xref: /openbmc/linux/kernel/bpf/core.c (revision cc8bbe1a)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 
31 #include <asm/unaligned.h>
32 
33 /* Registers */
34 #define BPF_R0	regs[BPF_REG_0]
35 #define BPF_R1	regs[BPF_REG_1]
36 #define BPF_R2	regs[BPF_REG_2]
37 #define BPF_R3	regs[BPF_REG_3]
38 #define BPF_R4	regs[BPF_REG_4]
39 #define BPF_R5	regs[BPF_REG_5]
40 #define BPF_R6	regs[BPF_REG_6]
41 #define BPF_R7	regs[BPF_REG_7]
42 #define BPF_R8	regs[BPF_REG_8]
43 #define BPF_R9	regs[BPF_REG_9]
44 #define BPF_R10	regs[BPF_REG_10]
45 
46 /* Named registers */
47 #define DST	regs[insn->dst_reg]
48 #define SRC	regs[insn->src_reg]
49 #define FP	regs[BPF_REG_FP]
50 #define ARG1	regs[BPF_REG_ARG1]
51 #define CTX	regs[BPF_REG_CTX]
52 #define IMM	insn->imm
53 
54 /* No hurry in this branch
55  *
56  * Exported for the bpf jit load helper.
57  */
58 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
59 {
60 	u8 *ptr = NULL;
61 
62 	if (k >= SKF_NET_OFF)
63 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
64 	else if (k >= SKF_LL_OFF)
65 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
66 
67 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
68 		return ptr;
69 
70 	return NULL;
71 }
72 
73 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
74 {
75 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
76 			  gfp_extra_flags;
77 	struct bpf_prog_aux *aux;
78 	struct bpf_prog *fp;
79 
80 	size = round_up(size, PAGE_SIZE);
81 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
82 	if (fp == NULL)
83 		return NULL;
84 
85 	kmemcheck_annotate_bitfield(fp, meta);
86 
87 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
88 	if (aux == NULL) {
89 		vfree(fp);
90 		return NULL;
91 	}
92 
93 	fp->pages = size / PAGE_SIZE;
94 	fp->aux = aux;
95 	fp->aux->prog = fp;
96 
97 	return fp;
98 }
99 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
100 
101 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
102 				  gfp_t gfp_extra_flags)
103 {
104 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
105 			  gfp_extra_flags;
106 	struct bpf_prog *fp;
107 
108 	BUG_ON(fp_old == NULL);
109 
110 	size = round_up(size, PAGE_SIZE);
111 	if (size <= fp_old->pages * PAGE_SIZE)
112 		return fp_old;
113 
114 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
115 	if (fp != NULL) {
116 		kmemcheck_annotate_bitfield(fp, meta);
117 
118 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
119 		fp->pages = size / PAGE_SIZE;
120 		fp->aux->prog = fp;
121 
122 		/* We keep fp->aux from fp_old around in the new
123 		 * reallocated structure.
124 		 */
125 		fp_old->aux = NULL;
126 		__bpf_prog_free(fp_old);
127 	}
128 
129 	return fp;
130 }
131 EXPORT_SYMBOL_GPL(bpf_prog_realloc);
132 
133 void __bpf_prog_free(struct bpf_prog *fp)
134 {
135 	kfree(fp->aux);
136 	vfree(fp);
137 }
138 EXPORT_SYMBOL_GPL(__bpf_prog_free);
139 
140 #ifdef CONFIG_BPF_JIT
141 struct bpf_binary_header *
142 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
143 		     unsigned int alignment,
144 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
145 {
146 	struct bpf_binary_header *hdr;
147 	unsigned int size, hole, start;
148 
149 	/* Most of BPF filters are really small, but if some of them
150 	 * fill a page, allow at least 128 extra bytes to insert a
151 	 * random section of illegal instructions.
152 	 */
153 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
154 	hdr = module_alloc(size);
155 	if (hdr == NULL)
156 		return NULL;
157 
158 	/* Fill space with illegal/arch-dep instructions. */
159 	bpf_fill_ill_insns(hdr, size);
160 
161 	hdr->pages = size / PAGE_SIZE;
162 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
163 		     PAGE_SIZE - sizeof(*hdr));
164 	start = (prandom_u32() % hole) & ~(alignment - 1);
165 
166 	/* Leave a random number of instructions before BPF code. */
167 	*image_ptr = &hdr->image[start];
168 
169 	return hdr;
170 }
171 
172 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
173 {
174 	module_memfree(hdr);
175 }
176 #endif /* CONFIG_BPF_JIT */
177 
178 /* Base function for offset calculation. Needs to go into .text section,
179  * therefore keeping it non-static as well; will also be used by JITs
180  * anyway later on, so do not let the compiler omit it.
181  */
182 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
183 {
184 	return 0;
185 }
186 EXPORT_SYMBOL_GPL(__bpf_call_base);
187 
188 /**
189  *	__bpf_prog_run - run eBPF program on a given context
190  *	@ctx: is the data we are operating on
191  *	@insn: is the array of eBPF instructions
192  *
193  * Decode and execute eBPF instructions.
194  */
195 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
196 {
197 	u64 stack[MAX_BPF_STACK / sizeof(u64)];
198 	u64 regs[MAX_BPF_REG], tmp;
199 	static const void *jumptable[256] = {
200 		[0 ... 255] = &&default_label,
201 		/* Now overwrite non-defaults ... */
202 		/* 32 bit ALU operations */
203 		[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
204 		[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
205 		[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
206 		[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
207 		[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
208 		[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
209 		[BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
210 		[BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
211 		[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
212 		[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
213 		[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
214 		[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
215 		[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
216 		[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
217 		[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
218 		[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
219 		[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
220 		[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
221 		[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
222 		[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
223 		[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
224 		[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
225 		[BPF_ALU | BPF_NEG] = &&ALU_NEG,
226 		[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
227 		[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
228 		/* 64 bit ALU operations */
229 		[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
230 		[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
231 		[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
232 		[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
233 		[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
234 		[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
235 		[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
236 		[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
237 		[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
238 		[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
239 		[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
240 		[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
241 		[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
242 		[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
243 		[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
244 		[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
245 		[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
246 		[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
247 		[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
248 		[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
249 		[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
250 		[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
251 		[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
252 		[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
253 		[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
254 		/* Call instruction */
255 		[BPF_JMP | BPF_CALL] = &&JMP_CALL,
256 		[BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
257 		/* Jumps */
258 		[BPF_JMP | BPF_JA] = &&JMP_JA,
259 		[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
260 		[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
261 		[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
262 		[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
263 		[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
264 		[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
265 		[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
266 		[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
267 		[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
268 		[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
269 		[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
270 		[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
271 		[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
272 		[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
273 		/* Program return */
274 		[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
275 		/* Store instructions */
276 		[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
277 		[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
278 		[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
279 		[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
280 		[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
281 		[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
282 		[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
283 		[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
284 		[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
285 		[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
286 		/* Load instructions */
287 		[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
288 		[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
289 		[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
290 		[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
291 		[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
292 		[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
293 		[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
294 		[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
295 		[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
296 		[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
297 		[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
298 	};
299 	u32 tail_call_cnt = 0;
300 	void *ptr;
301 	int off;
302 
303 #define CONT	 ({ insn++; goto select_insn; })
304 #define CONT_JMP ({ insn++; goto select_insn; })
305 
306 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
307 	ARG1 = (u64) (unsigned long) ctx;
308 
309 select_insn:
310 	goto *jumptable[insn->code];
311 
312 	/* ALU */
313 #define ALU(OPCODE, OP)			\
314 	ALU64_##OPCODE##_X:		\
315 		DST = DST OP SRC;	\
316 		CONT;			\
317 	ALU_##OPCODE##_X:		\
318 		DST = (u32) DST OP (u32) SRC;	\
319 		CONT;			\
320 	ALU64_##OPCODE##_K:		\
321 		DST = DST OP IMM;		\
322 		CONT;			\
323 	ALU_##OPCODE##_K:		\
324 		DST = (u32) DST OP (u32) IMM;	\
325 		CONT;
326 
327 	ALU(ADD,  +)
328 	ALU(SUB,  -)
329 	ALU(AND,  &)
330 	ALU(OR,   |)
331 	ALU(LSH, <<)
332 	ALU(RSH, >>)
333 	ALU(XOR,  ^)
334 	ALU(MUL,  *)
335 #undef ALU
336 	ALU_NEG:
337 		DST = (u32) -DST;
338 		CONT;
339 	ALU64_NEG:
340 		DST = -DST;
341 		CONT;
342 	ALU_MOV_X:
343 		DST = (u32) SRC;
344 		CONT;
345 	ALU_MOV_K:
346 		DST = (u32) IMM;
347 		CONT;
348 	ALU64_MOV_X:
349 		DST = SRC;
350 		CONT;
351 	ALU64_MOV_K:
352 		DST = IMM;
353 		CONT;
354 	LD_IMM_DW:
355 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
356 		insn++;
357 		CONT;
358 	ALU64_ARSH_X:
359 		(*(s64 *) &DST) >>= SRC;
360 		CONT;
361 	ALU64_ARSH_K:
362 		(*(s64 *) &DST) >>= IMM;
363 		CONT;
364 	ALU64_MOD_X:
365 		if (unlikely(SRC == 0))
366 			return 0;
367 		div64_u64_rem(DST, SRC, &tmp);
368 		DST = tmp;
369 		CONT;
370 	ALU_MOD_X:
371 		if (unlikely(SRC == 0))
372 			return 0;
373 		tmp = (u32) DST;
374 		DST = do_div(tmp, (u32) SRC);
375 		CONT;
376 	ALU64_MOD_K:
377 		div64_u64_rem(DST, IMM, &tmp);
378 		DST = tmp;
379 		CONT;
380 	ALU_MOD_K:
381 		tmp = (u32) DST;
382 		DST = do_div(tmp, (u32) IMM);
383 		CONT;
384 	ALU64_DIV_X:
385 		if (unlikely(SRC == 0))
386 			return 0;
387 		DST = div64_u64(DST, SRC);
388 		CONT;
389 	ALU_DIV_X:
390 		if (unlikely(SRC == 0))
391 			return 0;
392 		tmp = (u32) DST;
393 		do_div(tmp, (u32) SRC);
394 		DST = (u32) tmp;
395 		CONT;
396 	ALU64_DIV_K:
397 		DST = div64_u64(DST, IMM);
398 		CONT;
399 	ALU_DIV_K:
400 		tmp = (u32) DST;
401 		do_div(tmp, (u32) IMM);
402 		DST = (u32) tmp;
403 		CONT;
404 	ALU_END_TO_BE:
405 		switch (IMM) {
406 		case 16:
407 			DST = (__force u16) cpu_to_be16(DST);
408 			break;
409 		case 32:
410 			DST = (__force u32) cpu_to_be32(DST);
411 			break;
412 		case 64:
413 			DST = (__force u64) cpu_to_be64(DST);
414 			break;
415 		}
416 		CONT;
417 	ALU_END_TO_LE:
418 		switch (IMM) {
419 		case 16:
420 			DST = (__force u16) cpu_to_le16(DST);
421 			break;
422 		case 32:
423 			DST = (__force u32) cpu_to_le32(DST);
424 			break;
425 		case 64:
426 			DST = (__force u64) cpu_to_le64(DST);
427 			break;
428 		}
429 		CONT;
430 
431 	/* CALL */
432 	JMP_CALL:
433 		/* Function call scratches BPF_R1-BPF_R5 registers,
434 		 * preserves BPF_R6-BPF_R9, and stores return value
435 		 * into BPF_R0.
436 		 */
437 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
438 						       BPF_R4, BPF_R5);
439 		CONT;
440 
441 	JMP_TAIL_CALL: {
442 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
443 		struct bpf_array *array = container_of(map, struct bpf_array, map);
444 		struct bpf_prog *prog;
445 		u64 index = BPF_R3;
446 
447 		if (unlikely(index >= array->map.max_entries))
448 			goto out;
449 
450 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
451 			goto out;
452 
453 		tail_call_cnt++;
454 
455 		prog = READ_ONCE(array->ptrs[index]);
456 		if (unlikely(!prog))
457 			goto out;
458 
459 		/* ARG1 at this point is guaranteed to point to CTX from
460 		 * the verifier side due to the fact that the tail call is
461 		 * handeled like a helper, that is, bpf_tail_call_proto,
462 		 * where arg1_type is ARG_PTR_TO_CTX.
463 		 */
464 		insn = prog->insnsi;
465 		goto select_insn;
466 out:
467 		CONT;
468 	}
469 	/* JMP */
470 	JMP_JA:
471 		insn += insn->off;
472 		CONT;
473 	JMP_JEQ_X:
474 		if (DST == SRC) {
475 			insn += insn->off;
476 			CONT_JMP;
477 		}
478 		CONT;
479 	JMP_JEQ_K:
480 		if (DST == IMM) {
481 			insn += insn->off;
482 			CONT_JMP;
483 		}
484 		CONT;
485 	JMP_JNE_X:
486 		if (DST != SRC) {
487 			insn += insn->off;
488 			CONT_JMP;
489 		}
490 		CONT;
491 	JMP_JNE_K:
492 		if (DST != IMM) {
493 			insn += insn->off;
494 			CONT_JMP;
495 		}
496 		CONT;
497 	JMP_JGT_X:
498 		if (DST > SRC) {
499 			insn += insn->off;
500 			CONT_JMP;
501 		}
502 		CONT;
503 	JMP_JGT_K:
504 		if (DST > IMM) {
505 			insn += insn->off;
506 			CONT_JMP;
507 		}
508 		CONT;
509 	JMP_JGE_X:
510 		if (DST >= SRC) {
511 			insn += insn->off;
512 			CONT_JMP;
513 		}
514 		CONT;
515 	JMP_JGE_K:
516 		if (DST >= IMM) {
517 			insn += insn->off;
518 			CONT_JMP;
519 		}
520 		CONT;
521 	JMP_JSGT_X:
522 		if (((s64) DST) > ((s64) SRC)) {
523 			insn += insn->off;
524 			CONT_JMP;
525 		}
526 		CONT;
527 	JMP_JSGT_K:
528 		if (((s64) DST) > ((s64) IMM)) {
529 			insn += insn->off;
530 			CONT_JMP;
531 		}
532 		CONT;
533 	JMP_JSGE_X:
534 		if (((s64) DST) >= ((s64) SRC)) {
535 			insn += insn->off;
536 			CONT_JMP;
537 		}
538 		CONT;
539 	JMP_JSGE_K:
540 		if (((s64) DST) >= ((s64) IMM)) {
541 			insn += insn->off;
542 			CONT_JMP;
543 		}
544 		CONT;
545 	JMP_JSET_X:
546 		if (DST & SRC) {
547 			insn += insn->off;
548 			CONT_JMP;
549 		}
550 		CONT;
551 	JMP_JSET_K:
552 		if (DST & IMM) {
553 			insn += insn->off;
554 			CONT_JMP;
555 		}
556 		CONT;
557 	JMP_EXIT:
558 		return BPF_R0;
559 
560 	/* STX and ST and LDX*/
561 #define LDST(SIZEOP, SIZE)						\
562 	STX_MEM_##SIZEOP:						\
563 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
564 		CONT;							\
565 	ST_MEM_##SIZEOP:						\
566 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
567 		CONT;							\
568 	LDX_MEM_##SIZEOP:						\
569 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
570 		CONT;
571 
572 	LDST(B,   u8)
573 	LDST(H,  u16)
574 	LDST(W,  u32)
575 	LDST(DW, u64)
576 #undef LDST
577 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
578 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
579 			   (DST + insn->off));
580 		CONT;
581 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
582 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
583 			     (DST + insn->off));
584 		CONT;
585 	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
586 		off = IMM;
587 load_word:
588 		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
589 		 * only appearing in the programs where ctx ==
590 		 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
591 		 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
592 		 * internal BPF verifier will check that BPF_R6 ==
593 		 * ctx.
594 		 *
595 		 * BPF_ABS and BPF_IND are wrappers of function calls,
596 		 * so they scratch BPF_R1-BPF_R5 registers, preserve
597 		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
598 		 *
599 		 * Implicit input:
600 		 *   ctx == skb == BPF_R6 == CTX
601 		 *
602 		 * Explicit input:
603 		 *   SRC == any register
604 		 *   IMM == 32-bit immediate
605 		 *
606 		 * Output:
607 		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
608 		 */
609 
610 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
611 		if (likely(ptr != NULL)) {
612 			BPF_R0 = get_unaligned_be32(ptr);
613 			CONT;
614 		}
615 
616 		return 0;
617 	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
618 		off = IMM;
619 load_half:
620 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
621 		if (likely(ptr != NULL)) {
622 			BPF_R0 = get_unaligned_be16(ptr);
623 			CONT;
624 		}
625 
626 		return 0;
627 	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
628 		off = IMM;
629 load_byte:
630 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
631 		if (likely(ptr != NULL)) {
632 			BPF_R0 = *(u8 *)ptr;
633 			CONT;
634 		}
635 
636 		return 0;
637 	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
638 		off = IMM + SRC;
639 		goto load_word;
640 	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
641 		off = IMM + SRC;
642 		goto load_half;
643 	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
644 		off = IMM + SRC;
645 		goto load_byte;
646 
647 	default_label:
648 		/* If we ever reach this, we have a bug somewhere. */
649 		WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
650 		return 0;
651 }
652 
653 bool bpf_prog_array_compatible(struct bpf_array *array,
654 			       const struct bpf_prog *fp)
655 {
656 	if (!array->owner_prog_type) {
657 		/* There's no owner yet where we could check for
658 		 * compatibility.
659 		 */
660 		array->owner_prog_type = fp->type;
661 		array->owner_jited = fp->jited;
662 
663 		return true;
664 	}
665 
666 	return array->owner_prog_type == fp->type &&
667 	       array->owner_jited == fp->jited;
668 }
669 
670 static int bpf_check_tail_call(const struct bpf_prog *fp)
671 {
672 	struct bpf_prog_aux *aux = fp->aux;
673 	int i;
674 
675 	for (i = 0; i < aux->used_map_cnt; i++) {
676 		struct bpf_map *map = aux->used_maps[i];
677 		struct bpf_array *array;
678 
679 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
680 			continue;
681 
682 		array = container_of(map, struct bpf_array, map);
683 		if (!bpf_prog_array_compatible(array, fp))
684 			return -EINVAL;
685 	}
686 
687 	return 0;
688 }
689 
690 /**
691  *	bpf_prog_select_runtime - select exec runtime for BPF program
692  *	@fp: bpf_prog populated with internal BPF program
693  *
694  * Try to JIT eBPF program, if JIT is not available, use interpreter.
695  * The BPF program will be executed via BPF_PROG_RUN() macro.
696  */
697 int bpf_prog_select_runtime(struct bpf_prog *fp)
698 {
699 	fp->bpf_func = (void *) __bpf_prog_run;
700 
701 	bpf_int_jit_compile(fp);
702 	bpf_prog_lock_ro(fp);
703 
704 	/* The tail call compatibility check can only be done at
705 	 * this late stage as we need to determine, if we deal
706 	 * with JITed or non JITed program concatenations and not
707 	 * all eBPF JITs might immediately support all features.
708 	 */
709 	return bpf_check_tail_call(fp);
710 }
711 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
712 
713 static void bpf_prog_free_deferred(struct work_struct *work)
714 {
715 	struct bpf_prog_aux *aux;
716 
717 	aux = container_of(work, struct bpf_prog_aux, work);
718 	bpf_jit_free(aux->prog);
719 }
720 
721 /* Free internal BPF program */
722 void bpf_prog_free(struct bpf_prog *fp)
723 {
724 	struct bpf_prog_aux *aux = fp->aux;
725 
726 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
727 	schedule_work(&aux->work);
728 }
729 EXPORT_SYMBOL_GPL(bpf_prog_free);
730 
731 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
732 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
733 
734 void bpf_user_rnd_init_once(void)
735 {
736 	prandom_init_once(&bpf_user_rnd_state);
737 }
738 
739 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
740 {
741 	/* Should someone ever have the rather unwise idea to use some
742 	 * of the registers passed into this function, then note that
743 	 * this function is called from native eBPF and classic-to-eBPF
744 	 * transformations. Register assignments from both sides are
745 	 * different, f.e. classic always sets fn(ctx, A, X) here.
746 	 */
747 	struct rnd_state *state;
748 	u32 res;
749 
750 	state = &get_cpu_var(bpf_user_rnd_state);
751 	res = prandom_u32_state(state);
752 	put_cpu_var(state);
753 
754 	return res;
755 }
756 
757 /* Weak definitions of helper functions in case we don't have bpf syscall. */
758 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
759 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
760 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
761 
762 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
763 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
764 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
765 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
766 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
767 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
768 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
769 {
770 	return NULL;
771 }
772 
773 /* Always built-in helper functions. */
774 const struct bpf_func_proto bpf_tail_call_proto = {
775 	.func		= NULL,
776 	.gpl_only	= false,
777 	.ret_type	= RET_VOID,
778 	.arg1_type	= ARG_PTR_TO_CTX,
779 	.arg2_type	= ARG_CONST_MAP_PTR,
780 	.arg3_type	= ARG_ANYTHING,
781 };
782 
783 /* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
784 void __weak bpf_int_jit_compile(struct bpf_prog *prog)
785 {
786 }
787 
788 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
789  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
790  */
791 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
792 			 int len)
793 {
794 	return -EFAULT;
795 }
796