xref: /openbmc/linux/kernel/bpf/core.c (revision dd5b2498)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <uapi/linux/btf.h>
25 #include <linux/filter.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/random.h>
29 #include <linux/moduleloader.h>
30 #include <linux/bpf.h>
31 #include <linux/btf.h>
32 #include <linux/frame.h>
33 #include <linux/rbtree_latch.h>
34 #include <linux/kallsyms.h>
35 #include <linux/rcupdate.h>
36 #include <linux/perf_event.h>
37 
38 #include <asm/unaligned.h>
39 
40 /* Registers */
41 #define BPF_R0	regs[BPF_REG_0]
42 #define BPF_R1	regs[BPF_REG_1]
43 #define BPF_R2	regs[BPF_REG_2]
44 #define BPF_R3	regs[BPF_REG_3]
45 #define BPF_R4	regs[BPF_REG_4]
46 #define BPF_R5	regs[BPF_REG_5]
47 #define BPF_R6	regs[BPF_REG_6]
48 #define BPF_R7	regs[BPF_REG_7]
49 #define BPF_R8	regs[BPF_REG_8]
50 #define BPF_R9	regs[BPF_REG_9]
51 #define BPF_R10	regs[BPF_REG_10]
52 
53 /* Named registers */
54 #define DST	regs[insn->dst_reg]
55 #define SRC	regs[insn->src_reg]
56 #define FP	regs[BPF_REG_FP]
57 #define AX	regs[BPF_REG_AX]
58 #define ARG1	regs[BPF_REG_ARG1]
59 #define CTX	regs[BPF_REG_CTX]
60 #define IMM	insn->imm
61 
62 /* No hurry in this branch
63  *
64  * Exported for the bpf jit load helper.
65  */
66 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
67 {
68 	u8 *ptr = NULL;
69 
70 	if (k >= SKF_NET_OFF)
71 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
72 	else if (k >= SKF_LL_OFF)
73 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
74 
75 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
76 		return ptr;
77 
78 	return NULL;
79 }
80 
81 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
82 {
83 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
84 	struct bpf_prog_aux *aux;
85 	struct bpf_prog *fp;
86 
87 	size = round_up(size, PAGE_SIZE);
88 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
89 	if (fp == NULL)
90 		return NULL;
91 
92 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
93 	if (aux == NULL) {
94 		vfree(fp);
95 		return NULL;
96 	}
97 
98 	fp->pages = size / PAGE_SIZE;
99 	fp->aux = aux;
100 	fp->aux->prog = fp;
101 	fp->jit_requested = ebpf_jit_enabled();
102 
103 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
104 
105 	return fp;
106 }
107 
108 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
109 {
110 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
111 	struct bpf_prog *prog;
112 	int cpu;
113 
114 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
115 	if (!prog)
116 		return NULL;
117 
118 	prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
119 	if (!prog->aux->stats) {
120 		kfree(prog->aux);
121 		vfree(prog);
122 		return NULL;
123 	}
124 
125 	for_each_possible_cpu(cpu) {
126 		struct bpf_prog_stats *pstats;
127 
128 		pstats = per_cpu_ptr(prog->aux->stats, cpu);
129 		u64_stats_init(&pstats->syncp);
130 	}
131 	return prog;
132 }
133 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
134 
135 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
136 {
137 	if (!prog->aux->nr_linfo || !prog->jit_requested)
138 		return 0;
139 
140 	prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
141 					 sizeof(*prog->aux->jited_linfo),
142 					 GFP_KERNEL | __GFP_NOWARN);
143 	if (!prog->aux->jited_linfo)
144 		return -ENOMEM;
145 
146 	return 0;
147 }
148 
149 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
150 {
151 	kfree(prog->aux->jited_linfo);
152 	prog->aux->jited_linfo = NULL;
153 }
154 
155 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
156 {
157 	if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
158 		bpf_prog_free_jited_linfo(prog);
159 }
160 
161 /* The jit engine is responsible to provide an array
162  * for insn_off to the jited_off mapping (insn_to_jit_off).
163  *
164  * The idx to this array is the insn_off.  Hence, the insn_off
165  * here is relative to the prog itself instead of the main prog.
166  * This array has one entry for each xlated bpf insn.
167  *
168  * jited_off is the byte off to the last byte of the jited insn.
169  *
170  * Hence, with
171  * insn_start:
172  *      The first bpf insn off of the prog.  The insn off
173  *      here is relative to the main prog.
174  *      e.g. if prog is a subprog, insn_start > 0
175  * linfo_idx:
176  *      The prog's idx to prog->aux->linfo and jited_linfo
177  *
178  * jited_linfo[linfo_idx] = prog->bpf_func
179  *
180  * For i > linfo_idx,
181  *
182  * jited_linfo[i] = prog->bpf_func +
183  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
184  */
185 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
186 			       const u32 *insn_to_jit_off)
187 {
188 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
189 	const struct bpf_line_info *linfo;
190 	void **jited_linfo;
191 
192 	if (!prog->aux->jited_linfo)
193 		/* Userspace did not provide linfo */
194 		return;
195 
196 	linfo_idx = prog->aux->linfo_idx;
197 	linfo = &prog->aux->linfo[linfo_idx];
198 	insn_start = linfo[0].insn_off;
199 	insn_end = insn_start + prog->len;
200 
201 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
202 	jited_linfo[0] = prog->bpf_func;
203 
204 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
205 
206 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
207 		/* The verifier ensures that linfo[i].insn_off is
208 		 * strictly increasing
209 		 */
210 		jited_linfo[i] = prog->bpf_func +
211 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
212 }
213 
214 void bpf_prog_free_linfo(struct bpf_prog *prog)
215 {
216 	bpf_prog_free_jited_linfo(prog);
217 	kvfree(prog->aux->linfo);
218 }
219 
220 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
221 				  gfp_t gfp_extra_flags)
222 {
223 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
224 	struct bpf_prog *fp;
225 	u32 pages, delta;
226 	int ret;
227 
228 	BUG_ON(fp_old == NULL);
229 
230 	size = round_up(size, PAGE_SIZE);
231 	pages = size / PAGE_SIZE;
232 	if (pages <= fp_old->pages)
233 		return fp_old;
234 
235 	delta = pages - fp_old->pages;
236 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
237 	if (ret)
238 		return NULL;
239 
240 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
241 	if (fp == NULL) {
242 		__bpf_prog_uncharge(fp_old->aux->user, delta);
243 	} else {
244 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
245 		fp->pages = pages;
246 		fp->aux->prog = fp;
247 
248 		/* We keep fp->aux from fp_old around in the new
249 		 * reallocated structure.
250 		 */
251 		fp_old->aux = NULL;
252 		__bpf_prog_free(fp_old);
253 	}
254 
255 	return fp;
256 }
257 
258 void __bpf_prog_free(struct bpf_prog *fp)
259 {
260 	if (fp->aux) {
261 		free_percpu(fp->aux->stats);
262 		kfree(fp->aux);
263 	}
264 	vfree(fp);
265 }
266 
267 int bpf_prog_calc_tag(struct bpf_prog *fp)
268 {
269 	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
270 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
271 	u32 digest[SHA_DIGEST_WORDS];
272 	u32 ws[SHA_WORKSPACE_WORDS];
273 	u32 i, bsize, psize, blocks;
274 	struct bpf_insn *dst;
275 	bool was_ld_map;
276 	u8 *raw, *todo;
277 	__be32 *result;
278 	__be64 *bits;
279 
280 	raw = vmalloc(raw_size);
281 	if (!raw)
282 		return -ENOMEM;
283 
284 	sha_init(digest);
285 	memset(ws, 0, sizeof(ws));
286 
287 	/* We need to take out the map fd for the digest calculation
288 	 * since they are unstable from user space side.
289 	 */
290 	dst = (void *)raw;
291 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
292 		dst[i] = fp->insnsi[i];
293 		if (!was_ld_map &&
294 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
295 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
296 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
297 			was_ld_map = true;
298 			dst[i].imm = 0;
299 		} else if (was_ld_map &&
300 			   dst[i].code == 0 &&
301 			   dst[i].dst_reg == 0 &&
302 			   dst[i].src_reg == 0 &&
303 			   dst[i].off == 0) {
304 			was_ld_map = false;
305 			dst[i].imm = 0;
306 		} else {
307 			was_ld_map = false;
308 		}
309 	}
310 
311 	psize = bpf_prog_insn_size(fp);
312 	memset(&raw[psize], 0, raw_size - psize);
313 	raw[psize++] = 0x80;
314 
315 	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
316 	blocks = bsize / SHA_MESSAGE_BYTES;
317 	todo   = raw;
318 	if (bsize - psize >= sizeof(__be64)) {
319 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
320 	} else {
321 		bits = (__be64 *)(todo + bsize + bits_offset);
322 		blocks++;
323 	}
324 	*bits = cpu_to_be64((psize - 1) << 3);
325 
326 	while (blocks--) {
327 		sha_transform(digest, todo, ws);
328 		todo += SHA_MESSAGE_BYTES;
329 	}
330 
331 	result = (__force __be32 *)digest;
332 	for (i = 0; i < SHA_DIGEST_WORDS; i++)
333 		result[i] = cpu_to_be32(digest[i]);
334 	memcpy(fp->tag, result, sizeof(fp->tag));
335 
336 	vfree(raw);
337 	return 0;
338 }
339 
340 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
341 				s32 end_new, u32 curr, const bool probe_pass)
342 {
343 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
344 	s32 delta = end_new - end_old;
345 	s64 imm = insn->imm;
346 
347 	if (curr < pos && curr + imm + 1 >= end_old)
348 		imm += delta;
349 	else if (curr >= end_new && curr + imm + 1 < end_new)
350 		imm -= delta;
351 	if (imm < imm_min || imm > imm_max)
352 		return -ERANGE;
353 	if (!probe_pass)
354 		insn->imm = imm;
355 	return 0;
356 }
357 
358 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
359 				s32 end_new, u32 curr, const bool probe_pass)
360 {
361 	const s32 off_min = S16_MIN, off_max = S16_MAX;
362 	s32 delta = end_new - end_old;
363 	s32 off = insn->off;
364 
365 	if (curr < pos && curr + off + 1 >= end_old)
366 		off += delta;
367 	else if (curr >= end_new && curr + off + 1 < end_new)
368 		off -= delta;
369 	if (off < off_min || off > off_max)
370 		return -ERANGE;
371 	if (!probe_pass)
372 		insn->off = off;
373 	return 0;
374 }
375 
376 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
377 			    s32 end_new, const bool probe_pass)
378 {
379 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
380 	struct bpf_insn *insn = prog->insnsi;
381 	int ret = 0;
382 
383 	for (i = 0; i < insn_cnt; i++, insn++) {
384 		u8 code;
385 
386 		/* In the probing pass we still operate on the original,
387 		 * unpatched image in order to check overflows before we
388 		 * do any other adjustments. Therefore skip the patchlet.
389 		 */
390 		if (probe_pass && i == pos) {
391 			i = end_new;
392 			insn = prog->insnsi + end_old;
393 		}
394 		code = insn->code;
395 		if ((BPF_CLASS(code) != BPF_JMP &&
396 		     BPF_CLASS(code) != BPF_JMP32) ||
397 		    BPF_OP(code) == BPF_EXIT)
398 			continue;
399 		/* Adjust offset of jmps if we cross patch boundaries. */
400 		if (BPF_OP(code) == BPF_CALL) {
401 			if (insn->src_reg != BPF_PSEUDO_CALL)
402 				continue;
403 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
404 						   end_new, i, probe_pass);
405 		} else {
406 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
407 						   end_new, i, probe_pass);
408 		}
409 		if (ret)
410 			break;
411 	}
412 
413 	return ret;
414 }
415 
416 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
417 {
418 	struct bpf_line_info *linfo;
419 	u32 i, nr_linfo;
420 
421 	nr_linfo = prog->aux->nr_linfo;
422 	if (!nr_linfo || !delta)
423 		return;
424 
425 	linfo = prog->aux->linfo;
426 
427 	for (i = 0; i < nr_linfo; i++)
428 		if (off < linfo[i].insn_off)
429 			break;
430 
431 	/* Push all off < linfo[i].insn_off by delta */
432 	for (; i < nr_linfo; i++)
433 		linfo[i].insn_off += delta;
434 }
435 
436 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
437 				       const struct bpf_insn *patch, u32 len)
438 {
439 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
440 	const u32 cnt_max = S16_MAX;
441 	struct bpf_prog *prog_adj;
442 	int err;
443 
444 	/* Since our patchlet doesn't expand the image, we're done. */
445 	if (insn_delta == 0) {
446 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
447 		return prog;
448 	}
449 
450 	insn_adj_cnt = prog->len + insn_delta;
451 
452 	/* Reject anything that would potentially let the insn->off
453 	 * target overflow when we have excessive program expansions.
454 	 * We need to probe here before we do any reallocation where
455 	 * we afterwards may not fail anymore.
456 	 */
457 	if (insn_adj_cnt > cnt_max &&
458 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
459 		return ERR_PTR(err);
460 
461 	/* Several new instructions need to be inserted. Make room
462 	 * for them. Likely, there's no need for a new allocation as
463 	 * last page could have large enough tailroom.
464 	 */
465 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
466 				    GFP_USER);
467 	if (!prog_adj)
468 		return ERR_PTR(-ENOMEM);
469 
470 	prog_adj->len = insn_adj_cnt;
471 
472 	/* Patching happens in 3 steps:
473 	 *
474 	 * 1) Move over tail of insnsi from next instruction onwards,
475 	 *    so we can patch the single target insn with one or more
476 	 *    new ones (patching is always from 1 to n insns, n > 0).
477 	 * 2) Inject new instructions at the target location.
478 	 * 3) Adjust branch offsets if necessary.
479 	 */
480 	insn_rest = insn_adj_cnt - off - len;
481 
482 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
483 		sizeof(*patch) * insn_rest);
484 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
485 
486 	/* We are guaranteed to not fail at this point, otherwise
487 	 * the ship has sailed to reverse to the original state. An
488 	 * overflow cannot happen at this point.
489 	 */
490 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
491 
492 	bpf_adj_linfo(prog_adj, off, insn_delta);
493 
494 	return prog_adj;
495 }
496 
497 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
498 {
499 	/* Branch offsets can't overflow when program is shrinking, no need
500 	 * to call bpf_adj_branches(..., true) here
501 	 */
502 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
503 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
504 	prog->len -= cnt;
505 
506 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
507 }
508 
509 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
510 {
511 	int i;
512 
513 	for (i = 0; i < fp->aux->func_cnt; i++)
514 		bpf_prog_kallsyms_del(fp->aux->func[i]);
515 }
516 
517 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
518 {
519 	bpf_prog_kallsyms_del_subprogs(fp);
520 	bpf_prog_kallsyms_del(fp);
521 }
522 
523 #ifdef CONFIG_BPF_JIT
524 /* All BPF JIT sysctl knobs here. */
525 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
526 int bpf_jit_harden   __read_mostly;
527 int bpf_jit_kallsyms __read_mostly;
528 long bpf_jit_limit   __read_mostly;
529 
530 static __always_inline void
531 bpf_get_prog_addr_region(const struct bpf_prog *prog,
532 			 unsigned long *symbol_start,
533 			 unsigned long *symbol_end)
534 {
535 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
536 	unsigned long addr = (unsigned long)hdr;
537 
538 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
539 
540 	*symbol_start = addr;
541 	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
542 }
543 
544 void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
545 {
546 	const char *end = sym + KSYM_NAME_LEN;
547 	const struct btf_type *type;
548 	const char *func_name;
549 
550 	BUILD_BUG_ON(sizeof("bpf_prog_") +
551 		     sizeof(prog->tag) * 2 +
552 		     /* name has been null terminated.
553 		      * We should need +1 for the '_' preceding
554 		      * the name.  However, the null character
555 		      * is double counted between the name and the
556 		      * sizeof("bpf_prog_") above, so we omit
557 		      * the +1 here.
558 		      */
559 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
560 
561 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
562 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
563 
564 	/* prog->aux->name will be ignored if full btf name is available */
565 	if (prog->aux->func_info_cnt) {
566 		type = btf_type_by_id(prog->aux->btf,
567 				      prog->aux->func_info[prog->aux->func_idx].type_id);
568 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
569 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
570 		return;
571 	}
572 
573 	if (prog->aux->name[0])
574 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
575 	else
576 		*sym = 0;
577 }
578 
579 static __always_inline unsigned long
580 bpf_get_prog_addr_start(struct latch_tree_node *n)
581 {
582 	unsigned long symbol_start, symbol_end;
583 	const struct bpf_prog_aux *aux;
584 
585 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
586 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
587 
588 	return symbol_start;
589 }
590 
591 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
592 					  struct latch_tree_node *b)
593 {
594 	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
595 }
596 
597 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
598 {
599 	unsigned long val = (unsigned long)key;
600 	unsigned long symbol_start, symbol_end;
601 	const struct bpf_prog_aux *aux;
602 
603 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
604 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
605 
606 	if (val < symbol_start)
607 		return -1;
608 	if (val >= symbol_end)
609 		return  1;
610 
611 	return 0;
612 }
613 
614 static const struct latch_tree_ops bpf_tree_ops = {
615 	.less	= bpf_tree_less,
616 	.comp	= bpf_tree_comp,
617 };
618 
619 static DEFINE_SPINLOCK(bpf_lock);
620 static LIST_HEAD(bpf_kallsyms);
621 static struct latch_tree_root bpf_tree __cacheline_aligned;
622 
623 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
624 {
625 	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
626 	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
627 	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
628 }
629 
630 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
631 {
632 	if (list_empty(&aux->ksym_lnode))
633 		return;
634 
635 	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
636 	list_del_rcu(&aux->ksym_lnode);
637 }
638 
639 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
640 {
641 	return fp->jited && !bpf_prog_was_classic(fp);
642 }
643 
644 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
645 {
646 	return list_empty(&fp->aux->ksym_lnode) ||
647 	       fp->aux->ksym_lnode.prev == LIST_POISON2;
648 }
649 
650 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
651 {
652 	if (!bpf_prog_kallsyms_candidate(fp) ||
653 	    !capable(CAP_SYS_ADMIN))
654 		return;
655 
656 	spin_lock_bh(&bpf_lock);
657 	bpf_prog_ksym_node_add(fp->aux);
658 	spin_unlock_bh(&bpf_lock);
659 }
660 
661 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
662 {
663 	if (!bpf_prog_kallsyms_candidate(fp))
664 		return;
665 
666 	spin_lock_bh(&bpf_lock);
667 	bpf_prog_ksym_node_del(fp->aux);
668 	spin_unlock_bh(&bpf_lock);
669 }
670 
671 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
672 {
673 	struct latch_tree_node *n;
674 
675 	if (!bpf_jit_kallsyms_enabled())
676 		return NULL;
677 
678 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
679 	return n ?
680 	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
681 	       NULL;
682 }
683 
684 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
685 				 unsigned long *off, char *sym)
686 {
687 	unsigned long symbol_start, symbol_end;
688 	struct bpf_prog *prog;
689 	char *ret = NULL;
690 
691 	rcu_read_lock();
692 	prog = bpf_prog_kallsyms_find(addr);
693 	if (prog) {
694 		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
695 		bpf_get_prog_name(prog, sym);
696 
697 		ret = sym;
698 		if (size)
699 			*size = symbol_end - symbol_start;
700 		if (off)
701 			*off  = addr - symbol_start;
702 	}
703 	rcu_read_unlock();
704 
705 	return ret;
706 }
707 
708 bool is_bpf_text_address(unsigned long addr)
709 {
710 	bool ret;
711 
712 	rcu_read_lock();
713 	ret = bpf_prog_kallsyms_find(addr) != NULL;
714 	rcu_read_unlock();
715 
716 	return ret;
717 }
718 
719 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
720 		    char *sym)
721 {
722 	struct bpf_prog_aux *aux;
723 	unsigned int it = 0;
724 	int ret = -ERANGE;
725 
726 	if (!bpf_jit_kallsyms_enabled())
727 		return ret;
728 
729 	rcu_read_lock();
730 	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
731 		if (it++ != symnum)
732 			continue;
733 
734 		bpf_get_prog_name(aux->prog, sym);
735 
736 		*value = (unsigned long)aux->prog->bpf_func;
737 		*type  = BPF_SYM_ELF_TYPE;
738 
739 		ret = 0;
740 		break;
741 	}
742 	rcu_read_unlock();
743 
744 	return ret;
745 }
746 
747 static atomic_long_t bpf_jit_current;
748 
749 /* Can be overridden by an arch's JIT compiler if it has a custom,
750  * dedicated BPF backend memory area, or if neither of the two
751  * below apply.
752  */
753 u64 __weak bpf_jit_alloc_exec_limit(void)
754 {
755 #if defined(MODULES_VADDR)
756 	return MODULES_END - MODULES_VADDR;
757 #else
758 	return VMALLOC_END - VMALLOC_START;
759 #endif
760 }
761 
762 static int __init bpf_jit_charge_init(void)
763 {
764 	/* Only used as heuristic here to derive limit. */
765 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
766 					    PAGE_SIZE), LONG_MAX);
767 	return 0;
768 }
769 pure_initcall(bpf_jit_charge_init);
770 
771 static int bpf_jit_charge_modmem(u32 pages)
772 {
773 	if (atomic_long_add_return(pages, &bpf_jit_current) >
774 	    (bpf_jit_limit >> PAGE_SHIFT)) {
775 		if (!capable(CAP_SYS_ADMIN)) {
776 			atomic_long_sub(pages, &bpf_jit_current);
777 			return -EPERM;
778 		}
779 	}
780 
781 	return 0;
782 }
783 
784 static void bpf_jit_uncharge_modmem(u32 pages)
785 {
786 	atomic_long_sub(pages, &bpf_jit_current);
787 }
788 
789 void *__weak bpf_jit_alloc_exec(unsigned long size)
790 {
791 	return module_alloc(size);
792 }
793 
794 void __weak bpf_jit_free_exec(void *addr)
795 {
796 	module_memfree(addr);
797 }
798 
799 struct bpf_binary_header *
800 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
801 		     unsigned int alignment,
802 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
803 {
804 	struct bpf_binary_header *hdr;
805 	u32 size, hole, start, pages;
806 
807 	/* Most of BPF filters are really small, but if some of them
808 	 * fill a page, allow at least 128 extra bytes to insert a
809 	 * random section of illegal instructions.
810 	 */
811 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
812 	pages = size / PAGE_SIZE;
813 
814 	if (bpf_jit_charge_modmem(pages))
815 		return NULL;
816 	hdr = bpf_jit_alloc_exec(size);
817 	if (!hdr) {
818 		bpf_jit_uncharge_modmem(pages);
819 		return NULL;
820 	}
821 
822 	/* Fill space with illegal/arch-dep instructions. */
823 	bpf_fill_ill_insns(hdr, size);
824 
825 	hdr->pages = pages;
826 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
827 		     PAGE_SIZE - sizeof(*hdr));
828 	start = (get_random_int() % hole) & ~(alignment - 1);
829 
830 	/* Leave a random number of instructions before BPF code. */
831 	*image_ptr = &hdr->image[start];
832 
833 	return hdr;
834 }
835 
836 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
837 {
838 	u32 pages = hdr->pages;
839 
840 	bpf_jit_free_exec(hdr);
841 	bpf_jit_uncharge_modmem(pages);
842 }
843 
844 /* This symbol is only overridden by archs that have different
845  * requirements than the usual eBPF JITs, f.e. when they only
846  * implement cBPF JIT, do not set images read-only, etc.
847  */
848 void __weak bpf_jit_free(struct bpf_prog *fp)
849 {
850 	if (fp->jited) {
851 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
852 
853 		bpf_jit_binary_unlock_ro(hdr);
854 		bpf_jit_binary_free(hdr);
855 
856 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
857 	}
858 
859 	bpf_prog_unlock_free(fp);
860 }
861 
862 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
863 			  const struct bpf_insn *insn, bool extra_pass,
864 			  u64 *func_addr, bool *func_addr_fixed)
865 {
866 	s16 off = insn->off;
867 	s32 imm = insn->imm;
868 	u8 *addr;
869 
870 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
871 	if (!*func_addr_fixed) {
872 		/* Place-holder address till the last pass has collected
873 		 * all addresses for JITed subprograms in which case we
874 		 * can pick them up from prog->aux.
875 		 */
876 		if (!extra_pass)
877 			addr = NULL;
878 		else if (prog->aux->func &&
879 			 off >= 0 && off < prog->aux->func_cnt)
880 			addr = (u8 *)prog->aux->func[off]->bpf_func;
881 		else
882 			return -EINVAL;
883 	} else {
884 		/* Address of a BPF helper call. Since part of the core
885 		 * kernel, it's always at a fixed location. __bpf_call_base
886 		 * and the helper with imm relative to it are both in core
887 		 * kernel.
888 		 */
889 		addr = (u8 *)__bpf_call_base + imm;
890 	}
891 
892 	*func_addr = (unsigned long)addr;
893 	return 0;
894 }
895 
896 static int bpf_jit_blind_insn(const struct bpf_insn *from,
897 			      const struct bpf_insn *aux,
898 			      struct bpf_insn *to_buff)
899 {
900 	struct bpf_insn *to = to_buff;
901 	u32 imm_rnd = get_random_int();
902 	s16 off;
903 
904 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
905 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
906 
907 	/* Constraints on AX register:
908 	 *
909 	 * AX register is inaccessible from user space. It is mapped in
910 	 * all JITs, and used here for constant blinding rewrites. It is
911 	 * typically "stateless" meaning its contents are only valid within
912 	 * the executed instruction, but not across several instructions.
913 	 * There are a few exceptions however which are further detailed
914 	 * below.
915 	 *
916 	 * Constant blinding is only used by JITs, not in the interpreter.
917 	 * The interpreter uses AX in some occasions as a local temporary
918 	 * register e.g. in DIV or MOD instructions.
919 	 *
920 	 * In restricted circumstances, the verifier can also use the AX
921 	 * register for rewrites as long as they do not interfere with
922 	 * the above cases!
923 	 */
924 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
925 		goto out;
926 
927 	if (from->imm == 0 &&
928 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
929 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
930 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
931 		goto out;
932 	}
933 
934 	switch (from->code) {
935 	case BPF_ALU | BPF_ADD | BPF_K:
936 	case BPF_ALU | BPF_SUB | BPF_K:
937 	case BPF_ALU | BPF_AND | BPF_K:
938 	case BPF_ALU | BPF_OR  | BPF_K:
939 	case BPF_ALU | BPF_XOR | BPF_K:
940 	case BPF_ALU | BPF_MUL | BPF_K:
941 	case BPF_ALU | BPF_MOV | BPF_K:
942 	case BPF_ALU | BPF_DIV | BPF_K:
943 	case BPF_ALU | BPF_MOD | BPF_K:
944 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
945 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
946 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
947 		break;
948 
949 	case BPF_ALU64 | BPF_ADD | BPF_K:
950 	case BPF_ALU64 | BPF_SUB | BPF_K:
951 	case BPF_ALU64 | BPF_AND | BPF_K:
952 	case BPF_ALU64 | BPF_OR  | BPF_K:
953 	case BPF_ALU64 | BPF_XOR | BPF_K:
954 	case BPF_ALU64 | BPF_MUL | BPF_K:
955 	case BPF_ALU64 | BPF_MOV | BPF_K:
956 	case BPF_ALU64 | BPF_DIV | BPF_K:
957 	case BPF_ALU64 | BPF_MOD | BPF_K:
958 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
959 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
960 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
961 		break;
962 
963 	case BPF_JMP | BPF_JEQ  | BPF_K:
964 	case BPF_JMP | BPF_JNE  | BPF_K:
965 	case BPF_JMP | BPF_JGT  | BPF_K:
966 	case BPF_JMP | BPF_JLT  | BPF_K:
967 	case BPF_JMP | BPF_JGE  | BPF_K:
968 	case BPF_JMP | BPF_JLE  | BPF_K:
969 	case BPF_JMP | BPF_JSGT | BPF_K:
970 	case BPF_JMP | BPF_JSLT | BPF_K:
971 	case BPF_JMP | BPF_JSGE | BPF_K:
972 	case BPF_JMP | BPF_JSLE | BPF_K:
973 	case BPF_JMP | BPF_JSET | BPF_K:
974 		/* Accommodate for extra offset in case of a backjump. */
975 		off = from->off;
976 		if (off < 0)
977 			off -= 2;
978 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
979 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
980 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
981 		break;
982 
983 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
984 	case BPF_JMP32 | BPF_JNE  | BPF_K:
985 	case BPF_JMP32 | BPF_JGT  | BPF_K:
986 	case BPF_JMP32 | BPF_JLT  | BPF_K:
987 	case BPF_JMP32 | BPF_JGE  | BPF_K:
988 	case BPF_JMP32 | BPF_JLE  | BPF_K:
989 	case BPF_JMP32 | BPF_JSGT | BPF_K:
990 	case BPF_JMP32 | BPF_JSLT | BPF_K:
991 	case BPF_JMP32 | BPF_JSGE | BPF_K:
992 	case BPF_JMP32 | BPF_JSLE | BPF_K:
993 	case BPF_JMP32 | BPF_JSET | BPF_K:
994 		/* Accommodate for extra offset in case of a backjump. */
995 		off = from->off;
996 		if (off < 0)
997 			off -= 2;
998 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
999 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1000 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1001 				      off);
1002 		break;
1003 
1004 	case BPF_LD | BPF_IMM | BPF_DW:
1005 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1006 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1007 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1008 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1009 		break;
1010 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1011 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1012 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1013 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1014 		break;
1015 
1016 	case BPF_ST | BPF_MEM | BPF_DW:
1017 	case BPF_ST | BPF_MEM | BPF_W:
1018 	case BPF_ST | BPF_MEM | BPF_H:
1019 	case BPF_ST | BPF_MEM | BPF_B:
1020 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1021 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1022 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1023 		break;
1024 	}
1025 out:
1026 	return to - to_buff;
1027 }
1028 
1029 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1030 					      gfp_t gfp_extra_flags)
1031 {
1032 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1033 	struct bpf_prog *fp;
1034 
1035 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
1036 	if (fp != NULL) {
1037 		/* aux->prog still points to the fp_other one, so
1038 		 * when promoting the clone to the real program,
1039 		 * this still needs to be adapted.
1040 		 */
1041 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1042 	}
1043 
1044 	return fp;
1045 }
1046 
1047 static void bpf_prog_clone_free(struct bpf_prog *fp)
1048 {
1049 	/* aux was stolen by the other clone, so we cannot free
1050 	 * it from this path! It will be freed eventually by the
1051 	 * other program on release.
1052 	 *
1053 	 * At this point, we don't need a deferred release since
1054 	 * clone is guaranteed to not be locked.
1055 	 */
1056 	fp->aux = NULL;
1057 	__bpf_prog_free(fp);
1058 }
1059 
1060 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1061 {
1062 	/* We have to repoint aux->prog to self, as we don't
1063 	 * know whether fp here is the clone or the original.
1064 	 */
1065 	fp->aux->prog = fp;
1066 	bpf_prog_clone_free(fp_other);
1067 }
1068 
1069 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1070 {
1071 	struct bpf_insn insn_buff[16], aux[2];
1072 	struct bpf_prog *clone, *tmp;
1073 	int insn_delta, insn_cnt;
1074 	struct bpf_insn *insn;
1075 	int i, rewritten;
1076 
1077 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1078 		return prog;
1079 
1080 	clone = bpf_prog_clone_create(prog, GFP_USER);
1081 	if (!clone)
1082 		return ERR_PTR(-ENOMEM);
1083 
1084 	insn_cnt = clone->len;
1085 	insn = clone->insnsi;
1086 
1087 	for (i = 0; i < insn_cnt; i++, insn++) {
1088 		/* We temporarily need to hold the original ld64 insn
1089 		 * so that we can still access the first part in the
1090 		 * second blinding run.
1091 		 */
1092 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1093 		    insn[1].code == 0)
1094 			memcpy(aux, insn, sizeof(aux));
1095 
1096 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
1097 		if (!rewritten)
1098 			continue;
1099 
1100 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1101 		if (IS_ERR(tmp)) {
1102 			/* Patching may have repointed aux->prog during
1103 			 * realloc from the original one, so we need to
1104 			 * fix it up here on error.
1105 			 */
1106 			bpf_jit_prog_release_other(prog, clone);
1107 			return tmp;
1108 		}
1109 
1110 		clone = tmp;
1111 		insn_delta = rewritten - 1;
1112 
1113 		/* Walk new program and skip insns we just inserted. */
1114 		insn = clone->insnsi + i + insn_delta;
1115 		insn_cnt += insn_delta;
1116 		i        += insn_delta;
1117 	}
1118 
1119 	clone->blinded = 1;
1120 	return clone;
1121 }
1122 #endif /* CONFIG_BPF_JIT */
1123 
1124 /* Base function for offset calculation. Needs to go into .text section,
1125  * therefore keeping it non-static as well; will also be used by JITs
1126  * anyway later on, so do not let the compiler omit it. This also needs
1127  * to go into kallsyms for correlation from e.g. bpftool, so naming
1128  * must not change.
1129  */
1130 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1131 {
1132 	return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(__bpf_call_base);
1135 
1136 /* All UAPI available opcodes. */
1137 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1138 	/* 32 bit ALU operations. */		\
1139 	/*   Register based. */			\
1140 	INSN_3(ALU, ADD,  X),			\
1141 	INSN_3(ALU, SUB,  X),			\
1142 	INSN_3(ALU, AND,  X),			\
1143 	INSN_3(ALU, OR,   X),			\
1144 	INSN_3(ALU, LSH,  X),			\
1145 	INSN_3(ALU, RSH,  X),			\
1146 	INSN_3(ALU, XOR,  X),			\
1147 	INSN_3(ALU, MUL,  X),			\
1148 	INSN_3(ALU, MOV,  X),			\
1149 	INSN_3(ALU, ARSH, X),			\
1150 	INSN_3(ALU, DIV,  X),			\
1151 	INSN_3(ALU, MOD,  X),			\
1152 	INSN_2(ALU, NEG),			\
1153 	INSN_3(ALU, END, TO_BE),		\
1154 	INSN_3(ALU, END, TO_LE),		\
1155 	/*   Immediate based. */		\
1156 	INSN_3(ALU, ADD,  K),			\
1157 	INSN_3(ALU, SUB,  K),			\
1158 	INSN_3(ALU, AND,  K),			\
1159 	INSN_3(ALU, OR,   K),			\
1160 	INSN_3(ALU, LSH,  K),			\
1161 	INSN_3(ALU, RSH,  K),			\
1162 	INSN_3(ALU, XOR,  K),			\
1163 	INSN_3(ALU, MUL,  K),			\
1164 	INSN_3(ALU, MOV,  K),			\
1165 	INSN_3(ALU, ARSH, K),			\
1166 	INSN_3(ALU, DIV,  K),			\
1167 	INSN_3(ALU, MOD,  K),			\
1168 	/* 64 bit ALU operations. */		\
1169 	/*   Register based. */			\
1170 	INSN_3(ALU64, ADD,  X),			\
1171 	INSN_3(ALU64, SUB,  X),			\
1172 	INSN_3(ALU64, AND,  X),			\
1173 	INSN_3(ALU64, OR,   X),			\
1174 	INSN_3(ALU64, LSH,  X),			\
1175 	INSN_3(ALU64, RSH,  X),			\
1176 	INSN_3(ALU64, XOR,  X),			\
1177 	INSN_3(ALU64, MUL,  X),			\
1178 	INSN_3(ALU64, MOV,  X),			\
1179 	INSN_3(ALU64, ARSH, X),			\
1180 	INSN_3(ALU64, DIV,  X),			\
1181 	INSN_3(ALU64, MOD,  X),			\
1182 	INSN_2(ALU64, NEG),			\
1183 	/*   Immediate based. */		\
1184 	INSN_3(ALU64, ADD,  K),			\
1185 	INSN_3(ALU64, SUB,  K),			\
1186 	INSN_3(ALU64, AND,  K),			\
1187 	INSN_3(ALU64, OR,   K),			\
1188 	INSN_3(ALU64, LSH,  K),			\
1189 	INSN_3(ALU64, RSH,  K),			\
1190 	INSN_3(ALU64, XOR,  K),			\
1191 	INSN_3(ALU64, MUL,  K),			\
1192 	INSN_3(ALU64, MOV,  K),			\
1193 	INSN_3(ALU64, ARSH, K),			\
1194 	INSN_3(ALU64, DIV,  K),			\
1195 	INSN_3(ALU64, MOD,  K),			\
1196 	/* Call instruction. */			\
1197 	INSN_2(JMP, CALL),			\
1198 	/* Exit instruction. */			\
1199 	INSN_2(JMP, EXIT),			\
1200 	/* 32-bit Jump instructions. */		\
1201 	/*   Register based. */			\
1202 	INSN_3(JMP32, JEQ,  X),			\
1203 	INSN_3(JMP32, JNE,  X),			\
1204 	INSN_3(JMP32, JGT,  X),			\
1205 	INSN_3(JMP32, JLT,  X),			\
1206 	INSN_3(JMP32, JGE,  X),			\
1207 	INSN_3(JMP32, JLE,  X),			\
1208 	INSN_3(JMP32, JSGT, X),			\
1209 	INSN_3(JMP32, JSLT, X),			\
1210 	INSN_3(JMP32, JSGE, X),			\
1211 	INSN_3(JMP32, JSLE, X),			\
1212 	INSN_3(JMP32, JSET, X),			\
1213 	/*   Immediate based. */		\
1214 	INSN_3(JMP32, JEQ,  K),			\
1215 	INSN_3(JMP32, JNE,  K),			\
1216 	INSN_3(JMP32, JGT,  K),			\
1217 	INSN_3(JMP32, JLT,  K),			\
1218 	INSN_3(JMP32, JGE,  K),			\
1219 	INSN_3(JMP32, JLE,  K),			\
1220 	INSN_3(JMP32, JSGT, K),			\
1221 	INSN_3(JMP32, JSLT, K),			\
1222 	INSN_3(JMP32, JSGE, K),			\
1223 	INSN_3(JMP32, JSLE, K),			\
1224 	INSN_3(JMP32, JSET, K),			\
1225 	/* Jump instructions. */		\
1226 	/*   Register based. */			\
1227 	INSN_3(JMP, JEQ,  X),			\
1228 	INSN_3(JMP, JNE,  X),			\
1229 	INSN_3(JMP, JGT,  X),			\
1230 	INSN_3(JMP, JLT,  X),			\
1231 	INSN_3(JMP, JGE,  X),			\
1232 	INSN_3(JMP, JLE,  X),			\
1233 	INSN_3(JMP, JSGT, X),			\
1234 	INSN_3(JMP, JSLT, X),			\
1235 	INSN_3(JMP, JSGE, X),			\
1236 	INSN_3(JMP, JSLE, X),			\
1237 	INSN_3(JMP, JSET, X),			\
1238 	/*   Immediate based. */		\
1239 	INSN_3(JMP, JEQ,  K),			\
1240 	INSN_3(JMP, JNE,  K),			\
1241 	INSN_3(JMP, JGT,  K),			\
1242 	INSN_3(JMP, JLT,  K),			\
1243 	INSN_3(JMP, JGE,  K),			\
1244 	INSN_3(JMP, JLE,  K),			\
1245 	INSN_3(JMP, JSGT, K),			\
1246 	INSN_3(JMP, JSLT, K),			\
1247 	INSN_3(JMP, JSGE, K),			\
1248 	INSN_3(JMP, JSLE, K),			\
1249 	INSN_3(JMP, JSET, K),			\
1250 	INSN_2(JMP, JA),			\
1251 	/* Store instructions. */		\
1252 	/*   Register based. */			\
1253 	INSN_3(STX, MEM,  B),			\
1254 	INSN_3(STX, MEM,  H),			\
1255 	INSN_3(STX, MEM,  W),			\
1256 	INSN_3(STX, MEM,  DW),			\
1257 	INSN_3(STX, XADD, W),			\
1258 	INSN_3(STX, XADD, DW),			\
1259 	/*   Immediate based. */		\
1260 	INSN_3(ST, MEM, B),			\
1261 	INSN_3(ST, MEM, H),			\
1262 	INSN_3(ST, MEM, W),			\
1263 	INSN_3(ST, MEM, DW),			\
1264 	/* Load instructions. */		\
1265 	/*   Register based. */			\
1266 	INSN_3(LDX, MEM, B),			\
1267 	INSN_3(LDX, MEM, H),			\
1268 	INSN_3(LDX, MEM, W),			\
1269 	INSN_3(LDX, MEM, DW),			\
1270 	/*   Immediate based. */		\
1271 	INSN_3(LD, IMM, DW)
1272 
1273 bool bpf_opcode_in_insntable(u8 code)
1274 {
1275 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1276 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1277 	static const bool public_insntable[256] = {
1278 		[0 ... 255] = false,
1279 		/* Now overwrite non-defaults ... */
1280 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1281 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1282 		[BPF_LD | BPF_ABS | BPF_B] = true,
1283 		[BPF_LD | BPF_ABS | BPF_H] = true,
1284 		[BPF_LD | BPF_ABS | BPF_W] = true,
1285 		[BPF_LD | BPF_IND | BPF_B] = true,
1286 		[BPF_LD | BPF_IND | BPF_H] = true,
1287 		[BPF_LD | BPF_IND | BPF_W] = true,
1288 	};
1289 #undef BPF_INSN_3_TBL
1290 #undef BPF_INSN_2_TBL
1291 	return public_insntable[code];
1292 }
1293 
1294 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1295 /**
1296  *	__bpf_prog_run - run eBPF program on a given context
1297  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1298  *	@insn: is the array of eBPF instructions
1299  *	@stack: is the eBPF storage stack
1300  *
1301  * Decode and execute eBPF instructions.
1302  */
1303 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1304 {
1305 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1306 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1307 	static const void *jumptable[256] = {
1308 		[0 ... 255] = &&default_label,
1309 		/* Now overwrite non-defaults ... */
1310 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1311 		/* Non-UAPI available opcodes. */
1312 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1313 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1314 	};
1315 #undef BPF_INSN_3_LBL
1316 #undef BPF_INSN_2_LBL
1317 	u32 tail_call_cnt = 0;
1318 
1319 #define CONT	 ({ insn++; goto select_insn; })
1320 #define CONT_JMP ({ insn++; goto select_insn; })
1321 
1322 select_insn:
1323 	goto *jumptable[insn->code];
1324 
1325 	/* ALU */
1326 #define ALU(OPCODE, OP)			\
1327 	ALU64_##OPCODE##_X:		\
1328 		DST = DST OP SRC;	\
1329 		CONT;			\
1330 	ALU_##OPCODE##_X:		\
1331 		DST = (u32) DST OP (u32) SRC;	\
1332 		CONT;			\
1333 	ALU64_##OPCODE##_K:		\
1334 		DST = DST OP IMM;		\
1335 		CONT;			\
1336 	ALU_##OPCODE##_K:		\
1337 		DST = (u32) DST OP (u32) IMM;	\
1338 		CONT;
1339 
1340 	ALU(ADD,  +)
1341 	ALU(SUB,  -)
1342 	ALU(AND,  &)
1343 	ALU(OR,   |)
1344 	ALU(LSH, <<)
1345 	ALU(RSH, >>)
1346 	ALU(XOR,  ^)
1347 	ALU(MUL,  *)
1348 #undef ALU
1349 	ALU_NEG:
1350 		DST = (u32) -DST;
1351 		CONT;
1352 	ALU64_NEG:
1353 		DST = -DST;
1354 		CONT;
1355 	ALU_MOV_X:
1356 		DST = (u32) SRC;
1357 		CONT;
1358 	ALU_MOV_K:
1359 		DST = (u32) IMM;
1360 		CONT;
1361 	ALU64_MOV_X:
1362 		DST = SRC;
1363 		CONT;
1364 	ALU64_MOV_K:
1365 		DST = IMM;
1366 		CONT;
1367 	LD_IMM_DW:
1368 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1369 		insn++;
1370 		CONT;
1371 	ALU_ARSH_X:
1372 		DST = (u64) (u32) ((*(s32 *) &DST) >> SRC);
1373 		CONT;
1374 	ALU_ARSH_K:
1375 		DST = (u64) (u32) ((*(s32 *) &DST) >> IMM);
1376 		CONT;
1377 	ALU64_ARSH_X:
1378 		(*(s64 *) &DST) >>= SRC;
1379 		CONT;
1380 	ALU64_ARSH_K:
1381 		(*(s64 *) &DST) >>= IMM;
1382 		CONT;
1383 	ALU64_MOD_X:
1384 		div64_u64_rem(DST, SRC, &AX);
1385 		DST = AX;
1386 		CONT;
1387 	ALU_MOD_X:
1388 		AX = (u32) DST;
1389 		DST = do_div(AX, (u32) SRC);
1390 		CONT;
1391 	ALU64_MOD_K:
1392 		div64_u64_rem(DST, IMM, &AX);
1393 		DST = AX;
1394 		CONT;
1395 	ALU_MOD_K:
1396 		AX = (u32) DST;
1397 		DST = do_div(AX, (u32) IMM);
1398 		CONT;
1399 	ALU64_DIV_X:
1400 		DST = div64_u64(DST, SRC);
1401 		CONT;
1402 	ALU_DIV_X:
1403 		AX = (u32) DST;
1404 		do_div(AX, (u32) SRC);
1405 		DST = (u32) AX;
1406 		CONT;
1407 	ALU64_DIV_K:
1408 		DST = div64_u64(DST, IMM);
1409 		CONT;
1410 	ALU_DIV_K:
1411 		AX = (u32) DST;
1412 		do_div(AX, (u32) IMM);
1413 		DST = (u32) AX;
1414 		CONT;
1415 	ALU_END_TO_BE:
1416 		switch (IMM) {
1417 		case 16:
1418 			DST = (__force u16) cpu_to_be16(DST);
1419 			break;
1420 		case 32:
1421 			DST = (__force u32) cpu_to_be32(DST);
1422 			break;
1423 		case 64:
1424 			DST = (__force u64) cpu_to_be64(DST);
1425 			break;
1426 		}
1427 		CONT;
1428 	ALU_END_TO_LE:
1429 		switch (IMM) {
1430 		case 16:
1431 			DST = (__force u16) cpu_to_le16(DST);
1432 			break;
1433 		case 32:
1434 			DST = (__force u32) cpu_to_le32(DST);
1435 			break;
1436 		case 64:
1437 			DST = (__force u64) cpu_to_le64(DST);
1438 			break;
1439 		}
1440 		CONT;
1441 
1442 	/* CALL */
1443 	JMP_CALL:
1444 		/* Function call scratches BPF_R1-BPF_R5 registers,
1445 		 * preserves BPF_R6-BPF_R9, and stores return value
1446 		 * into BPF_R0.
1447 		 */
1448 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1449 						       BPF_R4, BPF_R5);
1450 		CONT;
1451 
1452 	JMP_CALL_ARGS:
1453 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1454 							    BPF_R3, BPF_R4,
1455 							    BPF_R5,
1456 							    insn + insn->off + 1);
1457 		CONT;
1458 
1459 	JMP_TAIL_CALL: {
1460 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1461 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1462 		struct bpf_prog *prog;
1463 		u32 index = BPF_R3;
1464 
1465 		if (unlikely(index >= array->map.max_entries))
1466 			goto out;
1467 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1468 			goto out;
1469 
1470 		tail_call_cnt++;
1471 
1472 		prog = READ_ONCE(array->ptrs[index]);
1473 		if (!prog)
1474 			goto out;
1475 
1476 		/* ARG1 at this point is guaranteed to point to CTX from
1477 		 * the verifier side due to the fact that the tail call is
1478 		 * handeled like a helper, that is, bpf_tail_call_proto,
1479 		 * where arg1_type is ARG_PTR_TO_CTX.
1480 		 */
1481 		insn = prog->insnsi;
1482 		goto select_insn;
1483 out:
1484 		CONT;
1485 	}
1486 	JMP_JA:
1487 		insn += insn->off;
1488 		CONT;
1489 	JMP_EXIT:
1490 		return BPF_R0;
1491 	/* JMP */
1492 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1493 	JMP_##OPCODE##_X:					\
1494 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1495 			insn += insn->off;			\
1496 			CONT_JMP;				\
1497 		}						\
1498 		CONT;						\
1499 	JMP32_##OPCODE##_X:					\
1500 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1501 			insn += insn->off;			\
1502 			CONT_JMP;				\
1503 		}						\
1504 		CONT;						\
1505 	JMP_##OPCODE##_K:					\
1506 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1507 			insn += insn->off;			\
1508 			CONT_JMP;				\
1509 		}						\
1510 		CONT;						\
1511 	JMP32_##OPCODE##_K:					\
1512 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1513 			insn += insn->off;			\
1514 			CONT_JMP;				\
1515 		}						\
1516 		CONT;
1517 	COND_JMP(u, JEQ, ==)
1518 	COND_JMP(u, JNE, !=)
1519 	COND_JMP(u, JGT, >)
1520 	COND_JMP(u, JLT, <)
1521 	COND_JMP(u, JGE, >=)
1522 	COND_JMP(u, JLE, <=)
1523 	COND_JMP(u, JSET, &)
1524 	COND_JMP(s, JSGT, >)
1525 	COND_JMP(s, JSLT, <)
1526 	COND_JMP(s, JSGE, >=)
1527 	COND_JMP(s, JSLE, <=)
1528 #undef COND_JMP
1529 	/* STX and ST and LDX*/
1530 #define LDST(SIZEOP, SIZE)						\
1531 	STX_MEM_##SIZEOP:						\
1532 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1533 		CONT;							\
1534 	ST_MEM_##SIZEOP:						\
1535 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1536 		CONT;							\
1537 	LDX_MEM_##SIZEOP:						\
1538 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1539 		CONT;
1540 
1541 	LDST(B,   u8)
1542 	LDST(H,  u16)
1543 	LDST(W,  u32)
1544 	LDST(DW, u64)
1545 #undef LDST
1546 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1547 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1548 			   (DST + insn->off));
1549 		CONT;
1550 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1551 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1552 			     (DST + insn->off));
1553 		CONT;
1554 
1555 	default_label:
1556 		/* If we ever reach this, we have a bug somewhere. Die hard here
1557 		 * instead of just returning 0; we could be somewhere in a subprog,
1558 		 * so execution could continue otherwise which we do /not/ want.
1559 		 *
1560 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1561 		 */
1562 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1563 		BUG_ON(1);
1564 		return 0;
1565 }
1566 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1567 
1568 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1569 #define DEFINE_BPF_PROG_RUN(stack_size) \
1570 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1571 { \
1572 	u64 stack[stack_size / sizeof(u64)]; \
1573 	u64 regs[MAX_BPF_EXT_REG]; \
1574 \
1575 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1576 	ARG1 = (u64) (unsigned long) ctx; \
1577 	return ___bpf_prog_run(regs, insn, stack); \
1578 }
1579 
1580 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1581 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1582 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1583 				      const struct bpf_insn *insn) \
1584 { \
1585 	u64 stack[stack_size / sizeof(u64)]; \
1586 	u64 regs[MAX_BPF_EXT_REG]; \
1587 \
1588 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1589 	BPF_R1 = r1; \
1590 	BPF_R2 = r2; \
1591 	BPF_R3 = r3; \
1592 	BPF_R4 = r4; \
1593 	BPF_R5 = r5; \
1594 	return ___bpf_prog_run(regs, insn, stack); \
1595 }
1596 
1597 #define EVAL1(FN, X) FN(X)
1598 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1599 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1600 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1601 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1602 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1603 
1604 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1605 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1606 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1607 
1608 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1609 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1610 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1611 
1612 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1613 
1614 static unsigned int (*interpreters[])(const void *ctx,
1615 				      const struct bpf_insn *insn) = {
1616 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1617 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1618 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1619 };
1620 #undef PROG_NAME_LIST
1621 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1622 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1623 				  const struct bpf_insn *insn) = {
1624 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1625 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1626 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1627 };
1628 #undef PROG_NAME_LIST
1629 
1630 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1631 {
1632 	stack_depth = max_t(u32, stack_depth, 1);
1633 	insn->off = (s16) insn->imm;
1634 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1635 		__bpf_call_base_args;
1636 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1637 }
1638 
1639 #else
1640 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1641 					 const struct bpf_insn *insn)
1642 {
1643 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1644 	 * is not working properly, so warn about it!
1645 	 */
1646 	WARN_ON_ONCE(1);
1647 	return 0;
1648 }
1649 #endif
1650 
1651 bool bpf_prog_array_compatible(struct bpf_array *array,
1652 			       const struct bpf_prog *fp)
1653 {
1654 	if (fp->kprobe_override)
1655 		return false;
1656 
1657 	if (!array->owner_prog_type) {
1658 		/* There's no owner yet where we could check for
1659 		 * compatibility.
1660 		 */
1661 		array->owner_prog_type = fp->type;
1662 		array->owner_jited = fp->jited;
1663 
1664 		return true;
1665 	}
1666 
1667 	return array->owner_prog_type == fp->type &&
1668 	       array->owner_jited == fp->jited;
1669 }
1670 
1671 static int bpf_check_tail_call(const struct bpf_prog *fp)
1672 {
1673 	struct bpf_prog_aux *aux = fp->aux;
1674 	int i;
1675 
1676 	for (i = 0; i < aux->used_map_cnt; i++) {
1677 		struct bpf_map *map = aux->used_maps[i];
1678 		struct bpf_array *array;
1679 
1680 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1681 			continue;
1682 
1683 		array = container_of(map, struct bpf_array, map);
1684 		if (!bpf_prog_array_compatible(array, fp))
1685 			return -EINVAL;
1686 	}
1687 
1688 	return 0;
1689 }
1690 
1691 static void bpf_prog_select_func(struct bpf_prog *fp)
1692 {
1693 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1694 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1695 
1696 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1697 #else
1698 	fp->bpf_func = __bpf_prog_ret0_warn;
1699 #endif
1700 }
1701 
1702 /**
1703  *	bpf_prog_select_runtime - select exec runtime for BPF program
1704  *	@fp: bpf_prog populated with internal BPF program
1705  *	@err: pointer to error variable
1706  *
1707  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1708  * The BPF program will be executed via BPF_PROG_RUN() macro.
1709  */
1710 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1711 {
1712 	/* In case of BPF to BPF calls, verifier did all the prep
1713 	 * work with regards to JITing, etc.
1714 	 */
1715 	if (fp->bpf_func)
1716 		goto finalize;
1717 
1718 	bpf_prog_select_func(fp);
1719 
1720 	/* eBPF JITs can rewrite the program in case constant
1721 	 * blinding is active. However, in case of error during
1722 	 * blinding, bpf_int_jit_compile() must always return a
1723 	 * valid program, which in this case would simply not
1724 	 * be JITed, but falls back to the interpreter.
1725 	 */
1726 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1727 		*err = bpf_prog_alloc_jited_linfo(fp);
1728 		if (*err)
1729 			return fp;
1730 
1731 		fp = bpf_int_jit_compile(fp);
1732 		if (!fp->jited) {
1733 			bpf_prog_free_jited_linfo(fp);
1734 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1735 			*err = -ENOTSUPP;
1736 			return fp;
1737 #endif
1738 		} else {
1739 			bpf_prog_free_unused_jited_linfo(fp);
1740 		}
1741 	} else {
1742 		*err = bpf_prog_offload_compile(fp);
1743 		if (*err)
1744 			return fp;
1745 	}
1746 
1747 finalize:
1748 	bpf_prog_lock_ro(fp);
1749 
1750 	/* The tail call compatibility check can only be done at
1751 	 * this late stage as we need to determine, if we deal
1752 	 * with JITed or non JITed program concatenations and not
1753 	 * all eBPF JITs might immediately support all features.
1754 	 */
1755 	*err = bpf_check_tail_call(fp);
1756 
1757 	return fp;
1758 }
1759 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1760 
1761 static unsigned int __bpf_prog_ret1(const void *ctx,
1762 				    const struct bpf_insn *insn)
1763 {
1764 	return 1;
1765 }
1766 
1767 static struct bpf_prog_dummy {
1768 	struct bpf_prog prog;
1769 } dummy_bpf_prog = {
1770 	.prog = {
1771 		.bpf_func = __bpf_prog_ret1,
1772 	},
1773 };
1774 
1775 /* to avoid allocating empty bpf_prog_array for cgroups that
1776  * don't have bpf program attached use one global 'empty_prog_array'
1777  * It will not be modified the caller of bpf_prog_array_alloc()
1778  * (since caller requested prog_cnt == 0)
1779  * that pointer should be 'freed' by bpf_prog_array_free()
1780  */
1781 static struct {
1782 	struct bpf_prog_array hdr;
1783 	struct bpf_prog *null_prog;
1784 } empty_prog_array = {
1785 	.null_prog = NULL,
1786 };
1787 
1788 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1789 {
1790 	if (prog_cnt)
1791 		return kzalloc(sizeof(struct bpf_prog_array) +
1792 			       sizeof(struct bpf_prog_array_item) *
1793 			       (prog_cnt + 1),
1794 			       flags);
1795 
1796 	return &empty_prog_array.hdr;
1797 }
1798 
1799 void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1800 {
1801 	if (!progs ||
1802 	    progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1803 		return;
1804 	kfree_rcu(progs, rcu);
1805 }
1806 
1807 int bpf_prog_array_length(struct bpf_prog_array __rcu *array)
1808 {
1809 	struct bpf_prog_array_item *item;
1810 	u32 cnt = 0;
1811 
1812 	rcu_read_lock();
1813 	item = rcu_dereference(array)->items;
1814 	for (; item->prog; item++)
1815 		if (item->prog != &dummy_bpf_prog.prog)
1816 			cnt++;
1817 	rcu_read_unlock();
1818 	return cnt;
1819 }
1820 
1821 
1822 static bool bpf_prog_array_copy_core(struct bpf_prog_array __rcu *array,
1823 				     u32 *prog_ids,
1824 				     u32 request_cnt)
1825 {
1826 	struct bpf_prog_array_item *item;
1827 	int i = 0;
1828 
1829 	item = rcu_dereference_check(array, 1)->items;
1830 	for (; item->prog; item++) {
1831 		if (item->prog == &dummy_bpf_prog.prog)
1832 			continue;
1833 		prog_ids[i] = item->prog->aux->id;
1834 		if (++i == request_cnt) {
1835 			item++;
1836 			break;
1837 		}
1838 	}
1839 
1840 	return !!(item->prog);
1841 }
1842 
1843 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *array,
1844 				__u32 __user *prog_ids, u32 cnt)
1845 {
1846 	unsigned long err = 0;
1847 	bool nospc;
1848 	u32 *ids;
1849 
1850 	/* users of this function are doing:
1851 	 * cnt = bpf_prog_array_length();
1852 	 * if (cnt > 0)
1853 	 *     bpf_prog_array_copy_to_user(..., cnt);
1854 	 * so below kcalloc doesn't need extra cnt > 0 check, but
1855 	 * bpf_prog_array_length() releases rcu lock and
1856 	 * prog array could have been swapped with empty or larger array,
1857 	 * so always copy 'cnt' prog_ids to the user.
1858 	 * In a rare race the user will see zero prog_ids
1859 	 */
1860 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1861 	if (!ids)
1862 		return -ENOMEM;
1863 	rcu_read_lock();
1864 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
1865 	rcu_read_unlock();
1866 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1867 	kfree(ids);
1868 	if (err)
1869 		return -EFAULT;
1870 	if (nospc)
1871 		return -ENOSPC;
1872 	return 0;
1873 }
1874 
1875 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *array,
1876 				struct bpf_prog *old_prog)
1877 {
1878 	struct bpf_prog_array_item *item = array->items;
1879 
1880 	for (; item->prog; item++)
1881 		if (item->prog == old_prog) {
1882 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1883 			break;
1884 		}
1885 }
1886 
1887 int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1888 			struct bpf_prog *exclude_prog,
1889 			struct bpf_prog *include_prog,
1890 			struct bpf_prog_array **new_array)
1891 {
1892 	int new_prog_cnt, carry_prog_cnt = 0;
1893 	struct bpf_prog_array_item *existing;
1894 	struct bpf_prog_array *array;
1895 	bool found_exclude = false;
1896 	int new_prog_idx = 0;
1897 
1898 	/* Figure out how many existing progs we need to carry over to
1899 	 * the new array.
1900 	 */
1901 	if (old_array) {
1902 		existing = old_array->items;
1903 		for (; existing->prog; existing++) {
1904 			if (existing->prog == exclude_prog) {
1905 				found_exclude = true;
1906 				continue;
1907 			}
1908 			if (existing->prog != &dummy_bpf_prog.prog)
1909 				carry_prog_cnt++;
1910 			if (existing->prog == include_prog)
1911 				return -EEXIST;
1912 		}
1913 	}
1914 
1915 	if (exclude_prog && !found_exclude)
1916 		return -ENOENT;
1917 
1918 	/* How many progs (not NULL) will be in the new array? */
1919 	new_prog_cnt = carry_prog_cnt;
1920 	if (include_prog)
1921 		new_prog_cnt += 1;
1922 
1923 	/* Do we have any prog (not NULL) in the new array? */
1924 	if (!new_prog_cnt) {
1925 		*new_array = NULL;
1926 		return 0;
1927 	}
1928 
1929 	/* +1 as the end of prog_array is marked with NULL */
1930 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1931 	if (!array)
1932 		return -ENOMEM;
1933 
1934 	/* Fill in the new prog array */
1935 	if (carry_prog_cnt) {
1936 		existing = old_array->items;
1937 		for (; existing->prog; existing++)
1938 			if (existing->prog != exclude_prog &&
1939 			    existing->prog != &dummy_bpf_prog.prog) {
1940 				array->items[new_prog_idx++].prog =
1941 					existing->prog;
1942 			}
1943 	}
1944 	if (include_prog)
1945 		array->items[new_prog_idx++].prog = include_prog;
1946 	array->items[new_prog_idx].prog = NULL;
1947 	*new_array = array;
1948 	return 0;
1949 }
1950 
1951 int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
1952 			     u32 *prog_ids, u32 request_cnt,
1953 			     u32 *prog_cnt)
1954 {
1955 	u32 cnt = 0;
1956 
1957 	if (array)
1958 		cnt = bpf_prog_array_length(array);
1959 
1960 	*prog_cnt = cnt;
1961 
1962 	/* return early if user requested only program count or nothing to copy */
1963 	if (!request_cnt || !cnt)
1964 		return 0;
1965 
1966 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1967 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
1968 								     : 0;
1969 }
1970 
1971 static void bpf_prog_free_deferred(struct work_struct *work)
1972 {
1973 	struct bpf_prog_aux *aux;
1974 	int i;
1975 
1976 	aux = container_of(work, struct bpf_prog_aux, work);
1977 	if (bpf_prog_is_dev_bound(aux))
1978 		bpf_prog_offload_destroy(aux->prog);
1979 #ifdef CONFIG_PERF_EVENTS
1980 	if (aux->prog->has_callchain_buf)
1981 		put_callchain_buffers();
1982 #endif
1983 	for (i = 0; i < aux->func_cnt; i++)
1984 		bpf_jit_free(aux->func[i]);
1985 	if (aux->func_cnt) {
1986 		kfree(aux->func);
1987 		bpf_prog_unlock_free(aux->prog);
1988 	} else {
1989 		bpf_jit_free(aux->prog);
1990 	}
1991 }
1992 
1993 /* Free internal BPF program */
1994 void bpf_prog_free(struct bpf_prog *fp)
1995 {
1996 	struct bpf_prog_aux *aux = fp->aux;
1997 
1998 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
1999 	schedule_work(&aux->work);
2000 }
2001 EXPORT_SYMBOL_GPL(bpf_prog_free);
2002 
2003 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2004 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2005 
2006 void bpf_user_rnd_init_once(void)
2007 {
2008 	prandom_init_once(&bpf_user_rnd_state);
2009 }
2010 
2011 BPF_CALL_0(bpf_user_rnd_u32)
2012 {
2013 	/* Should someone ever have the rather unwise idea to use some
2014 	 * of the registers passed into this function, then note that
2015 	 * this function is called from native eBPF and classic-to-eBPF
2016 	 * transformations. Register assignments from both sides are
2017 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2018 	 */
2019 	struct rnd_state *state;
2020 	u32 res;
2021 
2022 	state = &get_cpu_var(bpf_user_rnd_state);
2023 	res = prandom_u32_state(state);
2024 	put_cpu_var(bpf_user_rnd_state);
2025 
2026 	return res;
2027 }
2028 
2029 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2030 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2031 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2032 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2033 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2034 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2035 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2036 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2037 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2038 
2039 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2040 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2041 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2042 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2043 
2044 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2045 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2046 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2047 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2048 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2049 
2050 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2051 {
2052 	return NULL;
2053 }
2054 
2055 u64 __weak
2056 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2057 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2058 {
2059 	return -ENOTSUPP;
2060 }
2061 EXPORT_SYMBOL_GPL(bpf_event_output);
2062 
2063 /* Always built-in helper functions. */
2064 const struct bpf_func_proto bpf_tail_call_proto = {
2065 	.func		= NULL,
2066 	.gpl_only	= false,
2067 	.ret_type	= RET_VOID,
2068 	.arg1_type	= ARG_PTR_TO_CTX,
2069 	.arg2_type	= ARG_CONST_MAP_PTR,
2070 	.arg3_type	= ARG_ANYTHING,
2071 };
2072 
2073 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2074  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2075  * eBPF and implicitly also cBPF can get JITed!
2076  */
2077 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2078 {
2079 	return prog;
2080 }
2081 
2082 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2083  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2084  */
2085 void __weak bpf_jit_compile(struct bpf_prog *prog)
2086 {
2087 }
2088 
2089 bool __weak bpf_helper_changes_pkt_data(void *func)
2090 {
2091 	return false;
2092 }
2093 
2094 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2095  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2096  */
2097 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2098 			 int len)
2099 {
2100 	return -EFAULT;
2101 }
2102 
2103 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2104 EXPORT_SYMBOL(bpf_stats_enabled_key);
2105 int sysctl_bpf_stats_enabled __read_mostly;
2106 
2107 /* All definitions of tracepoints related to BPF. */
2108 #define CREATE_TRACE_POINTS
2109 #include <linux/bpf_trace.h>
2110 
2111 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2112