ALU */
668 #define ALU(OPCODE, OP)			\
669 	ALU64_##OPCODE##_X:		\
670 		DST = DST OP SRC;	\
671 		CONT;			\
672 	ALU_##OPCODE##_X:		\
673 		DST = (u32) DST OP (u32) SRC;	\
674 		CONT;			\
675 	ALU64_##OPCODE##_K:		\
676 		DST = DST OP IMM;		\
677 		CONT;			\
678 	ALU_##OPCODE##_K:		\
679 		DST = (u32) DST OP (u32) IMM;	\
680 		CONT;
681 
682 	ALU(ADD,  +)
683 	ALU(SUB,  -)
684 	ALU(AND,  &)
685 	ALU(OR,   |)
686 	ALU(LSH, <<)
687 	ALU(RSH, >>)
688 	ALU(XOR,  ^)
689 	ALU(MUL,  *)
690 #undef ALU
691 	ALU_NEG:
692 		DST = (u32) -DST;
693 		CONT;
694 	ALU64_NEG:
695 		DST = -DST;
696 		CONT;
697 	ALU_MOV_X:
698 		DST = (u32) SRC;
699 		CONT;
700 	ALU_MOV_K:
701 		DST = (u32) IMM;
702 		CONT;
703 	ALU64_MOV_X:
704 		DST = SRC;
705 		CONT;
706 	ALU64_MOV_K:
707 		DST = IMM;
708 		CONT;
709 	LD_IMM_DW:
710 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
711 		insn++;
712 		CONT;
713 	ALU64_ARSH_X:
714 		(*(s64 *) &DST) >>= SRC;
715 		CONT;
716 	ALU64_ARSH_K:
717 		(*(s64 *) &DST) >>= IMM;
718 		CONT;
719 	ALU64_MOD_X:
720 		if (unlikely(SRC == 0))
721 			return 0;
722 		div64_u64_rem(DST, SRC, &tmp);
723 		DST = tmp;
724 		CONT;
725 	ALU_MOD_X:
726 		if (unlikely(SRC == 0))
727 			return 0;
728 		tmp = (u32) DST;
729 		DST = do_div(tmp, (u32) SRC);
730 		CONT;
731 	ALU64_MOD_K:
732 		div64_u64_rem(DST, IMM, &tmp);
733 		DST = tmp;
734 		CONT;
735 	ALU_MOD_K:
736 		tmp = (u32) DST;
737 		DST = do_div(tmp, (u32) IMM);
738 		CONT;
739 	ALU64_DIV_X:
740 		if (unlikely(SRC == 0))
741 			return 0;
742 		DST = div64_u64(DST, SRC);
743 		CONT;
744 	ALU_DIV_X:
745 		if (unlikely(SRC == 0))
746 			return 0;
747 		tmp = (u32) DST;
748 		do_div(tmp, (u32) SRC);
749 		DST = (u32) tmp;
750 		CONT;
751 	ALU64_DIV_K:
752 		DST = div64_u64(DST, IMM);
753 		CONT;
754 	ALU_DIV_K:
755 		tmp = (u32) DST;
756 		do_div(tmp, (u32) IMM);
757 		DST = (u32) tmp;
758 		CONT;
759 	ALU_END_TO_BE:
760 		switch (IMM) {
761 		case 16:
762 			DST = (__force u16) cpu_to_be16(DST);
763 			break;
764 		case 32:
765 			DST = (__force u32) cpu_to_be32(DST);
766 			break;
767 		case 64:
768 			DST = (__force u64) cpu_to_be64(DST);
769 			break;
770 		}
771 		CONT;
772 	ALU_END_TO_LE:
773 		switch (IMM) {
774 		case 16:
775 			DST = (__force u16) cpu_to_le16(DST);
776 			break;
777 		case 32:
778 			DST = (__force u32) cpu_to_le32(DST);
779 			break;
780 		case 64:
781 			DST = (__force u64) cpu_to_le64(DST);
782 			break;
783 		}
784 		CONT;
785 
786 	/* CALL */
787 	JMP_CALL:
788 		/* Function call scratches BPF_R1-BPF_R5 registers,
789 		 * preserves BPF_R6-BPF_R9, and stores return value
790 		 * into BPF_R0.
791 		 */
792 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
793 						       BPF_R4, BPF_R5);
794 		CONT;
795 
796 	JMP_TAIL_CALL: {
797 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
798 		struct bpf_array *array = container_of(map, struct bpf_array, map);
799 		struct bpf_prog *prog;
800 		u64 index = BPF_R3;
801 
802 		if (unlikely(index >= array->map.max_entries))
803 			goto out;
804 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
805 			goto out;
806 
807 		tail_call_cnt++;
808 
809 		prog = READ_ONCE(array->ptrs[index]);
810 		if (!prog)
811 			goto out;
812 
813 		/* ARG1 at this point is guaranteed to point to CTX from
814 		 * the verifier side due to the fact that the tail call is
815 		 * handeled like a helper, that is, bpf_tail_call_proto,
816 		 * where arg1_type is ARG_PTR_TO_CTX.
817 		 */
818 		insn = prog->insnsi;
819 		goto select_insn;
820 out:
821 		CONT;
822 	}
823 	/* JMP */
824 	JMP_JA:
825 		insn += insn->off;
826 		CONT;
827 	JMP_JEQ_X:
828 		if (DST == SRC) {
829 			insn += insn->off;
830 			CONT_JMP;
831 		}
832 		CONT;
833 	JMP_JEQ_K:
834 		if (DST == IMM) {
835 			insn += insn->off;
836 			CONT_JMP;
837 		}
838 		CONT;
839 	JMP_JNE_X:
840 		if (DST != SRC) {
841 			insn += insn->off;
842 			CONT_JMP;
843 		}
844 		CONT;
845 	JMP_JNE_K:
846 		if (DST != IMM) {
847 			insn += insn->off;
848 			CONT_JMP;
849 		}
850 		CONT;
851 	JMP_JGT_X:
852 		if (DST > SRC) {
853 			insn += insn->off;
854 			CONT_JMP;
855 		}
856 		CONT;
857 	JMP_JGT_K:
858 		if (DST > IMM) {
859 			insn += insn->off;
860 			CONT_JMP;
861 		}
862 		CONT;
863 	JMP_JGE_X:
864 		if (DST >= SRC) {
865 			insn += insn->off;
866 			CONT_JMP;
867 		}
868 		CONT;
869 	JMP_JGE_K:
870 		if (DST >= IMM) {
871 			insn += insn->off;
872 			CONT_JMP;
873 		}
874 		CONT;
875 	JMP_JSGT_X:
876 		if (((s64) DST) > ((s64) SRC)) {
877 			insn += insn->off;
878 			CONT_JMP;
879 		}
880 		CONT;
881 	JMP_JSGT_K:
882 		if (((s64) DST) > ((s64) IMM)) {
883 			insn += insn->off;
884 			CONT_JMP;
885 		}
886 		CONT;
887 	JMP_JSGE_X:
888 		if (((s64) DST) >= ((s64) SRC)) {
889 			insn += insn->off;
890 			CONT_JMP;
891 		}
892 		CONT;
893 	JMP_JSGE_K:
894 		if (((s64) DST) >= ((s64) IMM)) {
895 			insn += insn->off;
896 			CONT_JMP;
897 		}
898 		CONT;
899 	JMP_JSET_X:
900 		if (DST & SRC) {
901 			insn += insn->off;
902 			CONT_JMP;
903 		}
904 		CONT;
905 	JMP_JSET_K:
906 		if (DST & IMM) {
907 			insn += insn->off;
908 			CONT_JMP;
909 		}
910 		CONT;
911 	JMP_EXIT:
912 		return BPF_R0;
913 
914 	/* STX and ST and LDX*/
915 #define LDST(SIZEOP, SIZE)						\
916 	STX_MEM_##SIZEOP:						\
917 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
918 		CONT;							\
919 	ST_MEM_##SIZEOP:						\
920 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
921 		CONT;							\
922 	LDX_MEM_##SIZEOP:						\
923 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
924 		CONT;
925 
926 	LDST(B,   u8)
927 	LDST(H,  u16)
928 	LDST(W,  u32)
929 	LDST(DW, u64)
930 #undef LDST
931 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
932 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
933 			   (DST + insn->off));
934 		CONT;
935 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
936 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
937 			     (DST + insn->off));
938 		CONT;
939 	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
940 		off = IMM;
941 load_word:
942 		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
943 		 * only appearing in the programs where ctx ==
944 		 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
945 		 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
946 		 * internal BPF verifier will check that BPF_R6 ==
947 		 * ctx.
948 		 *
949 		 * BPF_ABS and BPF_IND are wrappers of function calls,
950 		 * so they scratch BPF_R1-BPF_R5 registers, preserve
951 		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
952 		 *
953 		 * Implicit input:
954 		 *   ctx == skb == BPF_R6 == CTX
955 		 *
956 		 * Explicit input:
957 		 *   SRC == any register
958 		 *   IMM == 32-bit immediate
959 		 *
960 		 * Output:
961 		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
962 		 */
963 
964 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
965 		if (likely(ptr != NULL)) {
966 			BPF_R0 = get_unaligned_be32(ptr);
967 			CONT;
968 		}
969 
970 		return 0;
971 	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
972 		off = IMM;
973 load_half:
974 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
975 		if (likely(ptr != NULL)) {
976 			BPF_R0 = get_unaligned_be16(ptr);
977 			CONT;
978 		}
979 
980 		return 0;
981 	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
982 		off = IMM;
983 load_byte:
984 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
985 		if (likely(ptr != NULL)) {
986 			BPF_R0 = *(u8 *)ptr;
987 			CONT;
988 		}
989 
990 		return 0;
991 	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
992 		off = IMM + SRC;
993 		goto load_word;
994 	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
995 		off = IMM + SRC;
996 		goto load_half;
997 	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
998 		off = IMM + SRC;
999 		goto load_byte;
1000 
1001 	default_label:
1002 		/* If we ever reach this, we have a bug somewhere. */
1003 		WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1004 		return 0;
1005 }
1006 STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
1007 
1008 bool bpf_prog_array_compatible(struct bpf_array *array,
1009 			       const struct bpf_prog *fp)
1010 {
1011 	if (!array->owner_prog_type) {
1012 		/* There's no owner yet where we could check for
1013 		 * compatibility.
1014 		 */
1015 		array->owner_prog_type = fp->type;
1016 		array->owner_jited = fp->jited;
1017 
1018 		return true;
1019 	}
1020 
1021 	return array->owner_prog_type == fp->type &&
1022 	       array->owner_jited == fp->jited;
1023 }
1024 
1025 static int bpf_check_tail_call(const struct bpf_prog *fp)
1026 {
1027 	struct bpf_prog_aux *aux = fp->aux;
1028 	int i;
1029 
1030 	for (i = 0; i < aux->used_map_cnt; i++) {
1031 		struct bpf_map *map = aux->used_maps[i];
1032 		struct bpf_array *array;
1033 
1034 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1035 			continue;
1036 
1037 		array = container_of(map, struct bpf_array, map);
1038 		if (!bpf_prog_array_compatible(array, fp))
1039 			return -EINVAL;
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 /**
1046  *	bpf_prog_select_runtime - select exec runtime for BPF program
1047  *	@fp: bpf_prog populated with internal BPF program
1048  *	@err: pointer to error variable
1049  *
1050  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1051  * The BPF program will be executed via BPF_PROG_RUN() macro.
1052  */
1053 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1054 {
1055 	fp->bpf_func = (void *) __bpf_prog_run;
1056 
1057 	/* eBPF JITs can rewrite the program in case constant
1058 	 * blinding is active. However, in case of error during
1059 	 * blinding, bpf_int_jit_compile() must always return a
1060 	 * valid program, which in this case would simply not
1061 	 * be JITed, but falls back to the interpreter.
1062 	 */
1063 	fp = bpf_int_jit_compile(fp);
1064 	bpf_prog_lock_ro(fp);
1065 
1066 	/* The tail call compatibility check can only be done at
1067 	 * this late stage as we need to determine, if we deal
1068 	 * with JITed or non JITed program concatenations and not
1069 	 * all eBPF JITs might immediately support all features.
1070 	 */
1071 	*err = bpf_check_tail_call(fp);
1072 
1073 	return fp;
1074 }
1075 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1076 
1077 static void bpf_prog_free_deferred(struct work_struct *work)
1078 {
1079 	struct bpf_prog_aux *aux;
1080 
1081 	aux = container_of(work, struct bpf_prog_aux, work);
1082 	bpf_jit_free(aux->prog);
1083 }
1084 
1085 /* Free internal BPF program */
1086 void bpf_prog_free(struct bpf_prog *fp)
1087 {
1088 	struct bpf_prog_aux *aux = fp->aux;
1089 
1090 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
1091 	schedule_work(&aux->work);
1092 }
1093 EXPORT_SYMBOL_GPL(bpf_prog_free);
1094 
1095 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1096 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1097 
1098 void bpf_user_rnd_init_once(void)
1099 {
1100 	prandom_init_once(&bpf_user_rnd_state);
1101 }
1102 
1103 BPF_CALL_0(bpf_user_rnd_u32)
1104 {
1105 	/* Should someone ever have the rather unwise idea to use some
1106 	 * of the registers passed into this function, then note that
1107 	 * this function is called from native eBPF and classic-to-eBPF
1108 	 * transformations. Register assignments from both sides are
1109 	 * different, f.e. classic always sets fn(ctx, A, X) here.
1110 	 */
1111 	struct rnd_state *state;
1112 	u32 res;
1113 
1114 	state = &get_cpu_var(bpf_user_rnd_state);
1115 	res = prandom_u32_state(state);
1116 	put_cpu_var(bpf_user_rnd_state);
1117 
1118 	return res;
1119 }
1120 
1121 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1122 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1123 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1124 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1125 
1126 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1127 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1128 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1129 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1130 
1131 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1132 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1133 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1134 
1135 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1136 {
1137 	return NULL;
1138 }
1139 
1140 u64 __weak
1141 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1142 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1143 {
1144 	return -ENOTSUPP;
1145 }
1146 
1147 /* Always built-in helper functions. */
1148 const struct bpf_func_proto bpf_tail_call_proto = {
1149 	.func		= NULL,
1150 	.gpl_only	= false,
1151 	.ret_type	= RET_VOID,
1152 	.arg1_type	= ARG_PTR_TO_CTX,
1153 	.arg2_type	= ARG_CONST_MAP_PTR,
1154 	.arg3_type	= ARG_ANYTHING,
1155 };
1156 
1157 /* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
1158 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1159 {
1160 	return prog;
1161 }
1162 
1163 bool __weak bpf_helper_changes_pkt_data(void *func)
1164 {
1165 	return false;
1166 }
1167 
1168 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1169  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1170  */
1171 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1172 			 int len)
1173 {
1174 	return -EFAULT;
1175 }
1176