xref: /openbmc/linux/kernel/bpf/core.c (revision 8bd1369b)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
34 #include <linux/perf_event.h>
35 
36 #include <asm/unaligned.h>
37 
38 /* Registers */
39 #define BPF_R0	regs[BPF_REG_0]
40 #define BPF_R1	regs[BPF_REG_1]
41 #define BPF_R2	regs[BPF_REG_2]
42 #define BPF_R3	regs[BPF_REG_3]
43 #define BPF_R4	regs[BPF_REG_4]
44 #define BPF_R5	regs[BPF_REG_5]
45 #define BPF_R6	regs[BPF_REG_6]
46 #define BPF_R7	regs[BPF_REG_7]
47 #define BPF_R8	regs[BPF_REG_8]
48 #define BPF_R9	regs[BPF_REG_9]
49 #define BPF_R10	regs[BPF_REG_10]
50 
51 /* Named registers */
52 #define DST	regs[insn->dst_reg]
53 #define SRC	regs[insn->src_reg]
54 #define FP	regs[BPF_REG_FP]
55 #define ARG1	regs[BPF_REG_ARG1]
56 #define CTX	regs[BPF_REG_CTX]
57 #define IMM	insn->imm
58 
59 /* No hurry in this branch
60  *
61  * Exported for the bpf jit load helper.
62  */
63 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
64 {
65 	u8 *ptr = NULL;
66 
67 	if (k >= SKF_NET_OFF)
68 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
69 	else if (k >= SKF_LL_OFF)
70 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
71 
72 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
73 		return ptr;
74 
75 	return NULL;
76 }
77 
78 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
79 {
80 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
81 	struct bpf_prog_aux *aux;
82 	struct bpf_prog *fp;
83 
84 	size = round_up(size, PAGE_SIZE);
85 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
86 	if (fp == NULL)
87 		return NULL;
88 
89 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
90 	if (aux == NULL) {
91 		vfree(fp);
92 		return NULL;
93 	}
94 
95 	fp->pages = size / PAGE_SIZE;
96 	fp->aux = aux;
97 	fp->aux->prog = fp;
98 	fp->jit_requested = ebpf_jit_enabled();
99 
100 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
101 
102 	return fp;
103 }
104 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
105 
106 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
107 				  gfp_t gfp_extra_flags)
108 {
109 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
110 	struct bpf_prog *fp;
111 	u32 pages, delta;
112 	int ret;
113 
114 	BUG_ON(fp_old == NULL);
115 
116 	size = round_up(size, PAGE_SIZE);
117 	pages = size / PAGE_SIZE;
118 	if (pages <= fp_old->pages)
119 		return fp_old;
120 
121 	delta = pages - fp_old->pages;
122 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
123 	if (ret)
124 		return NULL;
125 
126 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
127 	if (fp == NULL) {
128 		__bpf_prog_uncharge(fp_old->aux->user, delta);
129 	} else {
130 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
131 		fp->pages = pages;
132 		fp->aux->prog = fp;
133 
134 		/* We keep fp->aux from fp_old around in the new
135 		 * reallocated structure.
136 		 */
137 		fp_old->aux = NULL;
138 		__bpf_prog_free(fp_old);
139 	}
140 
141 	return fp;
142 }
143 
144 void __bpf_prog_free(struct bpf_prog *fp)
145 {
146 	kfree(fp->aux);
147 	vfree(fp);
148 }
149 
150 int bpf_prog_calc_tag(struct bpf_prog *fp)
151 {
152 	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
153 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
154 	u32 digest[SHA_DIGEST_WORDS];
155 	u32 ws[SHA_WORKSPACE_WORDS];
156 	u32 i, bsize, psize, blocks;
157 	struct bpf_insn *dst;
158 	bool was_ld_map;
159 	u8 *raw, *todo;
160 	__be32 *result;
161 	__be64 *bits;
162 
163 	raw = vmalloc(raw_size);
164 	if (!raw)
165 		return -ENOMEM;
166 
167 	sha_init(digest);
168 	memset(ws, 0, sizeof(ws));
169 
170 	/* We need to take out the map fd for the digest calculation
171 	 * since they are unstable from user space side.
172 	 */
173 	dst = (void *)raw;
174 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
175 		dst[i] = fp->insnsi[i];
176 		if (!was_ld_map &&
177 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
178 		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
179 			was_ld_map = true;
180 			dst[i].imm = 0;
181 		} else if (was_ld_map &&
182 			   dst[i].code == 0 &&
183 			   dst[i].dst_reg == 0 &&
184 			   dst[i].src_reg == 0 &&
185 			   dst[i].off == 0) {
186 			was_ld_map = false;
187 			dst[i].imm = 0;
188 		} else {
189 			was_ld_map = false;
190 		}
191 	}
192 
193 	psize = bpf_prog_insn_size(fp);
194 	memset(&raw[psize], 0, raw_size - psize);
195 	raw[psize++] = 0x80;
196 
197 	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
198 	blocks = bsize / SHA_MESSAGE_BYTES;
199 	todo   = raw;
200 	if (bsize - psize >= sizeof(__be64)) {
201 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
202 	} else {
203 		bits = (__be64 *)(todo + bsize + bits_offset);
204 		blocks++;
205 	}
206 	*bits = cpu_to_be64((psize - 1) << 3);
207 
208 	while (blocks--) {
209 		sha_transform(digest, todo, ws);
210 		todo += SHA_MESSAGE_BYTES;
211 	}
212 
213 	result = (__force __be32 *)digest;
214 	for (i = 0; i < SHA_DIGEST_WORDS; i++)
215 		result[i] = cpu_to_be32(digest[i]);
216 	memcpy(fp->tag, result, sizeof(fp->tag));
217 
218 	vfree(raw);
219 	return 0;
220 }
221 
222 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, u32 delta,
223 				u32 curr, const bool probe_pass)
224 {
225 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
226 	s64 imm = insn->imm;
227 
228 	if (curr < pos && curr + imm + 1 > pos)
229 		imm += delta;
230 	else if (curr > pos + delta && curr + imm + 1 <= pos + delta)
231 		imm -= delta;
232 	if (imm < imm_min || imm > imm_max)
233 		return -ERANGE;
234 	if (!probe_pass)
235 		insn->imm = imm;
236 	return 0;
237 }
238 
239 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, u32 delta,
240 				u32 curr, const bool probe_pass)
241 {
242 	const s32 off_min = S16_MIN, off_max = S16_MAX;
243 	s32 off = insn->off;
244 
245 	if (curr < pos && curr + off + 1 > pos)
246 		off += delta;
247 	else if (curr > pos + delta && curr + off + 1 <= pos + delta)
248 		off -= delta;
249 	if (off < off_min || off > off_max)
250 		return -ERANGE;
251 	if (!probe_pass)
252 		insn->off = off;
253 	return 0;
254 }
255 
256 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta,
257 			    const bool probe_pass)
258 {
259 	u32 i, insn_cnt = prog->len + (probe_pass ? delta : 0);
260 	struct bpf_insn *insn = prog->insnsi;
261 	int ret = 0;
262 
263 	for (i = 0; i < insn_cnt; i++, insn++) {
264 		u8 code;
265 
266 		/* In the probing pass we still operate on the original,
267 		 * unpatched image in order to check overflows before we
268 		 * do any other adjustments. Therefore skip the patchlet.
269 		 */
270 		if (probe_pass && i == pos) {
271 			i += delta + 1;
272 			insn++;
273 		}
274 		code = insn->code;
275 		if (BPF_CLASS(code) != BPF_JMP ||
276 		    BPF_OP(code) == BPF_EXIT)
277 			continue;
278 		/* Adjust offset of jmps if we cross patch boundaries. */
279 		if (BPF_OP(code) == BPF_CALL) {
280 			if (insn->src_reg != BPF_PSEUDO_CALL)
281 				continue;
282 			ret = bpf_adj_delta_to_imm(insn, pos, delta, i,
283 						   probe_pass);
284 		} else {
285 			ret = bpf_adj_delta_to_off(insn, pos, delta, i,
286 						   probe_pass);
287 		}
288 		if (ret)
289 			break;
290 	}
291 
292 	return ret;
293 }
294 
295 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
296 				       const struct bpf_insn *patch, u32 len)
297 {
298 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
299 	const u32 cnt_max = S16_MAX;
300 	struct bpf_prog *prog_adj;
301 
302 	/* Since our patchlet doesn't expand the image, we're done. */
303 	if (insn_delta == 0) {
304 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
305 		return prog;
306 	}
307 
308 	insn_adj_cnt = prog->len + insn_delta;
309 
310 	/* Reject anything that would potentially let the insn->off
311 	 * target overflow when we have excessive program expansions.
312 	 * We need to probe here before we do any reallocation where
313 	 * we afterwards may not fail anymore.
314 	 */
315 	if (insn_adj_cnt > cnt_max &&
316 	    bpf_adj_branches(prog, off, insn_delta, true))
317 		return NULL;
318 
319 	/* Several new instructions need to be inserted. Make room
320 	 * for them. Likely, there's no need for a new allocation as
321 	 * last page could have large enough tailroom.
322 	 */
323 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
324 				    GFP_USER);
325 	if (!prog_adj)
326 		return NULL;
327 
328 	prog_adj->len = insn_adj_cnt;
329 
330 	/* Patching happens in 3 steps:
331 	 *
332 	 * 1) Move over tail of insnsi from next instruction onwards,
333 	 *    so we can patch the single target insn with one or more
334 	 *    new ones (patching is always from 1 to n insns, n > 0).
335 	 * 2) Inject new instructions at the target location.
336 	 * 3) Adjust branch offsets if necessary.
337 	 */
338 	insn_rest = insn_adj_cnt - off - len;
339 
340 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
341 		sizeof(*patch) * insn_rest);
342 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
343 
344 	/* We are guaranteed to not fail at this point, otherwise
345 	 * the ship has sailed to reverse to the original state. An
346 	 * overflow cannot happen at this point.
347 	 */
348 	BUG_ON(bpf_adj_branches(prog_adj, off, insn_delta, false));
349 
350 	return prog_adj;
351 }
352 
353 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
354 {
355 	int i;
356 
357 	for (i = 0; i < fp->aux->func_cnt; i++)
358 		bpf_prog_kallsyms_del(fp->aux->func[i]);
359 }
360 
361 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
362 {
363 	bpf_prog_kallsyms_del_subprogs(fp);
364 	bpf_prog_kallsyms_del(fp);
365 }
366 
367 #ifdef CONFIG_BPF_JIT
368 /* All BPF JIT sysctl knobs here. */
369 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
370 int bpf_jit_harden   __read_mostly;
371 int bpf_jit_kallsyms __read_mostly;
372 
373 static __always_inline void
374 bpf_get_prog_addr_region(const struct bpf_prog *prog,
375 			 unsigned long *symbol_start,
376 			 unsigned long *symbol_end)
377 {
378 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
379 	unsigned long addr = (unsigned long)hdr;
380 
381 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
382 
383 	*symbol_start = addr;
384 	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
385 }
386 
387 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
388 {
389 	const char *end = sym + KSYM_NAME_LEN;
390 
391 	BUILD_BUG_ON(sizeof("bpf_prog_") +
392 		     sizeof(prog->tag) * 2 +
393 		     /* name has been null terminated.
394 		      * We should need +1 for the '_' preceding
395 		      * the name.  However, the null character
396 		      * is double counted between the name and the
397 		      * sizeof("bpf_prog_") above, so we omit
398 		      * the +1 here.
399 		      */
400 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
401 
402 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
403 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
404 	if (prog->aux->name[0])
405 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
406 	else
407 		*sym = 0;
408 }
409 
410 static __always_inline unsigned long
411 bpf_get_prog_addr_start(struct latch_tree_node *n)
412 {
413 	unsigned long symbol_start, symbol_end;
414 	const struct bpf_prog_aux *aux;
415 
416 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
417 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
418 
419 	return symbol_start;
420 }
421 
422 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
423 					  struct latch_tree_node *b)
424 {
425 	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
426 }
427 
428 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
429 {
430 	unsigned long val = (unsigned long)key;
431 	unsigned long symbol_start, symbol_end;
432 	const struct bpf_prog_aux *aux;
433 
434 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
435 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
436 
437 	if (val < symbol_start)
438 		return -1;
439 	if (val >= symbol_end)
440 		return  1;
441 
442 	return 0;
443 }
444 
445 static const struct latch_tree_ops bpf_tree_ops = {
446 	.less	= bpf_tree_less,
447 	.comp	= bpf_tree_comp,
448 };
449 
450 static DEFINE_SPINLOCK(bpf_lock);
451 static LIST_HEAD(bpf_kallsyms);
452 static struct latch_tree_root bpf_tree __cacheline_aligned;
453 
454 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
455 {
456 	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
457 	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
458 	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
459 }
460 
461 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
462 {
463 	if (list_empty(&aux->ksym_lnode))
464 		return;
465 
466 	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
467 	list_del_rcu(&aux->ksym_lnode);
468 }
469 
470 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
471 {
472 	return fp->jited && !bpf_prog_was_classic(fp);
473 }
474 
475 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
476 {
477 	return list_empty(&fp->aux->ksym_lnode) ||
478 	       fp->aux->ksym_lnode.prev == LIST_POISON2;
479 }
480 
481 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
482 {
483 	if (!bpf_prog_kallsyms_candidate(fp) ||
484 	    !capable(CAP_SYS_ADMIN))
485 		return;
486 
487 	spin_lock_bh(&bpf_lock);
488 	bpf_prog_ksym_node_add(fp->aux);
489 	spin_unlock_bh(&bpf_lock);
490 }
491 
492 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
493 {
494 	if (!bpf_prog_kallsyms_candidate(fp))
495 		return;
496 
497 	spin_lock_bh(&bpf_lock);
498 	bpf_prog_ksym_node_del(fp->aux);
499 	spin_unlock_bh(&bpf_lock);
500 }
501 
502 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
503 {
504 	struct latch_tree_node *n;
505 
506 	if (!bpf_jit_kallsyms_enabled())
507 		return NULL;
508 
509 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
510 	return n ?
511 	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
512 	       NULL;
513 }
514 
515 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
516 				 unsigned long *off, char *sym)
517 {
518 	unsigned long symbol_start, symbol_end;
519 	struct bpf_prog *prog;
520 	char *ret = NULL;
521 
522 	rcu_read_lock();
523 	prog = bpf_prog_kallsyms_find(addr);
524 	if (prog) {
525 		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
526 		bpf_get_prog_name(prog, sym);
527 
528 		ret = sym;
529 		if (size)
530 			*size = symbol_end - symbol_start;
531 		if (off)
532 			*off  = addr - symbol_start;
533 	}
534 	rcu_read_unlock();
535 
536 	return ret;
537 }
538 
539 bool is_bpf_text_address(unsigned long addr)
540 {
541 	bool ret;
542 
543 	rcu_read_lock();
544 	ret = bpf_prog_kallsyms_find(addr) != NULL;
545 	rcu_read_unlock();
546 
547 	return ret;
548 }
549 
550 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
551 		    char *sym)
552 {
553 	unsigned long symbol_start, symbol_end;
554 	struct bpf_prog_aux *aux;
555 	unsigned int it = 0;
556 	int ret = -ERANGE;
557 
558 	if (!bpf_jit_kallsyms_enabled())
559 		return ret;
560 
561 	rcu_read_lock();
562 	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
563 		if (it++ != symnum)
564 			continue;
565 
566 		bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
567 		bpf_get_prog_name(aux->prog, sym);
568 
569 		*value = symbol_start;
570 		*type  = BPF_SYM_ELF_TYPE;
571 
572 		ret = 0;
573 		break;
574 	}
575 	rcu_read_unlock();
576 
577 	return ret;
578 }
579 
580 struct bpf_binary_header *
581 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
582 		     unsigned int alignment,
583 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
584 {
585 	struct bpf_binary_header *hdr;
586 	unsigned int size, hole, start;
587 
588 	/* Most of BPF filters are really small, but if some of them
589 	 * fill a page, allow at least 128 extra bytes to insert a
590 	 * random section of illegal instructions.
591 	 */
592 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
593 	hdr = module_alloc(size);
594 	if (hdr == NULL)
595 		return NULL;
596 
597 	/* Fill space with illegal/arch-dep instructions. */
598 	bpf_fill_ill_insns(hdr, size);
599 
600 	hdr->pages = size / PAGE_SIZE;
601 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
602 		     PAGE_SIZE - sizeof(*hdr));
603 	start = (get_random_int() % hole) & ~(alignment - 1);
604 
605 	/* Leave a random number of instructions before BPF code. */
606 	*image_ptr = &hdr->image[start];
607 
608 	return hdr;
609 }
610 
611 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
612 {
613 	module_memfree(hdr);
614 }
615 
616 /* This symbol is only overridden by archs that have different
617  * requirements than the usual eBPF JITs, f.e. when they only
618  * implement cBPF JIT, do not set images read-only, etc.
619  */
620 void __weak bpf_jit_free(struct bpf_prog *fp)
621 {
622 	if (fp->jited) {
623 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
624 
625 		bpf_jit_binary_unlock_ro(hdr);
626 		bpf_jit_binary_free(hdr);
627 
628 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
629 	}
630 
631 	bpf_prog_unlock_free(fp);
632 }
633 
634 static int bpf_jit_blind_insn(const struct bpf_insn *from,
635 			      const struct bpf_insn *aux,
636 			      struct bpf_insn *to_buff)
637 {
638 	struct bpf_insn *to = to_buff;
639 	u32 imm_rnd = get_random_int();
640 	s16 off;
641 
642 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
643 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
644 
645 	if (from->imm == 0 &&
646 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
647 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
648 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
649 		goto out;
650 	}
651 
652 	switch (from->code) {
653 	case BPF_ALU | BPF_ADD | BPF_K:
654 	case BPF_ALU | BPF_SUB | BPF_K:
655 	case BPF_ALU | BPF_AND | BPF_K:
656 	case BPF_ALU | BPF_OR  | BPF_K:
657 	case BPF_ALU | BPF_XOR | BPF_K:
658 	case BPF_ALU | BPF_MUL | BPF_K:
659 	case BPF_ALU | BPF_MOV | BPF_K:
660 	case BPF_ALU | BPF_DIV | BPF_K:
661 	case BPF_ALU | BPF_MOD | BPF_K:
662 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
663 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
664 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
665 		break;
666 
667 	case BPF_ALU64 | BPF_ADD | BPF_K:
668 	case BPF_ALU64 | BPF_SUB | BPF_K:
669 	case BPF_ALU64 | BPF_AND | BPF_K:
670 	case BPF_ALU64 | BPF_OR  | BPF_K:
671 	case BPF_ALU64 | BPF_XOR | BPF_K:
672 	case BPF_ALU64 | BPF_MUL | BPF_K:
673 	case BPF_ALU64 | BPF_MOV | BPF_K:
674 	case BPF_ALU64 | BPF_DIV | BPF_K:
675 	case BPF_ALU64 | BPF_MOD | BPF_K:
676 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
677 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
678 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
679 		break;
680 
681 	case BPF_JMP | BPF_JEQ  | BPF_K:
682 	case BPF_JMP | BPF_JNE  | BPF_K:
683 	case BPF_JMP | BPF_JGT  | BPF_K:
684 	case BPF_JMP | BPF_JLT  | BPF_K:
685 	case BPF_JMP | BPF_JGE  | BPF_K:
686 	case BPF_JMP | BPF_JLE  | BPF_K:
687 	case BPF_JMP | BPF_JSGT | BPF_K:
688 	case BPF_JMP | BPF_JSLT | BPF_K:
689 	case BPF_JMP | BPF_JSGE | BPF_K:
690 	case BPF_JMP | BPF_JSLE | BPF_K:
691 	case BPF_JMP | BPF_JSET | BPF_K:
692 		/* Accommodate for extra offset in case of a backjump. */
693 		off = from->off;
694 		if (off < 0)
695 			off -= 2;
696 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
697 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
698 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
699 		break;
700 
701 	case BPF_LD | BPF_IMM | BPF_DW:
702 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
703 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
704 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
705 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
706 		break;
707 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
708 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
709 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
710 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
711 		break;
712 
713 	case BPF_ST | BPF_MEM | BPF_DW:
714 	case BPF_ST | BPF_MEM | BPF_W:
715 	case BPF_ST | BPF_MEM | BPF_H:
716 	case BPF_ST | BPF_MEM | BPF_B:
717 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
718 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
719 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
720 		break;
721 	}
722 out:
723 	return to - to_buff;
724 }
725 
726 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
727 					      gfp_t gfp_extra_flags)
728 {
729 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
730 	struct bpf_prog *fp;
731 
732 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
733 	if (fp != NULL) {
734 		/* aux->prog still points to the fp_other one, so
735 		 * when promoting the clone to the real program,
736 		 * this still needs to be adapted.
737 		 */
738 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
739 	}
740 
741 	return fp;
742 }
743 
744 static void bpf_prog_clone_free(struct bpf_prog *fp)
745 {
746 	/* aux was stolen by the other clone, so we cannot free
747 	 * it from this path! It will be freed eventually by the
748 	 * other program on release.
749 	 *
750 	 * At this point, we don't need a deferred release since
751 	 * clone is guaranteed to not be locked.
752 	 */
753 	fp->aux = NULL;
754 	__bpf_prog_free(fp);
755 }
756 
757 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
758 {
759 	/* We have to repoint aux->prog to self, as we don't
760 	 * know whether fp here is the clone or the original.
761 	 */
762 	fp->aux->prog = fp;
763 	bpf_prog_clone_free(fp_other);
764 }
765 
766 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
767 {
768 	struct bpf_insn insn_buff[16], aux[2];
769 	struct bpf_prog *clone, *tmp;
770 	int insn_delta, insn_cnt;
771 	struct bpf_insn *insn;
772 	int i, rewritten;
773 
774 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
775 		return prog;
776 
777 	clone = bpf_prog_clone_create(prog, GFP_USER);
778 	if (!clone)
779 		return ERR_PTR(-ENOMEM);
780 
781 	insn_cnt = clone->len;
782 	insn = clone->insnsi;
783 
784 	for (i = 0; i < insn_cnt; i++, insn++) {
785 		/* We temporarily need to hold the original ld64 insn
786 		 * so that we can still access the first part in the
787 		 * second blinding run.
788 		 */
789 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
790 		    insn[1].code == 0)
791 			memcpy(aux, insn, sizeof(aux));
792 
793 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
794 		if (!rewritten)
795 			continue;
796 
797 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
798 		if (!tmp) {
799 			/* Patching may have repointed aux->prog during
800 			 * realloc from the original one, so we need to
801 			 * fix it up here on error.
802 			 */
803 			bpf_jit_prog_release_other(prog, clone);
804 			return ERR_PTR(-ENOMEM);
805 		}
806 
807 		clone = tmp;
808 		insn_delta = rewritten - 1;
809 
810 		/* Walk new program and skip insns we just inserted. */
811 		insn = clone->insnsi + i + insn_delta;
812 		insn_cnt += insn_delta;
813 		i        += insn_delta;
814 	}
815 
816 	clone->blinded = 1;
817 	return clone;
818 }
819 #endif /* CONFIG_BPF_JIT */
820 
821 /* Base function for offset calculation. Needs to go into .text section,
822  * therefore keeping it non-static as well; will also be used by JITs
823  * anyway later on, so do not let the compiler omit it. This also needs
824  * to go into kallsyms for correlation from e.g. bpftool, so naming
825  * must not change.
826  */
827 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
828 {
829 	return 0;
830 }
831 EXPORT_SYMBOL_GPL(__bpf_call_base);
832 
833 /* All UAPI available opcodes. */
834 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
835 	/* 32 bit ALU operations. */		\
836 	/*   Register based. */			\
837 	INSN_3(ALU, ADD, X),			\
838 	INSN_3(ALU, SUB, X),			\
839 	INSN_3(ALU, AND, X),			\
840 	INSN_3(ALU, OR,  X),			\
841 	INSN_3(ALU, LSH, X),			\
842 	INSN_3(ALU, RSH, X),			\
843 	INSN_3(ALU, XOR, X),			\
844 	INSN_3(ALU, MUL, X),			\
845 	INSN_3(ALU, MOV, X),			\
846 	INSN_3(ALU, DIV, X),			\
847 	INSN_3(ALU, MOD, X),			\
848 	INSN_2(ALU, NEG),			\
849 	INSN_3(ALU, END, TO_BE),		\
850 	INSN_3(ALU, END, TO_LE),		\
851 	/*   Immediate based. */		\
852 	INSN_3(ALU, ADD, K),			\
853 	INSN_3(ALU, SUB, K),			\
854 	INSN_3(ALU, AND, K),			\
855 	INSN_3(ALU, OR,  K),			\
856 	INSN_3(ALU, LSH, K),			\
857 	INSN_3(ALU, RSH, K),			\
858 	INSN_3(ALU, XOR, K),			\
859 	INSN_3(ALU, MUL, K),			\
860 	INSN_3(ALU, MOV, K),			\
861 	INSN_3(ALU, DIV, K),			\
862 	INSN_3(ALU, MOD, K),			\
863 	/* 64 bit ALU operations. */		\
864 	/*   Register based. */			\
865 	INSN_3(ALU64, ADD,  X),			\
866 	INSN_3(ALU64, SUB,  X),			\
867 	INSN_3(ALU64, AND,  X),			\
868 	INSN_3(ALU64, OR,   X),			\
869 	INSN_3(ALU64, LSH,  X),			\
870 	INSN_3(ALU64, RSH,  X),			\
871 	INSN_3(ALU64, XOR,  X),			\
872 	INSN_3(ALU64, MUL,  X),			\
873 	INSN_3(ALU64, MOV,  X),			\
874 	INSN_3(ALU64, ARSH, X),			\
875 	INSN_3(ALU64, DIV,  X),			\
876 	INSN_3(ALU64, MOD,  X),			\
877 	INSN_2(ALU64, NEG),			\
878 	/*   Immediate based. */		\
879 	INSN_3(ALU64, ADD,  K),			\
880 	INSN_3(ALU64, SUB,  K),			\
881 	INSN_3(ALU64, AND,  K),			\
882 	INSN_3(ALU64, OR,   K),			\
883 	INSN_3(ALU64, LSH,  K),			\
884 	INSN_3(ALU64, RSH,  K),			\
885 	INSN_3(ALU64, XOR,  K),			\
886 	INSN_3(ALU64, MUL,  K),			\
887 	INSN_3(ALU64, MOV,  K),			\
888 	INSN_3(ALU64, ARSH, K),			\
889 	INSN_3(ALU64, DIV,  K),			\
890 	INSN_3(ALU64, MOD,  K),			\
891 	/* Call instruction. */			\
892 	INSN_2(JMP, CALL),			\
893 	/* Exit instruction. */			\
894 	INSN_2(JMP, EXIT),			\
895 	/* Jump instructions. */		\
896 	/*   Register based. */			\
897 	INSN_3(JMP, JEQ,  X),			\
898 	INSN_3(JMP, JNE,  X),			\
899 	INSN_3(JMP, JGT,  X),			\
900 	INSN_3(JMP, JLT,  X),			\
901 	INSN_3(JMP, JGE,  X),			\
902 	INSN_3(JMP, JLE,  X),			\
903 	INSN_3(JMP, JSGT, X),			\
904 	INSN_3(JMP, JSLT, X),			\
905 	INSN_3(JMP, JSGE, X),			\
906 	INSN_3(JMP, JSLE, X),			\
907 	INSN_3(JMP, JSET, X),			\
908 	/*   Immediate based. */		\
909 	INSN_3(JMP, JEQ,  K),			\
910 	INSN_3(JMP, JNE,  K),			\
911 	INSN_3(JMP, JGT,  K),			\
912 	INSN_3(JMP, JLT,  K),			\
913 	INSN_3(JMP, JGE,  K),			\
914 	INSN_3(JMP, JLE,  K),			\
915 	INSN_3(JMP, JSGT, K),			\
916 	INSN_3(JMP, JSLT, K),			\
917 	INSN_3(JMP, JSGE, K),			\
918 	INSN_3(JMP, JSLE, K),			\
919 	INSN_3(JMP, JSET, K),			\
920 	INSN_2(JMP, JA),			\
921 	/* Store instructions. */		\
922 	/*   Register based. */			\
923 	INSN_3(STX, MEM,  B),			\
924 	INSN_3(STX, MEM,  H),			\
925 	INSN_3(STX, MEM,  W),			\
926 	INSN_3(STX, MEM,  DW),			\
927 	INSN_3(STX, XADD, W),			\
928 	INSN_3(STX, XADD, DW),			\
929 	/*   Immediate based. */		\
930 	INSN_3(ST, MEM, B),			\
931 	INSN_3(ST, MEM, H),			\
932 	INSN_3(ST, MEM, W),			\
933 	INSN_3(ST, MEM, DW),			\
934 	/* Load instructions. */		\
935 	/*   Register based. */			\
936 	INSN_3(LDX, MEM, B),			\
937 	INSN_3(LDX, MEM, H),			\
938 	INSN_3(LDX, MEM, W),			\
939 	INSN_3(LDX, MEM, DW),			\
940 	/*   Immediate based. */		\
941 	INSN_3(LD, IMM, DW)
942 
943 bool bpf_opcode_in_insntable(u8 code)
944 {
945 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
946 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
947 	static const bool public_insntable[256] = {
948 		[0 ... 255] = false,
949 		/* Now overwrite non-defaults ... */
950 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
951 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
952 		[BPF_LD | BPF_ABS | BPF_B] = true,
953 		[BPF_LD | BPF_ABS | BPF_H] = true,
954 		[BPF_LD | BPF_ABS | BPF_W] = true,
955 		[BPF_LD | BPF_IND | BPF_B] = true,
956 		[BPF_LD | BPF_IND | BPF_H] = true,
957 		[BPF_LD | BPF_IND | BPF_W] = true,
958 	};
959 #undef BPF_INSN_3_TBL
960 #undef BPF_INSN_2_TBL
961 	return public_insntable[code];
962 }
963 
964 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
965 /**
966  *	__bpf_prog_run - run eBPF program on a given context
967  *	@ctx: is the data we are operating on
968  *	@insn: is the array of eBPF instructions
969  *
970  * Decode and execute eBPF instructions.
971  */
972 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
973 {
974 	u64 tmp;
975 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
976 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
977 	static const void *jumptable[256] = {
978 		[0 ... 255] = &&default_label,
979 		/* Now overwrite non-defaults ... */
980 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
981 		/* Non-UAPI available opcodes. */
982 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
983 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
984 	};
985 #undef BPF_INSN_3_LBL
986 #undef BPF_INSN_2_LBL
987 	u32 tail_call_cnt = 0;
988 
989 #define CONT	 ({ insn++; goto select_insn; })
990 #define CONT_JMP ({ insn++; goto select_insn; })
991 
992 select_insn:
993 	goto *jumptable[insn->code];
994 
995 	/* ALU */
996 #define ALU(OPCODE, OP)			\
997 	ALU64_##OPCODE##_X:		\
998 		DST = DST OP SRC;	\
999 		CONT;			\
1000 	ALU_##OPCODE##_X:		\
1001 		DST = (u32) DST OP (u32) SRC;	\
1002 		CONT;			\
1003 	ALU64_##OPCODE##_K:		\
1004 		DST = DST OP IMM;		\
1005 		CONT;			\
1006 	ALU_##OPCODE##_K:		\
1007 		DST = (u32) DST OP (u32) IMM;	\
1008 		CONT;
1009 
1010 	ALU(ADD,  +)
1011 	ALU(SUB,  -)
1012 	ALU(AND,  &)
1013 	ALU(OR,   |)
1014 	ALU(LSH, <<)
1015 	ALU(RSH, >>)
1016 	ALU(XOR,  ^)
1017 	ALU(MUL,  *)
1018 #undef ALU
1019 	ALU_NEG:
1020 		DST = (u32) -DST;
1021 		CONT;
1022 	ALU64_NEG:
1023 		DST = -DST;
1024 		CONT;
1025 	ALU_MOV_X:
1026 		DST = (u32) SRC;
1027 		CONT;
1028 	ALU_MOV_K:
1029 		DST = (u32) IMM;
1030 		CONT;
1031 	ALU64_MOV_X:
1032 		DST = SRC;
1033 		CONT;
1034 	ALU64_MOV_K:
1035 		DST = IMM;
1036 		CONT;
1037 	LD_IMM_DW:
1038 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1039 		insn++;
1040 		CONT;
1041 	ALU64_ARSH_X:
1042 		(*(s64 *) &DST) >>= SRC;
1043 		CONT;
1044 	ALU64_ARSH_K:
1045 		(*(s64 *) &DST) >>= IMM;
1046 		CONT;
1047 	ALU64_MOD_X:
1048 		div64_u64_rem(DST, SRC, &tmp);
1049 		DST = tmp;
1050 		CONT;
1051 	ALU_MOD_X:
1052 		tmp = (u32) DST;
1053 		DST = do_div(tmp, (u32) SRC);
1054 		CONT;
1055 	ALU64_MOD_K:
1056 		div64_u64_rem(DST, IMM, &tmp);
1057 		DST = tmp;
1058 		CONT;
1059 	ALU_MOD_K:
1060 		tmp = (u32) DST;
1061 		DST = do_div(tmp, (u32) IMM);
1062 		CONT;
1063 	ALU64_DIV_X:
1064 		DST = div64_u64(DST, SRC);
1065 		CONT;
1066 	ALU_DIV_X:
1067 		tmp = (u32) DST;
1068 		do_div(tmp, (u32) SRC);
1069 		DST = (u32) tmp;
1070 		CONT;
1071 	ALU64_DIV_K:
1072 		DST = div64_u64(DST, IMM);
1073 		CONT;
1074 	ALU_DIV_K:
1075 		tmp = (u32) DST;
1076 		do_div(tmp, (u32) IMM);
1077 		DST = (u32) tmp;
1078 		CONT;
1079 	ALU_END_TO_BE:
1080 		switch (IMM) {
1081 		case 16:
1082 			DST = (__force u16) cpu_to_be16(DST);
1083 			break;
1084 		case 32:
1085 			DST = (__force u32) cpu_to_be32(DST);
1086 			break;
1087 		case 64:
1088 			DST = (__force u64) cpu_to_be64(DST);
1089 			break;
1090 		}
1091 		CONT;
1092 	ALU_END_TO_LE:
1093 		switch (IMM) {
1094 		case 16:
1095 			DST = (__force u16) cpu_to_le16(DST);
1096 			break;
1097 		case 32:
1098 			DST = (__force u32) cpu_to_le32(DST);
1099 			break;
1100 		case 64:
1101 			DST = (__force u64) cpu_to_le64(DST);
1102 			break;
1103 		}
1104 		CONT;
1105 
1106 	/* CALL */
1107 	JMP_CALL:
1108 		/* Function call scratches BPF_R1-BPF_R5 registers,
1109 		 * preserves BPF_R6-BPF_R9, and stores return value
1110 		 * into BPF_R0.
1111 		 */
1112 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1113 						       BPF_R4, BPF_R5);
1114 		CONT;
1115 
1116 	JMP_CALL_ARGS:
1117 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1118 							    BPF_R3, BPF_R4,
1119 							    BPF_R5,
1120 							    insn + insn->off + 1);
1121 		CONT;
1122 
1123 	JMP_TAIL_CALL: {
1124 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1125 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1126 		struct bpf_prog *prog;
1127 		u32 index = BPF_R3;
1128 
1129 		if (unlikely(index >= array->map.max_entries))
1130 			goto out;
1131 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1132 			goto out;
1133 
1134 		tail_call_cnt++;
1135 
1136 		prog = READ_ONCE(array->ptrs[index]);
1137 		if (!prog)
1138 			goto out;
1139 
1140 		/* ARG1 at this point is guaranteed to point to CTX from
1141 		 * the verifier side due to the fact that the tail call is
1142 		 * handeled like a helper, that is, bpf_tail_call_proto,
1143 		 * where arg1_type is ARG_PTR_TO_CTX.
1144 		 */
1145 		insn = prog->insnsi;
1146 		goto select_insn;
1147 out:
1148 		CONT;
1149 	}
1150 	/* JMP */
1151 	JMP_JA:
1152 		insn += insn->off;
1153 		CONT;
1154 	JMP_JEQ_X:
1155 		if (DST == SRC) {
1156 			insn += insn->off;
1157 			CONT_JMP;
1158 		}
1159 		CONT;
1160 	JMP_JEQ_K:
1161 		if (DST == IMM) {
1162 			insn += insn->off;
1163 			CONT_JMP;
1164 		}
1165 		CONT;
1166 	JMP_JNE_X:
1167 		if (DST != SRC) {
1168 			insn += insn->off;
1169 			CONT_JMP;
1170 		}
1171 		CONT;
1172 	JMP_JNE_K:
1173 		if (DST != IMM) {
1174 			insn += insn->off;
1175 			CONT_JMP;
1176 		}
1177 		CONT;
1178 	JMP_JGT_X:
1179 		if (DST > SRC) {
1180 			insn += insn->off;
1181 			CONT_JMP;
1182 		}
1183 		CONT;
1184 	JMP_JGT_K:
1185 		if (DST > IMM) {
1186 			insn += insn->off;
1187 			CONT_JMP;
1188 		}
1189 		CONT;
1190 	JMP_JLT_X:
1191 		if (DST < SRC) {
1192 			insn += insn->off;
1193 			CONT_JMP;
1194 		}
1195 		CONT;
1196 	JMP_JLT_K:
1197 		if (DST < IMM) {
1198 			insn += insn->off;
1199 			CONT_JMP;
1200 		}
1201 		CONT;
1202 	JMP_JGE_X:
1203 		if (DST >= SRC) {
1204 			insn += insn->off;
1205 			CONT_JMP;
1206 		}
1207 		CONT;
1208 	JMP_JGE_K:
1209 		if (DST >= IMM) {
1210 			insn += insn->off;
1211 			CONT_JMP;
1212 		}
1213 		CONT;
1214 	JMP_JLE_X:
1215 		if (DST <= SRC) {
1216 			insn += insn->off;
1217 			CONT_JMP;
1218 		}
1219 		CONT;
1220 	JMP_JLE_K:
1221 		if (DST <= IMM) {
1222 			insn += insn->off;
1223 			CONT_JMP;
1224 		}
1225 		CONT;
1226 	JMP_JSGT_X:
1227 		if (((s64) DST) > ((s64) SRC)) {
1228 			insn += insn->off;
1229 			CONT_JMP;
1230 		}
1231 		CONT;
1232 	JMP_JSGT_K:
1233 		if (((s64) DST) > ((s64) IMM)) {
1234 			insn += insn->off;
1235 			CONT_JMP;
1236 		}
1237 		CONT;
1238 	JMP_JSLT_X:
1239 		if (((s64) DST) < ((s64) SRC)) {
1240 			insn += insn->off;
1241 			CONT_JMP;
1242 		}
1243 		CONT;
1244 	JMP_JSLT_K:
1245 		if (((s64) DST) < ((s64) IMM)) {
1246 			insn += insn->off;
1247 			CONT_JMP;
1248 		}
1249 		CONT;
1250 	JMP_JSGE_X:
1251 		if (((s64) DST) >= ((s64) SRC)) {
1252 			insn += insn->off;
1253 			CONT_JMP;
1254 		}
1255 		CONT;
1256 	JMP_JSGE_K:
1257 		if (((s64) DST) >= ((s64) IMM)) {
1258 			insn += insn->off;
1259 			CONT_JMP;
1260 		}
1261 		CONT;
1262 	JMP_JSLE_X:
1263 		if (((s64) DST) <= ((s64) SRC)) {
1264 			insn += insn->off;
1265 			CONT_JMP;
1266 		}
1267 		CONT;
1268 	JMP_JSLE_K:
1269 		if (((s64) DST) <= ((s64) IMM)) {
1270 			insn += insn->off;
1271 			CONT_JMP;
1272 		}
1273 		CONT;
1274 	JMP_JSET_X:
1275 		if (DST & SRC) {
1276 			insn += insn->off;
1277 			CONT_JMP;
1278 		}
1279 		CONT;
1280 	JMP_JSET_K:
1281 		if (DST & IMM) {
1282 			insn += insn->off;
1283 			CONT_JMP;
1284 		}
1285 		CONT;
1286 	JMP_EXIT:
1287 		return BPF_R0;
1288 
1289 	/* STX and ST and LDX*/
1290 #define LDST(SIZEOP, SIZE)						\
1291 	STX_MEM_##SIZEOP:						\
1292 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1293 		CONT;							\
1294 	ST_MEM_##SIZEOP:						\
1295 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1296 		CONT;							\
1297 	LDX_MEM_##SIZEOP:						\
1298 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1299 		CONT;
1300 
1301 	LDST(B,   u8)
1302 	LDST(H,  u16)
1303 	LDST(W,  u32)
1304 	LDST(DW, u64)
1305 #undef LDST
1306 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1307 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1308 			   (DST + insn->off));
1309 		CONT;
1310 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1311 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1312 			     (DST + insn->off));
1313 		CONT;
1314 
1315 	default_label:
1316 		/* If we ever reach this, we have a bug somewhere. Die hard here
1317 		 * instead of just returning 0; we could be somewhere in a subprog,
1318 		 * so execution could continue otherwise which we do /not/ want.
1319 		 *
1320 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1321 		 */
1322 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1323 		BUG_ON(1);
1324 		return 0;
1325 }
1326 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1327 
1328 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1329 #define DEFINE_BPF_PROG_RUN(stack_size) \
1330 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1331 { \
1332 	u64 stack[stack_size / sizeof(u64)]; \
1333 	u64 regs[MAX_BPF_REG]; \
1334 \
1335 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1336 	ARG1 = (u64) (unsigned long) ctx; \
1337 	return ___bpf_prog_run(regs, insn, stack); \
1338 }
1339 
1340 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1341 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1342 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1343 				      const struct bpf_insn *insn) \
1344 { \
1345 	u64 stack[stack_size / sizeof(u64)]; \
1346 	u64 regs[MAX_BPF_REG]; \
1347 \
1348 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1349 	BPF_R1 = r1; \
1350 	BPF_R2 = r2; \
1351 	BPF_R3 = r3; \
1352 	BPF_R4 = r4; \
1353 	BPF_R5 = r5; \
1354 	return ___bpf_prog_run(regs, insn, stack); \
1355 }
1356 
1357 #define EVAL1(FN, X) FN(X)
1358 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1359 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1360 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1361 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1362 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1363 
1364 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1365 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1366 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1367 
1368 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1369 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1370 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1371 
1372 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1373 
1374 static unsigned int (*interpreters[])(const void *ctx,
1375 				      const struct bpf_insn *insn) = {
1376 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1377 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1378 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1379 };
1380 #undef PROG_NAME_LIST
1381 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1382 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1383 				  const struct bpf_insn *insn) = {
1384 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1385 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1386 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1387 };
1388 #undef PROG_NAME_LIST
1389 
1390 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1391 {
1392 	stack_depth = max_t(u32, stack_depth, 1);
1393 	insn->off = (s16) insn->imm;
1394 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1395 		__bpf_call_base_args;
1396 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1397 }
1398 
1399 #else
1400 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1401 					 const struct bpf_insn *insn)
1402 {
1403 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1404 	 * is not working properly, so warn about it!
1405 	 */
1406 	WARN_ON_ONCE(1);
1407 	return 0;
1408 }
1409 #endif
1410 
1411 bool bpf_prog_array_compatible(struct bpf_array *array,
1412 			       const struct bpf_prog *fp)
1413 {
1414 	if (fp->kprobe_override)
1415 		return false;
1416 
1417 	if (!array->owner_prog_type) {
1418 		/* There's no owner yet where we could check for
1419 		 * compatibility.
1420 		 */
1421 		array->owner_prog_type = fp->type;
1422 		array->owner_jited = fp->jited;
1423 
1424 		return true;
1425 	}
1426 
1427 	return array->owner_prog_type == fp->type &&
1428 	       array->owner_jited == fp->jited;
1429 }
1430 
1431 static int bpf_check_tail_call(const struct bpf_prog *fp)
1432 {
1433 	struct bpf_prog_aux *aux = fp->aux;
1434 	int i;
1435 
1436 	for (i = 0; i < aux->used_map_cnt; i++) {
1437 		struct bpf_map *map = aux->used_maps[i];
1438 		struct bpf_array *array;
1439 
1440 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1441 			continue;
1442 
1443 		array = container_of(map, struct bpf_array, map);
1444 		if (!bpf_prog_array_compatible(array, fp))
1445 			return -EINVAL;
1446 	}
1447 
1448 	return 0;
1449 }
1450 
1451 static void bpf_prog_select_func(struct bpf_prog *fp)
1452 {
1453 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1454 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1455 
1456 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1457 #else
1458 	fp->bpf_func = __bpf_prog_ret0_warn;
1459 #endif
1460 }
1461 
1462 /**
1463  *	bpf_prog_select_runtime - select exec runtime for BPF program
1464  *	@fp: bpf_prog populated with internal BPF program
1465  *	@err: pointer to error variable
1466  *
1467  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1468  * The BPF program will be executed via BPF_PROG_RUN() macro.
1469  */
1470 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1471 {
1472 	/* In case of BPF to BPF calls, verifier did all the prep
1473 	 * work with regards to JITing, etc.
1474 	 */
1475 	if (fp->bpf_func)
1476 		goto finalize;
1477 
1478 	bpf_prog_select_func(fp);
1479 
1480 	/* eBPF JITs can rewrite the program in case constant
1481 	 * blinding is active. However, in case of error during
1482 	 * blinding, bpf_int_jit_compile() must always return a
1483 	 * valid program, which in this case would simply not
1484 	 * be JITed, but falls back to the interpreter.
1485 	 */
1486 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1487 		fp = bpf_int_jit_compile(fp);
1488 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1489 		if (!fp->jited) {
1490 			*err = -ENOTSUPP;
1491 			return fp;
1492 		}
1493 #endif
1494 	} else {
1495 		*err = bpf_prog_offload_compile(fp);
1496 		if (*err)
1497 			return fp;
1498 	}
1499 
1500 finalize:
1501 	bpf_prog_lock_ro(fp);
1502 
1503 	/* The tail call compatibility check can only be done at
1504 	 * this late stage as we need to determine, if we deal
1505 	 * with JITed or non JITed program concatenations and not
1506 	 * all eBPF JITs might immediately support all features.
1507 	 */
1508 	*err = bpf_check_tail_call(fp);
1509 
1510 	return fp;
1511 }
1512 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1513 
1514 static unsigned int __bpf_prog_ret1(const void *ctx,
1515 				    const struct bpf_insn *insn)
1516 {
1517 	return 1;
1518 }
1519 
1520 static struct bpf_prog_dummy {
1521 	struct bpf_prog prog;
1522 } dummy_bpf_prog = {
1523 	.prog = {
1524 		.bpf_func = __bpf_prog_ret1,
1525 	},
1526 };
1527 
1528 /* to avoid allocating empty bpf_prog_array for cgroups that
1529  * don't have bpf program attached use one global 'empty_prog_array'
1530  * It will not be modified the caller of bpf_prog_array_alloc()
1531  * (since caller requested prog_cnt == 0)
1532  * that pointer should be 'freed' by bpf_prog_array_free()
1533  */
1534 static struct {
1535 	struct bpf_prog_array hdr;
1536 	struct bpf_prog *null_prog;
1537 } empty_prog_array = {
1538 	.null_prog = NULL,
1539 };
1540 
1541 struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1542 {
1543 	if (prog_cnt)
1544 		return kzalloc(sizeof(struct bpf_prog_array) +
1545 			       sizeof(struct bpf_prog *) * (prog_cnt + 1),
1546 			       flags);
1547 
1548 	return &empty_prog_array.hdr;
1549 }
1550 
1551 void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1552 {
1553 	if (!progs ||
1554 	    progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1555 		return;
1556 	kfree_rcu(progs, rcu);
1557 }
1558 
1559 int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
1560 {
1561 	struct bpf_prog **prog;
1562 	u32 cnt = 0;
1563 
1564 	rcu_read_lock();
1565 	prog = rcu_dereference(progs)->progs;
1566 	for (; *prog; prog++)
1567 		if (*prog != &dummy_bpf_prog.prog)
1568 			cnt++;
1569 	rcu_read_unlock();
1570 	return cnt;
1571 }
1572 
1573 static bool bpf_prog_array_copy_core(struct bpf_prog **prog,
1574 				     u32 *prog_ids,
1575 				     u32 request_cnt)
1576 {
1577 	int i = 0;
1578 
1579 	for (; *prog; prog++) {
1580 		if (*prog == &dummy_bpf_prog.prog)
1581 			continue;
1582 		prog_ids[i] = (*prog)->aux->id;
1583 		if (++i == request_cnt) {
1584 			prog++;
1585 			break;
1586 		}
1587 	}
1588 
1589 	return !!(*prog);
1590 }
1591 
1592 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
1593 				__u32 __user *prog_ids, u32 cnt)
1594 {
1595 	struct bpf_prog **prog;
1596 	unsigned long err = 0;
1597 	bool nospc;
1598 	u32 *ids;
1599 
1600 	/* users of this function are doing:
1601 	 * cnt = bpf_prog_array_length();
1602 	 * if (cnt > 0)
1603 	 *     bpf_prog_array_copy_to_user(..., cnt);
1604 	 * so below kcalloc doesn't need extra cnt > 0 check, but
1605 	 * bpf_prog_array_length() releases rcu lock and
1606 	 * prog array could have been swapped with empty or larger array,
1607 	 * so always copy 'cnt' prog_ids to the user.
1608 	 * In a rare race the user will see zero prog_ids
1609 	 */
1610 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1611 	if (!ids)
1612 		return -ENOMEM;
1613 	rcu_read_lock();
1614 	prog = rcu_dereference(progs)->progs;
1615 	nospc = bpf_prog_array_copy_core(prog, ids, cnt);
1616 	rcu_read_unlock();
1617 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1618 	kfree(ids);
1619 	if (err)
1620 		return -EFAULT;
1621 	if (nospc)
1622 		return -ENOSPC;
1623 	return 0;
1624 }
1625 
1626 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
1627 				struct bpf_prog *old_prog)
1628 {
1629 	struct bpf_prog **prog = progs->progs;
1630 
1631 	for (; *prog; prog++)
1632 		if (*prog == old_prog) {
1633 			WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
1634 			break;
1635 		}
1636 }
1637 
1638 int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1639 			struct bpf_prog *exclude_prog,
1640 			struct bpf_prog *include_prog,
1641 			struct bpf_prog_array **new_array)
1642 {
1643 	int new_prog_cnt, carry_prog_cnt = 0;
1644 	struct bpf_prog **existing_prog;
1645 	struct bpf_prog_array *array;
1646 	bool found_exclude = false;
1647 	int new_prog_idx = 0;
1648 
1649 	/* Figure out how many existing progs we need to carry over to
1650 	 * the new array.
1651 	 */
1652 	if (old_array) {
1653 		existing_prog = old_array->progs;
1654 		for (; *existing_prog; existing_prog++) {
1655 			if (*existing_prog == exclude_prog) {
1656 				found_exclude = true;
1657 				continue;
1658 			}
1659 			if (*existing_prog != &dummy_bpf_prog.prog)
1660 				carry_prog_cnt++;
1661 			if (*existing_prog == include_prog)
1662 				return -EEXIST;
1663 		}
1664 	}
1665 
1666 	if (exclude_prog && !found_exclude)
1667 		return -ENOENT;
1668 
1669 	/* How many progs (not NULL) will be in the new array? */
1670 	new_prog_cnt = carry_prog_cnt;
1671 	if (include_prog)
1672 		new_prog_cnt += 1;
1673 
1674 	/* Do we have any prog (not NULL) in the new array? */
1675 	if (!new_prog_cnt) {
1676 		*new_array = NULL;
1677 		return 0;
1678 	}
1679 
1680 	/* +1 as the end of prog_array is marked with NULL */
1681 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1682 	if (!array)
1683 		return -ENOMEM;
1684 
1685 	/* Fill in the new prog array */
1686 	if (carry_prog_cnt) {
1687 		existing_prog = old_array->progs;
1688 		for (; *existing_prog; existing_prog++)
1689 			if (*existing_prog != exclude_prog &&
1690 			    *existing_prog != &dummy_bpf_prog.prog)
1691 				array->progs[new_prog_idx++] = *existing_prog;
1692 	}
1693 	if (include_prog)
1694 		array->progs[new_prog_idx++] = include_prog;
1695 	array->progs[new_prog_idx] = NULL;
1696 	*new_array = array;
1697 	return 0;
1698 }
1699 
1700 int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
1701 			     u32 *prog_ids, u32 request_cnt,
1702 			     u32 *prog_cnt)
1703 {
1704 	struct bpf_prog **prog;
1705 	u32 cnt = 0;
1706 
1707 	if (array)
1708 		cnt = bpf_prog_array_length(array);
1709 
1710 	*prog_cnt = cnt;
1711 
1712 	/* return early if user requested only program count or nothing to copy */
1713 	if (!request_cnt || !cnt)
1714 		return 0;
1715 
1716 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1717 	prog = rcu_dereference_check(array, 1)->progs;
1718 	return bpf_prog_array_copy_core(prog, prog_ids, request_cnt) ? -ENOSPC
1719 								     : 0;
1720 }
1721 
1722 static void bpf_prog_free_deferred(struct work_struct *work)
1723 {
1724 	struct bpf_prog_aux *aux;
1725 	int i;
1726 
1727 	aux = container_of(work, struct bpf_prog_aux, work);
1728 	if (bpf_prog_is_dev_bound(aux))
1729 		bpf_prog_offload_destroy(aux->prog);
1730 #ifdef CONFIG_PERF_EVENTS
1731 	if (aux->prog->has_callchain_buf)
1732 		put_callchain_buffers();
1733 #endif
1734 	for (i = 0; i < aux->func_cnt; i++)
1735 		bpf_jit_free(aux->func[i]);
1736 	if (aux->func_cnt) {
1737 		kfree(aux->func);
1738 		bpf_prog_unlock_free(aux->prog);
1739 	} else {
1740 		bpf_jit_free(aux->prog);
1741 	}
1742 }
1743 
1744 /* Free internal BPF program */
1745 void bpf_prog_free(struct bpf_prog *fp)
1746 {
1747 	struct bpf_prog_aux *aux = fp->aux;
1748 
1749 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
1750 	schedule_work(&aux->work);
1751 }
1752 EXPORT_SYMBOL_GPL(bpf_prog_free);
1753 
1754 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1755 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1756 
1757 void bpf_user_rnd_init_once(void)
1758 {
1759 	prandom_init_once(&bpf_user_rnd_state);
1760 }
1761 
1762 BPF_CALL_0(bpf_user_rnd_u32)
1763 {
1764 	/* Should someone ever have the rather unwise idea to use some
1765 	 * of the registers passed into this function, then note that
1766 	 * this function is called from native eBPF and classic-to-eBPF
1767 	 * transformations. Register assignments from both sides are
1768 	 * different, f.e. classic always sets fn(ctx, A, X) here.
1769 	 */
1770 	struct rnd_state *state;
1771 	u32 res;
1772 
1773 	state = &get_cpu_var(bpf_user_rnd_state);
1774 	res = prandom_u32_state(state);
1775 	put_cpu_var(bpf_user_rnd_state);
1776 
1777 	return res;
1778 }
1779 
1780 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1781 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1782 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1783 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1784 
1785 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1786 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1787 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1788 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1789 
1790 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1791 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1792 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1793 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
1794 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
1795 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
1796 
1797 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1798 {
1799 	return NULL;
1800 }
1801 
1802 u64 __weak
1803 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1804 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1805 {
1806 	return -ENOTSUPP;
1807 }
1808 EXPORT_SYMBOL_GPL(bpf_event_output);
1809 
1810 /* Always built-in helper functions. */
1811 const struct bpf_func_proto bpf_tail_call_proto = {
1812 	.func		= NULL,
1813 	.gpl_only	= false,
1814 	.ret_type	= RET_VOID,
1815 	.arg1_type	= ARG_PTR_TO_CTX,
1816 	.arg2_type	= ARG_CONST_MAP_PTR,
1817 	.arg3_type	= ARG_ANYTHING,
1818 };
1819 
1820 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1821  * It is encouraged to implement bpf_int_jit_compile() instead, so that
1822  * eBPF and implicitly also cBPF can get JITed!
1823  */
1824 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1825 {
1826 	return prog;
1827 }
1828 
1829 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1830  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1831  */
1832 void __weak bpf_jit_compile(struct bpf_prog *prog)
1833 {
1834 }
1835 
1836 bool __weak bpf_helper_changes_pkt_data(void *func)
1837 {
1838 	return false;
1839 }
1840 
1841 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1842  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1843  */
1844 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1845 			 int len)
1846 {
1847 	return -EFAULT;
1848 }
1849 
1850 /* All definitions of tracepoints related to BPF. */
1851 #define CREATE_TRACE_POINTS
1852 #include <linux/bpf_trace.h>
1853 
1854 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1855