1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux Socket Filter - Kernel level socket filtering 4 * 5 * Based on the design of the Berkeley Packet Filter. The new 6 * internal format has been designed by PLUMgrid: 7 * 8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com 9 * 10 * Authors: 11 * 12 * Jay Schulist <jschlst@samba.org> 13 * Alexei Starovoitov <ast@plumgrid.com> 14 * Daniel Borkmann <dborkman@redhat.com> 15 * 16 * Andi Kleen - Fix a few bad bugs and races. 17 * Kris Katterjohn - Added many additional checks in bpf_check_classic() 18 */ 19 20 #include <uapi/linux/btf.h> 21 #include <linux/filter.h> 22 #include <linux/skbuff.h> 23 #include <linux/vmalloc.h> 24 #include <linux/random.h> 25 #include <linux/moduleloader.h> 26 #include <linux/bpf.h> 27 #include <linux/btf.h> 28 #include <linux/objtool.h> 29 #include <linux/rbtree_latch.h> 30 #include <linux/kallsyms.h> 31 #include <linux/rcupdate.h> 32 #include <linux/perf_event.h> 33 #include <linux/extable.h> 34 #include <linux/log2.h> 35 #include <linux/bpf_verifier.h> 36 #include <linux/nodemask.h> 37 #include <linux/nospec.h> 38 #include <linux/bpf_mem_alloc.h> 39 #include <linux/memcontrol.h> 40 41 #include <asm/barrier.h> 42 #include <asm/unaligned.h> 43 44 /* Registers */ 45 #define BPF_R0 regs[BPF_REG_0] 46 #define BPF_R1 regs[BPF_REG_1] 47 #define BPF_R2 regs[BPF_REG_2] 48 #define BPF_R3 regs[BPF_REG_3] 49 #define BPF_R4 regs[BPF_REG_4] 50 #define BPF_R5 regs[BPF_REG_5] 51 #define BPF_R6 regs[BPF_REG_6] 52 #define BPF_R7 regs[BPF_REG_7] 53 #define BPF_R8 regs[BPF_REG_8] 54 #define BPF_R9 regs[BPF_REG_9] 55 #define BPF_R10 regs[BPF_REG_10] 56 57 /* Named registers */ 58 #define DST regs[insn->dst_reg] 59 #define SRC regs[insn->src_reg] 60 #define FP regs[BPF_REG_FP] 61 #define AX regs[BPF_REG_AX] 62 #define ARG1 regs[BPF_REG_ARG1] 63 #define CTX regs[BPF_REG_CTX] 64 #define OFF insn->off 65 #define IMM insn->imm 66 67 struct bpf_mem_alloc bpf_global_ma; 68 bool bpf_global_ma_set; 69 70 /* No hurry in this branch 71 * 72 * Exported for the bpf jit load helper. 73 */ 74 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size) 75 { 76 u8 *ptr = NULL; 77 78 if (k >= SKF_NET_OFF) { 79 ptr = skb_network_header(skb) + k - SKF_NET_OFF; 80 } else if (k >= SKF_LL_OFF) { 81 if (unlikely(!skb_mac_header_was_set(skb))) 82 return NULL; 83 ptr = skb_mac_header(skb) + k - SKF_LL_OFF; 84 } 85 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb)) 86 return ptr; 87 88 return NULL; 89 } 90 91 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags) 92 { 93 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags); 94 struct bpf_prog_aux *aux; 95 struct bpf_prog *fp; 96 97 size = round_up(size, PAGE_SIZE); 98 fp = __vmalloc(size, gfp_flags); 99 if (fp == NULL) 100 return NULL; 101 102 aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags)); 103 if (aux == NULL) { 104 vfree(fp); 105 return NULL; 106 } 107 fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags)); 108 if (!fp->active) { 109 vfree(fp); 110 kfree(aux); 111 return NULL; 112 } 113 114 fp->pages = size / PAGE_SIZE; 115 fp->aux = aux; 116 fp->aux->prog = fp; 117 fp->jit_requested = ebpf_jit_enabled(); 118 fp->blinding_requested = bpf_jit_blinding_enabled(fp); 119 #ifdef CONFIG_CGROUP_BPF 120 aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID; 121 #endif 122 123 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode); 124 mutex_init(&fp->aux->used_maps_mutex); 125 mutex_init(&fp->aux->dst_mutex); 126 127 return fp; 128 } 129 130 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags) 131 { 132 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags); 133 struct bpf_prog *prog; 134 int cpu; 135 136 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags); 137 if (!prog) 138 return NULL; 139 140 prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags); 141 if (!prog->stats) { 142 free_percpu(prog->active); 143 kfree(prog->aux); 144 vfree(prog); 145 return NULL; 146 } 147 148 for_each_possible_cpu(cpu) { 149 struct bpf_prog_stats *pstats; 150 151 pstats = per_cpu_ptr(prog->stats, cpu); 152 u64_stats_init(&pstats->syncp); 153 } 154 return prog; 155 } 156 EXPORT_SYMBOL_GPL(bpf_prog_alloc); 157 158 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog) 159 { 160 if (!prog->aux->nr_linfo || !prog->jit_requested) 161 return 0; 162 163 prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo, 164 sizeof(*prog->aux->jited_linfo), 165 bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN)); 166 if (!prog->aux->jited_linfo) 167 return -ENOMEM; 168 169 return 0; 170 } 171 172 void bpf_prog_jit_attempt_done(struct bpf_prog *prog) 173 { 174 if (prog->aux->jited_linfo && 175 (!prog->jited || !prog->aux->jited_linfo[0])) { 176 kvfree(prog->aux->jited_linfo); 177 prog->aux->jited_linfo = NULL; 178 } 179 180 kfree(prog->aux->kfunc_tab); 181 prog->aux->kfunc_tab = NULL; 182 } 183 184 /* The jit engine is responsible to provide an array 185 * for insn_off to the jited_off mapping (insn_to_jit_off). 186 * 187 * The idx to this array is the insn_off. Hence, the insn_off 188 * here is relative to the prog itself instead of the main prog. 189 * This array has one entry for each xlated bpf insn. 190 * 191 * jited_off is the byte off to the end of the jited insn. 192 * 193 * Hence, with 194 * insn_start: 195 * The first bpf insn off of the prog. The insn off 196 * here is relative to the main prog. 197 * e.g. if prog is a subprog, insn_start > 0 198 * linfo_idx: 199 * The prog's idx to prog->aux->linfo and jited_linfo 200 * 201 * jited_linfo[linfo_idx] = prog->bpf_func 202 * 203 * For i > linfo_idx, 204 * 205 * jited_linfo[i] = prog->bpf_func + 206 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1] 207 */ 208 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 209 const u32 *insn_to_jit_off) 210 { 211 u32 linfo_idx, insn_start, insn_end, nr_linfo, i; 212 const struct bpf_line_info *linfo; 213 void **jited_linfo; 214 215 if (!prog->aux->jited_linfo) 216 /* Userspace did not provide linfo */ 217 return; 218 219 linfo_idx = prog->aux->linfo_idx; 220 linfo = &prog->aux->linfo[linfo_idx]; 221 insn_start = linfo[0].insn_off; 222 insn_end = insn_start + prog->len; 223 224 jited_linfo = &prog->aux->jited_linfo[linfo_idx]; 225 jited_linfo[0] = prog->bpf_func; 226 227 nr_linfo = prog->aux->nr_linfo - linfo_idx; 228 229 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++) 230 /* The verifier ensures that linfo[i].insn_off is 231 * strictly increasing 232 */ 233 jited_linfo[i] = prog->bpf_func + 234 insn_to_jit_off[linfo[i].insn_off - insn_start - 1]; 235 } 236 237 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 238 gfp_t gfp_extra_flags) 239 { 240 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags); 241 struct bpf_prog *fp; 242 u32 pages; 243 244 size = round_up(size, PAGE_SIZE); 245 pages = size / PAGE_SIZE; 246 if (pages <= fp_old->pages) 247 return fp_old; 248 249 fp = __vmalloc(size, gfp_flags); 250 if (fp) { 251 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE); 252 fp->pages = pages; 253 fp->aux->prog = fp; 254 255 /* We keep fp->aux from fp_old around in the new 256 * reallocated structure. 257 */ 258 fp_old->aux = NULL; 259 fp_old->stats = NULL; 260 fp_old->active = NULL; 261 __bpf_prog_free(fp_old); 262 } 263 264 return fp; 265 } 266 267 void __bpf_prog_free(struct bpf_prog *fp) 268 { 269 if (fp->aux) { 270 mutex_destroy(&fp->aux->used_maps_mutex); 271 mutex_destroy(&fp->aux->dst_mutex); 272 kfree(fp->aux->poke_tab); 273 kfree(fp->aux); 274 } 275 free_percpu(fp->stats); 276 free_percpu(fp->active); 277 vfree(fp); 278 } 279 280 int bpf_prog_calc_tag(struct bpf_prog *fp) 281 { 282 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64); 283 u32 raw_size = bpf_prog_tag_scratch_size(fp); 284 u32 digest[SHA1_DIGEST_WORDS]; 285 u32 ws[SHA1_WORKSPACE_WORDS]; 286 u32 i, bsize, psize, blocks; 287 struct bpf_insn *dst; 288 bool was_ld_map; 289 u8 *raw, *todo; 290 __be32 *result; 291 __be64 *bits; 292 293 raw = vmalloc(raw_size); 294 if (!raw) 295 return -ENOMEM; 296 297 sha1_init(digest); 298 memset(ws, 0, sizeof(ws)); 299 300 /* We need to take out the map fd for the digest calculation 301 * since they are unstable from user space side. 302 */ 303 dst = (void *)raw; 304 for (i = 0, was_ld_map = false; i < fp->len; i++) { 305 dst[i] = fp->insnsi[i]; 306 if (!was_ld_map && 307 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) && 308 (dst[i].src_reg == BPF_PSEUDO_MAP_FD || 309 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) { 310 was_ld_map = true; 311 dst[i].imm = 0; 312 } else if (was_ld_map && 313 dst[i].code == 0 && 314 dst[i].dst_reg == 0 && 315 dst[i].src_reg == 0 && 316 dst[i].off == 0) { 317 was_ld_map = false; 318 dst[i].imm = 0; 319 } else { 320 was_ld_map = false; 321 } 322 } 323 324 psize = bpf_prog_insn_size(fp); 325 memset(&raw[psize], 0, raw_size - psize); 326 raw[psize++] = 0x80; 327 328 bsize = round_up(psize, SHA1_BLOCK_SIZE); 329 blocks = bsize / SHA1_BLOCK_SIZE; 330 todo = raw; 331 if (bsize - psize >= sizeof(__be64)) { 332 bits = (__be64 *)(todo + bsize - sizeof(__be64)); 333 } else { 334 bits = (__be64 *)(todo + bsize + bits_offset); 335 blocks++; 336 } 337 *bits = cpu_to_be64((psize - 1) << 3); 338 339 while (blocks--) { 340 sha1_transform(digest, todo, ws); 341 todo += SHA1_BLOCK_SIZE; 342 } 343 344 result = (__force __be32 *)digest; 345 for (i = 0; i < SHA1_DIGEST_WORDS; i++) 346 result[i] = cpu_to_be32(digest[i]); 347 memcpy(fp->tag, result, sizeof(fp->tag)); 348 349 vfree(raw); 350 return 0; 351 } 352 353 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old, 354 s32 end_new, s32 curr, const bool probe_pass) 355 { 356 const s64 imm_min = S32_MIN, imm_max = S32_MAX; 357 s32 delta = end_new - end_old; 358 s64 imm = insn->imm; 359 360 if (curr < pos && curr + imm + 1 >= end_old) 361 imm += delta; 362 else if (curr >= end_new && curr + imm + 1 < end_new) 363 imm -= delta; 364 if (imm < imm_min || imm > imm_max) 365 return -ERANGE; 366 if (!probe_pass) 367 insn->imm = imm; 368 return 0; 369 } 370 371 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old, 372 s32 end_new, s32 curr, const bool probe_pass) 373 { 374 const s32 off_min = S16_MIN, off_max = S16_MAX; 375 s32 delta = end_new - end_old; 376 s32 off; 377 378 if (insn->code == (BPF_JMP32 | BPF_JA)) 379 off = insn->imm; 380 else 381 off = insn->off; 382 383 if (curr < pos && curr + off + 1 >= end_old) 384 off += delta; 385 else if (curr >= end_new && curr + off + 1 < end_new) 386 off -= delta; 387 if (off < off_min || off > off_max) 388 return -ERANGE; 389 if (!probe_pass) { 390 if (insn->code == (BPF_JMP32 | BPF_JA)) 391 insn->imm = off; 392 else 393 insn->off = off; 394 } 395 return 0; 396 } 397 398 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old, 399 s32 end_new, const bool probe_pass) 400 { 401 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0); 402 struct bpf_insn *insn = prog->insnsi; 403 int ret = 0; 404 405 for (i = 0; i < insn_cnt; i++, insn++) { 406 u8 code; 407 408 /* In the probing pass we still operate on the original, 409 * unpatched image in order to check overflows before we 410 * do any other adjustments. Therefore skip the patchlet. 411 */ 412 if (probe_pass && i == pos) { 413 i = end_new; 414 insn = prog->insnsi + end_old; 415 } 416 if (bpf_pseudo_func(insn)) { 417 ret = bpf_adj_delta_to_imm(insn, pos, end_old, 418 end_new, i, probe_pass); 419 if (ret) 420 return ret; 421 continue; 422 } 423 code = insn->code; 424 if ((BPF_CLASS(code) != BPF_JMP && 425 BPF_CLASS(code) != BPF_JMP32) || 426 BPF_OP(code) == BPF_EXIT) 427 continue; 428 /* Adjust offset of jmps if we cross patch boundaries. */ 429 if (BPF_OP(code) == BPF_CALL) { 430 if (insn->src_reg != BPF_PSEUDO_CALL) 431 continue; 432 ret = bpf_adj_delta_to_imm(insn, pos, end_old, 433 end_new, i, probe_pass); 434 } else { 435 ret = bpf_adj_delta_to_off(insn, pos, end_old, 436 end_new, i, probe_pass); 437 } 438 if (ret) 439 break; 440 } 441 442 return ret; 443 } 444 445 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta) 446 { 447 struct bpf_line_info *linfo; 448 u32 i, nr_linfo; 449 450 nr_linfo = prog->aux->nr_linfo; 451 if (!nr_linfo || !delta) 452 return; 453 454 linfo = prog->aux->linfo; 455 456 for (i = 0; i < nr_linfo; i++) 457 if (off < linfo[i].insn_off) 458 break; 459 460 /* Push all off < linfo[i].insn_off by delta */ 461 for (; i < nr_linfo; i++) 462 linfo[i].insn_off += delta; 463 } 464 465 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 466 const struct bpf_insn *patch, u32 len) 467 { 468 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1; 469 const u32 cnt_max = S16_MAX; 470 struct bpf_prog *prog_adj; 471 int err; 472 473 /* Since our patchlet doesn't expand the image, we're done. */ 474 if (insn_delta == 0) { 475 memcpy(prog->insnsi + off, patch, sizeof(*patch)); 476 return prog; 477 } 478 479 insn_adj_cnt = prog->len + insn_delta; 480 481 /* Reject anything that would potentially let the insn->off 482 * target overflow when we have excessive program expansions. 483 * We need to probe here before we do any reallocation where 484 * we afterwards may not fail anymore. 485 */ 486 if (insn_adj_cnt > cnt_max && 487 (err = bpf_adj_branches(prog, off, off + 1, off + len, true))) 488 return ERR_PTR(err); 489 490 /* Several new instructions need to be inserted. Make room 491 * for them. Likely, there's no need for a new allocation as 492 * last page could have large enough tailroom. 493 */ 494 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt), 495 GFP_USER); 496 if (!prog_adj) 497 return ERR_PTR(-ENOMEM); 498 499 prog_adj->len = insn_adj_cnt; 500 501 /* Patching happens in 3 steps: 502 * 503 * 1) Move over tail of insnsi from next instruction onwards, 504 * so we can patch the single target insn with one or more 505 * new ones (patching is always from 1 to n insns, n > 0). 506 * 2) Inject new instructions at the target location. 507 * 3) Adjust branch offsets if necessary. 508 */ 509 insn_rest = insn_adj_cnt - off - len; 510 511 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1, 512 sizeof(*patch) * insn_rest); 513 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len); 514 515 /* We are guaranteed to not fail at this point, otherwise 516 * the ship has sailed to reverse to the original state. An 517 * overflow cannot happen at this point. 518 */ 519 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false)); 520 521 bpf_adj_linfo(prog_adj, off, insn_delta); 522 523 return prog_adj; 524 } 525 526 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt) 527 { 528 /* Branch offsets can't overflow when program is shrinking, no need 529 * to call bpf_adj_branches(..., true) here 530 */ 531 memmove(prog->insnsi + off, prog->insnsi + off + cnt, 532 sizeof(struct bpf_insn) * (prog->len - off - cnt)); 533 prog->len -= cnt; 534 535 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false)); 536 } 537 538 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp) 539 { 540 int i; 541 542 for (i = 0; i < fp->aux->func_cnt; i++) 543 bpf_prog_kallsyms_del(fp->aux->func[i]); 544 } 545 546 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp) 547 { 548 bpf_prog_kallsyms_del_subprogs(fp); 549 bpf_prog_kallsyms_del(fp); 550 } 551 552 #ifdef CONFIG_BPF_JIT 553 /* All BPF JIT sysctl knobs here. */ 554 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON); 555 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON); 556 int bpf_jit_harden __read_mostly; 557 long bpf_jit_limit __read_mostly; 558 long bpf_jit_limit_max __read_mostly; 559 560 static void 561 bpf_prog_ksym_set_addr(struct bpf_prog *prog) 562 { 563 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog)); 564 565 prog->aux->ksym.start = (unsigned long) prog->bpf_func; 566 prog->aux->ksym.end = prog->aux->ksym.start + prog->jited_len; 567 } 568 569 static void 570 bpf_prog_ksym_set_name(struct bpf_prog *prog) 571 { 572 char *sym = prog->aux->ksym.name; 573 const char *end = sym + KSYM_NAME_LEN; 574 const struct btf_type *type; 575 const char *func_name; 576 577 BUILD_BUG_ON(sizeof("bpf_prog_") + 578 sizeof(prog->tag) * 2 + 579 /* name has been null terminated. 580 * We should need +1 for the '_' preceding 581 * the name. However, the null character 582 * is double counted between the name and the 583 * sizeof("bpf_prog_") above, so we omit 584 * the +1 here. 585 */ 586 sizeof(prog->aux->name) > KSYM_NAME_LEN); 587 588 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_"); 589 sym = bin2hex(sym, prog->tag, sizeof(prog->tag)); 590 591 /* prog->aux->name will be ignored if full btf name is available */ 592 if (prog->aux->func_info_cnt) { 593 type = btf_type_by_id(prog->aux->btf, 594 prog->aux->func_info[prog->aux->func_idx].type_id); 595 func_name = btf_name_by_offset(prog->aux->btf, type->name_off); 596 snprintf(sym, (size_t)(end - sym), "_%s", func_name); 597 return; 598 } 599 600 if (prog->aux->name[0]) 601 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name); 602 else 603 *sym = 0; 604 } 605 606 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n) 607 { 608 return container_of(n, struct bpf_ksym, tnode)->start; 609 } 610 611 static __always_inline bool bpf_tree_less(struct latch_tree_node *a, 612 struct latch_tree_node *b) 613 { 614 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b); 615 } 616 617 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n) 618 { 619 unsigned long val = (unsigned long)key; 620 const struct bpf_ksym *ksym; 621 622 ksym = container_of(n, struct bpf_ksym, tnode); 623 624 if (val < ksym->start) 625 return -1; 626 /* Ensure that we detect return addresses as part of the program, when 627 * the final instruction is a call for a program part of the stack 628 * trace. Therefore, do val > ksym->end instead of val >= ksym->end. 629 */ 630 if (val > ksym->end) 631 return 1; 632 633 return 0; 634 } 635 636 static const struct latch_tree_ops bpf_tree_ops = { 637 .less = bpf_tree_less, 638 .comp = bpf_tree_comp, 639 }; 640 641 static DEFINE_SPINLOCK(bpf_lock); 642 static LIST_HEAD(bpf_kallsyms); 643 static struct latch_tree_root bpf_tree __cacheline_aligned; 644 645 void bpf_ksym_add(struct bpf_ksym *ksym) 646 { 647 spin_lock_bh(&bpf_lock); 648 WARN_ON_ONCE(!list_empty(&ksym->lnode)); 649 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms); 650 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops); 651 spin_unlock_bh(&bpf_lock); 652 } 653 654 static void __bpf_ksym_del(struct bpf_ksym *ksym) 655 { 656 if (list_empty(&ksym->lnode)) 657 return; 658 659 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops); 660 list_del_rcu(&ksym->lnode); 661 } 662 663 void bpf_ksym_del(struct bpf_ksym *ksym) 664 { 665 spin_lock_bh(&bpf_lock); 666 __bpf_ksym_del(ksym); 667 spin_unlock_bh(&bpf_lock); 668 } 669 670 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp) 671 { 672 return fp->jited && !bpf_prog_was_classic(fp); 673 } 674 675 void bpf_prog_kallsyms_add(struct bpf_prog *fp) 676 { 677 if (!bpf_prog_kallsyms_candidate(fp) || 678 !bpf_capable()) 679 return; 680 681 bpf_prog_ksym_set_addr(fp); 682 bpf_prog_ksym_set_name(fp); 683 fp->aux->ksym.prog = true; 684 685 bpf_ksym_add(&fp->aux->ksym); 686 } 687 688 void bpf_prog_kallsyms_del(struct bpf_prog *fp) 689 { 690 if (!bpf_prog_kallsyms_candidate(fp)) 691 return; 692 693 bpf_ksym_del(&fp->aux->ksym); 694 } 695 696 static struct bpf_ksym *bpf_ksym_find(unsigned long addr) 697 { 698 struct latch_tree_node *n; 699 700 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops); 701 return n ? container_of(n, struct bpf_ksym, tnode) : NULL; 702 } 703 704 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 705 unsigned long *off, char *sym) 706 { 707 struct bpf_ksym *ksym; 708 char *ret = NULL; 709 710 rcu_read_lock(); 711 ksym = bpf_ksym_find(addr); 712 if (ksym) { 713 unsigned long symbol_start = ksym->start; 714 unsigned long symbol_end = ksym->end; 715 716 strncpy(sym, ksym->name, KSYM_NAME_LEN); 717 718 ret = sym; 719 if (size) 720 *size = symbol_end - symbol_start; 721 if (off) 722 *off = addr - symbol_start; 723 } 724 rcu_read_unlock(); 725 726 return ret; 727 } 728 729 bool is_bpf_text_address(unsigned long addr) 730 { 731 bool ret; 732 733 rcu_read_lock(); 734 ret = bpf_ksym_find(addr) != NULL; 735 rcu_read_unlock(); 736 737 return ret; 738 } 739 740 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) 741 { 742 struct bpf_ksym *ksym = bpf_ksym_find(addr); 743 744 return ksym && ksym->prog ? 745 container_of(ksym, struct bpf_prog_aux, ksym)->prog : 746 NULL; 747 } 748 749 const struct exception_table_entry *search_bpf_extables(unsigned long addr) 750 { 751 const struct exception_table_entry *e = NULL; 752 struct bpf_prog *prog; 753 754 rcu_read_lock(); 755 prog = bpf_prog_ksym_find(addr); 756 if (!prog) 757 goto out; 758 if (!prog->aux->num_exentries) 759 goto out; 760 761 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr); 762 out: 763 rcu_read_unlock(); 764 return e; 765 } 766 767 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 768 char *sym) 769 { 770 struct bpf_ksym *ksym; 771 unsigned int it = 0; 772 int ret = -ERANGE; 773 774 if (!bpf_jit_kallsyms_enabled()) 775 return ret; 776 777 rcu_read_lock(); 778 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) { 779 if (it++ != symnum) 780 continue; 781 782 strncpy(sym, ksym->name, KSYM_NAME_LEN); 783 784 *value = ksym->start; 785 *type = BPF_SYM_ELF_TYPE; 786 787 ret = 0; 788 break; 789 } 790 rcu_read_unlock(); 791 792 return ret; 793 } 794 795 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 796 struct bpf_jit_poke_descriptor *poke) 797 { 798 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 799 static const u32 poke_tab_max = 1024; 800 u32 slot = prog->aux->size_poke_tab; 801 u32 size = slot + 1; 802 803 if (size > poke_tab_max) 804 return -ENOSPC; 805 if (poke->tailcall_target || poke->tailcall_target_stable || 806 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr) 807 return -EINVAL; 808 809 switch (poke->reason) { 810 case BPF_POKE_REASON_TAIL_CALL: 811 if (!poke->tail_call.map) 812 return -EINVAL; 813 break; 814 default: 815 return -EINVAL; 816 } 817 818 tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL); 819 if (!tab) 820 return -ENOMEM; 821 822 memcpy(&tab[slot], poke, sizeof(*poke)); 823 prog->aux->size_poke_tab = size; 824 prog->aux->poke_tab = tab; 825 826 return slot; 827 } 828 829 /* 830 * BPF program pack allocator. 831 * 832 * Most BPF programs are pretty small. Allocating a hole page for each 833 * program is sometime a waste. Many small bpf program also adds pressure 834 * to instruction TLB. To solve this issue, we introduce a BPF program pack 835 * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86) 836 * to host BPF programs. 837 */ 838 #define BPF_PROG_CHUNK_SHIFT 6 839 #define BPF_PROG_CHUNK_SIZE (1 << BPF_PROG_CHUNK_SHIFT) 840 #define BPF_PROG_CHUNK_MASK (~(BPF_PROG_CHUNK_SIZE - 1)) 841 842 struct bpf_prog_pack { 843 struct list_head list; 844 void *ptr; 845 unsigned long bitmap[]; 846 }; 847 848 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size) 849 { 850 memset(area, 0, size); 851 } 852 853 #define BPF_PROG_SIZE_TO_NBITS(size) (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE) 854 855 static DEFINE_MUTEX(pack_mutex); 856 static LIST_HEAD(pack_list); 857 858 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with 859 * CONFIG_MMU=n. Use PAGE_SIZE in these cases. 860 */ 861 #ifdef PMD_SIZE 862 #define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes()) 863 #else 864 #define BPF_PROG_PACK_SIZE PAGE_SIZE 865 #endif 866 867 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE) 868 869 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns) 870 { 871 struct bpf_prog_pack *pack; 872 873 pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)), 874 GFP_KERNEL); 875 if (!pack) 876 return NULL; 877 pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE); 878 if (!pack->ptr) { 879 kfree(pack); 880 return NULL; 881 } 882 bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE); 883 bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE); 884 list_add_tail(&pack->list, &pack_list); 885 886 set_vm_flush_reset_perms(pack->ptr); 887 set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE); 888 return pack; 889 } 890 891 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns) 892 { 893 unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size); 894 struct bpf_prog_pack *pack; 895 unsigned long pos; 896 void *ptr = NULL; 897 898 mutex_lock(&pack_mutex); 899 if (size > BPF_PROG_PACK_SIZE) { 900 size = round_up(size, PAGE_SIZE); 901 ptr = bpf_jit_alloc_exec(size); 902 if (ptr) { 903 bpf_fill_ill_insns(ptr, size); 904 set_vm_flush_reset_perms(ptr); 905 set_memory_rox((unsigned long)ptr, size / PAGE_SIZE); 906 } 907 goto out; 908 } 909 list_for_each_entry(pack, &pack_list, list) { 910 pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0, 911 nbits, 0); 912 if (pos < BPF_PROG_CHUNK_COUNT) 913 goto found_free_area; 914 } 915 916 pack = alloc_new_pack(bpf_fill_ill_insns); 917 if (!pack) 918 goto out; 919 920 pos = 0; 921 922 found_free_area: 923 bitmap_set(pack->bitmap, pos, nbits); 924 ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT); 925 926 out: 927 mutex_unlock(&pack_mutex); 928 return ptr; 929 } 930 931 void bpf_prog_pack_free(struct bpf_binary_header *hdr) 932 { 933 struct bpf_prog_pack *pack = NULL, *tmp; 934 unsigned int nbits; 935 unsigned long pos; 936 937 mutex_lock(&pack_mutex); 938 if (hdr->size > BPF_PROG_PACK_SIZE) { 939 bpf_jit_free_exec(hdr); 940 goto out; 941 } 942 943 list_for_each_entry(tmp, &pack_list, list) { 944 if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) { 945 pack = tmp; 946 break; 947 } 948 } 949 950 if (WARN_ONCE(!pack, "bpf_prog_pack bug\n")) 951 goto out; 952 953 nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size); 954 pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT; 955 956 WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size), 957 "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n"); 958 959 bitmap_clear(pack->bitmap, pos, nbits); 960 if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0, 961 BPF_PROG_CHUNK_COUNT, 0) == 0) { 962 list_del(&pack->list); 963 bpf_jit_free_exec(pack->ptr); 964 kfree(pack); 965 } 966 out: 967 mutex_unlock(&pack_mutex); 968 } 969 970 static atomic_long_t bpf_jit_current; 971 972 /* Can be overridden by an arch's JIT compiler if it has a custom, 973 * dedicated BPF backend memory area, or if neither of the two 974 * below apply. 975 */ 976 u64 __weak bpf_jit_alloc_exec_limit(void) 977 { 978 #if defined(MODULES_VADDR) 979 return MODULES_END - MODULES_VADDR; 980 #else 981 return VMALLOC_END - VMALLOC_START; 982 #endif 983 } 984 985 static int __init bpf_jit_charge_init(void) 986 { 987 /* Only used as heuristic here to derive limit. */ 988 bpf_jit_limit_max = bpf_jit_alloc_exec_limit(); 989 bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1, 990 PAGE_SIZE), LONG_MAX); 991 return 0; 992 } 993 pure_initcall(bpf_jit_charge_init); 994 995 int bpf_jit_charge_modmem(u32 size) 996 { 997 if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) { 998 if (!bpf_capable()) { 999 atomic_long_sub(size, &bpf_jit_current); 1000 return -EPERM; 1001 } 1002 } 1003 1004 return 0; 1005 } 1006 1007 void bpf_jit_uncharge_modmem(u32 size) 1008 { 1009 atomic_long_sub(size, &bpf_jit_current); 1010 } 1011 1012 void *__weak bpf_jit_alloc_exec(unsigned long size) 1013 { 1014 return module_alloc(size); 1015 } 1016 1017 void __weak bpf_jit_free_exec(void *addr) 1018 { 1019 module_memfree(addr); 1020 } 1021 1022 struct bpf_binary_header * 1023 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1024 unsigned int alignment, 1025 bpf_jit_fill_hole_t bpf_fill_ill_insns) 1026 { 1027 struct bpf_binary_header *hdr; 1028 u32 size, hole, start; 1029 1030 WARN_ON_ONCE(!is_power_of_2(alignment) || 1031 alignment > BPF_IMAGE_ALIGNMENT); 1032 1033 /* Most of BPF filters are really small, but if some of them 1034 * fill a page, allow at least 128 extra bytes to insert a 1035 * random section of illegal instructions. 1036 */ 1037 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE); 1038 1039 if (bpf_jit_charge_modmem(size)) 1040 return NULL; 1041 hdr = bpf_jit_alloc_exec(size); 1042 if (!hdr) { 1043 bpf_jit_uncharge_modmem(size); 1044 return NULL; 1045 } 1046 1047 /* Fill space with illegal/arch-dep instructions. */ 1048 bpf_fill_ill_insns(hdr, size); 1049 1050 hdr->size = size; 1051 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)), 1052 PAGE_SIZE - sizeof(*hdr)); 1053 start = get_random_u32_below(hole) & ~(alignment - 1); 1054 1055 /* Leave a random number of instructions before BPF code. */ 1056 *image_ptr = &hdr->image[start]; 1057 1058 return hdr; 1059 } 1060 1061 void bpf_jit_binary_free(struct bpf_binary_header *hdr) 1062 { 1063 u32 size = hdr->size; 1064 1065 bpf_jit_free_exec(hdr); 1066 bpf_jit_uncharge_modmem(size); 1067 } 1068 1069 /* Allocate jit binary from bpf_prog_pack allocator. 1070 * Since the allocated memory is RO+X, the JIT engine cannot write directly 1071 * to the memory. To solve this problem, a RW buffer is also allocated at 1072 * as the same time. The JIT engine should calculate offsets based on the 1073 * RO memory address, but write JITed program to the RW buffer. Once the 1074 * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies 1075 * the JITed program to the RO memory. 1076 */ 1077 struct bpf_binary_header * 1078 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr, 1079 unsigned int alignment, 1080 struct bpf_binary_header **rw_header, 1081 u8 **rw_image, 1082 bpf_jit_fill_hole_t bpf_fill_ill_insns) 1083 { 1084 struct bpf_binary_header *ro_header; 1085 u32 size, hole, start; 1086 1087 WARN_ON_ONCE(!is_power_of_2(alignment) || 1088 alignment > BPF_IMAGE_ALIGNMENT); 1089 1090 /* add 16 bytes for a random section of illegal instructions */ 1091 size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE); 1092 1093 if (bpf_jit_charge_modmem(size)) 1094 return NULL; 1095 ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns); 1096 if (!ro_header) { 1097 bpf_jit_uncharge_modmem(size); 1098 return NULL; 1099 } 1100 1101 *rw_header = kvmalloc(size, GFP_KERNEL); 1102 if (!*rw_header) { 1103 bpf_arch_text_copy(&ro_header->size, &size, sizeof(size)); 1104 bpf_prog_pack_free(ro_header); 1105 bpf_jit_uncharge_modmem(size); 1106 return NULL; 1107 } 1108 1109 /* Fill space with illegal/arch-dep instructions. */ 1110 bpf_fill_ill_insns(*rw_header, size); 1111 (*rw_header)->size = size; 1112 1113 hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)), 1114 BPF_PROG_CHUNK_SIZE - sizeof(*ro_header)); 1115 start = get_random_u32_below(hole) & ~(alignment - 1); 1116 1117 *image_ptr = &ro_header->image[start]; 1118 *rw_image = &(*rw_header)->image[start]; 1119 1120 return ro_header; 1121 } 1122 1123 /* Copy JITed text from rw_header to its final location, the ro_header. */ 1124 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog, 1125 struct bpf_binary_header *ro_header, 1126 struct bpf_binary_header *rw_header) 1127 { 1128 void *ptr; 1129 1130 ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size); 1131 1132 kvfree(rw_header); 1133 1134 if (IS_ERR(ptr)) { 1135 bpf_prog_pack_free(ro_header); 1136 return PTR_ERR(ptr); 1137 } 1138 return 0; 1139 } 1140 1141 /* bpf_jit_binary_pack_free is called in two different scenarios: 1142 * 1) when the program is freed after; 1143 * 2) when the JIT engine fails (before bpf_jit_binary_pack_finalize). 1144 * For case 2), we need to free both the RO memory and the RW buffer. 1145 * 1146 * bpf_jit_binary_pack_free requires proper ro_header->size. However, 1147 * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size 1148 * must be set with either bpf_jit_binary_pack_finalize (normal path) or 1149 * bpf_arch_text_copy (when jit fails). 1150 */ 1151 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, 1152 struct bpf_binary_header *rw_header) 1153 { 1154 u32 size = ro_header->size; 1155 1156 bpf_prog_pack_free(ro_header); 1157 kvfree(rw_header); 1158 bpf_jit_uncharge_modmem(size); 1159 } 1160 1161 struct bpf_binary_header * 1162 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp) 1163 { 1164 unsigned long real_start = (unsigned long)fp->bpf_func; 1165 unsigned long addr; 1166 1167 addr = real_start & BPF_PROG_CHUNK_MASK; 1168 return (void *)addr; 1169 } 1170 1171 static inline struct bpf_binary_header * 1172 bpf_jit_binary_hdr(const struct bpf_prog *fp) 1173 { 1174 unsigned long real_start = (unsigned long)fp->bpf_func; 1175 unsigned long addr; 1176 1177 addr = real_start & PAGE_MASK; 1178 return (void *)addr; 1179 } 1180 1181 /* This symbol is only overridden by archs that have different 1182 * requirements than the usual eBPF JITs, f.e. when they only 1183 * implement cBPF JIT, do not set images read-only, etc. 1184 */ 1185 void __weak bpf_jit_free(struct bpf_prog *fp) 1186 { 1187 if (fp->jited) { 1188 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp); 1189 1190 bpf_jit_binary_free(hdr); 1191 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp)); 1192 } 1193 1194 bpf_prog_unlock_free(fp); 1195 } 1196 1197 int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1198 const struct bpf_insn *insn, bool extra_pass, 1199 u64 *func_addr, bool *func_addr_fixed) 1200 { 1201 s16 off = insn->off; 1202 s32 imm = insn->imm; 1203 u8 *addr; 1204 int err; 1205 1206 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL; 1207 if (!*func_addr_fixed) { 1208 /* Place-holder address till the last pass has collected 1209 * all addresses for JITed subprograms in which case we 1210 * can pick them up from prog->aux. 1211 */ 1212 if (!extra_pass) 1213 addr = NULL; 1214 else if (prog->aux->func && 1215 off >= 0 && off < prog->aux->func_cnt) 1216 addr = (u8 *)prog->aux->func[off]->bpf_func; 1217 else 1218 return -EINVAL; 1219 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 1220 bpf_jit_supports_far_kfunc_call()) { 1221 err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr); 1222 if (err) 1223 return err; 1224 } else { 1225 /* Address of a BPF helper call. Since part of the core 1226 * kernel, it's always at a fixed location. __bpf_call_base 1227 * and the helper with imm relative to it are both in core 1228 * kernel. 1229 */ 1230 addr = (u8 *)__bpf_call_base + imm; 1231 } 1232 1233 *func_addr = (unsigned long)addr; 1234 return 0; 1235 } 1236 1237 static int bpf_jit_blind_insn(const struct bpf_insn *from, 1238 const struct bpf_insn *aux, 1239 struct bpf_insn *to_buff, 1240 bool emit_zext) 1241 { 1242 struct bpf_insn *to = to_buff; 1243 u32 imm_rnd = get_random_u32(); 1244 s16 off; 1245 1246 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG); 1247 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG); 1248 1249 /* Constraints on AX register: 1250 * 1251 * AX register is inaccessible from user space. It is mapped in 1252 * all JITs, and used here for constant blinding rewrites. It is 1253 * typically "stateless" meaning its contents are only valid within 1254 * the executed instruction, but not across several instructions. 1255 * There are a few exceptions however which are further detailed 1256 * below. 1257 * 1258 * Constant blinding is only used by JITs, not in the interpreter. 1259 * The interpreter uses AX in some occasions as a local temporary 1260 * register e.g. in DIV or MOD instructions. 1261 * 1262 * In restricted circumstances, the verifier can also use the AX 1263 * register for rewrites as long as they do not interfere with 1264 * the above cases! 1265 */ 1266 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX) 1267 goto out; 1268 1269 if (from->imm == 0 && 1270 (from->code == (BPF_ALU | BPF_MOV | BPF_K) || 1271 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) { 1272 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg); 1273 goto out; 1274 } 1275 1276 switch (from->code) { 1277 case BPF_ALU | BPF_ADD | BPF_K: 1278 case BPF_ALU | BPF_SUB | BPF_K: 1279 case BPF_ALU | BPF_AND | BPF_K: 1280 case BPF_ALU | BPF_OR | BPF_K: 1281 case BPF_ALU | BPF_XOR | BPF_K: 1282 case BPF_ALU | BPF_MUL | BPF_K: 1283 case BPF_ALU | BPF_MOV | BPF_K: 1284 case BPF_ALU | BPF_DIV | BPF_K: 1285 case BPF_ALU | BPF_MOD | BPF_K: 1286 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1287 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1288 *to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off); 1289 break; 1290 1291 case BPF_ALU64 | BPF_ADD | BPF_K: 1292 case BPF_ALU64 | BPF_SUB | BPF_K: 1293 case BPF_ALU64 | BPF_AND | BPF_K: 1294 case BPF_ALU64 | BPF_OR | BPF_K: 1295 case BPF_ALU64 | BPF_XOR | BPF_K: 1296 case BPF_ALU64 | BPF_MUL | BPF_K: 1297 case BPF_ALU64 | BPF_MOV | BPF_K: 1298 case BPF_ALU64 | BPF_DIV | BPF_K: 1299 case BPF_ALU64 | BPF_MOD | BPF_K: 1300 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1301 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1302 *to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off); 1303 break; 1304 1305 case BPF_JMP | BPF_JEQ | BPF_K: 1306 case BPF_JMP | BPF_JNE | BPF_K: 1307 case BPF_JMP | BPF_JGT | BPF_K: 1308 case BPF_JMP | BPF_JLT | BPF_K: 1309 case BPF_JMP | BPF_JGE | BPF_K: 1310 case BPF_JMP | BPF_JLE | BPF_K: 1311 case BPF_JMP | BPF_JSGT | BPF_K: 1312 case BPF_JMP | BPF_JSLT | BPF_K: 1313 case BPF_JMP | BPF_JSGE | BPF_K: 1314 case BPF_JMP | BPF_JSLE | BPF_K: 1315 case BPF_JMP | BPF_JSET | BPF_K: 1316 /* Accommodate for extra offset in case of a backjump. */ 1317 off = from->off; 1318 if (off < 0) 1319 off -= 2; 1320 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1321 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1322 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off); 1323 break; 1324 1325 case BPF_JMP32 | BPF_JEQ | BPF_K: 1326 case BPF_JMP32 | BPF_JNE | BPF_K: 1327 case BPF_JMP32 | BPF_JGT | BPF_K: 1328 case BPF_JMP32 | BPF_JLT | BPF_K: 1329 case BPF_JMP32 | BPF_JGE | BPF_K: 1330 case BPF_JMP32 | BPF_JLE | BPF_K: 1331 case BPF_JMP32 | BPF_JSGT | BPF_K: 1332 case BPF_JMP32 | BPF_JSLT | BPF_K: 1333 case BPF_JMP32 | BPF_JSGE | BPF_K: 1334 case BPF_JMP32 | BPF_JSLE | BPF_K: 1335 case BPF_JMP32 | BPF_JSET | BPF_K: 1336 /* Accommodate for extra offset in case of a backjump. */ 1337 off = from->off; 1338 if (off < 0) 1339 off -= 2; 1340 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1341 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1342 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX, 1343 off); 1344 break; 1345 1346 case BPF_LD | BPF_IMM | BPF_DW: 1347 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm); 1348 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1349 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 1350 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX); 1351 break; 1352 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */ 1353 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm); 1354 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1355 if (emit_zext) 1356 *to++ = BPF_ZEXT_REG(BPF_REG_AX); 1357 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX); 1358 break; 1359 1360 case BPF_ST | BPF_MEM | BPF_DW: 1361 case BPF_ST | BPF_MEM | BPF_W: 1362 case BPF_ST | BPF_MEM | BPF_H: 1363 case BPF_ST | BPF_MEM | BPF_B: 1364 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1365 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1366 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off); 1367 break; 1368 } 1369 out: 1370 return to - to_buff; 1371 } 1372 1373 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other, 1374 gfp_t gfp_extra_flags) 1375 { 1376 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags; 1377 struct bpf_prog *fp; 1378 1379 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags); 1380 if (fp != NULL) { 1381 /* aux->prog still points to the fp_other one, so 1382 * when promoting the clone to the real program, 1383 * this still needs to be adapted. 1384 */ 1385 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE); 1386 } 1387 1388 return fp; 1389 } 1390 1391 static void bpf_prog_clone_free(struct bpf_prog *fp) 1392 { 1393 /* aux was stolen by the other clone, so we cannot free 1394 * it from this path! It will be freed eventually by the 1395 * other program on release. 1396 * 1397 * At this point, we don't need a deferred release since 1398 * clone is guaranteed to not be locked. 1399 */ 1400 fp->aux = NULL; 1401 fp->stats = NULL; 1402 fp->active = NULL; 1403 __bpf_prog_free(fp); 1404 } 1405 1406 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other) 1407 { 1408 /* We have to repoint aux->prog to self, as we don't 1409 * know whether fp here is the clone or the original. 1410 */ 1411 fp->aux->prog = fp; 1412 bpf_prog_clone_free(fp_other); 1413 } 1414 1415 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog) 1416 { 1417 struct bpf_insn insn_buff[16], aux[2]; 1418 struct bpf_prog *clone, *tmp; 1419 int insn_delta, insn_cnt; 1420 struct bpf_insn *insn; 1421 int i, rewritten; 1422 1423 if (!prog->blinding_requested || prog->blinded) 1424 return prog; 1425 1426 clone = bpf_prog_clone_create(prog, GFP_USER); 1427 if (!clone) 1428 return ERR_PTR(-ENOMEM); 1429 1430 insn_cnt = clone->len; 1431 insn = clone->insnsi; 1432 1433 for (i = 0; i < insn_cnt; i++, insn++) { 1434 if (bpf_pseudo_func(insn)) { 1435 /* ld_imm64 with an address of bpf subprog is not 1436 * a user controlled constant. Don't randomize it, 1437 * since it will conflict with jit_subprogs() logic. 1438 */ 1439 insn++; 1440 i++; 1441 continue; 1442 } 1443 1444 /* We temporarily need to hold the original ld64 insn 1445 * so that we can still access the first part in the 1446 * second blinding run. 1447 */ 1448 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) && 1449 insn[1].code == 0) 1450 memcpy(aux, insn, sizeof(aux)); 1451 1452 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff, 1453 clone->aux->verifier_zext); 1454 if (!rewritten) 1455 continue; 1456 1457 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten); 1458 if (IS_ERR(tmp)) { 1459 /* Patching may have repointed aux->prog during 1460 * realloc from the original one, so we need to 1461 * fix it up here on error. 1462 */ 1463 bpf_jit_prog_release_other(prog, clone); 1464 return tmp; 1465 } 1466 1467 clone = tmp; 1468 insn_delta = rewritten - 1; 1469 1470 /* Walk new program and skip insns we just inserted. */ 1471 insn = clone->insnsi + i + insn_delta; 1472 insn_cnt += insn_delta; 1473 i += insn_delta; 1474 } 1475 1476 clone->blinded = 1; 1477 return clone; 1478 } 1479 #endif /* CONFIG_BPF_JIT */ 1480 1481 /* Base function for offset calculation. Needs to go into .text section, 1482 * therefore keeping it non-static as well; will also be used by JITs 1483 * anyway later on, so do not let the compiler omit it. This also needs 1484 * to go into kallsyms for correlation from e.g. bpftool, so naming 1485 * must not change. 1486 */ 1487 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 1488 { 1489 return 0; 1490 } 1491 EXPORT_SYMBOL_GPL(__bpf_call_base); 1492 1493 /* All UAPI available opcodes. */ 1494 #define BPF_INSN_MAP(INSN_2, INSN_3) \ 1495 /* 32 bit ALU operations. */ \ 1496 /* Register based. */ \ 1497 INSN_3(ALU, ADD, X), \ 1498 INSN_3(ALU, SUB, X), \ 1499 INSN_3(ALU, AND, X), \ 1500 INSN_3(ALU, OR, X), \ 1501 INSN_3(ALU, LSH, X), \ 1502 INSN_3(ALU, RSH, X), \ 1503 INSN_3(ALU, XOR, X), \ 1504 INSN_3(ALU, MUL, X), \ 1505 INSN_3(ALU, MOV, X), \ 1506 INSN_3(ALU, ARSH, X), \ 1507 INSN_3(ALU, DIV, X), \ 1508 INSN_3(ALU, MOD, X), \ 1509 INSN_2(ALU, NEG), \ 1510 INSN_3(ALU, END, TO_BE), \ 1511 INSN_3(ALU, END, TO_LE), \ 1512 /* Immediate based. */ \ 1513 INSN_3(ALU, ADD, K), \ 1514 INSN_3(ALU, SUB, K), \ 1515 INSN_3(ALU, AND, K), \ 1516 INSN_3(ALU, OR, K), \ 1517 INSN_3(ALU, LSH, K), \ 1518 INSN_3(ALU, RSH, K), \ 1519 INSN_3(ALU, XOR, K), \ 1520 INSN_3(ALU, MUL, K), \ 1521 INSN_3(ALU, MOV, K), \ 1522 INSN_3(ALU, ARSH, K), \ 1523 INSN_3(ALU, DIV, K), \ 1524 INSN_3(ALU, MOD, K), \ 1525 /* 64 bit ALU operations. */ \ 1526 /* Register based. */ \ 1527 INSN_3(ALU64, ADD, X), \ 1528 INSN_3(ALU64, SUB, X), \ 1529 INSN_3(ALU64, AND, X), \ 1530 INSN_3(ALU64, OR, X), \ 1531 INSN_3(ALU64, LSH, X), \ 1532 INSN_3(ALU64, RSH, X), \ 1533 INSN_3(ALU64, XOR, X), \ 1534 INSN_3(ALU64, MUL, X), \ 1535 INSN_3(ALU64, MOV, X), \ 1536 INSN_3(ALU64, ARSH, X), \ 1537 INSN_3(ALU64, DIV, X), \ 1538 INSN_3(ALU64, MOD, X), \ 1539 INSN_2(ALU64, NEG), \ 1540 INSN_3(ALU64, END, TO_LE), \ 1541 /* Immediate based. */ \ 1542 INSN_3(ALU64, ADD, K), \ 1543 INSN_3(ALU64, SUB, K), \ 1544 INSN_3(ALU64, AND, K), \ 1545 INSN_3(ALU64, OR, K), \ 1546 INSN_3(ALU64, LSH, K), \ 1547 INSN_3(ALU64, RSH, K), \ 1548 INSN_3(ALU64, XOR, K), \ 1549 INSN_3(ALU64, MUL, K), \ 1550 INSN_3(ALU64, MOV, K), \ 1551 INSN_3(ALU64, ARSH, K), \ 1552 INSN_3(ALU64, DIV, K), \ 1553 INSN_3(ALU64, MOD, K), \ 1554 /* Call instruction. */ \ 1555 INSN_2(JMP, CALL), \ 1556 /* Exit instruction. */ \ 1557 INSN_2(JMP, EXIT), \ 1558 /* 32-bit Jump instructions. */ \ 1559 /* Register based. */ \ 1560 INSN_3(JMP32, JEQ, X), \ 1561 INSN_3(JMP32, JNE, X), \ 1562 INSN_3(JMP32, JGT, X), \ 1563 INSN_3(JMP32, JLT, X), \ 1564 INSN_3(JMP32, JGE, X), \ 1565 INSN_3(JMP32, JLE, X), \ 1566 INSN_3(JMP32, JSGT, X), \ 1567 INSN_3(JMP32, JSLT, X), \ 1568 INSN_3(JMP32, JSGE, X), \ 1569 INSN_3(JMP32, JSLE, X), \ 1570 INSN_3(JMP32, JSET, X), \ 1571 /* Immediate based. */ \ 1572 INSN_3(JMP32, JEQ, K), \ 1573 INSN_3(JMP32, JNE, K), \ 1574 INSN_3(JMP32, JGT, K), \ 1575 INSN_3(JMP32, JLT, K), \ 1576 INSN_3(JMP32, JGE, K), \ 1577 INSN_3(JMP32, JLE, K), \ 1578 INSN_3(JMP32, JSGT, K), \ 1579 INSN_3(JMP32, JSLT, K), \ 1580 INSN_3(JMP32, JSGE, K), \ 1581 INSN_3(JMP32, JSLE, K), \ 1582 INSN_3(JMP32, JSET, K), \ 1583 /* Jump instructions. */ \ 1584 /* Register based. */ \ 1585 INSN_3(JMP, JEQ, X), \ 1586 INSN_3(JMP, JNE, X), \ 1587 INSN_3(JMP, JGT, X), \ 1588 INSN_3(JMP, JLT, X), \ 1589 INSN_3(JMP, JGE, X), \ 1590 INSN_3(JMP, JLE, X), \ 1591 INSN_3(JMP, JSGT, X), \ 1592 INSN_3(JMP, JSLT, X), \ 1593 INSN_3(JMP, JSGE, X), \ 1594 INSN_3(JMP, JSLE, X), \ 1595 INSN_3(JMP, JSET, X), \ 1596 /* Immediate based. */ \ 1597 INSN_3(JMP, JEQ, K), \ 1598 INSN_3(JMP, JNE, K), \ 1599 INSN_3(JMP, JGT, K), \ 1600 INSN_3(JMP, JLT, K), \ 1601 INSN_3(JMP, JGE, K), \ 1602 INSN_3(JMP, JLE, K), \ 1603 INSN_3(JMP, JSGT, K), \ 1604 INSN_3(JMP, JSLT, K), \ 1605 INSN_3(JMP, JSGE, K), \ 1606 INSN_3(JMP, JSLE, K), \ 1607 INSN_3(JMP, JSET, K), \ 1608 INSN_2(JMP, JA), \ 1609 INSN_2(JMP32, JA), \ 1610 /* Store instructions. */ \ 1611 /* Register based. */ \ 1612 INSN_3(STX, MEM, B), \ 1613 INSN_3(STX, MEM, H), \ 1614 INSN_3(STX, MEM, W), \ 1615 INSN_3(STX, MEM, DW), \ 1616 INSN_3(STX, ATOMIC, W), \ 1617 INSN_3(STX, ATOMIC, DW), \ 1618 /* Immediate based. */ \ 1619 INSN_3(ST, MEM, B), \ 1620 INSN_3(ST, MEM, H), \ 1621 INSN_3(ST, MEM, W), \ 1622 INSN_3(ST, MEM, DW), \ 1623 /* Load instructions. */ \ 1624 /* Register based. */ \ 1625 INSN_3(LDX, MEM, B), \ 1626 INSN_3(LDX, MEM, H), \ 1627 INSN_3(LDX, MEM, W), \ 1628 INSN_3(LDX, MEM, DW), \ 1629 INSN_3(LDX, MEMSX, B), \ 1630 INSN_3(LDX, MEMSX, H), \ 1631 INSN_3(LDX, MEMSX, W), \ 1632 /* Immediate based. */ \ 1633 INSN_3(LD, IMM, DW) 1634 1635 bool bpf_opcode_in_insntable(u8 code) 1636 { 1637 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true 1638 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true 1639 static const bool public_insntable[256] = { 1640 [0 ... 255] = false, 1641 /* Now overwrite non-defaults ... */ 1642 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL), 1643 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */ 1644 [BPF_LD | BPF_ABS | BPF_B] = true, 1645 [BPF_LD | BPF_ABS | BPF_H] = true, 1646 [BPF_LD | BPF_ABS | BPF_W] = true, 1647 [BPF_LD | BPF_IND | BPF_B] = true, 1648 [BPF_LD | BPF_IND | BPF_H] = true, 1649 [BPF_LD | BPF_IND | BPF_W] = true, 1650 }; 1651 #undef BPF_INSN_3_TBL 1652 #undef BPF_INSN_2_TBL 1653 return public_insntable[code]; 1654 } 1655 1656 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1657 /** 1658 * ___bpf_prog_run - run eBPF program on a given context 1659 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers 1660 * @insn: is the array of eBPF instructions 1661 * 1662 * Decode and execute eBPF instructions. 1663 * 1664 * Return: whatever value is in %BPF_R0 at program exit 1665 */ 1666 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn) 1667 { 1668 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y 1669 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z 1670 static const void * const jumptable[256] __annotate_jump_table = { 1671 [0 ... 255] = &&default_label, 1672 /* Now overwrite non-defaults ... */ 1673 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL), 1674 /* Non-UAPI available opcodes. */ 1675 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS, 1676 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL, 1677 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC, 1678 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B, 1679 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H, 1680 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W, 1681 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW, 1682 [BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B, 1683 [BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H, 1684 [BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W, 1685 }; 1686 #undef BPF_INSN_3_LBL 1687 #undef BPF_INSN_2_LBL 1688 u32 tail_call_cnt = 0; 1689 1690 #define CONT ({ insn++; goto select_insn; }) 1691 #define CONT_JMP ({ insn++; goto select_insn; }) 1692 1693 select_insn: 1694 goto *jumptable[insn->code]; 1695 1696 /* Explicitly mask the register-based shift amounts with 63 or 31 1697 * to avoid undefined behavior. Normally this won't affect the 1698 * generated code, for example, in case of native 64 bit archs such 1699 * as x86-64 or arm64, the compiler is optimizing the AND away for 1700 * the interpreter. In case of JITs, each of the JIT backends compiles 1701 * the BPF shift operations to machine instructions which produce 1702 * implementation-defined results in such a case; the resulting 1703 * contents of the register may be arbitrary, but program behaviour 1704 * as a whole remains defined. In other words, in case of JIT backends, 1705 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation. 1706 */ 1707 /* ALU (shifts) */ 1708 #define SHT(OPCODE, OP) \ 1709 ALU64_##OPCODE##_X: \ 1710 DST = DST OP (SRC & 63); \ 1711 CONT; \ 1712 ALU_##OPCODE##_X: \ 1713 DST = (u32) DST OP ((u32) SRC & 31); \ 1714 CONT; \ 1715 ALU64_##OPCODE##_K: \ 1716 DST = DST OP IMM; \ 1717 CONT; \ 1718 ALU_##OPCODE##_K: \ 1719 DST = (u32) DST OP (u32) IMM; \ 1720 CONT; 1721 /* ALU (rest) */ 1722 #define ALU(OPCODE, OP) \ 1723 ALU64_##OPCODE##_X: \ 1724 DST = DST OP SRC; \ 1725 CONT; \ 1726 ALU_##OPCODE##_X: \ 1727 DST = (u32) DST OP (u32) SRC; \ 1728 CONT; \ 1729 ALU64_##OPCODE##_K: \ 1730 DST = DST OP IMM; \ 1731 CONT; \ 1732 ALU_##OPCODE##_K: \ 1733 DST = (u32) DST OP (u32) IMM; \ 1734 CONT; 1735 ALU(ADD, +) 1736 ALU(SUB, -) 1737 ALU(AND, &) 1738 ALU(OR, |) 1739 ALU(XOR, ^) 1740 ALU(MUL, *) 1741 SHT(LSH, <<) 1742 SHT(RSH, >>) 1743 #undef SHT 1744 #undef ALU 1745 ALU_NEG: 1746 DST = (u32) -DST; 1747 CONT; 1748 ALU64_NEG: 1749 DST = -DST; 1750 CONT; 1751 ALU_MOV_X: 1752 switch (OFF) { 1753 case 0: 1754 DST = (u32) SRC; 1755 break; 1756 case 8: 1757 DST = (u32)(s8) SRC; 1758 break; 1759 case 16: 1760 DST = (u32)(s16) SRC; 1761 break; 1762 } 1763 CONT; 1764 ALU_MOV_K: 1765 DST = (u32) IMM; 1766 CONT; 1767 ALU64_MOV_X: 1768 switch (OFF) { 1769 case 0: 1770 DST = SRC; 1771 break; 1772 case 8: 1773 DST = (s8) SRC; 1774 break; 1775 case 16: 1776 DST = (s16) SRC; 1777 break; 1778 case 32: 1779 DST = (s32) SRC; 1780 break; 1781 } 1782 CONT; 1783 ALU64_MOV_K: 1784 DST = IMM; 1785 CONT; 1786 LD_IMM_DW: 1787 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32; 1788 insn++; 1789 CONT; 1790 ALU_ARSH_X: 1791 DST = (u64) (u32) (((s32) DST) >> (SRC & 31)); 1792 CONT; 1793 ALU_ARSH_K: 1794 DST = (u64) (u32) (((s32) DST) >> IMM); 1795 CONT; 1796 ALU64_ARSH_X: 1797 (*(s64 *) &DST) >>= (SRC & 63); 1798 CONT; 1799 ALU64_ARSH_K: 1800 (*(s64 *) &DST) >>= IMM; 1801 CONT; 1802 ALU64_MOD_X: 1803 switch (OFF) { 1804 case 0: 1805 div64_u64_rem(DST, SRC, &AX); 1806 DST = AX; 1807 break; 1808 case 1: 1809 AX = div64_s64(DST, SRC); 1810 DST = DST - AX * SRC; 1811 break; 1812 } 1813 CONT; 1814 ALU_MOD_X: 1815 switch (OFF) { 1816 case 0: 1817 AX = (u32) DST; 1818 DST = do_div(AX, (u32) SRC); 1819 break; 1820 case 1: 1821 AX = abs((s32)DST); 1822 AX = do_div(AX, abs((s32)SRC)); 1823 if ((s32)DST < 0) 1824 DST = (u32)-AX; 1825 else 1826 DST = (u32)AX; 1827 break; 1828 } 1829 CONT; 1830 ALU64_MOD_K: 1831 switch (OFF) { 1832 case 0: 1833 div64_u64_rem(DST, IMM, &AX); 1834 DST = AX; 1835 break; 1836 case 1: 1837 AX = div64_s64(DST, IMM); 1838 DST = DST - AX * IMM; 1839 break; 1840 } 1841 CONT; 1842 ALU_MOD_K: 1843 switch (OFF) { 1844 case 0: 1845 AX = (u32) DST; 1846 DST = do_div(AX, (u32) IMM); 1847 break; 1848 case 1: 1849 AX = abs((s32)DST); 1850 AX = do_div(AX, abs((s32)IMM)); 1851 if ((s32)DST < 0) 1852 DST = (u32)-AX; 1853 else 1854 DST = (u32)AX; 1855 break; 1856 } 1857 CONT; 1858 ALU64_DIV_X: 1859 switch (OFF) { 1860 case 0: 1861 DST = div64_u64(DST, SRC); 1862 break; 1863 case 1: 1864 DST = div64_s64(DST, SRC); 1865 break; 1866 } 1867 CONT; 1868 ALU_DIV_X: 1869 switch (OFF) { 1870 case 0: 1871 AX = (u32) DST; 1872 do_div(AX, (u32) SRC); 1873 DST = (u32) AX; 1874 break; 1875 case 1: 1876 AX = abs((s32)DST); 1877 do_div(AX, abs((s32)SRC)); 1878 if (((s32)DST < 0) == ((s32)SRC < 0)) 1879 DST = (u32)AX; 1880 else 1881 DST = (u32)-AX; 1882 break; 1883 } 1884 CONT; 1885 ALU64_DIV_K: 1886 switch (OFF) { 1887 case 0: 1888 DST = div64_u64(DST, IMM); 1889 break; 1890 case 1: 1891 DST = div64_s64(DST, IMM); 1892 break; 1893 } 1894 CONT; 1895 ALU_DIV_K: 1896 switch (OFF) { 1897 case 0: 1898 AX = (u32) DST; 1899 do_div(AX, (u32) IMM); 1900 DST = (u32) AX; 1901 break; 1902 case 1: 1903 AX = abs((s32)DST); 1904 do_div(AX, abs((s32)IMM)); 1905 if (((s32)DST < 0) == ((s32)IMM < 0)) 1906 DST = (u32)AX; 1907 else 1908 DST = (u32)-AX; 1909 break; 1910 } 1911 CONT; 1912 ALU_END_TO_BE: 1913 switch (IMM) { 1914 case 16: 1915 DST = (__force u16) cpu_to_be16(DST); 1916 break; 1917 case 32: 1918 DST = (__force u32) cpu_to_be32(DST); 1919 break; 1920 case 64: 1921 DST = (__force u64) cpu_to_be64(DST); 1922 break; 1923 } 1924 CONT; 1925 ALU_END_TO_LE: 1926 switch (IMM) { 1927 case 16: 1928 DST = (__force u16) cpu_to_le16(DST); 1929 break; 1930 case 32: 1931 DST = (__force u32) cpu_to_le32(DST); 1932 break; 1933 case 64: 1934 DST = (__force u64) cpu_to_le64(DST); 1935 break; 1936 } 1937 CONT; 1938 ALU64_END_TO_LE: 1939 switch (IMM) { 1940 case 16: 1941 DST = (__force u16) __swab16(DST); 1942 break; 1943 case 32: 1944 DST = (__force u32) __swab32(DST); 1945 break; 1946 case 64: 1947 DST = (__force u64) __swab64(DST); 1948 break; 1949 } 1950 CONT; 1951 1952 /* CALL */ 1953 JMP_CALL: 1954 /* Function call scratches BPF_R1-BPF_R5 registers, 1955 * preserves BPF_R6-BPF_R9, and stores return value 1956 * into BPF_R0. 1957 */ 1958 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3, 1959 BPF_R4, BPF_R5); 1960 CONT; 1961 1962 JMP_CALL_ARGS: 1963 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2, 1964 BPF_R3, BPF_R4, 1965 BPF_R5, 1966 insn + insn->off + 1); 1967 CONT; 1968 1969 JMP_TAIL_CALL: { 1970 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2; 1971 struct bpf_array *array = container_of(map, struct bpf_array, map); 1972 struct bpf_prog *prog; 1973 u32 index = BPF_R3; 1974 1975 if (unlikely(index >= array->map.max_entries)) 1976 goto out; 1977 1978 if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT)) 1979 goto out; 1980 1981 tail_call_cnt++; 1982 1983 prog = READ_ONCE(array->ptrs[index]); 1984 if (!prog) 1985 goto out; 1986 1987 /* ARG1 at this point is guaranteed to point to CTX from 1988 * the verifier side due to the fact that the tail call is 1989 * handled like a helper, that is, bpf_tail_call_proto, 1990 * where arg1_type is ARG_PTR_TO_CTX. 1991 */ 1992 insn = prog->insnsi; 1993 goto select_insn; 1994 out: 1995 CONT; 1996 } 1997 JMP_JA: 1998 insn += insn->off; 1999 CONT; 2000 JMP32_JA: 2001 insn += insn->imm; 2002 CONT; 2003 JMP_EXIT: 2004 return BPF_R0; 2005 /* JMP */ 2006 #define COND_JMP(SIGN, OPCODE, CMP_OP) \ 2007 JMP_##OPCODE##_X: \ 2008 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \ 2009 insn += insn->off; \ 2010 CONT_JMP; \ 2011 } \ 2012 CONT; \ 2013 JMP32_##OPCODE##_X: \ 2014 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \ 2015 insn += insn->off; \ 2016 CONT_JMP; \ 2017 } \ 2018 CONT; \ 2019 JMP_##OPCODE##_K: \ 2020 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \ 2021 insn += insn->off; \ 2022 CONT_JMP; \ 2023 } \ 2024 CONT; \ 2025 JMP32_##OPCODE##_K: \ 2026 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \ 2027 insn += insn->off; \ 2028 CONT_JMP; \ 2029 } \ 2030 CONT; 2031 COND_JMP(u, JEQ, ==) 2032 COND_JMP(u, JNE, !=) 2033 COND_JMP(u, JGT, >) 2034 COND_JMP(u, JLT, <) 2035 COND_JMP(u, JGE, >=) 2036 COND_JMP(u, JLE, <=) 2037 COND_JMP(u, JSET, &) 2038 COND_JMP(s, JSGT, >) 2039 COND_JMP(s, JSLT, <) 2040 COND_JMP(s, JSGE, >=) 2041 COND_JMP(s, JSLE, <=) 2042 #undef COND_JMP 2043 /* ST, STX and LDX*/ 2044 ST_NOSPEC: 2045 /* Speculation barrier for mitigating Speculative Store Bypass. 2046 * In case of arm64, we rely on the firmware mitigation as 2047 * controlled via the ssbd kernel parameter. Whenever the 2048 * mitigation is enabled, it works for all of the kernel code 2049 * with no need to provide any additional instructions here. 2050 * In case of x86, we use 'lfence' insn for mitigation. We 2051 * reuse preexisting logic from Spectre v1 mitigation that 2052 * happens to produce the required code on x86 for v4 as well. 2053 */ 2054 barrier_nospec(); 2055 CONT; 2056 #define LDST(SIZEOP, SIZE) \ 2057 STX_MEM_##SIZEOP: \ 2058 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \ 2059 CONT; \ 2060 ST_MEM_##SIZEOP: \ 2061 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \ 2062 CONT; \ 2063 LDX_MEM_##SIZEOP: \ 2064 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \ 2065 CONT; \ 2066 LDX_PROBE_MEM_##SIZEOP: \ 2067 bpf_probe_read_kernel_common(&DST, sizeof(SIZE), \ 2068 (const void *)(long) (SRC + insn->off)); \ 2069 DST = *((SIZE *)&DST); \ 2070 CONT; 2071 2072 LDST(B, u8) 2073 LDST(H, u16) 2074 LDST(W, u32) 2075 LDST(DW, u64) 2076 #undef LDST 2077 2078 #define LDSX(SIZEOP, SIZE) \ 2079 LDX_MEMSX_##SIZEOP: \ 2080 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \ 2081 CONT; \ 2082 LDX_PROBE_MEMSX_##SIZEOP: \ 2083 bpf_probe_read_kernel_common(&DST, sizeof(SIZE), \ 2084 (const void *)(long) (SRC + insn->off)); \ 2085 DST = *((SIZE *)&DST); \ 2086 CONT; 2087 2088 LDSX(B, s8) 2089 LDSX(H, s16) 2090 LDSX(W, s32) 2091 #undef LDSX 2092 2093 #define ATOMIC_ALU_OP(BOP, KOP) \ 2094 case BOP: \ 2095 if (BPF_SIZE(insn->code) == BPF_W) \ 2096 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \ 2097 (DST + insn->off)); \ 2098 else \ 2099 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \ 2100 (DST + insn->off)); \ 2101 break; \ 2102 case BOP | BPF_FETCH: \ 2103 if (BPF_SIZE(insn->code) == BPF_W) \ 2104 SRC = (u32) atomic_fetch_##KOP( \ 2105 (u32) SRC, \ 2106 (atomic_t *)(unsigned long) (DST + insn->off)); \ 2107 else \ 2108 SRC = (u64) atomic64_fetch_##KOP( \ 2109 (u64) SRC, \ 2110 (atomic64_t *)(unsigned long) (DST + insn->off)); \ 2111 break; 2112 2113 STX_ATOMIC_DW: 2114 STX_ATOMIC_W: 2115 switch (IMM) { 2116 ATOMIC_ALU_OP(BPF_ADD, add) 2117 ATOMIC_ALU_OP(BPF_AND, and) 2118 ATOMIC_ALU_OP(BPF_OR, or) 2119 ATOMIC_ALU_OP(BPF_XOR, xor) 2120 #undef ATOMIC_ALU_OP 2121 2122 case BPF_XCHG: 2123 if (BPF_SIZE(insn->code) == BPF_W) 2124 SRC = (u32) atomic_xchg( 2125 (atomic_t *)(unsigned long) (DST + insn->off), 2126 (u32) SRC); 2127 else 2128 SRC = (u64) atomic64_xchg( 2129 (atomic64_t *)(unsigned long) (DST + insn->off), 2130 (u64) SRC); 2131 break; 2132 case BPF_CMPXCHG: 2133 if (BPF_SIZE(insn->code) == BPF_W) 2134 BPF_R0 = (u32) atomic_cmpxchg( 2135 (atomic_t *)(unsigned long) (DST + insn->off), 2136 (u32) BPF_R0, (u32) SRC); 2137 else 2138 BPF_R0 = (u64) atomic64_cmpxchg( 2139 (atomic64_t *)(unsigned long) (DST + insn->off), 2140 (u64) BPF_R0, (u64) SRC); 2141 break; 2142 2143 default: 2144 goto default_label; 2145 } 2146 CONT; 2147 2148 default_label: 2149 /* If we ever reach this, we have a bug somewhere. Die hard here 2150 * instead of just returning 0; we could be somewhere in a subprog, 2151 * so execution could continue otherwise which we do /not/ want. 2152 * 2153 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable(). 2154 */ 2155 pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n", 2156 insn->code, insn->imm); 2157 BUG_ON(1); 2158 return 0; 2159 } 2160 2161 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size 2162 #define DEFINE_BPF_PROG_RUN(stack_size) \ 2163 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \ 2164 { \ 2165 u64 stack[stack_size / sizeof(u64)]; \ 2166 u64 regs[MAX_BPF_EXT_REG] = {}; \ 2167 \ 2168 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ 2169 ARG1 = (u64) (unsigned long) ctx; \ 2170 return ___bpf_prog_run(regs, insn); \ 2171 } 2172 2173 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size 2174 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \ 2175 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \ 2176 const struct bpf_insn *insn) \ 2177 { \ 2178 u64 stack[stack_size / sizeof(u64)]; \ 2179 u64 regs[MAX_BPF_EXT_REG]; \ 2180 \ 2181 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ 2182 BPF_R1 = r1; \ 2183 BPF_R2 = r2; \ 2184 BPF_R3 = r3; \ 2185 BPF_R4 = r4; \ 2186 BPF_R5 = r5; \ 2187 return ___bpf_prog_run(regs, insn); \ 2188 } 2189 2190 #define EVAL1(FN, X) FN(X) 2191 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y) 2192 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y) 2193 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y) 2194 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y) 2195 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y) 2196 2197 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192); 2198 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384); 2199 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512); 2200 2201 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192); 2202 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384); 2203 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512); 2204 2205 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size), 2206 2207 static unsigned int (*interpreters[])(const void *ctx, 2208 const struct bpf_insn *insn) = { 2209 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) 2210 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) 2211 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) 2212 }; 2213 #undef PROG_NAME_LIST 2214 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size), 2215 static __maybe_unused 2216 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, 2217 const struct bpf_insn *insn) = { 2218 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) 2219 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) 2220 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) 2221 }; 2222 #undef PROG_NAME_LIST 2223 2224 #ifdef CONFIG_BPF_SYSCALL 2225 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth) 2226 { 2227 stack_depth = max_t(u32, stack_depth, 1); 2228 insn->off = (s16) insn->imm; 2229 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] - 2230 __bpf_call_base_args; 2231 insn->code = BPF_JMP | BPF_CALL_ARGS; 2232 } 2233 #endif 2234 #else 2235 static unsigned int __bpf_prog_ret0_warn(const void *ctx, 2236 const struct bpf_insn *insn) 2237 { 2238 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON 2239 * is not working properly, so warn about it! 2240 */ 2241 WARN_ON_ONCE(1); 2242 return 0; 2243 } 2244 #endif 2245 2246 bool bpf_prog_map_compatible(struct bpf_map *map, 2247 const struct bpf_prog *fp) 2248 { 2249 enum bpf_prog_type prog_type = resolve_prog_type(fp); 2250 bool ret; 2251 2252 if (fp->kprobe_override) 2253 return false; 2254 2255 /* XDP programs inserted into maps are not guaranteed to run on 2256 * a particular netdev (and can run outside driver context entirely 2257 * in the case of devmap and cpumap). Until device checks 2258 * are implemented, prohibit adding dev-bound programs to program maps. 2259 */ 2260 if (bpf_prog_is_dev_bound(fp->aux)) 2261 return false; 2262 2263 spin_lock(&map->owner.lock); 2264 if (!map->owner.type) { 2265 /* There's no owner yet where we could check for 2266 * compatibility. 2267 */ 2268 map->owner.type = prog_type; 2269 map->owner.jited = fp->jited; 2270 map->owner.xdp_has_frags = fp->aux->xdp_has_frags; 2271 ret = true; 2272 } else { 2273 ret = map->owner.type == prog_type && 2274 map->owner.jited == fp->jited && 2275 map->owner.xdp_has_frags == fp->aux->xdp_has_frags; 2276 } 2277 spin_unlock(&map->owner.lock); 2278 2279 return ret; 2280 } 2281 2282 static int bpf_check_tail_call(const struct bpf_prog *fp) 2283 { 2284 struct bpf_prog_aux *aux = fp->aux; 2285 int i, ret = 0; 2286 2287 mutex_lock(&aux->used_maps_mutex); 2288 for (i = 0; i < aux->used_map_cnt; i++) { 2289 struct bpf_map *map = aux->used_maps[i]; 2290 2291 if (!map_type_contains_progs(map)) 2292 continue; 2293 2294 if (!bpf_prog_map_compatible(map, fp)) { 2295 ret = -EINVAL; 2296 goto out; 2297 } 2298 } 2299 2300 out: 2301 mutex_unlock(&aux->used_maps_mutex); 2302 return ret; 2303 } 2304 2305 static void bpf_prog_select_func(struct bpf_prog *fp) 2306 { 2307 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2308 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1); 2309 2310 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1]; 2311 #else 2312 fp->bpf_func = __bpf_prog_ret0_warn; 2313 #endif 2314 } 2315 2316 /** 2317 * bpf_prog_select_runtime - select exec runtime for BPF program 2318 * @fp: bpf_prog populated with BPF program 2319 * @err: pointer to error variable 2320 * 2321 * Try to JIT eBPF program, if JIT is not available, use interpreter. 2322 * The BPF program will be executed via bpf_prog_run() function. 2323 * 2324 * Return: the &fp argument along with &err set to 0 for success or 2325 * a negative errno code on failure 2326 */ 2327 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err) 2328 { 2329 /* In case of BPF to BPF calls, verifier did all the prep 2330 * work with regards to JITing, etc. 2331 */ 2332 bool jit_needed = false; 2333 2334 if (fp->bpf_func) 2335 goto finalize; 2336 2337 if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) || 2338 bpf_prog_has_kfunc_call(fp)) 2339 jit_needed = true; 2340 2341 bpf_prog_select_func(fp); 2342 2343 /* eBPF JITs can rewrite the program in case constant 2344 * blinding is active. However, in case of error during 2345 * blinding, bpf_int_jit_compile() must always return a 2346 * valid program, which in this case would simply not 2347 * be JITed, but falls back to the interpreter. 2348 */ 2349 if (!bpf_prog_is_offloaded(fp->aux)) { 2350 *err = bpf_prog_alloc_jited_linfo(fp); 2351 if (*err) 2352 return fp; 2353 2354 fp = bpf_int_jit_compile(fp); 2355 bpf_prog_jit_attempt_done(fp); 2356 if (!fp->jited && jit_needed) { 2357 *err = -ENOTSUPP; 2358 return fp; 2359 } 2360 } else { 2361 *err = bpf_prog_offload_compile(fp); 2362 if (*err) 2363 return fp; 2364 } 2365 2366 finalize: 2367 bpf_prog_lock_ro(fp); 2368 2369 /* The tail call compatibility check can only be done at 2370 * this late stage as we need to determine, if we deal 2371 * with JITed or non JITed program concatenations and not 2372 * all eBPF JITs might immediately support all features. 2373 */ 2374 *err = bpf_check_tail_call(fp); 2375 2376 return fp; 2377 } 2378 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime); 2379 2380 static unsigned int __bpf_prog_ret1(const void *ctx, 2381 const struct bpf_insn *insn) 2382 { 2383 return 1; 2384 } 2385 2386 static struct bpf_prog_dummy { 2387 struct bpf_prog prog; 2388 } dummy_bpf_prog = { 2389 .prog = { 2390 .bpf_func = __bpf_prog_ret1, 2391 }, 2392 }; 2393 2394 struct bpf_empty_prog_array bpf_empty_prog_array = { 2395 .null_prog = NULL, 2396 }; 2397 EXPORT_SYMBOL(bpf_empty_prog_array); 2398 2399 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags) 2400 { 2401 if (prog_cnt) 2402 return kzalloc(sizeof(struct bpf_prog_array) + 2403 sizeof(struct bpf_prog_array_item) * 2404 (prog_cnt + 1), 2405 flags); 2406 2407 return &bpf_empty_prog_array.hdr; 2408 } 2409 2410 void bpf_prog_array_free(struct bpf_prog_array *progs) 2411 { 2412 if (!progs || progs == &bpf_empty_prog_array.hdr) 2413 return; 2414 kfree_rcu(progs, rcu); 2415 } 2416 2417 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu) 2418 { 2419 struct bpf_prog_array *progs; 2420 2421 /* If RCU Tasks Trace grace period implies RCU grace period, there is 2422 * no need to call kfree_rcu(), just call kfree() directly. 2423 */ 2424 progs = container_of(rcu, struct bpf_prog_array, rcu); 2425 if (rcu_trace_implies_rcu_gp()) 2426 kfree(progs); 2427 else 2428 kfree_rcu(progs, rcu); 2429 } 2430 2431 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs) 2432 { 2433 if (!progs || progs == &bpf_empty_prog_array.hdr) 2434 return; 2435 call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb); 2436 } 2437 2438 int bpf_prog_array_length(struct bpf_prog_array *array) 2439 { 2440 struct bpf_prog_array_item *item; 2441 u32 cnt = 0; 2442 2443 for (item = array->items; item->prog; item++) 2444 if (item->prog != &dummy_bpf_prog.prog) 2445 cnt++; 2446 return cnt; 2447 } 2448 2449 bool bpf_prog_array_is_empty(struct bpf_prog_array *array) 2450 { 2451 struct bpf_prog_array_item *item; 2452 2453 for (item = array->items; item->prog; item++) 2454 if (item->prog != &dummy_bpf_prog.prog) 2455 return false; 2456 return true; 2457 } 2458 2459 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array, 2460 u32 *prog_ids, 2461 u32 request_cnt) 2462 { 2463 struct bpf_prog_array_item *item; 2464 int i = 0; 2465 2466 for (item = array->items; item->prog; item++) { 2467 if (item->prog == &dummy_bpf_prog.prog) 2468 continue; 2469 prog_ids[i] = item->prog->aux->id; 2470 if (++i == request_cnt) { 2471 item++; 2472 break; 2473 } 2474 } 2475 2476 return !!(item->prog); 2477 } 2478 2479 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array, 2480 __u32 __user *prog_ids, u32 cnt) 2481 { 2482 unsigned long err = 0; 2483 bool nospc; 2484 u32 *ids; 2485 2486 /* users of this function are doing: 2487 * cnt = bpf_prog_array_length(); 2488 * if (cnt > 0) 2489 * bpf_prog_array_copy_to_user(..., cnt); 2490 * so below kcalloc doesn't need extra cnt > 0 check. 2491 */ 2492 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN); 2493 if (!ids) 2494 return -ENOMEM; 2495 nospc = bpf_prog_array_copy_core(array, ids, cnt); 2496 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32)); 2497 kfree(ids); 2498 if (err) 2499 return -EFAULT; 2500 if (nospc) 2501 return -ENOSPC; 2502 return 0; 2503 } 2504 2505 void bpf_prog_array_delete_safe(struct bpf_prog_array *array, 2506 struct bpf_prog *old_prog) 2507 { 2508 struct bpf_prog_array_item *item; 2509 2510 for (item = array->items; item->prog; item++) 2511 if (item->prog == old_prog) { 2512 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog); 2513 break; 2514 } 2515 } 2516 2517 /** 2518 * bpf_prog_array_delete_safe_at() - Replaces the program at the given 2519 * index into the program array with 2520 * a dummy no-op program. 2521 * @array: a bpf_prog_array 2522 * @index: the index of the program to replace 2523 * 2524 * Skips over dummy programs, by not counting them, when calculating 2525 * the position of the program to replace. 2526 * 2527 * Return: 2528 * * 0 - Success 2529 * * -EINVAL - Invalid index value. Must be a non-negative integer. 2530 * * -ENOENT - Index out of range 2531 */ 2532 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index) 2533 { 2534 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog); 2535 } 2536 2537 /** 2538 * bpf_prog_array_update_at() - Updates the program at the given index 2539 * into the program array. 2540 * @array: a bpf_prog_array 2541 * @index: the index of the program to update 2542 * @prog: the program to insert into the array 2543 * 2544 * Skips over dummy programs, by not counting them, when calculating 2545 * the position of the program to update. 2546 * 2547 * Return: 2548 * * 0 - Success 2549 * * -EINVAL - Invalid index value. Must be a non-negative integer. 2550 * * -ENOENT - Index out of range 2551 */ 2552 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2553 struct bpf_prog *prog) 2554 { 2555 struct bpf_prog_array_item *item; 2556 2557 if (unlikely(index < 0)) 2558 return -EINVAL; 2559 2560 for (item = array->items; item->prog; item++) { 2561 if (item->prog == &dummy_bpf_prog.prog) 2562 continue; 2563 if (!index) { 2564 WRITE_ONCE(item->prog, prog); 2565 return 0; 2566 } 2567 index--; 2568 } 2569 return -ENOENT; 2570 } 2571 2572 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2573 struct bpf_prog *exclude_prog, 2574 struct bpf_prog *include_prog, 2575 u64 bpf_cookie, 2576 struct bpf_prog_array **new_array) 2577 { 2578 int new_prog_cnt, carry_prog_cnt = 0; 2579 struct bpf_prog_array_item *existing, *new; 2580 struct bpf_prog_array *array; 2581 bool found_exclude = false; 2582 2583 /* Figure out how many existing progs we need to carry over to 2584 * the new array. 2585 */ 2586 if (old_array) { 2587 existing = old_array->items; 2588 for (; existing->prog; existing++) { 2589 if (existing->prog == exclude_prog) { 2590 found_exclude = true; 2591 continue; 2592 } 2593 if (existing->prog != &dummy_bpf_prog.prog) 2594 carry_prog_cnt++; 2595 if (existing->prog == include_prog) 2596 return -EEXIST; 2597 } 2598 } 2599 2600 if (exclude_prog && !found_exclude) 2601 return -ENOENT; 2602 2603 /* How many progs (not NULL) will be in the new array? */ 2604 new_prog_cnt = carry_prog_cnt; 2605 if (include_prog) 2606 new_prog_cnt += 1; 2607 2608 /* Do we have any prog (not NULL) in the new array? */ 2609 if (!new_prog_cnt) { 2610 *new_array = NULL; 2611 return 0; 2612 } 2613 2614 /* +1 as the end of prog_array is marked with NULL */ 2615 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL); 2616 if (!array) 2617 return -ENOMEM; 2618 new = array->items; 2619 2620 /* Fill in the new prog array */ 2621 if (carry_prog_cnt) { 2622 existing = old_array->items; 2623 for (; existing->prog; existing++) { 2624 if (existing->prog == exclude_prog || 2625 existing->prog == &dummy_bpf_prog.prog) 2626 continue; 2627 2628 new->prog = existing->prog; 2629 new->bpf_cookie = existing->bpf_cookie; 2630 new++; 2631 } 2632 } 2633 if (include_prog) { 2634 new->prog = include_prog; 2635 new->bpf_cookie = bpf_cookie; 2636 new++; 2637 } 2638 new->prog = NULL; 2639 *new_array = array; 2640 return 0; 2641 } 2642 2643 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2644 u32 *prog_ids, u32 request_cnt, 2645 u32 *prog_cnt) 2646 { 2647 u32 cnt = 0; 2648 2649 if (array) 2650 cnt = bpf_prog_array_length(array); 2651 2652 *prog_cnt = cnt; 2653 2654 /* return early if user requested only program count or nothing to copy */ 2655 if (!request_cnt || !cnt) 2656 return 0; 2657 2658 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */ 2659 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC 2660 : 0; 2661 } 2662 2663 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2664 struct bpf_map **used_maps, u32 len) 2665 { 2666 struct bpf_map *map; 2667 u32 i; 2668 2669 for (i = 0; i < len; i++) { 2670 map = used_maps[i]; 2671 if (map->ops->map_poke_untrack) 2672 map->ops->map_poke_untrack(map, aux); 2673 bpf_map_put(map); 2674 } 2675 } 2676 2677 static void bpf_free_used_maps(struct bpf_prog_aux *aux) 2678 { 2679 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt); 2680 kfree(aux->used_maps); 2681 } 2682 2683 void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2684 struct btf_mod_pair *used_btfs, u32 len) 2685 { 2686 #ifdef CONFIG_BPF_SYSCALL 2687 struct btf_mod_pair *btf_mod; 2688 u32 i; 2689 2690 for (i = 0; i < len; i++) { 2691 btf_mod = &used_btfs[i]; 2692 if (btf_mod->module) 2693 module_put(btf_mod->module); 2694 btf_put(btf_mod->btf); 2695 } 2696 #endif 2697 } 2698 2699 static void bpf_free_used_btfs(struct bpf_prog_aux *aux) 2700 { 2701 __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt); 2702 kfree(aux->used_btfs); 2703 } 2704 2705 static void bpf_prog_free_deferred(struct work_struct *work) 2706 { 2707 struct bpf_prog_aux *aux; 2708 int i; 2709 2710 aux = container_of(work, struct bpf_prog_aux, work); 2711 #ifdef CONFIG_BPF_SYSCALL 2712 bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab); 2713 #endif 2714 #ifdef CONFIG_CGROUP_BPF 2715 if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID) 2716 bpf_cgroup_atype_put(aux->cgroup_atype); 2717 #endif 2718 bpf_free_used_maps(aux); 2719 bpf_free_used_btfs(aux); 2720 if (bpf_prog_is_dev_bound(aux)) 2721 bpf_prog_dev_bound_destroy(aux->prog); 2722 #ifdef CONFIG_PERF_EVENTS 2723 if (aux->prog->has_callchain_buf) 2724 put_callchain_buffers(); 2725 #endif 2726 if (aux->dst_trampoline) 2727 bpf_trampoline_put(aux->dst_trampoline); 2728 for (i = 0; i < aux->func_cnt; i++) { 2729 /* We can just unlink the subprog poke descriptor table as 2730 * it was originally linked to the main program and is also 2731 * released along with it. 2732 */ 2733 aux->func[i]->aux->poke_tab = NULL; 2734 bpf_jit_free(aux->func[i]); 2735 } 2736 if (aux->func_cnt) { 2737 kfree(aux->func); 2738 bpf_prog_unlock_free(aux->prog); 2739 } else { 2740 bpf_jit_free(aux->prog); 2741 } 2742 } 2743 2744 void bpf_prog_free(struct bpf_prog *fp) 2745 { 2746 struct bpf_prog_aux *aux = fp->aux; 2747 2748 if (aux->dst_prog) 2749 bpf_prog_put(aux->dst_prog); 2750 INIT_WORK(&aux->work, bpf_prog_free_deferred); 2751 schedule_work(&aux->work); 2752 } 2753 EXPORT_SYMBOL_GPL(bpf_prog_free); 2754 2755 /* RNG for unpriviledged user space with separated state from prandom_u32(). */ 2756 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state); 2757 2758 void bpf_user_rnd_init_once(void) 2759 { 2760 prandom_init_once(&bpf_user_rnd_state); 2761 } 2762 2763 BPF_CALL_0(bpf_user_rnd_u32) 2764 { 2765 /* Should someone ever have the rather unwise idea to use some 2766 * of the registers passed into this function, then note that 2767 * this function is called from native eBPF and classic-to-eBPF 2768 * transformations. Register assignments from both sides are 2769 * different, f.e. classic always sets fn(ctx, A, X) here. 2770 */ 2771 struct rnd_state *state; 2772 u32 res; 2773 2774 state = &get_cpu_var(bpf_user_rnd_state); 2775 res = prandom_u32_state(state); 2776 put_cpu_var(bpf_user_rnd_state); 2777 2778 return res; 2779 } 2780 2781 BPF_CALL_0(bpf_get_raw_cpu_id) 2782 { 2783 return raw_smp_processor_id(); 2784 } 2785 2786 /* Weak definitions of helper functions in case we don't have bpf syscall. */ 2787 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak; 2788 const struct bpf_func_proto bpf_map_update_elem_proto __weak; 2789 const struct bpf_func_proto bpf_map_delete_elem_proto __weak; 2790 const struct bpf_func_proto bpf_map_push_elem_proto __weak; 2791 const struct bpf_func_proto bpf_map_pop_elem_proto __weak; 2792 const struct bpf_func_proto bpf_map_peek_elem_proto __weak; 2793 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak; 2794 const struct bpf_func_proto bpf_spin_lock_proto __weak; 2795 const struct bpf_func_proto bpf_spin_unlock_proto __weak; 2796 const struct bpf_func_proto bpf_jiffies64_proto __weak; 2797 2798 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak; 2799 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak; 2800 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak; 2801 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak; 2802 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak; 2803 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak; 2804 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak; 2805 2806 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak; 2807 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak; 2808 const struct bpf_func_proto bpf_get_current_comm_proto __weak; 2809 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak; 2810 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak; 2811 const struct bpf_func_proto bpf_get_local_storage_proto __weak; 2812 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak; 2813 const struct bpf_func_proto bpf_snprintf_btf_proto __weak; 2814 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak; 2815 const struct bpf_func_proto bpf_set_retval_proto __weak; 2816 const struct bpf_func_proto bpf_get_retval_proto __weak; 2817 2818 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void) 2819 { 2820 return NULL; 2821 } 2822 2823 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void) 2824 { 2825 return NULL; 2826 } 2827 2828 u64 __weak 2829 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 2830 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 2831 { 2832 return -ENOTSUPP; 2833 } 2834 EXPORT_SYMBOL_GPL(bpf_event_output); 2835 2836 /* Always built-in helper functions. */ 2837 const struct bpf_func_proto bpf_tail_call_proto = { 2838 .func = NULL, 2839 .gpl_only = false, 2840 .ret_type = RET_VOID, 2841 .arg1_type = ARG_PTR_TO_CTX, 2842 .arg2_type = ARG_CONST_MAP_PTR, 2843 .arg3_type = ARG_ANYTHING, 2844 }; 2845 2846 /* Stub for JITs that only support cBPF. eBPF programs are interpreted. 2847 * It is encouraged to implement bpf_int_jit_compile() instead, so that 2848 * eBPF and implicitly also cBPF can get JITed! 2849 */ 2850 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog) 2851 { 2852 return prog; 2853 } 2854 2855 /* Stub for JITs that support eBPF. All cBPF code gets transformed into 2856 * eBPF by the kernel and is later compiled by bpf_int_jit_compile(). 2857 */ 2858 void __weak bpf_jit_compile(struct bpf_prog *prog) 2859 { 2860 } 2861 2862 bool __weak bpf_helper_changes_pkt_data(void *func) 2863 { 2864 return false; 2865 } 2866 2867 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage 2868 * analysis code and wants explicit zero extension inserted by verifier. 2869 * Otherwise, return FALSE. 2870 * 2871 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if 2872 * you don't override this. JITs that don't want these extra insns can detect 2873 * them using insn_is_zext. 2874 */ 2875 bool __weak bpf_jit_needs_zext(void) 2876 { 2877 return false; 2878 } 2879 2880 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */ 2881 bool __weak bpf_jit_supports_subprog_tailcalls(void) 2882 { 2883 return false; 2884 } 2885 2886 bool __weak bpf_jit_supports_kfunc_call(void) 2887 { 2888 return false; 2889 } 2890 2891 bool __weak bpf_jit_supports_far_kfunc_call(void) 2892 { 2893 return false; 2894 } 2895 2896 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call 2897 * skb_copy_bits(), so provide a weak definition of it for NET-less config. 2898 */ 2899 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to, 2900 int len) 2901 { 2902 return -EFAULT; 2903 } 2904 2905 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 2906 void *addr1, void *addr2) 2907 { 2908 return -ENOTSUPP; 2909 } 2910 2911 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len) 2912 { 2913 return ERR_PTR(-ENOTSUPP); 2914 } 2915 2916 int __weak bpf_arch_text_invalidate(void *dst, size_t len) 2917 { 2918 return -ENOTSUPP; 2919 } 2920 2921 #ifdef CONFIG_BPF_SYSCALL 2922 static int __init bpf_global_ma_init(void) 2923 { 2924 int ret; 2925 2926 ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false); 2927 bpf_global_ma_set = !ret; 2928 return ret; 2929 } 2930 late_initcall(bpf_global_ma_init); 2931 #endif 2932 2933 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 2934 EXPORT_SYMBOL(bpf_stats_enabled_key); 2935 2936 /* All definitions of tracepoints related to BPF. */ 2937 #define CREATE_TRACE_POINTS 2938 #include <linux/bpf_trace.h> 2939 2940 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception); 2941 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx); 2942