xref: /openbmc/linux/kernel/bpf/core.c (revision 79a93295)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 
32 #include <asm/unaligned.h>
33 
34 /* Registers */
35 #define BPF_R0	regs[BPF_REG_0]
36 #define BPF_R1	regs[BPF_REG_1]
37 #define BPF_R2	regs[BPF_REG_2]
38 #define BPF_R3	regs[BPF_REG_3]
39 #define BPF_R4	regs[BPF_REG_4]
40 #define BPF_R5	regs[BPF_REG_5]
41 #define BPF_R6	regs[BPF_REG_6]
42 #define BPF_R7	regs[BPF_REG_7]
43 #define BPF_R8	regs[BPF_REG_8]
44 #define BPF_R9	regs[BPF_REG_9]
45 #define BPF_R10	regs[BPF_REG_10]
46 
47 /* Named registers */
48 #define DST	regs[insn->dst_reg]
49 #define SRC	regs[insn->src_reg]
50 #define FP	regs[BPF_REG_FP]
51 #define ARG1	regs[BPF_REG_ARG1]
52 #define CTX	regs[BPF_REG_CTX]
53 #define IMM	insn->imm
54 
55 /* No hurry in this branch
56  *
57  * Exported for the bpf jit load helper.
58  */
59 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
60 {
61 	u8 *ptr = NULL;
62 
63 	if (k >= SKF_NET_OFF)
64 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
65 	else if (k >= SKF_LL_OFF)
66 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
67 
68 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
69 		return ptr;
70 
71 	return NULL;
72 }
73 
74 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
75 {
76 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
77 			  gfp_extra_flags;
78 	struct bpf_prog_aux *aux;
79 	struct bpf_prog *fp;
80 
81 	size = round_up(size, PAGE_SIZE);
82 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
83 	if (fp == NULL)
84 		return NULL;
85 
86 	kmemcheck_annotate_bitfield(fp, meta);
87 
88 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
89 	if (aux == NULL) {
90 		vfree(fp);
91 		return NULL;
92 	}
93 
94 	fp->pages = size / PAGE_SIZE;
95 	fp->aux = aux;
96 	fp->aux->prog = fp;
97 
98 	return fp;
99 }
100 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
101 
102 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
103 				  gfp_t gfp_extra_flags)
104 {
105 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
106 			  gfp_extra_flags;
107 	struct bpf_prog *fp;
108 	u32 pages, delta;
109 	int ret;
110 
111 	BUG_ON(fp_old == NULL);
112 
113 	size = round_up(size, PAGE_SIZE);
114 	pages = size / PAGE_SIZE;
115 	if (pages <= fp_old->pages)
116 		return fp_old;
117 
118 	delta = pages - fp_old->pages;
119 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
120 	if (ret)
121 		return NULL;
122 
123 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
124 	if (fp == NULL) {
125 		__bpf_prog_uncharge(fp_old->aux->user, delta);
126 	} else {
127 		kmemcheck_annotate_bitfield(fp, meta);
128 
129 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
130 		fp->pages = pages;
131 		fp->aux->prog = fp;
132 
133 		/* We keep fp->aux from fp_old around in the new
134 		 * reallocated structure.
135 		 */
136 		fp_old->aux = NULL;
137 		__bpf_prog_free(fp_old);
138 	}
139 
140 	return fp;
141 }
142 
143 void __bpf_prog_free(struct bpf_prog *fp)
144 {
145 	kfree(fp->aux);
146 	vfree(fp);
147 }
148 
149 int bpf_prog_calc_digest(struct bpf_prog *fp)
150 {
151 	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
152 	u32 raw_size = bpf_prog_digest_scratch_size(fp);
153 	u32 ws[SHA_WORKSPACE_WORDS];
154 	u32 i, bsize, psize, blocks;
155 	struct bpf_insn *dst;
156 	bool was_ld_map;
157 	u8 *raw, *todo;
158 	__be32 *result;
159 	__be64 *bits;
160 
161 	raw = vmalloc(raw_size);
162 	if (!raw)
163 		return -ENOMEM;
164 
165 	sha_init(fp->digest);
166 	memset(ws, 0, sizeof(ws));
167 
168 	/* We need to take out the map fd for the digest calculation
169 	 * since they are unstable from user space side.
170 	 */
171 	dst = (void *)raw;
172 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
173 		dst[i] = fp->insnsi[i];
174 		if (!was_ld_map &&
175 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
176 		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
177 			was_ld_map = true;
178 			dst[i].imm = 0;
179 		} else if (was_ld_map &&
180 			   dst[i].code == 0 &&
181 			   dst[i].dst_reg == 0 &&
182 			   dst[i].src_reg == 0 &&
183 			   dst[i].off == 0) {
184 			was_ld_map = false;
185 			dst[i].imm = 0;
186 		} else {
187 			was_ld_map = false;
188 		}
189 	}
190 
191 	psize = bpf_prog_insn_size(fp);
192 	memset(&raw[psize], 0, raw_size - psize);
193 	raw[psize++] = 0x80;
194 
195 	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
196 	blocks = bsize / SHA_MESSAGE_BYTES;
197 	todo   = raw;
198 	if (bsize - psize >= sizeof(__be64)) {
199 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
200 	} else {
201 		bits = (__be64 *)(todo + bsize + bits_offset);
202 		blocks++;
203 	}
204 	*bits = cpu_to_be64((psize - 1) << 3);
205 
206 	while (blocks--) {
207 		sha_transform(fp->digest, todo, ws);
208 		todo += SHA_MESSAGE_BYTES;
209 	}
210 
211 	result = (__force __be32 *)fp->digest;
212 	for (i = 0; i < SHA_DIGEST_WORDS; i++)
213 		result[i] = cpu_to_be32(fp->digest[i]);
214 
215 	vfree(raw);
216 	return 0;
217 }
218 
219 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
220 {
221 	return BPF_CLASS(insn->code) == BPF_JMP  &&
222 	       /* Call and Exit are both special jumps with no
223 		* target inside the BPF instruction image.
224 		*/
225 	       BPF_OP(insn->code) != BPF_CALL &&
226 	       BPF_OP(insn->code) != BPF_EXIT;
227 }
228 
229 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
230 {
231 	struct bpf_insn *insn = prog->insnsi;
232 	u32 i, insn_cnt = prog->len;
233 
234 	for (i = 0; i < insn_cnt; i++, insn++) {
235 		if (!bpf_is_jmp_and_has_target(insn))
236 			continue;
237 
238 		/* Adjust offset of jmps if we cross boundaries. */
239 		if (i < pos && i + insn->off + 1 > pos)
240 			insn->off += delta;
241 		else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
242 			insn->off -= delta;
243 	}
244 }
245 
246 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
247 				       const struct bpf_insn *patch, u32 len)
248 {
249 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
250 	struct bpf_prog *prog_adj;
251 
252 	/* Since our patchlet doesn't expand the image, we're done. */
253 	if (insn_delta == 0) {
254 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
255 		return prog;
256 	}
257 
258 	insn_adj_cnt = prog->len + insn_delta;
259 
260 	/* Several new instructions need to be inserted. Make room
261 	 * for them. Likely, there's no need for a new allocation as
262 	 * last page could have large enough tailroom.
263 	 */
264 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
265 				    GFP_USER);
266 	if (!prog_adj)
267 		return NULL;
268 
269 	prog_adj->len = insn_adj_cnt;
270 
271 	/* Patching happens in 3 steps:
272 	 *
273 	 * 1) Move over tail of insnsi from next instruction onwards,
274 	 *    so we can patch the single target insn with one or more
275 	 *    new ones (patching is always from 1 to n insns, n > 0).
276 	 * 2) Inject new instructions at the target location.
277 	 * 3) Adjust branch offsets if necessary.
278 	 */
279 	insn_rest = insn_adj_cnt - off - len;
280 
281 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
282 		sizeof(*patch) * insn_rest);
283 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
284 
285 	bpf_adj_branches(prog_adj, off, insn_delta);
286 
287 	return prog_adj;
288 }
289 
290 #ifdef CONFIG_BPF_JIT
291 struct bpf_binary_header *
292 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
293 		     unsigned int alignment,
294 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
295 {
296 	struct bpf_binary_header *hdr;
297 	unsigned int size, hole, start;
298 
299 	/* Most of BPF filters are really small, but if some of them
300 	 * fill a page, allow at least 128 extra bytes to insert a
301 	 * random section of illegal instructions.
302 	 */
303 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
304 	hdr = module_alloc(size);
305 	if (hdr == NULL)
306 		return NULL;
307 
308 	/* Fill space with illegal/arch-dep instructions. */
309 	bpf_fill_ill_insns(hdr, size);
310 
311 	hdr->pages = size / PAGE_SIZE;
312 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
313 		     PAGE_SIZE - sizeof(*hdr));
314 	start = (get_random_int() % hole) & ~(alignment - 1);
315 
316 	/* Leave a random number of instructions before BPF code. */
317 	*image_ptr = &hdr->image[start];
318 
319 	return hdr;
320 }
321 
322 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
323 {
324 	module_memfree(hdr);
325 }
326 
327 int bpf_jit_harden __read_mostly;
328 
329 static int bpf_jit_blind_insn(const struct bpf_insn *from,
330 			      const struct bpf_insn *aux,
331 			      struct bpf_insn *to_buff)
332 {
333 	struct bpf_insn *to = to_buff;
334 	u32 imm_rnd = get_random_int();
335 	s16 off;
336 
337 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
338 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
339 
340 	if (from->imm == 0 &&
341 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
342 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
343 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
344 		goto out;
345 	}
346 
347 	switch (from->code) {
348 	case BPF_ALU | BPF_ADD | BPF_K:
349 	case BPF_ALU | BPF_SUB | BPF_K:
350 	case BPF_ALU | BPF_AND | BPF_K:
351 	case BPF_ALU | BPF_OR  | BPF_K:
352 	case BPF_ALU | BPF_XOR | BPF_K:
353 	case BPF_ALU | BPF_MUL | BPF_K:
354 	case BPF_ALU | BPF_MOV | BPF_K:
355 	case BPF_ALU | BPF_DIV | BPF_K:
356 	case BPF_ALU | BPF_MOD | BPF_K:
357 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
358 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
359 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
360 		break;
361 
362 	case BPF_ALU64 | BPF_ADD | BPF_K:
363 	case BPF_ALU64 | BPF_SUB | BPF_K:
364 	case BPF_ALU64 | BPF_AND | BPF_K:
365 	case BPF_ALU64 | BPF_OR  | BPF_K:
366 	case BPF_ALU64 | BPF_XOR | BPF_K:
367 	case BPF_ALU64 | BPF_MUL | BPF_K:
368 	case BPF_ALU64 | BPF_MOV | BPF_K:
369 	case BPF_ALU64 | BPF_DIV | BPF_K:
370 	case BPF_ALU64 | BPF_MOD | BPF_K:
371 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
372 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
373 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
374 		break;
375 
376 	case BPF_JMP | BPF_JEQ  | BPF_K:
377 	case BPF_JMP | BPF_JNE  | BPF_K:
378 	case BPF_JMP | BPF_JGT  | BPF_K:
379 	case BPF_JMP | BPF_JGE  | BPF_K:
380 	case BPF_JMP | BPF_JSGT | BPF_K:
381 	case BPF_JMP | BPF_JSGE | BPF_K:
382 	case BPF_JMP | BPF_JSET | BPF_K:
383 		/* Accommodate for extra offset in case of a backjump. */
384 		off = from->off;
385 		if (off < 0)
386 			off -= 2;
387 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
388 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
389 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
390 		break;
391 
392 	case BPF_LD | BPF_ABS | BPF_W:
393 	case BPF_LD | BPF_ABS | BPF_H:
394 	case BPF_LD | BPF_ABS | BPF_B:
395 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
396 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
397 		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
398 		break;
399 
400 	case BPF_LD | BPF_IND | BPF_W:
401 	case BPF_LD | BPF_IND | BPF_H:
402 	case BPF_LD | BPF_IND | BPF_B:
403 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
404 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
405 		*to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
406 		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
407 		break;
408 
409 	case BPF_LD | BPF_IMM | BPF_DW:
410 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
411 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
412 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
413 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
414 		break;
415 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
416 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
417 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
418 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
419 		break;
420 
421 	case BPF_ST | BPF_MEM | BPF_DW:
422 	case BPF_ST | BPF_MEM | BPF_W:
423 	case BPF_ST | BPF_MEM | BPF_H:
424 	case BPF_ST | BPF_MEM | BPF_B:
425 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
426 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
427 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
428 		break;
429 	}
430 out:
431 	return to - to_buff;
432 }
433 
434 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
435 					      gfp_t gfp_extra_flags)
436 {
437 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
438 			  gfp_extra_flags;
439 	struct bpf_prog *fp;
440 
441 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
442 	if (fp != NULL) {
443 		kmemcheck_annotate_bitfield(fp, meta);
444 
445 		/* aux->prog still points to the fp_other one, so
446 		 * when promoting the clone to the real program,
447 		 * this still needs to be adapted.
448 		 */
449 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
450 	}
451 
452 	return fp;
453 }
454 
455 static void bpf_prog_clone_free(struct bpf_prog *fp)
456 {
457 	/* aux was stolen by the other clone, so we cannot free
458 	 * it from this path! It will be freed eventually by the
459 	 * other program on release.
460 	 *
461 	 * At this point, we don't need a deferred release since
462 	 * clone is guaranteed to not be locked.
463 	 */
464 	fp->aux = NULL;
465 	__bpf_prog_free(fp);
466 }
467 
468 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
469 {
470 	/* We have to repoint aux->prog to self, as we don't
471 	 * know whether fp here is the clone or the original.
472 	 */
473 	fp->aux->prog = fp;
474 	bpf_prog_clone_free(fp_other);
475 }
476 
477 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
478 {
479 	struct bpf_insn insn_buff[16], aux[2];
480 	struct bpf_prog *clone, *tmp;
481 	int insn_delta, insn_cnt;
482 	struct bpf_insn *insn;
483 	int i, rewritten;
484 
485 	if (!bpf_jit_blinding_enabled())
486 		return prog;
487 
488 	clone = bpf_prog_clone_create(prog, GFP_USER);
489 	if (!clone)
490 		return ERR_PTR(-ENOMEM);
491 
492 	insn_cnt = clone->len;
493 	insn = clone->insnsi;
494 
495 	for (i = 0; i < insn_cnt; i++, insn++) {
496 		/* We temporarily need to hold the original ld64 insn
497 		 * so that we can still access the first part in the
498 		 * second blinding run.
499 		 */
500 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
501 		    insn[1].code == 0)
502 			memcpy(aux, insn, sizeof(aux));
503 
504 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
505 		if (!rewritten)
506 			continue;
507 
508 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
509 		if (!tmp) {
510 			/* Patching may have repointed aux->prog during
511 			 * realloc from the original one, so we need to
512 			 * fix it up here on error.
513 			 */
514 			bpf_jit_prog_release_other(prog, clone);
515 			return ERR_PTR(-ENOMEM);
516 		}
517 
518 		clone = tmp;
519 		insn_delta = rewritten - 1;
520 
521 		/* Walk new program and skip insns we just inserted. */
522 		insn = clone->insnsi + i + insn_delta;
523 		insn_cnt += insn_delta;
524 		i        += insn_delta;
525 	}
526 
527 	return clone;
528 }
529 #endif /* CONFIG_BPF_JIT */
530 
531 /* Base function for offset calculation. Needs to go into .text section,
532  * therefore keeping it non-static as well; will also be used by JITs
533  * anyway later on, so do not let the compiler omit it.
534  */
535 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
536 {
537 	return 0;
538 }
539 EXPORT_SYMBOL_GPL(__bpf_call_base);
540 
541 /**
542  *	__bpf_prog_run - run eBPF program on a given context
543  *	@ctx: is the data we are operating on
544  *	@insn: is the array of eBPF instructions
545  *
546  * Decode and execute eBPF instructions.
547  */
548 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
549 {
550 	u64 stack[MAX_BPF_STACK / sizeof(u64)];
551 	u64 regs[MAX_BPF_REG], tmp;
552 	static const void *jumptable[256] = {
553 		[0 ... 255] = &&default_label,
554 		/* Now overwrite non-defaults ... */
555 		/* 32 bit ALU operations */
556 		[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
557 		[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
558 		[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
559 		[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
560 		[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
561 		[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
562 		[BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
563 		[BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
564 		[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
565 		[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
566 		[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
567 		[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
568 		[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
569 		[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
570 		[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
571 		[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
572 		[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
573 		[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
574 		[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
575 		[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
576 		[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
577 		[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
578 		[BPF_ALU | BPF_NEG] = &&ALU_NEG,
579 		[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
580 		[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
581 		/* 64 bit ALU operations */
582 		[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
583 		[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
584 		[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
585 		[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
586 		[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
587 		[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
588 		[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
589 		[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
590 		[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
591 		[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
592 		[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
593 		[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
594 		[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
595 		[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
596 		[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
597 		[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
598 		[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
599 		[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
600 		[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
601 		[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
602 		[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
603 		[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
604 		[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
605 		[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
606 		[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
607 		/* Call instruction */
608 		[BPF_JMP | BPF_CALL] = &&JMP_CALL,
609 		[BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
610 		/* Jumps */
611 		[BPF_JMP | BPF_JA] = &&JMP_JA,
612 		[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
613 		[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
614 		[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
615 		[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
616 		[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
617 		[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
618 		[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
619 		[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
620 		[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
621 		[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
622 		[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
623 		[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
624 		[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
625 		[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
626 		/* Program return */
627 		[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
628 		/* Store instructions */
629 		[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
630 		[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
631 		[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
632 		[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
633 		[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
634 		[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
635 		[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
636 		[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
637 		[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
638 		[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
639 		/* Load instructions */
640 		[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
641 		[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
642 		[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
643 		[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
644 		[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
645 		[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
646 		[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
647 		[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
648 		[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
649 		[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
650 		[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
651 	};
652 	u32 tail_call_cnt = 0;
653 	void *ptr;
654 	int off;
655 
656 #define CONT	 ({ insn++; goto select_insn; })
657 #define CONT_JMP ({ insn++; goto select_insn; })
658 
659 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
660 	ARG1 = (u64) (unsigned long) ctx;
661 
662 select_insn:
663 	goto *jumptable[insn->code];
664 
665 	/* ALU */
666 #define ALU(OPCODE, OP)			\
667 	ALU64_##OPCODE##_X:		\
668 		DST = DST OP SRC;	\
669 		CONT;			\
670 	ALU_##OPCODE##_X:		\
671 		DST = (u32) DST OP (u32) SRC;	\
672 		CONT;			\
673 	ALU64_##OPCODE##_K:		\
674 		DST = DST OP IMM;		\
675 		CONT;			\
676 	ALU_##OPCODE##_K:		\
677 		DST = (u32) DST OP (u32) IMM;	\
678 		CONT;
679 
680 	ALU(ADD,  +)
681 	ALU(SUB,  -)
682 	ALU(AND,  &)
683 	ALU(OR,   |)
684 	ALU(LSH, <<)
685 	ALU(RSH, >>)
686 	ALU(XOR,  ^)
687 	ALU(MUL,  *)
688 #undef ALU
689 	ALU_NEG:
690 		DST = (u32) -DST;
691 		CONT;
692 	ALU64_NEG:
693 		DST = -DST;
694 		CONT;
695 	ALU_MOV_X:
696 		DST = (u32) SRC;
697 		CONT;
698 	ALU_MOV_K:
699 		DST = (u32) IMM;
700 		CONT;
701 	ALU64_MOV_X:
702 		DST = SRC;
703 		CONT;
704 	ALU64_MOV_K:
705 		DST = IMM;
706 		CONT;
707 	LD_IMM_DW:
708 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
709 		insn++;
710 		CONT;
711 	ALU64_ARSH_X:
712 		(*(s64 *) &DST) >>= SRC;
713 		CONT;
714 	ALU64_ARSH_K:
715 		(*(s64 *) &DST) >>= IMM;
716 		CONT;
717 	ALU64_MOD_X:
718 		if (unlikely(SRC == 0))
719 			return 0;
720 		div64_u64_rem(DST, SRC, &tmp);
721 		DST = tmp;
722 		CONT;
723 	ALU_MOD_X:
724 		if (unlikely(SRC == 0))
725 			return 0;
726 		tmp = (u32) DST;
727 		DST = do_div(tmp, (u32) SRC);
728 		CONT;
729 	ALU64_MOD_K:
730 		div64_u64_rem(DST, IMM, &tmp);
731 		DST = tmp;
732 		CONT;
733 	ALU_MOD_K:
734 		tmp = (u32) DST;
735 		DST = do_div(tmp, (u32) IMM);
736 		CONT;
737 	ALU64_DIV_X:
738 		if (unlikely(SRC == 0))
739 			return 0;
740 		DST = div64_u64(DST, SRC);
741 		CONT;
742 	ALU_DIV_X:
743 		if (unlikely(SRC == 0))
744 			return 0;
745 		tmp = (u32) DST;
746 		do_div(tmp, (u32) SRC);
747 		DST = (u32) tmp;
748 		CONT;
749 	ALU64_DIV_K:
750 		DST = div64_u64(DST, IMM);
751 		CONT;
752 	ALU_DIV_K:
753 		tmp = (u32) DST;
754 		do_div(tmp, (u32) IMM);
755 		DST = (u32) tmp;
756 		CONT;
757 	ALU_END_TO_BE:
758 		switch (IMM) {
759 		case 16:
760 			DST = (__force u16) cpu_to_be16(DST);
761 			break;
762 		case 32:
763 			DST = (__force u32) cpu_to_be32(DST);
764 			break;
765 		case 64:
766 			DST = (__force u64) cpu_to_be64(DST);
767 			break;
768 		}
769 		CONT;
770 	ALU_END_TO_LE:
771 		switch (IMM) {
772 		case 16:
773 			DST = (__force u16) cpu_to_le16(DST);
774 			break;
775 		case 32:
776 			DST = (__force u32) cpu_to_le32(DST);
777 			break;
778 		case 64:
779 			DST = (__force u64) cpu_to_le64(DST);
780 			break;
781 		}
782 		CONT;
783 
784 	/* CALL */
785 	JMP_CALL:
786 		/* Function call scratches BPF_R1-BPF_R5 registers,
787 		 * preserves BPF_R6-BPF_R9, and stores return value
788 		 * into BPF_R0.
789 		 */
790 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
791 						       BPF_R4, BPF_R5);
792 		CONT;
793 
794 	JMP_TAIL_CALL: {
795 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
796 		struct bpf_array *array = container_of(map, struct bpf_array, map);
797 		struct bpf_prog *prog;
798 		u64 index = BPF_R3;
799 
800 		if (unlikely(index >= array->map.max_entries))
801 			goto out;
802 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
803 			goto out;
804 
805 		tail_call_cnt++;
806 
807 		prog = READ_ONCE(array->ptrs[index]);
808 		if (!prog)
809 			goto out;
810 
811 		/* ARG1 at this point is guaranteed to point to CTX from
812 		 * the verifier side due to the fact that the tail call is
813 		 * handeled like a helper, that is, bpf_tail_call_proto,
814 		 * where arg1_type is ARG_PTR_TO_CTX.
815 		 */
816 		insn = prog->insnsi;
817 		goto select_insn;
818 out:
819 		CONT;
820 	}
821 	/* JMP */
822 	JMP_JA:
823 		insn += insn->off;
824 		CONT;
825 	JMP_JEQ_X:
826 		if (DST == SRC) {
827 			insn += insn->off;
828 			CONT_JMP;
829 		}
830 		CONT;
831 	JMP_JEQ_K:
832 		if (DST == IMM) {
833 			insn += insn->off;
834 			CONT_JMP;
835 		}
836 		CONT;
837 	JMP_JNE_X:
838 		if (DST != SRC) {
839 			insn += insn->off;
840 			CONT_JMP;
841 		}
842 		CONT;
843 	JMP_JNE_K:
844 		if (DST != IMM) {
845 			insn += insn->off;
846 			CONT_JMP;
847 		}
848 		CONT;
849 	JMP_JGT_X:
850 		if (DST > SRC) {
851 			insn += insn->off;
852 			CONT_JMP;
853 		}
854 		CONT;
855 	JMP_JGT_K:
856 		if (DST > IMM) {
857 			insn += insn->off;
858 			CONT_JMP;
859 		}
860 		CONT;
861 	JMP_JGE_X:
862 		if (DST >= SRC) {
863 			insn += insn->off;
864 			CONT_JMP;
865 		}
866 		CONT;
867 	JMP_JGE_K:
868 		if (DST >= IMM) {
869 			insn += insn->off;
870 			CONT_JMP;
871 		}
872 		CONT;
873 	JMP_JSGT_X:
874 		if (((s64) DST) > ((s64) SRC)) {
875 			insn += insn->off;
876 			CONT_JMP;
877 		}
878 		CONT;
879 	JMP_JSGT_K:
880 		if (((s64) DST) > ((s64) IMM)) {
881 			insn += insn->off;
882 			CONT_JMP;
883 		}
884 		CONT;
885 	JMP_JSGE_X:
886 		if (((s64) DST) >= ((s64) SRC)) {
887 			insn += insn->off;
888 			CONT_JMP;
889 		}
890 		CONT;
891 	JMP_JSGE_K:
892 		if (((s64) DST) >= ((s64) IMM)) {
893 			insn += insn->off;
894 			CONT_JMP;
895 		}
896 		CONT;
897 	JMP_JSET_X:
898 		if (DST & SRC) {
899 			insn += insn->off;
900 			CONT_JMP;
901 		}
902 		CONT;
903 	JMP_JSET_K:
904 		if (DST & IMM) {
905 			insn += insn->off;
906 			CONT_JMP;
907 		}
908 		CONT;
909 	JMP_EXIT:
910 		return BPF_R0;
911 
912 	/* STX and ST and LDX*/
913 #define LDST(SIZEOP, SIZE)						\
914 	STX_MEM_##SIZEOP:						\
915 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
916 		CONT;							\
917 	ST_MEM_##SIZEOP:						\
918 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
919 		CONT;							\
920 	LDX_MEM_##SIZEOP:						\
921 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
922 		CONT;
923 
924 	LDST(B,   u8)
925 	LDST(H,  u16)
926 	LDST(W,  u32)
927 	LDST(DW, u64)
928 #undef LDST
929 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
930 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
931 			   (DST + insn->off));
932 		CONT;
933 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
934 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
935 			     (DST + insn->off));
936 		CONT;
937 	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
938 		off = IMM;
939 load_word:
940 		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
941 		 * only appearing in the programs where ctx ==
942 		 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
943 		 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
944 		 * internal BPF verifier will check that BPF_R6 ==
945 		 * ctx.
946 		 *
947 		 * BPF_ABS and BPF_IND are wrappers of function calls,
948 		 * so they scratch BPF_R1-BPF_R5 registers, preserve
949 		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
950 		 *
951 		 * Implicit input:
952 		 *   ctx == skb == BPF_R6 == CTX
953 		 *
954 		 * Explicit input:
955 		 *   SRC == any register
956 		 *   IMM == 32-bit immediate
957 		 *
958 		 * Output:
959 		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
960 		 */
961 
962 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
963 		if (likely(ptr != NULL)) {
964 			BPF_R0 = get_unaligned_be32(ptr);
965 			CONT;
966 		}
967 
968 		return 0;
969 	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
970 		off = IMM;
971 load_half:
972 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
973 		if (likely(ptr != NULL)) {
974 			BPF_R0 = get_unaligned_be16(ptr);
975 			CONT;
976 		}
977 
978 		return 0;
979 	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
980 		off = IMM;
981 load_byte:
982 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
983 		if (likely(ptr != NULL)) {
984 			BPF_R0 = *(u8 *)ptr;
985 			CONT;
986 		}
987 
988 		return 0;
989 	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
990 		off = IMM + SRC;
991 		goto load_word;
992 	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
993 		off = IMM + SRC;
994 		goto load_half;
995 	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
996 		off = IMM + SRC;
997 		goto load_byte;
998 
999 	default_label:
1000 		/* If we ever reach this, we have a bug somewhere. */
1001 		WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1002 		return 0;
1003 }
1004 STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
1005 
1006 bool bpf_prog_array_compatible(struct bpf_array *array,
1007 			       const struct bpf_prog *fp)
1008 {
1009 	if (!array->owner_prog_type) {
1010 		/* There's no owner yet where we could check for
1011 		 * compatibility.
1012 		 */
1013 		array->owner_prog_type = fp->type;
1014 		array->owner_jited = fp->jited;
1015 
1016 		return true;
1017 	}
1018 
1019 	return array->owner_prog_type == fp->type &&
1020 	       array->owner_jited == fp->jited;
1021 }
1022 
1023 static int bpf_check_tail_call(const struct bpf_prog *fp)
1024 {
1025 	struct bpf_prog_aux *aux = fp->aux;
1026 	int i;
1027 
1028 	for (i = 0; i < aux->used_map_cnt; i++) {
1029 		struct bpf_map *map = aux->used_maps[i];
1030 		struct bpf_array *array;
1031 
1032 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1033 			continue;
1034 
1035 		array = container_of(map, struct bpf_array, map);
1036 		if (!bpf_prog_array_compatible(array, fp))
1037 			return -EINVAL;
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 /**
1044  *	bpf_prog_select_runtime - select exec runtime for BPF program
1045  *	@fp: bpf_prog populated with internal BPF program
1046  *	@err: pointer to error variable
1047  *
1048  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1049  * The BPF program will be executed via BPF_PROG_RUN() macro.
1050  */
1051 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1052 {
1053 	fp->bpf_func = (void *) __bpf_prog_run;
1054 
1055 	/* eBPF JITs can rewrite the program in case constant
1056 	 * blinding is active. However, in case of error during
1057 	 * blinding, bpf_int_jit_compile() must always return a
1058 	 * valid program, which in this case would simply not
1059 	 * be JITed, but falls back to the interpreter.
1060 	 */
1061 	fp = bpf_int_jit_compile(fp);
1062 	bpf_prog_lock_ro(fp);
1063 
1064 	/* The tail call compatibility check can only be done at
1065 	 * this late stage as we need to determine, if we deal
1066 	 * with JITed or non JITed program concatenations and not
1067 	 * all eBPF JITs might immediately support all features.
1068 	 */
1069 	*err = bpf_check_tail_call(fp);
1070 
1071 	return fp;
1072 }
1073 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1074 
1075 static void bpf_prog_free_deferred(struct work_struct *work)
1076 {
1077 	struct bpf_prog_aux *aux;
1078 
1079 	aux = container_of(work, struct bpf_prog_aux, work);
1080 	bpf_jit_free(aux->prog);
1081 }
1082 
1083 /* Free internal BPF program */
1084 void bpf_prog_free(struct bpf_prog *fp)
1085 {
1086 	struct bpf_prog_aux *aux = fp->aux;
1087 
1088 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
1089 	schedule_work(&aux->work);
1090 }
1091 EXPORT_SYMBOL_GPL(bpf_prog_free);
1092 
1093 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1094 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1095 
1096 void bpf_user_rnd_init_once(void)
1097 {
1098 	prandom_init_once(&bpf_user_rnd_state);
1099 }
1100 
1101 BPF_CALL_0(bpf_user_rnd_u32)
1102 {
1103 	/* Should someone ever have the rather unwise idea to use some
1104 	 * of the registers passed into this function, then note that
1105 	 * this function is called from native eBPF and classic-to-eBPF
1106 	 * transformations. Register assignments from both sides are
1107 	 * different, f.e. classic always sets fn(ctx, A, X) here.
1108 	 */
1109 	struct rnd_state *state;
1110 	u32 res;
1111 
1112 	state = &get_cpu_var(bpf_user_rnd_state);
1113 	res = prandom_u32_state(state);
1114 	put_cpu_var(bpf_user_rnd_state);
1115 
1116 	return res;
1117 }
1118 
1119 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1120 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1121 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1122 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1123 
1124 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1125 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1126 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1127 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1128 
1129 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1130 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1131 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1132 
1133 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1134 {
1135 	return NULL;
1136 }
1137 
1138 u64 __weak
1139 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1140 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1141 {
1142 	return -ENOTSUPP;
1143 }
1144 
1145 /* Always built-in helper functions. */
1146 const struct bpf_func_proto bpf_tail_call_proto = {
1147 	.func		= NULL,
1148 	.gpl_only	= false,
1149 	.ret_type	= RET_VOID,
1150 	.arg1_type	= ARG_PTR_TO_CTX,
1151 	.arg2_type	= ARG_CONST_MAP_PTR,
1152 	.arg3_type	= ARG_ANYTHING,
1153 };
1154 
1155 /* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
1156 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1157 {
1158 	return prog;
1159 }
1160 
1161 bool __weak bpf_helper_changes_pkt_data(void *func)
1162 {
1163 	return false;
1164 }
1165 
1166 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1167  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1168  */
1169 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1170 			 int len)
1171 {
1172 	return -EFAULT;
1173 }
1174