xref: /openbmc/linux/kernel/bpf/core.c (revision e3d786a3)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
34 #include <linux/perf_event.h>
35 
36 #include <asm/unaligned.h>
37 
38 /* Registers */
39 #define BPF_R0	regs[BPF_REG_0]
40 #define BPF_R1	regs[BPF_REG_1]
41 #define BPF_R2	regs[BPF_REG_2]
42 #define BPF_R3	regs[BPF_REG_3]
43 #define BPF_R4	regs[BPF_REG_4]
44 #define BPF_R5	regs[BPF_REG_5]
45 #define BPF_R6	regs[BPF_REG_6]
46 #define BPF_R7	regs[BPF_REG_7]
47 #define BPF_R8	regs[BPF_REG_8]
48 #define BPF_R9	regs[BPF_REG_9]
49 #define BPF_R10	regs[BPF_REG_10]
50 
51 /* Named registers */
52 #define DST	regs[insn->dst_reg]
53 #define SRC	regs[insn->src_reg]
54 #define FP	regs[BPF_REG_FP]
55 #define ARG1	regs[BPF_REG_ARG1]
56 #define CTX	regs[BPF_REG_CTX]
57 #define IMM	insn->imm
58 
59 /* No hurry in this branch
60  *
61  * Exported for the bpf jit load helper.
62  */
63 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
64 {
65 	u8 *ptr = NULL;
66 
67 	if (k >= SKF_NET_OFF)
68 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
69 	else if (k >= SKF_LL_OFF)
70 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
71 
72 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
73 		return ptr;
74 
75 	return NULL;
76 }
77 
78 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
79 {
80 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
81 	struct bpf_prog_aux *aux;
82 	struct bpf_prog *fp;
83 
84 	size = round_up(size, PAGE_SIZE);
85 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
86 	if (fp == NULL)
87 		return NULL;
88 
89 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
90 	if (aux == NULL) {
91 		vfree(fp);
92 		return NULL;
93 	}
94 
95 	fp->pages = size / PAGE_SIZE;
96 	fp->aux = aux;
97 	fp->aux->prog = fp;
98 	fp->jit_requested = ebpf_jit_enabled();
99 
100 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
101 
102 	return fp;
103 }
104 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
105 
106 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
107 				  gfp_t gfp_extra_flags)
108 {
109 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
110 	struct bpf_prog *fp;
111 	u32 pages, delta;
112 	int ret;
113 
114 	BUG_ON(fp_old == NULL);
115 
116 	size = round_up(size, PAGE_SIZE);
117 	pages = size / PAGE_SIZE;
118 	if (pages <= fp_old->pages)
119 		return fp_old;
120 
121 	delta = pages - fp_old->pages;
122 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
123 	if (ret)
124 		return NULL;
125 
126 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
127 	if (fp == NULL) {
128 		__bpf_prog_uncharge(fp_old->aux->user, delta);
129 	} else {
130 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
131 		fp->pages = pages;
132 		fp->aux->prog = fp;
133 
134 		/* We keep fp->aux from fp_old around in the new
135 		 * reallocated structure.
136 		 */
137 		fp_old->aux = NULL;
138 		__bpf_prog_free(fp_old);
139 	}
140 
141 	return fp;
142 }
143 
144 void __bpf_prog_free(struct bpf_prog *fp)
145 {
146 	kfree(fp->aux);
147 	vfree(fp);
148 }
149 
150 int bpf_prog_calc_tag(struct bpf_prog *fp)
151 {
152 	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
153 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
154 	u32 digest[SHA_DIGEST_WORDS];
155 	u32 ws[SHA_WORKSPACE_WORDS];
156 	u32 i, bsize, psize, blocks;
157 	struct bpf_insn *dst;
158 	bool was_ld_map;
159 	u8 *raw, *todo;
160 	__be32 *result;
161 	__be64 *bits;
162 
163 	raw = vmalloc(raw_size);
164 	if (!raw)
165 		return -ENOMEM;
166 
167 	sha_init(digest);
168 	memset(ws, 0, sizeof(ws));
169 
170 	/* We need to take out the map fd for the digest calculation
171 	 * since they are unstable from user space side.
172 	 */
173 	dst = (void *)raw;
174 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
175 		dst[i] = fp->insnsi[i];
176 		if (!was_ld_map &&
177 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
178 		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
179 			was_ld_map = true;
180 			dst[i].imm = 0;
181 		} else if (was_ld_map &&
182 			   dst[i].code == 0 &&
183 			   dst[i].dst_reg == 0 &&
184 			   dst[i].src_reg == 0 &&
185 			   dst[i].off == 0) {
186 			was_ld_map = false;
187 			dst[i].imm = 0;
188 		} else {
189 			was_ld_map = false;
190 		}
191 	}
192 
193 	psize = bpf_prog_insn_size(fp);
194 	memset(&raw[psize], 0, raw_size - psize);
195 	raw[psize++] = 0x80;
196 
197 	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
198 	blocks = bsize / SHA_MESSAGE_BYTES;
199 	todo   = raw;
200 	if (bsize - psize >= sizeof(__be64)) {
201 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
202 	} else {
203 		bits = (__be64 *)(todo + bsize + bits_offset);
204 		blocks++;
205 	}
206 	*bits = cpu_to_be64((psize - 1) << 3);
207 
208 	while (blocks--) {
209 		sha_transform(digest, todo, ws);
210 		todo += SHA_MESSAGE_BYTES;
211 	}
212 
213 	result = (__force __be32 *)digest;
214 	for (i = 0; i < SHA_DIGEST_WORDS; i++)
215 		result[i] = cpu_to_be32(digest[i]);
216 	memcpy(fp->tag, result, sizeof(fp->tag));
217 
218 	vfree(raw);
219 	return 0;
220 }
221 
222 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, u32 delta,
223 				u32 curr, const bool probe_pass)
224 {
225 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
226 	s64 imm = insn->imm;
227 
228 	if (curr < pos && curr + imm + 1 > pos)
229 		imm += delta;
230 	else if (curr > pos + delta && curr + imm + 1 <= pos + delta)
231 		imm -= delta;
232 	if (imm < imm_min || imm > imm_max)
233 		return -ERANGE;
234 	if (!probe_pass)
235 		insn->imm = imm;
236 	return 0;
237 }
238 
239 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, u32 delta,
240 				u32 curr, const bool probe_pass)
241 {
242 	const s32 off_min = S16_MIN, off_max = S16_MAX;
243 	s32 off = insn->off;
244 
245 	if (curr < pos && curr + off + 1 > pos)
246 		off += delta;
247 	else if (curr > pos + delta && curr + off + 1 <= pos + delta)
248 		off -= delta;
249 	if (off < off_min || off > off_max)
250 		return -ERANGE;
251 	if (!probe_pass)
252 		insn->off = off;
253 	return 0;
254 }
255 
256 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta,
257 			    const bool probe_pass)
258 {
259 	u32 i, insn_cnt = prog->len + (probe_pass ? delta : 0);
260 	struct bpf_insn *insn = prog->insnsi;
261 	int ret = 0;
262 
263 	for (i = 0; i < insn_cnt; i++, insn++) {
264 		u8 code;
265 
266 		/* In the probing pass we still operate on the original,
267 		 * unpatched image in order to check overflows before we
268 		 * do any other adjustments. Therefore skip the patchlet.
269 		 */
270 		if (probe_pass && i == pos) {
271 			i += delta + 1;
272 			insn++;
273 		}
274 		code = insn->code;
275 		if (BPF_CLASS(code) != BPF_JMP ||
276 		    BPF_OP(code) == BPF_EXIT)
277 			continue;
278 		/* Adjust offset of jmps if we cross patch boundaries. */
279 		if (BPF_OP(code) == BPF_CALL) {
280 			if (insn->src_reg != BPF_PSEUDO_CALL)
281 				continue;
282 			ret = bpf_adj_delta_to_imm(insn, pos, delta, i,
283 						   probe_pass);
284 		} else {
285 			ret = bpf_adj_delta_to_off(insn, pos, delta, i,
286 						   probe_pass);
287 		}
288 		if (ret)
289 			break;
290 	}
291 
292 	return ret;
293 }
294 
295 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
296 				       const struct bpf_insn *patch, u32 len)
297 {
298 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
299 	const u32 cnt_max = S16_MAX;
300 	struct bpf_prog *prog_adj;
301 
302 	/* Since our patchlet doesn't expand the image, we're done. */
303 	if (insn_delta == 0) {
304 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
305 		return prog;
306 	}
307 
308 	insn_adj_cnt = prog->len + insn_delta;
309 
310 	/* Reject anything that would potentially let the insn->off
311 	 * target overflow when we have excessive program expansions.
312 	 * We need to probe here before we do any reallocation where
313 	 * we afterwards may not fail anymore.
314 	 */
315 	if (insn_adj_cnt > cnt_max &&
316 	    bpf_adj_branches(prog, off, insn_delta, true))
317 		return NULL;
318 
319 	/* Several new instructions need to be inserted. Make room
320 	 * for them. Likely, there's no need for a new allocation as
321 	 * last page could have large enough tailroom.
322 	 */
323 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
324 				    GFP_USER);
325 	if (!prog_adj)
326 		return NULL;
327 
328 	prog_adj->len = insn_adj_cnt;
329 
330 	/* Patching happens in 3 steps:
331 	 *
332 	 * 1) Move over tail of insnsi from next instruction onwards,
333 	 *    so we can patch the single target insn with one or more
334 	 *    new ones (patching is always from 1 to n insns, n > 0).
335 	 * 2) Inject new instructions at the target location.
336 	 * 3) Adjust branch offsets if necessary.
337 	 */
338 	insn_rest = insn_adj_cnt - off - len;
339 
340 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
341 		sizeof(*patch) * insn_rest);
342 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
343 
344 	/* We are guaranteed to not fail at this point, otherwise
345 	 * the ship has sailed to reverse to the original state. An
346 	 * overflow cannot happen at this point.
347 	 */
348 	BUG_ON(bpf_adj_branches(prog_adj, off, insn_delta, false));
349 
350 	return prog_adj;
351 }
352 
353 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
354 {
355 	int i;
356 
357 	for (i = 0; i < fp->aux->func_cnt; i++)
358 		bpf_prog_kallsyms_del(fp->aux->func[i]);
359 }
360 
361 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
362 {
363 	bpf_prog_kallsyms_del_subprogs(fp);
364 	bpf_prog_kallsyms_del(fp);
365 }
366 
367 #ifdef CONFIG_BPF_JIT
368 # define BPF_JIT_LIMIT_DEFAULT	(PAGE_SIZE * 40000)
369 
370 /* All BPF JIT sysctl knobs here. */
371 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
372 int bpf_jit_harden   __read_mostly;
373 int bpf_jit_kallsyms __read_mostly;
374 int bpf_jit_limit    __read_mostly = BPF_JIT_LIMIT_DEFAULT;
375 
376 static __always_inline void
377 bpf_get_prog_addr_region(const struct bpf_prog *prog,
378 			 unsigned long *symbol_start,
379 			 unsigned long *symbol_end)
380 {
381 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
382 	unsigned long addr = (unsigned long)hdr;
383 
384 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
385 
386 	*symbol_start = addr;
387 	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
388 }
389 
390 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
391 {
392 	const char *end = sym + KSYM_NAME_LEN;
393 
394 	BUILD_BUG_ON(sizeof("bpf_prog_") +
395 		     sizeof(prog->tag) * 2 +
396 		     /* name has been null terminated.
397 		      * We should need +1 for the '_' preceding
398 		      * the name.  However, the null character
399 		      * is double counted between the name and the
400 		      * sizeof("bpf_prog_") above, so we omit
401 		      * the +1 here.
402 		      */
403 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
404 
405 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
406 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
407 	if (prog->aux->name[0])
408 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
409 	else
410 		*sym = 0;
411 }
412 
413 static __always_inline unsigned long
414 bpf_get_prog_addr_start(struct latch_tree_node *n)
415 {
416 	unsigned long symbol_start, symbol_end;
417 	const struct bpf_prog_aux *aux;
418 
419 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
420 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
421 
422 	return symbol_start;
423 }
424 
425 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
426 					  struct latch_tree_node *b)
427 {
428 	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
429 }
430 
431 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
432 {
433 	unsigned long val = (unsigned long)key;
434 	unsigned long symbol_start, symbol_end;
435 	const struct bpf_prog_aux *aux;
436 
437 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
438 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
439 
440 	if (val < symbol_start)
441 		return -1;
442 	if (val >= symbol_end)
443 		return  1;
444 
445 	return 0;
446 }
447 
448 static const struct latch_tree_ops bpf_tree_ops = {
449 	.less	= bpf_tree_less,
450 	.comp	= bpf_tree_comp,
451 };
452 
453 static DEFINE_SPINLOCK(bpf_lock);
454 static LIST_HEAD(bpf_kallsyms);
455 static struct latch_tree_root bpf_tree __cacheline_aligned;
456 
457 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
458 {
459 	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
460 	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
461 	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
462 }
463 
464 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
465 {
466 	if (list_empty(&aux->ksym_lnode))
467 		return;
468 
469 	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
470 	list_del_rcu(&aux->ksym_lnode);
471 }
472 
473 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
474 {
475 	return fp->jited && !bpf_prog_was_classic(fp);
476 }
477 
478 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
479 {
480 	return list_empty(&fp->aux->ksym_lnode) ||
481 	       fp->aux->ksym_lnode.prev == LIST_POISON2;
482 }
483 
484 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
485 {
486 	if (!bpf_prog_kallsyms_candidate(fp) ||
487 	    !capable(CAP_SYS_ADMIN))
488 		return;
489 
490 	spin_lock_bh(&bpf_lock);
491 	bpf_prog_ksym_node_add(fp->aux);
492 	spin_unlock_bh(&bpf_lock);
493 }
494 
495 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
496 {
497 	if (!bpf_prog_kallsyms_candidate(fp))
498 		return;
499 
500 	spin_lock_bh(&bpf_lock);
501 	bpf_prog_ksym_node_del(fp->aux);
502 	spin_unlock_bh(&bpf_lock);
503 }
504 
505 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
506 {
507 	struct latch_tree_node *n;
508 
509 	if (!bpf_jit_kallsyms_enabled())
510 		return NULL;
511 
512 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
513 	return n ?
514 	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
515 	       NULL;
516 }
517 
518 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
519 				 unsigned long *off, char *sym)
520 {
521 	unsigned long symbol_start, symbol_end;
522 	struct bpf_prog *prog;
523 	char *ret = NULL;
524 
525 	rcu_read_lock();
526 	prog = bpf_prog_kallsyms_find(addr);
527 	if (prog) {
528 		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
529 		bpf_get_prog_name(prog, sym);
530 
531 		ret = sym;
532 		if (size)
533 			*size = symbol_end - symbol_start;
534 		if (off)
535 			*off  = addr - symbol_start;
536 	}
537 	rcu_read_unlock();
538 
539 	return ret;
540 }
541 
542 bool is_bpf_text_address(unsigned long addr)
543 {
544 	bool ret;
545 
546 	rcu_read_lock();
547 	ret = bpf_prog_kallsyms_find(addr) != NULL;
548 	rcu_read_unlock();
549 
550 	return ret;
551 }
552 
553 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
554 		    char *sym)
555 {
556 	unsigned long symbol_start, symbol_end;
557 	struct bpf_prog_aux *aux;
558 	unsigned int it = 0;
559 	int ret = -ERANGE;
560 
561 	if (!bpf_jit_kallsyms_enabled())
562 		return ret;
563 
564 	rcu_read_lock();
565 	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
566 		if (it++ != symnum)
567 			continue;
568 
569 		bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
570 		bpf_get_prog_name(aux->prog, sym);
571 
572 		*value = symbol_start;
573 		*type  = BPF_SYM_ELF_TYPE;
574 
575 		ret = 0;
576 		break;
577 	}
578 	rcu_read_unlock();
579 
580 	return ret;
581 }
582 
583 static atomic_long_t bpf_jit_current;
584 
585 #if defined(MODULES_VADDR)
586 static int __init bpf_jit_charge_init(void)
587 {
588 	/* Only used as heuristic here to derive limit. */
589 	bpf_jit_limit = min_t(u64, round_up((MODULES_END - MODULES_VADDR) >> 2,
590 					    PAGE_SIZE), INT_MAX);
591 	return 0;
592 }
593 pure_initcall(bpf_jit_charge_init);
594 #endif
595 
596 static int bpf_jit_charge_modmem(u32 pages)
597 {
598 	if (atomic_long_add_return(pages, &bpf_jit_current) >
599 	    (bpf_jit_limit >> PAGE_SHIFT)) {
600 		if (!capable(CAP_SYS_ADMIN)) {
601 			atomic_long_sub(pages, &bpf_jit_current);
602 			return -EPERM;
603 		}
604 	}
605 
606 	return 0;
607 }
608 
609 static void bpf_jit_uncharge_modmem(u32 pages)
610 {
611 	atomic_long_sub(pages, &bpf_jit_current);
612 }
613 
614 struct bpf_binary_header *
615 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
616 		     unsigned int alignment,
617 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
618 {
619 	struct bpf_binary_header *hdr;
620 	u32 size, hole, start, pages;
621 
622 	/* Most of BPF filters are really small, but if some of them
623 	 * fill a page, allow at least 128 extra bytes to insert a
624 	 * random section of illegal instructions.
625 	 */
626 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
627 	pages = size / PAGE_SIZE;
628 
629 	if (bpf_jit_charge_modmem(pages))
630 		return NULL;
631 	hdr = module_alloc(size);
632 	if (!hdr) {
633 		bpf_jit_uncharge_modmem(pages);
634 		return NULL;
635 	}
636 
637 	/* Fill space with illegal/arch-dep instructions. */
638 	bpf_fill_ill_insns(hdr, size);
639 
640 	hdr->pages = pages;
641 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
642 		     PAGE_SIZE - sizeof(*hdr));
643 	start = (get_random_int() % hole) & ~(alignment - 1);
644 
645 	/* Leave a random number of instructions before BPF code. */
646 	*image_ptr = &hdr->image[start];
647 
648 	return hdr;
649 }
650 
651 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
652 {
653 	u32 pages = hdr->pages;
654 
655 	module_memfree(hdr);
656 	bpf_jit_uncharge_modmem(pages);
657 }
658 
659 /* This symbol is only overridden by archs that have different
660  * requirements than the usual eBPF JITs, f.e. when they only
661  * implement cBPF JIT, do not set images read-only, etc.
662  */
663 void __weak bpf_jit_free(struct bpf_prog *fp)
664 {
665 	if (fp->jited) {
666 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
667 
668 		bpf_jit_binary_unlock_ro(hdr);
669 		bpf_jit_binary_free(hdr);
670 
671 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
672 	}
673 
674 	bpf_prog_unlock_free(fp);
675 }
676 
677 static int bpf_jit_blind_insn(const struct bpf_insn *from,
678 			      const struct bpf_insn *aux,
679 			      struct bpf_insn *to_buff)
680 {
681 	struct bpf_insn *to = to_buff;
682 	u32 imm_rnd = get_random_int();
683 	s16 off;
684 
685 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
686 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
687 
688 	if (from->imm == 0 &&
689 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
690 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
691 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
692 		goto out;
693 	}
694 
695 	switch (from->code) {
696 	case BPF_ALU | BPF_ADD | BPF_K:
697 	case BPF_ALU | BPF_SUB | BPF_K:
698 	case BPF_ALU | BPF_AND | BPF_K:
699 	case BPF_ALU | BPF_OR  | BPF_K:
700 	case BPF_ALU | BPF_XOR | BPF_K:
701 	case BPF_ALU | BPF_MUL | BPF_K:
702 	case BPF_ALU | BPF_MOV | BPF_K:
703 	case BPF_ALU | BPF_DIV | BPF_K:
704 	case BPF_ALU | BPF_MOD | BPF_K:
705 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
706 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
707 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
708 		break;
709 
710 	case BPF_ALU64 | BPF_ADD | BPF_K:
711 	case BPF_ALU64 | BPF_SUB | BPF_K:
712 	case BPF_ALU64 | BPF_AND | BPF_K:
713 	case BPF_ALU64 | BPF_OR  | BPF_K:
714 	case BPF_ALU64 | BPF_XOR | BPF_K:
715 	case BPF_ALU64 | BPF_MUL | BPF_K:
716 	case BPF_ALU64 | BPF_MOV | BPF_K:
717 	case BPF_ALU64 | BPF_DIV | BPF_K:
718 	case BPF_ALU64 | BPF_MOD | BPF_K:
719 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
720 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
721 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
722 		break;
723 
724 	case BPF_JMP | BPF_JEQ  | BPF_K:
725 	case BPF_JMP | BPF_JNE  | BPF_K:
726 	case BPF_JMP | BPF_JGT  | BPF_K:
727 	case BPF_JMP | BPF_JLT  | BPF_K:
728 	case BPF_JMP | BPF_JGE  | BPF_K:
729 	case BPF_JMP | BPF_JLE  | BPF_K:
730 	case BPF_JMP | BPF_JSGT | BPF_K:
731 	case BPF_JMP | BPF_JSLT | BPF_K:
732 	case BPF_JMP | BPF_JSGE | BPF_K:
733 	case BPF_JMP | BPF_JSLE | BPF_K:
734 	case BPF_JMP | BPF_JSET | BPF_K:
735 		/* Accommodate for extra offset in case of a backjump. */
736 		off = from->off;
737 		if (off < 0)
738 			off -= 2;
739 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
740 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
741 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
742 		break;
743 
744 	case BPF_LD | BPF_IMM | BPF_DW:
745 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
746 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
747 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
748 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
749 		break;
750 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
751 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
752 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
753 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
754 		break;
755 
756 	case BPF_ST | BPF_MEM | BPF_DW:
757 	case BPF_ST | BPF_MEM | BPF_W:
758 	case BPF_ST | BPF_MEM | BPF_H:
759 	case BPF_ST | BPF_MEM | BPF_B:
760 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
761 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
762 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
763 		break;
764 	}
765 out:
766 	return to - to_buff;
767 }
768 
769 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
770 					      gfp_t gfp_extra_flags)
771 {
772 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
773 	struct bpf_prog *fp;
774 
775 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
776 	if (fp != NULL) {
777 		/* aux->prog still points to the fp_other one, so
778 		 * when promoting the clone to the real program,
779 		 * this still needs to be adapted.
780 		 */
781 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
782 	}
783 
784 	return fp;
785 }
786 
787 static void bpf_prog_clone_free(struct bpf_prog *fp)
788 {
789 	/* aux was stolen by the other clone, so we cannot free
790 	 * it from this path! It will be freed eventually by the
791 	 * other program on release.
792 	 *
793 	 * At this point, we don't need a deferred release since
794 	 * clone is guaranteed to not be locked.
795 	 */
796 	fp->aux = NULL;
797 	__bpf_prog_free(fp);
798 }
799 
800 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
801 {
802 	/* We have to repoint aux->prog to self, as we don't
803 	 * know whether fp here is the clone or the original.
804 	 */
805 	fp->aux->prog = fp;
806 	bpf_prog_clone_free(fp_other);
807 }
808 
809 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
810 {
811 	struct bpf_insn insn_buff[16], aux[2];
812 	struct bpf_prog *clone, *tmp;
813 	int insn_delta, insn_cnt;
814 	struct bpf_insn *insn;
815 	int i, rewritten;
816 
817 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
818 		return prog;
819 
820 	clone = bpf_prog_clone_create(prog, GFP_USER);
821 	if (!clone)
822 		return ERR_PTR(-ENOMEM);
823 
824 	insn_cnt = clone->len;
825 	insn = clone->insnsi;
826 
827 	for (i = 0; i < insn_cnt; i++, insn++) {
828 		/* We temporarily need to hold the original ld64 insn
829 		 * so that we can still access the first part in the
830 		 * second blinding run.
831 		 */
832 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
833 		    insn[1].code == 0)
834 			memcpy(aux, insn, sizeof(aux));
835 
836 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
837 		if (!rewritten)
838 			continue;
839 
840 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
841 		if (!tmp) {
842 			/* Patching may have repointed aux->prog during
843 			 * realloc from the original one, so we need to
844 			 * fix it up here on error.
845 			 */
846 			bpf_jit_prog_release_other(prog, clone);
847 			return ERR_PTR(-ENOMEM);
848 		}
849 
850 		clone = tmp;
851 		insn_delta = rewritten - 1;
852 
853 		/* Walk new program and skip insns we just inserted. */
854 		insn = clone->insnsi + i + insn_delta;
855 		insn_cnt += insn_delta;
856 		i        += insn_delta;
857 	}
858 
859 	clone->blinded = 1;
860 	return clone;
861 }
862 #endif /* CONFIG_BPF_JIT */
863 
864 /* Base function for offset calculation. Needs to go into .text section,
865  * therefore keeping it non-static as well; will also be used by JITs
866  * anyway later on, so do not let the compiler omit it. This also needs
867  * to go into kallsyms for correlation from e.g. bpftool, so naming
868  * must not change.
869  */
870 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
871 {
872 	return 0;
873 }
874 EXPORT_SYMBOL_GPL(__bpf_call_base);
875 
876 /* All UAPI available opcodes. */
877 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
878 	/* 32 bit ALU operations. */		\
879 	/*   Register based. */			\
880 	INSN_3(ALU, ADD, X),			\
881 	INSN_3(ALU, SUB, X),			\
882 	INSN_3(ALU, AND, X),			\
883 	INSN_3(ALU, OR,  X),			\
884 	INSN_3(ALU, LSH, X),			\
885 	INSN_3(ALU, RSH, X),			\
886 	INSN_3(ALU, XOR, X),			\
887 	INSN_3(ALU, MUL, X),			\
888 	INSN_3(ALU, MOV, X),			\
889 	INSN_3(ALU, DIV, X),			\
890 	INSN_3(ALU, MOD, X),			\
891 	INSN_2(ALU, NEG),			\
892 	INSN_3(ALU, END, TO_BE),		\
893 	INSN_3(ALU, END, TO_LE),		\
894 	/*   Immediate based. */		\
895 	INSN_3(ALU, ADD, K),			\
896 	INSN_3(ALU, SUB, K),			\
897 	INSN_3(ALU, AND, K),			\
898 	INSN_3(ALU, OR,  K),			\
899 	INSN_3(ALU, LSH, K),			\
900 	INSN_3(ALU, RSH, K),			\
901 	INSN_3(ALU, XOR, K),			\
902 	INSN_3(ALU, MUL, K),			\
903 	INSN_3(ALU, MOV, K),			\
904 	INSN_3(ALU, DIV, K),			\
905 	INSN_3(ALU, MOD, K),			\
906 	/* 64 bit ALU operations. */		\
907 	/*   Register based. */			\
908 	INSN_3(ALU64, ADD,  X),			\
909 	INSN_3(ALU64, SUB,  X),			\
910 	INSN_3(ALU64, AND,  X),			\
911 	INSN_3(ALU64, OR,   X),			\
912 	INSN_3(ALU64, LSH,  X),			\
913 	INSN_3(ALU64, RSH,  X),			\
914 	INSN_3(ALU64, XOR,  X),			\
915 	INSN_3(ALU64, MUL,  X),			\
916 	INSN_3(ALU64, MOV,  X),			\
917 	INSN_3(ALU64, ARSH, X),			\
918 	INSN_3(ALU64, DIV,  X),			\
919 	INSN_3(ALU64, MOD,  X),			\
920 	INSN_2(ALU64, NEG),			\
921 	/*   Immediate based. */		\
922 	INSN_3(ALU64, ADD,  K),			\
923 	INSN_3(ALU64, SUB,  K),			\
924 	INSN_3(ALU64, AND,  K),			\
925 	INSN_3(ALU64, OR,   K),			\
926 	INSN_3(ALU64, LSH,  K),			\
927 	INSN_3(ALU64, RSH,  K),			\
928 	INSN_3(ALU64, XOR,  K),			\
929 	INSN_3(ALU64, MUL,  K),			\
930 	INSN_3(ALU64, MOV,  K),			\
931 	INSN_3(ALU64, ARSH, K),			\
932 	INSN_3(ALU64, DIV,  K),			\
933 	INSN_3(ALU64, MOD,  K),			\
934 	/* Call instruction. */			\
935 	INSN_2(JMP, CALL),			\
936 	/* Exit instruction. */			\
937 	INSN_2(JMP, EXIT),			\
938 	/* Jump instructions. */		\
939 	/*   Register based. */			\
940 	INSN_3(JMP, JEQ,  X),			\
941 	INSN_3(JMP, JNE,  X),			\
942 	INSN_3(JMP, JGT,  X),			\
943 	INSN_3(JMP, JLT,  X),			\
944 	INSN_3(JMP, JGE,  X),			\
945 	INSN_3(JMP, JLE,  X),			\
946 	INSN_3(JMP, JSGT, X),			\
947 	INSN_3(JMP, JSLT, X),			\
948 	INSN_3(JMP, JSGE, X),			\
949 	INSN_3(JMP, JSLE, X),			\
950 	INSN_3(JMP, JSET, X),			\
951 	/*   Immediate based. */		\
952 	INSN_3(JMP, JEQ,  K),			\
953 	INSN_3(JMP, JNE,  K),			\
954 	INSN_3(JMP, JGT,  K),			\
955 	INSN_3(JMP, JLT,  K),			\
956 	INSN_3(JMP, JGE,  K),			\
957 	INSN_3(JMP, JLE,  K),			\
958 	INSN_3(JMP, JSGT, K),			\
959 	INSN_3(JMP, JSLT, K),			\
960 	INSN_3(JMP, JSGE, K),			\
961 	INSN_3(JMP, JSLE, K),			\
962 	INSN_3(JMP, JSET, K),			\
963 	INSN_2(JMP, JA),			\
964 	/* Store instructions. */		\
965 	/*   Register based. */			\
966 	INSN_3(STX, MEM,  B),			\
967 	INSN_3(STX, MEM,  H),			\
968 	INSN_3(STX, MEM,  W),			\
969 	INSN_3(STX, MEM,  DW),			\
970 	INSN_3(STX, XADD, W),			\
971 	INSN_3(STX, XADD, DW),			\
972 	/*   Immediate based. */		\
973 	INSN_3(ST, MEM, B),			\
974 	INSN_3(ST, MEM, H),			\
975 	INSN_3(ST, MEM, W),			\
976 	INSN_3(ST, MEM, DW),			\
977 	/* Load instructions. */		\
978 	/*   Register based. */			\
979 	INSN_3(LDX, MEM, B),			\
980 	INSN_3(LDX, MEM, H),			\
981 	INSN_3(LDX, MEM, W),			\
982 	INSN_3(LDX, MEM, DW),			\
983 	/*   Immediate based. */		\
984 	INSN_3(LD, IMM, DW)
985 
986 bool bpf_opcode_in_insntable(u8 code)
987 {
988 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
989 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
990 	static const bool public_insntable[256] = {
991 		[0 ... 255] = false,
992 		/* Now overwrite non-defaults ... */
993 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
994 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
995 		[BPF_LD | BPF_ABS | BPF_B] = true,
996 		[BPF_LD | BPF_ABS | BPF_H] = true,
997 		[BPF_LD | BPF_ABS | BPF_W] = true,
998 		[BPF_LD | BPF_IND | BPF_B] = true,
999 		[BPF_LD | BPF_IND | BPF_H] = true,
1000 		[BPF_LD | BPF_IND | BPF_W] = true,
1001 	};
1002 #undef BPF_INSN_3_TBL
1003 #undef BPF_INSN_2_TBL
1004 	return public_insntable[code];
1005 }
1006 
1007 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1008 /**
1009  *	__bpf_prog_run - run eBPF program on a given context
1010  *	@ctx: is the data we are operating on
1011  *	@insn: is the array of eBPF instructions
1012  *
1013  * Decode and execute eBPF instructions.
1014  */
1015 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1016 {
1017 	u64 tmp;
1018 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1019 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1020 	static const void *jumptable[256] = {
1021 		[0 ... 255] = &&default_label,
1022 		/* Now overwrite non-defaults ... */
1023 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1024 		/* Non-UAPI available opcodes. */
1025 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1026 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1027 	};
1028 #undef BPF_INSN_3_LBL
1029 #undef BPF_INSN_2_LBL
1030 	u32 tail_call_cnt = 0;
1031 
1032 #define CONT	 ({ insn++; goto select_insn; })
1033 #define CONT_JMP ({ insn++; goto select_insn; })
1034 
1035 select_insn:
1036 	goto *jumptable[insn->code];
1037 
1038 	/* ALU */
1039 #define ALU(OPCODE, OP)			\
1040 	ALU64_##OPCODE##_X:		\
1041 		DST = DST OP SRC;	\
1042 		CONT;			\
1043 	ALU_##OPCODE##_X:		\
1044 		DST = (u32) DST OP (u32) SRC;	\
1045 		CONT;			\
1046 	ALU64_##OPCODE##_K:		\
1047 		DST = DST OP IMM;		\
1048 		CONT;			\
1049 	ALU_##OPCODE##_K:		\
1050 		DST = (u32) DST OP (u32) IMM;	\
1051 		CONT;
1052 
1053 	ALU(ADD,  +)
1054 	ALU(SUB,  -)
1055 	ALU(AND,  &)
1056 	ALU(OR,   |)
1057 	ALU(LSH, <<)
1058 	ALU(RSH, >>)
1059 	ALU(XOR,  ^)
1060 	ALU(MUL,  *)
1061 #undef ALU
1062 	ALU_NEG:
1063 		DST = (u32) -DST;
1064 		CONT;
1065 	ALU64_NEG:
1066 		DST = -DST;
1067 		CONT;
1068 	ALU_MOV_X:
1069 		DST = (u32) SRC;
1070 		CONT;
1071 	ALU_MOV_K:
1072 		DST = (u32) IMM;
1073 		CONT;
1074 	ALU64_MOV_X:
1075 		DST = SRC;
1076 		CONT;
1077 	ALU64_MOV_K:
1078 		DST = IMM;
1079 		CONT;
1080 	LD_IMM_DW:
1081 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1082 		insn++;
1083 		CONT;
1084 	ALU64_ARSH_X:
1085 		(*(s64 *) &DST) >>= SRC;
1086 		CONT;
1087 	ALU64_ARSH_K:
1088 		(*(s64 *) &DST) >>= IMM;
1089 		CONT;
1090 	ALU64_MOD_X:
1091 		div64_u64_rem(DST, SRC, &tmp);
1092 		DST = tmp;
1093 		CONT;
1094 	ALU_MOD_X:
1095 		tmp = (u32) DST;
1096 		DST = do_div(tmp, (u32) SRC);
1097 		CONT;
1098 	ALU64_MOD_K:
1099 		div64_u64_rem(DST, IMM, &tmp);
1100 		DST = tmp;
1101 		CONT;
1102 	ALU_MOD_K:
1103 		tmp = (u32) DST;
1104 		DST = do_div(tmp, (u32) IMM);
1105 		CONT;
1106 	ALU64_DIV_X:
1107 		DST = div64_u64(DST, SRC);
1108 		CONT;
1109 	ALU_DIV_X:
1110 		tmp = (u32) DST;
1111 		do_div(tmp, (u32) SRC);
1112 		DST = (u32) tmp;
1113 		CONT;
1114 	ALU64_DIV_K:
1115 		DST = div64_u64(DST, IMM);
1116 		CONT;
1117 	ALU_DIV_K:
1118 		tmp = (u32) DST;
1119 		do_div(tmp, (u32) IMM);
1120 		DST = (u32) tmp;
1121 		CONT;
1122 	ALU_END_TO_BE:
1123 		switch (IMM) {
1124 		case 16:
1125 			DST = (__force u16) cpu_to_be16(DST);
1126 			break;
1127 		case 32:
1128 			DST = (__force u32) cpu_to_be32(DST);
1129 			break;
1130 		case 64:
1131 			DST = (__force u64) cpu_to_be64(DST);
1132 			break;
1133 		}
1134 		CONT;
1135 	ALU_END_TO_LE:
1136 		switch (IMM) {
1137 		case 16:
1138 			DST = (__force u16) cpu_to_le16(DST);
1139 			break;
1140 		case 32:
1141 			DST = (__force u32) cpu_to_le32(DST);
1142 			break;
1143 		case 64:
1144 			DST = (__force u64) cpu_to_le64(DST);
1145 			break;
1146 		}
1147 		CONT;
1148 
1149 	/* CALL */
1150 	JMP_CALL:
1151 		/* Function call scratches BPF_R1-BPF_R5 registers,
1152 		 * preserves BPF_R6-BPF_R9, and stores return value
1153 		 * into BPF_R0.
1154 		 */
1155 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1156 						       BPF_R4, BPF_R5);
1157 		CONT;
1158 
1159 	JMP_CALL_ARGS:
1160 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1161 							    BPF_R3, BPF_R4,
1162 							    BPF_R5,
1163 							    insn + insn->off + 1);
1164 		CONT;
1165 
1166 	JMP_TAIL_CALL: {
1167 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1168 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1169 		struct bpf_prog *prog;
1170 		u32 index = BPF_R3;
1171 
1172 		if (unlikely(index >= array->map.max_entries))
1173 			goto out;
1174 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1175 			goto out;
1176 
1177 		tail_call_cnt++;
1178 
1179 		prog = READ_ONCE(array->ptrs[index]);
1180 		if (!prog)
1181 			goto out;
1182 
1183 		/* ARG1 at this point is guaranteed to point to CTX from
1184 		 * the verifier side due to the fact that the tail call is
1185 		 * handeled like a helper, that is, bpf_tail_call_proto,
1186 		 * where arg1_type is ARG_PTR_TO_CTX.
1187 		 */
1188 		insn = prog->insnsi;
1189 		goto select_insn;
1190 out:
1191 		CONT;
1192 	}
1193 	/* JMP */
1194 	JMP_JA:
1195 		insn += insn->off;
1196 		CONT;
1197 	JMP_JEQ_X:
1198 		if (DST == SRC) {
1199 			insn += insn->off;
1200 			CONT_JMP;
1201 		}
1202 		CONT;
1203 	JMP_JEQ_K:
1204 		if (DST == IMM) {
1205 			insn += insn->off;
1206 			CONT_JMP;
1207 		}
1208 		CONT;
1209 	JMP_JNE_X:
1210 		if (DST != SRC) {
1211 			insn += insn->off;
1212 			CONT_JMP;
1213 		}
1214 		CONT;
1215 	JMP_JNE_K:
1216 		if (DST != IMM) {
1217 			insn += insn->off;
1218 			CONT_JMP;
1219 		}
1220 		CONT;
1221 	JMP_JGT_X:
1222 		if (DST > SRC) {
1223 			insn += insn->off;
1224 			CONT_JMP;
1225 		}
1226 		CONT;
1227 	JMP_JGT_K:
1228 		if (DST > IMM) {
1229 			insn += insn->off;
1230 			CONT_JMP;
1231 		}
1232 		CONT;
1233 	JMP_JLT_X:
1234 		if (DST < SRC) {
1235 			insn += insn->off;
1236 			CONT_JMP;
1237 		}
1238 		CONT;
1239 	JMP_JLT_K:
1240 		if (DST < IMM) {
1241 			insn += insn->off;
1242 			CONT_JMP;
1243 		}
1244 		CONT;
1245 	JMP_JGE_X:
1246 		if (DST >= SRC) {
1247 			insn += insn->off;
1248 			CONT_JMP;
1249 		}
1250 		CONT;
1251 	JMP_JGE_K:
1252 		if (DST >= IMM) {
1253 			insn += insn->off;
1254 			CONT_JMP;
1255 		}
1256 		CONT;
1257 	JMP_JLE_X:
1258 		if (DST <= SRC) {
1259 			insn += insn->off;
1260 			CONT_JMP;
1261 		}
1262 		CONT;
1263 	JMP_JLE_K:
1264 		if (DST <= IMM) {
1265 			insn += insn->off;
1266 			CONT_JMP;
1267 		}
1268 		CONT;
1269 	JMP_JSGT_X:
1270 		if (((s64) DST) > ((s64) SRC)) {
1271 			insn += insn->off;
1272 			CONT_JMP;
1273 		}
1274 		CONT;
1275 	JMP_JSGT_K:
1276 		if (((s64) DST) > ((s64) IMM)) {
1277 			insn += insn->off;
1278 			CONT_JMP;
1279 		}
1280 		CONT;
1281 	JMP_JSLT_X:
1282 		if (((s64) DST) < ((s64) SRC)) {
1283 			insn += insn->off;
1284 			CONT_JMP;
1285 		}
1286 		CONT;
1287 	JMP_JSLT_K:
1288 		if (((s64) DST) < ((s64) IMM)) {
1289 			insn += insn->off;
1290 			CONT_JMP;
1291 		}
1292 		CONT;
1293 	JMP_JSGE_X:
1294 		if (((s64) DST) >= ((s64) SRC)) {
1295 			insn += insn->off;
1296 			CONT_JMP;
1297 		}
1298 		CONT;
1299 	JMP_JSGE_K:
1300 		if (((s64) DST) >= ((s64) IMM)) {
1301 			insn += insn->off;
1302 			CONT_JMP;
1303 		}
1304 		CONT;
1305 	JMP_JSLE_X:
1306 		if (((s64) DST) <= ((s64) SRC)) {
1307 			insn += insn->off;
1308 			CONT_JMP;
1309 		}
1310 		CONT;
1311 	JMP_JSLE_K:
1312 		if (((s64) DST) <= ((s64) IMM)) {
1313 			insn += insn->off;
1314 			CONT_JMP;
1315 		}
1316 		CONT;
1317 	JMP_JSET_X:
1318 		if (DST & SRC) {
1319 			insn += insn->off;
1320 			CONT_JMP;
1321 		}
1322 		CONT;
1323 	JMP_JSET_K:
1324 		if (DST & IMM) {
1325 			insn += insn->off;
1326 			CONT_JMP;
1327 		}
1328 		CONT;
1329 	JMP_EXIT:
1330 		return BPF_R0;
1331 
1332 	/* STX and ST and LDX*/
1333 #define LDST(SIZEOP, SIZE)						\
1334 	STX_MEM_##SIZEOP:						\
1335 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1336 		CONT;							\
1337 	ST_MEM_##SIZEOP:						\
1338 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1339 		CONT;							\
1340 	LDX_MEM_##SIZEOP:						\
1341 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1342 		CONT;
1343 
1344 	LDST(B,   u8)
1345 	LDST(H,  u16)
1346 	LDST(W,  u32)
1347 	LDST(DW, u64)
1348 #undef LDST
1349 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1350 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1351 			   (DST + insn->off));
1352 		CONT;
1353 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1354 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1355 			     (DST + insn->off));
1356 		CONT;
1357 
1358 	default_label:
1359 		/* If we ever reach this, we have a bug somewhere. Die hard here
1360 		 * instead of just returning 0; we could be somewhere in a subprog,
1361 		 * so execution could continue otherwise which we do /not/ want.
1362 		 *
1363 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1364 		 */
1365 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1366 		BUG_ON(1);
1367 		return 0;
1368 }
1369 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1370 
1371 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1372 #define DEFINE_BPF_PROG_RUN(stack_size) \
1373 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1374 { \
1375 	u64 stack[stack_size / sizeof(u64)]; \
1376 	u64 regs[MAX_BPF_REG]; \
1377 \
1378 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1379 	ARG1 = (u64) (unsigned long) ctx; \
1380 	return ___bpf_prog_run(regs, insn, stack); \
1381 }
1382 
1383 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1384 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1385 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1386 				      const struct bpf_insn *insn) \
1387 { \
1388 	u64 stack[stack_size / sizeof(u64)]; \
1389 	u64 regs[MAX_BPF_REG]; \
1390 \
1391 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1392 	BPF_R1 = r1; \
1393 	BPF_R2 = r2; \
1394 	BPF_R3 = r3; \
1395 	BPF_R4 = r4; \
1396 	BPF_R5 = r5; \
1397 	return ___bpf_prog_run(regs, insn, stack); \
1398 }
1399 
1400 #define EVAL1(FN, X) FN(X)
1401 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1402 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1403 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1404 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1405 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1406 
1407 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1408 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1409 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1410 
1411 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1412 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1413 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1414 
1415 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1416 
1417 static unsigned int (*interpreters[])(const void *ctx,
1418 				      const struct bpf_insn *insn) = {
1419 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1420 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1421 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1422 };
1423 #undef PROG_NAME_LIST
1424 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1425 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1426 				  const struct bpf_insn *insn) = {
1427 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1428 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1429 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1430 };
1431 #undef PROG_NAME_LIST
1432 
1433 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1434 {
1435 	stack_depth = max_t(u32, stack_depth, 1);
1436 	insn->off = (s16) insn->imm;
1437 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1438 		__bpf_call_base_args;
1439 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1440 }
1441 
1442 #else
1443 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1444 					 const struct bpf_insn *insn)
1445 {
1446 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1447 	 * is not working properly, so warn about it!
1448 	 */
1449 	WARN_ON_ONCE(1);
1450 	return 0;
1451 }
1452 #endif
1453 
1454 bool bpf_prog_array_compatible(struct bpf_array *array,
1455 			       const struct bpf_prog *fp)
1456 {
1457 	if (fp->kprobe_override)
1458 		return false;
1459 
1460 	if (!array->owner_prog_type) {
1461 		/* There's no owner yet where we could check for
1462 		 * compatibility.
1463 		 */
1464 		array->owner_prog_type = fp->type;
1465 		array->owner_jited = fp->jited;
1466 
1467 		return true;
1468 	}
1469 
1470 	return array->owner_prog_type == fp->type &&
1471 	       array->owner_jited == fp->jited;
1472 }
1473 
1474 static int bpf_check_tail_call(const struct bpf_prog *fp)
1475 {
1476 	struct bpf_prog_aux *aux = fp->aux;
1477 	int i;
1478 
1479 	for (i = 0; i < aux->used_map_cnt; i++) {
1480 		struct bpf_map *map = aux->used_maps[i];
1481 		struct bpf_array *array;
1482 
1483 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1484 			continue;
1485 
1486 		array = container_of(map, struct bpf_array, map);
1487 		if (!bpf_prog_array_compatible(array, fp))
1488 			return -EINVAL;
1489 	}
1490 
1491 	return 0;
1492 }
1493 
1494 static void bpf_prog_select_func(struct bpf_prog *fp)
1495 {
1496 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1497 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1498 
1499 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1500 #else
1501 	fp->bpf_func = __bpf_prog_ret0_warn;
1502 #endif
1503 }
1504 
1505 /**
1506  *	bpf_prog_select_runtime - select exec runtime for BPF program
1507  *	@fp: bpf_prog populated with internal BPF program
1508  *	@err: pointer to error variable
1509  *
1510  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1511  * The BPF program will be executed via BPF_PROG_RUN() macro.
1512  */
1513 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1514 {
1515 	/* In case of BPF to BPF calls, verifier did all the prep
1516 	 * work with regards to JITing, etc.
1517 	 */
1518 	if (fp->bpf_func)
1519 		goto finalize;
1520 
1521 	bpf_prog_select_func(fp);
1522 
1523 	/* eBPF JITs can rewrite the program in case constant
1524 	 * blinding is active. However, in case of error during
1525 	 * blinding, bpf_int_jit_compile() must always return a
1526 	 * valid program, which in this case would simply not
1527 	 * be JITed, but falls back to the interpreter.
1528 	 */
1529 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1530 		fp = bpf_int_jit_compile(fp);
1531 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1532 		if (!fp->jited) {
1533 			*err = -ENOTSUPP;
1534 			return fp;
1535 		}
1536 #endif
1537 	} else {
1538 		*err = bpf_prog_offload_compile(fp);
1539 		if (*err)
1540 			return fp;
1541 	}
1542 
1543 finalize:
1544 	bpf_prog_lock_ro(fp);
1545 
1546 	/* The tail call compatibility check can only be done at
1547 	 * this late stage as we need to determine, if we deal
1548 	 * with JITed or non JITed program concatenations and not
1549 	 * all eBPF JITs might immediately support all features.
1550 	 */
1551 	*err = bpf_check_tail_call(fp);
1552 
1553 	return fp;
1554 }
1555 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1556 
1557 static unsigned int __bpf_prog_ret1(const void *ctx,
1558 				    const struct bpf_insn *insn)
1559 {
1560 	return 1;
1561 }
1562 
1563 static struct bpf_prog_dummy {
1564 	struct bpf_prog prog;
1565 } dummy_bpf_prog = {
1566 	.prog = {
1567 		.bpf_func = __bpf_prog_ret1,
1568 	},
1569 };
1570 
1571 /* to avoid allocating empty bpf_prog_array for cgroups that
1572  * don't have bpf program attached use one global 'empty_prog_array'
1573  * It will not be modified the caller of bpf_prog_array_alloc()
1574  * (since caller requested prog_cnt == 0)
1575  * that pointer should be 'freed' by bpf_prog_array_free()
1576  */
1577 static struct {
1578 	struct bpf_prog_array hdr;
1579 	struct bpf_prog *null_prog;
1580 } empty_prog_array = {
1581 	.null_prog = NULL,
1582 };
1583 
1584 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1585 {
1586 	if (prog_cnt)
1587 		return kzalloc(sizeof(struct bpf_prog_array) +
1588 			       sizeof(struct bpf_prog_array_item) *
1589 			       (prog_cnt + 1),
1590 			       flags);
1591 
1592 	return &empty_prog_array.hdr;
1593 }
1594 
1595 void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1596 {
1597 	if (!progs ||
1598 	    progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1599 		return;
1600 	kfree_rcu(progs, rcu);
1601 }
1602 
1603 int bpf_prog_array_length(struct bpf_prog_array __rcu *array)
1604 {
1605 	struct bpf_prog_array_item *item;
1606 	u32 cnt = 0;
1607 
1608 	rcu_read_lock();
1609 	item = rcu_dereference(array)->items;
1610 	for (; item->prog; item++)
1611 		if (item->prog != &dummy_bpf_prog.prog)
1612 			cnt++;
1613 	rcu_read_unlock();
1614 	return cnt;
1615 }
1616 
1617 
1618 static bool bpf_prog_array_copy_core(struct bpf_prog_array __rcu *array,
1619 				     u32 *prog_ids,
1620 				     u32 request_cnt)
1621 {
1622 	struct bpf_prog_array_item *item;
1623 	int i = 0;
1624 
1625 	item = rcu_dereference_check(array, 1)->items;
1626 	for (; item->prog; item++) {
1627 		if (item->prog == &dummy_bpf_prog.prog)
1628 			continue;
1629 		prog_ids[i] = item->prog->aux->id;
1630 		if (++i == request_cnt) {
1631 			item++;
1632 			break;
1633 		}
1634 	}
1635 
1636 	return !!(item->prog);
1637 }
1638 
1639 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *array,
1640 				__u32 __user *prog_ids, u32 cnt)
1641 {
1642 	unsigned long err = 0;
1643 	bool nospc;
1644 	u32 *ids;
1645 
1646 	/* users of this function are doing:
1647 	 * cnt = bpf_prog_array_length();
1648 	 * if (cnt > 0)
1649 	 *     bpf_prog_array_copy_to_user(..., cnt);
1650 	 * so below kcalloc doesn't need extra cnt > 0 check, but
1651 	 * bpf_prog_array_length() releases rcu lock and
1652 	 * prog array could have been swapped with empty or larger array,
1653 	 * so always copy 'cnt' prog_ids to the user.
1654 	 * In a rare race the user will see zero prog_ids
1655 	 */
1656 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1657 	if (!ids)
1658 		return -ENOMEM;
1659 	rcu_read_lock();
1660 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
1661 	rcu_read_unlock();
1662 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1663 	kfree(ids);
1664 	if (err)
1665 		return -EFAULT;
1666 	if (nospc)
1667 		return -ENOSPC;
1668 	return 0;
1669 }
1670 
1671 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *array,
1672 				struct bpf_prog *old_prog)
1673 {
1674 	struct bpf_prog_array_item *item = array->items;
1675 
1676 	for (; item->prog; item++)
1677 		if (item->prog == old_prog) {
1678 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1679 			break;
1680 		}
1681 }
1682 
1683 int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1684 			struct bpf_prog *exclude_prog,
1685 			struct bpf_prog *include_prog,
1686 			struct bpf_prog_array **new_array)
1687 {
1688 	int new_prog_cnt, carry_prog_cnt = 0;
1689 	struct bpf_prog_array_item *existing;
1690 	struct bpf_prog_array *array;
1691 	bool found_exclude = false;
1692 	int new_prog_idx = 0;
1693 
1694 	/* Figure out how many existing progs we need to carry over to
1695 	 * the new array.
1696 	 */
1697 	if (old_array) {
1698 		existing = old_array->items;
1699 		for (; existing->prog; existing++) {
1700 			if (existing->prog == exclude_prog) {
1701 				found_exclude = true;
1702 				continue;
1703 			}
1704 			if (existing->prog != &dummy_bpf_prog.prog)
1705 				carry_prog_cnt++;
1706 			if (existing->prog == include_prog)
1707 				return -EEXIST;
1708 		}
1709 	}
1710 
1711 	if (exclude_prog && !found_exclude)
1712 		return -ENOENT;
1713 
1714 	/* How many progs (not NULL) will be in the new array? */
1715 	new_prog_cnt = carry_prog_cnt;
1716 	if (include_prog)
1717 		new_prog_cnt += 1;
1718 
1719 	/* Do we have any prog (not NULL) in the new array? */
1720 	if (!new_prog_cnt) {
1721 		*new_array = NULL;
1722 		return 0;
1723 	}
1724 
1725 	/* +1 as the end of prog_array is marked with NULL */
1726 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1727 	if (!array)
1728 		return -ENOMEM;
1729 
1730 	/* Fill in the new prog array */
1731 	if (carry_prog_cnt) {
1732 		existing = old_array->items;
1733 		for (; existing->prog; existing++)
1734 			if (existing->prog != exclude_prog &&
1735 			    existing->prog != &dummy_bpf_prog.prog) {
1736 				array->items[new_prog_idx++].prog =
1737 					existing->prog;
1738 			}
1739 	}
1740 	if (include_prog)
1741 		array->items[new_prog_idx++].prog = include_prog;
1742 	array->items[new_prog_idx].prog = NULL;
1743 	*new_array = array;
1744 	return 0;
1745 }
1746 
1747 int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
1748 			     u32 *prog_ids, u32 request_cnt,
1749 			     u32 *prog_cnt)
1750 {
1751 	u32 cnt = 0;
1752 
1753 	if (array)
1754 		cnt = bpf_prog_array_length(array);
1755 
1756 	*prog_cnt = cnt;
1757 
1758 	/* return early if user requested only program count or nothing to copy */
1759 	if (!request_cnt || !cnt)
1760 		return 0;
1761 
1762 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1763 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
1764 								     : 0;
1765 }
1766 
1767 static void bpf_prog_free_deferred(struct work_struct *work)
1768 {
1769 	struct bpf_prog_aux *aux;
1770 	int i;
1771 
1772 	aux = container_of(work, struct bpf_prog_aux, work);
1773 	if (bpf_prog_is_dev_bound(aux))
1774 		bpf_prog_offload_destroy(aux->prog);
1775 #ifdef CONFIG_PERF_EVENTS
1776 	if (aux->prog->has_callchain_buf)
1777 		put_callchain_buffers();
1778 #endif
1779 	for (i = 0; i < aux->func_cnt; i++)
1780 		bpf_jit_free(aux->func[i]);
1781 	if (aux->func_cnt) {
1782 		kfree(aux->func);
1783 		bpf_prog_unlock_free(aux->prog);
1784 	} else {
1785 		bpf_jit_free(aux->prog);
1786 	}
1787 }
1788 
1789 /* Free internal BPF program */
1790 void bpf_prog_free(struct bpf_prog *fp)
1791 {
1792 	struct bpf_prog_aux *aux = fp->aux;
1793 
1794 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
1795 	schedule_work(&aux->work);
1796 }
1797 EXPORT_SYMBOL_GPL(bpf_prog_free);
1798 
1799 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1800 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1801 
1802 void bpf_user_rnd_init_once(void)
1803 {
1804 	prandom_init_once(&bpf_user_rnd_state);
1805 }
1806 
1807 BPF_CALL_0(bpf_user_rnd_u32)
1808 {
1809 	/* Should someone ever have the rather unwise idea to use some
1810 	 * of the registers passed into this function, then note that
1811 	 * this function is called from native eBPF and classic-to-eBPF
1812 	 * transformations. Register assignments from both sides are
1813 	 * different, f.e. classic always sets fn(ctx, A, X) here.
1814 	 */
1815 	struct rnd_state *state;
1816 	u32 res;
1817 
1818 	state = &get_cpu_var(bpf_user_rnd_state);
1819 	res = prandom_u32_state(state);
1820 	put_cpu_var(bpf_user_rnd_state);
1821 
1822 	return res;
1823 }
1824 
1825 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1826 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1827 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1828 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1829 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
1830 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
1831 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
1832 
1833 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1834 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1835 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1836 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1837 
1838 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1839 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1840 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1841 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
1842 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
1843 
1844 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1845 {
1846 	return NULL;
1847 }
1848 
1849 u64 __weak
1850 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1851 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1852 {
1853 	return -ENOTSUPP;
1854 }
1855 EXPORT_SYMBOL_GPL(bpf_event_output);
1856 
1857 /* Always built-in helper functions. */
1858 const struct bpf_func_proto bpf_tail_call_proto = {
1859 	.func		= NULL,
1860 	.gpl_only	= false,
1861 	.ret_type	= RET_VOID,
1862 	.arg1_type	= ARG_PTR_TO_CTX,
1863 	.arg2_type	= ARG_CONST_MAP_PTR,
1864 	.arg3_type	= ARG_ANYTHING,
1865 };
1866 
1867 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1868  * It is encouraged to implement bpf_int_jit_compile() instead, so that
1869  * eBPF and implicitly also cBPF can get JITed!
1870  */
1871 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1872 {
1873 	return prog;
1874 }
1875 
1876 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1877  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1878  */
1879 void __weak bpf_jit_compile(struct bpf_prog *prog)
1880 {
1881 }
1882 
1883 bool __weak bpf_helper_changes_pkt_data(void *func)
1884 {
1885 	return false;
1886 }
1887 
1888 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1889  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1890  */
1891 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1892 			 int len)
1893 {
1894 	return -EFAULT;
1895 }
1896 
1897 /* All definitions of tracepoints related to BPF. */
1898 #define CREATE_TRACE_POINTS
1899 #include <linux/bpf_trace.h>
1900 
1901 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1902