1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux Socket Filter - Kernel level socket filtering 4 * 5 * Based on the design of the Berkeley Packet Filter. The new 6 * internal format has been designed by PLUMgrid: 7 * 8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com 9 * 10 * Authors: 11 * 12 * Jay Schulist <jschlst@samba.org> 13 * Alexei Starovoitov <ast@plumgrid.com> 14 * Daniel Borkmann <dborkman@redhat.com> 15 * 16 * Andi Kleen - Fix a few bad bugs and races. 17 * Kris Katterjohn - Added many additional checks in bpf_check_classic() 18 */ 19 20 #include <uapi/linux/btf.h> 21 #include <linux/filter.h> 22 #include <linux/skbuff.h> 23 #include <linux/vmalloc.h> 24 #include <linux/random.h> 25 #include <linux/moduleloader.h> 26 #include <linux/bpf.h> 27 #include <linux/btf.h> 28 #include <linux/objtool.h> 29 #include <linux/rbtree_latch.h> 30 #include <linux/kallsyms.h> 31 #include <linux/rcupdate.h> 32 #include <linux/perf_event.h> 33 #include <linux/extable.h> 34 #include <linux/log2.h> 35 #include <linux/bpf_verifier.h> 36 37 #include <asm/barrier.h> 38 #include <asm/unaligned.h> 39 40 /* Registers */ 41 #define BPF_R0 regs[BPF_REG_0] 42 #define BPF_R1 regs[BPF_REG_1] 43 #define BPF_R2 regs[BPF_REG_2] 44 #define BPF_R3 regs[BPF_REG_3] 45 #define BPF_R4 regs[BPF_REG_4] 46 #define BPF_R5 regs[BPF_REG_5] 47 #define BPF_R6 regs[BPF_REG_6] 48 #define BPF_R7 regs[BPF_REG_7] 49 #define BPF_R8 regs[BPF_REG_8] 50 #define BPF_R9 regs[BPF_REG_9] 51 #define BPF_R10 regs[BPF_REG_10] 52 53 /* Named registers */ 54 #define DST regs[insn->dst_reg] 55 #define SRC regs[insn->src_reg] 56 #define FP regs[BPF_REG_FP] 57 #define AX regs[BPF_REG_AX] 58 #define ARG1 regs[BPF_REG_ARG1] 59 #define CTX regs[BPF_REG_CTX] 60 #define IMM insn->imm 61 62 /* No hurry in this branch 63 * 64 * Exported for the bpf jit load helper. 65 */ 66 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size) 67 { 68 u8 *ptr = NULL; 69 70 if (k >= SKF_NET_OFF) 71 ptr = skb_network_header(skb) + k - SKF_NET_OFF; 72 else if (k >= SKF_LL_OFF) 73 ptr = skb_mac_header(skb) + k - SKF_LL_OFF; 74 75 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb)) 76 return ptr; 77 78 return NULL; 79 } 80 81 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags) 82 { 83 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags; 84 struct bpf_prog_aux *aux; 85 struct bpf_prog *fp; 86 87 size = round_up(size, PAGE_SIZE); 88 fp = __vmalloc(size, gfp_flags); 89 if (fp == NULL) 90 return NULL; 91 92 aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags); 93 if (aux == NULL) { 94 vfree(fp); 95 return NULL; 96 } 97 fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags); 98 if (!fp->active) { 99 vfree(fp); 100 kfree(aux); 101 return NULL; 102 } 103 104 fp->pages = size / PAGE_SIZE; 105 fp->aux = aux; 106 fp->aux->prog = fp; 107 fp->jit_requested = ebpf_jit_enabled(); 108 109 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode); 110 mutex_init(&fp->aux->used_maps_mutex); 111 mutex_init(&fp->aux->dst_mutex); 112 113 return fp; 114 } 115 116 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags) 117 { 118 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags; 119 struct bpf_prog *prog; 120 int cpu; 121 122 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags); 123 if (!prog) 124 return NULL; 125 126 prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags); 127 if (!prog->stats) { 128 free_percpu(prog->active); 129 kfree(prog->aux); 130 vfree(prog); 131 return NULL; 132 } 133 134 for_each_possible_cpu(cpu) { 135 struct bpf_prog_stats *pstats; 136 137 pstats = per_cpu_ptr(prog->stats, cpu); 138 u64_stats_init(&pstats->syncp); 139 } 140 return prog; 141 } 142 EXPORT_SYMBOL_GPL(bpf_prog_alloc); 143 144 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog) 145 { 146 if (!prog->aux->nr_linfo || !prog->jit_requested) 147 return 0; 148 149 prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo, 150 sizeof(*prog->aux->jited_linfo), 151 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 152 if (!prog->aux->jited_linfo) 153 return -ENOMEM; 154 155 return 0; 156 } 157 158 void bpf_prog_jit_attempt_done(struct bpf_prog *prog) 159 { 160 if (prog->aux->jited_linfo && 161 (!prog->jited || !prog->aux->jited_linfo[0])) { 162 kvfree(prog->aux->jited_linfo); 163 prog->aux->jited_linfo = NULL; 164 } 165 166 kfree(prog->aux->kfunc_tab); 167 prog->aux->kfunc_tab = NULL; 168 } 169 170 /* The jit engine is responsible to provide an array 171 * for insn_off to the jited_off mapping (insn_to_jit_off). 172 * 173 * The idx to this array is the insn_off. Hence, the insn_off 174 * here is relative to the prog itself instead of the main prog. 175 * This array has one entry for each xlated bpf insn. 176 * 177 * jited_off is the byte off to the last byte of the jited insn. 178 * 179 * Hence, with 180 * insn_start: 181 * The first bpf insn off of the prog. The insn off 182 * here is relative to the main prog. 183 * e.g. if prog is a subprog, insn_start > 0 184 * linfo_idx: 185 * The prog's idx to prog->aux->linfo and jited_linfo 186 * 187 * jited_linfo[linfo_idx] = prog->bpf_func 188 * 189 * For i > linfo_idx, 190 * 191 * jited_linfo[i] = prog->bpf_func + 192 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1] 193 */ 194 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 195 const u32 *insn_to_jit_off) 196 { 197 u32 linfo_idx, insn_start, insn_end, nr_linfo, i; 198 const struct bpf_line_info *linfo; 199 void **jited_linfo; 200 201 if (!prog->aux->jited_linfo) 202 /* Userspace did not provide linfo */ 203 return; 204 205 linfo_idx = prog->aux->linfo_idx; 206 linfo = &prog->aux->linfo[linfo_idx]; 207 insn_start = linfo[0].insn_off; 208 insn_end = insn_start + prog->len; 209 210 jited_linfo = &prog->aux->jited_linfo[linfo_idx]; 211 jited_linfo[0] = prog->bpf_func; 212 213 nr_linfo = prog->aux->nr_linfo - linfo_idx; 214 215 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++) 216 /* The verifier ensures that linfo[i].insn_off is 217 * strictly increasing 218 */ 219 jited_linfo[i] = prog->bpf_func + 220 insn_to_jit_off[linfo[i].insn_off - insn_start - 1]; 221 } 222 223 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 224 gfp_t gfp_extra_flags) 225 { 226 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags; 227 struct bpf_prog *fp; 228 u32 pages; 229 230 size = round_up(size, PAGE_SIZE); 231 pages = size / PAGE_SIZE; 232 if (pages <= fp_old->pages) 233 return fp_old; 234 235 fp = __vmalloc(size, gfp_flags); 236 if (fp) { 237 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE); 238 fp->pages = pages; 239 fp->aux->prog = fp; 240 241 /* We keep fp->aux from fp_old around in the new 242 * reallocated structure. 243 */ 244 fp_old->aux = NULL; 245 fp_old->stats = NULL; 246 fp_old->active = NULL; 247 __bpf_prog_free(fp_old); 248 } 249 250 return fp; 251 } 252 253 void __bpf_prog_free(struct bpf_prog *fp) 254 { 255 if (fp->aux) { 256 mutex_destroy(&fp->aux->used_maps_mutex); 257 mutex_destroy(&fp->aux->dst_mutex); 258 kfree(fp->aux->poke_tab); 259 kfree(fp->aux); 260 } 261 free_percpu(fp->stats); 262 free_percpu(fp->active); 263 vfree(fp); 264 } 265 266 int bpf_prog_calc_tag(struct bpf_prog *fp) 267 { 268 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64); 269 u32 raw_size = bpf_prog_tag_scratch_size(fp); 270 u32 digest[SHA1_DIGEST_WORDS]; 271 u32 ws[SHA1_WORKSPACE_WORDS]; 272 u32 i, bsize, psize, blocks; 273 struct bpf_insn *dst; 274 bool was_ld_map; 275 u8 *raw, *todo; 276 __be32 *result; 277 __be64 *bits; 278 279 raw = vmalloc(raw_size); 280 if (!raw) 281 return -ENOMEM; 282 283 sha1_init(digest); 284 memset(ws, 0, sizeof(ws)); 285 286 /* We need to take out the map fd for the digest calculation 287 * since they are unstable from user space side. 288 */ 289 dst = (void *)raw; 290 for (i = 0, was_ld_map = false; i < fp->len; i++) { 291 dst[i] = fp->insnsi[i]; 292 if (!was_ld_map && 293 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) && 294 (dst[i].src_reg == BPF_PSEUDO_MAP_FD || 295 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) { 296 was_ld_map = true; 297 dst[i].imm = 0; 298 } else if (was_ld_map && 299 dst[i].code == 0 && 300 dst[i].dst_reg == 0 && 301 dst[i].src_reg == 0 && 302 dst[i].off == 0) { 303 was_ld_map = false; 304 dst[i].imm = 0; 305 } else { 306 was_ld_map = false; 307 } 308 } 309 310 psize = bpf_prog_insn_size(fp); 311 memset(&raw[psize], 0, raw_size - psize); 312 raw[psize++] = 0x80; 313 314 bsize = round_up(psize, SHA1_BLOCK_SIZE); 315 blocks = bsize / SHA1_BLOCK_SIZE; 316 todo = raw; 317 if (bsize - psize >= sizeof(__be64)) { 318 bits = (__be64 *)(todo + bsize - sizeof(__be64)); 319 } else { 320 bits = (__be64 *)(todo + bsize + bits_offset); 321 blocks++; 322 } 323 *bits = cpu_to_be64((psize - 1) << 3); 324 325 while (blocks--) { 326 sha1_transform(digest, todo, ws); 327 todo += SHA1_BLOCK_SIZE; 328 } 329 330 result = (__force __be32 *)digest; 331 for (i = 0; i < SHA1_DIGEST_WORDS; i++) 332 result[i] = cpu_to_be32(digest[i]); 333 memcpy(fp->tag, result, sizeof(fp->tag)); 334 335 vfree(raw); 336 return 0; 337 } 338 339 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old, 340 s32 end_new, s32 curr, const bool probe_pass) 341 { 342 const s64 imm_min = S32_MIN, imm_max = S32_MAX; 343 s32 delta = end_new - end_old; 344 s64 imm = insn->imm; 345 346 if (curr < pos && curr + imm + 1 >= end_old) 347 imm += delta; 348 else if (curr >= end_new && curr + imm + 1 < end_new) 349 imm -= delta; 350 if (imm < imm_min || imm > imm_max) 351 return -ERANGE; 352 if (!probe_pass) 353 insn->imm = imm; 354 return 0; 355 } 356 357 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old, 358 s32 end_new, s32 curr, const bool probe_pass) 359 { 360 const s32 off_min = S16_MIN, off_max = S16_MAX; 361 s32 delta = end_new - end_old; 362 s32 off = insn->off; 363 364 if (curr < pos && curr + off + 1 >= end_old) 365 off += delta; 366 else if (curr >= end_new && curr + off + 1 < end_new) 367 off -= delta; 368 if (off < off_min || off > off_max) 369 return -ERANGE; 370 if (!probe_pass) 371 insn->off = off; 372 return 0; 373 } 374 375 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old, 376 s32 end_new, const bool probe_pass) 377 { 378 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0); 379 struct bpf_insn *insn = prog->insnsi; 380 int ret = 0; 381 382 for (i = 0; i < insn_cnt; i++, insn++) { 383 u8 code; 384 385 /* In the probing pass we still operate on the original, 386 * unpatched image in order to check overflows before we 387 * do any other adjustments. Therefore skip the patchlet. 388 */ 389 if (probe_pass && i == pos) { 390 i = end_new; 391 insn = prog->insnsi + end_old; 392 } 393 code = insn->code; 394 if ((BPF_CLASS(code) != BPF_JMP && 395 BPF_CLASS(code) != BPF_JMP32) || 396 BPF_OP(code) == BPF_EXIT) 397 continue; 398 /* Adjust offset of jmps if we cross patch boundaries. */ 399 if (BPF_OP(code) == BPF_CALL) { 400 if (insn->src_reg != BPF_PSEUDO_CALL) 401 continue; 402 ret = bpf_adj_delta_to_imm(insn, pos, end_old, 403 end_new, i, probe_pass); 404 } else { 405 ret = bpf_adj_delta_to_off(insn, pos, end_old, 406 end_new, i, probe_pass); 407 } 408 if (ret) 409 break; 410 } 411 412 return ret; 413 } 414 415 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta) 416 { 417 struct bpf_line_info *linfo; 418 u32 i, nr_linfo; 419 420 nr_linfo = prog->aux->nr_linfo; 421 if (!nr_linfo || !delta) 422 return; 423 424 linfo = prog->aux->linfo; 425 426 for (i = 0; i < nr_linfo; i++) 427 if (off < linfo[i].insn_off) 428 break; 429 430 /* Push all off < linfo[i].insn_off by delta */ 431 for (; i < nr_linfo; i++) 432 linfo[i].insn_off += delta; 433 } 434 435 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 436 const struct bpf_insn *patch, u32 len) 437 { 438 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1; 439 const u32 cnt_max = S16_MAX; 440 struct bpf_prog *prog_adj; 441 int err; 442 443 /* Since our patchlet doesn't expand the image, we're done. */ 444 if (insn_delta == 0) { 445 memcpy(prog->insnsi + off, patch, sizeof(*patch)); 446 return prog; 447 } 448 449 insn_adj_cnt = prog->len + insn_delta; 450 451 /* Reject anything that would potentially let the insn->off 452 * target overflow when we have excessive program expansions. 453 * We need to probe here before we do any reallocation where 454 * we afterwards may not fail anymore. 455 */ 456 if (insn_adj_cnt > cnt_max && 457 (err = bpf_adj_branches(prog, off, off + 1, off + len, true))) 458 return ERR_PTR(err); 459 460 /* Several new instructions need to be inserted. Make room 461 * for them. Likely, there's no need for a new allocation as 462 * last page could have large enough tailroom. 463 */ 464 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt), 465 GFP_USER); 466 if (!prog_adj) 467 return ERR_PTR(-ENOMEM); 468 469 prog_adj->len = insn_adj_cnt; 470 471 /* Patching happens in 3 steps: 472 * 473 * 1) Move over tail of insnsi from next instruction onwards, 474 * so we can patch the single target insn with one or more 475 * new ones (patching is always from 1 to n insns, n > 0). 476 * 2) Inject new instructions at the target location. 477 * 3) Adjust branch offsets if necessary. 478 */ 479 insn_rest = insn_adj_cnt - off - len; 480 481 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1, 482 sizeof(*patch) * insn_rest); 483 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len); 484 485 /* We are guaranteed to not fail at this point, otherwise 486 * the ship has sailed to reverse to the original state. An 487 * overflow cannot happen at this point. 488 */ 489 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false)); 490 491 bpf_adj_linfo(prog_adj, off, insn_delta); 492 493 return prog_adj; 494 } 495 496 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt) 497 { 498 /* Branch offsets can't overflow when program is shrinking, no need 499 * to call bpf_adj_branches(..., true) here 500 */ 501 memmove(prog->insnsi + off, prog->insnsi + off + cnt, 502 sizeof(struct bpf_insn) * (prog->len - off - cnt)); 503 prog->len -= cnt; 504 505 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false)); 506 } 507 508 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp) 509 { 510 int i; 511 512 for (i = 0; i < fp->aux->func_cnt; i++) 513 bpf_prog_kallsyms_del(fp->aux->func[i]); 514 } 515 516 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp) 517 { 518 bpf_prog_kallsyms_del_subprogs(fp); 519 bpf_prog_kallsyms_del(fp); 520 } 521 522 #ifdef CONFIG_BPF_JIT 523 /* All BPF JIT sysctl knobs here. */ 524 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON); 525 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON); 526 int bpf_jit_harden __read_mostly; 527 long bpf_jit_limit __read_mostly; 528 long bpf_jit_limit_max __read_mostly; 529 530 static void 531 bpf_prog_ksym_set_addr(struct bpf_prog *prog) 532 { 533 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog); 534 unsigned long addr = (unsigned long)hdr; 535 536 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog)); 537 538 prog->aux->ksym.start = (unsigned long) prog->bpf_func; 539 prog->aux->ksym.end = addr + hdr->pages * PAGE_SIZE; 540 } 541 542 static void 543 bpf_prog_ksym_set_name(struct bpf_prog *prog) 544 { 545 char *sym = prog->aux->ksym.name; 546 const char *end = sym + KSYM_NAME_LEN; 547 const struct btf_type *type; 548 const char *func_name; 549 550 BUILD_BUG_ON(sizeof("bpf_prog_") + 551 sizeof(prog->tag) * 2 + 552 /* name has been null terminated. 553 * We should need +1 for the '_' preceding 554 * the name. However, the null character 555 * is double counted between the name and the 556 * sizeof("bpf_prog_") above, so we omit 557 * the +1 here. 558 */ 559 sizeof(prog->aux->name) > KSYM_NAME_LEN); 560 561 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_"); 562 sym = bin2hex(sym, prog->tag, sizeof(prog->tag)); 563 564 /* prog->aux->name will be ignored if full btf name is available */ 565 if (prog->aux->func_info_cnt) { 566 type = btf_type_by_id(prog->aux->btf, 567 prog->aux->func_info[prog->aux->func_idx].type_id); 568 func_name = btf_name_by_offset(prog->aux->btf, type->name_off); 569 snprintf(sym, (size_t)(end - sym), "_%s", func_name); 570 return; 571 } 572 573 if (prog->aux->name[0]) 574 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name); 575 else 576 *sym = 0; 577 } 578 579 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n) 580 { 581 return container_of(n, struct bpf_ksym, tnode)->start; 582 } 583 584 static __always_inline bool bpf_tree_less(struct latch_tree_node *a, 585 struct latch_tree_node *b) 586 { 587 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b); 588 } 589 590 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n) 591 { 592 unsigned long val = (unsigned long)key; 593 const struct bpf_ksym *ksym; 594 595 ksym = container_of(n, struct bpf_ksym, tnode); 596 597 if (val < ksym->start) 598 return -1; 599 if (val >= ksym->end) 600 return 1; 601 602 return 0; 603 } 604 605 static const struct latch_tree_ops bpf_tree_ops = { 606 .less = bpf_tree_less, 607 .comp = bpf_tree_comp, 608 }; 609 610 static DEFINE_SPINLOCK(bpf_lock); 611 static LIST_HEAD(bpf_kallsyms); 612 static struct latch_tree_root bpf_tree __cacheline_aligned; 613 614 void bpf_ksym_add(struct bpf_ksym *ksym) 615 { 616 spin_lock_bh(&bpf_lock); 617 WARN_ON_ONCE(!list_empty(&ksym->lnode)); 618 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms); 619 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops); 620 spin_unlock_bh(&bpf_lock); 621 } 622 623 static void __bpf_ksym_del(struct bpf_ksym *ksym) 624 { 625 if (list_empty(&ksym->lnode)) 626 return; 627 628 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops); 629 list_del_rcu(&ksym->lnode); 630 } 631 632 void bpf_ksym_del(struct bpf_ksym *ksym) 633 { 634 spin_lock_bh(&bpf_lock); 635 __bpf_ksym_del(ksym); 636 spin_unlock_bh(&bpf_lock); 637 } 638 639 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp) 640 { 641 return fp->jited && !bpf_prog_was_classic(fp); 642 } 643 644 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) 645 { 646 return list_empty(&fp->aux->ksym.lnode) || 647 fp->aux->ksym.lnode.prev == LIST_POISON2; 648 } 649 650 void bpf_prog_kallsyms_add(struct bpf_prog *fp) 651 { 652 if (!bpf_prog_kallsyms_candidate(fp) || 653 !bpf_capable()) 654 return; 655 656 bpf_prog_ksym_set_addr(fp); 657 bpf_prog_ksym_set_name(fp); 658 fp->aux->ksym.prog = true; 659 660 bpf_ksym_add(&fp->aux->ksym); 661 } 662 663 void bpf_prog_kallsyms_del(struct bpf_prog *fp) 664 { 665 if (!bpf_prog_kallsyms_candidate(fp)) 666 return; 667 668 bpf_ksym_del(&fp->aux->ksym); 669 } 670 671 static struct bpf_ksym *bpf_ksym_find(unsigned long addr) 672 { 673 struct latch_tree_node *n; 674 675 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops); 676 return n ? container_of(n, struct bpf_ksym, tnode) : NULL; 677 } 678 679 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 680 unsigned long *off, char *sym) 681 { 682 struct bpf_ksym *ksym; 683 char *ret = NULL; 684 685 rcu_read_lock(); 686 ksym = bpf_ksym_find(addr); 687 if (ksym) { 688 unsigned long symbol_start = ksym->start; 689 unsigned long symbol_end = ksym->end; 690 691 strncpy(sym, ksym->name, KSYM_NAME_LEN); 692 693 ret = sym; 694 if (size) 695 *size = symbol_end - symbol_start; 696 if (off) 697 *off = addr - symbol_start; 698 } 699 rcu_read_unlock(); 700 701 return ret; 702 } 703 704 bool is_bpf_text_address(unsigned long addr) 705 { 706 bool ret; 707 708 rcu_read_lock(); 709 ret = bpf_ksym_find(addr) != NULL; 710 rcu_read_unlock(); 711 712 return ret; 713 } 714 715 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) 716 { 717 struct bpf_ksym *ksym = bpf_ksym_find(addr); 718 719 return ksym && ksym->prog ? 720 container_of(ksym, struct bpf_prog_aux, ksym)->prog : 721 NULL; 722 } 723 724 const struct exception_table_entry *search_bpf_extables(unsigned long addr) 725 { 726 const struct exception_table_entry *e = NULL; 727 struct bpf_prog *prog; 728 729 rcu_read_lock(); 730 prog = bpf_prog_ksym_find(addr); 731 if (!prog) 732 goto out; 733 if (!prog->aux->num_exentries) 734 goto out; 735 736 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr); 737 out: 738 rcu_read_unlock(); 739 return e; 740 } 741 742 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 743 char *sym) 744 { 745 struct bpf_ksym *ksym; 746 unsigned int it = 0; 747 int ret = -ERANGE; 748 749 if (!bpf_jit_kallsyms_enabled()) 750 return ret; 751 752 rcu_read_lock(); 753 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) { 754 if (it++ != symnum) 755 continue; 756 757 strncpy(sym, ksym->name, KSYM_NAME_LEN); 758 759 *value = ksym->start; 760 *type = BPF_SYM_ELF_TYPE; 761 762 ret = 0; 763 break; 764 } 765 rcu_read_unlock(); 766 767 return ret; 768 } 769 770 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 771 struct bpf_jit_poke_descriptor *poke) 772 { 773 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 774 static const u32 poke_tab_max = 1024; 775 u32 slot = prog->aux->size_poke_tab; 776 u32 size = slot + 1; 777 778 if (size > poke_tab_max) 779 return -ENOSPC; 780 if (poke->tailcall_target || poke->tailcall_target_stable || 781 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr) 782 return -EINVAL; 783 784 switch (poke->reason) { 785 case BPF_POKE_REASON_TAIL_CALL: 786 if (!poke->tail_call.map) 787 return -EINVAL; 788 break; 789 default: 790 return -EINVAL; 791 } 792 793 tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL); 794 if (!tab) 795 return -ENOMEM; 796 797 memcpy(&tab[slot], poke, sizeof(*poke)); 798 prog->aux->size_poke_tab = size; 799 prog->aux->poke_tab = tab; 800 801 return slot; 802 } 803 804 static atomic_long_t bpf_jit_current; 805 806 /* Can be overridden by an arch's JIT compiler if it has a custom, 807 * dedicated BPF backend memory area, or if neither of the two 808 * below apply. 809 */ 810 u64 __weak bpf_jit_alloc_exec_limit(void) 811 { 812 #if defined(MODULES_VADDR) 813 return MODULES_END - MODULES_VADDR; 814 #else 815 return VMALLOC_END - VMALLOC_START; 816 #endif 817 } 818 819 static int __init bpf_jit_charge_init(void) 820 { 821 /* Only used as heuristic here to derive limit. */ 822 bpf_jit_limit_max = bpf_jit_alloc_exec_limit(); 823 bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2, 824 PAGE_SIZE), LONG_MAX); 825 return 0; 826 } 827 pure_initcall(bpf_jit_charge_init); 828 829 int bpf_jit_charge_modmem(u32 pages) 830 { 831 if (atomic_long_add_return(pages, &bpf_jit_current) > 832 (bpf_jit_limit >> PAGE_SHIFT)) { 833 if (!bpf_capable()) { 834 atomic_long_sub(pages, &bpf_jit_current); 835 return -EPERM; 836 } 837 } 838 839 return 0; 840 } 841 842 void bpf_jit_uncharge_modmem(u32 pages) 843 { 844 atomic_long_sub(pages, &bpf_jit_current); 845 } 846 847 void *__weak bpf_jit_alloc_exec(unsigned long size) 848 { 849 return module_alloc(size); 850 } 851 852 void __weak bpf_jit_free_exec(void *addr) 853 { 854 module_memfree(addr); 855 } 856 857 struct bpf_binary_header * 858 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 859 unsigned int alignment, 860 bpf_jit_fill_hole_t bpf_fill_ill_insns) 861 { 862 struct bpf_binary_header *hdr; 863 u32 size, hole, start, pages; 864 865 WARN_ON_ONCE(!is_power_of_2(alignment) || 866 alignment > BPF_IMAGE_ALIGNMENT); 867 868 /* Most of BPF filters are really small, but if some of them 869 * fill a page, allow at least 128 extra bytes to insert a 870 * random section of illegal instructions. 871 */ 872 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE); 873 pages = size / PAGE_SIZE; 874 875 if (bpf_jit_charge_modmem(pages)) 876 return NULL; 877 hdr = bpf_jit_alloc_exec(size); 878 if (!hdr) { 879 bpf_jit_uncharge_modmem(pages); 880 return NULL; 881 } 882 883 /* Fill space with illegal/arch-dep instructions. */ 884 bpf_fill_ill_insns(hdr, size); 885 886 hdr->pages = pages; 887 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)), 888 PAGE_SIZE - sizeof(*hdr)); 889 start = (get_random_int() % hole) & ~(alignment - 1); 890 891 /* Leave a random number of instructions before BPF code. */ 892 *image_ptr = &hdr->image[start]; 893 894 return hdr; 895 } 896 897 void bpf_jit_binary_free(struct bpf_binary_header *hdr) 898 { 899 u32 pages = hdr->pages; 900 901 bpf_jit_free_exec(hdr); 902 bpf_jit_uncharge_modmem(pages); 903 } 904 905 /* This symbol is only overridden by archs that have different 906 * requirements than the usual eBPF JITs, f.e. when they only 907 * implement cBPF JIT, do not set images read-only, etc. 908 */ 909 void __weak bpf_jit_free(struct bpf_prog *fp) 910 { 911 if (fp->jited) { 912 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp); 913 914 bpf_jit_binary_free(hdr); 915 916 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp)); 917 } 918 919 bpf_prog_unlock_free(fp); 920 } 921 922 int bpf_jit_get_func_addr(const struct bpf_prog *prog, 923 const struct bpf_insn *insn, bool extra_pass, 924 u64 *func_addr, bool *func_addr_fixed) 925 { 926 s16 off = insn->off; 927 s32 imm = insn->imm; 928 u8 *addr; 929 930 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL; 931 if (!*func_addr_fixed) { 932 /* Place-holder address till the last pass has collected 933 * all addresses for JITed subprograms in which case we 934 * can pick them up from prog->aux. 935 */ 936 if (!extra_pass) 937 addr = NULL; 938 else if (prog->aux->func && 939 off >= 0 && off < prog->aux->func_cnt) 940 addr = (u8 *)prog->aux->func[off]->bpf_func; 941 else 942 return -EINVAL; 943 } else { 944 /* Address of a BPF helper call. Since part of the core 945 * kernel, it's always at a fixed location. __bpf_call_base 946 * and the helper with imm relative to it are both in core 947 * kernel. 948 */ 949 addr = (u8 *)__bpf_call_base + imm; 950 } 951 952 *func_addr = (unsigned long)addr; 953 return 0; 954 } 955 956 static int bpf_jit_blind_insn(const struct bpf_insn *from, 957 const struct bpf_insn *aux, 958 struct bpf_insn *to_buff, 959 bool emit_zext) 960 { 961 struct bpf_insn *to = to_buff; 962 u32 imm_rnd = get_random_int(); 963 s16 off; 964 965 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG); 966 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG); 967 968 /* Constraints on AX register: 969 * 970 * AX register is inaccessible from user space. It is mapped in 971 * all JITs, and used here for constant blinding rewrites. It is 972 * typically "stateless" meaning its contents are only valid within 973 * the executed instruction, but not across several instructions. 974 * There are a few exceptions however which are further detailed 975 * below. 976 * 977 * Constant blinding is only used by JITs, not in the interpreter. 978 * The interpreter uses AX in some occasions as a local temporary 979 * register e.g. in DIV or MOD instructions. 980 * 981 * In restricted circumstances, the verifier can also use the AX 982 * register for rewrites as long as they do not interfere with 983 * the above cases! 984 */ 985 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX) 986 goto out; 987 988 if (from->imm == 0 && 989 (from->code == (BPF_ALU | BPF_MOV | BPF_K) || 990 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) { 991 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg); 992 goto out; 993 } 994 995 switch (from->code) { 996 case BPF_ALU | BPF_ADD | BPF_K: 997 case BPF_ALU | BPF_SUB | BPF_K: 998 case BPF_ALU | BPF_AND | BPF_K: 999 case BPF_ALU | BPF_OR | BPF_K: 1000 case BPF_ALU | BPF_XOR | BPF_K: 1001 case BPF_ALU | BPF_MUL | BPF_K: 1002 case BPF_ALU | BPF_MOV | BPF_K: 1003 case BPF_ALU | BPF_DIV | BPF_K: 1004 case BPF_ALU | BPF_MOD | BPF_K: 1005 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1006 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1007 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX); 1008 break; 1009 1010 case BPF_ALU64 | BPF_ADD | BPF_K: 1011 case BPF_ALU64 | BPF_SUB | BPF_K: 1012 case BPF_ALU64 | BPF_AND | BPF_K: 1013 case BPF_ALU64 | BPF_OR | BPF_K: 1014 case BPF_ALU64 | BPF_XOR | BPF_K: 1015 case BPF_ALU64 | BPF_MUL | BPF_K: 1016 case BPF_ALU64 | BPF_MOV | BPF_K: 1017 case BPF_ALU64 | BPF_DIV | BPF_K: 1018 case BPF_ALU64 | BPF_MOD | BPF_K: 1019 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1020 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1021 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX); 1022 break; 1023 1024 case BPF_JMP | BPF_JEQ | BPF_K: 1025 case BPF_JMP | BPF_JNE | BPF_K: 1026 case BPF_JMP | BPF_JGT | BPF_K: 1027 case BPF_JMP | BPF_JLT | BPF_K: 1028 case BPF_JMP | BPF_JGE | BPF_K: 1029 case BPF_JMP | BPF_JLE | BPF_K: 1030 case BPF_JMP | BPF_JSGT | BPF_K: 1031 case BPF_JMP | BPF_JSLT | BPF_K: 1032 case BPF_JMP | BPF_JSGE | BPF_K: 1033 case BPF_JMP | BPF_JSLE | BPF_K: 1034 case BPF_JMP | BPF_JSET | BPF_K: 1035 /* Accommodate for extra offset in case of a backjump. */ 1036 off = from->off; 1037 if (off < 0) 1038 off -= 2; 1039 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1040 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1041 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off); 1042 break; 1043 1044 case BPF_JMP32 | BPF_JEQ | BPF_K: 1045 case BPF_JMP32 | BPF_JNE | BPF_K: 1046 case BPF_JMP32 | BPF_JGT | BPF_K: 1047 case BPF_JMP32 | BPF_JLT | BPF_K: 1048 case BPF_JMP32 | BPF_JGE | BPF_K: 1049 case BPF_JMP32 | BPF_JLE | BPF_K: 1050 case BPF_JMP32 | BPF_JSGT | BPF_K: 1051 case BPF_JMP32 | BPF_JSLT | BPF_K: 1052 case BPF_JMP32 | BPF_JSGE | BPF_K: 1053 case BPF_JMP32 | BPF_JSLE | BPF_K: 1054 case BPF_JMP32 | BPF_JSET | BPF_K: 1055 /* Accommodate for extra offset in case of a backjump. */ 1056 off = from->off; 1057 if (off < 0) 1058 off -= 2; 1059 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1060 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1061 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX, 1062 off); 1063 break; 1064 1065 case BPF_LD | BPF_IMM | BPF_DW: 1066 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm); 1067 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1068 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 1069 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX); 1070 break; 1071 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */ 1072 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm); 1073 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1074 if (emit_zext) 1075 *to++ = BPF_ZEXT_REG(BPF_REG_AX); 1076 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX); 1077 break; 1078 1079 case BPF_ST | BPF_MEM | BPF_DW: 1080 case BPF_ST | BPF_MEM | BPF_W: 1081 case BPF_ST | BPF_MEM | BPF_H: 1082 case BPF_ST | BPF_MEM | BPF_B: 1083 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 1084 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 1085 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off); 1086 break; 1087 } 1088 out: 1089 return to - to_buff; 1090 } 1091 1092 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other, 1093 gfp_t gfp_extra_flags) 1094 { 1095 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags; 1096 struct bpf_prog *fp; 1097 1098 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags); 1099 if (fp != NULL) { 1100 /* aux->prog still points to the fp_other one, so 1101 * when promoting the clone to the real program, 1102 * this still needs to be adapted. 1103 */ 1104 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE); 1105 } 1106 1107 return fp; 1108 } 1109 1110 static void bpf_prog_clone_free(struct bpf_prog *fp) 1111 { 1112 /* aux was stolen by the other clone, so we cannot free 1113 * it from this path! It will be freed eventually by the 1114 * other program on release. 1115 * 1116 * At this point, we don't need a deferred release since 1117 * clone is guaranteed to not be locked. 1118 */ 1119 fp->aux = NULL; 1120 fp->stats = NULL; 1121 fp->active = NULL; 1122 __bpf_prog_free(fp); 1123 } 1124 1125 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other) 1126 { 1127 /* We have to repoint aux->prog to self, as we don't 1128 * know whether fp here is the clone or the original. 1129 */ 1130 fp->aux->prog = fp; 1131 bpf_prog_clone_free(fp_other); 1132 } 1133 1134 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog) 1135 { 1136 struct bpf_insn insn_buff[16], aux[2]; 1137 struct bpf_prog *clone, *tmp; 1138 int insn_delta, insn_cnt; 1139 struct bpf_insn *insn; 1140 int i, rewritten; 1141 1142 if (!bpf_jit_blinding_enabled(prog) || prog->blinded) 1143 return prog; 1144 1145 clone = bpf_prog_clone_create(prog, GFP_USER); 1146 if (!clone) 1147 return ERR_PTR(-ENOMEM); 1148 1149 insn_cnt = clone->len; 1150 insn = clone->insnsi; 1151 1152 for (i = 0; i < insn_cnt; i++, insn++) { 1153 /* We temporarily need to hold the original ld64 insn 1154 * so that we can still access the first part in the 1155 * second blinding run. 1156 */ 1157 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) && 1158 insn[1].code == 0) 1159 memcpy(aux, insn, sizeof(aux)); 1160 1161 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff, 1162 clone->aux->verifier_zext); 1163 if (!rewritten) 1164 continue; 1165 1166 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten); 1167 if (IS_ERR(tmp)) { 1168 /* Patching may have repointed aux->prog during 1169 * realloc from the original one, so we need to 1170 * fix it up here on error. 1171 */ 1172 bpf_jit_prog_release_other(prog, clone); 1173 return tmp; 1174 } 1175 1176 clone = tmp; 1177 insn_delta = rewritten - 1; 1178 1179 /* Walk new program and skip insns we just inserted. */ 1180 insn = clone->insnsi + i + insn_delta; 1181 insn_cnt += insn_delta; 1182 i += insn_delta; 1183 } 1184 1185 clone->blinded = 1; 1186 return clone; 1187 } 1188 #endif /* CONFIG_BPF_JIT */ 1189 1190 /* Base function for offset calculation. Needs to go into .text section, 1191 * therefore keeping it non-static as well; will also be used by JITs 1192 * anyway later on, so do not let the compiler omit it. This also needs 1193 * to go into kallsyms for correlation from e.g. bpftool, so naming 1194 * must not change. 1195 */ 1196 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 1197 { 1198 return 0; 1199 } 1200 EXPORT_SYMBOL_GPL(__bpf_call_base); 1201 1202 /* All UAPI available opcodes. */ 1203 #define BPF_INSN_MAP(INSN_2, INSN_3) \ 1204 /* 32 bit ALU operations. */ \ 1205 /* Register based. */ \ 1206 INSN_3(ALU, ADD, X), \ 1207 INSN_3(ALU, SUB, X), \ 1208 INSN_3(ALU, AND, X), \ 1209 INSN_3(ALU, OR, X), \ 1210 INSN_3(ALU, LSH, X), \ 1211 INSN_3(ALU, RSH, X), \ 1212 INSN_3(ALU, XOR, X), \ 1213 INSN_3(ALU, MUL, X), \ 1214 INSN_3(ALU, MOV, X), \ 1215 INSN_3(ALU, ARSH, X), \ 1216 INSN_3(ALU, DIV, X), \ 1217 INSN_3(ALU, MOD, X), \ 1218 INSN_2(ALU, NEG), \ 1219 INSN_3(ALU, END, TO_BE), \ 1220 INSN_3(ALU, END, TO_LE), \ 1221 /* Immediate based. */ \ 1222 INSN_3(ALU, ADD, K), \ 1223 INSN_3(ALU, SUB, K), \ 1224 INSN_3(ALU, AND, K), \ 1225 INSN_3(ALU, OR, K), \ 1226 INSN_3(ALU, LSH, K), \ 1227 INSN_3(ALU, RSH, K), \ 1228 INSN_3(ALU, XOR, K), \ 1229 INSN_3(ALU, MUL, K), \ 1230 INSN_3(ALU, MOV, K), \ 1231 INSN_3(ALU, ARSH, K), \ 1232 INSN_3(ALU, DIV, K), \ 1233 INSN_3(ALU, MOD, K), \ 1234 /* 64 bit ALU operations. */ \ 1235 /* Register based. */ \ 1236 INSN_3(ALU64, ADD, X), \ 1237 INSN_3(ALU64, SUB, X), \ 1238 INSN_3(ALU64, AND, X), \ 1239 INSN_3(ALU64, OR, X), \ 1240 INSN_3(ALU64, LSH, X), \ 1241 INSN_3(ALU64, RSH, X), \ 1242 INSN_3(ALU64, XOR, X), \ 1243 INSN_3(ALU64, MUL, X), \ 1244 INSN_3(ALU64, MOV, X), \ 1245 INSN_3(ALU64, ARSH, X), \ 1246 INSN_3(ALU64, DIV, X), \ 1247 INSN_3(ALU64, MOD, X), \ 1248 INSN_2(ALU64, NEG), \ 1249 /* Immediate based. */ \ 1250 INSN_3(ALU64, ADD, K), \ 1251 INSN_3(ALU64, SUB, K), \ 1252 INSN_3(ALU64, AND, K), \ 1253 INSN_3(ALU64, OR, K), \ 1254 INSN_3(ALU64, LSH, K), \ 1255 INSN_3(ALU64, RSH, K), \ 1256 INSN_3(ALU64, XOR, K), \ 1257 INSN_3(ALU64, MUL, K), \ 1258 INSN_3(ALU64, MOV, K), \ 1259 INSN_3(ALU64, ARSH, K), \ 1260 INSN_3(ALU64, DIV, K), \ 1261 INSN_3(ALU64, MOD, K), \ 1262 /* Call instruction. */ \ 1263 INSN_2(JMP, CALL), \ 1264 /* Exit instruction. */ \ 1265 INSN_2(JMP, EXIT), \ 1266 /* 32-bit Jump instructions. */ \ 1267 /* Register based. */ \ 1268 INSN_3(JMP32, JEQ, X), \ 1269 INSN_3(JMP32, JNE, X), \ 1270 INSN_3(JMP32, JGT, X), \ 1271 INSN_3(JMP32, JLT, X), \ 1272 INSN_3(JMP32, JGE, X), \ 1273 INSN_3(JMP32, JLE, X), \ 1274 INSN_3(JMP32, JSGT, X), \ 1275 INSN_3(JMP32, JSLT, X), \ 1276 INSN_3(JMP32, JSGE, X), \ 1277 INSN_3(JMP32, JSLE, X), \ 1278 INSN_3(JMP32, JSET, X), \ 1279 /* Immediate based. */ \ 1280 INSN_3(JMP32, JEQ, K), \ 1281 INSN_3(JMP32, JNE, K), \ 1282 INSN_3(JMP32, JGT, K), \ 1283 INSN_3(JMP32, JLT, K), \ 1284 INSN_3(JMP32, JGE, K), \ 1285 INSN_3(JMP32, JLE, K), \ 1286 INSN_3(JMP32, JSGT, K), \ 1287 INSN_3(JMP32, JSLT, K), \ 1288 INSN_3(JMP32, JSGE, K), \ 1289 INSN_3(JMP32, JSLE, K), \ 1290 INSN_3(JMP32, JSET, K), \ 1291 /* Jump instructions. */ \ 1292 /* Register based. */ \ 1293 INSN_3(JMP, JEQ, X), \ 1294 INSN_3(JMP, JNE, X), \ 1295 INSN_3(JMP, JGT, X), \ 1296 INSN_3(JMP, JLT, X), \ 1297 INSN_3(JMP, JGE, X), \ 1298 INSN_3(JMP, JLE, X), \ 1299 INSN_3(JMP, JSGT, X), \ 1300 INSN_3(JMP, JSLT, X), \ 1301 INSN_3(JMP, JSGE, X), \ 1302 INSN_3(JMP, JSLE, X), \ 1303 INSN_3(JMP, JSET, X), \ 1304 /* Immediate based. */ \ 1305 INSN_3(JMP, JEQ, K), \ 1306 INSN_3(JMP, JNE, K), \ 1307 INSN_3(JMP, JGT, K), \ 1308 INSN_3(JMP, JLT, K), \ 1309 INSN_3(JMP, JGE, K), \ 1310 INSN_3(JMP, JLE, K), \ 1311 INSN_3(JMP, JSGT, K), \ 1312 INSN_3(JMP, JSLT, K), \ 1313 INSN_3(JMP, JSGE, K), \ 1314 INSN_3(JMP, JSLE, K), \ 1315 INSN_3(JMP, JSET, K), \ 1316 INSN_2(JMP, JA), \ 1317 /* Store instructions. */ \ 1318 /* Register based. */ \ 1319 INSN_3(STX, MEM, B), \ 1320 INSN_3(STX, MEM, H), \ 1321 INSN_3(STX, MEM, W), \ 1322 INSN_3(STX, MEM, DW), \ 1323 INSN_3(STX, ATOMIC, W), \ 1324 INSN_3(STX, ATOMIC, DW), \ 1325 /* Immediate based. */ \ 1326 INSN_3(ST, MEM, B), \ 1327 INSN_3(ST, MEM, H), \ 1328 INSN_3(ST, MEM, W), \ 1329 INSN_3(ST, MEM, DW), \ 1330 /* Load instructions. */ \ 1331 /* Register based. */ \ 1332 INSN_3(LDX, MEM, B), \ 1333 INSN_3(LDX, MEM, H), \ 1334 INSN_3(LDX, MEM, W), \ 1335 INSN_3(LDX, MEM, DW), \ 1336 /* Immediate based. */ \ 1337 INSN_3(LD, IMM, DW) 1338 1339 bool bpf_opcode_in_insntable(u8 code) 1340 { 1341 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true 1342 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true 1343 static const bool public_insntable[256] = { 1344 [0 ... 255] = false, 1345 /* Now overwrite non-defaults ... */ 1346 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL), 1347 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */ 1348 [BPF_LD | BPF_ABS | BPF_B] = true, 1349 [BPF_LD | BPF_ABS | BPF_H] = true, 1350 [BPF_LD | BPF_ABS | BPF_W] = true, 1351 [BPF_LD | BPF_IND | BPF_B] = true, 1352 [BPF_LD | BPF_IND | BPF_H] = true, 1353 [BPF_LD | BPF_IND | BPF_W] = true, 1354 }; 1355 #undef BPF_INSN_3_TBL 1356 #undef BPF_INSN_2_TBL 1357 return public_insntable[code]; 1358 } 1359 1360 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1361 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr) 1362 { 1363 memset(dst, 0, size); 1364 return -EFAULT; 1365 } 1366 1367 /** 1368 * ___bpf_prog_run - run eBPF program on a given context 1369 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers 1370 * @insn: is the array of eBPF instructions 1371 * 1372 * Decode and execute eBPF instructions. 1373 * 1374 * Return: whatever value is in %BPF_R0 at program exit 1375 */ 1376 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn) 1377 { 1378 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y 1379 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z 1380 static const void * const jumptable[256] __annotate_jump_table = { 1381 [0 ... 255] = &&default_label, 1382 /* Now overwrite non-defaults ... */ 1383 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL), 1384 /* Non-UAPI available opcodes. */ 1385 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS, 1386 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL, 1387 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC, 1388 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B, 1389 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H, 1390 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W, 1391 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW, 1392 }; 1393 #undef BPF_INSN_3_LBL 1394 #undef BPF_INSN_2_LBL 1395 u32 tail_call_cnt = 0; 1396 1397 #define CONT ({ insn++; goto select_insn; }) 1398 #define CONT_JMP ({ insn++; goto select_insn; }) 1399 1400 select_insn: 1401 goto *jumptable[insn->code]; 1402 1403 /* Explicitly mask the register-based shift amounts with 63 or 31 1404 * to avoid undefined behavior. Normally this won't affect the 1405 * generated code, for example, in case of native 64 bit archs such 1406 * as x86-64 or arm64, the compiler is optimizing the AND away for 1407 * the interpreter. In case of JITs, each of the JIT backends compiles 1408 * the BPF shift operations to machine instructions which produce 1409 * implementation-defined results in such a case; the resulting 1410 * contents of the register may be arbitrary, but program behaviour 1411 * as a whole remains defined. In other words, in case of JIT backends, 1412 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation. 1413 */ 1414 /* ALU (shifts) */ 1415 #define SHT(OPCODE, OP) \ 1416 ALU64_##OPCODE##_X: \ 1417 DST = DST OP (SRC & 63); \ 1418 CONT; \ 1419 ALU_##OPCODE##_X: \ 1420 DST = (u32) DST OP ((u32) SRC & 31); \ 1421 CONT; \ 1422 ALU64_##OPCODE##_K: \ 1423 DST = DST OP IMM; \ 1424 CONT; \ 1425 ALU_##OPCODE##_K: \ 1426 DST = (u32) DST OP (u32) IMM; \ 1427 CONT; 1428 /* ALU (rest) */ 1429 #define ALU(OPCODE, OP) \ 1430 ALU64_##OPCODE##_X: \ 1431 DST = DST OP SRC; \ 1432 CONT; \ 1433 ALU_##OPCODE##_X: \ 1434 DST = (u32) DST OP (u32) SRC; \ 1435 CONT; \ 1436 ALU64_##OPCODE##_K: \ 1437 DST = DST OP IMM; \ 1438 CONT; \ 1439 ALU_##OPCODE##_K: \ 1440 DST = (u32) DST OP (u32) IMM; \ 1441 CONT; 1442 ALU(ADD, +) 1443 ALU(SUB, -) 1444 ALU(AND, &) 1445 ALU(OR, |) 1446 ALU(XOR, ^) 1447 ALU(MUL, *) 1448 SHT(LSH, <<) 1449 SHT(RSH, >>) 1450 #undef SHT 1451 #undef ALU 1452 ALU_NEG: 1453 DST = (u32) -DST; 1454 CONT; 1455 ALU64_NEG: 1456 DST = -DST; 1457 CONT; 1458 ALU_MOV_X: 1459 DST = (u32) SRC; 1460 CONT; 1461 ALU_MOV_K: 1462 DST = (u32) IMM; 1463 CONT; 1464 ALU64_MOV_X: 1465 DST = SRC; 1466 CONT; 1467 ALU64_MOV_K: 1468 DST = IMM; 1469 CONT; 1470 LD_IMM_DW: 1471 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32; 1472 insn++; 1473 CONT; 1474 ALU_ARSH_X: 1475 DST = (u64) (u32) (((s32) DST) >> (SRC & 31)); 1476 CONT; 1477 ALU_ARSH_K: 1478 DST = (u64) (u32) (((s32) DST) >> IMM); 1479 CONT; 1480 ALU64_ARSH_X: 1481 (*(s64 *) &DST) >>= (SRC & 63); 1482 CONT; 1483 ALU64_ARSH_K: 1484 (*(s64 *) &DST) >>= IMM; 1485 CONT; 1486 ALU64_MOD_X: 1487 div64_u64_rem(DST, SRC, &AX); 1488 DST = AX; 1489 CONT; 1490 ALU_MOD_X: 1491 AX = (u32) DST; 1492 DST = do_div(AX, (u32) SRC); 1493 CONT; 1494 ALU64_MOD_K: 1495 div64_u64_rem(DST, IMM, &AX); 1496 DST = AX; 1497 CONT; 1498 ALU_MOD_K: 1499 AX = (u32) DST; 1500 DST = do_div(AX, (u32) IMM); 1501 CONT; 1502 ALU64_DIV_X: 1503 DST = div64_u64(DST, SRC); 1504 CONT; 1505 ALU_DIV_X: 1506 AX = (u32) DST; 1507 do_div(AX, (u32) SRC); 1508 DST = (u32) AX; 1509 CONT; 1510 ALU64_DIV_K: 1511 DST = div64_u64(DST, IMM); 1512 CONT; 1513 ALU_DIV_K: 1514 AX = (u32) DST; 1515 do_div(AX, (u32) IMM); 1516 DST = (u32) AX; 1517 CONT; 1518 ALU_END_TO_BE: 1519 switch (IMM) { 1520 case 16: 1521 DST = (__force u16) cpu_to_be16(DST); 1522 break; 1523 case 32: 1524 DST = (__force u32) cpu_to_be32(DST); 1525 break; 1526 case 64: 1527 DST = (__force u64) cpu_to_be64(DST); 1528 break; 1529 } 1530 CONT; 1531 ALU_END_TO_LE: 1532 switch (IMM) { 1533 case 16: 1534 DST = (__force u16) cpu_to_le16(DST); 1535 break; 1536 case 32: 1537 DST = (__force u32) cpu_to_le32(DST); 1538 break; 1539 case 64: 1540 DST = (__force u64) cpu_to_le64(DST); 1541 break; 1542 } 1543 CONT; 1544 1545 /* CALL */ 1546 JMP_CALL: 1547 /* Function call scratches BPF_R1-BPF_R5 registers, 1548 * preserves BPF_R6-BPF_R9, and stores return value 1549 * into BPF_R0. 1550 */ 1551 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3, 1552 BPF_R4, BPF_R5); 1553 CONT; 1554 1555 JMP_CALL_ARGS: 1556 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2, 1557 BPF_R3, BPF_R4, 1558 BPF_R5, 1559 insn + insn->off + 1); 1560 CONT; 1561 1562 JMP_TAIL_CALL: { 1563 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2; 1564 struct bpf_array *array = container_of(map, struct bpf_array, map); 1565 struct bpf_prog *prog; 1566 u32 index = BPF_R3; 1567 1568 if (unlikely(index >= array->map.max_entries)) 1569 goto out; 1570 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT)) 1571 goto out; 1572 1573 tail_call_cnt++; 1574 1575 prog = READ_ONCE(array->ptrs[index]); 1576 if (!prog) 1577 goto out; 1578 1579 /* ARG1 at this point is guaranteed to point to CTX from 1580 * the verifier side due to the fact that the tail call is 1581 * handled like a helper, that is, bpf_tail_call_proto, 1582 * where arg1_type is ARG_PTR_TO_CTX. 1583 */ 1584 insn = prog->insnsi; 1585 goto select_insn; 1586 out: 1587 CONT; 1588 } 1589 JMP_JA: 1590 insn += insn->off; 1591 CONT; 1592 JMP_EXIT: 1593 return BPF_R0; 1594 /* JMP */ 1595 #define COND_JMP(SIGN, OPCODE, CMP_OP) \ 1596 JMP_##OPCODE##_X: \ 1597 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \ 1598 insn += insn->off; \ 1599 CONT_JMP; \ 1600 } \ 1601 CONT; \ 1602 JMP32_##OPCODE##_X: \ 1603 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \ 1604 insn += insn->off; \ 1605 CONT_JMP; \ 1606 } \ 1607 CONT; \ 1608 JMP_##OPCODE##_K: \ 1609 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \ 1610 insn += insn->off; \ 1611 CONT_JMP; \ 1612 } \ 1613 CONT; \ 1614 JMP32_##OPCODE##_K: \ 1615 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \ 1616 insn += insn->off; \ 1617 CONT_JMP; \ 1618 } \ 1619 CONT; 1620 COND_JMP(u, JEQ, ==) 1621 COND_JMP(u, JNE, !=) 1622 COND_JMP(u, JGT, >) 1623 COND_JMP(u, JLT, <) 1624 COND_JMP(u, JGE, >=) 1625 COND_JMP(u, JLE, <=) 1626 COND_JMP(u, JSET, &) 1627 COND_JMP(s, JSGT, >) 1628 COND_JMP(s, JSLT, <) 1629 COND_JMP(s, JSGE, >=) 1630 COND_JMP(s, JSLE, <=) 1631 #undef COND_JMP 1632 /* ST, STX and LDX*/ 1633 ST_NOSPEC: 1634 /* Speculation barrier for mitigating Speculative Store Bypass. 1635 * In case of arm64, we rely on the firmware mitigation as 1636 * controlled via the ssbd kernel parameter. Whenever the 1637 * mitigation is enabled, it works for all of the kernel code 1638 * with no need to provide any additional instructions here. 1639 * In case of x86, we use 'lfence' insn for mitigation. We 1640 * reuse preexisting logic from Spectre v1 mitigation that 1641 * happens to produce the required code on x86 for v4 as well. 1642 */ 1643 #ifdef CONFIG_X86 1644 barrier_nospec(); 1645 #endif 1646 CONT; 1647 #define LDST(SIZEOP, SIZE) \ 1648 STX_MEM_##SIZEOP: \ 1649 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \ 1650 CONT; \ 1651 ST_MEM_##SIZEOP: \ 1652 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \ 1653 CONT; \ 1654 LDX_MEM_##SIZEOP: \ 1655 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \ 1656 CONT; 1657 1658 LDST(B, u8) 1659 LDST(H, u16) 1660 LDST(W, u32) 1661 LDST(DW, u64) 1662 #undef LDST 1663 #define LDX_PROBE(SIZEOP, SIZE) \ 1664 LDX_PROBE_MEM_##SIZEOP: \ 1665 bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off)); \ 1666 CONT; 1667 LDX_PROBE(B, 1) 1668 LDX_PROBE(H, 2) 1669 LDX_PROBE(W, 4) 1670 LDX_PROBE(DW, 8) 1671 #undef LDX_PROBE 1672 1673 #define ATOMIC_ALU_OP(BOP, KOP) \ 1674 case BOP: \ 1675 if (BPF_SIZE(insn->code) == BPF_W) \ 1676 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \ 1677 (DST + insn->off)); \ 1678 else \ 1679 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \ 1680 (DST + insn->off)); \ 1681 break; \ 1682 case BOP | BPF_FETCH: \ 1683 if (BPF_SIZE(insn->code) == BPF_W) \ 1684 SRC = (u32) atomic_fetch_##KOP( \ 1685 (u32) SRC, \ 1686 (atomic_t *)(unsigned long) (DST + insn->off)); \ 1687 else \ 1688 SRC = (u64) atomic64_fetch_##KOP( \ 1689 (u64) SRC, \ 1690 (atomic64_t *)(unsigned long) (DST + insn->off)); \ 1691 break; 1692 1693 STX_ATOMIC_DW: 1694 STX_ATOMIC_W: 1695 switch (IMM) { 1696 ATOMIC_ALU_OP(BPF_ADD, add) 1697 ATOMIC_ALU_OP(BPF_AND, and) 1698 ATOMIC_ALU_OP(BPF_OR, or) 1699 ATOMIC_ALU_OP(BPF_XOR, xor) 1700 #undef ATOMIC_ALU_OP 1701 1702 case BPF_XCHG: 1703 if (BPF_SIZE(insn->code) == BPF_W) 1704 SRC = (u32) atomic_xchg( 1705 (atomic_t *)(unsigned long) (DST + insn->off), 1706 (u32) SRC); 1707 else 1708 SRC = (u64) atomic64_xchg( 1709 (atomic64_t *)(unsigned long) (DST + insn->off), 1710 (u64) SRC); 1711 break; 1712 case BPF_CMPXCHG: 1713 if (BPF_SIZE(insn->code) == BPF_W) 1714 BPF_R0 = (u32) atomic_cmpxchg( 1715 (atomic_t *)(unsigned long) (DST + insn->off), 1716 (u32) BPF_R0, (u32) SRC); 1717 else 1718 BPF_R0 = (u64) atomic64_cmpxchg( 1719 (atomic64_t *)(unsigned long) (DST + insn->off), 1720 (u64) BPF_R0, (u64) SRC); 1721 break; 1722 1723 default: 1724 goto default_label; 1725 } 1726 CONT; 1727 1728 default_label: 1729 /* If we ever reach this, we have a bug somewhere. Die hard here 1730 * instead of just returning 0; we could be somewhere in a subprog, 1731 * so execution could continue otherwise which we do /not/ want. 1732 * 1733 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable(). 1734 */ 1735 pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n", 1736 insn->code, insn->imm); 1737 BUG_ON(1); 1738 return 0; 1739 } 1740 1741 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size 1742 #define DEFINE_BPF_PROG_RUN(stack_size) \ 1743 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \ 1744 { \ 1745 u64 stack[stack_size / sizeof(u64)]; \ 1746 u64 regs[MAX_BPF_EXT_REG]; \ 1747 \ 1748 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ 1749 ARG1 = (u64) (unsigned long) ctx; \ 1750 return ___bpf_prog_run(regs, insn); \ 1751 } 1752 1753 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size 1754 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \ 1755 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \ 1756 const struct bpf_insn *insn) \ 1757 { \ 1758 u64 stack[stack_size / sizeof(u64)]; \ 1759 u64 regs[MAX_BPF_EXT_REG]; \ 1760 \ 1761 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ 1762 BPF_R1 = r1; \ 1763 BPF_R2 = r2; \ 1764 BPF_R3 = r3; \ 1765 BPF_R4 = r4; \ 1766 BPF_R5 = r5; \ 1767 return ___bpf_prog_run(regs, insn); \ 1768 } 1769 1770 #define EVAL1(FN, X) FN(X) 1771 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y) 1772 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y) 1773 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y) 1774 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y) 1775 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y) 1776 1777 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192); 1778 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384); 1779 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512); 1780 1781 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192); 1782 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384); 1783 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512); 1784 1785 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size), 1786 1787 static unsigned int (*interpreters[])(const void *ctx, 1788 const struct bpf_insn *insn) = { 1789 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) 1790 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) 1791 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) 1792 }; 1793 #undef PROG_NAME_LIST 1794 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size), 1795 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, 1796 const struct bpf_insn *insn) = { 1797 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) 1798 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) 1799 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) 1800 }; 1801 #undef PROG_NAME_LIST 1802 1803 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth) 1804 { 1805 stack_depth = max_t(u32, stack_depth, 1); 1806 insn->off = (s16) insn->imm; 1807 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] - 1808 __bpf_call_base_args; 1809 insn->code = BPF_JMP | BPF_CALL_ARGS; 1810 } 1811 1812 #else 1813 static unsigned int __bpf_prog_ret0_warn(const void *ctx, 1814 const struct bpf_insn *insn) 1815 { 1816 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON 1817 * is not working properly, so warn about it! 1818 */ 1819 WARN_ON_ONCE(1); 1820 return 0; 1821 } 1822 #endif 1823 1824 bool bpf_prog_array_compatible(struct bpf_array *array, 1825 const struct bpf_prog *fp) 1826 { 1827 bool ret; 1828 1829 if (fp->kprobe_override) 1830 return false; 1831 1832 spin_lock(&array->aux->owner.lock); 1833 1834 if (!array->aux->owner.type) { 1835 /* There's no owner yet where we could check for 1836 * compatibility. 1837 */ 1838 array->aux->owner.type = fp->type; 1839 array->aux->owner.jited = fp->jited; 1840 ret = true; 1841 } else { 1842 ret = array->aux->owner.type == fp->type && 1843 array->aux->owner.jited == fp->jited; 1844 } 1845 spin_unlock(&array->aux->owner.lock); 1846 return ret; 1847 } 1848 1849 static int bpf_check_tail_call(const struct bpf_prog *fp) 1850 { 1851 struct bpf_prog_aux *aux = fp->aux; 1852 int i, ret = 0; 1853 1854 mutex_lock(&aux->used_maps_mutex); 1855 for (i = 0; i < aux->used_map_cnt; i++) { 1856 struct bpf_map *map = aux->used_maps[i]; 1857 struct bpf_array *array; 1858 1859 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 1860 continue; 1861 1862 array = container_of(map, struct bpf_array, map); 1863 if (!bpf_prog_array_compatible(array, fp)) { 1864 ret = -EINVAL; 1865 goto out; 1866 } 1867 } 1868 1869 out: 1870 mutex_unlock(&aux->used_maps_mutex); 1871 return ret; 1872 } 1873 1874 static void bpf_prog_select_func(struct bpf_prog *fp) 1875 { 1876 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1877 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1); 1878 1879 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1]; 1880 #else 1881 fp->bpf_func = __bpf_prog_ret0_warn; 1882 #endif 1883 } 1884 1885 /** 1886 * bpf_prog_select_runtime - select exec runtime for BPF program 1887 * @fp: bpf_prog populated with internal BPF program 1888 * @err: pointer to error variable 1889 * 1890 * Try to JIT eBPF program, if JIT is not available, use interpreter. 1891 * The BPF program will be executed via bpf_prog_run() function. 1892 * 1893 * Return: the &fp argument along with &err set to 0 for success or 1894 * a negative errno code on failure 1895 */ 1896 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err) 1897 { 1898 /* In case of BPF to BPF calls, verifier did all the prep 1899 * work with regards to JITing, etc. 1900 */ 1901 bool jit_needed = false; 1902 1903 if (fp->bpf_func) 1904 goto finalize; 1905 1906 if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) || 1907 bpf_prog_has_kfunc_call(fp)) 1908 jit_needed = true; 1909 1910 bpf_prog_select_func(fp); 1911 1912 /* eBPF JITs can rewrite the program in case constant 1913 * blinding is active. However, in case of error during 1914 * blinding, bpf_int_jit_compile() must always return a 1915 * valid program, which in this case would simply not 1916 * be JITed, but falls back to the interpreter. 1917 */ 1918 if (!bpf_prog_is_dev_bound(fp->aux)) { 1919 *err = bpf_prog_alloc_jited_linfo(fp); 1920 if (*err) 1921 return fp; 1922 1923 fp = bpf_int_jit_compile(fp); 1924 bpf_prog_jit_attempt_done(fp); 1925 if (!fp->jited && jit_needed) { 1926 *err = -ENOTSUPP; 1927 return fp; 1928 } 1929 } else { 1930 *err = bpf_prog_offload_compile(fp); 1931 if (*err) 1932 return fp; 1933 } 1934 1935 finalize: 1936 bpf_prog_lock_ro(fp); 1937 1938 /* The tail call compatibility check can only be done at 1939 * this late stage as we need to determine, if we deal 1940 * with JITed or non JITed program concatenations and not 1941 * all eBPF JITs might immediately support all features. 1942 */ 1943 *err = bpf_check_tail_call(fp); 1944 1945 return fp; 1946 } 1947 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime); 1948 1949 static unsigned int __bpf_prog_ret1(const void *ctx, 1950 const struct bpf_insn *insn) 1951 { 1952 return 1; 1953 } 1954 1955 static struct bpf_prog_dummy { 1956 struct bpf_prog prog; 1957 } dummy_bpf_prog = { 1958 .prog = { 1959 .bpf_func = __bpf_prog_ret1, 1960 }, 1961 }; 1962 1963 /* to avoid allocating empty bpf_prog_array for cgroups that 1964 * don't have bpf program attached use one global 'empty_prog_array' 1965 * It will not be modified the caller of bpf_prog_array_alloc() 1966 * (since caller requested prog_cnt == 0) 1967 * that pointer should be 'freed' by bpf_prog_array_free() 1968 */ 1969 static struct { 1970 struct bpf_prog_array hdr; 1971 struct bpf_prog *null_prog; 1972 } empty_prog_array = { 1973 .null_prog = NULL, 1974 }; 1975 1976 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags) 1977 { 1978 if (prog_cnt) 1979 return kzalloc(sizeof(struct bpf_prog_array) + 1980 sizeof(struct bpf_prog_array_item) * 1981 (prog_cnt + 1), 1982 flags); 1983 1984 return &empty_prog_array.hdr; 1985 } 1986 1987 void bpf_prog_array_free(struct bpf_prog_array *progs) 1988 { 1989 if (!progs || progs == &empty_prog_array.hdr) 1990 return; 1991 kfree_rcu(progs, rcu); 1992 } 1993 1994 int bpf_prog_array_length(struct bpf_prog_array *array) 1995 { 1996 struct bpf_prog_array_item *item; 1997 u32 cnt = 0; 1998 1999 for (item = array->items; item->prog; item++) 2000 if (item->prog != &dummy_bpf_prog.prog) 2001 cnt++; 2002 return cnt; 2003 } 2004 2005 bool bpf_prog_array_is_empty(struct bpf_prog_array *array) 2006 { 2007 struct bpf_prog_array_item *item; 2008 2009 for (item = array->items; item->prog; item++) 2010 if (item->prog != &dummy_bpf_prog.prog) 2011 return false; 2012 return true; 2013 } 2014 2015 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array, 2016 u32 *prog_ids, 2017 u32 request_cnt) 2018 { 2019 struct bpf_prog_array_item *item; 2020 int i = 0; 2021 2022 for (item = array->items; item->prog; item++) { 2023 if (item->prog == &dummy_bpf_prog.prog) 2024 continue; 2025 prog_ids[i] = item->prog->aux->id; 2026 if (++i == request_cnt) { 2027 item++; 2028 break; 2029 } 2030 } 2031 2032 return !!(item->prog); 2033 } 2034 2035 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array, 2036 __u32 __user *prog_ids, u32 cnt) 2037 { 2038 unsigned long err = 0; 2039 bool nospc; 2040 u32 *ids; 2041 2042 /* users of this function are doing: 2043 * cnt = bpf_prog_array_length(); 2044 * if (cnt > 0) 2045 * bpf_prog_array_copy_to_user(..., cnt); 2046 * so below kcalloc doesn't need extra cnt > 0 check. 2047 */ 2048 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN); 2049 if (!ids) 2050 return -ENOMEM; 2051 nospc = bpf_prog_array_copy_core(array, ids, cnt); 2052 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32)); 2053 kfree(ids); 2054 if (err) 2055 return -EFAULT; 2056 if (nospc) 2057 return -ENOSPC; 2058 return 0; 2059 } 2060 2061 void bpf_prog_array_delete_safe(struct bpf_prog_array *array, 2062 struct bpf_prog *old_prog) 2063 { 2064 struct bpf_prog_array_item *item; 2065 2066 for (item = array->items; item->prog; item++) 2067 if (item->prog == old_prog) { 2068 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog); 2069 break; 2070 } 2071 } 2072 2073 /** 2074 * bpf_prog_array_delete_safe_at() - Replaces the program at the given 2075 * index into the program array with 2076 * a dummy no-op program. 2077 * @array: a bpf_prog_array 2078 * @index: the index of the program to replace 2079 * 2080 * Skips over dummy programs, by not counting them, when calculating 2081 * the position of the program to replace. 2082 * 2083 * Return: 2084 * * 0 - Success 2085 * * -EINVAL - Invalid index value. Must be a non-negative integer. 2086 * * -ENOENT - Index out of range 2087 */ 2088 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index) 2089 { 2090 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog); 2091 } 2092 2093 /** 2094 * bpf_prog_array_update_at() - Updates the program at the given index 2095 * into the program array. 2096 * @array: a bpf_prog_array 2097 * @index: the index of the program to update 2098 * @prog: the program to insert into the array 2099 * 2100 * Skips over dummy programs, by not counting them, when calculating 2101 * the position of the program to update. 2102 * 2103 * Return: 2104 * * 0 - Success 2105 * * -EINVAL - Invalid index value. Must be a non-negative integer. 2106 * * -ENOENT - Index out of range 2107 */ 2108 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2109 struct bpf_prog *prog) 2110 { 2111 struct bpf_prog_array_item *item; 2112 2113 if (unlikely(index < 0)) 2114 return -EINVAL; 2115 2116 for (item = array->items; item->prog; item++) { 2117 if (item->prog == &dummy_bpf_prog.prog) 2118 continue; 2119 if (!index) { 2120 WRITE_ONCE(item->prog, prog); 2121 return 0; 2122 } 2123 index--; 2124 } 2125 return -ENOENT; 2126 } 2127 2128 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2129 struct bpf_prog *exclude_prog, 2130 struct bpf_prog *include_prog, 2131 u64 bpf_cookie, 2132 struct bpf_prog_array **new_array) 2133 { 2134 int new_prog_cnt, carry_prog_cnt = 0; 2135 struct bpf_prog_array_item *existing, *new; 2136 struct bpf_prog_array *array; 2137 bool found_exclude = false; 2138 2139 /* Figure out how many existing progs we need to carry over to 2140 * the new array. 2141 */ 2142 if (old_array) { 2143 existing = old_array->items; 2144 for (; existing->prog; existing++) { 2145 if (existing->prog == exclude_prog) { 2146 found_exclude = true; 2147 continue; 2148 } 2149 if (existing->prog != &dummy_bpf_prog.prog) 2150 carry_prog_cnt++; 2151 if (existing->prog == include_prog) 2152 return -EEXIST; 2153 } 2154 } 2155 2156 if (exclude_prog && !found_exclude) 2157 return -ENOENT; 2158 2159 /* How many progs (not NULL) will be in the new array? */ 2160 new_prog_cnt = carry_prog_cnt; 2161 if (include_prog) 2162 new_prog_cnt += 1; 2163 2164 /* Do we have any prog (not NULL) in the new array? */ 2165 if (!new_prog_cnt) { 2166 *new_array = NULL; 2167 return 0; 2168 } 2169 2170 /* +1 as the end of prog_array is marked with NULL */ 2171 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL); 2172 if (!array) 2173 return -ENOMEM; 2174 new = array->items; 2175 2176 /* Fill in the new prog array */ 2177 if (carry_prog_cnt) { 2178 existing = old_array->items; 2179 for (; existing->prog; existing++) { 2180 if (existing->prog == exclude_prog || 2181 existing->prog == &dummy_bpf_prog.prog) 2182 continue; 2183 2184 new->prog = existing->prog; 2185 new->bpf_cookie = existing->bpf_cookie; 2186 new++; 2187 } 2188 } 2189 if (include_prog) { 2190 new->prog = include_prog; 2191 new->bpf_cookie = bpf_cookie; 2192 new++; 2193 } 2194 new->prog = NULL; 2195 *new_array = array; 2196 return 0; 2197 } 2198 2199 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2200 u32 *prog_ids, u32 request_cnt, 2201 u32 *prog_cnt) 2202 { 2203 u32 cnt = 0; 2204 2205 if (array) 2206 cnt = bpf_prog_array_length(array); 2207 2208 *prog_cnt = cnt; 2209 2210 /* return early if user requested only program count or nothing to copy */ 2211 if (!request_cnt || !cnt) 2212 return 0; 2213 2214 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */ 2215 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC 2216 : 0; 2217 } 2218 2219 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2220 struct bpf_map **used_maps, u32 len) 2221 { 2222 struct bpf_map *map; 2223 u32 i; 2224 2225 for (i = 0; i < len; i++) { 2226 map = used_maps[i]; 2227 if (map->ops->map_poke_untrack) 2228 map->ops->map_poke_untrack(map, aux); 2229 bpf_map_put(map); 2230 } 2231 } 2232 2233 static void bpf_free_used_maps(struct bpf_prog_aux *aux) 2234 { 2235 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt); 2236 kfree(aux->used_maps); 2237 } 2238 2239 void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2240 struct btf_mod_pair *used_btfs, u32 len) 2241 { 2242 #ifdef CONFIG_BPF_SYSCALL 2243 struct btf_mod_pair *btf_mod; 2244 u32 i; 2245 2246 for (i = 0; i < len; i++) { 2247 btf_mod = &used_btfs[i]; 2248 if (btf_mod->module) 2249 module_put(btf_mod->module); 2250 btf_put(btf_mod->btf); 2251 } 2252 #endif 2253 } 2254 2255 static void bpf_free_used_btfs(struct bpf_prog_aux *aux) 2256 { 2257 __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt); 2258 kfree(aux->used_btfs); 2259 } 2260 2261 static void bpf_prog_free_deferred(struct work_struct *work) 2262 { 2263 struct bpf_prog_aux *aux; 2264 int i; 2265 2266 aux = container_of(work, struct bpf_prog_aux, work); 2267 #ifdef CONFIG_BPF_SYSCALL 2268 bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab); 2269 #endif 2270 bpf_free_used_maps(aux); 2271 bpf_free_used_btfs(aux); 2272 if (bpf_prog_is_dev_bound(aux)) 2273 bpf_prog_offload_destroy(aux->prog); 2274 #ifdef CONFIG_PERF_EVENTS 2275 if (aux->prog->has_callchain_buf) 2276 put_callchain_buffers(); 2277 #endif 2278 if (aux->dst_trampoline) 2279 bpf_trampoline_put(aux->dst_trampoline); 2280 for (i = 0; i < aux->func_cnt; i++) { 2281 /* We can just unlink the subprog poke descriptor table as 2282 * it was originally linked to the main program and is also 2283 * released along with it. 2284 */ 2285 aux->func[i]->aux->poke_tab = NULL; 2286 bpf_jit_free(aux->func[i]); 2287 } 2288 if (aux->func_cnt) { 2289 kfree(aux->func); 2290 bpf_prog_unlock_free(aux->prog); 2291 } else { 2292 bpf_jit_free(aux->prog); 2293 } 2294 } 2295 2296 /* Free internal BPF program */ 2297 void bpf_prog_free(struct bpf_prog *fp) 2298 { 2299 struct bpf_prog_aux *aux = fp->aux; 2300 2301 if (aux->dst_prog) 2302 bpf_prog_put(aux->dst_prog); 2303 INIT_WORK(&aux->work, bpf_prog_free_deferred); 2304 schedule_work(&aux->work); 2305 } 2306 EXPORT_SYMBOL_GPL(bpf_prog_free); 2307 2308 /* RNG for unpriviledged user space with separated state from prandom_u32(). */ 2309 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state); 2310 2311 void bpf_user_rnd_init_once(void) 2312 { 2313 prandom_init_once(&bpf_user_rnd_state); 2314 } 2315 2316 BPF_CALL_0(bpf_user_rnd_u32) 2317 { 2318 /* Should someone ever have the rather unwise idea to use some 2319 * of the registers passed into this function, then note that 2320 * this function is called from native eBPF and classic-to-eBPF 2321 * transformations. Register assignments from both sides are 2322 * different, f.e. classic always sets fn(ctx, A, X) here. 2323 */ 2324 struct rnd_state *state; 2325 u32 res; 2326 2327 state = &get_cpu_var(bpf_user_rnd_state); 2328 res = prandom_u32_state(state); 2329 put_cpu_var(bpf_user_rnd_state); 2330 2331 return res; 2332 } 2333 2334 BPF_CALL_0(bpf_get_raw_cpu_id) 2335 { 2336 return raw_smp_processor_id(); 2337 } 2338 2339 /* Weak definitions of helper functions in case we don't have bpf syscall. */ 2340 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak; 2341 const struct bpf_func_proto bpf_map_update_elem_proto __weak; 2342 const struct bpf_func_proto bpf_map_delete_elem_proto __weak; 2343 const struct bpf_func_proto bpf_map_push_elem_proto __weak; 2344 const struct bpf_func_proto bpf_map_pop_elem_proto __weak; 2345 const struct bpf_func_proto bpf_map_peek_elem_proto __weak; 2346 const struct bpf_func_proto bpf_spin_lock_proto __weak; 2347 const struct bpf_func_proto bpf_spin_unlock_proto __weak; 2348 const struct bpf_func_proto bpf_jiffies64_proto __weak; 2349 2350 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak; 2351 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak; 2352 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak; 2353 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak; 2354 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak; 2355 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak; 2356 2357 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak; 2358 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak; 2359 const struct bpf_func_proto bpf_get_current_comm_proto __weak; 2360 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak; 2361 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak; 2362 const struct bpf_func_proto bpf_get_local_storage_proto __weak; 2363 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak; 2364 const struct bpf_func_proto bpf_snprintf_btf_proto __weak; 2365 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak; 2366 2367 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void) 2368 { 2369 return NULL; 2370 } 2371 2372 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void) 2373 { 2374 return NULL; 2375 } 2376 2377 u64 __weak 2378 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 2379 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 2380 { 2381 return -ENOTSUPP; 2382 } 2383 EXPORT_SYMBOL_GPL(bpf_event_output); 2384 2385 /* Always built-in helper functions. */ 2386 const struct bpf_func_proto bpf_tail_call_proto = { 2387 .func = NULL, 2388 .gpl_only = false, 2389 .ret_type = RET_VOID, 2390 .arg1_type = ARG_PTR_TO_CTX, 2391 .arg2_type = ARG_CONST_MAP_PTR, 2392 .arg3_type = ARG_ANYTHING, 2393 }; 2394 2395 /* Stub for JITs that only support cBPF. eBPF programs are interpreted. 2396 * It is encouraged to implement bpf_int_jit_compile() instead, so that 2397 * eBPF and implicitly also cBPF can get JITed! 2398 */ 2399 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog) 2400 { 2401 return prog; 2402 } 2403 2404 /* Stub for JITs that support eBPF. All cBPF code gets transformed into 2405 * eBPF by the kernel and is later compiled by bpf_int_jit_compile(). 2406 */ 2407 void __weak bpf_jit_compile(struct bpf_prog *prog) 2408 { 2409 } 2410 2411 bool __weak bpf_helper_changes_pkt_data(void *func) 2412 { 2413 return false; 2414 } 2415 2416 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage 2417 * analysis code and wants explicit zero extension inserted by verifier. 2418 * Otherwise, return FALSE. 2419 * 2420 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if 2421 * you don't override this. JITs that don't want these extra insns can detect 2422 * them using insn_is_zext. 2423 */ 2424 bool __weak bpf_jit_needs_zext(void) 2425 { 2426 return false; 2427 } 2428 2429 bool __weak bpf_jit_supports_kfunc_call(void) 2430 { 2431 return false; 2432 } 2433 2434 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call 2435 * skb_copy_bits(), so provide a weak definition of it for NET-less config. 2436 */ 2437 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to, 2438 int len) 2439 { 2440 return -EFAULT; 2441 } 2442 2443 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 2444 void *addr1, void *addr2) 2445 { 2446 return -ENOTSUPP; 2447 } 2448 2449 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 2450 EXPORT_SYMBOL(bpf_stats_enabled_key); 2451 2452 /* All definitions of tracepoints related to BPF. */ 2453 #define CREATE_TRACE_POINTS 2454 #include <linux/bpf_trace.h> 2455 2456 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception); 2457 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx); 2458