xref: /openbmc/linux/kernel/bpf/core.c (revision abe9af53)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <asm/unaligned.h>
36 
37 /* Registers */
38 #define BPF_R0	regs[BPF_REG_0]
39 #define BPF_R1	regs[BPF_REG_1]
40 #define BPF_R2	regs[BPF_REG_2]
41 #define BPF_R3	regs[BPF_REG_3]
42 #define BPF_R4	regs[BPF_REG_4]
43 #define BPF_R5	regs[BPF_REG_5]
44 #define BPF_R6	regs[BPF_REG_6]
45 #define BPF_R7	regs[BPF_REG_7]
46 #define BPF_R8	regs[BPF_REG_8]
47 #define BPF_R9	regs[BPF_REG_9]
48 #define BPF_R10	regs[BPF_REG_10]
49 
50 /* Named registers */
51 #define DST	regs[insn->dst_reg]
52 #define SRC	regs[insn->src_reg]
53 #define FP	regs[BPF_REG_FP]
54 #define AX	regs[BPF_REG_AX]
55 #define ARG1	regs[BPF_REG_ARG1]
56 #define CTX	regs[BPF_REG_CTX]
57 #define IMM	insn->imm
58 
59 /* No hurry in this branch
60  *
61  * Exported for the bpf jit load helper.
62  */
63 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
64 {
65 	u8 *ptr = NULL;
66 
67 	if (k >= SKF_NET_OFF)
68 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
69 	else if (k >= SKF_LL_OFF)
70 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
71 
72 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
73 		return ptr;
74 
75 	return NULL;
76 }
77 
78 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
79 {
80 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
81 	struct bpf_prog_aux *aux;
82 	struct bpf_prog *fp;
83 
84 	size = round_up(size, PAGE_SIZE);
85 	fp = __vmalloc(size, gfp_flags);
86 	if (fp == NULL)
87 		return NULL;
88 
89 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
90 	if (aux == NULL) {
91 		vfree(fp);
92 		return NULL;
93 	}
94 
95 	fp->pages = size / PAGE_SIZE;
96 	fp->aux = aux;
97 	fp->aux->prog = fp;
98 	fp->jit_requested = ebpf_jit_enabled();
99 
100 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
101 	mutex_init(&fp->aux->used_maps_mutex);
102 	mutex_init(&fp->aux->dst_mutex);
103 
104 	return fp;
105 }
106 
107 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
108 {
109 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
110 	struct bpf_prog *prog;
111 	int cpu;
112 
113 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
114 	if (!prog)
115 		return NULL;
116 
117 	prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
118 	if (!prog->aux->stats) {
119 		kfree(prog->aux);
120 		vfree(prog);
121 		return NULL;
122 	}
123 
124 	for_each_possible_cpu(cpu) {
125 		struct bpf_prog_stats *pstats;
126 
127 		pstats = per_cpu_ptr(prog->aux->stats, cpu);
128 		u64_stats_init(&pstats->syncp);
129 	}
130 	return prog;
131 }
132 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
133 
134 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
135 {
136 	if (!prog->aux->nr_linfo || !prog->jit_requested)
137 		return 0;
138 
139 	prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
140 					 sizeof(*prog->aux->jited_linfo),
141 					 GFP_KERNEL | __GFP_NOWARN);
142 	if (!prog->aux->jited_linfo)
143 		return -ENOMEM;
144 
145 	return 0;
146 }
147 
148 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
149 {
150 	kfree(prog->aux->jited_linfo);
151 	prog->aux->jited_linfo = NULL;
152 }
153 
154 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
155 {
156 	if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
157 		bpf_prog_free_jited_linfo(prog);
158 }
159 
160 /* The jit engine is responsible to provide an array
161  * for insn_off to the jited_off mapping (insn_to_jit_off).
162  *
163  * The idx to this array is the insn_off.  Hence, the insn_off
164  * here is relative to the prog itself instead of the main prog.
165  * This array has one entry for each xlated bpf insn.
166  *
167  * jited_off is the byte off to the last byte of the jited insn.
168  *
169  * Hence, with
170  * insn_start:
171  *      The first bpf insn off of the prog.  The insn off
172  *      here is relative to the main prog.
173  *      e.g. if prog is a subprog, insn_start > 0
174  * linfo_idx:
175  *      The prog's idx to prog->aux->linfo and jited_linfo
176  *
177  * jited_linfo[linfo_idx] = prog->bpf_func
178  *
179  * For i > linfo_idx,
180  *
181  * jited_linfo[i] = prog->bpf_func +
182  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
183  */
184 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
185 			       const u32 *insn_to_jit_off)
186 {
187 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
188 	const struct bpf_line_info *linfo;
189 	void **jited_linfo;
190 
191 	if (!prog->aux->jited_linfo)
192 		/* Userspace did not provide linfo */
193 		return;
194 
195 	linfo_idx = prog->aux->linfo_idx;
196 	linfo = &prog->aux->linfo[linfo_idx];
197 	insn_start = linfo[0].insn_off;
198 	insn_end = insn_start + prog->len;
199 
200 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
201 	jited_linfo[0] = prog->bpf_func;
202 
203 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
204 
205 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
206 		/* The verifier ensures that linfo[i].insn_off is
207 		 * strictly increasing
208 		 */
209 		jited_linfo[i] = prog->bpf_func +
210 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
211 }
212 
213 void bpf_prog_free_linfo(struct bpf_prog *prog)
214 {
215 	bpf_prog_free_jited_linfo(prog);
216 	kvfree(prog->aux->linfo);
217 }
218 
219 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
220 				  gfp_t gfp_extra_flags)
221 {
222 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
223 	struct bpf_prog *fp;
224 	u32 pages, delta;
225 	int ret;
226 
227 	size = round_up(size, PAGE_SIZE);
228 	pages = size / PAGE_SIZE;
229 	if (pages <= fp_old->pages)
230 		return fp_old;
231 
232 	delta = pages - fp_old->pages;
233 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
234 	if (ret)
235 		return NULL;
236 
237 	fp = __vmalloc(size, gfp_flags);
238 	if (fp == NULL) {
239 		__bpf_prog_uncharge(fp_old->aux->user, delta);
240 	} else {
241 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
242 		fp->pages = pages;
243 		fp->aux->prog = fp;
244 
245 		/* We keep fp->aux from fp_old around in the new
246 		 * reallocated structure.
247 		 */
248 		fp_old->aux = NULL;
249 		__bpf_prog_free(fp_old);
250 	}
251 
252 	return fp;
253 }
254 
255 void __bpf_prog_free(struct bpf_prog *fp)
256 {
257 	if (fp->aux) {
258 		mutex_destroy(&fp->aux->used_maps_mutex);
259 		mutex_destroy(&fp->aux->dst_mutex);
260 		free_percpu(fp->aux->stats);
261 		kfree(fp->aux->poke_tab);
262 		kfree(fp->aux);
263 	}
264 	vfree(fp);
265 }
266 
267 int bpf_prog_calc_tag(struct bpf_prog *fp)
268 {
269 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
270 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
271 	u32 digest[SHA1_DIGEST_WORDS];
272 	u32 ws[SHA1_WORKSPACE_WORDS];
273 	u32 i, bsize, psize, blocks;
274 	struct bpf_insn *dst;
275 	bool was_ld_map;
276 	u8 *raw, *todo;
277 	__be32 *result;
278 	__be64 *bits;
279 
280 	raw = vmalloc(raw_size);
281 	if (!raw)
282 		return -ENOMEM;
283 
284 	sha1_init(digest);
285 	memset(ws, 0, sizeof(ws));
286 
287 	/* We need to take out the map fd for the digest calculation
288 	 * since they are unstable from user space side.
289 	 */
290 	dst = (void *)raw;
291 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
292 		dst[i] = fp->insnsi[i];
293 		if (!was_ld_map &&
294 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
295 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
296 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
297 			was_ld_map = true;
298 			dst[i].imm = 0;
299 		} else if (was_ld_map &&
300 			   dst[i].code == 0 &&
301 			   dst[i].dst_reg == 0 &&
302 			   dst[i].src_reg == 0 &&
303 			   dst[i].off == 0) {
304 			was_ld_map = false;
305 			dst[i].imm = 0;
306 		} else {
307 			was_ld_map = false;
308 		}
309 	}
310 
311 	psize = bpf_prog_insn_size(fp);
312 	memset(&raw[psize], 0, raw_size - psize);
313 	raw[psize++] = 0x80;
314 
315 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
316 	blocks = bsize / SHA1_BLOCK_SIZE;
317 	todo   = raw;
318 	if (bsize - psize >= sizeof(__be64)) {
319 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
320 	} else {
321 		bits = (__be64 *)(todo + bsize + bits_offset);
322 		blocks++;
323 	}
324 	*bits = cpu_to_be64((psize - 1) << 3);
325 
326 	while (blocks--) {
327 		sha1_transform(digest, todo, ws);
328 		todo += SHA1_BLOCK_SIZE;
329 	}
330 
331 	result = (__force __be32 *)digest;
332 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
333 		result[i] = cpu_to_be32(digest[i]);
334 	memcpy(fp->tag, result, sizeof(fp->tag));
335 
336 	vfree(raw);
337 	return 0;
338 }
339 
340 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
341 				s32 end_new, s32 curr, const bool probe_pass)
342 {
343 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
344 	s32 delta = end_new - end_old;
345 	s64 imm = insn->imm;
346 
347 	if (curr < pos && curr + imm + 1 >= end_old)
348 		imm += delta;
349 	else if (curr >= end_new && curr + imm + 1 < end_new)
350 		imm -= delta;
351 	if (imm < imm_min || imm > imm_max)
352 		return -ERANGE;
353 	if (!probe_pass)
354 		insn->imm = imm;
355 	return 0;
356 }
357 
358 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
359 				s32 end_new, s32 curr, const bool probe_pass)
360 {
361 	const s32 off_min = S16_MIN, off_max = S16_MAX;
362 	s32 delta = end_new - end_old;
363 	s32 off = insn->off;
364 
365 	if (curr < pos && curr + off + 1 >= end_old)
366 		off += delta;
367 	else if (curr >= end_new && curr + off + 1 < end_new)
368 		off -= delta;
369 	if (off < off_min || off > off_max)
370 		return -ERANGE;
371 	if (!probe_pass)
372 		insn->off = off;
373 	return 0;
374 }
375 
376 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
377 			    s32 end_new, const bool probe_pass)
378 {
379 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
380 	struct bpf_insn *insn = prog->insnsi;
381 	int ret = 0;
382 
383 	for (i = 0; i < insn_cnt; i++, insn++) {
384 		u8 code;
385 
386 		/* In the probing pass we still operate on the original,
387 		 * unpatched image in order to check overflows before we
388 		 * do any other adjustments. Therefore skip the patchlet.
389 		 */
390 		if (probe_pass && i == pos) {
391 			i = end_new;
392 			insn = prog->insnsi + end_old;
393 		}
394 		code = insn->code;
395 		if ((BPF_CLASS(code) != BPF_JMP &&
396 		     BPF_CLASS(code) != BPF_JMP32) ||
397 		    BPF_OP(code) == BPF_EXIT)
398 			continue;
399 		/* Adjust offset of jmps if we cross patch boundaries. */
400 		if (BPF_OP(code) == BPF_CALL) {
401 			if (insn->src_reg != BPF_PSEUDO_CALL)
402 				continue;
403 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
404 						   end_new, i, probe_pass);
405 		} else {
406 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
407 						   end_new, i, probe_pass);
408 		}
409 		if (ret)
410 			break;
411 	}
412 
413 	return ret;
414 }
415 
416 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
417 {
418 	struct bpf_line_info *linfo;
419 	u32 i, nr_linfo;
420 
421 	nr_linfo = prog->aux->nr_linfo;
422 	if (!nr_linfo || !delta)
423 		return;
424 
425 	linfo = prog->aux->linfo;
426 
427 	for (i = 0; i < nr_linfo; i++)
428 		if (off < linfo[i].insn_off)
429 			break;
430 
431 	/* Push all off < linfo[i].insn_off by delta */
432 	for (; i < nr_linfo; i++)
433 		linfo[i].insn_off += delta;
434 }
435 
436 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
437 				       const struct bpf_insn *patch, u32 len)
438 {
439 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
440 	const u32 cnt_max = S16_MAX;
441 	struct bpf_prog *prog_adj;
442 	int err;
443 
444 	/* Since our patchlet doesn't expand the image, we're done. */
445 	if (insn_delta == 0) {
446 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
447 		return prog;
448 	}
449 
450 	insn_adj_cnt = prog->len + insn_delta;
451 
452 	/* Reject anything that would potentially let the insn->off
453 	 * target overflow when we have excessive program expansions.
454 	 * We need to probe here before we do any reallocation where
455 	 * we afterwards may not fail anymore.
456 	 */
457 	if (insn_adj_cnt > cnt_max &&
458 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
459 		return ERR_PTR(err);
460 
461 	/* Several new instructions need to be inserted. Make room
462 	 * for them. Likely, there's no need for a new allocation as
463 	 * last page could have large enough tailroom.
464 	 */
465 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
466 				    GFP_USER);
467 	if (!prog_adj)
468 		return ERR_PTR(-ENOMEM);
469 
470 	prog_adj->len = insn_adj_cnt;
471 
472 	/* Patching happens in 3 steps:
473 	 *
474 	 * 1) Move over tail of insnsi from next instruction onwards,
475 	 *    so we can patch the single target insn with one or more
476 	 *    new ones (patching is always from 1 to n insns, n > 0).
477 	 * 2) Inject new instructions at the target location.
478 	 * 3) Adjust branch offsets if necessary.
479 	 */
480 	insn_rest = insn_adj_cnt - off - len;
481 
482 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
483 		sizeof(*patch) * insn_rest);
484 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
485 
486 	/* We are guaranteed to not fail at this point, otherwise
487 	 * the ship has sailed to reverse to the original state. An
488 	 * overflow cannot happen at this point.
489 	 */
490 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
491 
492 	bpf_adj_linfo(prog_adj, off, insn_delta);
493 
494 	return prog_adj;
495 }
496 
497 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
498 {
499 	/* Branch offsets can't overflow when program is shrinking, no need
500 	 * to call bpf_adj_branches(..., true) here
501 	 */
502 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
503 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
504 	prog->len -= cnt;
505 
506 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
507 }
508 
509 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
510 {
511 	int i;
512 
513 	for (i = 0; i < fp->aux->func_cnt; i++)
514 		bpf_prog_kallsyms_del(fp->aux->func[i]);
515 }
516 
517 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
518 {
519 	bpf_prog_kallsyms_del_subprogs(fp);
520 	bpf_prog_kallsyms_del(fp);
521 }
522 
523 #ifdef CONFIG_BPF_JIT
524 /* All BPF JIT sysctl knobs here. */
525 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
526 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
527 int bpf_jit_harden   __read_mostly;
528 long bpf_jit_limit   __read_mostly;
529 
530 static void
531 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
532 {
533 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
534 	unsigned long addr = (unsigned long)hdr;
535 
536 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
537 
538 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
539 	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
540 }
541 
542 static void
543 bpf_prog_ksym_set_name(struct bpf_prog *prog)
544 {
545 	char *sym = prog->aux->ksym.name;
546 	const char *end = sym + KSYM_NAME_LEN;
547 	const struct btf_type *type;
548 	const char *func_name;
549 
550 	BUILD_BUG_ON(sizeof("bpf_prog_") +
551 		     sizeof(prog->tag) * 2 +
552 		     /* name has been null terminated.
553 		      * We should need +1 for the '_' preceding
554 		      * the name.  However, the null character
555 		      * is double counted between the name and the
556 		      * sizeof("bpf_prog_") above, so we omit
557 		      * the +1 here.
558 		      */
559 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
560 
561 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
562 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
563 
564 	/* prog->aux->name will be ignored if full btf name is available */
565 	if (prog->aux->func_info_cnt) {
566 		type = btf_type_by_id(prog->aux->btf,
567 				      prog->aux->func_info[prog->aux->func_idx].type_id);
568 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
569 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
570 		return;
571 	}
572 
573 	if (prog->aux->name[0])
574 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
575 	else
576 		*sym = 0;
577 }
578 
579 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
580 {
581 	return container_of(n, struct bpf_ksym, tnode)->start;
582 }
583 
584 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
585 					  struct latch_tree_node *b)
586 {
587 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
588 }
589 
590 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
591 {
592 	unsigned long val = (unsigned long)key;
593 	const struct bpf_ksym *ksym;
594 
595 	ksym = container_of(n, struct bpf_ksym, tnode);
596 
597 	if (val < ksym->start)
598 		return -1;
599 	if (val >= ksym->end)
600 		return  1;
601 
602 	return 0;
603 }
604 
605 static const struct latch_tree_ops bpf_tree_ops = {
606 	.less	= bpf_tree_less,
607 	.comp	= bpf_tree_comp,
608 };
609 
610 static DEFINE_SPINLOCK(bpf_lock);
611 static LIST_HEAD(bpf_kallsyms);
612 static struct latch_tree_root bpf_tree __cacheline_aligned;
613 
614 void bpf_ksym_add(struct bpf_ksym *ksym)
615 {
616 	spin_lock_bh(&bpf_lock);
617 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
618 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
619 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
620 	spin_unlock_bh(&bpf_lock);
621 }
622 
623 static void __bpf_ksym_del(struct bpf_ksym *ksym)
624 {
625 	if (list_empty(&ksym->lnode))
626 		return;
627 
628 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
629 	list_del_rcu(&ksym->lnode);
630 }
631 
632 void bpf_ksym_del(struct bpf_ksym *ksym)
633 {
634 	spin_lock_bh(&bpf_lock);
635 	__bpf_ksym_del(ksym);
636 	spin_unlock_bh(&bpf_lock);
637 }
638 
639 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
640 {
641 	return fp->jited && !bpf_prog_was_classic(fp);
642 }
643 
644 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
645 {
646 	return list_empty(&fp->aux->ksym.lnode) ||
647 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
648 }
649 
650 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
651 {
652 	if (!bpf_prog_kallsyms_candidate(fp) ||
653 	    !bpf_capable())
654 		return;
655 
656 	bpf_prog_ksym_set_addr(fp);
657 	bpf_prog_ksym_set_name(fp);
658 	fp->aux->ksym.prog = true;
659 
660 	bpf_ksym_add(&fp->aux->ksym);
661 }
662 
663 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
664 {
665 	if (!bpf_prog_kallsyms_candidate(fp))
666 		return;
667 
668 	bpf_ksym_del(&fp->aux->ksym);
669 }
670 
671 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
672 {
673 	struct latch_tree_node *n;
674 
675 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
676 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
677 }
678 
679 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
680 				 unsigned long *off, char *sym)
681 {
682 	struct bpf_ksym *ksym;
683 	char *ret = NULL;
684 
685 	rcu_read_lock();
686 	ksym = bpf_ksym_find(addr);
687 	if (ksym) {
688 		unsigned long symbol_start = ksym->start;
689 		unsigned long symbol_end = ksym->end;
690 
691 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
692 
693 		ret = sym;
694 		if (size)
695 			*size = symbol_end - symbol_start;
696 		if (off)
697 			*off  = addr - symbol_start;
698 	}
699 	rcu_read_unlock();
700 
701 	return ret;
702 }
703 
704 bool is_bpf_text_address(unsigned long addr)
705 {
706 	bool ret;
707 
708 	rcu_read_lock();
709 	ret = bpf_ksym_find(addr) != NULL;
710 	rcu_read_unlock();
711 
712 	return ret;
713 }
714 
715 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
716 {
717 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
718 
719 	return ksym && ksym->prog ?
720 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
721 	       NULL;
722 }
723 
724 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
725 {
726 	const struct exception_table_entry *e = NULL;
727 	struct bpf_prog *prog;
728 
729 	rcu_read_lock();
730 	prog = bpf_prog_ksym_find(addr);
731 	if (!prog)
732 		goto out;
733 	if (!prog->aux->num_exentries)
734 		goto out;
735 
736 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
737 out:
738 	rcu_read_unlock();
739 	return e;
740 }
741 
742 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
743 		    char *sym)
744 {
745 	struct bpf_ksym *ksym;
746 	unsigned int it = 0;
747 	int ret = -ERANGE;
748 
749 	if (!bpf_jit_kallsyms_enabled())
750 		return ret;
751 
752 	rcu_read_lock();
753 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
754 		if (it++ != symnum)
755 			continue;
756 
757 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
758 
759 		*value = ksym->start;
760 		*type  = BPF_SYM_ELF_TYPE;
761 
762 		ret = 0;
763 		break;
764 	}
765 	rcu_read_unlock();
766 
767 	return ret;
768 }
769 
770 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
771 				struct bpf_jit_poke_descriptor *poke)
772 {
773 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
774 	static const u32 poke_tab_max = 1024;
775 	u32 slot = prog->aux->size_poke_tab;
776 	u32 size = slot + 1;
777 
778 	if (size > poke_tab_max)
779 		return -ENOSPC;
780 	if (poke->tailcall_target || poke->tailcall_target_stable ||
781 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
782 		return -EINVAL;
783 
784 	switch (poke->reason) {
785 	case BPF_POKE_REASON_TAIL_CALL:
786 		if (!poke->tail_call.map)
787 			return -EINVAL;
788 		break;
789 	default:
790 		return -EINVAL;
791 	}
792 
793 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
794 	if (!tab)
795 		return -ENOMEM;
796 
797 	memcpy(&tab[slot], poke, sizeof(*poke));
798 	prog->aux->size_poke_tab = size;
799 	prog->aux->poke_tab = tab;
800 
801 	return slot;
802 }
803 
804 static atomic_long_t bpf_jit_current;
805 
806 /* Can be overridden by an arch's JIT compiler if it has a custom,
807  * dedicated BPF backend memory area, or if neither of the two
808  * below apply.
809  */
810 u64 __weak bpf_jit_alloc_exec_limit(void)
811 {
812 #if defined(MODULES_VADDR)
813 	return MODULES_END - MODULES_VADDR;
814 #else
815 	return VMALLOC_END - VMALLOC_START;
816 #endif
817 }
818 
819 static int __init bpf_jit_charge_init(void)
820 {
821 	/* Only used as heuristic here to derive limit. */
822 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
823 					    PAGE_SIZE), LONG_MAX);
824 	return 0;
825 }
826 pure_initcall(bpf_jit_charge_init);
827 
828 static int bpf_jit_charge_modmem(u32 pages)
829 {
830 	if (atomic_long_add_return(pages, &bpf_jit_current) >
831 	    (bpf_jit_limit >> PAGE_SHIFT)) {
832 		if (!capable(CAP_SYS_ADMIN)) {
833 			atomic_long_sub(pages, &bpf_jit_current);
834 			return -EPERM;
835 		}
836 	}
837 
838 	return 0;
839 }
840 
841 static void bpf_jit_uncharge_modmem(u32 pages)
842 {
843 	atomic_long_sub(pages, &bpf_jit_current);
844 }
845 
846 void *__weak bpf_jit_alloc_exec(unsigned long size)
847 {
848 	return module_alloc(size);
849 }
850 
851 void __weak bpf_jit_free_exec(void *addr)
852 {
853 	module_memfree(addr);
854 }
855 
856 struct bpf_binary_header *
857 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
858 		     unsigned int alignment,
859 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
860 {
861 	struct bpf_binary_header *hdr;
862 	u32 size, hole, start, pages;
863 
864 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
865 		     alignment > BPF_IMAGE_ALIGNMENT);
866 
867 	/* Most of BPF filters are really small, but if some of them
868 	 * fill a page, allow at least 128 extra bytes to insert a
869 	 * random section of illegal instructions.
870 	 */
871 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
872 	pages = size / PAGE_SIZE;
873 
874 	if (bpf_jit_charge_modmem(pages))
875 		return NULL;
876 	hdr = bpf_jit_alloc_exec(size);
877 	if (!hdr) {
878 		bpf_jit_uncharge_modmem(pages);
879 		return NULL;
880 	}
881 
882 	/* Fill space with illegal/arch-dep instructions. */
883 	bpf_fill_ill_insns(hdr, size);
884 
885 	hdr->pages = pages;
886 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
887 		     PAGE_SIZE - sizeof(*hdr));
888 	start = (get_random_int() % hole) & ~(alignment - 1);
889 
890 	/* Leave a random number of instructions before BPF code. */
891 	*image_ptr = &hdr->image[start];
892 
893 	return hdr;
894 }
895 
896 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
897 {
898 	u32 pages = hdr->pages;
899 
900 	bpf_jit_free_exec(hdr);
901 	bpf_jit_uncharge_modmem(pages);
902 }
903 
904 /* This symbol is only overridden by archs that have different
905  * requirements than the usual eBPF JITs, f.e. when they only
906  * implement cBPF JIT, do not set images read-only, etc.
907  */
908 void __weak bpf_jit_free(struct bpf_prog *fp)
909 {
910 	if (fp->jited) {
911 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
912 
913 		bpf_jit_binary_free(hdr);
914 
915 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
916 	}
917 
918 	bpf_prog_unlock_free(fp);
919 }
920 
921 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
922 			  const struct bpf_insn *insn, bool extra_pass,
923 			  u64 *func_addr, bool *func_addr_fixed)
924 {
925 	s16 off = insn->off;
926 	s32 imm = insn->imm;
927 	u8 *addr;
928 
929 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
930 	if (!*func_addr_fixed) {
931 		/* Place-holder address till the last pass has collected
932 		 * all addresses for JITed subprograms in which case we
933 		 * can pick them up from prog->aux.
934 		 */
935 		if (!extra_pass)
936 			addr = NULL;
937 		else if (prog->aux->func &&
938 			 off >= 0 && off < prog->aux->func_cnt)
939 			addr = (u8 *)prog->aux->func[off]->bpf_func;
940 		else
941 			return -EINVAL;
942 	} else {
943 		/* Address of a BPF helper call. Since part of the core
944 		 * kernel, it's always at a fixed location. __bpf_call_base
945 		 * and the helper with imm relative to it are both in core
946 		 * kernel.
947 		 */
948 		addr = (u8 *)__bpf_call_base + imm;
949 	}
950 
951 	*func_addr = (unsigned long)addr;
952 	return 0;
953 }
954 
955 static int bpf_jit_blind_insn(const struct bpf_insn *from,
956 			      const struct bpf_insn *aux,
957 			      struct bpf_insn *to_buff,
958 			      bool emit_zext)
959 {
960 	struct bpf_insn *to = to_buff;
961 	u32 imm_rnd = get_random_int();
962 	s16 off;
963 
964 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
965 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
966 
967 	/* Constraints on AX register:
968 	 *
969 	 * AX register is inaccessible from user space. It is mapped in
970 	 * all JITs, and used here for constant blinding rewrites. It is
971 	 * typically "stateless" meaning its contents are only valid within
972 	 * the executed instruction, but not across several instructions.
973 	 * There are a few exceptions however which are further detailed
974 	 * below.
975 	 *
976 	 * Constant blinding is only used by JITs, not in the interpreter.
977 	 * The interpreter uses AX in some occasions as a local temporary
978 	 * register e.g. in DIV or MOD instructions.
979 	 *
980 	 * In restricted circumstances, the verifier can also use the AX
981 	 * register for rewrites as long as they do not interfere with
982 	 * the above cases!
983 	 */
984 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
985 		goto out;
986 
987 	if (from->imm == 0 &&
988 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
989 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
990 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
991 		goto out;
992 	}
993 
994 	switch (from->code) {
995 	case BPF_ALU | BPF_ADD | BPF_K:
996 	case BPF_ALU | BPF_SUB | BPF_K:
997 	case BPF_ALU | BPF_AND | BPF_K:
998 	case BPF_ALU | BPF_OR  | BPF_K:
999 	case BPF_ALU | BPF_XOR | BPF_K:
1000 	case BPF_ALU | BPF_MUL | BPF_K:
1001 	case BPF_ALU | BPF_MOV | BPF_K:
1002 	case BPF_ALU | BPF_DIV | BPF_K:
1003 	case BPF_ALU | BPF_MOD | BPF_K:
1004 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1005 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1006 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1007 		break;
1008 
1009 	case BPF_ALU64 | BPF_ADD | BPF_K:
1010 	case BPF_ALU64 | BPF_SUB | BPF_K:
1011 	case BPF_ALU64 | BPF_AND | BPF_K:
1012 	case BPF_ALU64 | BPF_OR  | BPF_K:
1013 	case BPF_ALU64 | BPF_XOR | BPF_K:
1014 	case BPF_ALU64 | BPF_MUL | BPF_K:
1015 	case BPF_ALU64 | BPF_MOV | BPF_K:
1016 	case BPF_ALU64 | BPF_DIV | BPF_K:
1017 	case BPF_ALU64 | BPF_MOD | BPF_K:
1018 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1019 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1020 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1021 		break;
1022 
1023 	case BPF_JMP | BPF_JEQ  | BPF_K:
1024 	case BPF_JMP | BPF_JNE  | BPF_K:
1025 	case BPF_JMP | BPF_JGT  | BPF_K:
1026 	case BPF_JMP | BPF_JLT  | BPF_K:
1027 	case BPF_JMP | BPF_JGE  | BPF_K:
1028 	case BPF_JMP | BPF_JLE  | BPF_K:
1029 	case BPF_JMP | BPF_JSGT | BPF_K:
1030 	case BPF_JMP | BPF_JSLT | BPF_K:
1031 	case BPF_JMP | BPF_JSGE | BPF_K:
1032 	case BPF_JMP | BPF_JSLE | BPF_K:
1033 	case BPF_JMP | BPF_JSET | BPF_K:
1034 		/* Accommodate for extra offset in case of a backjump. */
1035 		off = from->off;
1036 		if (off < 0)
1037 			off -= 2;
1038 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1039 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1040 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1041 		break;
1042 
1043 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1044 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1045 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1046 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1047 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1048 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1049 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1050 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1051 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1052 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1053 	case BPF_JMP32 | BPF_JSET | BPF_K:
1054 		/* Accommodate for extra offset in case of a backjump. */
1055 		off = from->off;
1056 		if (off < 0)
1057 			off -= 2;
1058 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1059 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1060 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1061 				      off);
1062 		break;
1063 
1064 	case BPF_LD | BPF_IMM | BPF_DW:
1065 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1066 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1067 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1068 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1069 		break;
1070 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1071 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1072 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1073 		if (emit_zext)
1074 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1075 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1076 		break;
1077 
1078 	case BPF_ST | BPF_MEM | BPF_DW:
1079 	case BPF_ST | BPF_MEM | BPF_W:
1080 	case BPF_ST | BPF_MEM | BPF_H:
1081 	case BPF_ST | BPF_MEM | BPF_B:
1082 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1083 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1084 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1085 		break;
1086 	}
1087 out:
1088 	return to - to_buff;
1089 }
1090 
1091 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1092 					      gfp_t gfp_extra_flags)
1093 {
1094 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1095 	struct bpf_prog *fp;
1096 
1097 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1098 	if (fp != NULL) {
1099 		/* aux->prog still points to the fp_other one, so
1100 		 * when promoting the clone to the real program,
1101 		 * this still needs to be adapted.
1102 		 */
1103 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1104 	}
1105 
1106 	return fp;
1107 }
1108 
1109 static void bpf_prog_clone_free(struct bpf_prog *fp)
1110 {
1111 	/* aux was stolen by the other clone, so we cannot free
1112 	 * it from this path! It will be freed eventually by the
1113 	 * other program on release.
1114 	 *
1115 	 * At this point, we don't need a deferred release since
1116 	 * clone is guaranteed to not be locked.
1117 	 */
1118 	fp->aux = NULL;
1119 	__bpf_prog_free(fp);
1120 }
1121 
1122 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1123 {
1124 	/* We have to repoint aux->prog to self, as we don't
1125 	 * know whether fp here is the clone or the original.
1126 	 */
1127 	fp->aux->prog = fp;
1128 	bpf_prog_clone_free(fp_other);
1129 }
1130 
1131 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1132 {
1133 	struct bpf_insn insn_buff[16], aux[2];
1134 	struct bpf_prog *clone, *tmp;
1135 	int insn_delta, insn_cnt;
1136 	struct bpf_insn *insn;
1137 	int i, rewritten;
1138 
1139 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1140 		return prog;
1141 
1142 	clone = bpf_prog_clone_create(prog, GFP_USER);
1143 	if (!clone)
1144 		return ERR_PTR(-ENOMEM);
1145 
1146 	insn_cnt = clone->len;
1147 	insn = clone->insnsi;
1148 
1149 	for (i = 0; i < insn_cnt; i++, insn++) {
1150 		/* We temporarily need to hold the original ld64 insn
1151 		 * so that we can still access the first part in the
1152 		 * second blinding run.
1153 		 */
1154 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1155 		    insn[1].code == 0)
1156 			memcpy(aux, insn, sizeof(aux));
1157 
1158 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1159 						clone->aux->verifier_zext);
1160 		if (!rewritten)
1161 			continue;
1162 
1163 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1164 		if (IS_ERR(tmp)) {
1165 			/* Patching may have repointed aux->prog during
1166 			 * realloc from the original one, so we need to
1167 			 * fix it up here on error.
1168 			 */
1169 			bpf_jit_prog_release_other(prog, clone);
1170 			return tmp;
1171 		}
1172 
1173 		clone = tmp;
1174 		insn_delta = rewritten - 1;
1175 
1176 		/* Walk new program and skip insns we just inserted. */
1177 		insn = clone->insnsi + i + insn_delta;
1178 		insn_cnt += insn_delta;
1179 		i        += insn_delta;
1180 	}
1181 
1182 	clone->blinded = 1;
1183 	return clone;
1184 }
1185 #endif /* CONFIG_BPF_JIT */
1186 
1187 /* Base function for offset calculation. Needs to go into .text section,
1188  * therefore keeping it non-static as well; will also be used by JITs
1189  * anyway later on, so do not let the compiler omit it. This also needs
1190  * to go into kallsyms for correlation from e.g. bpftool, so naming
1191  * must not change.
1192  */
1193 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1194 {
1195 	return 0;
1196 }
1197 EXPORT_SYMBOL_GPL(__bpf_call_base);
1198 
1199 /* All UAPI available opcodes. */
1200 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1201 	/* 32 bit ALU operations. */		\
1202 	/*   Register based. */			\
1203 	INSN_3(ALU, ADD,  X),			\
1204 	INSN_3(ALU, SUB,  X),			\
1205 	INSN_3(ALU, AND,  X),			\
1206 	INSN_3(ALU, OR,   X),			\
1207 	INSN_3(ALU, LSH,  X),			\
1208 	INSN_3(ALU, RSH,  X),			\
1209 	INSN_3(ALU, XOR,  X),			\
1210 	INSN_3(ALU, MUL,  X),			\
1211 	INSN_3(ALU, MOV,  X),			\
1212 	INSN_3(ALU, ARSH, X),			\
1213 	INSN_3(ALU, DIV,  X),			\
1214 	INSN_3(ALU, MOD,  X),			\
1215 	INSN_2(ALU, NEG),			\
1216 	INSN_3(ALU, END, TO_BE),		\
1217 	INSN_3(ALU, END, TO_LE),		\
1218 	/*   Immediate based. */		\
1219 	INSN_3(ALU, ADD,  K),			\
1220 	INSN_3(ALU, SUB,  K),			\
1221 	INSN_3(ALU, AND,  K),			\
1222 	INSN_3(ALU, OR,   K),			\
1223 	INSN_3(ALU, LSH,  K),			\
1224 	INSN_3(ALU, RSH,  K),			\
1225 	INSN_3(ALU, XOR,  K),			\
1226 	INSN_3(ALU, MUL,  K),			\
1227 	INSN_3(ALU, MOV,  K),			\
1228 	INSN_3(ALU, ARSH, K),			\
1229 	INSN_3(ALU, DIV,  K),			\
1230 	INSN_3(ALU, MOD,  K),			\
1231 	/* 64 bit ALU operations. */		\
1232 	/*   Register based. */			\
1233 	INSN_3(ALU64, ADD,  X),			\
1234 	INSN_3(ALU64, SUB,  X),			\
1235 	INSN_3(ALU64, AND,  X),			\
1236 	INSN_3(ALU64, OR,   X),			\
1237 	INSN_3(ALU64, LSH,  X),			\
1238 	INSN_3(ALU64, RSH,  X),			\
1239 	INSN_3(ALU64, XOR,  X),			\
1240 	INSN_3(ALU64, MUL,  X),			\
1241 	INSN_3(ALU64, MOV,  X),			\
1242 	INSN_3(ALU64, ARSH, X),			\
1243 	INSN_3(ALU64, DIV,  X),			\
1244 	INSN_3(ALU64, MOD,  X),			\
1245 	INSN_2(ALU64, NEG),			\
1246 	/*   Immediate based. */		\
1247 	INSN_3(ALU64, ADD,  K),			\
1248 	INSN_3(ALU64, SUB,  K),			\
1249 	INSN_3(ALU64, AND,  K),			\
1250 	INSN_3(ALU64, OR,   K),			\
1251 	INSN_3(ALU64, LSH,  K),			\
1252 	INSN_3(ALU64, RSH,  K),			\
1253 	INSN_3(ALU64, XOR,  K),			\
1254 	INSN_3(ALU64, MUL,  K),			\
1255 	INSN_3(ALU64, MOV,  K),			\
1256 	INSN_3(ALU64, ARSH, K),			\
1257 	INSN_3(ALU64, DIV,  K),			\
1258 	INSN_3(ALU64, MOD,  K),			\
1259 	/* Call instruction. */			\
1260 	INSN_2(JMP, CALL),			\
1261 	/* Exit instruction. */			\
1262 	INSN_2(JMP, EXIT),			\
1263 	/* 32-bit Jump instructions. */		\
1264 	/*   Register based. */			\
1265 	INSN_3(JMP32, JEQ,  X),			\
1266 	INSN_3(JMP32, JNE,  X),			\
1267 	INSN_3(JMP32, JGT,  X),			\
1268 	INSN_3(JMP32, JLT,  X),			\
1269 	INSN_3(JMP32, JGE,  X),			\
1270 	INSN_3(JMP32, JLE,  X),			\
1271 	INSN_3(JMP32, JSGT, X),			\
1272 	INSN_3(JMP32, JSLT, X),			\
1273 	INSN_3(JMP32, JSGE, X),			\
1274 	INSN_3(JMP32, JSLE, X),			\
1275 	INSN_3(JMP32, JSET, X),			\
1276 	/*   Immediate based. */		\
1277 	INSN_3(JMP32, JEQ,  K),			\
1278 	INSN_3(JMP32, JNE,  K),			\
1279 	INSN_3(JMP32, JGT,  K),			\
1280 	INSN_3(JMP32, JLT,  K),			\
1281 	INSN_3(JMP32, JGE,  K),			\
1282 	INSN_3(JMP32, JLE,  K),			\
1283 	INSN_3(JMP32, JSGT, K),			\
1284 	INSN_3(JMP32, JSLT, K),			\
1285 	INSN_3(JMP32, JSGE, K),			\
1286 	INSN_3(JMP32, JSLE, K),			\
1287 	INSN_3(JMP32, JSET, K),			\
1288 	/* Jump instructions. */		\
1289 	/*   Register based. */			\
1290 	INSN_3(JMP, JEQ,  X),			\
1291 	INSN_3(JMP, JNE,  X),			\
1292 	INSN_3(JMP, JGT,  X),			\
1293 	INSN_3(JMP, JLT,  X),			\
1294 	INSN_3(JMP, JGE,  X),			\
1295 	INSN_3(JMP, JLE,  X),			\
1296 	INSN_3(JMP, JSGT, X),			\
1297 	INSN_3(JMP, JSLT, X),			\
1298 	INSN_3(JMP, JSGE, X),			\
1299 	INSN_3(JMP, JSLE, X),			\
1300 	INSN_3(JMP, JSET, X),			\
1301 	/*   Immediate based. */		\
1302 	INSN_3(JMP, JEQ,  K),			\
1303 	INSN_3(JMP, JNE,  K),			\
1304 	INSN_3(JMP, JGT,  K),			\
1305 	INSN_3(JMP, JLT,  K),			\
1306 	INSN_3(JMP, JGE,  K),			\
1307 	INSN_3(JMP, JLE,  K),			\
1308 	INSN_3(JMP, JSGT, K),			\
1309 	INSN_3(JMP, JSLT, K),			\
1310 	INSN_3(JMP, JSGE, K),			\
1311 	INSN_3(JMP, JSLE, K),			\
1312 	INSN_3(JMP, JSET, K),			\
1313 	INSN_2(JMP, JA),			\
1314 	/* Store instructions. */		\
1315 	/*   Register based. */			\
1316 	INSN_3(STX, MEM,  B),			\
1317 	INSN_3(STX, MEM,  H),			\
1318 	INSN_3(STX, MEM,  W),			\
1319 	INSN_3(STX, MEM,  DW),			\
1320 	INSN_3(STX, XADD, W),			\
1321 	INSN_3(STX, XADD, DW),			\
1322 	/*   Immediate based. */		\
1323 	INSN_3(ST, MEM, B),			\
1324 	INSN_3(ST, MEM, H),			\
1325 	INSN_3(ST, MEM, W),			\
1326 	INSN_3(ST, MEM, DW),			\
1327 	/* Load instructions. */		\
1328 	/*   Register based. */			\
1329 	INSN_3(LDX, MEM, B),			\
1330 	INSN_3(LDX, MEM, H),			\
1331 	INSN_3(LDX, MEM, W),			\
1332 	INSN_3(LDX, MEM, DW),			\
1333 	/*   Immediate based. */		\
1334 	INSN_3(LD, IMM, DW)
1335 
1336 bool bpf_opcode_in_insntable(u8 code)
1337 {
1338 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1339 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1340 	static const bool public_insntable[256] = {
1341 		[0 ... 255] = false,
1342 		/* Now overwrite non-defaults ... */
1343 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1344 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1345 		[BPF_LD | BPF_ABS | BPF_B] = true,
1346 		[BPF_LD | BPF_ABS | BPF_H] = true,
1347 		[BPF_LD | BPF_ABS | BPF_W] = true,
1348 		[BPF_LD | BPF_IND | BPF_B] = true,
1349 		[BPF_LD | BPF_IND | BPF_H] = true,
1350 		[BPF_LD | BPF_IND | BPF_W] = true,
1351 	};
1352 #undef BPF_INSN_3_TBL
1353 #undef BPF_INSN_2_TBL
1354 	return public_insntable[code];
1355 }
1356 
1357 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1358 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1359 {
1360 	memset(dst, 0, size);
1361 	return -EFAULT;
1362 }
1363 
1364 /**
1365  *	__bpf_prog_run - run eBPF program on a given context
1366  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1367  *	@insn: is the array of eBPF instructions
1368  *	@stack: is the eBPF storage stack
1369  *
1370  * Decode and execute eBPF instructions.
1371  */
1372 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1373 {
1374 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1375 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1376 	static const void * const jumptable[256] __annotate_jump_table = {
1377 		[0 ... 255] = &&default_label,
1378 		/* Now overwrite non-defaults ... */
1379 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1380 		/* Non-UAPI available opcodes. */
1381 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1382 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1383 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1384 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1385 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1386 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1387 	};
1388 #undef BPF_INSN_3_LBL
1389 #undef BPF_INSN_2_LBL
1390 	u32 tail_call_cnt = 0;
1391 
1392 #define CONT	 ({ insn++; goto select_insn; })
1393 #define CONT_JMP ({ insn++; goto select_insn; })
1394 
1395 select_insn:
1396 	goto *jumptable[insn->code];
1397 
1398 	/* ALU */
1399 #define ALU(OPCODE, OP)			\
1400 	ALU64_##OPCODE##_X:		\
1401 		DST = DST OP SRC;	\
1402 		CONT;			\
1403 	ALU_##OPCODE##_X:		\
1404 		DST = (u32) DST OP (u32) SRC;	\
1405 		CONT;			\
1406 	ALU64_##OPCODE##_K:		\
1407 		DST = DST OP IMM;		\
1408 		CONT;			\
1409 	ALU_##OPCODE##_K:		\
1410 		DST = (u32) DST OP (u32) IMM;	\
1411 		CONT;
1412 
1413 	ALU(ADD,  +)
1414 	ALU(SUB,  -)
1415 	ALU(AND,  &)
1416 	ALU(OR,   |)
1417 	ALU(LSH, <<)
1418 	ALU(RSH, >>)
1419 	ALU(XOR,  ^)
1420 	ALU(MUL,  *)
1421 #undef ALU
1422 	ALU_NEG:
1423 		DST = (u32) -DST;
1424 		CONT;
1425 	ALU64_NEG:
1426 		DST = -DST;
1427 		CONT;
1428 	ALU_MOV_X:
1429 		DST = (u32) SRC;
1430 		CONT;
1431 	ALU_MOV_K:
1432 		DST = (u32) IMM;
1433 		CONT;
1434 	ALU64_MOV_X:
1435 		DST = SRC;
1436 		CONT;
1437 	ALU64_MOV_K:
1438 		DST = IMM;
1439 		CONT;
1440 	LD_IMM_DW:
1441 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1442 		insn++;
1443 		CONT;
1444 	ALU_ARSH_X:
1445 		DST = (u64) (u32) (((s32) DST) >> SRC);
1446 		CONT;
1447 	ALU_ARSH_K:
1448 		DST = (u64) (u32) (((s32) DST) >> IMM);
1449 		CONT;
1450 	ALU64_ARSH_X:
1451 		(*(s64 *) &DST) >>= SRC;
1452 		CONT;
1453 	ALU64_ARSH_K:
1454 		(*(s64 *) &DST) >>= IMM;
1455 		CONT;
1456 	ALU64_MOD_X:
1457 		div64_u64_rem(DST, SRC, &AX);
1458 		DST = AX;
1459 		CONT;
1460 	ALU_MOD_X:
1461 		AX = (u32) DST;
1462 		DST = do_div(AX, (u32) SRC);
1463 		CONT;
1464 	ALU64_MOD_K:
1465 		div64_u64_rem(DST, IMM, &AX);
1466 		DST = AX;
1467 		CONT;
1468 	ALU_MOD_K:
1469 		AX = (u32) DST;
1470 		DST = do_div(AX, (u32) IMM);
1471 		CONT;
1472 	ALU64_DIV_X:
1473 		DST = div64_u64(DST, SRC);
1474 		CONT;
1475 	ALU_DIV_X:
1476 		AX = (u32) DST;
1477 		do_div(AX, (u32) SRC);
1478 		DST = (u32) AX;
1479 		CONT;
1480 	ALU64_DIV_K:
1481 		DST = div64_u64(DST, IMM);
1482 		CONT;
1483 	ALU_DIV_K:
1484 		AX = (u32) DST;
1485 		do_div(AX, (u32) IMM);
1486 		DST = (u32) AX;
1487 		CONT;
1488 	ALU_END_TO_BE:
1489 		switch (IMM) {
1490 		case 16:
1491 			DST = (__force u16) cpu_to_be16(DST);
1492 			break;
1493 		case 32:
1494 			DST = (__force u32) cpu_to_be32(DST);
1495 			break;
1496 		case 64:
1497 			DST = (__force u64) cpu_to_be64(DST);
1498 			break;
1499 		}
1500 		CONT;
1501 	ALU_END_TO_LE:
1502 		switch (IMM) {
1503 		case 16:
1504 			DST = (__force u16) cpu_to_le16(DST);
1505 			break;
1506 		case 32:
1507 			DST = (__force u32) cpu_to_le32(DST);
1508 			break;
1509 		case 64:
1510 			DST = (__force u64) cpu_to_le64(DST);
1511 			break;
1512 		}
1513 		CONT;
1514 
1515 	/* CALL */
1516 	JMP_CALL:
1517 		/* Function call scratches BPF_R1-BPF_R5 registers,
1518 		 * preserves BPF_R6-BPF_R9, and stores return value
1519 		 * into BPF_R0.
1520 		 */
1521 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1522 						       BPF_R4, BPF_R5);
1523 		CONT;
1524 
1525 	JMP_CALL_ARGS:
1526 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1527 							    BPF_R3, BPF_R4,
1528 							    BPF_R5,
1529 							    insn + insn->off + 1);
1530 		CONT;
1531 
1532 	JMP_TAIL_CALL: {
1533 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1534 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1535 		struct bpf_prog *prog;
1536 		u32 index = BPF_R3;
1537 
1538 		if (unlikely(index >= array->map.max_entries))
1539 			goto out;
1540 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1541 			goto out;
1542 
1543 		tail_call_cnt++;
1544 
1545 		prog = READ_ONCE(array->ptrs[index]);
1546 		if (!prog)
1547 			goto out;
1548 
1549 		/* ARG1 at this point is guaranteed to point to CTX from
1550 		 * the verifier side due to the fact that the tail call is
1551 		 * handled like a helper, that is, bpf_tail_call_proto,
1552 		 * where arg1_type is ARG_PTR_TO_CTX.
1553 		 */
1554 		insn = prog->insnsi;
1555 		goto select_insn;
1556 out:
1557 		CONT;
1558 	}
1559 	JMP_JA:
1560 		insn += insn->off;
1561 		CONT;
1562 	JMP_EXIT:
1563 		return BPF_R0;
1564 	/* JMP */
1565 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1566 	JMP_##OPCODE##_X:					\
1567 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1568 			insn += insn->off;			\
1569 			CONT_JMP;				\
1570 		}						\
1571 		CONT;						\
1572 	JMP32_##OPCODE##_X:					\
1573 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1574 			insn += insn->off;			\
1575 			CONT_JMP;				\
1576 		}						\
1577 		CONT;						\
1578 	JMP_##OPCODE##_K:					\
1579 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1580 			insn += insn->off;			\
1581 			CONT_JMP;				\
1582 		}						\
1583 		CONT;						\
1584 	JMP32_##OPCODE##_K:					\
1585 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1586 			insn += insn->off;			\
1587 			CONT_JMP;				\
1588 		}						\
1589 		CONT;
1590 	COND_JMP(u, JEQ, ==)
1591 	COND_JMP(u, JNE, !=)
1592 	COND_JMP(u, JGT, >)
1593 	COND_JMP(u, JLT, <)
1594 	COND_JMP(u, JGE, >=)
1595 	COND_JMP(u, JLE, <=)
1596 	COND_JMP(u, JSET, &)
1597 	COND_JMP(s, JSGT, >)
1598 	COND_JMP(s, JSLT, <)
1599 	COND_JMP(s, JSGE, >=)
1600 	COND_JMP(s, JSLE, <=)
1601 #undef COND_JMP
1602 	/* STX and ST and LDX*/
1603 #define LDST(SIZEOP, SIZE)						\
1604 	STX_MEM_##SIZEOP:						\
1605 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1606 		CONT;							\
1607 	ST_MEM_##SIZEOP:						\
1608 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1609 		CONT;							\
1610 	LDX_MEM_##SIZEOP:						\
1611 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1612 		CONT;
1613 
1614 	LDST(B,   u8)
1615 	LDST(H,  u16)
1616 	LDST(W,  u32)
1617 	LDST(DW, u64)
1618 #undef LDST
1619 #define LDX_PROBE(SIZEOP, SIZE)							\
1620 	LDX_PROBE_MEM_##SIZEOP:							\
1621 		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1622 		CONT;
1623 	LDX_PROBE(B,  1)
1624 	LDX_PROBE(H,  2)
1625 	LDX_PROBE(W,  4)
1626 	LDX_PROBE(DW, 8)
1627 #undef LDX_PROBE
1628 
1629 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1630 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1631 			   (DST + insn->off));
1632 		CONT;
1633 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1634 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1635 			     (DST + insn->off));
1636 		CONT;
1637 
1638 	default_label:
1639 		/* If we ever reach this, we have a bug somewhere. Die hard here
1640 		 * instead of just returning 0; we could be somewhere in a subprog,
1641 		 * so execution could continue otherwise which we do /not/ want.
1642 		 *
1643 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1644 		 */
1645 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1646 		BUG_ON(1);
1647 		return 0;
1648 }
1649 
1650 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1651 #define DEFINE_BPF_PROG_RUN(stack_size) \
1652 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1653 { \
1654 	u64 stack[stack_size / sizeof(u64)]; \
1655 	u64 regs[MAX_BPF_EXT_REG]; \
1656 \
1657 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1658 	ARG1 = (u64) (unsigned long) ctx; \
1659 	return ___bpf_prog_run(regs, insn, stack); \
1660 }
1661 
1662 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1663 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1664 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1665 				      const struct bpf_insn *insn) \
1666 { \
1667 	u64 stack[stack_size / sizeof(u64)]; \
1668 	u64 regs[MAX_BPF_EXT_REG]; \
1669 \
1670 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1671 	BPF_R1 = r1; \
1672 	BPF_R2 = r2; \
1673 	BPF_R3 = r3; \
1674 	BPF_R4 = r4; \
1675 	BPF_R5 = r5; \
1676 	return ___bpf_prog_run(regs, insn, stack); \
1677 }
1678 
1679 #define EVAL1(FN, X) FN(X)
1680 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1681 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1682 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1683 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1684 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1685 
1686 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1687 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1688 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1689 
1690 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1691 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1692 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1693 
1694 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1695 
1696 static unsigned int (*interpreters[])(const void *ctx,
1697 				      const struct bpf_insn *insn) = {
1698 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1699 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1700 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1701 };
1702 #undef PROG_NAME_LIST
1703 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1704 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1705 				  const struct bpf_insn *insn) = {
1706 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1707 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1708 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1709 };
1710 #undef PROG_NAME_LIST
1711 
1712 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1713 {
1714 	stack_depth = max_t(u32, stack_depth, 1);
1715 	insn->off = (s16) insn->imm;
1716 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1717 		__bpf_call_base_args;
1718 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1719 }
1720 
1721 #else
1722 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1723 					 const struct bpf_insn *insn)
1724 {
1725 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1726 	 * is not working properly, so warn about it!
1727 	 */
1728 	WARN_ON_ONCE(1);
1729 	return 0;
1730 }
1731 #endif
1732 
1733 bool bpf_prog_array_compatible(struct bpf_array *array,
1734 			       const struct bpf_prog *fp)
1735 {
1736 	if (fp->kprobe_override)
1737 		return false;
1738 
1739 	if (!array->aux->type) {
1740 		/* There's no owner yet where we could check for
1741 		 * compatibility.
1742 		 */
1743 		array->aux->type  = fp->type;
1744 		array->aux->jited = fp->jited;
1745 		return true;
1746 	}
1747 
1748 	return array->aux->type  == fp->type &&
1749 	       array->aux->jited == fp->jited;
1750 }
1751 
1752 static int bpf_check_tail_call(const struct bpf_prog *fp)
1753 {
1754 	struct bpf_prog_aux *aux = fp->aux;
1755 	int i, ret = 0;
1756 
1757 	mutex_lock(&aux->used_maps_mutex);
1758 	for (i = 0; i < aux->used_map_cnt; i++) {
1759 		struct bpf_map *map = aux->used_maps[i];
1760 		struct bpf_array *array;
1761 
1762 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1763 			continue;
1764 
1765 		array = container_of(map, struct bpf_array, map);
1766 		if (!bpf_prog_array_compatible(array, fp)) {
1767 			ret = -EINVAL;
1768 			goto out;
1769 		}
1770 	}
1771 
1772 out:
1773 	mutex_unlock(&aux->used_maps_mutex);
1774 	return ret;
1775 }
1776 
1777 static void bpf_prog_select_func(struct bpf_prog *fp)
1778 {
1779 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1780 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1781 
1782 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1783 #else
1784 	fp->bpf_func = __bpf_prog_ret0_warn;
1785 #endif
1786 }
1787 
1788 /**
1789  *	bpf_prog_select_runtime - select exec runtime for BPF program
1790  *	@fp: bpf_prog populated with internal BPF program
1791  *	@err: pointer to error variable
1792  *
1793  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1794  * The BPF program will be executed via BPF_PROG_RUN() macro.
1795  */
1796 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1797 {
1798 	/* In case of BPF to BPF calls, verifier did all the prep
1799 	 * work with regards to JITing, etc.
1800 	 */
1801 	if (fp->bpf_func)
1802 		goto finalize;
1803 
1804 	bpf_prog_select_func(fp);
1805 
1806 	/* eBPF JITs can rewrite the program in case constant
1807 	 * blinding is active. However, in case of error during
1808 	 * blinding, bpf_int_jit_compile() must always return a
1809 	 * valid program, which in this case would simply not
1810 	 * be JITed, but falls back to the interpreter.
1811 	 */
1812 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1813 		*err = bpf_prog_alloc_jited_linfo(fp);
1814 		if (*err)
1815 			return fp;
1816 
1817 		fp = bpf_int_jit_compile(fp);
1818 		if (!fp->jited) {
1819 			bpf_prog_free_jited_linfo(fp);
1820 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1821 			*err = -ENOTSUPP;
1822 			return fp;
1823 #endif
1824 		} else {
1825 			bpf_prog_free_unused_jited_linfo(fp);
1826 		}
1827 	} else {
1828 		*err = bpf_prog_offload_compile(fp);
1829 		if (*err)
1830 			return fp;
1831 	}
1832 
1833 finalize:
1834 	bpf_prog_lock_ro(fp);
1835 
1836 	/* The tail call compatibility check can only be done at
1837 	 * this late stage as we need to determine, if we deal
1838 	 * with JITed or non JITed program concatenations and not
1839 	 * all eBPF JITs might immediately support all features.
1840 	 */
1841 	*err = bpf_check_tail_call(fp);
1842 
1843 	return fp;
1844 }
1845 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1846 
1847 static unsigned int __bpf_prog_ret1(const void *ctx,
1848 				    const struct bpf_insn *insn)
1849 {
1850 	return 1;
1851 }
1852 
1853 static struct bpf_prog_dummy {
1854 	struct bpf_prog prog;
1855 } dummy_bpf_prog = {
1856 	.prog = {
1857 		.bpf_func = __bpf_prog_ret1,
1858 	},
1859 };
1860 
1861 /* to avoid allocating empty bpf_prog_array for cgroups that
1862  * don't have bpf program attached use one global 'empty_prog_array'
1863  * It will not be modified the caller of bpf_prog_array_alloc()
1864  * (since caller requested prog_cnt == 0)
1865  * that pointer should be 'freed' by bpf_prog_array_free()
1866  */
1867 static struct {
1868 	struct bpf_prog_array hdr;
1869 	struct bpf_prog *null_prog;
1870 } empty_prog_array = {
1871 	.null_prog = NULL,
1872 };
1873 
1874 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1875 {
1876 	if (prog_cnt)
1877 		return kzalloc(sizeof(struct bpf_prog_array) +
1878 			       sizeof(struct bpf_prog_array_item) *
1879 			       (prog_cnt + 1),
1880 			       flags);
1881 
1882 	return &empty_prog_array.hdr;
1883 }
1884 
1885 void bpf_prog_array_free(struct bpf_prog_array *progs)
1886 {
1887 	if (!progs || progs == &empty_prog_array.hdr)
1888 		return;
1889 	kfree_rcu(progs, rcu);
1890 }
1891 
1892 int bpf_prog_array_length(struct bpf_prog_array *array)
1893 {
1894 	struct bpf_prog_array_item *item;
1895 	u32 cnt = 0;
1896 
1897 	for (item = array->items; item->prog; item++)
1898 		if (item->prog != &dummy_bpf_prog.prog)
1899 			cnt++;
1900 	return cnt;
1901 }
1902 
1903 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1904 {
1905 	struct bpf_prog_array_item *item;
1906 
1907 	for (item = array->items; item->prog; item++)
1908 		if (item->prog != &dummy_bpf_prog.prog)
1909 			return false;
1910 	return true;
1911 }
1912 
1913 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1914 				     u32 *prog_ids,
1915 				     u32 request_cnt)
1916 {
1917 	struct bpf_prog_array_item *item;
1918 	int i = 0;
1919 
1920 	for (item = array->items; item->prog; item++) {
1921 		if (item->prog == &dummy_bpf_prog.prog)
1922 			continue;
1923 		prog_ids[i] = item->prog->aux->id;
1924 		if (++i == request_cnt) {
1925 			item++;
1926 			break;
1927 		}
1928 	}
1929 
1930 	return !!(item->prog);
1931 }
1932 
1933 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1934 				__u32 __user *prog_ids, u32 cnt)
1935 {
1936 	unsigned long err = 0;
1937 	bool nospc;
1938 	u32 *ids;
1939 
1940 	/* users of this function are doing:
1941 	 * cnt = bpf_prog_array_length();
1942 	 * if (cnt > 0)
1943 	 *     bpf_prog_array_copy_to_user(..., cnt);
1944 	 * so below kcalloc doesn't need extra cnt > 0 check.
1945 	 */
1946 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1947 	if (!ids)
1948 		return -ENOMEM;
1949 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
1950 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1951 	kfree(ids);
1952 	if (err)
1953 		return -EFAULT;
1954 	if (nospc)
1955 		return -ENOSPC;
1956 	return 0;
1957 }
1958 
1959 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
1960 				struct bpf_prog *old_prog)
1961 {
1962 	struct bpf_prog_array_item *item;
1963 
1964 	for (item = array->items; item->prog; item++)
1965 		if (item->prog == old_prog) {
1966 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1967 			break;
1968 		}
1969 }
1970 
1971 /**
1972  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
1973  *                                   index into the program array with
1974  *                                   a dummy no-op program.
1975  * @array: a bpf_prog_array
1976  * @index: the index of the program to replace
1977  *
1978  * Skips over dummy programs, by not counting them, when calculating
1979  * the position of the program to replace.
1980  *
1981  * Return:
1982  * * 0		- Success
1983  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
1984  * * -ENOENT	- Index out of range
1985  */
1986 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
1987 {
1988 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
1989 }
1990 
1991 /**
1992  * bpf_prog_array_update_at() - Updates the program at the given index
1993  *                              into the program array.
1994  * @array: a bpf_prog_array
1995  * @index: the index of the program to update
1996  * @prog: the program to insert into the array
1997  *
1998  * Skips over dummy programs, by not counting them, when calculating
1999  * the position of the program to update.
2000  *
2001  * Return:
2002  * * 0		- Success
2003  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2004  * * -ENOENT	- Index out of range
2005  */
2006 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2007 			     struct bpf_prog *prog)
2008 {
2009 	struct bpf_prog_array_item *item;
2010 
2011 	if (unlikely(index < 0))
2012 		return -EINVAL;
2013 
2014 	for (item = array->items; item->prog; item++) {
2015 		if (item->prog == &dummy_bpf_prog.prog)
2016 			continue;
2017 		if (!index) {
2018 			WRITE_ONCE(item->prog, prog);
2019 			return 0;
2020 		}
2021 		index--;
2022 	}
2023 	return -ENOENT;
2024 }
2025 
2026 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2027 			struct bpf_prog *exclude_prog,
2028 			struct bpf_prog *include_prog,
2029 			struct bpf_prog_array **new_array)
2030 {
2031 	int new_prog_cnt, carry_prog_cnt = 0;
2032 	struct bpf_prog_array_item *existing;
2033 	struct bpf_prog_array *array;
2034 	bool found_exclude = false;
2035 	int new_prog_idx = 0;
2036 
2037 	/* Figure out how many existing progs we need to carry over to
2038 	 * the new array.
2039 	 */
2040 	if (old_array) {
2041 		existing = old_array->items;
2042 		for (; existing->prog; existing++) {
2043 			if (existing->prog == exclude_prog) {
2044 				found_exclude = true;
2045 				continue;
2046 			}
2047 			if (existing->prog != &dummy_bpf_prog.prog)
2048 				carry_prog_cnt++;
2049 			if (existing->prog == include_prog)
2050 				return -EEXIST;
2051 		}
2052 	}
2053 
2054 	if (exclude_prog && !found_exclude)
2055 		return -ENOENT;
2056 
2057 	/* How many progs (not NULL) will be in the new array? */
2058 	new_prog_cnt = carry_prog_cnt;
2059 	if (include_prog)
2060 		new_prog_cnt += 1;
2061 
2062 	/* Do we have any prog (not NULL) in the new array? */
2063 	if (!new_prog_cnt) {
2064 		*new_array = NULL;
2065 		return 0;
2066 	}
2067 
2068 	/* +1 as the end of prog_array is marked with NULL */
2069 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2070 	if (!array)
2071 		return -ENOMEM;
2072 
2073 	/* Fill in the new prog array */
2074 	if (carry_prog_cnt) {
2075 		existing = old_array->items;
2076 		for (; existing->prog; existing++)
2077 			if (existing->prog != exclude_prog &&
2078 			    existing->prog != &dummy_bpf_prog.prog) {
2079 				array->items[new_prog_idx++].prog =
2080 					existing->prog;
2081 			}
2082 	}
2083 	if (include_prog)
2084 		array->items[new_prog_idx++].prog = include_prog;
2085 	array->items[new_prog_idx].prog = NULL;
2086 	*new_array = array;
2087 	return 0;
2088 }
2089 
2090 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2091 			     u32 *prog_ids, u32 request_cnt,
2092 			     u32 *prog_cnt)
2093 {
2094 	u32 cnt = 0;
2095 
2096 	if (array)
2097 		cnt = bpf_prog_array_length(array);
2098 
2099 	*prog_cnt = cnt;
2100 
2101 	/* return early if user requested only program count or nothing to copy */
2102 	if (!request_cnt || !cnt)
2103 		return 0;
2104 
2105 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2106 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2107 								     : 0;
2108 }
2109 
2110 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2111 			  struct bpf_map **used_maps, u32 len)
2112 {
2113 	struct bpf_map *map;
2114 	u32 i;
2115 
2116 	for (i = 0; i < len; i++) {
2117 		map = used_maps[i];
2118 		if (map->ops->map_poke_untrack)
2119 			map->ops->map_poke_untrack(map, aux);
2120 		bpf_map_put(map);
2121 	}
2122 }
2123 
2124 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2125 {
2126 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2127 	kfree(aux->used_maps);
2128 }
2129 
2130 static void bpf_prog_free_deferred(struct work_struct *work)
2131 {
2132 	struct bpf_prog_aux *aux;
2133 	int i;
2134 
2135 	aux = container_of(work, struct bpf_prog_aux, work);
2136 	bpf_free_used_maps(aux);
2137 	if (bpf_prog_is_dev_bound(aux))
2138 		bpf_prog_offload_destroy(aux->prog);
2139 #ifdef CONFIG_PERF_EVENTS
2140 	if (aux->prog->has_callchain_buf)
2141 		put_callchain_buffers();
2142 #endif
2143 	if (aux->dst_trampoline)
2144 		bpf_trampoline_put(aux->dst_trampoline);
2145 	for (i = 0; i < aux->func_cnt; i++)
2146 		bpf_jit_free(aux->func[i]);
2147 	if (aux->func_cnt) {
2148 		kfree(aux->func);
2149 		bpf_prog_unlock_free(aux->prog);
2150 	} else {
2151 		bpf_jit_free(aux->prog);
2152 	}
2153 }
2154 
2155 /* Free internal BPF program */
2156 void bpf_prog_free(struct bpf_prog *fp)
2157 {
2158 	struct bpf_prog_aux *aux = fp->aux;
2159 
2160 	if (aux->dst_prog)
2161 		bpf_prog_put(aux->dst_prog);
2162 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2163 	schedule_work(&aux->work);
2164 }
2165 EXPORT_SYMBOL_GPL(bpf_prog_free);
2166 
2167 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2168 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2169 
2170 void bpf_user_rnd_init_once(void)
2171 {
2172 	prandom_init_once(&bpf_user_rnd_state);
2173 }
2174 
2175 BPF_CALL_0(bpf_user_rnd_u32)
2176 {
2177 	/* Should someone ever have the rather unwise idea to use some
2178 	 * of the registers passed into this function, then note that
2179 	 * this function is called from native eBPF and classic-to-eBPF
2180 	 * transformations. Register assignments from both sides are
2181 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2182 	 */
2183 	struct rnd_state *state;
2184 	u32 res;
2185 
2186 	state = &get_cpu_var(bpf_user_rnd_state);
2187 	res = prandom_u32_state(state);
2188 	put_cpu_var(bpf_user_rnd_state);
2189 
2190 	return res;
2191 }
2192 
2193 BPF_CALL_0(bpf_get_raw_cpu_id)
2194 {
2195 	return raw_smp_processor_id();
2196 }
2197 
2198 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2199 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2200 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2201 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2202 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2203 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2204 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2205 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2206 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2207 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2208 
2209 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2210 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2211 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2212 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2213 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2214 
2215 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2216 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2217 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2218 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2219 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2220 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2221 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2222 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2223 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2224 
2225 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2226 {
2227 	return NULL;
2228 }
2229 
2230 u64 __weak
2231 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2232 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2233 {
2234 	return -ENOTSUPP;
2235 }
2236 EXPORT_SYMBOL_GPL(bpf_event_output);
2237 
2238 /* Always built-in helper functions. */
2239 const struct bpf_func_proto bpf_tail_call_proto = {
2240 	.func		= NULL,
2241 	.gpl_only	= false,
2242 	.ret_type	= RET_VOID,
2243 	.arg1_type	= ARG_PTR_TO_CTX,
2244 	.arg2_type	= ARG_CONST_MAP_PTR,
2245 	.arg3_type	= ARG_ANYTHING,
2246 };
2247 
2248 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2249  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2250  * eBPF and implicitly also cBPF can get JITed!
2251  */
2252 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2253 {
2254 	return prog;
2255 }
2256 
2257 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2258  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2259  */
2260 void __weak bpf_jit_compile(struct bpf_prog *prog)
2261 {
2262 }
2263 
2264 bool __weak bpf_helper_changes_pkt_data(void *func)
2265 {
2266 	return false;
2267 }
2268 
2269 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2270  * analysis code and wants explicit zero extension inserted by verifier.
2271  * Otherwise, return FALSE.
2272  */
2273 bool __weak bpf_jit_needs_zext(void)
2274 {
2275 	return false;
2276 }
2277 
2278 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2279  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2280  */
2281 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2282 			 int len)
2283 {
2284 	return -EFAULT;
2285 }
2286 
2287 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2288 			      void *addr1, void *addr2)
2289 {
2290 	return -ENOTSUPP;
2291 }
2292 
2293 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2294 EXPORT_SYMBOL(bpf_stats_enabled_key);
2295 
2296 /* All definitions of tracepoints related to BPF. */
2297 #define CREATE_TRACE_POINTS
2298 #include <linux/bpf_trace.h>
2299 
2300 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2301 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2302