xref: /openbmc/linux/kernel/bpf/core.c (revision d82a6c5ef9dc0aab296936e1aa4ad28fd5162a55)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 
37 #include <asm/barrier.h>
38 #include <asm/unaligned.h>
39 
40 /* Registers */
41 #define BPF_R0	regs[BPF_REG_0]
42 #define BPF_R1	regs[BPF_REG_1]
43 #define BPF_R2	regs[BPF_REG_2]
44 #define BPF_R3	regs[BPF_REG_3]
45 #define BPF_R4	regs[BPF_REG_4]
46 #define BPF_R5	regs[BPF_REG_5]
47 #define BPF_R6	regs[BPF_REG_6]
48 #define BPF_R7	regs[BPF_REG_7]
49 #define BPF_R8	regs[BPF_REG_8]
50 #define BPF_R9	regs[BPF_REG_9]
51 #define BPF_R10	regs[BPF_REG_10]
52 
53 /* Named registers */
54 #define DST	regs[insn->dst_reg]
55 #define SRC	regs[insn->src_reg]
56 #define FP	regs[BPF_REG_FP]
57 #define AX	regs[BPF_REG_AX]
58 #define ARG1	regs[BPF_REG_ARG1]
59 #define CTX	regs[BPF_REG_CTX]
60 #define IMM	insn->imm
61 
62 /* No hurry in this branch
63  *
64  * Exported for the bpf jit load helper.
65  */
66 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
67 {
68 	u8 *ptr = NULL;
69 
70 	if (k >= SKF_NET_OFF)
71 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
72 	else if (k >= SKF_LL_OFF)
73 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
74 
75 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
76 		return ptr;
77 
78 	return NULL;
79 }
80 
81 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
82 {
83 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
84 	struct bpf_prog_aux *aux;
85 	struct bpf_prog *fp;
86 
87 	size = round_up(size, PAGE_SIZE);
88 	fp = __vmalloc(size, gfp_flags);
89 	if (fp == NULL)
90 		return NULL;
91 
92 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
93 	if (aux == NULL) {
94 		vfree(fp);
95 		return NULL;
96 	}
97 	fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
98 	if (!fp->active) {
99 		vfree(fp);
100 		kfree(aux);
101 		return NULL;
102 	}
103 
104 	fp->pages = size / PAGE_SIZE;
105 	fp->aux = aux;
106 	fp->aux->prog = fp;
107 	fp->jit_requested = ebpf_jit_enabled();
108 
109 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
110 	mutex_init(&fp->aux->used_maps_mutex);
111 	mutex_init(&fp->aux->dst_mutex);
112 
113 	return fp;
114 }
115 
116 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
117 {
118 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
119 	struct bpf_prog *prog;
120 	int cpu;
121 
122 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
123 	if (!prog)
124 		return NULL;
125 
126 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
127 	if (!prog->stats) {
128 		free_percpu(prog->active);
129 		kfree(prog->aux);
130 		vfree(prog);
131 		return NULL;
132 	}
133 
134 	for_each_possible_cpu(cpu) {
135 		struct bpf_prog_stats *pstats;
136 
137 		pstats = per_cpu_ptr(prog->stats, cpu);
138 		u64_stats_init(&pstats->syncp);
139 	}
140 	return prog;
141 }
142 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
143 
144 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
145 {
146 	if (!prog->aux->nr_linfo || !prog->jit_requested)
147 		return 0;
148 
149 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
150 					  sizeof(*prog->aux->jited_linfo),
151 					  GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
152 	if (!prog->aux->jited_linfo)
153 		return -ENOMEM;
154 
155 	return 0;
156 }
157 
158 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
159 {
160 	if (prog->aux->jited_linfo &&
161 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
162 		kvfree(prog->aux->jited_linfo);
163 		prog->aux->jited_linfo = NULL;
164 	}
165 
166 	kfree(prog->aux->kfunc_tab);
167 	prog->aux->kfunc_tab = NULL;
168 }
169 
170 /* The jit engine is responsible to provide an array
171  * for insn_off to the jited_off mapping (insn_to_jit_off).
172  *
173  * The idx to this array is the insn_off.  Hence, the insn_off
174  * here is relative to the prog itself instead of the main prog.
175  * This array has one entry for each xlated bpf insn.
176  *
177  * jited_off is the byte off to the last byte of the jited insn.
178  *
179  * Hence, with
180  * insn_start:
181  *      The first bpf insn off of the prog.  The insn off
182  *      here is relative to the main prog.
183  *      e.g. if prog is a subprog, insn_start > 0
184  * linfo_idx:
185  *      The prog's idx to prog->aux->linfo and jited_linfo
186  *
187  * jited_linfo[linfo_idx] = prog->bpf_func
188  *
189  * For i > linfo_idx,
190  *
191  * jited_linfo[i] = prog->bpf_func +
192  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
193  */
194 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
195 			       const u32 *insn_to_jit_off)
196 {
197 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
198 	const struct bpf_line_info *linfo;
199 	void **jited_linfo;
200 
201 	if (!prog->aux->jited_linfo)
202 		/* Userspace did not provide linfo */
203 		return;
204 
205 	linfo_idx = prog->aux->linfo_idx;
206 	linfo = &prog->aux->linfo[linfo_idx];
207 	insn_start = linfo[0].insn_off;
208 	insn_end = insn_start + prog->len;
209 
210 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
211 	jited_linfo[0] = prog->bpf_func;
212 
213 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
214 
215 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
216 		/* The verifier ensures that linfo[i].insn_off is
217 		 * strictly increasing
218 		 */
219 		jited_linfo[i] = prog->bpf_func +
220 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
221 }
222 
223 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
224 				  gfp_t gfp_extra_flags)
225 {
226 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
227 	struct bpf_prog *fp;
228 	u32 pages;
229 
230 	size = round_up(size, PAGE_SIZE);
231 	pages = size / PAGE_SIZE;
232 	if (pages <= fp_old->pages)
233 		return fp_old;
234 
235 	fp = __vmalloc(size, gfp_flags);
236 	if (fp) {
237 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
238 		fp->pages = pages;
239 		fp->aux->prog = fp;
240 
241 		/* We keep fp->aux from fp_old around in the new
242 		 * reallocated structure.
243 		 */
244 		fp_old->aux = NULL;
245 		fp_old->stats = NULL;
246 		fp_old->active = NULL;
247 		__bpf_prog_free(fp_old);
248 	}
249 
250 	return fp;
251 }
252 
253 void __bpf_prog_free(struct bpf_prog *fp)
254 {
255 	if (fp->aux) {
256 		mutex_destroy(&fp->aux->used_maps_mutex);
257 		mutex_destroy(&fp->aux->dst_mutex);
258 		kfree(fp->aux->poke_tab);
259 		kfree(fp->aux);
260 	}
261 	free_percpu(fp->stats);
262 	free_percpu(fp->active);
263 	vfree(fp);
264 }
265 
266 int bpf_prog_calc_tag(struct bpf_prog *fp)
267 {
268 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
269 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
270 	u32 digest[SHA1_DIGEST_WORDS];
271 	u32 ws[SHA1_WORKSPACE_WORDS];
272 	u32 i, bsize, psize, blocks;
273 	struct bpf_insn *dst;
274 	bool was_ld_map;
275 	u8 *raw, *todo;
276 	__be32 *result;
277 	__be64 *bits;
278 
279 	raw = vmalloc(raw_size);
280 	if (!raw)
281 		return -ENOMEM;
282 
283 	sha1_init(digest);
284 	memset(ws, 0, sizeof(ws));
285 
286 	/* We need to take out the map fd for the digest calculation
287 	 * since they are unstable from user space side.
288 	 */
289 	dst = (void *)raw;
290 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
291 		dst[i] = fp->insnsi[i];
292 		if (!was_ld_map &&
293 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
294 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
295 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
296 			was_ld_map = true;
297 			dst[i].imm = 0;
298 		} else if (was_ld_map &&
299 			   dst[i].code == 0 &&
300 			   dst[i].dst_reg == 0 &&
301 			   dst[i].src_reg == 0 &&
302 			   dst[i].off == 0) {
303 			was_ld_map = false;
304 			dst[i].imm = 0;
305 		} else {
306 			was_ld_map = false;
307 		}
308 	}
309 
310 	psize = bpf_prog_insn_size(fp);
311 	memset(&raw[psize], 0, raw_size - psize);
312 	raw[psize++] = 0x80;
313 
314 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
315 	blocks = bsize / SHA1_BLOCK_SIZE;
316 	todo   = raw;
317 	if (bsize - psize >= sizeof(__be64)) {
318 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
319 	} else {
320 		bits = (__be64 *)(todo + bsize + bits_offset);
321 		blocks++;
322 	}
323 	*bits = cpu_to_be64((psize - 1) << 3);
324 
325 	while (blocks--) {
326 		sha1_transform(digest, todo, ws);
327 		todo += SHA1_BLOCK_SIZE;
328 	}
329 
330 	result = (__force __be32 *)digest;
331 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
332 		result[i] = cpu_to_be32(digest[i]);
333 	memcpy(fp->tag, result, sizeof(fp->tag));
334 
335 	vfree(raw);
336 	return 0;
337 }
338 
339 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
340 				s32 end_new, s32 curr, const bool probe_pass)
341 {
342 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
343 	s32 delta = end_new - end_old;
344 	s64 imm = insn->imm;
345 
346 	if (curr < pos && curr + imm + 1 >= end_old)
347 		imm += delta;
348 	else if (curr >= end_new && curr + imm + 1 < end_new)
349 		imm -= delta;
350 	if (imm < imm_min || imm > imm_max)
351 		return -ERANGE;
352 	if (!probe_pass)
353 		insn->imm = imm;
354 	return 0;
355 }
356 
357 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
358 				s32 end_new, s32 curr, const bool probe_pass)
359 {
360 	const s32 off_min = S16_MIN, off_max = S16_MAX;
361 	s32 delta = end_new - end_old;
362 	s32 off = insn->off;
363 
364 	if (curr < pos && curr + off + 1 >= end_old)
365 		off += delta;
366 	else if (curr >= end_new && curr + off + 1 < end_new)
367 		off -= delta;
368 	if (off < off_min || off > off_max)
369 		return -ERANGE;
370 	if (!probe_pass)
371 		insn->off = off;
372 	return 0;
373 }
374 
375 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
376 			    s32 end_new, const bool probe_pass)
377 {
378 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
379 	struct bpf_insn *insn = prog->insnsi;
380 	int ret = 0;
381 
382 	for (i = 0; i < insn_cnt; i++, insn++) {
383 		u8 code;
384 
385 		/* In the probing pass we still operate on the original,
386 		 * unpatched image in order to check overflows before we
387 		 * do any other adjustments. Therefore skip the patchlet.
388 		 */
389 		if (probe_pass && i == pos) {
390 			i = end_new;
391 			insn = prog->insnsi + end_old;
392 		}
393 		if (bpf_pseudo_func(insn)) {
394 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
395 						   end_new, i, probe_pass);
396 			if (ret)
397 				return ret;
398 			continue;
399 		}
400 		code = insn->code;
401 		if ((BPF_CLASS(code) != BPF_JMP &&
402 		     BPF_CLASS(code) != BPF_JMP32) ||
403 		    BPF_OP(code) == BPF_EXIT)
404 			continue;
405 		/* Adjust offset of jmps if we cross patch boundaries. */
406 		if (BPF_OP(code) == BPF_CALL) {
407 			if (insn->src_reg != BPF_PSEUDO_CALL)
408 				continue;
409 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
410 						   end_new, i, probe_pass);
411 		} else {
412 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
413 						   end_new, i, probe_pass);
414 		}
415 		if (ret)
416 			break;
417 	}
418 
419 	return ret;
420 }
421 
422 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
423 {
424 	struct bpf_line_info *linfo;
425 	u32 i, nr_linfo;
426 
427 	nr_linfo = prog->aux->nr_linfo;
428 	if (!nr_linfo || !delta)
429 		return;
430 
431 	linfo = prog->aux->linfo;
432 
433 	for (i = 0; i < nr_linfo; i++)
434 		if (off < linfo[i].insn_off)
435 			break;
436 
437 	/* Push all off < linfo[i].insn_off by delta */
438 	for (; i < nr_linfo; i++)
439 		linfo[i].insn_off += delta;
440 }
441 
442 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
443 				       const struct bpf_insn *patch, u32 len)
444 {
445 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
446 	const u32 cnt_max = S16_MAX;
447 	struct bpf_prog *prog_adj;
448 	int err;
449 
450 	/* Since our patchlet doesn't expand the image, we're done. */
451 	if (insn_delta == 0) {
452 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
453 		return prog;
454 	}
455 
456 	insn_adj_cnt = prog->len + insn_delta;
457 
458 	/* Reject anything that would potentially let the insn->off
459 	 * target overflow when we have excessive program expansions.
460 	 * We need to probe here before we do any reallocation where
461 	 * we afterwards may not fail anymore.
462 	 */
463 	if (insn_adj_cnt > cnt_max &&
464 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
465 		return ERR_PTR(err);
466 
467 	/* Several new instructions need to be inserted. Make room
468 	 * for them. Likely, there's no need for a new allocation as
469 	 * last page could have large enough tailroom.
470 	 */
471 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
472 				    GFP_USER);
473 	if (!prog_adj)
474 		return ERR_PTR(-ENOMEM);
475 
476 	prog_adj->len = insn_adj_cnt;
477 
478 	/* Patching happens in 3 steps:
479 	 *
480 	 * 1) Move over tail of insnsi from next instruction onwards,
481 	 *    so we can patch the single target insn with one or more
482 	 *    new ones (patching is always from 1 to n insns, n > 0).
483 	 * 2) Inject new instructions at the target location.
484 	 * 3) Adjust branch offsets if necessary.
485 	 */
486 	insn_rest = insn_adj_cnt - off - len;
487 
488 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
489 		sizeof(*patch) * insn_rest);
490 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
491 
492 	/* We are guaranteed to not fail at this point, otherwise
493 	 * the ship has sailed to reverse to the original state. An
494 	 * overflow cannot happen at this point.
495 	 */
496 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
497 
498 	bpf_adj_linfo(prog_adj, off, insn_delta);
499 
500 	return prog_adj;
501 }
502 
503 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
504 {
505 	/* Branch offsets can't overflow when program is shrinking, no need
506 	 * to call bpf_adj_branches(..., true) here
507 	 */
508 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
509 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
510 	prog->len -= cnt;
511 
512 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
513 }
514 
515 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
516 {
517 	int i;
518 
519 	for (i = 0; i < fp->aux->func_cnt; i++)
520 		bpf_prog_kallsyms_del(fp->aux->func[i]);
521 }
522 
523 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
524 {
525 	bpf_prog_kallsyms_del_subprogs(fp);
526 	bpf_prog_kallsyms_del(fp);
527 }
528 
529 #ifdef CONFIG_BPF_JIT
530 /* All BPF JIT sysctl knobs here. */
531 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
532 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
533 int bpf_jit_harden   __read_mostly;
534 long bpf_jit_limit   __read_mostly;
535 long bpf_jit_limit_max __read_mostly;
536 
537 static void
538 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
539 {
540 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
541 
542 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
543 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
544 }
545 
546 static void
547 bpf_prog_ksym_set_name(struct bpf_prog *prog)
548 {
549 	char *sym = prog->aux->ksym.name;
550 	const char *end = sym + KSYM_NAME_LEN;
551 	const struct btf_type *type;
552 	const char *func_name;
553 
554 	BUILD_BUG_ON(sizeof("bpf_prog_") +
555 		     sizeof(prog->tag) * 2 +
556 		     /* name has been null terminated.
557 		      * We should need +1 for the '_' preceding
558 		      * the name.  However, the null character
559 		      * is double counted between the name and the
560 		      * sizeof("bpf_prog_") above, so we omit
561 		      * the +1 here.
562 		      */
563 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
564 
565 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
566 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
567 
568 	/* prog->aux->name will be ignored if full btf name is available */
569 	if (prog->aux->func_info_cnt) {
570 		type = btf_type_by_id(prog->aux->btf,
571 				      prog->aux->func_info[prog->aux->func_idx].type_id);
572 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
573 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
574 		return;
575 	}
576 
577 	if (prog->aux->name[0])
578 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
579 	else
580 		*sym = 0;
581 }
582 
583 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
584 {
585 	return container_of(n, struct bpf_ksym, tnode)->start;
586 }
587 
588 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
589 					  struct latch_tree_node *b)
590 {
591 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
592 }
593 
594 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
595 {
596 	unsigned long val = (unsigned long)key;
597 	const struct bpf_ksym *ksym;
598 
599 	ksym = container_of(n, struct bpf_ksym, tnode);
600 
601 	if (val < ksym->start)
602 		return -1;
603 	if (val >= ksym->end)
604 		return  1;
605 
606 	return 0;
607 }
608 
609 static const struct latch_tree_ops bpf_tree_ops = {
610 	.less	= bpf_tree_less,
611 	.comp	= bpf_tree_comp,
612 };
613 
614 static DEFINE_SPINLOCK(bpf_lock);
615 static LIST_HEAD(bpf_kallsyms);
616 static struct latch_tree_root bpf_tree __cacheline_aligned;
617 
618 void bpf_ksym_add(struct bpf_ksym *ksym)
619 {
620 	spin_lock_bh(&bpf_lock);
621 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
622 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
623 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
624 	spin_unlock_bh(&bpf_lock);
625 }
626 
627 static void __bpf_ksym_del(struct bpf_ksym *ksym)
628 {
629 	if (list_empty(&ksym->lnode))
630 		return;
631 
632 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
633 	list_del_rcu(&ksym->lnode);
634 }
635 
636 void bpf_ksym_del(struct bpf_ksym *ksym)
637 {
638 	spin_lock_bh(&bpf_lock);
639 	__bpf_ksym_del(ksym);
640 	spin_unlock_bh(&bpf_lock);
641 }
642 
643 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
644 {
645 	return fp->jited && !bpf_prog_was_classic(fp);
646 }
647 
648 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
649 {
650 	return list_empty(&fp->aux->ksym.lnode) ||
651 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
652 }
653 
654 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
655 {
656 	if (!bpf_prog_kallsyms_candidate(fp) ||
657 	    !bpf_capable())
658 		return;
659 
660 	bpf_prog_ksym_set_addr(fp);
661 	bpf_prog_ksym_set_name(fp);
662 	fp->aux->ksym.prog = true;
663 
664 	bpf_ksym_add(&fp->aux->ksym);
665 }
666 
667 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
668 {
669 	if (!bpf_prog_kallsyms_candidate(fp))
670 		return;
671 
672 	bpf_ksym_del(&fp->aux->ksym);
673 }
674 
675 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
676 {
677 	struct latch_tree_node *n;
678 
679 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
680 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
681 }
682 
683 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
684 				 unsigned long *off, char *sym)
685 {
686 	struct bpf_ksym *ksym;
687 	char *ret = NULL;
688 
689 	rcu_read_lock();
690 	ksym = bpf_ksym_find(addr);
691 	if (ksym) {
692 		unsigned long symbol_start = ksym->start;
693 		unsigned long symbol_end = ksym->end;
694 
695 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
696 
697 		ret = sym;
698 		if (size)
699 			*size = symbol_end - symbol_start;
700 		if (off)
701 			*off  = addr - symbol_start;
702 	}
703 	rcu_read_unlock();
704 
705 	return ret;
706 }
707 
708 bool is_bpf_text_address(unsigned long addr)
709 {
710 	bool ret;
711 
712 	rcu_read_lock();
713 	ret = bpf_ksym_find(addr) != NULL;
714 	rcu_read_unlock();
715 
716 	return ret;
717 }
718 
719 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
720 {
721 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
722 
723 	return ksym && ksym->prog ?
724 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
725 	       NULL;
726 }
727 
728 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
729 {
730 	const struct exception_table_entry *e = NULL;
731 	struct bpf_prog *prog;
732 
733 	rcu_read_lock();
734 	prog = bpf_prog_ksym_find(addr);
735 	if (!prog)
736 		goto out;
737 	if (!prog->aux->num_exentries)
738 		goto out;
739 
740 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
741 out:
742 	rcu_read_unlock();
743 	return e;
744 }
745 
746 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
747 		    char *sym)
748 {
749 	struct bpf_ksym *ksym;
750 	unsigned int it = 0;
751 	int ret = -ERANGE;
752 
753 	if (!bpf_jit_kallsyms_enabled())
754 		return ret;
755 
756 	rcu_read_lock();
757 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
758 		if (it++ != symnum)
759 			continue;
760 
761 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
762 
763 		*value = ksym->start;
764 		*type  = BPF_SYM_ELF_TYPE;
765 
766 		ret = 0;
767 		break;
768 	}
769 	rcu_read_unlock();
770 
771 	return ret;
772 }
773 
774 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
775 				struct bpf_jit_poke_descriptor *poke)
776 {
777 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
778 	static const u32 poke_tab_max = 1024;
779 	u32 slot = prog->aux->size_poke_tab;
780 	u32 size = slot + 1;
781 
782 	if (size > poke_tab_max)
783 		return -ENOSPC;
784 	if (poke->tailcall_target || poke->tailcall_target_stable ||
785 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
786 		return -EINVAL;
787 
788 	switch (poke->reason) {
789 	case BPF_POKE_REASON_TAIL_CALL:
790 		if (!poke->tail_call.map)
791 			return -EINVAL;
792 		break;
793 	default:
794 		return -EINVAL;
795 	}
796 
797 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
798 	if (!tab)
799 		return -ENOMEM;
800 
801 	memcpy(&tab[slot], poke, sizeof(*poke));
802 	prog->aux->size_poke_tab = size;
803 	prog->aux->poke_tab = tab;
804 
805 	return slot;
806 }
807 
808 /*
809  * BPF program pack allocator.
810  *
811  * Most BPF programs are pretty small. Allocating a hole page for each
812  * program is sometime a waste. Many small bpf program also adds pressure
813  * to instruction TLB. To solve this issue, we introduce a BPF program pack
814  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
815  * to host BPF programs.
816  */
817 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
818 #define BPF_PROG_PACK_SIZE	HPAGE_PMD_SIZE
819 #else
820 #define BPF_PROG_PACK_SIZE	PAGE_SIZE
821 #endif
822 #define BPF_PROG_CHUNK_SHIFT	6
823 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
824 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
825 #define BPF_PROG_CHUNK_COUNT	(BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
826 
827 struct bpf_prog_pack {
828 	struct list_head list;
829 	void *ptr;
830 	unsigned long bitmap[];
831 };
832 
833 #define BPF_PROG_MAX_PACK_PROG_SIZE	BPF_PROG_PACK_SIZE
834 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
835 
836 static DEFINE_MUTEX(pack_mutex);
837 static LIST_HEAD(pack_list);
838 
839 static struct bpf_prog_pack *alloc_new_pack(void)
840 {
841 	struct bpf_prog_pack *pack;
842 
843 	pack = kzalloc(sizeof(*pack) + BITS_TO_BYTES(BPF_PROG_CHUNK_COUNT), GFP_KERNEL);
844 	if (!pack)
845 		return NULL;
846 	pack->ptr = module_alloc(BPF_PROG_PACK_SIZE);
847 	if (!pack->ptr) {
848 		kfree(pack);
849 		return NULL;
850 	}
851 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
852 	list_add_tail(&pack->list, &pack_list);
853 
854 	set_vm_flush_reset_perms(pack->ptr);
855 	set_memory_ro((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
856 	set_memory_x((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
857 	return pack;
858 }
859 
860 static void *bpf_prog_pack_alloc(u32 size)
861 {
862 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
863 	struct bpf_prog_pack *pack;
864 	unsigned long pos;
865 	void *ptr = NULL;
866 
867 	if (size > BPF_PROG_MAX_PACK_PROG_SIZE) {
868 		size = round_up(size, PAGE_SIZE);
869 		ptr = module_alloc(size);
870 		if (ptr) {
871 			set_vm_flush_reset_perms(ptr);
872 			set_memory_ro((unsigned long)ptr, size / PAGE_SIZE);
873 			set_memory_x((unsigned long)ptr, size / PAGE_SIZE);
874 		}
875 		return ptr;
876 	}
877 	mutex_lock(&pack_mutex);
878 	list_for_each_entry(pack, &pack_list, list) {
879 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
880 						 nbits, 0);
881 		if (pos < BPF_PROG_CHUNK_COUNT)
882 			goto found_free_area;
883 	}
884 
885 	pack = alloc_new_pack();
886 	if (!pack)
887 		goto out;
888 
889 	pos = 0;
890 
891 found_free_area:
892 	bitmap_set(pack->bitmap, pos, nbits);
893 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
894 
895 out:
896 	mutex_unlock(&pack_mutex);
897 	return ptr;
898 }
899 
900 static void bpf_prog_pack_free(struct bpf_binary_header *hdr)
901 {
902 	struct bpf_prog_pack *pack = NULL, *tmp;
903 	unsigned int nbits;
904 	unsigned long pos;
905 	void *pack_ptr;
906 
907 	if (hdr->size > BPF_PROG_MAX_PACK_PROG_SIZE) {
908 		module_memfree(hdr);
909 		return;
910 	}
911 
912 	pack_ptr = (void *)((unsigned long)hdr & ~(BPF_PROG_PACK_SIZE - 1));
913 	mutex_lock(&pack_mutex);
914 
915 	list_for_each_entry(tmp, &pack_list, list) {
916 		if (tmp->ptr == pack_ptr) {
917 			pack = tmp;
918 			break;
919 		}
920 	}
921 
922 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
923 		goto out;
924 
925 	nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
926 	pos = ((unsigned long)hdr - (unsigned long)pack_ptr) >> BPF_PROG_CHUNK_SHIFT;
927 
928 	bitmap_clear(pack->bitmap, pos, nbits);
929 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
930 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
931 		list_del(&pack->list);
932 		module_memfree(pack->ptr);
933 		kfree(pack);
934 	}
935 out:
936 	mutex_unlock(&pack_mutex);
937 }
938 
939 static atomic_long_t bpf_jit_current;
940 
941 /* Can be overridden by an arch's JIT compiler if it has a custom,
942  * dedicated BPF backend memory area, or if neither of the two
943  * below apply.
944  */
945 u64 __weak bpf_jit_alloc_exec_limit(void)
946 {
947 #if defined(MODULES_VADDR)
948 	return MODULES_END - MODULES_VADDR;
949 #else
950 	return VMALLOC_END - VMALLOC_START;
951 #endif
952 }
953 
954 static int __init bpf_jit_charge_init(void)
955 {
956 	/* Only used as heuristic here to derive limit. */
957 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
958 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
959 					    PAGE_SIZE), LONG_MAX);
960 	return 0;
961 }
962 pure_initcall(bpf_jit_charge_init);
963 
964 int bpf_jit_charge_modmem(u32 size)
965 {
966 	if (atomic_long_add_return(size, &bpf_jit_current) > bpf_jit_limit) {
967 		if (!bpf_capable()) {
968 			atomic_long_sub(size, &bpf_jit_current);
969 			return -EPERM;
970 		}
971 	}
972 
973 	return 0;
974 }
975 
976 void bpf_jit_uncharge_modmem(u32 size)
977 {
978 	atomic_long_sub(size, &bpf_jit_current);
979 }
980 
981 void *__weak bpf_jit_alloc_exec(unsigned long size)
982 {
983 	return module_alloc(size);
984 }
985 
986 void __weak bpf_jit_free_exec(void *addr)
987 {
988 	module_memfree(addr);
989 }
990 
991 struct bpf_binary_header *
992 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
993 		     unsigned int alignment,
994 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
995 {
996 	struct bpf_binary_header *hdr;
997 	u32 size, hole, start;
998 
999 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1000 		     alignment > BPF_IMAGE_ALIGNMENT);
1001 
1002 	/* Most of BPF filters are really small, but if some of them
1003 	 * fill a page, allow at least 128 extra bytes to insert a
1004 	 * random section of illegal instructions.
1005 	 */
1006 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1007 
1008 	if (bpf_jit_charge_modmem(size))
1009 		return NULL;
1010 	hdr = bpf_jit_alloc_exec(size);
1011 	if (!hdr) {
1012 		bpf_jit_uncharge_modmem(size);
1013 		return NULL;
1014 	}
1015 
1016 	/* Fill space with illegal/arch-dep instructions. */
1017 	bpf_fill_ill_insns(hdr, size);
1018 
1019 	hdr->size = size;
1020 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1021 		     PAGE_SIZE - sizeof(*hdr));
1022 	start = (get_random_int() % hole) & ~(alignment - 1);
1023 
1024 	/* Leave a random number of instructions before BPF code. */
1025 	*image_ptr = &hdr->image[start];
1026 
1027 	return hdr;
1028 }
1029 
1030 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1031 {
1032 	u32 size = hdr->size;
1033 
1034 	bpf_jit_free_exec(hdr);
1035 	bpf_jit_uncharge_modmem(size);
1036 }
1037 
1038 /* Allocate jit binary from bpf_prog_pack allocator.
1039  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1040  * to the memory. To solve this problem, a RW buffer is also allocated at
1041  * as the same time. The JIT engine should calculate offsets based on the
1042  * RO memory address, but write JITed program to the RW buffer. Once the
1043  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1044  * the JITed program to the RO memory.
1045  */
1046 struct bpf_binary_header *
1047 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1048 			  unsigned int alignment,
1049 			  struct bpf_binary_header **rw_header,
1050 			  u8 **rw_image,
1051 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1052 {
1053 	struct bpf_binary_header *ro_header;
1054 	u32 size, hole, start;
1055 
1056 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1057 		     alignment > BPF_IMAGE_ALIGNMENT);
1058 
1059 	/* add 16 bytes for a random section of illegal instructions */
1060 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1061 
1062 	if (bpf_jit_charge_modmem(size))
1063 		return NULL;
1064 	ro_header = bpf_prog_pack_alloc(size);
1065 	if (!ro_header) {
1066 		bpf_jit_uncharge_modmem(size);
1067 		return NULL;
1068 	}
1069 
1070 	*rw_header = kvmalloc(size, GFP_KERNEL);
1071 	if (!*rw_header) {
1072 		bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
1073 		bpf_prog_pack_free(ro_header);
1074 		bpf_jit_uncharge_modmem(size);
1075 		return NULL;
1076 	}
1077 
1078 	/* Fill space with illegal/arch-dep instructions. */
1079 	bpf_fill_ill_insns(*rw_header, size);
1080 	(*rw_header)->size = size;
1081 
1082 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1083 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1084 	start = (get_random_int() % hole) & ~(alignment - 1);
1085 
1086 	*image_ptr = &ro_header->image[start];
1087 	*rw_image = &(*rw_header)->image[start];
1088 
1089 	return ro_header;
1090 }
1091 
1092 /* Copy JITed text from rw_header to its final location, the ro_header. */
1093 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1094 				 struct bpf_binary_header *ro_header,
1095 				 struct bpf_binary_header *rw_header)
1096 {
1097 	void *ptr;
1098 
1099 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1100 
1101 	kvfree(rw_header);
1102 
1103 	if (IS_ERR(ptr)) {
1104 		bpf_prog_pack_free(ro_header);
1105 		return PTR_ERR(ptr);
1106 	}
1107 	prog->aux->use_bpf_prog_pack = true;
1108 	return 0;
1109 }
1110 
1111 /* bpf_jit_binary_pack_free is called in two different scenarios:
1112  *   1) when the program is freed after;
1113  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1114  * For case 2), we need to free both the RO memory and the RW buffer.
1115  *
1116  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1117  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1118  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1119  * bpf_arch_text_copy (when jit fails).
1120  */
1121 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1122 			      struct bpf_binary_header *rw_header)
1123 {
1124 	u32 size = ro_header->size;
1125 
1126 	bpf_prog_pack_free(ro_header);
1127 	kvfree(rw_header);
1128 	bpf_jit_uncharge_modmem(size);
1129 }
1130 
1131 static inline struct bpf_binary_header *
1132 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1133 {
1134 	unsigned long real_start = (unsigned long)fp->bpf_func;
1135 	unsigned long addr;
1136 
1137 	if (fp->aux->use_bpf_prog_pack)
1138 		addr = real_start & BPF_PROG_CHUNK_MASK;
1139 	else
1140 		addr = real_start & PAGE_MASK;
1141 
1142 	return (void *)addr;
1143 }
1144 
1145 /* This symbol is only overridden by archs that have different
1146  * requirements than the usual eBPF JITs, f.e. when they only
1147  * implement cBPF JIT, do not set images read-only, etc.
1148  */
1149 void __weak bpf_jit_free(struct bpf_prog *fp)
1150 {
1151 	if (fp->jited) {
1152 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1153 
1154 		if (fp->aux->use_bpf_prog_pack)
1155 			bpf_jit_binary_pack_free(hdr, NULL /* rw_buffer */);
1156 		else
1157 			bpf_jit_binary_free(hdr);
1158 
1159 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1160 	}
1161 
1162 	bpf_prog_unlock_free(fp);
1163 }
1164 
1165 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1166 			  const struct bpf_insn *insn, bool extra_pass,
1167 			  u64 *func_addr, bool *func_addr_fixed)
1168 {
1169 	s16 off = insn->off;
1170 	s32 imm = insn->imm;
1171 	u8 *addr;
1172 
1173 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1174 	if (!*func_addr_fixed) {
1175 		/* Place-holder address till the last pass has collected
1176 		 * all addresses for JITed subprograms in which case we
1177 		 * can pick them up from prog->aux.
1178 		 */
1179 		if (!extra_pass)
1180 			addr = NULL;
1181 		else if (prog->aux->func &&
1182 			 off >= 0 && off < prog->aux->func_cnt)
1183 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1184 		else
1185 			return -EINVAL;
1186 	} else {
1187 		/* Address of a BPF helper call. Since part of the core
1188 		 * kernel, it's always at a fixed location. __bpf_call_base
1189 		 * and the helper with imm relative to it are both in core
1190 		 * kernel.
1191 		 */
1192 		addr = (u8 *)__bpf_call_base + imm;
1193 	}
1194 
1195 	*func_addr = (unsigned long)addr;
1196 	return 0;
1197 }
1198 
1199 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1200 			      const struct bpf_insn *aux,
1201 			      struct bpf_insn *to_buff,
1202 			      bool emit_zext)
1203 {
1204 	struct bpf_insn *to = to_buff;
1205 	u32 imm_rnd = get_random_int();
1206 	s16 off;
1207 
1208 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1209 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1210 
1211 	/* Constraints on AX register:
1212 	 *
1213 	 * AX register is inaccessible from user space. It is mapped in
1214 	 * all JITs, and used here for constant blinding rewrites. It is
1215 	 * typically "stateless" meaning its contents are only valid within
1216 	 * the executed instruction, but not across several instructions.
1217 	 * There are a few exceptions however which are further detailed
1218 	 * below.
1219 	 *
1220 	 * Constant blinding is only used by JITs, not in the interpreter.
1221 	 * The interpreter uses AX in some occasions as a local temporary
1222 	 * register e.g. in DIV or MOD instructions.
1223 	 *
1224 	 * In restricted circumstances, the verifier can also use the AX
1225 	 * register for rewrites as long as they do not interfere with
1226 	 * the above cases!
1227 	 */
1228 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1229 		goto out;
1230 
1231 	if (from->imm == 0 &&
1232 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1233 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1234 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1235 		goto out;
1236 	}
1237 
1238 	switch (from->code) {
1239 	case BPF_ALU | BPF_ADD | BPF_K:
1240 	case BPF_ALU | BPF_SUB | BPF_K:
1241 	case BPF_ALU | BPF_AND | BPF_K:
1242 	case BPF_ALU | BPF_OR  | BPF_K:
1243 	case BPF_ALU | BPF_XOR | BPF_K:
1244 	case BPF_ALU | BPF_MUL | BPF_K:
1245 	case BPF_ALU | BPF_MOV | BPF_K:
1246 	case BPF_ALU | BPF_DIV | BPF_K:
1247 	case BPF_ALU | BPF_MOD | BPF_K:
1248 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1249 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1250 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1251 		break;
1252 
1253 	case BPF_ALU64 | BPF_ADD | BPF_K:
1254 	case BPF_ALU64 | BPF_SUB | BPF_K:
1255 	case BPF_ALU64 | BPF_AND | BPF_K:
1256 	case BPF_ALU64 | BPF_OR  | BPF_K:
1257 	case BPF_ALU64 | BPF_XOR | BPF_K:
1258 	case BPF_ALU64 | BPF_MUL | BPF_K:
1259 	case BPF_ALU64 | BPF_MOV | BPF_K:
1260 	case BPF_ALU64 | BPF_DIV | BPF_K:
1261 	case BPF_ALU64 | BPF_MOD | BPF_K:
1262 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1263 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1264 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1265 		break;
1266 
1267 	case BPF_JMP | BPF_JEQ  | BPF_K:
1268 	case BPF_JMP | BPF_JNE  | BPF_K:
1269 	case BPF_JMP | BPF_JGT  | BPF_K:
1270 	case BPF_JMP | BPF_JLT  | BPF_K:
1271 	case BPF_JMP | BPF_JGE  | BPF_K:
1272 	case BPF_JMP | BPF_JLE  | BPF_K:
1273 	case BPF_JMP | BPF_JSGT | BPF_K:
1274 	case BPF_JMP | BPF_JSLT | BPF_K:
1275 	case BPF_JMP | BPF_JSGE | BPF_K:
1276 	case BPF_JMP | BPF_JSLE | BPF_K:
1277 	case BPF_JMP | BPF_JSET | BPF_K:
1278 		/* Accommodate for extra offset in case of a backjump. */
1279 		off = from->off;
1280 		if (off < 0)
1281 			off -= 2;
1282 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1283 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1284 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1285 		break;
1286 
1287 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1288 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1289 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1290 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1291 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1292 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1293 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1294 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1295 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1296 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1297 	case BPF_JMP32 | BPF_JSET | BPF_K:
1298 		/* Accommodate for extra offset in case of a backjump. */
1299 		off = from->off;
1300 		if (off < 0)
1301 			off -= 2;
1302 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1303 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1304 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1305 				      off);
1306 		break;
1307 
1308 	case BPF_LD | BPF_IMM | BPF_DW:
1309 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1310 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1311 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1312 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1313 		break;
1314 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1315 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1316 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1317 		if (emit_zext)
1318 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1319 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1320 		break;
1321 
1322 	case BPF_ST | BPF_MEM | BPF_DW:
1323 	case BPF_ST | BPF_MEM | BPF_W:
1324 	case BPF_ST | BPF_MEM | BPF_H:
1325 	case BPF_ST | BPF_MEM | BPF_B:
1326 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1327 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1328 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1329 		break;
1330 	}
1331 out:
1332 	return to - to_buff;
1333 }
1334 
1335 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1336 					      gfp_t gfp_extra_flags)
1337 {
1338 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1339 	struct bpf_prog *fp;
1340 
1341 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1342 	if (fp != NULL) {
1343 		/* aux->prog still points to the fp_other one, so
1344 		 * when promoting the clone to the real program,
1345 		 * this still needs to be adapted.
1346 		 */
1347 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1348 	}
1349 
1350 	return fp;
1351 }
1352 
1353 static void bpf_prog_clone_free(struct bpf_prog *fp)
1354 {
1355 	/* aux was stolen by the other clone, so we cannot free
1356 	 * it from this path! It will be freed eventually by the
1357 	 * other program on release.
1358 	 *
1359 	 * At this point, we don't need a deferred release since
1360 	 * clone is guaranteed to not be locked.
1361 	 */
1362 	fp->aux = NULL;
1363 	fp->stats = NULL;
1364 	fp->active = NULL;
1365 	__bpf_prog_free(fp);
1366 }
1367 
1368 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1369 {
1370 	/* We have to repoint aux->prog to self, as we don't
1371 	 * know whether fp here is the clone or the original.
1372 	 */
1373 	fp->aux->prog = fp;
1374 	bpf_prog_clone_free(fp_other);
1375 }
1376 
1377 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1378 {
1379 	struct bpf_insn insn_buff[16], aux[2];
1380 	struct bpf_prog *clone, *tmp;
1381 	int insn_delta, insn_cnt;
1382 	struct bpf_insn *insn;
1383 	int i, rewritten;
1384 
1385 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1386 		return prog;
1387 
1388 	clone = bpf_prog_clone_create(prog, GFP_USER);
1389 	if (!clone)
1390 		return ERR_PTR(-ENOMEM);
1391 
1392 	insn_cnt = clone->len;
1393 	insn = clone->insnsi;
1394 
1395 	for (i = 0; i < insn_cnt; i++, insn++) {
1396 		/* We temporarily need to hold the original ld64 insn
1397 		 * so that we can still access the first part in the
1398 		 * second blinding run.
1399 		 */
1400 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1401 		    insn[1].code == 0)
1402 			memcpy(aux, insn, sizeof(aux));
1403 
1404 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1405 						clone->aux->verifier_zext);
1406 		if (!rewritten)
1407 			continue;
1408 
1409 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1410 		if (IS_ERR(tmp)) {
1411 			/* Patching may have repointed aux->prog during
1412 			 * realloc from the original one, so we need to
1413 			 * fix it up here on error.
1414 			 */
1415 			bpf_jit_prog_release_other(prog, clone);
1416 			return tmp;
1417 		}
1418 
1419 		clone = tmp;
1420 		insn_delta = rewritten - 1;
1421 
1422 		/* Walk new program and skip insns we just inserted. */
1423 		insn = clone->insnsi + i + insn_delta;
1424 		insn_cnt += insn_delta;
1425 		i        += insn_delta;
1426 	}
1427 
1428 	clone->blinded = 1;
1429 	return clone;
1430 }
1431 #endif /* CONFIG_BPF_JIT */
1432 
1433 /* Base function for offset calculation. Needs to go into .text section,
1434  * therefore keeping it non-static as well; will also be used by JITs
1435  * anyway later on, so do not let the compiler omit it. This also needs
1436  * to go into kallsyms for correlation from e.g. bpftool, so naming
1437  * must not change.
1438  */
1439 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1440 {
1441 	return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(__bpf_call_base);
1444 
1445 /* All UAPI available opcodes. */
1446 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1447 	/* 32 bit ALU operations. */		\
1448 	/*   Register based. */			\
1449 	INSN_3(ALU, ADD,  X),			\
1450 	INSN_3(ALU, SUB,  X),			\
1451 	INSN_3(ALU, AND,  X),			\
1452 	INSN_3(ALU, OR,   X),			\
1453 	INSN_3(ALU, LSH,  X),			\
1454 	INSN_3(ALU, RSH,  X),			\
1455 	INSN_3(ALU, XOR,  X),			\
1456 	INSN_3(ALU, MUL,  X),			\
1457 	INSN_3(ALU, MOV,  X),			\
1458 	INSN_3(ALU, ARSH, X),			\
1459 	INSN_3(ALU, DIV,  X),			\
1460 	INSN_3(ALU, MOD,  X),			\
1461 	INSN_2(ALU, NEG),			\
1462 	INSN_3(ALU, END, TO_BE),		\
1463 	INSN_3(ALU, END, TO_LE),		\
1464 	/*   Immediate based. */		\
1465 	INSN_3(ALU, ADD,  K),			\
1466 	INSN_3(ALU, SUB,  K),			\
1467 	INSN_3(ALU, AND,  K),			\
1468 	INSN_3(ALU, OR,   K),			\
1469 	INSN_3(ALU, LSH,  K),			\
1470 	INSN_3(ALU, RSH,  K),			\
1471 	INSN_3(ALU, XOR,  K),			\
1472 	INSN_3(ALU, MUL,  K),			\
1473 	INSN_3(ALU, MOV,  K),			\
1474 	INSN_3(ALU, ARSH, K),			\
1475 	INSN_3(ALU, DIV,  K),			\
1476 	INSN_3(ALU, MOD,  K),			\
1477 	/* 64 bit ALU operations. */		\
1478 	/*   Register based. */			\
1479 	INSN_3(ALU64, ADD,  X),			\
1480 	INSN_3(ALU64, SUB,  X),			\
1481 	INSN_3(ALU64, AND,  X),			\
1482 	INSN_3(ALU64, OR,   X),			\
1483 	INSN_3(ALU64, LSH,  X),			\
1484 	INSN_3(ALU64, RSH,  X),			\
1485 	INSN_3(ALU64, XOR,  X),			\
1486 	INSN_3(ALU64, MUL,  X),			\
1487 	INSN_3(ALU64, MOV,  X),			\
1488 	INSN_3(ALU64, ARSH, X),			\
1489 	INSN_3(ALU64, DIV,  X),			\
1490 	INSN_3(ALU64, MOD,  X),			\
1491 	INSN_2(ALU64, NEG),			\
1492 	/*   Immediate based. */		\
1493 	INSN_3(ALU64, ADD,  K),			\
1494 	INSN_3(ALU64, SUB,  K),			\
1495 	INSN_3(ALU64, AND,  K),			\
1496 	INSN_3(ALU64, OR,   K),			\
1497 	INSN_3(ALU64, LSH,  K),			\
1498 	INSN_3(ALU64, RSH,  K),			\
1499 	INSN_3(ALU64, XOR,  K),			\
1500 	INSN_3(ALU64, MUL,  K),			\
1501 	INSN_3(ALU64, MOV,  K),			\
1502 	INSN_3(ALU64, ARSH, K),			\
1503 	INSN_3(ALU64, DIV,  K),			\
1504 	INSN_3(ALU64, MOD,  K),			\
1505 	/* Call instruction. */			\
1506 	INSN_2(JMP, CALL),			\
1507 	/* Exit instruction. */			\
1508 	INSN_2(JMP, EXIT),			\
1509 	/* 32-bit Jump instructions. */		\
1510 	/*   Register based. */			\
1511 	INSN_3(JMP32, JEQ,  X),			\
1512 	INSN_3(JMP32, JNE,  X),			\
1513 	INSN_3(JMP32, JGT,  X),			\
1514 	INSN_3(JMP32, JLT,  X),			\
1515 	INSN_3(JMP32, JGE,  X),			\
1516 	INSN_3(JMP32, JLE,  X),			\
1517 	INSN_3(JMP32, JSGT, X),			\
1518 	INSN_3(JMP32, JSLT, X),			\
1519 	INSN_3(JMP32, JSGE, X),			\
1520 	INSN_3(JMP32, JSLE, X),			\
1521 	INSN_3(JMP32, JSET, X),			\
1522 	/*   Immediate based. */		\
1523 	INSN_3(JMP32, JEQ,  K),			\
1524 	INSN_3(JMP32, JNE,  K),			\
1525 	INSN_3(JMP32, JGT,  K),			\
1526 	INSN_3(JMP32, JLT,  K),			\
1527 	INSN_3(JMP32, JGE,  K),			\
1528 	INSN_3(JMP32, JLE,  K),			\
1529 	INSN_3(JMP32, JSGT, K),			\
1530 	INSN_3(JMP32, JSLT, K),			\
1531 	INSN_3(JMP32, JSGE, K),			\
1532 	INSN_3(JMP32, JSLE, K),			\
1533 	INSN_3(JMP32, JSET, K),			\
1534 	/* Jump instructions. */		\
1535 	/*   Register based. */			\
1536 	INSN_3(JMP, JEQ,  X),			\
1537 	INSN_3(JMP, JNE,  X),			\
1538 	INSN_3(JMP, JGT,  X),			\
1539 	INSN_3(JMP, JLT,  X),			\
1540 	INSN_3(JMP, JGE,  X),			\
1541 	INSN_3(JMP, JLE,  X),			\
1542 	INSN_3(JMP, JSGT, X),			\
1543 	INSN_3(JMP, JSLT, X),			\
1544 	INSN_3(JMP, JSGE, X),			\
1545 	INSN_3(JMP, JSLE, X),			\
1546 	INSN_3(JMP, JSET, X),			\
1547 	/*   Immediate based. */		\
1548 	INSN_3(JMP, JEQ,  K),			\
1549 	INSN_3(JMP, JNE,  K),			\
1550 	INSN_3(JMP, JGT,  K),			\
1551 	INSN_3(JMP, JLT,  K),			\
1552 	INSN_3(JMP, JGE,  K),			\
1553 	INSN_3(JMP, JLE,  K),			\
1554 	INSN_3(JMP, JSGT, K),			\
1555 	INSN_3(JMP, JSLT, K),			\
1556 	INSN_3(JMP, JSGE, K),			\
1557 	INSN_3(JMP, JSLE, K),			\
1558 	INSN_3(JMP, JSET, K),			\
1559 	INSN_2(JMP, JA),			\
1560 	/* Store instructions. */		\
1561 	/*   Register based. */			\
1562 	INSN_3(STX, MEM,  B),			\
1563 	INSN_3(STX, MEM,  H),			\
1564 	INSN_3(STX, MEM,  W),			\
1565 	INSN_3(STX, MEM,  DW),			\
1566 	INSN_3(STX, ATOMIC, W),			\
1567 	INSN_3(STX, ATOMIC, DW),		\
1568 	/*   Immediate based. */		\
1569 	INSN_3(ST, MEM, B),			\
1570 	INSN_3(ST, MEM, H),			\
1571 	INSN_3(ST, MEM, W),			\
1572 	INSN_3(ST, MEM, DW),			\
1573 	/* Load instructions. */		\
1574 	/*   Register based. */			\
1575 	INSN_3(LDX, MEM, B),			\
1576 	INSN_3(LDX, MEM, H),			\
1577 	INSN_3(LDX, MEM, W),			\
1578 	INSN_3(LDX, MEM, DW),			\
1579 	/*   Immediate based. */		\
1580 	INSN_3(LD, IMM, DW)
1581 
1582 bool bpf_opcode_in_insntable(u8 code)
1583 {
1584 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1585 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1586 	static const bool public_insntable[256] = {
1587 		[0 ... 255] = false,
1588 		/* Now overwrite non-defaults ... */
1589 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1590 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1591 		[BPF_LD | BPF_ABS | BPF_B] = true,
1592 		[BPF_LD | BPF_ABS | BPF_H] = true,
1593 		[BPF_LD | BPF_ABS | BPF_W] = true,
1594 		[BPF_LD | BPF_IND | BPF_B] = true,
1595 		[BPF_LD | BPF_IND | BPF_H] = true,
1596 		[BPF_LD | BPF_IND | BPF_W] = true,
1597 	};
1598 #undef BPF_INSN_3_TBL
1599 #undef BPF_INSN_2_TBL
1600 	return public_insntable[code];
1601 }
1602 
1603 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1604 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1605 {
1606 	memset(dst, 0, size);
1607 	return -EFAULT;
1608 }
1609 
1610 /**
1611  *	___bpf_prog_run - run eBPF program on a given context
1612  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1613  *	@insn: is the array of eBPF instructions
1614  *
1615  * Decode and execute eBPF instructions.
1616  *
1617  * Return: whatever value is in %BPF_R0 at program exit
1618  */
1619 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1620 {
1621 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1622 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1623 	static const void * const jumptable[256] __annotate_jump_table = {
1624 		[0 ... 255] = &&default_label,
1625 		/* Now overwrite non-defaults ... */
1626 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1627 		/* Non-UAPI available opcodes. */
1628 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1629 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1630 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1631 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1632 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1633 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1634 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1635 	};
1636 #undef BPF_INSN_3_LBL
1637 #undef BPF_INSN_2_LBL
1638 	u32 tail_call_cnt = 0;
1639 
1640 #define CONT	 ({ insn++; goto select_insn; })
1641 #define CONT_JMP ({ insn++; goto select_insn; })
1642 
1643 select_insn:
1644 	goto *jumptable[insn->code];
1645 
1646 	/* Explicitly mask the register-based shift amounts with 63 or 31
1647 	 * to avoid undefined behavior. Normally this won't affect the
1648 	 * generated code, for example, in case of native 64 bit archs such
1649 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1650 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1651 	 * the BPF shift operations to machine instructions which produce
1652 	 * implementation-defined results in such a case; the resulting
1653 	 * contents of the register may be arbitrary, but program behaviour
1654 	 * as a whole remains defined. In other words, in case of JIT backends,
1655 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1656 	 */
1657 	/* ALU (shifts) */
1658 #define SHT(OPCODE, OP)					\
1659 	ALU64_##OPCODE##_X:				\
1660 		DST = DST OP (SRC & 63);		\
1661 		CONT;					\
1662 	ALU_##OPCODE##_X:				\
1663 		DST = (u32) DST OP ((u32) SRC & 31);	\
1664 		CONT;					\
1665 	ALU64_##OPCODE##_K:				\
1666 		DST = DST OP IMM;			\
1667 		CONT;					\
1668 	ALU_##OPCODE##_K:				\
1669 		DST = (u32) DST OP (u32) IMM;		\
1670 		CONT;
1671 	/* ALU (rest) */
1672 #define ALU(OPCODE, OP)					\
1673 	ALU64_##OPCODE##_X:				\
1674 		DST = DST OP SRC;			\
1675 		CONT;					\
1676 	ALU_##OPCODE##_X:				\
1677 		DST = (u32) DST OP (u32) SRC;		\
1678 		CONT;					\
1679 	ALU64_##OPCODE##_K:				\
1680 		DST = DST OP IMM;			\
1681 		CONT;					\
1682 	ALU_##OPCODE##_K:				\
1683 		DST = (u32) DST OP (u32) IMM;		\
1684 		CONT;
1685 	ALU(ADD,  +)
1686 	ALU(SUB,  -)
1687 	ALU(AND,  &)
1688 	ALU(OR,   |)
1689 	ALU(XOR,  ^)
1690 	ALU(MUL,  *)
1691 	SHT(LSH, <<)
1692 	SHT(RSH, >>)
1693 #undef SHT
1694 #undef ALU
1695 	ALU_NEG:
1696 		DST = (u32) -DST;
1697 		CONT;
1698 	ALU64_NEG:
1699 		DST = -DST;
1700 		CONT;
1701 	ALU_MOV_X:
1702 		DST = (u32) SRC;
1703 		CONT;
1704 	ALU_MOV_K:
1705 		DST = (u32) IMM;
1706 		CONT;
1707 	ALU64_MOV_X:
1708 		DST = SRC;
1709 		CONT;
1710 	ALU64_MOV_K:
1711 		DST = IMM;
1712 		CONT;
1713 	LD_IMM_DW:
1714 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1715 		insn++;
1716 		CONT;
1717 	ALU_ARSH_X:
1718 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1719 		CONT;
1720 	ALU_ARSH_K:
1721 		DST = (u64) (u32) (((s32) DST) >> IMM);
1722 		CONT;
1723 	ALU64_ARSH_X:
1724 		(*(s64 *) &DST) >>= (SRC & 63);
1725 		CONT;
1726 	ALU64_ARSH_K:
1727 		(*(s64 *) &DST) >>= IMM;
1728 		CONT;
1729 	ALU64_MOD_X:
1730 		div64_u64_rem(DST, SRC, &AX);
1731 		DST = AX;
1732 		CONT;
1733 	ALU_MOD_X:
1734 		AX = (u32) DST;
1735 		DST = do_div(AX, (u32) SRC);
1736 		CONT;
1737 	ALU64_MOD_K:
1738 		div64_u64_rem(DST, IMM, &AX);
1739 		DST = AX;
1740 		CONT;
1741 	ALU_MOD_K:
1742 		AX = (u32) DST;
1743 		DST = do_div(AX, (u32) IMM);
1744 		CONT;
1745 	ALU64_DIV_X:
1746 		DST = div64_u64(DST, SRC);
1747 		CONT;
1748 	ALU_DIV_X:
1749 		AX = (u32) DST;
1750 		do_div(AX, (u32) SRC);
1751 		DST = (u32) AX;
1752 		CONT;
1753 	ALU64_DIV_K:
1754 		DST = div64_u64(DST, IMM);
1755 		CONT;
1756 	ALU_DIV_K:
1757 		AX = (u32) DST;
1758 		do_div(AX, (u32) IMM);
1759 		DST = (u32) AX;
1760 		CONT;
1761 	ALU_END_TO_BE:
1762 		switch (IMM) {
1763 		case 16:
1764 			DST = (__force u16) cpu_to_be16(DST);
1765 			break;
1766 		case 32:
1767 			DST = (__force u32) cpu_to_be32(DST);
1768 			break;
1769 		case 64:
1770 			DST = (__force u64) cpu_to_be64(DST);
1771 			break;
1772 		}
1773 		CONT;
1774 	ALU_END_TO_LE:
1775 		switch (IMM) {
1776 		case 16:
1777 			DST = (__force u16) cpu_to_le16(DST);
1778 			break;
1779 		case 32:
1780 			DST = (__force u32) cpu_to_le32(DST);
1781 			break;
1782 		case 64:
1783 			DST = (__force u64) cpu_to_le64(DST);
1784 			break;
1785 		}
1786 		CONT;
1787 
1788 	/* CALL */
1789 	JMP_CALL:
1790 		/* Function call scratches BPF_R1-BPF_R5 registers,
1791 		 * preserves BPF_R6-BPF_R9, and stores return value
1792 		 * into BPF_R0.
1793 		 */
1794 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1795 						       BPF_R4, BPF_R5);
1796 		CONT;
1797 
1798 	JMP_CALL_ARGS:
1799 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1800 							    BPF_R3, BPF_R4,
1801 							    BPF_R5,
1802 							    insn + insn->off + 1);
1803 		CONT;
1804 
1805 	JMP_TAIL_CALL: {
1806 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1807 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1808 		struct bpf_prog *prog;
1809 		u32 index = BPF_R3;
1810 
1811 		if (unlikely(index >= array->map.max_entries))
1812 			goto out;
1813 
1814 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
1815 			goto out;
1816 
1817 		tail_call_cnt++;
1818 
1819 		prog = READ_ONCE(array->ptrs[index]);
1820 		if (!prog)
1821 			goto out;
1822 
1823 		/* ARG1 at this point is guaranteed to point to CTX from
1824 		 * the verifier side due to the fact that the tail call is
1825 		 * handled like a helper, that is, bpf_tail_call_proto,
1826 		 * where arg1_type is ARG_PTR_TO_CTX.
1827 		 */
1828 		insn = prog->insnsi;
1829 		goto select_insn;
1830 out:
1831 		CONT;
1832 	}
1833 	JMP_JA:
1834 		insn += insn->off;
1835 		CONT;
1836 	JMP_EXIT:
1837 		return BPF_R0;
1838 	/* JMP */
1839 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1840 	JMP_##OPCODE##_X:					\
1841 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1842 			insn += insn->off;			\
1843 			CONT_JMP;				\
1844 		}						\
1845 		CONT;						\
1846 	JMP32_##OPCODE##_X:					\
1847 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1848 			insn += insn->off;			\
1849 			CONT_JMP;				\
1850 		}						\
1851 		CONT;						\
1852 	JMP_##OPCODE##_K:					\
1853 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1854 			insn += insn->off;			\
1855 			CONT_JMP;				\
1856 		}						\
1857 		CONT;						\
1858 	JMP32_##OPCODE##_K:					\
1859 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1860 			insn += insn->off;			\
1861 			CONT_JMP;				\
1862 		}						\
1863 		CONT;
1864 	COND_JMP(u, JEQ, ==)
1865 	COND_JMP(u, JNE, !=)
1866 	COND_JMP(u, JGT, >)
1867 	COND_JMP(u, JLT, <)
1868 	COND_JMP(u, JGE, >=)
1869 	COND_JMP(u, JLE, <=)
1870 	COND_JMP(u, JSET, &)
1871 	COND_JMP(s, JSGT, >)
1872 	COND_JMP(s, JSLT, <)
1873 	COND_JMP(s, JSGE, >=)
1874 	COND_JMP(s, JSLE, <=)
1875 #undef COND_JMP
1876 	/* ST, STX and LDX*/
1877 	ST_NOSPEC:
1878 		/* Speculation barrier for mitigating Speculative Store Bypass.
1879 		 * In case of arm64, we rely on the firmware mitigation as
1880 		 * controlled via the ssbd kernel parameter. Whenever the
1881 		 * mitigation is enabled, it works for all of the kernel code
1882 		 * with no need to provide any additional instructions here.
1883 		 * In case of x86, we use 'lfence' insn for mitigation. We
1884 		 * reuse preexisting logic from Spectre v1 mitigation that
1885 		 * happens to produce the required code on x86 for v4 as well.
1886 		 */
1887 #ifdef CONFIG_X86
1888 		barrier_nospec();
1889 #endif
1890 		CONT;
1891 #define LDST(SIZEOP, SIZE)						\
1892 	STX_MEM_##SIZEOP:						\
1893 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1894 		CONT;							\
1895 	ST_MEM_##SIZEOP:						\
1896 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1897 		CONT;							\
1898 	LDX_MEM_##SIZEOP:						\
1899 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1900 		CONT;
1901 
1902 	LDST(B,   u8)
1903 	LDST(H,  u16)
1904 	LDST(W,  u32)
1905 	LDST(DW, u64)
1906 #undef LDST
1907 #define LDX_PROBE(SIZEOP, SIZE)							\
1908 	LDX_PROBE_MEM_##SIZEOP:							\
1909 		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1910 		CONT;
1911 	LDX_PROBE(B,  1)
1912 	LDX_PROBE(H,  2)
1913 	LDX_PROBE(W,  4)
1914 	LDX_PROBE(DW, 8)
1915 #undef LDX_PROBE
1916 
1917 #define ATOMIC_ALU_OP(BOP, KOP)						\
1918 		case BOP:						\
1919 			if (BPF_SIZE(insn->code) == BPF_W)		\
1920 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1921 					     (DST + insn->off));	\
1922 			else						\
1923 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1924 					       (DST + insn->off));	\
1925 			break;						\
1926 		case BOP | BPF_FETCH:					\
1927 			if (BPF_SIZE(insn->code) == BPF_W)		\
1928 				SRC = (u32) atomic_fetch_##KOP(		\
1929 					(u32) SRC,			\
1930 					(atomic_t *)(unsigned long) (DST + insn->off)); \
1931 			else						\
1932 				SRC = (u64) atomic64_fetch_##KOP(	\
1933 					(u64) SRC,			\
1934 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
1935 			break;
1936 
1937 	STX_ATOMIC_DW:
1938 	STX_ATOMIC_W:
1939 		switch (IMM) {
1940 		ATOMIC_ALU_OP(BPF_ADD, add)
1941 		ATOMIC_ALU_OP(BPF_AND, and)
1942 		ATOMIC_ALU_OP(BPF_OR, or)
1943 		ATOMIC_ALU_OP(BPF_XOR, xor)
1944 #undef ATOMIC_ALU_OP
1945 
1946 		case BPF_XCHG:
1947 			if (BPF_SIZE(insn->code) == BPF_W)
1948 				SRC = (u32) atomic_xchg(
1949 					(atomic_t *)(unsigned long) (DST + insn->off),
1950 					(u32) SRC);
1951 			else
1952 				SRC = (u64) atomic64_xchg(
1953 					(atomic64_t *)(unsigned long) (DST + insn->off),
1954 					(u64) SRC);
1955 			break;
1956 		case BPF_CMPXCHG:
1957 			if (BPF_SIZE(insn->code) == BPF_W)
1958 				BPF_R0 = (u32) atomic_cmpxchg(
1959 					(atomic_t *)(unsigned long) (DST + insn->off),
1960 					(u32) BPF_R0, (u32) SRC);
1961 			else
1962 				BPF_R0 = (u64) atomic64_cmpxchg(
1963 					(atomic64_t *)(unsigned long) (DST + insn->off),
1964 					(u64) BPF_R0, (u64) SRC);
1965 			break;
1966 
1967 		default:
1968 			goto default_label;
1969 		}
1970 		CONT;
1971 
1972 	default_label:
1973 		/* If we ever reach this, we have a bug somewhere. Die hard here
1974 		 * instead of just returning 0; we could be somewhere in a subprog,
1975 		 * so execution could continue otherwise which we do /not/ want.
1976 		 *
1977 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1978 		 */
1979 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
1980 			insn->code, insn->imm);
1981 		BUG_ON(1);
1982 		return 0;
1983 }
1984 
1985 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1986 #define DEFINE_BPF_PROG_RUN(stack_size) \
1987 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1988 { \
1989 	u64 stack[stack_size / sizeof(u64)]; \
1990 	u64 regs[MAX_BPF_EXT_REG]; \
1991 \
1992 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1993 	ARG1 = (u64) (unsigned long) ctx; \
1994 	return ___bpf_prog_run(regs, insn); \
1995 }
1996 
1997 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1998 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1999 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2000 				      const struct bpf_insn *insn) \
2001 { \
2002 	u64 stack[stack_size / sizeof(u64)]; \
2003 	u64 regs[MAX_BPF_EXT_REG]; \
2004 \
2005 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2006 	BPF_R1 = r1; \
2007 	BPF_R2 = r2; \
2008 	BPF_R3 = r3; \
2009 	BPF_R4 = r4; \
2010 	BPF_R5 = r5; \
2011 	return ___bpf_prog_run(regs, insn); \
2012 }
2013 
2014 #define EVAL1(FN, X) FN(X)
2015 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2016 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2017 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2018 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2019 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2020 
2021 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2022 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2023 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2024 
2025 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2026 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2027 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2028 
2029 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2030 
2031 static unsigned int (*interpreters[])(const void *ctx,
2032 				      const struct bpf_insn *insn) = {
2033 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2034 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2035 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2036 };
2037 #undef PROG_NAME_LIST
2038 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2039 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2040 				  const struct bpf_insn *insn) = {
2041 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2042 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2043 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2044 };
2045 #undef PROG_NAME_LIST
2046 
2047 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2048 {
2049 	stack_depth = max_t(u32, stack_depth, 1);
2050 	insn->off = (s16) insn->imm;
2051 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2052 		__bpf_call_base_args;
2053 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2054 }
2055 
2056 #else
2057 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2058 					 const struct bpf_insn *insn)
2059 {
2060 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2061 	 * is not working properly, so warn about it!
2062 	 */
2063 	WARN_ON_ONCE(1);
2064 	return 0;
2065 }
2066 #endif
2067 
2068 bool bpf_prog_map_compatible(struct bpf_map *map,
2069 			     const struct bpf_prog *fp)
2070 {
2071 	bool ret;
2072 
2073 	if (fp->kprobe_override)
2074 		return false;
2075 
2076 	spin_lock(&map->owner.lock);
2077 	if (!map->owner.type) {
2078 		/* There's no owner yet where we could check for
2079 		 * compatibility.
2080 		 */
2081 		map->owner.type  = fp->type;
2082 		map->owner.jited = fp->jited;
2083 		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2084 		ret = true;
2085 	} else {
2086 		ret = map->owner.type  == fp->type &&
2087 		      map->owner.jited == fp->jited &&
2088 		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2089 	}
2090 	spin_unlock(&map->owner.lock);
2091 
2092 	return ret;
2093 }
2094 
2095 static int bpf_check_tail_call(const struct bpf_prog *fp)
2096 {
2097 	struct bpf_prog_aux *aux = fp->aux;
2098 	int i, ret = 0;
2099 
2100 	mutex_lock(&aux->used_maps_mutex);
2101 	for (i = 0; i < aux->used_map_cnt; i++) {
2102 		struct bpf_map *map = aux->used_maps[i];
2103 
2104 		if (!map_type_contains_progs(map))
2105 			continue;
2106 
2107 		if (!bpf_prog_map_compatible(map, fp)) {
2108 			ret = -EINVAL;
2109 			goto out;
2110 		}
2111 	}
2112 
2113 out:
2114 	mutex_unlock(&aux->used_maps_mutex);
2115 	return ret;
2116 }
2117 
2118 static void bpf_prog_select_func(struct bpf_prog *fp)
2119 {
2120 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2121 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2122 
2123 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2124 #else
2125 	fp->bpf_func = __bpf_prog_ret0_warn;
2126 #endif
2127 }
2128 
2129 /**
2130  *	bpf_prog_select_runtime - select exec runtime for BPF program
2131  *	@fp: bpf_prog populated with BPF program
2132  *	@err: pointer to error variable
2133  *
2134  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2135  * The BPF program will be executed via bpf_prog_run() function.
2136  *
2137  * Return: the &fp argument along with &err set to 0 for success or
2138  * a negative errno code on failure
2139  */
2140 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2141 {
2142 	/* In case of BPF to BPF calls, verifier did all the prep
2143 	 * work with regards to JITing, etc.
2144 	 */
2145 	bool jit_needed = false;
2146 
2147 	if (fp->bpf_func)
2148 		goto finalize;
2149 
2150 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2151 	    bpf_prog_has_kfunc_call(fp))
2152 		jit_needed = true;
2153 
2154 	bpf_prog_select_func(fp);
2155 
2156 	/* eBPF JITs can rewrite the program in case constant
2157 	 * blinding is active. However, in case of error during
2158 	 * blinding, bpf_int_jit_compile() must always return a
2159 	 * valid program, which in this case would simply not
2160 	 * be JITed, but falls back to the interpreter.
2161 	 */
2162 	if (!bpf_prog_is_dev_bound(fp->aux)) {
2163 		*err = bpf_prog_alloc_jited_linfo(fp);
2164 		if (*err)
2165 			return fp;
2166 
2167 		fp = bpf_int_jit_compile(fp);
2168 		bpf_prog_jit_attempt_done(fp);
2169 		if (!fp->jited && jit_needed) {
2170 			*err = -ENOTSUPP;
2171 			return fp;
2172 		}
2173 	} else {
2174 		*err = bpf_prog_offload_compile(fp);
2175 		if (*err)
2176 			return fp;
2177 	}
2178 
2179 finalize:
2180 	bpf_prog_lock_ro(fp);
2181 
2182 	/* The tail call compatibility check can only be done at
2183 	 * this late stage as we need to determine, if we deal
2184 	 * with JITed or non JITed program concatenations and not
2185 	 * all eBPF JITs might immediately support all features.
2186 	 */
2187 	*err = bpf_check_tail_call(fp);
2188 
2189 	return fp;
2190 }
2191 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2192 
2193 static unsigned int __bpf_prog_ret1(const void *ctx,
2194 				    const struct bpf_insn *insn)
2195 {
2196 	return 1;
2197 }
2198 
2199 static struct bpf_prog_dummy {
2200 	struct bpf_prog prog;
2201 } dummy_bpf_prog = {
2202 	.prog = {
2203 		.bpf_func = __bpf_prog_ret1,
2204 	},
2205 };
2206 
2207 struct bpf_empty_prog_array bpf_empty_prog_array = {
2208 	.null_prog = NULL,
2209 };
2210 EXPORT_SYMBOL(bpf_empty_prog_array);
2211 
2212 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2213 {
2214 	if (prog_cnt)
2215 		return kzalloc(sizeof(struct bpf_prog_array) +
2216 			       sizeof(struct bpf_prog_array_item) *
2217 			       (prog_cnt + 1),
2218 			       flags);
2219 
2220 	return &bpf_empty_prog_array.hdr;
2221 }
2222 
2223 void bpf_prog_array_free(struct bpf_prog_array *progs)
2224 {
2225 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2226 		return;
2227 	kfree_rcu(progs, rcu);
2228 }
2229 
2230 int bpf_prog_array_length(struct bpf_prog_array *array)
2231 {
2232 	struct bpf_prog_array_item *item;
2233 	u32 cnt = 0;
2234 
2235 	for (item = array->items; item->prog; item++)
2236 		if (item->prog != &dummy_bpf_prog.prog)
2237 			cnt++;
2238 	return cnt;
2239 }
2240 
2241 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2242 {
2243 	struct bpf_prog_array_item *item;
2244 
2245 	for (item = array->items; item->prog; item++)
2246 		if (item->prog != &dummy_bpf_prog.prog)
2247 			return false;
2248 	return true;
2249 }
2250 
2251 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2252 				     u32 *prog_ids,
2253 				     u32 request_cnt)
2254 {
2255 	struct bpf_prog_array_item *item;
2256 	int i = 0;
2257 
2258 	for (item = array->items; item->prog; item++) {
2259 		if (item->prog == &dummy_bpf_prog.prog)
2260 			continue;
2261 		prog_ids[i] = item->prog->aux->id;
2262 		if (++i == request_cnt) {
2263 			item++;
2264 			break;
2265 		}
2266 	}
2267 
2268 	return !!(item->prog);
2269 }
2270 
2271 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2272 				__u32 __user *prog_ids, u32 cnt)
2273 {
2274 	unsigned long err = 0;
2275 	bool nospc;
2276 	u32 *ids;
2277 
2278 	/* users of this function are doing:
2279 	 * cnt = bpf_prog_array_length();
2280 	 * if (cnt > 0)
2281 	 *     bpf_prog_array_copy_to_user(..., cnt);
2282 	 * so below kcalloc doesn't need extra cnt > 0 check.
2283 	 */
2284 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2285 	if (!ids)
2286 		return -ENOMEM;
2287 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2288 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2289 	kfree(ids);
2290 	if (err)
2291 		return -EFAULT;
2292 	if (nospc)
2293 		return -ENOSPC;
2294 	return 0;
2295 }
2296 
2297 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2298 				struct bpf_prog *old_prog)
2299 {
2300 	struct bpf_prog_array_item *item;
2301 
2302 	for (item = array->items; item->prog; item++)
2303 		if (item->prog == old_prog) {
2304 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2305 			break;
2306 		}
2307 }
2308 
2309 /**
2310  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2311  *                                   index into the program array with
2312  *                                   a dummy no-op program.
2313  * @array: a bpf_prog_array
2314  * @index: the index of the program to replace
2315  *
2316  * Skips over dummy programs, by not counting them, when calculating
2317  * the position of the program to replace.
2318  *
2319  * Return:
2320  * * 0		- Success
2321  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2322  * * -ENOENT	- Index out of range
2323  */
2324 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2325 {
2326 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2327 }
2328 
2329 /**
2330  * bpf_prog_array_update_at() - Updates the program at the given index
2331  *                              into the program array.
2332  * @array: a bpf_prog_array
2333  * @index: the index of the program to update
2334  * @prog: the program to insert into the array
2335  *
2336  * Skips over dummy programs, by not counting them, when calculating
2337  * the position of the program to update.
2338  *
2339  * Return:
2340  * * 0		- Success
2341  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2342  * * -ENOENT	- Index out of range
2343  */
2344 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2345 			     struct bpf_prog *prog)
2346 {
2347 	struct bpf_prog_array_item *item;
2348 
2349 	if (unlikely(index < 0))
2350 		return -EINVAL;
2351 
2352 	for (item = array->items; item->prog; item++) {
2353 		if (item->prog == &dummy_bpf_prog.prog)
2354 			continue;
2355 		if (!index) {
2356 			WRITE_ONCE(item->prog, prog);
2357 			return 0;
2358 		}
2359 		index--;
2360 	}
2361 	return -ENOENT;
2362 }
2363 
2364 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2365 			struct bpf_prog *exclude_prog,
2366 			struct bpf_prog *include_prog,
2367 			u64 bpf_cookie,
2368 			struct bpf_prog_array **new_array)
2369 {
2370 	int new_prog_cnt, carry_prog_cnt = 0;
2371 	struct bpf_prog_array_item *existing, *new;
2372 	struct bpf_prog_array *array;
2373 	bool found_exclude = false;
2374 
2375 	/* Figure out how many existing progs we need to carry over to
2376 	 * the new array.
2377 	 */
2378 	if (old_array) {
2379 		existing = old_array->items;
2380 		for (; existing->prog; existing++) {
2381 			if (existing->prog == exclude_prog) {
2382 				found_exclude = true;
2383 				continue;
2384 			}
2385 			if (existing->prog != &dummy_bpf_prog.prog)
2386 				carry_prog_cnt++;
2387 			if (existing->prog == include_prog)
2388 				return -EEXIST;
2389 		}
2390 	}
2391 
2392 	if (exclude_prog && !found_exclude)
2393 		return -ENOENT;
2394 
2395 	/* How many progs (not NULL) will be in the new array? */
2396 	new_prog_cnt = carry_prog_cnt;
2397 	if (include_prog)
2398 		new_prog_cnt += 1;
2399 
2400 	/* Do we have any prog (not NULL) in the new array? */
2401 	if (!new_prog_cnt) {
2402 		*new_array = NULL;
2403 		return 0;
2404 	}
2405 
2406 	/* +1 as the end of prog_array is marked with NULL */
2407 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2408 	if (!array)
2409 		return -ENOMEM;
2410 	new = array->items;
2411 
2412 	/* Fill in the new prog array */
2413 	if (carry_prog_cnt) {
2414 		existing = old_array->items;
2415 		for (; existing->prog; existing++) {
2416 			if (existing->prog == exclude_prog ||
2417 			    existing->prog == &dummy_bpf_prog.prog)
2418 				continue;
2419 
2420 			new->prog = existing->prog;
2421 			new->bpf_cookie = existing->bpf_cookie;
2422 			new++;
2423 		}
2424 	}
2425 	if (include_prog) {
2426 		new->prog = include_prog;
2427 		new->bpf_cookie = bpf_cookie;
2428 		new++;
2429 	}
2430 	new->prog = NULL;
2431 	*new_array = array;
2432 	return 0;
2433 }
2434 
2435 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2436 			     u32 *prog_ids, u32 request_cnt,
2437 			     u32 *prog_cnt)
2438 {
2439 	u32 cnt = 0;
2440 
2441 	if (array)
2442 		cnt = bpf_prog_array_length(array);
2443 
2444 	*prog_cnt = cnt;
2445 
2446 	/* return early if user requested only program count or nothing to copy */
2447 	if (!request_cnt || !cnt)
2448 		return 0;
2449 
2450 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2451 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2452 								     : 0;
2453 }
2454 
2455 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2456 			  struct bpf_map **used_maps, u32 len)
2457 {
2458 	struct bpf_map *map;
2459 	u32 i;
2460 
2461 	for (i = 0; i < len; i++) {
2462 		map = used_maps[i];
2463 		if (map->ops->map_poke_untrack)
2464 			map->ops->map_poke_untrack(map, aux);
2465 		bpf_map_put(map);
2466 	}
2467 }
2468 
2469 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2470 {
2471 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2472 	kfree(aux->used_maps);
2473 }
2474 
2475 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2476 			  struct btf_mod_pair *used_btfs, u32 len)
2477 {
2478 #ifdef CONFIG_BPF_SYSCALL
2479 	struct btf_mod_pair *btf_mod;
2480 	u32 i;
2481 
2482 	for (i = 0; i < len; i++) {
2483 		btf_mod = &used_btfs[i];
2484 		if (btf_mod->module)
2485 			module_put(btf_mod->module);
2486 		btf_put(btf_mod->btf);
2487 	}
2488 #endif
2489 }
2490 
2491 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2492 {
2493 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2494 	kfree(aux->used_btfs);
2495 }
2496 
2497 static void bpf_prog_free_deferred(struct work_struct *work)
2498 {
2499 	struct bpf_prog_aux *aux;
2500 	int i;
2501 
2502 	aux = container_of(work, struct bpf_prog_aux, work);
2503 #ifdef CONFIG_BPF_SYSCALL
2504 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2505 #endif
2506 	bpf_free_used_maps(aux);
2507 	bpf_free_used_btfs(aux);
2508 	if (bpf_prog_is_dev_bound(aux))
2509 		bpf_prog_offload_destroy(aux->prog);
2510 #ifdef CONFIG_PERF_EVENTS
2511 	if (aux->prog->has_callchain_buf)
2512 		put_callchain_buffers();
2513 #endif
2514 	if (aux->dst_trampoline)
2515 		bpf_trampoline_put(aux->dst_trampoline);
2516 	for (i = 0; i < aux->func_cnt; i++) {
2517 		/* We can just unlink the subprog poke descriptor table as
2518 		 * it was originally linked to the main program and is also
2519 		 * released along with it.
2520 		 */
2521 		aux->func[i]->aux->poke_tab = NULL;
2522 		bpf_jit_free(aux->func[i]);
2523 	}
2524 	if (aux->func_cnt) {
2525 		kfree(aux->func);
2526 		bpf_prog_unlock_free(aux->prog);
2527 	} else {
2528 		bpf_jit_free(aux->prog);
2529 	}
2530 }
2531 
2532 void bpf_prog_free(struct bpf_prog *fp)
2533 {
2534 	struct bpf_prog_aux *aux = fp->aux;
2535 
2536 	if (aux->dst_prog)
2537 		bpf_prog_put(aux->dst_prog);
2538 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2539 	schedule_work(&aux->work);
2540 }
2541 EXPORT_SYMBOL_GPL(bpf_prog_free);
2542 
2543 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2544 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2545 
2546 void bpf_user_rnd_init_once(void)
2547 {
2548 	prandom_init_once(&bpf_user_rnd_state);
2549 }
2550 
2551 BPF_CALL_0(bpf_user_rnd_u32)
2552 {
2553 	/* Should someone ever have the rather unwise idea to use some
2554 	 * of the registers passed into this function, then note that
2555 	 * this function is called from native eBPF and classic-to-eBPF
2556 	 * transformations. Register assignments from both sides are
2557 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2558 	 */
2559 	struct rnd_state *state;
2560 	u32 res;
2561 
2562 	state = &get_cpu_var(bpf_user_rnd_state);
2563 	res = prandom_u32_state(state);
2564 	put_cpu_var(bpf_user_rnd_state);
2565 
2566 	return res;
2567 }
2568 
2569 BPF_CALL_0(bpf_get_raw_cpu_id)
2570 {
2571 	return raw_smp_processor_id();
2572 }
2573 
2574 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2575 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2576 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2577 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2578 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2579 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2580 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2581 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2582 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2583 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2584 
2585 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2586 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2587 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2588 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2589 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2590 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2591 
2592 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2593 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2594 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2595 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2596 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2597 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2598 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2599 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2600 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2601 
2602 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2603 {
2604 	return NULL;
2605 }
2606 
2607 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2608 {
2609 	return NULL;
2610 }
2611 
2612 u64 __weak
2613 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2614 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2615 {
2616 	return -ENOTSUPP;
2617 }
2618 EXPORT_SYMBOL_GPL(bpf_event_output);
2619 
2620 /* Always built-in helper functions. */
2621 const struct bpf_func_proto bpf_tail_call_proto = {
2622 	.func		= NULL,
2623 	.gpl_only	= false,
2624 	.ret_type	= RET_VOID,
2625 	.arg1_type	= ARG_PTR_TO_CTX,
2626 	.arg2_type	= ARG_CONST_MAP_PTR,
2627 	.arg3_type	= ARG_ANYTHING,
2628 };
2629 
2630 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2631  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2632  * eBPF and implicitly also cBPF can get JITed!
2633  */
2634 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2635 {
2636 	return prog;
2637 }
2638 
2639 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2640  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2641  */
2642 void __weak bpf_jit_compile(struct bpf_prog *prog)
2643 {
2644 }
2645 
2646 bool __weak bpf_helper_changes_pkt_data(void *func)
2647 {
2648 	return false;
2649 }
2650 
2651 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2652  * analysis code and wants explicit zero extension inserted by verifier.
2653  * Otherwise, return FALSE.
2654  *
2655  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2656  * you don't override this. JITs that don't want these extra insns can detect
2657  * them using insn_is_zext.
2658  */
2659 bool __weak bpf_jit_needs_zext(void)
2660 {
2661 	return false;
2662 }
2663 
2664 bool __weak bpf_jit_supports_kfunc_call(void)
2665 {
2666 	return false;
2667 }
2668 
2669 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2670  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2671  */
2672 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2673 			 int len)
2674 {
2675 	return -EFAULT;
2676 }
2677 
2678 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2679 			      void *addr1, void *addr2)
2680 {
2681 	return -ENOTSUPP;
2682 }
2683 
2684 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2685 {
2686 	return ERR_PTR(-ENOTSUPP);
2687 }
2688 
2689 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2690 EXPORT_SYMBOL(bpf_stats_enabled_key);
2691 
2692 /* All definitions of tracepoints related to BPF. */
2693 #define CREATE_TRACE_POINTS
2694 #include <linux/bpf_trace.h>
2695 
2696 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2697 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2698