xref: /openbmc/linux/kernel/bpf/core.c (revision 908fc4c2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 
38 #include <asm/barrier.h>
39 #include <asm/unaligned.h>
40 
41 /* Registers */
42 #define BPF_R0	regs[BPF_REG_0]
43 #define BPF_R1	regs[BPF_REG_1]
44 #define BPF_R2	regs[BPF_REG_2]
45 #define BPF_R3	regs[BPF_REG_3]
46 #define BPF_R4	regs[BPF_REG_4]
47 #define BPF_R5	regs[BPF_REG_5]
48 #define BPF_R6	regs[BPF_REG_6]
49 #define BPF_R7	regs[BPF_REG_7]
50 #define BPF_R8	regs[BPF_REG_8]
51 #define BPF_R9	regs[BPF_REG_9]
52 #define BPF_R10	regs[BPF_REG_10]
53 
54 /* Named registers */
55 #define DST	regs[insn->dst_reg]
56 #define SRC	regs[insn->src_reg]
57 #define FP	regs[BPF_REG_FP]
58 #define AX	regs[BPF_REG_AX]
59 #define ARG1	regs[BPF_REG_ARG1]
60 #define CTX	regs[BPF_REG_CTX]
61 #define IMM	insn->imm
62 
63 /* No hurry in this branch
64  *
65  * Exported for the bpf jit load helper.
66  */
67 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
68 {
69 	u8 *ptr = NULL;
70 
71 	if (k >= SKF_NET_OFF) {
72 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
73 	} else if (k >= SKF_LL_OFF) {
74 		if (unlikely(!skb_mac_header_was_set(skb)))
75 			return NULL;
76 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
77 	}
78 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
79 		return ptr;
80 
81 	return NULL;
82 }
83 
84 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
85 {
86 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
87 	struct bpf_prog_aux *aux;
88 	struct bpf_prog *fp;
89 
90 	size = round_up(size, PAGE_SIZE);
91 	fp = __vmalloc(size, gfp_flags);
92 	if (fp == NULL)
93 		return NULL;
94 
95 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
96 	if (aux == NULL) {
97 		vfree(fp);
98 		return NULL;
99 	}
100 	fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
101 	if (!fp->active) {
102 		vfree(fp);
103 		kfree(aux);
104 		return NULL;
105 	}
106 
107 	fp->pages = size / PAGE_SIZE;
108 	fp->aux = aux;
109 	fp->aux->prog = fp;
110 	fp->jit_requested = ebpf_jit_enabled();
111 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
112 
113 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
114 	mutex_init(&fp->aux->used_maps_mutex);
115 	mutex_init(&fp->aux->dst_mutex);
116 
117 	return fp;
118 }
119 
120 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
121 {
122 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
123 	struct bpf_prog *prog;
124 	int cpu;
125 
126 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
127 	if (!prog)
128 		return NULL;
129 
130 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
131 	if (!prog->stats) {
132 		free_percpu(prog->active);
133 		kfree(prog->aux);
134 		vfree(prog);
135 		return NULL;
136 	}
137 
138 	for_each_possible_cpu(cpu) {
139 		struct bpf_prog_stats *pstats;
140 
141 		pstats = per_cpu_ptr(prog->stats, cpu);
142 		u64_stats_init(&pstats->syncp);
143 	}
144 	return prog;
145 }
146 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
147 
148 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
149 {
150 	if (!prog->aux->nr_linfo || !prog->jit_requested)
151 		return 0;
152 
153 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
154 					  sizeof(*prog->aux->jited_linfo),
155 					  GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
156 	if (!prog->aux->jited_linfo)
157 		return -ENOMEM;
158 
159 	return 0;
160 }
161 
162 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
163 {
164 	if (prog->aux->jited_linfo &&
165 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
166 		kvfree(prog->aux->jited_linfo);
167 		prog->aux->jited_linfo = NULL;
168 	}
169 
170 	kfree(prog->aux->kfunc_tab);
171 	prog->aux->kfunc_tab = NULL;
172 }
173 
174 /* The jit engine is responsible to provide an array
175  * for insn_off to the jited_off mapping (insn_to_jit_off).
176  *
177  * The idx to this array is the insn_off.  Hence, the insn_off
178  * here is relative to the prog itself instead of the main prog.
179  * This array has one entry for each xlated bpf insn.
180  *
181  * jited_off is the byte off to the last byte of the jited insn.
182  *
183  * Hence, with
184  * insn_start:
185  *      The first bpf insn off of the prog.  The insn off
186  *      here is relative to the main prog.
187  *      e.g. if prog is a subprog, insn_start > 0
188  * linfo_idx:
189  *      The prog's idx to prog->aux->linfo and jited_linfo
190  *
191  * jited_linfo[linfo_idx] = prog->bpf_func
192  *
193  * For i > linfo_idx,
194  *
195  * jited_linfo[i] = prog->bpf_func +
196  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
197  */
198 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
199 			       const u32 *insn_to_jit_off)
200 {
201 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
202 	const struct bpf_line_info *linfo;
203 	void **jited_linfo;
204 
205 	if (!prog->aux->jited_linfo)
206 		/* Userspace did not provide linfo */
207 		return;
208 
209 	linfo_idx = prog->aux->linfo_idx;
210 	linfo = &prog->aux->linfo[linfo_idx];
211 	insn_start = linfo[0].insn_off;
212 	insn_end = insn_start + prog->len;
213 
214 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
215 	jited_linfo[0] = prog->bpf_func;
216 
217 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
218 
219 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
220 		/* The verifier ensures that linfo[i].insn_off is
221 		 * strictly increasing
222 		 */
223 		jited_linfo[i] = prog->bpf_func +
224 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
225 }
226 
227 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
228 				  gfp_t gfp_extra_flags)
229 {
230 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
231 	struct bpf_prog *fp;
232 	u32 pages;
233 
234 	size = round_up(size, PAGE_SIZE);
235 	pages = size / PAGE_SIZE;
236 	if (pages <= fp_old->pages)
237 		return fp_old;
238 
239 	fp = __vmalloc(size, gfp_flags);
240 	if (fp) {
241 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
242 		fp->pages = pages;
243 		fp->aux->prog = fp;
244 
245 		/* We keep fp->aux from fp_old around in the new
246 		 * reallocated structure.
247 		 */
248 		fp_old->aux = NULL;
249 		fp_old->stats = NULL;
250 		fp_old->active = NULL;
251 		__bpf_prog_free(fp_old);
252 	}
253 
254 	return fp;
255 }
256 
257 void __bpf_prog_free(struct bpf_prog *fp)
258 {
259 	if (fp->aux) {
260 		mutex_destroy(&fp->aux->used_maps_mutex);
261 		mutex_destroy(&fp->aux->dst_mutex);
262 		kfree(fp->aux->poke_tab);
263 		kfree(fp->aux);
264 	}
265 	free_percpu(fp->stats);
266 	free_percpu(fp->active);
267 	vfree(fp);
268 }
269 
270 int bpf_prog_calc_tag(struct bpf_prog *fp)
271 {
272 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
273 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
274 	u32 digest[SHA1_DIGEST_WORDS];
275 	u32 ws[SHA1_WORKSPACE_WORDS];
276 	u32 i, bsize, psize, blocks;
277 	struct bpf_insn *dst;
278 	bool was_ld_map;
279 	u8 *raw, *todo;
280 	__be32 *result;
281 	__be64 *bits;
282 
283 	raw = vmalloc(raw_size);
284 	if (!raw)
285 		return -ENOMEM;
286 
287 	sha1_init(digest);
288 	memset(ws, 0, sizeof(ws));
289 
290 	/* We need to take out the map fd for the digest calculation
291 	 * since they are unstable from user space side.
292 	 */
293 	dst = (void *)raw;
294 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
295 		dst[i] = fp->insnsi[i];
296 		if (!was_ld_map &&
297 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
298 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
299 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
300 			was_ld_map = true;
301 			dst[i].imm = 0;
302 		} else if (was_ld_map &&
303 			   dst[i].code == 0 &&
304 			   dst[i].dst_reg == 0 &&
305 			   dst[i].src_reg == 0 &&
306 			   dst[i].off == 0) {
307 			was_ld_map = false;
308 			dst[i].imm = 0;
309 		} else {
310 			was_ld_map = false;
311 		}
312 	}
313 
314 	psize = bpf_prog_insn_size(fp);
315 	memset(&raw[psize], 0, raw_size - psize);
316 	raw[psize++] = 0x80;
317 
318 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
319 	blocks = bsize / SHA1_BLOCK_SIZE;
320 	todo   = raw;
321 	if (bsize - psize >= sizeof(__be64)) {
322 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
323 	} else {
324 		bits = (__be64 *)(todo + bsize + bits_offset);
325 		blocks++;
326 	}
327 	*bits = cpu_to_be64((psize - 1) << 3);
328 
329 	while (blocks--) {
330 		sha1_transform(digest, todo, ws);
331 		todo += SHA1_BLOCK_SIZE;
332 	}
333 
334 	result = (__force __be32 *)digest;
335 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
336 		result[i] = cpu_to_be32(digest[i]);
337 	memcpy(fp->tag, result, sizeof(fp->tag));
338 
339 	vfree(raw);
340 	return 0;
341 }
342 
343 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
344 				s32 end_new, s32 curr, const bool probe_pass)
345 {
346 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
347 	s32 delta = end_new - end_old;
348 	s64 imm = insn->imm;
349 
350 	if (curr < pos && curr + imm + 1 >= end_old)
351 		imm += delta;
352 	else if (curr >= end_new && curr + imm + 1 < end_new)
353 		imm -= delta;
354 	if (imm < imm_min || imm > imm_max)
355 		return -ERANGE;
356 	if (!probe_pass)
357 		insn->imm = imm;
358 	return 0;
359 }
360 
361 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
362 				s32 end_new, s32 curr, const bool probe_pass)
363 {
364 	const s32 off_min = S16_MIN, off_max = S16_MAX;
365 	s32 delta = end_new - end_old;
366 	s32 off = insn->off;
367 
368 	if (curr < pos && curr + off + 1 >= end_old)
369 		off += delta;
370 	else if (curr >= end_new && curr + off + 1 < end_new)
371 		off -= delta;
372 	if (off < off_min || off > off_max)
373 		return -ERANGE;
374 	if (!probe_pass)
375 		insn->off = off;
376 	return 0;
377 }
378 
379 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
380 			    s32 end_new, const bool probe_pass)
381 {
382 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
383 	struct bpf_insn *insn = prog->insnsi;
384 	int ret = 0;
385 
386 	for (i = 0; i < insn_cnt; i++, insn++) {
387 		u8 code;
388 
389 		/* In the probing pass we still operate on the original,
390 		 * unpatched image in order to check overflows before we
391 		 * do any other adjustments. Therefore skip the patchlet.
392 		 */
393 		if (probe_pass && i == pos) {
394 			i = end_new;
395 			insn = prog->insnsi + end_old;
396 		}
397 		if (bpf_pseudo_func(insn)) {
398 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
399 						   end_new, i, probe_pass);
400 			if (ret)
401 				return ret;
402 			continue;
403 		}
404 		code = insn->code;
405 		if ((BPF_CLASS(code) != BPF_JMP &&
406 		     BPF_CLASS(code) != BPF_JMP32) ||
407 		    BPF_OP(code) == BPF_EXIT)
408 			continue;
409 		/* Adjust offset of jmps if we cross patch boundaries. */
410 		if (BPF_OP(code) == BPF_CALL) {
411 			if (insn->src_reg != BPF_PSEUDO_CALL)
412 				continue;
413 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
414 						   end_new, i, probe_pass);
415 		} else {
416 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
417 						   end_new, i, probe_pass);
418 		}
419 		if (ret)
420 			break;
421 	}
422 
423 	return ret;
424 }
425 
426 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
427 {
428 	struct bpf_line_info *linfo;
429 	u32 i, nr_linfo;
430 
431 	nr_linfo = prog->aux->nr_linfo;
432 	if (!nr_linfo || !delta)
433 		return;
434 
435 	linfo = prog->aux->linfo;
436 
437 	for (i = 0; i < nr_linfo; i++)
438 		if (off < linfo[i].insn_off)
439 			break;
440 
441 	/* Push all off < linfo[i].insn_off by delta */
442 	for (; i < nr_linfo; i++)
443 		linfo[i].insn_off += delta;
444 }
445 
446 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
447 				       const struct bpf_insn *patch, u32 len)
448 {
449 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
450 	const u32 cnt_max = S16_MAX;
451 	struct bpf_prog *prog_adj;
452 	int err;
453 
454 	/* Since our patchlet doesn't expand the image, we're done. */
455 	if (insn_delta == 0) {
456 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
457 		return prog;
458 	}
459 
460 	insn_adj_cnt = prog->len + insn_delta;
461 
462 	/* Reject anything that would potentially let the insn->off
463 	 * target overflow when we have excessive program expansions.
464 	 * We need to probe here before we do any reallocation where
465 	 * we afterwards may not fail anymore.
466 	 */
467 	if (insn_adj_cnt > cnt_max &&
468 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
469 		return ERR_PTR(err);
470 
471 	/* Several new instructions need to be inserted. Make room
472 	 * for them. Likely, there's no need for a new allocation as
473 	 * last page could have large enough tailroom.
474 	 */
475 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
476 				    GFP_USER);
477 	if (!prog_adj)
478 		return ERR_PTR(-ENOMEM);
479 
480 	prog_adj->len = insn_adj_cnt;
481 
482 	/* Patching happens in 3 steps:
483 	 *
484 	 * 1) Move over tail of insnsi from next instruction onwards,
485 	 *    so we can patch the single target insn with one or more
486 	 *    new ones (patching is always from 1 to n insns, n > 0).
487 	 * 2) Inject new instructions at the target location.
488 	 * 3) Adjust branch offsets if necessary.
489 	 */
490 	insn_rest = insn_adj_cnt - off - len;
491 
492 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
493 		sizeof(*patch) * insn_rest);
494 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
495 
496 	/* We are guaranteed to not fail at this point, otherwise
497 	 * the ship has sailed to reverse to the original state. An
498 	 * overflow cannot happen at this point.
499 	 */
500 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
501 
502 	bpf_adj_linfo(prog_adj, off, insn_delta);
503 
504 	return prog_adj;
505 }
506 
507 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
508 {
509 	/* Branch offsets can't overflow when program is shrinking, no need
510 	 * to call bpf_adj_branches(..., true) here
511 	 */
512 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
513 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
514 	prog->len -= cnt;
515 
516 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
517 }
518 
519 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
520 {
521 	int i;
522 
523 	for (i = 0; i < fp->aux->func_cnt; i++)
524 		bpf_prog_kallsyms_del(fp->aux->func[i]);
525 }
526 
527 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
528 {
529 	bpf_prog_kallsyms_del_subprogs(fp);
530 	bpf_prog_kallsyms_del(fp);
531 }
532 
533 #ifdef CONFIG_BPF_JIT
534 /* All BPF JIT sysctl knobs here. */
535 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
536 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
537 int bpf_jit_harden   __read_mostly;
538 long bpf_jit_limit   __read_mostly;
539 long bpf_jit_limit_max __read_mostly;
540 
541 static void
542 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
543 {
544 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
545 
546 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
547 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
548 }
549 
550 static void
551 bpf_prog_ksym_set_name(struct bpf_prog *prog)
552 {
553 	char *sym = prog->aux->ksym.name;
554 	const char *end = sym + KSYM_NAME_LEN;
555 	const struct btf_type *type;
556 	const char *func_name;
557 
558 	BUILD_BUG_ON(sizeof("bpf_prog_") +
559 		     sizeof(prog->tag) * 2 +
560 		     /* name has been null terminated.
561 		      * We should need +1 for the '_' preceding
562 		      * the name.  However, the null character
563 		      * is double counted between the name and the
564 		      * sizeof("bpf_prog_") above, so we omit
565 		      * the +1 here.
566 		      */
567 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
568 
569 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
570 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
571 
572 	/* prog->aux->name will be ignored if full btf name is available */
573 	if (prog->aux->func_info_cnt) {
574 		type = btf_type_by_id(prog->aux->btf,
575 				      prog->aux->func_info[prog->aux->func_idx].type_id);
576 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
577 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
578 		return;
579 	}
580 
581 	if (prog->aux->name[0])
582 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
583 	else
584 		*sym = 0;
585 }
586 
587 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
588 {
589 	return container_of(n, struct bpf_ksym, tnode)->start;
590 }
591 
592 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
593 					  struct latch_tree_node *b)
594 {
595 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
596 }
597 
598 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
599 {
600 	unsigned long val = (unsigned long)key;
601 	const struct bpf_ksym *ksym;
602 
603 	ksym = container_of(n, struct bpf_ksym, tnode);
604 
605 	if (val < ksym->start)
606 		return -1;
607 	if (val >= ksym->end)
608 		return  1;
609 
610 	return 0;
611 }
612 
613 static const struct latch_tree_ops bpf_tree_ops = {
614 	.less	= bpf_tree_less,
615 	.comp	= bpf_tree_comp,
616 };
617 
618 static DEFINE_SPINLOCK(bpf_lock);
619 static LIST_HEAD(bpf_kallsyms);
620 static struct latch_tree_root bpf_tree __cacheline_aligned;
621 
622 void bpf_ksym_add(struct bpf_ksym *ksym)
623 {
624 	spin_lock_bh(&bpf_lock);
625 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
626 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
627 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
628 	spin_unlock_bh(&bpf_lock);
629 }
630 
631 static void __bpf_ksym_del(struct bpf_ksym *ksym)
632 {
633 	if (list_empty(&ksym->lnode))
634 		return;
635 
636 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
637 	list_del_rcu(&ksym->lnode);
638 }
639 
640 void bpf_ksym_del(struct bpf_ksym *ksym)
641 {
642 	spin_lock_bh(&bpf_lock);
643 	__bpf_ksym_del(ksym);
644 	spin_unlock_bh(&bpf_lock);
645 }
646 
647 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
648 {
649 	return fp->jited && !bpf_prog_was_classic(fp);
650 }
651 
652 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
653 {
654 	return list_empty(&fp->aux->ksym.lnode) ||
655 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
656 }
657 
658 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
659 {
660 	if (!bpf_prog_kallsyms_candidate(fp) ||
661 	    !bpf_capable())
662 		return;
663 
664 	bpf_prog_ksym_set_addr(fp);
665 	bpf_prog_ksym_set_name(fp);
666 	fp->aux->ksym.prog = true;
667 
668 	bpf_ksym_add(&fp->aux->ksym);
669 }
670 
671 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
672 {
673 	if (!bpf_prog_kallsyms_candidate(fp))
674 		return;
675 
676 	bpf_ksym_del(&fp->aux->ksym);
677 }
678 
679 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
680 {
681 	struct latch_tree_node *n;
682 
683 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
684 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
685 }
686 
687 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
688 				 unsigned long *off, char *sym)
689 {
690 	struct bpf_ksym *ksym;
691 	char *ret = NULL;
692 
693 	rcu_read_lock();
694 	ksym = bpf_ksym_find(addr);
695 	if (ksym) {
696 		unsigned long symbol_start = ksym->start;
697 		unsigned long symbol_end = ksym->end;
698 
699 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
700 
701 		ret = sym;
702 		if (size)
703 			*size = symbol_end - symbol_start;
704 		if (off)
705 			*off  = addr - symbol_start;
706 	}
707 	rcu_read_unlock();
708 
709 	return ret;
710 }
711 
712 bool is_bpf_text_address(unsigned long addr)
713 {
714 	bool ret;
715 
716 	rcu_read_lock();
717 	ret = bpf_ksym_find(addr) != NULL;
718 	rcu_read_unlock();
719 
720 	return ret;
721 }
722 
723 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
724 {
725 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
726 
727 	return ksym && ksym->prog ?
728 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
729 	       NULL;
730 }
731 
732 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
733 {
734 	const struct exception_table_entry *e = NULL;
735 	struct bpf_prog *prog;
736 
737 	rcu_read_lock();
738 	prog = bpf_prog_ksym_find(addr);
739 	if (!prog)
740 		goto out;
741 	if (!prog->aux->num_exentries)
742 		goto out;
743 
744 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
745 out:
746 	rcu_read_unlock();
747 	return e;
748 }
749 
750 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
751 		    char *sym)
752 {
753 	struct bpf_ksym *ksym;
754 	unsigned int it = 0;
755 	int ret = -ERANGE;
756 
757 	if (!bpf_jit_kallsyms_enabled())
758 		return ret;
759 
760 	rcu_read_lock();
761 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
762 		if (it++ != symnum)
763 			continue;
764 
765 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
766 
767 		*value = ksym->start;
768 		*type  = BPF_SYM_ELF_TYPE;
769 
770 		ret = 0;
771 		break;
772 	}
773 	rcu_read_unlock();
774 
775 	return ret;
776 }
777 
778 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
779 				struct bpf_jit_poke_descriptor *poke)
780 {
781 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
782 	static const u32 poke_tab_max = 1024;
783 	u32 slot = prog->aux->size_poke_tab;
784 	u32 size = slot + 1;
785 
786 	if (size > poke_tab_max)
787 		return -ENOSPC;
788 	if (poke->tailcall_target || poke->tailcall_target_stable ||
789 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
790 		return -EINVAL;
791 
792 	switch (poke->reason) {
793 	case BPF_POKE_REASON_TAIL_CALL:
794 		if (!poke->tail_call.map)
795 			return -EINVAL;
796 		break;
797 	default:
798 		return -EINVAL;
799 	}
800 
801 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
802 	if (!tab)
803 		return -ENOMEM;
804 
805 	memcpy(&tab[slot], poke, sizeof(*poke));
806 	prog->aux->size_poke_tab = size;
807 	prog->aux->poke_tab = tab;
808 
809 	return slot;
810 }
811 
812 /*
813  * BPF program pack allocator.
814  *
815  * Most BPF programs are pretty small. Allocating a hole page for each
816  * program is sometime a waste. Many small bpf program also adds pressure
817  * to instruction TLB. To solve this issue, we introduce a BPF program pack
818  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
819  * to host BPF programs.
820  */
821 #define BPF_PROG_CHUNK_SHIFT	6
822 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
823 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
824 
825 struct bpf_prog_pack {
826 	struct list_head list;
827 	void *ptr;
828 	unsigned long bitmap[];
829 };
830 
831 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
832 
833 static size_t bpf_prog_pack_size = -1;
834 static size_t bpf_prog_pack_mask = -1;
835 
836 static int bpf_prog_chunk_count(void)
837 {
838 	WARN_ON_ONCE(bpf_prog_pack_size == -1);
839 	return bpf_prog_pack_size / BPF_PROG_CHUNK_SIZE;
840 }
841 
842 static DEFINE_MUTEX(pack_mutex);
843 static LIST_HEAD(pack_list);
844 
845 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
846  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
847  */
848 #ifdef PMD_SIZE
849 #define BPF_HPAGE_SIZE PMD_SIZE
850 #define BPF_HPAGE_MASK PMD_MASK
851 #else
852 #define BPF_HPAGE_SIZE PAGE_SIZE
853 #define BPF_HPAGE_MASK PAGE_MASK
854 #endif
855 
856 static size_t select_bpf_prog_pack_size(void)
857 {
858 	size_t size;
859 	void *ptr;
860 
861 	size = BPF_HPAGE_SIZE * num_online_nodes();
862 	ptr = module_alloc(size);
863 
864 	/* Test whether we can get huge pages. If not just use PAGE_SIZE
865 	 * packs.
866 	 */
867 	if (!ptr || !is_vm_area_hugepages(ptr)) {
868 		size = PAGE_SIZE;
869 		bpf_prog_pack_mask = PAGE_MASK;
870 	} else {
871 		bpf_prog_pack_mask = BPF_HPAGE_MASK;
872 	}
873 
874 	vfree(ptr);
875 	return size;
876 }
877 
878 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
879 {
880 	struct bpf_prog_pack *pack;
881 
882 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(bpf_prog_chunk_count())),
883 		       GFP_KERNEL);
884 	if (!pack)
885 		return NULL;
886 	pack->ptr = module_alloc(bpf_prog_pack_size);
887 	if (!pack->ptr) {
888 		kfree(pack);
889 		return NULL;
890 	}
891 	bpf_fill_ill_insns(pack->ptr, bpf_prog_pack_size);
892 	bitmap_zero(pack->bitmap, bpf_prog_pack_size / BPF_PROG_CHUNK_SIZE);
893 	list_add_tail(&pack->list, &pack_list);
894 
895 	set_vm_flush_reset_perms(pack->ptr);
896 	set_memory_ro((unsigned long)pack->ptr, bpf_prog_pack_size / PAGE_SIZE);
897 	set_memory_x((unsigned long)pack->ptr, bpf_prog_pack_size / PAGE_SIZE);
898 	return pack;
899 }
900 
901 static void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
902 {
903 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
904 	struct bpf_prog_pack *pack;
905 	unsigned long pos;
906 	void *ptr = NULL;
907 
908 	mutex_lock(&pack_mutex);
909 	if (bpf_prog_pack_size == -1)
910 		bpf_prog_pack_size = select_bpf_prog_pack_size();
911 
912 	if (size > bpf_prog_pack_size) {
913 		size = round_up(size, PAGE_SIZE);
914 		ptr = module_alloc(size);
915 		if (ptr) {
916 			bpf_fill_ill_insns(ptr, size);
917 			set_vm_flush_reset_perms(ptr);
918 			set_memory_ro((unsigned long)ptr, size / PAGE_SIZE);
919 			set_memory_x((unsigned long)ptr, size / PAGE_SIZE);
920 		}
921 		goto out;
922 	}
923 	list_for_each_entry(pack, &pack_list, list) {
924 		pos = bitmap_find_next_zero_area(pack->bitmap, bpf_prog_chunk_count(), 0,
925 						 nbits, 0);
926 		if (pos < bpf_prog_chunk_count())
927 			goto found_free_area;
928 	}
929 
930 	pack = alloc_new_pack(bpf_fill_ill_insns);
931 	if (!pack)
932 		goto out;
933 
934 	pos = 0;
935 
936 found_free_area:
937 	bitmap_set(pack->bitmap, pos, nbits);
938 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
939 
940 out:
941 	mutex_unlock(&pack_mutex);
942 	return ptr;
943 }
944 
945 static void bpf_prog_pack_free(struct bpf_binary_header *hdr)
946 {
947 	struct bpf_prog_pack *pack = NULL, *tmp;
948 	unsigned int nbits;
949 	unsigned long pos;
950 	void *pack_ptr;
951 
952 	mutex_lock(&pack_mutex);
953 	if (hdr->size > bpf_prog_pack_size) {
954 		module_memfree(hdr);
955 		goto out;
956 	}
957 
958 	pack_ptr = (void *)((unsigned long)hdr & bpf_prog_pack_mask);
959 
960 	list_for_each_entry(tmp, &pack_list, list) {
961 		if (tmp->ptr == pack_ptr) {
962 			pack = tmp;
963 			break;
964 		}
965 	}
966 
967 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
968 		goto out;
969 
970 	nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
971 	pos = ((unsigned long)hdr - (unsigned long)pack_ptr) >> BPF_PROG_CHUNK_SHIFT;
972 
973 	WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
974 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
975 
976 	bitmap_clear(pack->bitmap, pos, nbits);
977 	if (bitmap_find_next_zero_area(pack->bitmap, bpf_prog_chunk_count(), 0,
978 				       bpf_prog_chunk_count(), 0) == 0) {
979 		list_del(&pack->list);
980 		module_memfree(pack->ptr);
981 		kfree(pack);
982 	}
983 out:
984 	mutex_unlock(&pack_mutex);
985 }
986 
987 static atomic_long_t bpf_jit_current;
988 
989 /* Can be overridden by an arch's JIT compiler if it has a custom,
990  * dedicated BPF backend memory area, or if neither of the two
991  * below apply.
992  */
993 u64 __weak bpf_jit_alloc_exec_limit(void)
994 {
995 #if defined(MODULES_VADDR)
996 	return MODULES_END - MODULES_VADDR;
997 #else
998 	return VMALLOC_END - VMALLOC_START;
999 #endif
1000 }
1001 
1002 static int __init bpf_jit_charge_init(void)
1003 {
1004 	/* Only used as heuristic here to derive limit. */
1005 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1006 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
1007 					    PAGE_SIZE), LONG_MAX);
1008 	return 0;
1009 }
1010 pure_initcall(bpf_jit_charge_init);
1011 
1012 int bpf_jit_charge_modmem(u32 size)
1013 {
1014 	if (atomic_long_add_return(size, &bpf_jit_current) > bpf_jit_limit) {
1015 		if (!bpf_capable()) {
1016 			atomic_long_sub(size, &bpf_jit_current);
1017 			return -EPERM;
1018 		}
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 void bpf_jit_uncharge_modmem(u32 size)
1025 {
1026 	atomic_long_sub(size, &bpf_jit_current);
1027 }
1028 
1029 void *__weak bpf_jit_alloc_exec(unsigned long size)
1030 {
1031 	return module_alloc(size);
1032 }
1033 
1034 void __weak bpf_jit_free_exec(void *addr)
1035 {
1036 	module_memfree(addr);
1037 }
1038 
1039 struct bpf_binary_header *
1040 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1041 		     unsigned int alignment,
1042 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1043 {
1044 	struct bpf_binary_header *hdr;
1045 	u32 size, hole, start;
1046 
1047 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1048 		     alignment > BPF_IMAGE_ALIGNMENT);
1049 
1050 	/* Most of BPF filters are really small, but if some of them
1051 	 * fill a page, allow at least 128 extra bytes to insert a
1052 	 * random section of illegal instructions.
1053 	 */
1054 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1055 
1056 	if (bpf_jit_charge_modmem(size))
1057 		return NULL;
1058 	hdr = bpf_jit_alloc_exec(size);
1059 	if (!hdr) {
1060 		bpf_jit_uncharge_modmem(size);
1061 		return NULL;
1062 	}
1063 
1064 	/* Fill space with illegal/arch-dep instructions. */
1065 	bpf_fill_ill_insns(hdr, size);
1066 
1067 	hdr->size = size;
1068 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1069 		     PAGE_SIZE - sizeof(*hdr));
1070 	start = (get_random_int() % hole) & ~(alignment - 1);
1071 
1072 	/* Leave a random number of instructions before BPF code. */
1073 	*image_ptr = &hdr->image[start];
1074 
1075 	return hdr;
1076 }
1077 
1078 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1079 {
1080 	u32 size = hdr->size;
1081 
1082 	bpf_jit_free_exec(hdr);
1083 	bpf_jit_uncharge_modmem(size);
1084 }
1085 
1086 /* Allocate jit binary from bpf_prog_pack allocator.
1087  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1088  * to the memory. To solve this problem, a RW buffer is also allocated at
1089  * as the same time. The JIT engine should calculate offsets based on the
1090  * RO memory address, but write JITed program to the RW buffer. Once the
1091  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1092  * the JITed program to the RO memory.
1093  */
1094 struct bpf_binary_header *
1095 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1096 			  unsigned int alignment,
1097 			  struct bpf_binary_header **rw_header,
1098 			  u8 **rw_image,
1099 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1100 {
1101 	struct bpf_binary_header *ro_header;
1102 	u32 size, hole, start;
1103 
1104 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1105 		     alignment > BPF_IMAGE_ALIGNMENT);
1106 
1107 	/* add 16 bytes for a random section of illegal instructions */
1108 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1109 
1110 	if (bpf_jit_charge_modmem(size))
1111 		return NULL;
1112 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1113 	if (!ro_header) {
1114 		bpf_jit_uncharge_modmem(size);
1115 		return NULL;
1116 	}
1117 
1118 	*rw_header = kvmalloc(size, GFP_KERNEL);
1119 	if (!*rw_header) {
1120 		bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
1121 		bpf_prog_pack_free(ro_header);
1122 		bpf_jit_uncharge_modmem(size);
1123 		return NULL;
1124 	}
1125 
1126 	/* Fill space with illegal/arch-dep instructions. */
1127 	bpf_fill_ill_insns(*rw_header, size);
1128 	(*rw_header)->size = size;
1129 
1130 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1131 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1132 	start = (get_random_int() % hole) & ~(alignment - 1);
1133 
1134 	*image_ptr = &ro_header->image[start];
1135 	*rw_image = &(*rw_header)->image[start];
1136 
1137 	return ro_header;
1138 }
1139 
1140 /* Copy JITed text from rw_header to its final location, the ro_header. */
1141 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1142 				 struct bpf_binary_header *ro_header,
1143 				 struct bpf_binary_header *rw_header)
1144 {
1145 	void *ptr;
1146 
1147 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1148 
1149 	kvfree(rw_header);
1150 
1151 	if (IS_ERR(ptr)) {
1152 		bpf_prog_pack_free(ro_header);
1153 		return PTR_ERR(ptr);
1154 	}
1155 	prog->aux->use_bpf_prog_pack = true;
1156 	return 0;
1157 }
1158 
1159 /* bpf_jit_binary_pack_free is called in two different scenarios:
1160  *   1) when the program is freed after;
1161  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1162  * For case 2), we need to free both the RO memory and the RW buffer.
1163  *
1164  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1165  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1166  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1167  * bpf_arch_text_copy (when jit fails).
1168  */
1169 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1170 			      struct bpf_binary_header *rw_header)
1171 {
1172 	u32 size = ro_header->size;
1173 
1174 	bpf_prog_pack_free(ro_header);
1175 	kvfree(rw_header);
1176 	bpf_jit_uncharge_modmem(size);
1177 }
1178 
1179 static inline struct bpf_binary_header *
1180 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1181 {
1182 	unsigned long real_start = (unsigned long)fp->bpf_func;
1183 	unsigned long addr;
1184 
1185 	if (fp->aux->use_bpf_prog_pack)
1186 		addr = real_start & BPF_PROG_CHUNK_MASK;
1187 	else
1188 		addr = real_start & PAGE_MASK;
1189 
1190 	return (void *)addr;
1191 }
1192 
1193 /* This symbol is only overridden by archs that have different
1194  * requirements than the usual eBPF JITs, f.e. when they only
1195  * implement cBPF JIT, do not set images read-only, etc.
1196  */
1197 void __weak bpf_jit_free(struct bpf_prog *fp)
1198 {
1199 	if (fp->jited) {
1200 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1201 
1202 		if (fp->aux->use_bpf_prog_pack)
1203 			bpf_jit_binary_pack_free(hdr, NULL /* rw_buffer */);
1204 		else
1205 			bpf_jit_binary_free(hdr);
1206 
1207 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1208 	}
1209 
1210 	bpf_prog_unlock_free(fp);
1211 }
1212 
1213 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1214 			  const struct bpf_insn *insn, bool extra_pass,
1215 			  u64 *func_addr, bool *func_addr_fixed)
1216 {
1217 	s16 off = insn->off;
1218 	s32 imm = insn->imm;
1219 	u8 *addr;
1220 
1221 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1222 	if (!*func_addr_fixed) {
1223 		/* Place-holder address till the last pass has collected
1224 		 * all addresses for JITed subprograms in which case we
1225 		 * can pick them up from prog->aux.
1226 		 */
1227 		if (!extra_pass)
1228 			addr = NULL;
1229 		else if (prog->aux->func &&
1230 			 off >= 0 && off < prog->aux->func_cnt)
1231 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1232 		else
1233 			return -EINVAL;
1234 	} else {
1235 		/* Address of a BPF helper call. Since part of the core
1236 		 * kernel, it's always at a fixed location. __bpf_call_base
1237 		 * and the helper with imm relative to it are both in core
1238 		 * kernel.
1239 		 */
1240 		addr = (u8 *)__bpf_call_base + imm;
1241 	}
1242 
1243 	*func_addr = (unsigned long)addr;
1244 	return 0;
1245 }
1246 
1247 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1248 			      const struct bpf_insn *aux,
1249 			      struct bpf_insn *to_buff,
1250 			      bool emit_zext)
1251 {
1252 	struct bpf_insn *to = to_buff;
1253 	u32 imm_rnd = get_random_int();
1254 	s16 off;
1255 
1256 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1257 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1258 
1259 	/* Constraints on AX register:
1260 	 *
1261 	 * AX register is inaccessible from user space. It is mapped in
1262 	 * all JITs, and used here for constant blinding rewrites. It is
1263 	 * typically "stateless" meaning its contents are only valid within
1264 	 * the executed instruction, but not across several instructions.
1265 	 * There are a few exceptions however which are further detailed
1266 	 * below.
1267 	 *
1268 	 * Constant blinding is only used by JITs, not in the interpreter.
1269 	 * The interpreter uses AX in some occasions as a local temporary
1270 	 * register e.g. in DIV or MOD instructions.
1271 	 *
1272 	 * In restricted circumstances, the verifier can also use the AX
1273 	 * register for rewrites as long as they do not interfere with
1274 	 * the above cases!
1275 	 */
1276 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1277 		goto out;
1278 
1279 	if (from->imm == 0 &&
1280 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1281 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1282 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1283 		goto out;
1284 	}
1285 
1286 	switch (from->code) {
1287 	case BPF_ALU | BPF_ADD | BPF_K:
1288 	case BPF_ALU | BPF_SUB | BPF_K:
1289 	case BPF_ALU | BPF_AND | BPF_K:
1290 	case BPF_ALU | BPF_OR  | BPF_K:
1291 	case BPF_ALU | BPF_XOR | BPF_K:
1292 	case BPF_ALU | BPF_MUL | BPF_K:
1293 	case BPF_ALU | BPF_MOV | BPF_K:
1294 	case BPF_ALU | BPF_DIV | BPF_K:
1295 	case BPF_ALU | BPF_MOD | BPF_K:
1296 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1297 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1298 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1299 		break;
1300 
1301 	case BPF_ALU64 | BPF_ADD | BPF_K:
1302 	case BPF_ALU64 | BPF_SUB | BPF_K:
1303 	case BPF_ALU64 | BPF_AND | BPF_K:
1304 	case BPF_ALU64 | BPF_OR  | BPF_K:
1305 	case BPF_ALU64 | BPF_XOR | BPF_K:
1306 	case BPF_ALU64 | BPF_MUL | BPF_K:
1307 	case BPF_ALU64 | BPF_MOV | BPF_K:
1308 	case BPF_ALU64 | BPF_DIV | BPF_K:
1309 	case BPF_ALU64 | BPF_MOD | BPF_K:
1310 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1311 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1312 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1313 		break;
1314 
1315 	case BPF_JMP | BPF_JEQ  | BPF_K:
1316 	case BPF_JMP | BPF_JNE  | BPF_K:
1317 	case BPF_JMP | BPF_JGT  | BPF_K:
1318 	case BPF_JMP | BPF_JLT  | BPF_K:
1319 	case BPF_JMP | BPF_JGE  | BPF_K:
1320 	case BPF_JMP | BPF_JLE  | BPF_K:
1321 	case BPF_JMP | BPF_JSGT | BPF_K:
1322 	case BPF_JMP | BPF_JSLT | BPF_K:
1323 	case BPF_JMP | BPF_JSGE | BPF_K:
1324 	case BPF_JMP | BPF_JSLE | BPF_K:
1325 	case BPF_JMP | BPF_JSET | BPF_K:
1326 		/* Accommodate for extra offset in case of a backjump. */
1327 		off = from->off;
1328 		if (off < 0)
1329 			off -= 2;
1330 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1331 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1332 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1333 		break;
1334 
1335 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1336 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1337 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1338 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1339 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1340 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1341 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1342 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1343 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1344 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1345 	case BPF_JMP32 | BPF_JSET | BPF_K:
1346 		/* Accommodate for extra offset in case of a backjump. */
1347 		off = from->off;
1348 		if (off < 0)
1349 			off -= 2;
1350 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1351 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1352 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1353 				      off);
1354 		break;
1355 
1356 	case BPF_LD | BPF_IMM | BPF_DW:
1357 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1358 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1359 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1360 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1361 		break;
1362 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1363 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1364 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1365 		if (emit_zext)
1366 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1367 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1368 		break;
1369 
1370 	case BPF_ST | BPF_MEM | BPF_DW:
1371 	case BPF_ST | BPF_MEM | BPF_W:
1372 	case BPF_ST | BPF_MEM | BPF_H:
1373 	case BPF_ST | BPF_MEM | BPF_B:
1374 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1375 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1376 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1377 		break;
1378 	}
1379 out:
1380 	return to - to_buff;
1381 }
1382 
1383 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1384 					      gfp_t gfp_extra_flags)
1385 {
1386 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1387 	struct bpf_prog *fp;
1388 
1389 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1390 	if (fp != NULL) {
1391 		/* aux->prog still points to the fp_other one, so
1392 		 * when promoting the clone to the real program,
1393 		 * this still needs to be adapted.
1394 		 */
1395 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1396 	}
1397 
1398 	return fp;
1399 }
1400 
1401 static void bpf_prog_clone_free(struct bpf_prog *fp)
1402 {
1403 	/* aux was stolen by the other clone, so we cannot free
1404 	 * it from this path! It will be freed eventually by the
1405 	 * other program on release.
1406 	 *
1407 	 * At this point, we don't need a deferred release since
1408 	 * clone is guaranteed to not be locked.
1409 	 */
1410 	fp->aux = NULL;
1411 	fp->stats = NULL;
1412 	fp->active = NULL;
1413 	__bpf_prog_free(fp);
1414 }
1415 
1416 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1417 {
1418 	/* We have to repoint aux->prog to self, as we don't
1419 	 * know whether fp here is the clone or the original.
1420 	 */
1421 	fp->aux->prog = fp;
1422 	bpf_prog_clone_free(fp_other);
1423 }
1424 
1425 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1426 {
1427 	struct bpf_insn insn_buff[16], aux[2];
1428 	struct bpf_prog *clone, *tmp;
1429 	int insn_delta, insn_cnt;
1430 	struct bpf_insn *insn;
1431 	int i, rewritten;
1432 
1433 	if (!prog->blinding_requested || prog->blinded)
1434 		return prog;
1435 
1436 	clone = bpf_prog_clone_create(prog, GFP_USER);
1437 	if (!clone)
1438 		return ERR_PTR(-ENOMEM);
1439 
1440 	insn_cnt = clone->len;
1441 	insn = clone->insnsi;
1442 
1443 	for (i = 0; i < insn_cnt; i++, insn++) {
1444 		if (bpf_pseudo_func(insn)) {
1445 			/* ld_imm64 with an address of bpf subprog is not
1446 			 * a user controlled constant. Don't randomize it,
1447 			 * since it will conflict with jit_subprogs() logic.
1448 			 */
1449 			insn++;
1450 			i++;
1451 			continue;
1452 		}
1453 
1454 		/* We temporarily need to hold the original ld64 insn
1455 		 * so that we can still access the first part in the
1456 		 * second blinding run.
1457 		 */
1458 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1459 		    insn[1].code == 0)
1460 			memcpy(aux, insn, sizeof(aux));
1461 
1462 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1463 						clone->aux->verifier_zext);
1464 		if (!rewritten)
1465 			continue;
1466 
1467 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1468 		if (IS_ERR(tmp)) {
1469 			/* Patching may have repointed aux->prog during
1470 			 * realloc from the original one, so we need to
1471 			 * fix it up here on error.
1472 			 */
1473 			bpf_jit_prog_release_other(prog, clone);
1474 			return tmp;
1475 		}
1476 
1477 		clone = tmp;
1478 		insn_delta = rewritten - 1;
1479 
1480 		/* Walk new program and skip insns we just inserted. */
1481 		insn = clone->insnsi + i + insn_delta;
1482 		insn_cnt += insn_delta;
1483 		i        += insn_delta;
1484 	}
1485 
1486 	clone->blinded = 1;
1487 	return clone;
1488 }
1489 #endif /* CONFIG_BPF_JIT */
1490 
1491 /* Base function for offset calculation. Needs to go into .text section,
1492  * therefore keeping it non-static as well; will also be used by JITs
1493  * anyway later on, so do not let the compiler omit it. This also needs
1494  * to go into kallsyms for correlation from e.g. bpftool, so naming
1495  * must not change.
1496  */
1497 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1498 {
1499 	return 0;
1500 }
1501 EXPORT_SYMBOL_GPL(__bpf_call_base);
1502 
1503 /* All UAPI available opcodes. */
1504 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1505 	/* 32 bit ALU operations. */		\
1506 	/*   Register based. */			\
1507 	INSN_3(ALU, ADD,  X),			\
1508 	INSN_3(ALU, SUB,  X),			\
1509 	INSN_3(ALU, AND,  X),			\
1510 	INSN_3(ALU, OR,   X),			\
1511 	INSN_3(ALU, LSH,  X),			\
1512 	INSN_3(ALU, RSH,  X),			\
1513 	INSN_3(ALU, XOR,  X),			\
1514 	INSN_3(ALU, MUL,  X),			\
1515 	INSN_3(ALU, MOV,  X),			\
1516 	INSN_3(ALU, ARSH, X),			\
1517 	INSN_3(ALU, DIV,  X),			\
1518 	INSN_3(ALU, MOD,  X),			\
1519 	INSN_2(ALU, NEG),			\
1520 	INSN_3(ALU, END, TO_BE),		\
1521 	INSN_3(ALU, END, TO_LE),		\
1522 	/*   Immediate based. */		\
1523 	INSN_3(ALU, ADD,  K),			\
1524 	INSN_3(ALU, SUB,  K),			\
1525 	INSN_3(ALU, AND,  K),			\
1526 	INSN_3(ALU, OR,   K),			\
1527 	INSN_3(ALU, LSH,  K),			\
1528 	INSN_3(ALU, RSH,  K),			\
1529 	INSN_3(ALU, XOR,  K),			\
1530 	INSN_3(ALU, MUL,  K),			\
1531 	INSN_3(ALU, MOV,  K),			\
1532 	INSN_3(ALU, ARSH, K),			\
1533 	INSN_3(ALU, DIV,  K),			\
1534 	INSN_3(ALU, MOD,  K),			\
1535 	/* 64 bit ALU operations. */		\
1536 	/*   Register based. */			\
1537 	INSN_3(ALU64, ADD,  X),			\
1538 	INSN_3(ALU64, SUB,  X),			\
1539 	INSN_3(ALU64, AND,  X),			\
1540 	INSN_3(ALU64, OR,   X),			\
1541 	INSN_3(ALU64, LSH,  X),			\
1542 	INSN_3(ALU64, RSH,  X),			\
1543 	INSN_3(ALU64, XOR,  X),			\
1544 	INSN_3(ALU64, MUL,  X),			\
1545 	INSN_3(ALU64, MOV,  X),			\
1546 	INSN_3(ALU64, ARSH, X),			\
1547 	INSN_3(ALU64, DIV,  X),			\
1548 	INSN_3(ALU64, MOD,  X),			\
1549 	INSN_2(ALU64, NEG),			\
1550 	/*   Immediate based. */		\
1551 	INSN_3(ALU64, ADD,  K),			\
1552 	INSN_3(ALU64, SUB,  K),			\
1553 	INSN_3(ALU64, AND,  K),			\
1554 	INSN_3(ALU64, OR,   K),			\
1555 	INSN_3(ALU64, LSH,  K),			\
1556 	INSN_3(ALU64, RSH,  K),			\
1557 	INSN_3(ALU64, XOR,  K),			\
1558 	INSN_3(ALU64, MUL,  K),			\
1559 	INSN_3(ALU64, MOV,  K),			\
1560 	INSN_3(ALU64, ARSH, K),			\
1561 	INSN_3(ALU64, DIV,  K),			\
1562 	INSN_3(ALU64, MOD,  K),			\
1563 	/* Call instruction. */			\
1564 	INSN_2(JMP, CALL),			\
1565 	/* Exit instruction. */			\
1566 	INSN_2(JMP, EXIT),			\
1567 	/* 32-bit Jump instructions. */		\
1568 	/*   Register based. */			\
1569 	INSN_3(JMP32, JEQ,  X),			\
1570 	INSN_3(JMP32, JNE,  X),			\
1571 	INSN_3(JMP32, JGT,  X),			\
1572 	INSN_3(JMP32, JLT,  X),			\
1573 	INSN_3(JMP32, JGE,  X),			\
1574 	INSN_3(JMP32, JLE,  X),			\
1575 	INSN_3(JMP32, JSGT, X),			\
1576 	INSN_3(JMP32, JSLT, X),			\
1577 	INSN_3(JMP32, JSGE, X),			\
1578 	INSN_3(JMP32, JSLE, X),			\
1579 	INSN_3(JMP32, JSET, X),			\
1580 	/*   Immediate based. */		\
1581 	INSN_3(JMP32, JEQ,  K),			\
1582 	INSN_3(JMP32, JNE,  K),			\
1583 	INSN_3(JMP32, JGT,  K),			\
1584 	INSN_3(JMP32, JLT,  K),			\
1585 	INSN_3(JMP32, JGE,  K),			\
1586 	INSN_3(JMP32, JLE,  K),			\
1587 	INSN_3(JMP32, JSGT, K),			\
1588 	INSN_3(JMP32, JSLT, K),			\
1589 	INSN_3(JMP32, JSGE, K),			\
1590 	INSN_3(JMP32, JSLE, K),			\
1591 	INSN_3(JMP32, JSET, K),			\
1592 	/* Jump instructions. */		\
1593 	/*   Register based. */			\
1594 	INSN_3(JMP, JEQ,  X),			\
1595 	INSN_3(JMP, JNE,  X),			\
1596 	INSN_3(JMP, JGT,  X),			\
1597 	INSN_3(JMP, JLT,  X),			\
1598 	INSN_3(JMP, JGE,  X),			\
1599 	INSN_3(JMP, JLE,  X),			\
1600 	INSN_3(JMP, JSGT, X),			\
1601 	INSN_3(JMP, JSLT, X),			\
1602 	INSN_3(JMP, JSGE, X),			\
1603 	INSN_3(JMP, JSLE, X),			\
1604 	INSN_3(JMP, JSET, X),			\
1605 	/*   Immediate based. */		\
1606 	INSN_3(JMP, JEQ,  K),			\
1607 	INSN_3(JMP, JNE,  K),			\
1608 	INSN_3(JMP, JGT,  K),			\
1609 	INSN_3(JMP, JLT,  K),			\
1610 	INSN_3(JMP, JGE,  K),			\
1611 	INSN_3(JMP, JLE,  K),			\
1612 	INSN_3(JMP, JSGT, K),			\
1613 	INSN_3(JMP, JSLT, K),			\
1614 	INSN_3(JMP, JSGE, K),			\
1615 	INSN_3(JMP, JSLE, K),			\
1616 	INSN_3(JMP, JSET, K),			\
1617 	INSN_2(JMP, JA),			\
1618 	/* Store instructions. */		\
1619 	/*   Register based. */			\
1620 	INSN_3(STX, MEM,  B),			\
1621 	INSN_3(STX, MEM,  H),			\
1622 	INSN_3(STX, MEM,  W),			\
1623 	INSN_3(STX, MEM,  DW),			\
1624 	INSN_3(STX, ATOMIC, W),			\
1625 	INSN_3(STX, ATOMIC, DW),		\
1626 	/*   Immediate based. */		\
1627 	INSN_3(ST, MEM, B),			\
1628 	INSN_3(ST, MEM, H),			\
1629 	INSN_3(ST, MEM, W),			\
1630 	INSN_3(ST, MEM, DW),			\
1631 	/* Load instructions. */		\
1632 	/*   Register based. */			\
1633 	INSN_3(LDX, MEM, B),			\
1634 	INSN_3(LDX, MEM, H),			\
1635 	INSN_3(LDX, MEM, W),			\
1636 	INSN_3(LDX, MEM, DW),			\
1637 	/*   Immediate based. */		\
1638 	INSN_3(LD, IMM, DW)
1639 
1640 bool bpf_opcode_in_insntable(u8 code)
1641 {
1642 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1643 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1644 	static const bool public_insntable[256] = {
1645 		[0 ... 255] = false,
1646 		/* Now overwrite non-defaults ... */
1647 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1648 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1649 		[BPF_LD | BPF_ABS | BPF_B] = true,
1650 		[BPF_LD | BPF_ABS | BPF_H] = true,
1651 		[BPF_LD | BPF_ABS | BPF_W] = true,
1652 		[BPF_LD | BPF_IND | BPF_B] = true,
1653 		[BPF_LD | BPF_IND | BPF_H] = true,
1654 		[BPF_LD | BPF_IND | BPF_W] = true,
1655 	};
1656 #undef BPF_INSN_3_TBL
1657 #undef BPF_INSN_2_TBL
1658 	return public_insntable[code];
1659 }
1660 
1661 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1662 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1663 {
1664 	memset(dst, 0, size);
1665 	return -EFAULT;
1666 }
1667 
1668 /**
1669  *	___bpf_prog_run - run eBPF program on a given context
1670  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1671  *	@insn: is the array of eBPF instructions
1672  *
1673  * Decode and execute eBPF instructions.
1674  *
1675  * Return: whatever value is in %BPF_R0 at program exit
1676  */
1677 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1678 {
1679 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1680 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1681 	static const void * const jumptable[256] __annotate_jump_table = {
1682 		[0 ... 255] = &&default_label,
1683 		/* Now overwrite non-defaults ... */
1684 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1685 		/* Non-UAPI available opcodes. */
1686 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1687 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1688 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1689 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1690 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1691 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1692 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1693 	};
1694 #undef BPF_INSN_3_LBL
1695 #undef BPF_INSN_2_LBL
1696 	u32 tail_call_cnt = 0;
1697 
1698 #define CONT	 ({ insn++; goto select_insn; })
1699 #define CONT_JMP ({ insn++; goto select_insn; })
1700 
1701 select_insn:
1702 	goto *jumptable[insn->code];
1703 
1704 	/* Explicitly mask the register-based shift amounts with 63 or 31
1705 	 * to avoid undefined behavior. Normally this won't affect the
1706 	 * generated code, for example, in case of native 64 bit archs such
1707 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1708 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1709 	 * the BPF shift operations to machine instructions which produce
1710 	 * implementation-defined results in such a case; the resulting
1711 	 * contents of the register may be arbitrary, but program behaviour
1712 	 * as a whole remains defined. In other words, in case of JIT backends,
1713 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1714 	 */
1715 	/* ALU (shifts) */
1716 #define SHT(OPCODE, OP)					\
1717 	ALU64_##OPCODE##_X:				\
1718 		DST = DST OP (SRC & 63);		\
1719 		CONT;					\
1720 	ALU_##OPCODE##_X:				\
1721 		DST = (u32) DST OP ((u32) SRC & 31);	\
1722 		CONT;					\
1723 	ALU64_##OPCODE##_K:				\
1724 		DST = DST OP IMM;			\
1725 		CONT;					\
1726 	ALU_##OPCODE##_K:				\
1727 		DST = (u32) DST OP (u32) IMM;		\
1728 		CONT;
1729 	/* ALU (rest) */
1730 #define ALU(OPCODE, OP)					\
1731 	ALU64_##OPCODE##_X:				\
1732 		DST = DST OP SRC;			\
1733 		CONT;					\
1734 	ALU_##OPCODE##_X:				\
1735 		DST = (u32) DST OP (u32) SRC;		\
1736 		CONT;					\
1737 	ALU64_##OPCODE##_K:				\
1738 		DST = DST OP IMM;			\
1739 		CONT;					\
1740 	ALU_##OPCODE##_K:				\
1741 		DST = (u32) DST OP (u32) IMM;		\
1742 		CONT;
1743 	ALU(ADD,  +)
1744 	ALU(SUB,  -)
1745 	ALU(AND,  &)
1746 	ALU(OR,   |)
1747 	ALU(XOR,  ^)
1748 	ALU(MUL,  *)
1749 	SHT(LSH, <<)
1750 	SHT(RSH, >>)
1751 #undef SHT
1752 #undef ALU
1753 	ALU_NEG:
1754 		DST = (u32) -DST;
1755 		CONT;
1756 	ALU64_NEG:
1757 		DST = -DST;
1758 		CONT;
1759 	ALU_MOV_X:
1760 		DST = (u32) SRC;
1761 		CONT;
1762 	ALU_MOV_K:
1763 		DST = (u32) IMM;
1764 		CONT;
1765 	ALU64_MOV_X:
1766 		DST = SRC;
1767 		CONT;
1768 	ALU64_MOV_K:
1769 		DST = IMM;
1770 		CONT;
1771 	LD_IMM_DW:
1772 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1773 		insn++;
1774 		CONT;
1775 	ALU_ARSH_X:
1776 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1777 		CONT;
1778 	ALU_ARSH_K:
1779 		DST = (u64) (u32) (((s32) DST) >> IMM);
1780 		CONT;
1781 	ALU64_ARSH_X:
1782 		(*(s64 *) &DST) >>= (SRC & 63);
1783 		CONT;
1784 	ALU64_ARSH_K:
1785 		(*(s64 *) &DST) >>= IMM;
1786 		CONT;
1787 	ALU64_MOD_X:
1788 		div64_u64_rem(DST, SRC, &AX);
1789 		DST = AX;
1790 		CONT;
1791 	ALU_MOD_X:
1792 		AX = (u32) DST;
1793 		DST = do_div(AX, (u32) SRC);
1794 		CONT;
1795 	ALU64_MOD_K:
1796 		div64_u64_rem(DST, IMM, &AX);
1797 		DST = AX;
1798 		CONT;
1799 	ALU_MOD_K:
1800 		AX = (u32) DST;
1801 		DST = do_div(AX, (u32) IMM);
1802 		CONT;
1803 	ALU64_DIV_X:
1804 		DST = div64_u64(DST, SRC);
1805 		CONT;
1806 	ALU_DIV_X:
1807 		AX = (u32) DST;
1808 		do_div(AX, (u32) SRC);
1809 		DST = (u32) AX;
1810 		CONT;
1811 	ALU64_DIV_K:
1812 		DST = div64_u64(DST, IMM);
1813 		CONT;
1814 	ALU_DIV_K:
1815 		AX = (u32) DST;
1816 		do_div(AX, (u32) IMM);
1817 		DST = (u32) AX;
1818 		CONT;
1819 	ALU_END_TO_BE:
1820 		switch (IMM) {
1821 		case 16:
1822 			DST = (__force u16) cpu_to_be16(DST);
1823 			break;
1824 		case 32:
1825 			DST = (__force u32) cpu_to_be32(DST);
1826 			break;
1827 		case 64:
1828 			DST = (__force u64) cpu_to_be64(DST);
1829 			break;
1830 		}
1831 		CONT;
1832 	ALU_END_TO_LE:
1833 		switch (IMM) {
1834 		case 16:
1835 			DST = (__force u16) cpu_to_le16(DST);
1836 			break;
1837 		case 32:
1838 			DST = (__force u32) cpu_to_le32(DST);
1839 			break;
1840 		case 64:
1841 			DST = (__force u64) cpu_to_le64(DST);
1842 			break;
1843 		}
1844 		CONT;
1845 
1846 	/* CALL */
1847 	JMP_CALL:
1848 		/* Function call scratches BPF_R1-BPF_R5 registers,
1849 		 * preserves BPF_R6-BPF_R9, and stores return value
1850 		 * into BPF_R0.
1851 		 */
1852 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1853 						       BPF_R4, BPF_R5);
1854 		CONT;
1855 
1856 	JMP_CALL_ARGS:
1857 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1858 							    BPF_R3, BPF_R4,
1859 							    BPF_R5,
1860 							    insn + insn->off + 1);
1861 		CONT;
1862 
1863 	JMP_TAIL_CALL: {
1864 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1865 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1866 		struct bpf_prog *prog;
1867 		u32 index = BPF_R3;
1868 
1869 		if (unlikely(index >= array->map.max_entries))
1870 			goto out;
1871 
1872 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
1873 			goto out;
1874 
1875 		tail_call_cnt++;
1876 
1877 		prog = READ_ONCE(array->ptrs[index]);
1878 		if (!prog)
1879 			goto out;
1880 
1881 		/* ARG1 at this point is guaranteed to point to CTX from
1882 		 * the verifier side due to the fact that the tail call is
1883 		 * handled like a helper, that is, bpf_tail_call_proto,
1884 		 * where arg1_type is ARG_PTR_TO_CTX.
1885 		 */
1886 		insn = prog->insnsi;
1887 		goto select_insn;
1888 out:
1889 		CONT;
1890 	}
1891 	JMP_JA:
1892 		insn += insn->off;
1893 		CONT;
1894 	JMP_EXIT:
1895 		return BPF_R0;
1896 	/* JMP */
1897 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1898 	JMP_##OPCODE##_X:					\
1899 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1900 			insn += insn->off;			\
1901 			CONT_JMP;				\
1902 		}						\
1903 		CONT;						\
1904 	JMP32_##OPCODE##_X:					\
1905 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1906 			insn += insn->off;			\
1907 			CONT_JMP;				\
1908 		}						\
1909 		CONT;						\
1910 	JMP_##OPCODE##_K:					\
1911 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1912 			insn += insn->off;			\
1913 			CONT_JMP;				\
1914 		}						\
1915 		CONT;						\
1916 	JMP32_##OPCODE##_K:					\
1917 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1918 			insn += insn->off;			\
1919 			CONT_JMP;				\
1920 		}						\
1921 		CONT;
1922 	COND_JMP(u, JEQ, ==)
1923 	COND_JMP(u, JNE, !=)
1924 	COND_JMP(u, JGT, >)
1925 	COND_JMP(u, JLT, <)
1926 	COND_JMP(u, JGE, >=)
1927 	COND_JMP(u, JLE, <=)
1928 	COND_JMP(u, JSET, &)
1929 	COND_JMP(s, JSGT, >)
1930 	COND_JMP(s, JSLT, <)
1931 	COND_JMP(s, JSGE, >=)
1932 	COND_JMP(s, JSLE, <=)
1933 #undef COND_JMP
1934 	/* ST, STX and LDX*/
1935 	ST_NOSPEC:
1936 		/* Speculation barrier for mitigating Speculative Store Bypass.
1937 		 * In case of arm64, we rely on the firmware mitigation as
1938 		 * controlled via the ssbd kernel parameter. Whenever the
1939 		 * mitigation is enabled, it works for all of the kernel code
1940 		 * with no need to provide any additional instructions here.
1941 		 * In case of x86, we use 'lfence' insn for mitigation. We
1942 		 * reuse preexisting logic from Spectre v1 mitigation that
1943 		 * happens to produce the required code on x86 for v4 as well.
1944 		 */
1945 #ifdef CONFIG_X86
1946 		barrier_nospec();
1947 #endif
1948 		CONT;
1949 #define LDST(SIZEOP, SIZE)						\
1950 	STX_MEM_##SIZEOP:						\
1951 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1952 		CONT;							\
1953 	ST_MEM_##SIZEOP:						\
1954 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1955 		CONT;							\
1956 	LDX_MEM_##SIZEOP:						\
1957 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1958 		CONT;							\
1959 	LDX_PROBE_MEM_##SIZEOP:						\
1960 		bpf_probe_read_kernel(&DST, sizeof(SIZE),		\
1961 				      (const void *)(long) (SRC + insn->off));	\
1962 		DST = *((SIZE *)&DST);					\
1963 		CONT;
1964 
1965 	LDST(B,   u8)
1966 	LDST(H,  u16)
1967 	LDST(W,  u32)
1968 	LDST(DW, u64)
1969 #undef LDST
1970 
1971 #define ATOMIC_ALU_OP(BOP, KOP)						\
1972 		case BOP:						\
1973 			if (BPF_SIZE(insn->code) == BPF_W)		\
1974 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1975 					     (DST + insn->off));	\
1976 			else						\
1977 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1978 					       (DST + insn->off));	\
1979 			break;						\
1980 		case BOP | BPF_FETCH:					\
1981 			if (BPF_SIZE(insn->code) == BPF_W)		\
1982 				SRC = (u32) atomic_fetch_##KOP(		\
1983 					(u32) SRC,			\
1984 					(atomic_t *)(unsigned long) (DST + insn->off)); \
1985 			else						\
1986 				SRC = (u64) atomic64_fetch_##KOP(	\
1987 					(u64) SRC,			\
1988 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
1989 			break;
1990 
1991 	STX_ATOMIC_DW:
1992 	STX_ATOMIC_W:
1993 		switch (IMM) {
1994 		ATOMIC_ALU_OP(BPF_ADD, add)
1995 		ATOMIC_ALU_OP(BPF_AND, and)
1996 		ATOMIC_ALU_OP(BPF_OR, or)
1997 		ATOMIC_ALU_OP(BPF_XOR, xor)
1998 #undef ATOMIC_ALU_OP
1999 
2000 		case BPF_XCHG:
2001 			if (BPF_SIZE(insn->code) == BPF_W)
2002 				SRC = (u32) atomic_xchg(
2003 					(atomic_t *)(unsigned long) (DST + insn->off),
2004 					(u32) SRC);
2005 			else
2006 				SRC = (u64) atomic64_xchg(
2007 					(atomic64_t *)(unsigned long) (DST + insn->off),
2008 					(u64) SRC);
2009 			break;
2010 		case BPF_CMPXCHG:
2011 			if (BPF_SIZE(insn->code) == BPF_W)
2012 				BPF_R0 = (u32) atomic_cmpxchg(
2013 					(atomic_t *)(unsigned long) (DST + insn->off),
2014 					(u32) BPF_R0, (u32) SRC);
2015 			else
2016 				BPF_R0 = (u64) atomic64_cmpxchg(
2017 					(atomic64_t *)(unsigned long) (DST + insn->off),
2018 					(u64) BPF_R0, (u64) SRC);
2019 			break;
2020 
2021 		default:
2022 			goto default_label;
2023 		}
2024 		CONT;
2025 
2026 	default_label:
2027 		/* If we ever reach this, we have a bug somewhere. Die hard here
2028 		 * instead of just returning 0; we could be somewhere in a subprog,
2029 		 * so execution could continue otherwise which we do /not/ want.
2030 		 *
2031 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2032 		 */
2033 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2034 			insn->code, insn->imm);
2035 		BUG_ON(1);
2036 		return 0;
2037 }
2038 
2039 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2040 #define DEFINE_BPF_PROG_RUN(stack_size) \
2041 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2042 { \
2043 	u64 stack[stack_size / sizeof(u64)]; \
2044 	u64 regs[MAX_BPF_EXT_REG]; \
2045 \
2046 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2047 	ARG1 = (u64) (unsigned long) ctx; \
2048 	return ___bpf_prog_run(regs, insn); \
2049 }
2050 
2051 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2052 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2053 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2054 				      const struct bpf_insn *insn) \
2055 { \
2056 	u64 stack[stack_size / sizeof(u64)]; \
2057 	u64 regs[MAX_BPF_EXT_REG]; \
2058 \
2059 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2060 	BPF_R1 = r1; \
2061 	BPF_R2 = r2; \
2062 	BPF_R3 = r3; \
2063 	BPF_R4 = r4; \
2064 	BPF_R5 = r5; \
2065 	return ___bpf_prog_run(regs, insn); \
2066 }
2067 
2068 #define EVAL1(FN, X) FN(X)
2069 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2070 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2071 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2072 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2073 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2074 
2075 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2076 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2077 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2078 
2079 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2080 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2081 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2082 
2083 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2084 
2085 static unsigned int (*interpreters[])(const void *ctx,
2086 				      const struct bpf_insn *insn) = {
2087 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2088 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2089 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2090 };
2091 #undef PROG_NAME_LIST
2092 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2093 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2094 				  const struct bpf_insn *insn) = {
2095 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2096 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2097 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2098 };
2099 #undef PROG_NAME_LIST
2100 
2101 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2102 {
2103 	stack_depth = max_t(u32, stack_depth, 1);
2104 	insn->off = (s16) insn->imm;
2105 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2106 		__bpf_call_base_args;
2107 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2108 }
2109 
2110 #else
2111 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2112 					 const struct bpf_insn *insn)
2113 {
2114 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2115 	 * is not working properly, so warn about it!
2116 	 */
2117 	WARN_ON_ONCE(1);
2118 	return 0;
2119 }
2120 #endif
2121 
2122 bool bpf_prog_map_compatible(struct bpf_map *map,
2123 			     const struct bpf_prog *fp)
2124 {
2125 	bool ret;
2126 
2127 	if (fp->kprobe_override)
2128 		return false;
2129 
2130 	spin_lock(&map->owner.lock);
2131 	if (!map->owner.type) {
2132 		/* There's no owner yet where we could check for
2133 		 * compatibility.
2134 		 */
2135 		map->owner.type  = fp->type;
2136 		map->owner.jited = fp->jited;
2137 		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2138 		ret = true;
2139 	} else {
2140 		ret = map->owner.type  == fp->type &&
2141 		      map->owner.jited == fp->jited &&
2142 		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2143 	}
2144 	spin_unlock(&map->owner.lock);
2145 
2146 	return ret;
2147 }
2148 
2149 static int bpf_check_tail_call(const struct bpf_prog *fp)
2150 {
2151 	struct bpf_prog_aux *aux = fp->aux;
2152 	int i, ret = 0;
2153 
2154 	mutex_lock(&aux->used_maps_mutex);
2155 	for (i = 0; i < aux->used_map_cnt; i++) {
2156 		struct bpf_map *map = aux->used_maps[i];
2157 
2158 		if (!map_type_contains_progs(map))
2159 			continue;
2160 
2161 		if (!bpf_prog_map_compatible(map, fp)) {
2162 			ret = -EINVAL;
2163 			goto out;
2164 		}
2165 	}
2166 
2167 out:
2168 	mutex_unlock(&aux->used_maps_mutex);
2169 	return ret;
2170 }
2171 
2172 static void bpf_prog_select_func(struct bpf_prog *fp)
2173 {
2174 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2175 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2176 
2177 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2178 #else
2179 	fp->bpf_func = __bpf_prog_ret0_warn;
2180 #endif
2181 }
2182 
2183 /**
2184  *	bpf_prog_select_runtime - select exec runtime for BPF program
2185  *	@fp: bpf_prog populated with BPF program
2186  *	@err: pointer to error variable
2187  *
2188  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2189  * The BPF program will be executed via bpf_prog_run() function.
2190  *
2191  * Return: the &fp argument along with &err set to 0 for success or
2192  * a negative errno code on failure
2193  */
2194 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2195 {
2196 	/* In case of BPF to BPF calls, verifier did all the prep
2197 	 * work with regards to JITing, etc.
2198 	 */
2199 	bool jit_needed = false;
2200 
2201 	if (fp->bpf_func)
2202 		goto finalize;
2203 
2204 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2205 	    bpf_prog_has_kfunc_call(fp))
2206 		jit_needed = true;
2207 
2208 	bpf_prog_select_func(fp);
2209 
2210 	/* eBPF JITs can rewrite the program in case constant
2211 	 * blinding is active. However, in case of error during
2212 	 * blinding, bpf_int_jit_compile() must always return a
2213 	 * valid program, which in this case would simply not
2214 	 * be JITed, but falls back to the interpreter.
2215 	 */
2216 	if (!bpf_prog_is_dev_bound(fp->aux)) {
2217 		*err = bpf_prog_alloc_jited_linfo(fp);
2218 		if (*err)
2219 			return fp;
2220 
2221 		fp = bpf_int_jit_compile(fp);
2222 		bpf_prog_jit_attempt_done(fp);
2223 		if (!fp->jited && jit_needed) {
2224 			*err = -ENOTSUPP;
2225 			return fp;
2226 		}
2227 	} else {
2228 		*err = bpf_prog_offload_compile(fp);
2229 		if (*err)
2230 			return fp;
2231 	}
2232 
2233 finalize:
2234 	bpf_prog_lock_ro(fp);
2235 
2236 	/* The tail call compatibility check can only be done at
2237 	 * this late stage as we need to determine, if we deal
2238 	 * with JITed or non JITed program concatenations and not
2239 	 * all eBPF JITs might immediately support all features.
2240 	 */
2241 	*err = bpf_check_tail_call(fp);
2242 
2243 	return fp;
2244 }
2245 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2246 
2247 static unsigned int __bpf_prog_ret1(const void *ctx,
2248 				    const struct bpf_insn *insn)
2249 {
2250 	return 1;
2251 }
2252 
2253 static struct bpf_prog_dummy {
2254 	struct bpf_prog prog;
2255 } dummy_bpf_prog = {
2256 	.prog = {
2257 		.bpf_func = __bpf_prog_ret1,
2258 	},
2259 };
2260 
2261 struct bpf_empty_prog_array bpf_empty_prog_array = {
2262 	.null_prog = NULL,
2263 };
2264 EXPORT_SYMBOL(bpf_empty_prog_array);
2265 
2266 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2267 {
2268 	if (prog_cnt)
2269 		return kzalloc(sizeof(struct bpf_prog_array) +
2270 			       sizeof(struct bpf_prog_array_item) *
2271 			       (prog_cnt + 1),
2272 			       flags);
2273 
2274 	return &bpf_empty_prog_array.hdr;
2275 }
2276 
2277 void bpf_prog_array_free(struct bpf_prog_array *progs)
2278 {
2279 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2280 		return;
2281 	kfree_rcu(progs, rcu);
2282 }
2283 
2284 int bpf_prog_array_length(struct bpf_prog_array *array)
2285 {
2286 	struct bpf_prog_array_item *item;
2287 	u32 cnt = 0;
2288 
2289 	for (item = array->items; item->prog; item++)
2290 		if (item->prog != &dummy_bpf_prog.prog)
2291 			cnt++;
2292 	return cnt;
2293 }
2294 
2295 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2296 {
2297 	struct bpf_prog_array_item *item;
2298 
2299 	for (item = array->items; item->prog; item++)
2300 		if (item->prog != &dummy_bpf_prog.prog)
2301 			return false;
2302 	return true;
2303 }
2304 
2305 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2306 				     u32 *prog_ids,
2307 				     u32 request_cnt)
2308 {
2309 	struct bpf_prog_array_item *item;
2310 	int i = 0;
2311 
2312 	for (item = array->items; item->prog; item++) {
2313 		if (item->prog == &dummy_bpf_prog.prog)
2314 			continue;
2315 		prog_ids[i] = item->prog->aux->id;
2316 		if (++i == request_cnt) {
2317 			item++;
2318 			break;
2319 		}
2320 	}
2321 
2322 	return !!(item->prog);
2323 }
2324 
2325 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2326 				__u32 __user *prog_ids, u32 cnt)
2327 {
2328 	unsigned long err = 0;
2329 	bool nospc;
2330 	u32 *ids;
2331 
2332 	/* users of this function are doing:
2333 	 * cnt = bpf_prog_array_length();
2334 	 * if (cnt > 0)
2335 	 *     bpf_prog_array_copy_to_user(..., cnt);
2336 	 * so below kcalloc doesn't need extra cnt > 0 check.
2337 	 */
2338 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2339 	if (!ids)
2340 		return -ENOMEM;
2341 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2342 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2343 	kfree(ids);
2344 	if (err)
2345 		return -EFAULT;
2346 	if (nospc)
2347 		return -ENOSPC;
2348 	return 0;
2349 }
2350 
2351 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2352 				struct bpf_prog *old_prog)
2353 {
2354 	struct bpf_prog_array_item *item;
2355 
2356 	for (item = array->items; item->prog; item++)
2357 		if (item->prog == old_prog) {
2358 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2359 			break;
2360 		}
2361 }
2362 
2363 /**
2364  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2365  *                                   index into the program array with
2366  *                                   a dummy no-op program.
2367  * @array: a bpf_prog_array
2368  * @index: the index of the program to replace
2369  *
2370  * Skips over dummy programs, by not counting them, when calculating
2371  * the position of the program to replace.
2372  *
2373  * Return:
2374  * * 0		- Success
2375  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2376  * * -ENOENT	- Index out of range
2377  */
2378 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2379 {
2380 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2381 }
2382 
2383 /**
2384  * bpf_prog_array_update_at() - Updates the program at the given index
2385  *                              into the program array.
2386  * @array: a bpf_prog_array
2387  * @index: the index of the program to update
2388  * @prog: the program to insert into the array
2389  *
2390  * Skips over dummy programs, by not counting them, when calculating
2391  * the position of the program to update.
2392  *
2393  * Return:
2394  * * 0		- Success
2395  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2396  * * -ENOENT	- Index out of range
2397  */
2398 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2399 			     struct bpf_prog *prog)
2400 {
2401 	struct bpf_prog_array_item *item;
2402 
2403 	if (unlikely(index < 0))
2404 		return -EINVAL;
2405 
2406 	for (item = array->items; item->prog; item++) {
2407 		if (item->prog == &dummy_bpf_prog.prog)
2408 			continue;
2409 		if (!index) {
2410 			WRITE_ONCE(item->prog, prog);
2411 			return 0;
2412 		}
2413 		index--;
2414 	}
2415 	return -ENOENT;
2416 }
2417 
2418 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2419 			struct bpf_prog *exclude_prog,
2420 			struct bpf_prog *include_prog,
2421 			u64 bpf_cookie,
2422 			struct bpf_prog_array **new_array)
2423 {
2424 	int new_prog_cnt, carry_prog_cnt = 0;
2425 	struct bpf_prog_array_item *existing, *new;
2426 	struct bpf_prog_array *array;
2427 	bool found_exclude = false;
2428 
2429 	/* Figure out how many existing progs we need to carry over to
2430 	 * the new array.
2431 	 */
2432 	if (old_array) {
2433 		existing = old_array->items;
2434 		for (; existing->prog; existing++) {
2435 			if (existing->prog == exclude_prog) {
2436 				found_exclude = true;
2437 				continue;
2438 			}
2439 			if (existing->prog != &dummy_bpf_prog.prog)
2440 				carry_prog_cnt++;
2441 			if (existing->prog == include_prog)
2442 				return -EEXIST;
2443 		}
2444 	}
2445 
2446 	if (exclude_prog && !found_exclude)
2447 		return -ENOENT;
2448 
2449 	/* How many progs (not NULL) will be in the new array? */
2450 	new_prog_cnt = carry_prog_cnt;
2451 	if (include_prog)
2452 		new_prog_cnt += 1;
2453 
2454 	/* Do we have any prog (not NULL) in the new array? */
2455 	if (!new_prog_cnt) {
2456 		*new_array = NULL;
2457 		return 0;
2458 	}
2459 
2460 	/* +1 as the end of prog_array is marked with NULL */
2461 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2462 	if (!array)
2463 		return -ENOMEM;
2464 	new = array->items;
2465 
2466 	/* Fill in the new prog array */
2467 	if (carry_prog_cnt) {
2468 		existing = old_array->items;
2469 		for (; existing->prog; existing++) {
2470 			if (existing->prog == exclude_prog ||
2471 			    existing->prog == &dummy_bpf_prog.prog)
2472 				continue;
2473 
2474 			new->prog = existing->prog;
2475 			new->bpf_cookie = existing->bpf_cookie;
2476 			new++;
2477 		}
2478 	}
2479 	if (include_prog) {
2480 		new->prog = include_prog;
2481 		new->bpf_cookie = bpf_cookie;
2482 		new++;
2483 	}
2484 	new->prog = NULL;
2485 	*new_array = array;
2486 	return 0;
2487 }
2488 
2489 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2490 			     u32 *prog_ids, u32 request_cnt,
2491 			     u32 *prog_cnt)
2492 {
2493 	u32 cnt = 0;
2494 
2495 	if (array)
2496 		cnt = bpf_prog_array_length(array);
2497 
2498 	*prog_cnt = cnt;
2499 
2500 	/* return early if user requested only program count or nothing to copy */
2501 	if (!request_cnt || !cnt)
2502 		return 0;
2503 
2504 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2505 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2506 								     : 0;
2507 }
2508 
2509 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2510 			  struct bpf_map **used_maps, u32 len)
2511 {
2512 	struct bpf_map *map;
2513 	u32 i;
2514 
2515 	for (i = 0; i < len; i++) {
2516 		map = used_maps[i];
2517 		if (map->ops->map_poke_untrack)
2518 			map->ops->map_poke_untrack(map, aux);
2519 		bpf_map_put(map);
2520 	}
2521 }
2522 
2523 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2524 {
2525 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2526 	kfree(aux->used_maps);
2527 }
2528 
2529 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2530 			  struct btf_mod_pair *used_btfs, u32 len)
2531 {
2532 #ifdef CONFIG_BPF_SYSCALL
2533 	struct btf_mod_pair *btf_mod;
2534 	u32 i;
2535 
2536 	for (i = 0; i < len; i++) {
2537 		btf_mod = &used_btfs[i];
2538 		if (btf_mod->module)
2539 			module_put(btf_mod->module);
2540 		btf_put(btf_mod->btf);
2541 	}
2542 #endif
2543 }
2544 
2545 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2546 {
2547 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2548 	kfree(aux->used_btfs);
2549 }
2550 
2551 static void bpf_prog_free_deferred(struct work_struct *work)
2552 {
2553 	struct bpf_prog_aux *aux;
2554 	int i;
2555 
2556 	aux = container_of(work, struct bpf_prog_aux, work);
2557 #ifdef CONFIG_BPF_SYSCALL
2558 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2559 #endif
2560 	bpf_free_used_maps(aux);
2561 	bpf_free_used_btfs(aux);
2562 	if (bpf_prog_is_dev_bound(aux))
2563 		bpf_prog_offload_destroy(aux->prog);
2564 #ifdef CONFIG_PERF_EVENTS
2565 	if (aux->prog->has_callchain_buf)
2566 		put_callchain_buffers();
2567 #endif
2568 	if (aux->dst_trampoline)
2569 		bpf_trampoline_put(aux->dst_trampoline);
2570 	for (i = 0; i < aux->func_cnt; i++) {
2571 		/* We can just unlink the subprog poke descriptor table as
2572 		 * it was originally linked to the main program and is also
2573 		 * released along with it.
2574 		 */
2575 		aux->func[i]->aux->poke_tab = NULL;
2576 		bpf_jit_free(aux->func[i]);
2577 	}
2578 	if (aux->func_cnt) {
2579 		kfree(aux->func);
2580 		bpf_prog_unlock_free(aux->prog);
2581 	} else {
2582 		bpf_jit_free(aux->prog);
2583 	}
2584 }
2585 
2586 void bpf_prog_free(struct bpf_prog *fp)
2587 {
2588 	struct bpf_prog_aux *aux = fp->aux;
2589 
2590 	if (aux->dst_prog)
2591 		bpf_prog_put(aux->dst_prog);
2592 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2593 	schedule_work(&aux->work);
2594 }
2595 EXPORT_SYMBOL_GPL(bpf_prog_free);
2596 
2597 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2598 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2599 
2600 void bpf_user_rnd_init_once(void)
2601 {
2602 	prandom_init_once(&bpf_user_rnd_state);
2603 }
2604 
2605 BPF_CALL_0(bpf_user_rnd_u32)
2606 {
2607 	/* Should someone ever have the rather unwise idea to use some
2608 	 * of the registers passed into this function, then note that
2609 	 * this function is called from native eBPF and classic-to-eBPF
2610 	 * transformations. Register assignments from both sides are
2611 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2612 	 */
2613 	struct rnd_state *state;
2614 	u32 res;
2615 
2616 	state = &get_cpu_var(bpf_user_rnd_state);
2617 	res = prandom_u32_state(state);
2618 	put_cpu_var(bpf_user_rnd_state);
2619 
2620 	return res;
2621 }
2622 
2623 BPF_CALL_0(bpf_get_raw_cpu_id)
2624 {
2625 	return raw_smp_processor_id();
2626 }
2627 
2628 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2629 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2630 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2631 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2632 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2633 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2634 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2635 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2636 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2637 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2638 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2639 
2640 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2641 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2642 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2643 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2644 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2645 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2646 
2647 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2648 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2649 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2650 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2651 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2652 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2653 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2654 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2655 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2656 
2657 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2658 {
2659 	return NULL;
2660 }
2661 
2662 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2663 {
2664 	return NULL;
2665 }
2666 
2667 u64 __weak
2668 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2669 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2670 {
2671 	return -ENOTSUPP;
2672 }
2673 EXPORT_SYMBOL_GPL(bpf_event_output);
2674 
2675 /* Always built-in helper functions. */
2676 const struct bpf_func_proto bpf_tail_call_proto = {
2677 	.func		= NULL,
2678 	.gpl_only	= false,
2679 	.ret_type	= RET_VOID,
2680 	.arg1_type	= ARG_PTR_TO_CTX,
2681 	.arg2_type	= ARG_CONST_MAP_PTR,
2682 	.arg3_type	= ARG_ANYTHING,
2683 };
2684 
2685 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2686  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2687  * eBPF and implicitly also cBPF can get JITed!
2688  */
2689 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2690 {
2691 	return prog;
2692 }
2693 
2694 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2695  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2696  */
2697 void __weak bpf_jit_compile(struct bpf_prog *prog)
2698 {
2699 }
2700 
2701 bool __weak bpf_helper_changes_pkt_data(void *func)
2702 {
2703 	return false;
2704 }
2705 
2706 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2707  * analysis code and wants explicit zero extension inserted by verifier.
2708  * Otherwise, return FALSE.
2709  *
2710  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2711  * you don't override this. JITs that don't want these extra insns can detect
2712  * them using insn_is_zext.
2713  */
2714 bool __weak bpf_jit_needs_zext(void)
2715 {
2716 	return false;
2717 }
2718 
2719 bool __weak bpf_jit_supports_kfunc_call(void)
2720 {
2721 	return false;
2722 }
2723 
2724 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2725  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2726  */
2727 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2728 			 int len)
2729 {
2730 	return -EFAULT;
2731 }
2732 
2733 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2734 			      void *addr1, void *addr2)
2735 {
2736 	return -ENOTSUPP;
2737 }
2738 
2739 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2740 {
2741 	return ERR_PTR(-ENOTSUPP);
2742 }
2743 
2744 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2745 {
2746 	return -ENOTSUPP;
2747 }
2748 
2749 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2750 EXPORT_SYMBOL(bpf_stats_enabled_key);
2751 
2752 /* All definitions of tracepoints related to BPF. */
2753 #define CREATE_TRACE_POINTS
2754 #include <linux/bpf_trace.h>
2755 
2756 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2757 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2758