xref: /openbmc/linux/kernel/bpf/core.c (revision 4f6cce39)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
34 
35 #include <asm/unaligned.h>
36 
37 /* Registers */
38 #define BPF_R0	regs[BPF_REG_0]
39 #define BPF_R1	regs[BPF_REG_1]
40 #define BPF_R2	regs[BPF_REG_2]
41 #define BPF_R3	regs[BPF_REG_3]
42 #define BPF_R4	regs[BPF_REG_4]
43 #define BPF_R5	regs[BPF_REG_5]
44 #define BPF_R6	regs[BPF_REG_6]
45 #define BPF_R7	regs[BPF_REG_7]
46 #define BPF_R8	regs[BPF_REG_8]
47 #define BPF_R9	regs[BPF_REG_9]
48 #define BPF_R10	regs[BPF_REG_10]
49 
50 /* Named registers */
51 #define DST	regs[insn->dst_reg]
52 #define SRC	regs[insn->src_reg]
53 #define FP	regs[BPF_REG_FP]
54 #define ARG1	regs[BPF_REG_ARG1]
55 #define CTX	regs[BPF_REG_CTX]
56 #define IMM	insn->imm
57 
58 /* No hurry in this branch
59  *
60  * Exported for the bpf jit load helper.
61  */
62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
63 {
64 	u8 *ptr = NULL;
65 
66 	if (k >= SKF_NET_OFF)
67 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
68 	else if (k >= SKF_LL_OFF)
69 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
70 
71 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
72 		return ptr;
73 
74 	return NULL;
75 }
76 
77 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
78 {
79 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
80 			  gfp_extra_flags;
81 	struct bpf_prog_aux *aux;
82 	struct bpf_prog *fp;
83 
84 	size = round_up(size, PAGE_SIZE);
85 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
86 	if (fp == NULL)
87 		return NULL;
88 
89 	kmemcheck_annotate_bitfield(fp, meta);
90 
91 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
92 	if (aux == NULL) {
93 		vfree(fp);
94 		return NULL;
95 	}
96 
97 	fp->pages = size / PAGE_SIZE;
98 	fp->aux = aux;
99 	fp->aux->prog = fp;
100 
101 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
102 
103 	return fp;
104 }
105 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
106 
107 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
108 				  gfp_t gfp_extra_flags)
109 {
110 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
111 			  gfp_extra_flags;
112 	struct bpf_prog *fp;
113 	u32 pages, delta;
114 	int ret;
115 
116 	BUG_ON(fp_old == NULL);
117 
118 	size = round_up(size, PAGE_SIZE);
119 	pages = size / PAGE_SIZE;
120 	if (pages <= fp_old->pages)
121 		return fp_old;
122 
123 	delta = pages - fp_old->pages;
124 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
125 	if (ret)
126 		return NULL;
127 
128 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
129 	if (fp == NULL) {
130 		__bpf_prog_uncharge(fp_old->aux->user, delta);
131 	} else {
132 		kmemcheck_annotate_bitfield(fp, meta);
133 
134 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
135 		fp->pages = pages;
136 		fp->aux->prog = fp;
137 
138 		/* We keep fp->aux from fp_old around in the new
139 		 * reallocated structure.
140 		 */
141 		fp_old->aux = NULL;
142 		__bpf_prog_free(fp_old);
143 	}
144 
145 	return fp;
146 }
147 
148 void __bpf_prog_free(struct bpf_prog *fp)
149 {
150 	kfree(fp->aux);
151 	vfree(fp);
152 }
153 
154 int bpf_prog_calc_tag(struct bpf_prog *fp)
155 {
156 	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
157 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
158 	u32 digest[SHA_DIGEST_WORDS];
159 	u32 ws[SHA_WORKSPACE_WORDS];
160 	u32 i, bsize, psize, blocks;
161 	struct bpf_insn *dst;
162 	bool was_ld_map;
163 	u8 *raw, *todo;
164 	__be32 *result;
165 	__be64 *bits;
166 
167 	raw = vmalloc(raw_size);
168 	if (!raw)
169 		return -ENOMEM;
170 
171 	sha_init(digest);
172 	memset(ws, 0, sizeof(ws));
173 
174 	/* We need to take out the map fd for the digest calculation
175 	 * since they are unstable from user space side.
176 	 */
177 	dst = (void *)raw;
178 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
179 		dst[i] = fp->insnsi[i];
180 		if (!was_ld_map &&
181 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
182 		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
183 			was_ld_map = true;
184 			dst[i].imm = 0;
185 		} else if (was_ld_map &&
186 			   dst[i].code == 0 &&
187 			   dst[i].dst_reg == 0 &&
188 			   dst[i].src_reg == 0 &&
189 			   dst[i].off == 0) {
190 			was_ld_map = false;
191 			dst[i].imm = 0;
192 		} else {
193 			was_ld_map = false;
194 		}
195 	}
196 
197 	psize = bpf_prog_insn_size(fp);
198 	memset(&raw[psize], 0, raw_size - psize);
199 	raw[psize++] = 0x80;
200 
201 	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
202 	blocks = bsize / SHA_MESSAGE_BYTES;
203 	todo   = raw;
204 	if (bsize - psize >= sizeof(__be64)) {
205 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
206 	} else {
207 		bits = (__be64 *)(todo + bsize + bits_offset);
208 		blocks++;
209 	}
210 	*bits = cpu_to_be64((psize - 1) << 3);
211 
212 	while (blocks--) {
213 		sha_transform(digest, todo, ws);
214 		todo += SHA_MESSAGE_BYTES;
215 	}
216 
217 	result = (__force __be32 *)digest;
218 	for (i = 0; i < SHA_DIGEST_WORDS; i++)
219 		result[i] = cpu_to_be32(digest[i]);
220 	memcpy(fp->tag, result, sizeof(fp->tag));
221 
222 	vfree(raw);
223 	return 0;
224 }
225 
226 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
227 {
228 	return BPF_CLASS(insn->code) == BPF_JMP  &&
229 	       /* Call and Exit are both special jumps with no
230 		* target inside the BPF instruction image.
231 		*/
232 	       BPF_OP(insn->code) != BPF_CALL &&
233 	       BPF_OP(insn->code) != BPF_EXIT;
234 }
235 
236 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
237 {
238 	struct bpf_insn *insn = prog->insnsi;
239 	u32 i, insn_cnt = prog->len;
240 
241 	for (i = 0; i < insn_cnt; i++, insn++) {
242 		if (!bpf_is_jmp_and_has_target(insn))
243 			continue;
244 
245 		/* Adjust offset of jmps if we cross boundaries. */
246 		if (i < pos && i + insn->off + 1 > pos)
247 			insn->off += delta;
248 		else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
249 			insn->off -= delta;
250 	}
251 }
252 
253 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
254 				       const struct bpf_insn *patch, u32 len)
255 {
256 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
257 	struct bpf_prog *prog_adj;
258 
259 	/* Since our patchlet doesn't expand the image, we're done. */
260 	if (insn_delta == 0) {
261 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
262 		return prog;
263 	}
264 
265 	insn_adj_cnt = prog->len + insn_delta;
266 
267 	/* Several new instructions need to be inserted. Make room
268 	 * for them. Likely, there's no need for a new allocation as
269 	 * last page could have large enough tailroom.
270 	 */
271 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
272 				    GFP_USER);
273 	if (!prog_adj)
274 		return NULL;
275 
276 	prog_adj->len = insn_adj_cnt;
277 
278 	/* Patching happens in 3 steps:
279 	 *
280 	 * 1) Move over tail of insnsi from next instruction onwards,
281 	 *    so we can patch the single target insn with one or more
282 	 *    new ones (patching is always from 1 to n insns, n > 0).
283 	 * 2) Inject new instructions at the target location.
284 	 * 3) Adjust branch offsets if necessary.
285 	 */
286 	insn_rest = insn_adj_cnt - off - len;
287 
288 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
289 		sizeof(*patch) * insn_rest);
290 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
291 
292 	bpf_adj_branches(prog_adj, off, insn_delta);
293 
294 	return prog_adj;
295 }
296 
297 #ifdef CONFIG_BPF_JIT
298 static __always_inline void
299 bpf_get_prog_addr_region(const struct bpf_prog *prog,
300 			 unsigned long *symbol_start,
301 			 unsigned long *symbol_end)
302 {
303 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
304 	unsigned long addr = (unsigned long)hdr;
305 
306 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
307 
308 	*symbol_start = addr;
309 	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
310 }
311 
312 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
313 {
314 	BUILD_BUG_ON(sizeof("bpf_prog_") +
315 		     sizeof(prog->tag) * 2 + 1 > KSYM_NAME_LEN);
316 
317 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
318 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
319 	*sym = 0;
320 }
321 
322 static __always_inline unsigned long
323 bpf_get_prog_addr_start(struct latch_tree_node *n)
324 {
325 	unsigned long symbol_start, symbol_end;
326 	const struct bpf_prog_aux *aux;
327 
328 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
329 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
330 
331 	return symbol_start;
332 }
333 
334 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
335 					  struct latch_tree_node *b)
336 {
337 	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
338 }
339 
340 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
341 {
342 	unsigned long val = (unsigned long)key;
343 	unsigned long symbol_start, symbol_end;
344 	const struct bpf_prog_aux *aux;
345 
346 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
347 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
348 
349 	if (val < symbol_start)
350 		return -1;
351 	if (val >= symbol_end)
352 		return  1;
353 
354 	return 0;
355 }
356 
357 static const struct latch_tree_ops bpf_tree_ops = {
358 	.less	= bpf_tree_less,
359 	.comp	= bpf_tree_comp,
360 };
361 
362 static DEFINE_SPINLOCK(bpf_lock);
363 static LIST_HEAD(bpf_kallsyms);
364 static struct latch_tree_root bpf_tree __cacheline_aligned;
365 
366 int bpf_jit_kallsyms __read_mostly;
367 
368 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
369 {
370 	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
371 	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
372 	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
373 }
374 
375 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
376 {
377 	if (list_empty(&aux->ksym_lnode))
378 		return;
379 
380 	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
381 	list_del_rcu(&aux->ksym_lnode);
382 }
383 
384 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
385 {
386 	return fp->jited && !bpf_prog_was_classic(fp);
387 }
388 
389 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
390 {
391 	return list_empty(&fp->aux->ksym_lnode) ||
392 	       fp->aux->ksym_lnode.prev == LIST_POISON2;
393 }
394 
395 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
396 {
397 	unsigned long flags;
398 
399 	if (!bpf_prog_kallsyms_candidate(fp) ||
400 	    !capable(CAP_SYS_ADMIN))
401 		return;
402 
403 	spin_lock_irqsave(&bpf_lock, flags);
404 	bpf_prog_ksym_node_add(fp->aux);
405 	spin_unlock_irqrestore(&bpf_lock, flags);
406 }
407 
408 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
409 {
410 	unsigned long flags;
411 
412 	if (!bpf_prog_kallsyms_candidate(fp))
413 		return;
414 
415 	spin_lock_irqsave(&bpf_lock, flags);
416 	bpf_prog_ksym_node_del(fp->aux);
417 	spin_unlock_irqrestore(&bpf_lock, flags);
418 }
419 
420 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
421 {
422 	struct latch_tree_node *n;
423 
424 	if (!bpf_jit_kallsyms_enabled())
425 		return NULL;
426 
427 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
428 	return n ?
429 	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
430 	       NULL;
431 }
432 
433 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
434 				 unsigned long *off, char *sym)
435 {
436 	unsigned long symbol_start, symbol_end;
437 	struct bpf_prog *prog;
438 	char *ret = NULL;
439 
440 	rcu_read_lock();
441 	prog = bpf_prog_kallsyms_find(addr);
442 	if (prog) {
443 		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
444 		bpf_get_prog_name(prog, sym);
445 
446 		ret = sym;
447 		if (size)
448 			*size = symbol_end - symbol_start;
449 		if (off)
450 			*off  = addr - symbol_start;
451 	}
452 	rcu_read_unlock();
453 
454 	return ret;
455 }
456 
457 bool is_bpf_text_address(unsigned long addr)
458 {
459 	bool ret;
460 
461 	rcu_read_lock();
462 	ret = bpf_prog_kallsyms_find(addr) != NULL;
463 	rcu_read_unlock();
464 
465 	return ret;
466 }
467 
468 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
469 		    char *sym)
470 {
471 	unsigned long symbol_start, symbol_end;
472 	struct bpf_prog_aux *aux;
473 	unsigned int it = 0;
474 	int ret = -ERANGE;
475 
476 	if (!bpf_jit_kallsyms_enabled())
477 		return ret;
478 
479 	rcu_read_lock();
480 	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
481 		if (it++ != symnum)
482 			continue;
483 
484 		bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
485 		bpf_get_prog_name(aux->prog, sym);
486 
487 		*value = symbol_start;
488 		*type  = BPF_SYM_ELF_TYPE;
489 
490 		ret = 0;
491 		break;
492 	}
493 	rcu_read_unlock();
494 
495 	return ret;
496 }
497 
498 struct bpf_binary_header *
499 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
500 		     unsigned int alignment,
501 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
502 {
503 	struct bpf_binary_header *hdr;
504 	unsigned int size, hole, start;
505 
506 	/* Most of BPF filters are really small, but if some of them
507 	 * fill a page, allow at least 128 extra bytes to insert a
508 	 * random section of illegal instructions.
509 	 */
510 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
511 	hdr = module_alloc(size);
512 	if (hdr == NULL)
513 		return NULL;
514 
515 	/* Fill space with illegal/arch-dep instructions. */
516 	bpf_fill_ill_insns(hdr, size);
517 
518 	hdr->pages = size / PAGE_SIZE;
519 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
520 		     PAGE_SIZE - sizeof(*hdr));
521 	start = (get_random_int() % hole) & ~(alignment - 1);
522 
523 	/* Leave a random number of instructions before BPF code. */
524 	*image_ptr = &hdr->image[start];
525 
526 	return hdr;
527 }
528 
529 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
530 {
531 	module_memfree(hdr);
532 }
533 
534 /* This symbol is only overridden by archs that have different
535  * requirements than the usual eBPF JITs, f.e. when they only
536  * implement cBPF JIT, do not set images read-only, etc.
537  */
538 void __weak bpf_jit_free(struct bpf_prog *fp)
539 {
540 	if (fp->jited) {
541 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
542 
543 		bpf_jit_binary_unlock_ro(hdr);
544 		bpf_jit_binary_free(hdr);
545 
546 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
547 	}
548 
549 	bpf_prog_unlock_free(fp);
550 }
551 
552 int bpf_jit_harden __read_mostly;
553 
554 static int bpf_jit_blind_insn(const struct bpf_insn *from,
555 			      const struct bpf_insn *aux,
556 			      struct bpf_insn *to_buff)
557 {
558 	struct bpf_insn *to = to_buff;
559 	u32 imm_rnd = get_random_int();
560 	s16 off;
561 
562 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
563 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
564 
565 	if (from->imm == 0 &&
566 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
567 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
568 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
569 		goto out;
570 	}
571 
572 	switch (from->code) {
573 	case BPF_ALU | BPF_ADD | BPF_K:
574 	case BPF_ALU | BPF_SUB | BPF_K:
575 	case BPF_ALU | BPF_AND | BPF_K:
576 	case BPF_ALU | BPF_OR  | BPF_K:
577 	case BPF_ALU | BPF_XOR | BPF_K:
578 	case BPF_ALU | BPF_MUL | BPF_K:
579 	case BPF_ALU | BPF_MOV | BPF_K:
580 	case BPF_ALU | BPF_DIV | BPF_K:
581 	case BPF_ALU | BPF_MOD | BPF_K:
582 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
583 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
584 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
585 		break;
586 
587 	case BPF_ALU64 | BPF_ADD | BPF_K:
588 	case BPF_ALU64 | BPF_SUB | BPF_K:
589 	case BPF_ALU64 | BPF_AND | BPF_K:
590 	case BPF_ALU64 | BPF_OR  | BPF_K:
591 	case BPF_ALU64 | BPF_XOR | BPF_K:
592 	case BPF_ALU64 | BPF_MUL | BPF_K:
593 	case BPF_ALU64 | BPF_MOV | BPF_K:
594 	case BPF_ALU64 | BPF_DIV | BPF_K:
595 	case BPF_ALU64 | BPF_MOD | BPF_K:
596 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
597 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
598 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
599 		break;
600 
601 	case BPF_JMP | BPF_JEQ  | BPF_K:
602 	case BPF_JMP | BPF_JNE  | BPF_K:
603 	case BPF_JMP | BPF_JGT  | BPF_K:
604 	case BPF_JMP | BPF_JGE  | BPF_K:
605 	case BPF_JMP | BPF_JSGT | BPF_K:
606 	case BPF_JMP | BPF_JSGE | BPF_K:
607 	case BPF_JMP | BPF_JSET | BPF_K:
608 		/* Accommodate for extra offset in case of a backjump. */
609 		off = from->off;
610 		if (off < 0)
611 			off -= 2;
612 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
613 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
614 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
615 		break;
616 
617 	case BPF_LD | BPF_ABS | BPF_W:
618 	case BPF_LD | BPF_ABS | BPF_H:
619 	case BPF_LD | BPF_ABS | BPF_B:
620 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
621 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
622 		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
623 		break;
624 
625 	case BPF_LD | BPF_IND | BPF_W:
626 	case BPF_LD | BPF_IND | BPF_H:
627 	case BPF_LD | BPF_IND | BPF_B:
628 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
629 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
630 		*to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
631 		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
632 		break;
633 
634 	case BPF_LD | BPF_IMM | BPF_DW:
635 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
636 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
637 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
638 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
639 		break;
640 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
641 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
642 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
643 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
644 		break;
645 
646 	case BPF_ST | BPF_MEM | BPF_DW:
647 	case BPF_ST | BPF_MEM | BPF_W:
648 	case BPF_ST | BPF_MEM | BPF_H:
649 	case BPF_ST | BPF_MEM | BPF_B:
650 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
651 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
652 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
653 		break;
654 	}
655 out:
656 	return to - to_buff;
657 }
658 
659 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
660 					      gfp_t gfp_extra_flags)
661 {
662 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
663 			  gfp_extra_flags;
664 	struct bpf_prog *fp;
665 
666 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
667 	if (fp != NULL) {
668 		kmemcheck_annotate_bitfield(fp, meta);
669 
670 		/* aux->prog still points to the fp_other one, so
671 		 * when promoting the clone to the real program,
672 		 * this still needs to be adapted.
673 		 */
674 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
675 	}
676 
677 	return fp;
678 }
679 
680 static void bpf_prog_clone_free(struct bpf_prog *fp)
681 {
682 	/* aux was stolen by the other clone, so we cannot free
683 	 * it from this path! It will be freed eventually by the
684 	 * other program on release.
685 	 *
686 	 * At this point, we don't need a deferred release since
687 	 * clone is guaranteed to not be locked.
688 	 */
689 	fp->aux = NULL;
690 	__bpf_prog_free(fp);
691 }
692 
693 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
694 {
695 	/* We have to repoint aux->prog to self, as we don't
696 	 * know whether fp here is the clone or the original.
697 	 */
698 	fp->aux->prog = fp;
699 	bpf_prog_clone_free(fp_other);
700 }
701 
702 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
703 {
704 	struct bpf_insn insn_buff[16], aux[2];
705 	struct bpf_prog *clone, *tmp;
706 	int insn_delta, insn_cnt;
707 	struct bpf_insn *insn;
708 	int i, rewritten;
709 
710 	if (!bpf_jit_blinding_enabled())
711 		return prog;
712 
713 	clone = bpf_prog_clone_create(prog, GFP_USER);
714 	if (!clone)
715 		return ERR_PTR(-ENOMEM);
716 
717 	insn_cnt = clone->len;
718 	insn = clone->insnsi;
719 
720 	for (i = 0; i < insn_cnt; i++, insn++) {
721 		/* We temporarily need to hold the original ld64 insn
722 		 * so that we can still access the first part in the
723 		 * second blinding run.
724 		 */
725 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
726 		    insn[1].code == 0)
727 			memcpy(aux, insn, sizeof(aux));
728 
729 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
730 		if (!rewritten)
731 			continue;
732 
733 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
734 		if (!tmp) {
735 			/* Patching may have repointed aux->prog during
736 			 * realloc from the original one, so we need to
737 			 * fix it up here on error.
738 			 */
739 			bpf_jit_prog_release_other(prog, clone);
740 			return ERR_PTR(-ENOMEM);
741 		}
742 
743 		clone = tmp;
744 		insn_delta = rewritten - 1;
745 
746 		/* Walk new program and skip insns we just inserted. */
747 		insn = clone->insnsi + i + insn_delta;
748 		insn_cnt += insn_delta;
749 		i        += insn_delta;
750 	}
751 
752 	return clone;
753 }
754 #endif /* CONFIG_BPF_JIT */
755 
756 /* Base function for offset calculation. Needs to go into .text section,
757  * therefore keeping it non-static as well; will also be used by JITs
758  * anyway later on, so do not let the compiler omit it.
759  */
760 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
761 {
762 	return 0;
763 }
764 EXPORT_SYMBOL_GPL(__bpf_call_base);
765 
766 /**
767  *	__bpf_prog_run - run eBPF program on a given context
768  *	@ctx: is the data we are operating on
769  *	@insn: is the array of eBPF instructions
770  *
771  * Decode and execute eBPF instructions.
772  */
773 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
774 {
775 	u64 stack[MAX_BPF_STACK / sizeof(u64)];
776 	u64 regs[MAX_BPF_REG], tmp;
777 	static const void *jumptable[256] = {
778 		[0 ... 255] = &&default_label,
779 		/* Now overwrite non-defaults ... */
780 		/* 32 bit ALU operations */
781 		[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
782 		[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
783 		[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
784 		[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
785 		[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
786 		[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
787 		[BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
788 		[BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
789 		[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
790 		[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
791 		[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
792 		[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
793 		[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
794 		[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
795 		[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
796 		[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
797 		[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
798 		[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
799 		[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
800 		[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
801 		[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
802 		[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
803 		[BPF_ALU | BPF_NEG] = &&ALU_NEG,
804 		[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
805 		[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
806 		/* 64 bit ALU operations */
807 		[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
808 		[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
809 		[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
810 		[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
811 		[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
812 		[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
813 		[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
814 		[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
815 		[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
816 		[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
817 		[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
818 		[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
819 		[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
820 		[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
821 		[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
822 		[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
823 		[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
824 		[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
825 		[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
826 		[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
827 		[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
828 		[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
829 		[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
830 		[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
831 		[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
832 		/* Call instruction */
833 		[BPF_JMP | BPF_CALL] = &&JMP_CALL,
834 		[BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
835 		/* Jumps */
836 		[BPF_JMP | BPF_JA] = &&JMP_JA,
837 		[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
838 		[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
839 		[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
840 		[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
841 		[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
842 		[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
843 		[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
844 		[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
845 		[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
846 		[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
847 		[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
848 		[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
849 		[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
850 		[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
851 		/* Program return */
852 		[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
853 		/* Store instructions */
854 		[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
855 		[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
856 		[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
857 		[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
858 		[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
859 		[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
860 		[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
861 		[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
862 		[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
863 		[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
864 		/* Load instructions */
865 		[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
866 		[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
867 		[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
868 		[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
869 		[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
870 		[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
871 		[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
872 		[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
873 		[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
874 		[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
875 		[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
876 	};
877 	u32 tail_call_cnt = 0;
878 	void *ptr;
879 	int off;
880 
881 #define CONT	 ({ insn++; goto select_insn; })
882 #define CONT_JMP ({ insn++; goto select_insn; })
883 
884 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
885 	ARG1 = (u64) (unsigned long) ctx;
886 
887 select_insn:
888 	goto *jumptable[insn->code];
889 
890 	/* ALU */
891 #define ALU(OPCODE, OP)			\
892 	ALU64_##OPCODE##_X:		\
893 		DST = DST OP SRC;	\
894 		CONT;			\
895 	ALU_##OPCODE##_X:		\
896 		DST = (u32) DST OP (u32) SRC;	\
897 		CONT;			\
898 	ALU64_##OPCODE##_K:		\
899 		DST = DST OP IMM;		\
900 		CONT;			\
901 	ALU_##OPCODE##_K:		\
902 		DST = (u32) DST OP (u32) IMM;	\
903 		CONT;
904 
905 	ALU(ADD,  +)
906 	ALU(SUB,  -)
907 	ALU(AND,  &)
908 	ALU(OR,   |)
909 	ALU(LSH, <<)
910 	ALU(RSH, >>)
911 	ALU(XOR,  ^)
912 	ALU(MUL,  *)
913 #undef ALU
914 	ALU_NEG:
915 		DST = (u32) -DST;
916 		CONT;
917 	ALU64_NEG:
918 		DST = -DST;
919 		CONT;
920 	ALU_MOV_X:
921 		DST = (u32) SRC;
922 		CONT;
923 	ALU_MOV_K:
924 		DST = (u32) IMM;
925 		CONT;
926 	ALU64_MOV_X:
927 		DST = SRC;
928 		CONT;
929 	ALU64_MOV_K:
930 		DST = IMM;
931 		CONT;
932 	LD_IMM_DW:
933 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
934 		insn++;
935 		CONT;
936 	ALU64_ARSH_X:
937 		(*(s64 *) &DST) >>= SRC;
938 		CONT;
939 	ALU64_ARSH_K:
940 		(*(s64 *) &DST) >>= IMM;
941 		CONT;
942 	ALU64_MOD_X:
943 		if (unlikely(SRC == 0))
944 			return 0;
945 		div64_u64_rem(DST, SRC, &tmp);
946 		DST = tmp;
947 		CONT;
948 	ALU_MOD_X:
949 		if (unlikely(SRC == 0))
950 			return 0;
951 		tmp = (u32) DST;
952 		DST = do_div(tmp, (u32) SRC);
953 		CONT;
954 	ALU64_MOD_K:
955 		div64_u64_rem(DST, IMM, &tmp);
956 		DST = tmp;
957 		CONT;
958 	ALU_MOD_K:
959 		tmp = (u32) DST;
960 		DST = do_div(tmp, (u32) IMM);
961 		CONT;
962 	ALU64_DIV_X:
963 		if (unlikely(SRC == 0))
964 			return 0;
965 		DST = div64_u64(DST, SRC);
966 		CONT;
967 	ALU_DIV_X:
968 		if (unlikely(SRC == 0))
969 			return 0;
970 		tmp = (u32) DST;
971 		do_div(tmp, (u32) SRC);
972 		DST = (u32) tmp;
973 		CONT;
974 	ALU64_DIV_K:
975 		DST = div64_u64(DST, IMM);
976 		CONT;
977 	ALU_DIV_K:
978 		tmp = (u32) DST;
979 		do_div(tmp, (u32) IMM);
980 		DST = (u32) tmp;
981 		CONT;
982 	ALU_END_TO_BE:
983 		switch (IMM) {
984 		case 16:
985 			DST = (__force u16) cpu_to_be16(DST);
986 			break;
987 		case 32:
988 			DST = (__force u32) cpu_to_be32(DST);
989 			break;
990 		case 64:
991 			DST = (__force u64) cpu_to_be64(DST);
992 			break;
993 		}
994 		CONT;
995 	ALU_END_TO_LE:
996 		switch (IMM) {
997 		case 16:
998 			DST = (__force u16) cpu_to_le16(DST);
999 			break;
1000 		case 32:
1001 			DST = (__force u32) cpu_to_le32(DST);
1002 			break;
1003 		case 64:
1004 			DST = (__force u64) cpu_to_le64(DST);
1005 			break;
1006 		}
1007 		CONT;
1008 
1009 	/* CALL */
1010 	JMP_CALL:
1011 		/* Function call scratches BPF_R1-BPF_R5 registers,
1012 		 * preserves BPF_R6-BPF_R9, and stores return value
1013 		 * into BPF_R0.
1014 		 */
1015 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1016 						       BPF_R4, BPF_R5);
1017 		CONT;
1018 
1019 	JMP_TAIL_CALL: {
1020 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1021 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1022 		struct bpf_prog *prog;
1023 		u64 index = BPF_R3;
1024 
1025 		if (unlikely(index >= array->map.max_entries))
1026 			goto out;
1027 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1028 			goto out;
1029 
1030 		tail_call_cnt++;
1031 
1032 		prog = READ_ONCE(array->ptrs[index]);
1033 		if (!prog)
1034 			goto out;
1035 
1036 		/* ARG1 at this point is guaranteed to point to CTX from
1037 		 * the verifier side due to the fact that the tail call is
1038 		 * handeled like a helper, that is, bpf_tail_call_proto,
1039 		 * where arg1_type is ARG_PTR_TO_CTX.
1040 		 */
1041 		insn = prog->insnsi;
1042 		goto select_insn;
1043 out:
1044 		CONT;
1045 	}
1046 	/* JMP */
1047 	JMP_JA:
1048 		insn += insn->off;
1049 		CONT;
1050 	JMP_JEQ_X:
1051 		if (DST == SRC) {
1052 			insn += insn->off;
1053 			CONT_JMP;
1054 		}
1055 		CONT;
1056 	JMP_JEQ_K:
1057 		if (DST == IMM) {
1058 			insn += insn->off;
1059 			CONT_JMP;
1060 		}
1061 		CONT;
1062 	JMP_JNE_X:
1063 		if (DST != SRC) {
1064 			insn += insn->off;
1065 			CONT_JMP;
1066 		}
1067 		CONT;
1068 	JMP_JNE_K:
1069 		if (DST != IMM) {
1070 			insn += insn->off;
1071 			CONT_JMP;
1072 		}
1073 		CONT;
1074 	JMP_JGT_X:
1075 		if (DST > SRC) {
1076 			insn += insn->off;
1077 			CONT_JMP;
1078 		}
1079 		CONT;
1080 	JMP_JGT_K:
1081 		if (DST > IMM) {
1082 			insn += insn->off;
1083 			CONT_JMP;
1084 		}
1085 		CONT;
1086 	JMP_JGE_X:
1087 		if (DST >= SRC) {
1088 			insn += insn->off;
1089 			CONT_JMP;
1090 		}
1091 		CONT;
1092 	JMP_JGE_K:
1093 		if (DST >= IMM) {
1094 			insn += insn->off;
1095 			CONT_JMP;
1096 		}
1097 		CONT;
1098 	JMP_JSGT_X:
1099 		if (((s64) DST) > ((s64) SRC)) {
1100 			insn += insn->off;
1101 			CONT_JMP;
1102 		}
1103 		CONT;
1104 	JMP_JSGT_K:
1105 		if (((s64) DST) > ((s64) IMM)) {
1106 			insn += insn->off;
1107 			CONT_JMP;
1108 		}
1109 		CONT;
1110 	JMP_JSGE_X:
1111 		if (((s64) DST) >= ((s64) SRC)) {
1112 			insn += insn->off;
1113 			CONT_JMP;
1114 		}
1115 		CONT;
1116 	JMP_JSGE_K:
1117 		if (((s64) DST) >= ((s64) IMM)) {
1118 			insn += insn->off;
1119 			CONT_JMP;
1120 		}
1121 		CONT;
1122 	JMP_JSET_X:
1123 		if (DST & SRC) {
1124 			insn += insn->off;
1125 			CONT_JMP;
1126 		}
1127 		CONT;
1128 	JMP_JSET_K:
1129 		if (DST & IMM) {
1130 			insn += insn->off;
1131 			CONT_JMP;
1132 		}
1133 		CONT;
1134 	JMP_EXIT:
1135 		return BPF_R0;
1136 
1137 	/* STX and ST and LDX*/
1138 #define LDST(SIZEOP, SIZE)						\
1139 	STX_MEM_##SIZEOP:						\
1140 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1141 		CONT;							\
1142 	ST_MEM_##SIZEOP:						\
1143 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1144 		CONT;							\
1145 	LDX_MEM_##SIZEOP:						\
1146 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1147 		CONT;
1148 
1149 	LDST(B,   u8)
1150 	LDST(H,  u16)
1151 	LDST(W,  u32)
1152 	LDST(DW, u64)
1153 #undef LDST
1154 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1155 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1156 			   (DST + insn->off));
1157 		CONT;
1158 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1159 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1160 			     (DST + insn->off));
1161 		CONT;
1162 	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1163 		off = IMM;
1164 load_word:
1165 		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
1166 		 * only appearing in the programs where ctx ==
1167 		 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
1168 		 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
1169 		 * internal BPF verifier will check that BPF_R6 ==
1170 		 * ctx.
1171 		 *
1172 		 * BPF_ABS and BPF_IND are wrappers of function calls,
1173 		 * so they scratch BPF_R1-BPF_R5 registers, preserve
1174 		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
1175 		 *
1176 		 * Implicit input:
1177 		 *   ctx == skb == BPF_R6 == CTX
1178 		 *
1179 		 * Explicit input:
1180 		 *   SRC == any register
1181 		 *   IMM == 32-bit immediate
1182 		 *
1183 		 * Output:
1184 		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1185 		 */
1186 
1187 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1188 		if (likely(ptr != NULL)) {
1189 			BPF_R0 = get_unaligned_be32(ptr);
1190 			CONT;
1191 		}
1192 
1193 		return 0;
1194 	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1195 		off = IMM;
1196 load_half:
1197 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1198 		if (likely(ptr != NULL)) {
1199 			BPF_R0 = get_unaligned_be16(ptr);
1200 			CONT;
1201 		}
1202 
1203 		return 0;
1204 	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1205 		off = IMM;
1206 load_byte:
1207 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1208 		if (likely(ptr != NULL)) {
1209 			BPF_R0 = *(u8 *)ptr;
1210 			CONT;
1211 		}
1212 
1213 		return 0;
1214 	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1215 		off = IMM + SRC;
1216 		goto load_word;
1217 	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1218 		off = IMM + SRC;
1219 		goto load_half;
1220 	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1221 		off = IMM + SRC;
1222 		goto load_byte;
1223 
1224 	default_label:
1225 		/* If we ever reach this, we have a bug somewhere. */
1226 		WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1227 		return 0;
1228 }
1229 STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
1230 
1231 bool bpf_prog_array_compatible(struct bpf_array *array,
1232 			       const struct bpf_prog *fp)
1233 {
1234 	if (!array->owner_prog_type) {
1235 		/* There's no owner yet where we could check for
1236 		 * compatibility.
1237 		 */
1238 		array->owner_prog_type = fp->type;
1239 		array->owner_jited = fp->jited;
1240 
1241 		return true;
1242 	}
1243 
1244 	return array->owner_prog_type == fp->type &&
1245 	       array->owner_jited == fp->jited;
1246 }
1247 
1248 static int bpf_check_tail_call(const struct bpf_prog *fp)
1249 {
1250 	struct bpf_prog_aux *aux = fp->aux;
1251 	int i;
1252 
1253 	for (i = 0; i < aux->used_map_cnt; i++) {
1254 		struct bpf_map *map = aux->used_maps[i];
1255 		struct bpf_array *array;
1256 
1257 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1258 			continue;
1259 
1260 		array = container_of(map, struct bpf_array, map);
1261 		if (!bpf_prog_array_compatible(array, fp))
1262 			return -EINVAL;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 /**
1269  *	bpf_prog_select_runtime - select exec runtime for BPF program
1270  *	@fp: bpf_prog populated with internal BPF program
1271  *	@err: pointer to error variable
1272  *
1273  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1274  * The BPF program will be executed via BPF_PROG_RUN() macro.
1275  */
1276 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1277 {
1278 	fp->bpf_func = (void *) __bpf_prog_run;
1279 
1280 	/* eBPF JITs can rewrite the program in case constant
1281 	 * blinding is active. However, in case of error during
1282 	 * blinding, bpf_int_jit_compile() must always return a
1283 	 * valid program, which in this case would simply not
1284 	 * be JITed, but falls back to the interpreter.
1285 	 */
1286 	fp = bpf_int_jit_compile(fp);
1287 	bpf_prog_lock_ro(fp);
1288 
1289 	/* The tail call compatibility check can only be done at
1290 	 * this late stage as we need to determine, if we deal
1291 	 * with JITed or non JITed program concatenations and not
1292 	 * all eBPF JITs might immediately support all features.
1293 	 */
1294 	*err = bpf_check_tail_call(fp);
1295 
1296 	return fp;
1297 }
1298 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1299 
1300 static void bpf_prog_free_deferred(struct work_struct *work)
1301 {
1302 	struct bpf_prog_aux *aux;
1303 
1304 	aux = container_of(work, struct bpf_prog_aux, work);
1305 	bpf_jit_free(aux->prog);
1306 }
1307 
1308 /* Free internal BPF program */
1309 void bpf_prog_free(struct bpf_prog *fp)
1310 {
1311 	struct bpf_prog_aux *aux = fp->aux;
1312 
1313 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
1314 	schedule_work(&aux->work);
1315 }
1316 EXPORT_SYMBOL_GPL(bpf_prog_free);
1317 
1318 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1319 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1320 
1321 void bpf_user_rnd_init_once(void)
1322 {
1323 	prandom_init_once(&bpf_user_rnd_state);
1324 }
1325 
1326 BPF_CALL_0(bpf_user_rnd_u32)
1327 {
1328 	/* Should someone ever have the rather unwise idea to use some
1329 	 * of the registers passed into this function, then note that
1330 	 * this function is called from native eBPF and classic-to-eBPF
1331 	 * transformations. Register assignments from both sides are
1332 	 * different, f.e. classic always sets fn(ctx, A, X) here.
1333 	 */
1334 	struct rnd_state *state;
1335 	u32 res;
1336 
1337 	state = &get_cpu_var(bpf_user_rnd_state);
1338 	res = prandom_u32_state(state);
1339 	put_cpu_var(bpf_user_rnd_state);
1340 
1341 	return res;
1342 }
1343 
1344 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1345 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1346 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1347 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1348 
1349 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1350 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1351 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1352 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1353 
1354 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1355 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1356 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1357 
1358 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1359 {
1360 	return NULL;
1361 }
1362 
1363 u64 __weak
1364 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1365 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1366 {
1367 	return -ENOTSUPP;
1368 }
1369 
1370 /* Always built-in helper functions. */
1371 const struct bpf_func_proto bpf_tail_call_proto = {
1372 	.func		= NULL,
1373 	.gpl_only	= false,
1374 	.ret_type	= RET_VOID,
1375 	.arg1_type	= ARG_PTR_TO_CTX,
1376 	.arg2_type	= ARG_CONST_MAP_PTR,
1377 	.arg3_type	= ARG_ANYTHING,
1378 };
1379 
1380 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1381  * It is encouraged to implement bpf_int_jit_compile() instead, so that
1382  * eBPF and implicitly also cBPF can get JITed!
1383  */
1384 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1385 {
1386 	return prog;
1387 }
1388 
1389 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1390  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1391  */
1392 void __weak bpf_jit_compile(struct bpf_prog *prog)
1393 {
1394 }
1395 
1396 bool __weak bpf_helper_changes_pkt_data(void *func)
1397 {
1398 	return false;
1399 }
1400 
1401 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1402  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1403  */
1404 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1405 			 int len)
1406 {
1407 	return -EFAULT;
1408 }
1409 
1410 /* All definitions of tracepoints related to BPF. */
1411 #define CREATE_TRACE_POINTS
1412 #include <linux/bpf_trace.h>
1413 
1414 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1415 
1416 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1417 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
1418