xref: /openbmc/linux/kernel/bpf/core.c (revision 2a9eb57e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 
38 #include <asm/barrier.h>
39 #include <asm/unaligned.h>
40 
41 /* Registers */
42 #define BPF_R0	regs[BPF_REG_0]
43 #define BPF_R1	regs[BPF_REG_1]
44 #define BPF_R2	regs[BPF_REG_2]
45 #define BPF_R3	regs[BPF_REG_3]
46 #define BPF_R4	regs[BPF_REG_4]
47 #define BPF_R5	regs[BPF_REG_5]
48 #define BPF_R6	regs[BPF_REG_6]
49 #define BPF_R7	regs[BPF_REG_7]
50 #define BPF_R8	regs[BPF_REG_8]
51 #define BPF_R9	regs[BPF_REG_9]
52 #define BPF_R10	regs[BPF_REG_10]
53 
54 /* Named registers */
55 #define DST	regs[insn->dst_reg]
56 #define SRC	regs[insn->src_reg]
57 #define FP	regs[BPF_REG_FP]
58 #define AX	regs[BPF_REG_AX]
59 #define ARG1	regs[BPF_REG_ARG1]
60 #define CTX	regs[BPF_REG_CTX]
61 #define IMM	insn->imm
62 
63 /* No hurry in this branch
64  *
65  * Exported for the bpf jit load helper.
66  */
67 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
68 {
69 	u8 *ptr = NULL;
70 
71 	if (k >= SKF_NET_OFF) {
72 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
73 	} else if (k >= SKF_LL_OFF) {
74 		if (unlikely(!skb_mac_header_was_set(skb)))
75 			return NULL;
76 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
77 	}
78 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
79 		return ptr;
80 
81 	return NULL;
82 }
83 
84 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
85 {
86 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
87 	struct bpf_prog_aux *aux;
88 	struct bpf_prog *fp;
89 
90 	size = round_up(size, PAGE_SIZE);
91 	fp = __vmalloc(size, gfp_flags);
92 	if (fp == NULL)
93 		return NULL;
94 
95 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
96 	if (aux == NULL) {
97 		vfree(fp);
98 		return NULL;
99 	}
100 	fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
101 	if (!fp->active) {
102 		vfree(fp);
103 		kfree(aux);
104 		return NULL;
105 	}
106 
107 	fp->pages = size / PAGE_SIZE;
108 	fp->aux = aux;
109 	fp->aux->prog = fp;
110 	fp->jit_requested = ebpf_jit_enabled();
111 	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
112 #ifdef CONFIG_CGROUP_BPF
113 	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
114 #endif
115 
116 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
117 	mutex_init(&fp->aux->used_maps_mutex);
118 	mutex_init(&fp->aux->dst_mutex);
119 
120 	return fp;
121 }
122 
123 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
124 {
125 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
126 	struct bpf_prog *prog;
127 	int cpu;
128 
129 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
130 	if (!prog)
131 		return NULL;
132 
133 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
134 	if (!prog->stats) {
135 		free_percpu(prog->active);
136 		kfree(prog->aux);
137 		vfree(prog);
138 		return NULL;
139 	}
140 
141 	for_each_possible_cpu(cpu) {
142 		struct bpf_prog_stats *pstats;
143 
144 		pstats = per_cpu_ptr(prog->stats, cpu);
145 		u64_stats_init(&pstats->syncp);
146 	}
147 	return prog;
148 }
149 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
150 
151 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
152 {
153 	if (!prog->aux->nr_linfo || !prog->jit_requested)
154 		return 0;
155 
156 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
157 					  sizeof(*prog->aux->jited_linfo),
158 					  GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
159 	if (!prog->aux->jited_linfo)
160 		return -ENOMEM;
161 
162 	return 0;
163 }
164 
165 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
166 {
167 	if (prog->aux->jited_linfo &&
168 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
169 		kvfree(prog->aux->jited_linfo);
170 		prog->aux->jited_linfo = NULL;
171 	}
172 
173 	kfree(prog->aux->kfunc_tab);
174 	prog->aux->kfunc_tab = NULL;
175 }
176 
177 /* The jit engine is responsible to provide an array
178  * for insn_off to the jited_off mapping (insn_to_jit_off).
179  *
180  * The idx to this array is the insn_off.  Hence, the insn_off
181  * here is relative to the prog itself instead of the main prog.
182  * This array has one entry for each xlated bpf insn.
183  *
184  * jited_off is the byte off to the end of the jited insn.
185  *
186  * Hence, with
187  * insn_start:
188  *      The first bpf insn off of the prog.  The insn off
189  *      here is relative to the main prog.
190  *      e.g. if prog is a subprog, insn_start > 0
191  * linfo_idx:
192  *      The prog's idx to prog->aux->linfo and jited_linfo
193  *
194  * jited_linfo[linfo_idx] = prog->bpf_func
195  *
196  * For i > linfo_idx,
197  *
198  * jited_linfo[i] = prog->bpf_func +
199  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
200  */
201 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
202 			       const u32 *insn_to_jit_off)
203 {
204 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
205 	const struct bpf_line_info *linfo;
206 	void **jited_linfo;
207 
208 	if (!prog->aux->jited_linfo)
209 		/* Userspace did not provide linfo */
210 		return;
211 
212 	linfo_idx = prog->aux->linfo_idx;
213 	linfo = &prog->aux->linfo[linfo_idx];
214 	insn_start = linfo[0].insn_off;
215 	insn_end = insn_start + prog->len;
216 
217 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
218 	jited_linfo[0] = prog->bpf_func;
219 
220 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
221 
222 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
223 		/* The verifier ensures that linfo[i].insn_off is
224 		 * strictly increasing
225 		 */
226 		jited_linfo[i] = prog->bpf_func +
227 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
228 }
229 
230 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
231 				  gfp_t gfp_extra_flags)
232 {
233 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
234 	struct bpf_prog *fp;
235 	u32 pages;
236 
237 	size = round_up(size, PAGE_SIZE);
238 	pages = size / PAGE_SIZE;
239 	if (pages <= fp_old->pages)
240 		return fp_old;
241 
242 	fp = __vmalloc(size, gfp_flags);
243 	if (fp) {
244 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
245 		fp->pages = pages;
246 		fp->aux->prog = fp;
247 
248 		/* We keep fp->aux from fp_old around in the new
249 		 * reallocated structure.
250 		 */
251 		fp_old->aux = NULL;
252 		fp_old->stats = NULL;
253 		fp_old->active = NULL;
254 		__bpf_prog_free(fp_old);
255 	}
256 
257 	return fp;
258 }
259 
260 void __bpf_prog_free(struct bpf_prog *fp)
261 {
262 	if (fp->aux) {
263 		mutex_destroy(&fp->aux->used_maps_mutex);
264 		mutex_destroy(&fp->aux->dst_mutex);
265 		kfree(fp->aux->poke_tab);
266 		kfree(fp->aux);
267 	}
268 	free_percpu(fp->stats);
269 	free_percpu(fp->active);
270 	vfree(fp);
271 }
272 
273 int bpf_prog_calc_tag(struct bpf_prog *fp)
274 {
275 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
276 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
277 	u32 digest[SHA1_DIGEST_WORDS];
278 	u32 ws[SHA1_WORKSPACE_WORDS];
279 	u32 i, bsize, psize, blocks;
280 	struct bpf_insn *dst;
281 	bool was_ld_map;
282 	u8 *raw, *todo;
283 	__be32 *result;
284 	__be64 *bits;
285 
286 	raw = vmalloc(raw_size);
287 	if (!raw)
288 		return -ENOMEM;
289 
290 	sha1_init(digest);
291 	memset(ws, 0, sizeof(ws));
292 
293 	/* We need to take out the map fd for the digest calculation
294 	 * since they are unstable from user space side.
295 	 */
296 	dst = (void *)raw;
297 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
298 		dst[i] = fp->insnsi[i];
299 		if (!was_ld_map &&
300 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
301 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
302 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
303 			was_ld_map = true;
304 			dst[i].imm = 0;
305 		} else if (was_ld_map &&
306 			   dst[i].code == 0 &&
307 			   dst[i].dst_reg == 0 &&
308 			   dst[i].src_reg == 0 &&
309 			   dst[i].off == 0) {
310 			was_ld_map = false;
311 			dst[i].imm = 0;
312 		} else {
313 			was_ld_map = false;
314 		}
315 	}
316 
317 	psize = bpf_prog_insn_size(fp);
318 	memset(&raw[psize], 0, raw_size - psize);
319 	raw[psize++] = 0x80;
320 
321 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
322 	blocks = bsize / SHA1_BLOCK_SIZE;
323 	todo   = raw;
324 	if (bsize - psize >= sizeof(__be64)) {
325 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
326 	} else {
327 		bits = (__be64 *)(todo + bsize + bits_offset);
328 		blocks++;
329 	}
330 	*bits = cpu_to_be64((psize - 1) << 3);
331 
332 	while (blocks--) {
333 		sha1_transform(digest, todo, ws);
334 		todo += SHA1_BLOCK_SIZE;
335 	}
336 
337 	result = (__force __be32 *)digest;
338 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
339 		result[i] = cpu_to_be32(digest[i]);
340 	memcpy(fp->tag, result, sizeof(fp->tag));
341 
342 	vfree(raw);
343 	return 0;
344 }
345 
346 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
347 				s32 end_new, s32 curr, const bool probe_pass)
348 {
349 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
350 	s32 delta = end_new - end_old;
351 	s64 imm = insn->imm;
352 
353 	if (curr < pos && curr + imm + 1 >= end_old)
354 		imm += delta;
355 	else if (curr >= end_new && curr + imm + 1 < end_new)
356 		imm -= delta;
357 	if (imm < imm_min || imm > imm_max)
358 		return -ERANGE;
359 	if (!probe_pass)
360 		insn->imm = imm;
361 	return 0;
362 }
363 
364 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
365 				s32 end_new, s32 curr, const bool probe_pass)
366 {
367 	const s32 off_min = S16_MIN, off_max = S16_MAX;
368 	s32 delta = end_new - end_old;
369 	s32 off = insn->off;
370 
371 	if (curr < pos && curr + off + 1 >= end_old)
372 		off += delta;
373 	else if (curr >= end_new && curr + off + 1 < end_new)
374 		off -= delta;
375 	if (off < off_min || off > off_max)
376 		return -ERANGE;
377 	if (!probe_pass)
378 		insn->off = off;
379 	return 0;
380 }
381 
382 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
383 			    s32 end_new, const bool probe_pass)
384 {
385 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
386 	struct bpf_insn *insn = prog->insnsi;
387 	int ret = 0;
388 
389 	for (i = 0; i < insn_cnt; i++, insn++) {
390 		u8 code;
391 
392 		/* In the probing pass we still operate on the original,
393 		 * unpatched image in order to check overflows before we
394 		 * do any other adjustments. Therefore skip the patchlet.
395 		 */
396 		if (probe_pass && i == pos) {
397 			i = end_new;
398 			insn = prog->insnsi + end_old;
399 		}
400 		if (bpf_pseudo_func(insn)) {
401 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
402 						   end_new, i, probe_pass);
403 			if (ret)
404 				return ret;
405 			continue;
406 		}
407 		code = insn->code;
408 		if ((BPF_CLASS(code) != BPF_JMP &&
409 		     BPF_CLASS(code) != BPF_JMP32) ||
410 		    BPF_OP(code) == BPF_EXIT)
411 			continue;
412 		/* Adjust offset of jmps if we cross patch boundaries. */
413 		if (BPF_OP(code) == BPF_CALL) {
414 			if (insn->src_reg != BPF_PSEUDO_CALL)
415 				continue;
416 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
417 						   end_new, i, probe_pass);
418 		} else {
419 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
420 						   end_new, i, probe_pass);
421 		}
422 		if (ret)
423 			break;
424 	}
425 
426 	return ret;
427 }
428 
429 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
430 {
431 	struct bpf_line_info *linfo;
432 	u32 i, nr_linfo;
433 
434 	nr_linfo = prog->aux->nr_linfo;
435 	if (!nr_linfo || !delta)
436 		return;
437 
438 	linfo = prog->aux->linfo;
439 
440 	for (i = 0; i < nr_linfo; i++)
441 		if (off < linfo[i].insn_off)
442 			break;
443 
444 	/* Push all off < linfo[i].insn_off by delta */
445 	for (; i < nr_linfo; i++)
446 		linfo[i].insn_off += delta;
447 }
448 
449 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
450 				       const struct bpf_insn *patch, u32 len)
451 {
452 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
453 	const u32 cnt_max = S16_MAX;
454 	struct bpf_prog *prog_adj;
455 	int err;
456 
457 	/* Since our patchlet doesn't expand the image, we're done. */
458 	if (insn_delta == 0) {
459 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
460 		return prog;
461 	}
462 
463 	insn_adj_cnt = prog->len + insn_delta;
464 
465 	/* Reject anything that would potentially let the insn->off
466 	 * target overflow when we have excessive program expansions.
467 	 * We need to probe here before we do any reallocation where
468 	 * we afterwards may not fail anymore.
469 	 */
470 	if (insn_adj_cnt > cnt_max &&
471 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
472 		return ERR_PTR(err);
473 
474 	/* Several new instructions need to be inserted. Make room
475 	 * for them. Likely, there's no need for a new allocation as
476 	 * last page could have large enough tailroom.
477 	 */
478 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
479 				    GFP_USER);
480 	if (!prog_adj)
481 		return ERR_PTR(-ENOMEM);
482 
483 	prog_adj->len = insn_adj_cnt;
484 
485 	/* Patching happens in 3 steps:
486 	 *
487 	 * 1) Move over tail of insnsi from next instruction onwards,
488 	 *    so we can patch the single target insn with one or more
489 	 *    new ones (patching is always from 1 to n insns, n > 0).
490 	 * 2) Inject new instructions at the target location.
491 	 * 3) Adjust branch offsets if necessary.
492 	 */
493 	insn_rest = insn_adj_cnt - off - len;
494 
495 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
496 		sizeof(*patch) * insn_rest);
497 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
498 
499 	/* We are guaranteed to not fail at this point, otherwise
500 	 * the ship has sailed to reverse to the original state. An
501 	 * overflow cannot happen at this point.
502 	 */
503 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
504 
505 	bpf_adj_linfo(prog_adj, off, insn_delta);
506 
507 	return prog_adj;
508 }
509 
510 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
511 {
512 	/* Branch offsets can't overflow when program is shrinking, no need
513 	 * to call bpf_adj_branches(..., true) here
514 	 */
515 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
516 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
517 	prog->len -= cnt;
518 
519 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
520 }
521 
522 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
523 {
524 	int i;
525 
526 	for (i = 0; i < fp->aux->func_cnt; i++)
527 		bpf_prog_kallsyms_del(fp->aux->func[i]);
528 }
529 
530 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
531 {
532 	bpf_prog_kallsyms_del_subprogs(fp);
533 	bpf_prog_kallsyms_del(fp);
534 }
535 
536 #ifdef CONFIG_BPF_JIT
537 /* All BPF JIT sysctl knobs here. */
538 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
539 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
540 int bpf_jit_harden   __read_mostly;
541 long bpf_jit_limit   __read_mostly;
542 long bpf_jit_limit_max __read_mostly;
543 
544 static void
545 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
546 {
547 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
548 
549 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
550 	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
551 }
552 
553 static void
554 bpf_prog_ksym_set_name(struct bpf_prog *prog)
555 {
556 	char *sym = prog->aux->ksym.name;
557 	const char *end = sym + KSYM_NAME_LEN;
558 	const struct btf_type *type;
559 	const char *func_name;
560 
561 	BUILD_BUG_ON(sizeof("bpf_prog_") +
562 		     sizeof(prog->tag) * 2 +
563 		     /* name has been null terminated.
564 		      * We should need +1 for the '_' preceding
565 		      * the name.  However, the null character
566 		      * is double counted between the name and the
567 		      * sizeof("bpf_prog_") above, so we omit
568 		      * the +1 here.
569 		      */
570 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
571 
572 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
573 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
574 
575 	/* prog->aux->name will be ignored if full btf name is available */
576 	if (prog->aux->func_info_cnt) {
577 		type = btf_type_by_id(prog->aux->btf,
578 				      prog->aux->func_info[prog->aux->func_idx].type_id);
579 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
580 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
581 		return;
582 	}
583 
584 	if (prog->aux->name[0])
585 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
586 	else
587 		*sym = 0;
588 }
589 
590 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
591 {
592 	return container_of(n, struct bpf_ksym, tnode)->start;
593 }
594 
595 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
596 					  struct latch_tree_node *b)
597 {
598 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
599 }
600 
601 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
602 {
603 	unsigned long val = (unsigned long)key;
604 	const struct bpf_ksym *ksym;
605 
606 	ksym = container_of(n, struct bpf_ksym, tnode);
607 
608 	if (val < ksym->start)
609 		return -1;
610 	if (val >= ksym->end)
611 		return  1;
612 
613 	return 0;
614 }
615 
616 static const struct latch_tree_ops bpf_tree_ops = {
617 	.less	= bpf_tree_less,
618 	.comp	= bpf_tree_comp,
619 };
620 
621 static DEFINE_SPINLOCK(bpf_lock);
622 static LIST_HEAD(bpf_kallsyms);
623 static struct latch_tree_root bpf_tree __cacheline_aligned;
624 
625 void bpf_ksym_add(struct bpf_ksym *ksym)
626 {
627 	spin_lock_bh(&bpf_lock);
628 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
629 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
630 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
631 	spin_unlock_bh(&bpf_lock);
632 }
633 
634 static void __bpf_ksym_del(struct bpf_ksym *ksym)
635 {
636 	if (list_empty(&ksym->lnode))
637 		return;
638 
639 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
640 	list_del_rcu(&ksym->lnode);
641 }
642 
643 void bpf_ksym_del(struct bpf_ksym *ksym)
644 {
645 	spin_lock_bh(&bpf_lock);
646 	__bpf_ksym_del(ksym);
647 	spin_unlock_bh(&bpf_lock);
648 }
649 
650 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
651 {
652 	return fp->jited && !bpf_prog_was_classic(fp);
653 }
654 
655 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
656 {
657 	if (!bpf_prog_kallsyms_candidate(fp) ||
658 	    !bpf_capable())
659 		return;
660 
661 	bpf_prog_ksym_set_addr(fp);
662 	bpf_prog_ksym_set_name(fp);
663 	fp->aux->ksym.prog = true;
664 
665 	bpf_ksym_add(&fp->aux->ksym);
666 }
667 
668 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
669 {
670 	if (!bpf_prog_kallsyms_candidate(fp))
671 		return;
672 
673 	bpf_ksym_del(&fp->aux->ksym);
674 }
675 
676 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
677 {
678 	struct latch_tree_node *n;
679 
680 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
681 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
682 }
683 
684 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
685 				 unsigned long *off, char *sym)
686 {
687 	struct bpf_ksym *ksym;
688 	char *ret = NULL;
689 
690 	rcu_read_lock();
691 	ksym = bpf_ksym_find(addr);
692 	if (ksym) {
693 		unsigned long symbol_start = ksym->start;
694 		unsigned long symbol_end = ksym->end;
695 
696 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
697 
698 		ret = sym;
699 		if (size)
700 			*size = symbol_end - symbol_start;
701 		if (off)
702 			*off  = addr - symbol_start;
703 	}
704 	rcu_read_unlock();
705 
706 	return ret;
707 }
708 
709 bool is_bpf_text_address(unsigned long addr)
710 {
711 	bool ret;
712 
713 	rcu_read_lock();
714 	ret = bpf_ksym_find(addr) != NULL;
715 	rcu_read_unlock();
716 
717 	return ret;
718 }
719 
720 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
721 {
722 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
723 
724 	return ksym && ksym->prog ?
725 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
726 	       NULL;
727 }
728 
729 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
730 {
731 	const struct exception_table_entry *e = NULL;
732 	struct bpf_prog *prog;
733 
734 	rcu_read_lock();
735 	prog = bpf_prog_ksym_find(addr);
736 	if (!prog)
737 		goto out;
738 	if (!prog->aux->num_exentries)
739 		goto out;
740 
741 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
742 out:
743 	rcu_read_unlock();
744 	return e;
745 }
746 
747 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
748 		    char *sym)
749 {
750 	struct bpf_ksym *ksym;
751 	unsigned int it = 0;
752 	int ret = -ERANGE;
753 
754 	if (!bpf_jit_kallsyms_enabled())
755 		return ret;
756 
757 	rcu_read_lock();
758 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
759 		if (it++ != symnum)
760 			continue;
761 
762 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
763 
764 		*value = ksym->start;
765 		*type  = BPF_SYM_ELF_TYPE;
766 
767 		ret = 0;
768 		break;
769 	}
770 	rcu_read_unlock();
771 
772 	return ret;
773 }
774 
775 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
776 				struct bpf_jit_poke_descriptor *poke)
777 {
778 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
779 	static const u32 poke_tab_max = 1024;
780 	u32 slot = prog->aux->size_poke_tab;
781 	u32 size = slot + 1;
782 
783 	if (size > poke_tab_max)
784 		return -ENOSPC;
785 	if (poke->tailcall_target || poke->tailcall_target_stable ||
786 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
787 		return -EINVAL;
788 
789 	switch (poke->reason) {
790 	case BPF_POKE_REASON_TAIL_CALL:
791 		if (!poke->tail_call.map)
792 			return -EINVAL;
793 		break;
794 	default:
795 		return -EINVAL;
796 	}
797 
798 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
799 	if (!tab)
800 		return -ENOMEM;
801 
802 	memcpy(&tab[slot], poke, sizeof(*poke));
803 	prog->aux->size_poke_tab = size;
804 	prog->aux->poke_tab = tab;
805 
806 	return slot;
807 }
808 
809 /*
810  * BPF program pack allocator.
811  *
812  * Most BPF programs are pretty small. Allocating a hole page for each
813  * program is sometime a waste. Many small bpf program also adds pressure
814  * to instruction TLB. To solve this issue, we introduce a BPF program pack
815  * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
816  * to host BPF programs.
817  */
818 #define BPF_PROG_CHUNK_SHIFT	6
819 #define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
820 #define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
821 
822 struct bpf_prog_pack {
823 	struct list_head list;
824 	void *ptr;
825 	unsigned long bitmap[];
826 };
827 
828 #define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
829 
830 static DEFINE_MUTEX(pack_mutex);
831 static LIST_HEAD(pack_list);
832 
833 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
834  * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
835  */
836 #ifdef PMD_SIZE
837 #define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes())
838 #else
839 #define BPF_PROG_PACK_SIZE PAGE_SIZE
840 #endif
841 
842 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
843 
844 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
845 {
846 	struct bpf_prog_pack *pack;
847 
848 	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
849 		       GFP_KERNEL);
850 	if (!pack)
851 		return NULL;
852 	pack->ptr = module_alloc(BPF_PROG_PACK_SIZE);
853 	if (!pack->ptr) {
854 		kfree(pack);
855 		return NULL;
856 	}
857 	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
858 	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
859 	list_add_tail(&pack->list, &pack_list);
860 
861 	set_vm_flush_reset_perms(pack->ptr);
862 	set_memory_ro((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
863 	set_memory_x((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
864 	return pack;
865 }
866 
867 static void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
868 {
869 	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
870 	struct bpf_prog_pack *pack;
871 	unsigned long pos;
872 	void *ptr = NULL;
873 
874 	mutex_lock(&pack_mutex);
875 	if (size > BPF_PROG_PACK_SIZE) {
876 		size = round_up(size, PAGE_SIZE);
877 		ptr = module_alloc(size);
878 		if (ptr) {
879 			bpf_fill_ill_insns(ptr, size);
880 			set_vm_flush_reset_perms(ptr);
881 			set_memory_ro((unsigned long)ptr, size / PAGE_SIZE);
882 			set_memory_x((unsigned long)ptr, size / PAGE_SIZE);
883 		}
884 		goto out;
885 	}
886 	list_for_each_entry(pack, &pack_list, list) {
887 		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
888 						 nbits, 0);
889 		if (pos < BPF_PROG_CHUNK_COUNT)
890 			goto found_free_area;
891 	}
892 
893 	pack = alloc_new_pack(bpf_fill_ill_insns);
894 	if (!pack)
895 		goto out;
896 
897 	pos = 0;
898 
899 found_free_area:
900 	bitmap_set(pack->bitmap, pos, nbits);
901 	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
902 
903 out:
904 	mutex_unlock(&pack_mutex);
905 	return ptr;
906 }
907 
908 static void bpf_prog_pack_free(struct bpf_binary_header *hdr)
909 {
910 	struct bpf_prog_pack *pack = NULL, *tmp;
911 	unsigned int nbits;
912 	unsigned long pos;
913 
914 	mutex_lock(&pack_mutex);
915 	if (hdr->size > BPF_PROG_PACK_SIZE) {
916 		module_memfree(hdr);
917 		goto out;
918 	}
919 
920 	list_for_each_entry(tmp, &pack_list, list) {
921 		if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) {
922 			pack = tmp;
923 			break;
924 		}
925 	}
926 
927 	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
928 		goto out;
929 
930 	nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
931 	pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
932 
933 	WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
934 		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
935 
936 	bitmap_clear(pack->bitmap, pos, nbits);
937 	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
938 				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
939 		list_del(&pack->list);
940 		module_memfree(pack->ptr);
941 		kfree(pack);
942 	}
943 out:
944 	mutex_unlock(&pack_mutex);
945 }
946 
947 static atomic_long_t bpf_jit_current;
948 
949 /* Can be overridden by an arch's JIT compiler if it has a custom,
950  * dedicated BPF backend memory area, or if neither of the two
951  * below apply.
952  */
953 u64 __weak bpf_jit_alloc_exec_limit(void)
954 {
955 #if defined(MODULES_VADDR)
956 	return MODULES_END - MODULES_VADDR;
957 #else
958 	return VMALLOC_END - VMALLOC_START;
959 #endif
960 }
961 
962 static int __init bpf_jit_charge_init(void)
963 {
964 	/* Only used as heuristic here to derive limit. */
965 	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
966 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
967 					    PAGE_SIZE), LONG_MAX);
968 	return 0;
969 }
970 pure_initcall(bpf_jit_charge_init);
971 
972 int bpf_jit_charge_modmem(u32 size)
973 {
974 	if (atomic_long_add_return(size, &bpf_jit_current) > bpf_jit_limit) {
975 		if (!bpf_capable()) {
976 			atomic_long_sub(size, &bpf_jit_current);
977 			return -EPERM;
978 		}
979 	}
980 
981 	return 0;
982 }
983 
984 void bpf_jit_uncharge_modmem(u32 size)
985 {
986 	atomic_long_sub(size, &bpf_jit_current);
987 }
988 
989 void *__weak bpf_jit_alloc_exec(unsigned long size)
990 {
991 	return module_alloc(size);
992 }
993 
994 void __weak bpf_jit_free_exec(void *addr)
995 {
996 	module_memfree(addr);
997 }
998 
999 struct bpf_binary_header *
1000 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1001 		     unsigned int alignment,
1002 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1003 {
1004 	struct bpf_binary_header *hdr;
1005 	u32 size, hole, start;
1006 
1007 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1008 		     alignment > BPF_IMAGE_ALIGNMENT);
1009 
1010 	/* Most of BPF filters are really small, but if some of them
1011 	 * fill a page, allow at least 128 extra bytes to insert a
1012 	 * random section of illegal instructions.
1013 	 */
1014 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1015 
1016 	if (bpf_jit_charge_modmem(size))
1017 		return NULL;
1018 	hdr = bpf_jit_alloc_exec(size);
1019 	if (!hdr) {
1020 		bpf_jit_uncharge_modmem(size);
1021 		return NULL;
1022 	}
1023 
1024 	/* Fill space with illegal/arch-dep instructions. */
1025 	bpf_fill_ill_insns(hdr, size);
1026 
1027 	hdr->size = size;
1028 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1029 		     PAGE_SIZE - sizeof(*hdr));
1030 	start = (get_random_int() % hole) & ~(alignment - 1);
1031 
1032 	/* Leave a random number of instructions before BPF code. */
1033 	*image_ptr = &hdr->image[start];
1034 
1035 	return hdr;
1036 }
1037 
1038 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1039 {
1040 	u32 size = hdr->size;
1041 
1042 	bpf_jit_free_exec(hdr);
1043 	bpf_jit_uncharge_modmem(size);
1044 }
1045 
1046 /* Allocate jit binary from bpf_prog_pack allocator.
1047  * Since the allocated memory is RO+X, the JIT engine cannot write directly
1048  * to the memory. To solve this problem, a RW buffer is also allocated at
1049  * as the same time. The JIT engine should calculate offsets based on the
1050  * RO memory address, but write JITed program to the RW buffer. Once the
1051  * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1052  * the JITed program to the RO memory.
1053  */
1054 struct bpf_binary_header *
1055 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1056 			  unsigned int alignment,
1057 			  struct bpf_binary_header **rw_header,
1058 			  u8 **rw_image,
1059 			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1060 {
1061 	struct bpf_binary_header *ro_header;
1062 	u32 size, hole, start;
1063 
1064 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1065 		     alignment > BPF_IMAGE_ALIGNMENT);
1066 
1067 	/* add 16 bytes for a random section of illegal instructions */
1068 	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1069 
1070 	if (bpf_jit_charge_modmem(size))
1071 		return NULL;
1072 	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1073 	if (!ro_header) {
1074 		bpf_jit_uncharge_modmem(size);
1075 		return NULL;
1076 	}
1077 
1078 	*rw_header = kvmalloc(size, GFP_KERNEL);
1079 	if (!*rw_header) {
1080 		bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
1081 		bpf_prog_pack_free(ro_header);
1082 		bpf_jit_uncharge_modmem(size);
1083 		return NULL;
1084 	}
1085 
1086 	/* Fill space with illegal/arch-dep instructions. */
1087 	bpf_fill_ill_insns(*rw_header, size);
1088 	(*rw_header)->size = size;
1089 
1090 	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1091 		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1092 	start = (get_random_int() % hole) & ~(alignment - 1);
1093 
1094 	*image_ptr = &ro_header->image[start];
1095 	*rw_image = &(*rw_header)->image[start];
1096 
1097 	return ro_header;
1098 }
1099 
1100 /* Copy JITed text from rw_header to its final location, the ro_header. */
1101 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1102 				 struct bpf_binary_header *ro_header,
1103 				 struct bpf_binary_header *rw_header)
1104 {
1105 	void *ptr;
1106 
1107 	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1108 
1109 	kvfree(rw_header);
1110 
1111 	if (IS_ERR(ptr)) {
1112 		bpf_prog_pack_free(ro_header);
1113 		return PTR_ERR(ptr);
1114 	}
1115 	return 0;
1116 }
1117 
1118 /* bpf_jit_binary_pack_free is called in two different scenarios:
1119  *   1) when the program is freed after;
1120  *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1121  * For case 2), we need to free both the RO memory and the RW buffer.
1122  *
1123  * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1124  * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1125  * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1126  * bpf_arch_text_copy (when jit fails).
1127  */
1128 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1129 			      struct bpf_binary_header *rw_header)
1130 {
1131 	u32 size = ro_header->size;
1132 
1133 	bpf_prog_pack_free(ro_header);
1134 	kvfree(rw_header);
1135 	bpf_jit_uncharge_modmem(size);
1136 }
1137 
1138 struct bpf_binary_header *
1139 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1140 {
1141 	unsigned long real_start = (unsigned long)fp->bpf_func;
1142 	unsigned long addr;
1143 
1144 	addr = real_start & BPF_PROG_CHUNK_MASK;
1145 	return (void *)addr;
1146 }
1147 
1148 static inline struct bpf_binary_header *
1149 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1150 {
1151 	unsigned long real_start = (unsigned long)fp->bpf_func;
1152 	unsigned long addr;
1153 
1154 	addr = real_start & PAGE_MASK;
1155 	return (void *)addr;
1156 }
1157 
1158 /* This symbol is only overridden by archs that have different
1159  * requirements than the usual eBPF JITs, f.e. when they only
1160  * implement cBPF JIT, do not set images read-only, etc.
1161  */
1162 void __weak bpf_jit_free(struct bpf_prog *fp)
1163 {
1164 	if (fp->jited) {
1165 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1166 
1167 		bpf_jit_binary_free(hdr);
1168 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1169 	}
1170 
1171 	bpf_prog_unlock_free(fp);
1172 }
1173 
1174 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1175 			  const struct bpf_insn *insn, bool extra_pass,
1176 			  u64 *func_addr, bool *func_addr_fixed)
1177 {
1178 	s16 off = insn->off;
1179 	s32 imm = insn->imm;
1180 	u8 *addr;
1181 
1182 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1183 	if (!*func_addr_fixed) {
1184 		/* Place-holder address till the last pass has collected
1185 		 * all addresses for JITed subprograms in which case we
1186 		 * can pick them up from prog->aux.
1187 		 */
1188 		if (!extra_pass)
1189 			addr = NULL;
1190 		else if (prog->aux->func &&
1191 			 off >= 0 && off < prog->aux->func_cnt)
1192 			addr = (u8 *)prog->aux->func[off]->bpf_func;
1193 		else
1194 			return -EINVAL;
1195 	} else {
1196 		/* Address of a BPF helper call. Since part of the core
1197 		 * kernel, it's always at a fixed location. __bpf_call_base
1198 		 * and the helper with imm relative to it are both in core
1199 		 * kernel.
1200 		 */
1201 		addr = (u8 *)__bpf_call_base + imm;
1202 	}
1203 
1204 	*func_addr = (unsigned long)addr;
1205 	return 0;
1206 }
1207 
1208 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1209 			      const struct bpf_insn *aux,
1210 			      struct bpf_insn *to_buff,
1211 			      bool emit_zext)
1212 {
1213 	struct bpf_insn *to = to_buff;
1214 	u32 imm_rnd = get_random_int();
1215 	s16 off;
1216 
1217 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1218 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1219 
1220 	/* Constraints on AX register:
1221 	 *
1222 	 * AX register is inaccessible from user space. It is mapped in
1223 	 * all JITs, and used here for constant blinding rewrites. It is
1224 	 * typically "stateless" meaning its contents are only valid within
1225 	 * the executed instruction, but not across several instructions.
1226 	 * There are a few exceptions however which are further detailed
1227 	 * below.
1228 	 *
1229 	 * Constant blinding is only used by JITs, not in the interpreter.
1230 	 * The interpreter uses AX in some occasions as a local temporary
1231 	 * register e.g. in DIV or MOD instructions.
1232 	 *
1233 	 * In restricted circumstances, the verifier can also use the AX
1234 	 * register for rewrites as long as they do not interfere with
1235 	 * the above cases!
1236 	 */
1237 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1238 		goto out;
1239 
1240 	if (from->imm == 0 &&
1241 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1242 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1243 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1244 		goto out;
1245 	}
1246 
1247 	switch (from->code) {
1248 	case BPF_ALU | BPF_ADD | BPF_K:
1249 	case BPF_ALU | BPF_SUB | BPF_K:
1250 	case BPF_ALU | BPF_AND | BPF_K:
1251 	case BPF_ALU | BPF_OR  | BPF_K:
1252 	case BPF_ALU | BPF_XOR | BPF_K:
1253 	case BPF_ALU | BPF_MUL | BPF_K:
1254 	case BPF_ALU | BPF_MOV | BPF_K:
1255 	case BPF_ALU | BPF_DIV | BPF_K:
1256 	case BPF_ALU | BPF_MOD | BPF_K:
1257 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1258 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1259 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1260 		break;
1261 
1262 	case BPF_ALU64 | BPF_ADD | BPF_K:
1263 	case BPF_ALU64 | BPF_SUB | BPF_K:
1264 	case BPF_ALU64 | BPF_AND | BPF_K:
1265 	case BPF_ALU64 | BPF_OR  | BPF_K:
1266 	case BPF_ALU64 | BPF_XOR | BPF_K:
1267 	case BPF_ALU64 | BPF_MUL | BPF_K:
1268 	case BPF_ALU64 | BPF_MOV | BPF_K:
1269 	case BPF_ALU64 | BPF_DIV | BPF_K:
1270 	case BPF_ALU64 | BPF_MOD | BPF_K:
1271 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1272 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1273 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1274 		break;
1275 
1276 	case BPF_JMP | BPF_JEQ  | BPF_K:
1277 	case BPF_JMP | BPF_JNE  | BPF_K:
1278 	case BPF_JMP | BPF_JGT  | BPF_K:
1279 	case BPF_JMP | BPF_JLT  | BPF_K:
1280 	case BPF_JMP | BPF_JGE  | BPF_K:
1281 	case BPF_JMP | BPF_JLE  | BPF_K:
1282 	case BPF_JMP | BPF_JSGT | BPF_K:
1283 	case BPF_JMP | BPF_JSLT | BPF_K:
1284 	case BPF_JMP | BPF_JSGE | BPF_K:
1285 	case BPF_JMP | BPF_JSLE | BPF_K:
1286 	case BPF_JMP | BPF_JSET | BPF_K:
1287 		/* Accommodate for extra offset in case of a backjump. */
1288 		off = from->off;
1289 		if (off < 0)
1290 			off -= 2;
1291 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1292 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1293 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1294 		break;
1295 
1296 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1297 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1298 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1299 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1300 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1301 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1302 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1303 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1304 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1305 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1306 	case BPF_JMP32 | BPF_JSET | BPF_K:
1307 		/* Accommodate for extra offset in case of a backjump. */
1308 		off = from->off;
1309 		if (off < 0)
1310 			off -= 2;
1311 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1312 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1313 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1314 				      off);
1315 		break;
1316 
1317 	case BPF_LD | BPF_IMM | BPF_DW:
1318 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1319 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1320 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1321 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1322 		break;
1323 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1324 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1325 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1326 		if (emit_zext)
1327 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1328 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1329 		break;
1330 
1331 	case BPF_ST | BPF_MEM | BPF_DW:
1332 	case BPF_ST | BPF_MEM | BPF_W:
1333 	case BPF_ST | BPF_MEM | BPF_H:
1334 	case BPF_ST | BPF_MEM | BPF_B:
1335 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1336 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1337 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1338 		break;
1339 	}
1340 out:
1341 	return to - to_buff;
1342 }
1343 
1344 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1345 					      gfp_t gfp_extra_flags)
1346 {
1347 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1348 	struct bpf_prog *fp;
1349 
1350 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1351 	if (fp != NULL) {
1352 		/* aux->prog still points to the fp_other one, so
1353 		 * when promoting the clone to the real program,
1354 		 * this still needs to be adapted.
1355 		 */
1356 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1357 	}
1358 
1359 	return fp;
1360 }
1361 
1362 static void bpf_prog_clone_free(struct bpf_prog *fp)
1363 {
1364 	/* aux was stolen by the other clone, so we cannot free
1365 	 * it from this path! It will be freed eventually by the
1366 	 * other program on release.
1367 	 *
1368 	 * At this point, we don't need a deferred release since
1369 	 * clone is guaranteed to not be locked.
1370 	 */
1371 	fp->aux = NULL;
1372 	fp->stats = NULL;
1373 	fp->active = NULL;
1374 	__bpf_prog_free(fp);
1375 }
1376 
1377 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1378 {
1379 	/* We have to repoint aux->prog to self, as we don't
1380 	 * know whether fp here is the clone or the original.
1381 	 */
1382 	fp->aux->prog = fp;
1383 	bpf_prog_clone_free(fp_other);
1384 }
1385 
1386 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1387 {
1388 	struct bpf_insn insn_buff[16], aux[2];
1389 	struct bpf_prog *clone, *tmp;
1390 	int insn_delta, insn_cnt;
1391 	struct bpf_insn *insn;
1392 	int i, rewritten;
1393 
1394 	if (!prog->blinding_requested || prog->blinded)
1395 		return prog;
1396 
1397 	clone = bpf_prog_clone_create(prog, GFP_USER);
1398 	if (!clone)
1399 		return ERR_PTR(-ENOMEM);
1400 
1401 	insn_cnt = clone->len;
1402 	insn = clone->insnsi;
1403 
1404 	for (i = 0; i < insn_cnt; i++, insn++) {
1405 		if (bpf_pseudo_func(insn)) {
1406 			/* ld_imm64 with an address of bpf subprog is not
1407 			 * a user controlled constant. Don't randomize it,
1408 			 * since it will conflict with jit_subprogs() logic.
1409 			 */
1410 			insn++;
1411 			i++;
1412 			continue;
1413 		}
1414 
1415 		/* We temporarily need to hold the original ld64 insn
1416 		 * so that we can still access the first part in the
1417 		 * second blinding run.
1418 		 */
1419 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1420 		    insn[1].code == 0)
1421 			memcpy(aux, insn, sizeof(aux));
1422 
1423 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1424 						clone->aux->verifier_zext);
1425 		if (!rewritten)
1426 			continue;
1427 
1428 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1429 		if (IS_ERR(tmp)) {
1430 			/* Patching may have repointed aux->prog during
1431 			 * realloc from the original one, so we need to
1432 			 * fix it up here on error.
1433 			 */
1434 			bpf_jit_prog_release_other(prog, clone);
1435 			return tmp;
1436 		}
1437 
1438 		clone = tmp;
1439 		insn_delta = rewritten - 1;
1440 
1441 		/* Walk new program and skip insns we just inserted. */
1442 		insn = clone->insnsi + i + insn_delta;
1443 		insn_cnt += insn_delta;
1444 		i        += insn_delta;
1445 	}
1446 
1447 	clone->blinded = 1;
1448 	return clone;
1449 }
1450 #endif /* CONFIG_BPF_JIT */
1451 
1452 /* Base function for offset calculation. Needs to go into .text section,
1453  * therefore keeping it non-static as well; will also be used by JITs
1454  * anyway later on, so do not let the compiler omit it. This also needs
1455  * to go into kallsyms for correlation from e.g. bpftool, so naming
1456  * must not change.
1457  */
1458 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1459 {
1460 	return 0;
1461 }
1462 EXPORT_SYMBOL_GPL(__bpf_call_base);
1463 
1464 /* All UAPI available opcodes. */
1465 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1466 	/* 32 bit ALU operations. */		\
1467 	/*   Register based. */			\
1468 	INSN_3(ALU, ADD,  X),			\
1469 	INSN_3(ALU, SUB,  X),			\
1470 	INSN_3(ALU, AND,  X),			\
1471 	INSN_3(ALU, OR,   X),			\
1472 	INSN_3(ALU, LSH,  X),			\
1473 	INSN_3(ALU, RSH,  X),			\
1474 	INSN_3(ALU, XOR,  X),			\
1475 	INSN_3(ALU, MUL,  X),			\
1476 	INSN_3(ALU, MOV,  X),			\
1477 	INSN_3(ALU, ARSH, X),			\
1478 	INSN_3(ALU, DIV,  X),			\
1479 	INSN_3(ALU, MOD,  X),			\
1480 	INSN_2(ALU, NEG),			\
1481 	INSN_3(ALU, END, TO_BE),		\
1482 	INSN_3(ALU, END, TO_LE),		\
1483 	/*   Immediate based. */		\
1484 	INSN_3(ALU, ADD,  K),			\
1485 	INSN_3(ALU, SUB,  K),			\
1486 	INSN_3(ALU, AND,  K),			\
1487 	INSN_3(ALU, OR,   K),			\
1488 	INSN_3(ALU, LSH,  K),			\
1489 	INSN_3(ALU, RSH,  K),			\
1490 	INSN_3(ALU, XOR,  K),			\
1491 	INSN_3(ALU, MUL,  K),			\
1492 	INSN_3(ALU, MOV,  K),			\
1493 	INSN_3(ALU, ARSH, K),			\
1494 	INSN_3(ALU, DIV,  K),			\
1495 	INSN_3(ALU, MOD,  K),			\
1496 	/* 64 bit ALU operations. */		\
1497 	/*   Register based. */			\
1498 	INSN_3(ALU64, ADD,  X),			\
1499 	INSN_3(ALU64, SUB,  X),			\
1500 	INSN_3(ALU64, AND,  X),			\
1501 	INSN_3(ALU64, OR,   X),			\
1502 	INSN_3(ALU64, LSH,  X),			\
1503 	INSN_3(ALU64, RSH,  X),			\
1504 	INSN_3(ALU64, XOR,  X),			\
1505 	INSN_3(ALU64, MUL,  X),			\
1506 	INSN_3(ALU64, MOV,  X),			\
1507 	INSN_3(ALU64, ARSH, X),			\
1508 	INSN_3(ALU64, DIV,  X),			\
1509 	INSN_3(ALU64, MOD,  X),			\
1510 	INSN_2(ALU64, NEG),			\
1511 	/*   Immediate based. */		\
1512 	INSN_3(ALU64, ADD,  K),			\
1513 	INSN_3(ALU64, SUB,  K),			\
1514 	INSN_3(ALU64, AND,  K),			\
1515 	INSN_3(ALU64, OR,   K),			\
1516 	INSN_3(ALU64, LSH,  K),			\
1517 	INSN_3(ALU64, RSH,  K),			\
1518 	INSN_3(ALU64, XOR,  K),			\
1519 	INSN_3(ALU64, MUL,  K),			\
1520 	INSN_3(ALU64, MOV,  K),			\
1521 	INSN_3(ALU64, ARSH, K),			\
1522 	INSN_3(ALU64, DIV,  K),			\
1523 	INSN_3(ALU64, MOD,  K),			\
1524 	/* Call instruction. */			\
1525 	INSN_2(JMP, CALL),			\
1526 	/* Exit instruction. */			\
1527 	INSN_2(JMP, EXIT),			\
1528 	/* 32-bit Jump instructions. */		\
1529 	/*   Register based. */			\
1530 	INSN_3(JMP32, JEQ,  X),			\
1531 	INSN_3(JMP32, JNE,  X),			\
1532 	INSN_3(JMP32, JGT,  X),			\
1533 	INSN_3(JMP32, JLT,  X),			\
1534 	INSN_3(JMP32, JGE,  X),			\
1535 	INSN_3(JMP32, JLE,  X),			\
1536 	INSN_3(JMP32, JSGT, X),			\
1537 	INSN_3(JMP32, JSLT, X),			\
1538 	INSN_3(JMP32, JSGE, X),			\
1539 	INSN_3(JMP32, JSLE, X),			\
1540 	INSN_3(JMP32, JSET, X),			\
1541 	/*   Immediate based. */		\
1542 	INSN_3(JMP32, JEQ,  K),			\
1543 	INSN_3(JMP32, JNE,  K),			\
1544 	INSN_3(JMP32, JGT,  K),			\
1545 	INSN_3(JMP32, JLT,  K),			\
1546 	INSN_3(JMP32, JGE,  K),			\
1547 	INSN_3(JMP32, JLE,  K),			\
1548 	INSN_3(JMP32, JSGT, K),			\
1549 	INSN_3(JMP32, JSLT, K),			\
1550 	INSN_3(JMP32, JSGE, K),			\
1551 	INSN_3(JMP32, JSLE, K),			\
1552 	INSN_3(JMP32, JSET, K),			\
1553 	/* Jump instructions. */		\
1554 	/*   Register based. */			\
1555 	INSN_3(JMP, JEQ,  X),			\
1556 	INSN_3(JMP, JNE,  X),			\
1557 	INSN_3(JMP, JGT,  X),			\
1558 	INSN_3(JMP, JLT,  X),			\
1559 	INSN_3(JMP, JGE,  X),			\
1560 	INSN_3(JMP, JLE,  X),			\
1561 	INSN_3(JMP, JSGT, X),			\
1562 	INSN_3(JMP, JSLT, X),			\
1563 	INSN_3(JMP, JSGE, X),			\
1564 	INSN_3(JMP, JSLE, X),			\
1565 	INSN_3(JMP, JSET, X),			\
1566 	/*   Immediate based. */		\
1567 	INSN_3(JMP, JEQ,  K),			\
1568 	INSN_3(JMP, JNE,  K),			\
1569 	INSN_3(JMP, JGT,  K),			\
1570 	INSN_3(JMP, JLT,  K),			\
1571 	INSN_3(JMP, JGE,  K),			\
1572 	INSN_3(JMP, JLE,  K),			\
1573 	INSN_3(JMP, JSGT, K),			\
1574 	INSN_3(JMP, JSLT, K),			\
1575 	INSN_3(JMP, JSGE, K),			\
1576 	INSN_3(JMP, JSLE, K),			\
1577 	INSN_3(JMP, JSET, K),			\
1578 	INSN_2(JMP, JA),			\
1579 	/* Store instructions. */		\
1580 	/*   Register based. */			\
1581 	INSN_3(STX, MEM,  B),			\
1582 	INSN_3(STX, MEM,  H),			\
1583 	INSN_3(STX, MEM,  W),			\
1584 	INSN_3(STX, MEM,  DW),			\
1585 	INSN_3(STX, ATOMIC, W),			\
1586 	INSN_3(STX, ATOMIC, DW),		\
1587 	/*   Immediate based. */		\
1588 	INSN_3(ST, MEM, B),			\
1589 	INSN_3(ST, MEM, H),			\
1590 	INSN_3(ST, MEM, W),			\
1591 	INSN_3(ST, MEM, DW),			\
1592 	/* Load instructions. */		\
1593 	/*   Register based. */			\
1594 	INSN_3(LDX, MEM, B),			\
1595 	INSN_3(LDX, MEM, H),			\
1596 	INSN_3(LDX, MEM, W),			\
1597 	INSN_3(LDX, MEM, DW),			\
1598 	/*   Immediate based. */		\
1599 	INSN_3(LD, IMM, DW)
1600 
1601 bool bpf_opcode_in_insntable(u8 code)
1602 {
1603 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1604 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1605 	static const bool public_insntable[256] = {
1606 		[0 ... 255] = false,
1607 		/* Now overwrite non-defaults ... */
1608 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1609 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1610 		[BPF_LD | BPF_ABS | BPF_B] = true,
1611 		[BPF_LD | BPF_ABS | BPF_H] = true,
1612 		[BPF_LD | BPF_ABS | BPF_W] = true,
1613 		[BPF_LD | BPF_IND | BPF_B] = true,
1614 		[BPF_LD | BPF_IND | BPF_H] = true,
1615 		[BPF_LD | BPF_IND | BPF_W] = true,
1616 	};
1617 #undef BPF_INSN_3_TBL
1618 #undef BPF_INSN_2_TBL
1619 	return public_insntable[code];
1620 }
1621 
1622 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1623 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1624 {
1625 	memset(dst, 0, size);
1626 	return -EFAULT;
1627 }
1628 
1629 /**
1630  *	___bpf_prog_run - run eBPF program on a given context
1631  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1632  *	@insn: is the array of eBPF instructions
1633  *
1634  * Decode and execute eBPF instructions.
1635  *
1636  * Return: whatever value is in %BPF_R0 at program exit
1637  */
1638 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1639 {
1640 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1641 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1642 	static const void * const jumptable[256] __annotate_jump_table = {
1643 		[0 ... 255] = &&default_label,
1644 		/* Now overwrite non-defaults ... */
1645 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1646 		/* Non-UAPI available opcodes. */
1647 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1648 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1649 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1650 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1651 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1652 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1653 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1654 	};
1655 #undef BPF_INSN_3_LBL
1656 #undef BPF_INSN_2_LBL
1657 	u32 tail_call_cnt = 0;
1658 
1659 #define CONT	 ({ insn++; goto select_insn; })
1660 #define CONT_JMP ({ insn++; goto select_insn; })
1661 
1662 select_insn:
1663 	goto *jumptable[insn->code];
1664 
1665 	/* Explicitly mask the register-based shift amounts with 63 or 31
1666 	 * to avoid undefined behavior. Normally this won't affect the
1667 	 * generated code, for example, in case of native 64 bit archs such
1668 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1669 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1670 	 * the BPF shift operations to machine instructions which produce
1671 	 * implementation-defined results in such a case; the resulting
1672 	 * contents of the register may be arbitrary, but program behaviour
1673 	 * as a whole remains defined. In other words, in case of JIT backends,
1674 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1675 	 */
1676 	/* ALU (shifts) */
1677 #define SHT(OPCODE, OP)					\
1678 	ALU64_##OPCODE##_X:				\
1679 		DST = DST OP (SRC & 63);		\
1680 		CONT;					\
1681 	ALU_##OPCODE##_X:				\
1682 		DST = (u32) DST OP ((u32) SRC & 31);	\
1683 		CONT;					\
1684 	ALU64_##OPCODE##_K:				\
1685 		DST = DST OP IMM;			\
1686 		CONT;					\
1687 	ALU_##OPCODE##_K:				\
1688 		DST = (u32) DST OP (u32) IMM;		\
1689 		CONT;
1690 	/* ALU (rest) */
1691 #define ALU(OPCODE, OP)					\
1692 	ALU64_##OPCODE##_X:				\
1693 		DST = DST OP SRC;			\
1694 		CONT;					\
1695 	ALU_##OPCODE##_X:				\
1696 		DST = (u32) DST OP (u32) SRC;		\
1697 		CONT;					\
1698 	ALU64_##OPCODE##_K:				\
1699 		DST = DST OP IMM;			\
1700 		CONT;					\
1701 	ALU_##OPCODE##_K:				\
1702 		DST = (u32) DST OP (u32) IMM;		\
1703 		CONT;
1704 	ALU(ADD,  +)
1705 	ALU(SUB,  -)
1706 	ALU(AND,  &)
1707 	ALU(OR,   |)
1708 	ALU(XOR,  ^)
1709 	ALU(MUL,  *)
1710 	SHT(LSH, <<)
1711 	SHT(RSH, >>)
1712 #undef SHT
1713 #undef ALU
1714 	ALU_NEG:
1715 		DST = (u32) -DST;
1716 		CONT;
1717 	ALU64_NEG:
1718 		DST = -DST;
1719 		CONT;
1720 	ALU_MOV_X:
1721 		DST = (u32) SRC;
1722 		CONT;
1723 	ALU_MOV_K:
1724 		DST = (u32) IMM;
1725 		CONT;
1726 	ALU64_MOV_X:
1727 		DST = SRC;
1728 		CONT;
1729 	ALU64_MOV_K:
1730 		DST = IMM;
1731 		CONT;
1732 	LD_IMM_DW:
1733 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1734 		insn++;
1735 		CONT;
1736 	ALU_ARSH_X:
1737 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1738 		CONT;
1739 	ALU_ARSH_K:
1740 		DST = (u64) (u32) (((s32) DST) >> IMM);
1741 		CONT;
1742 	ALU64_ARSH_X:
1743 		(*(s64 *) &DST) >>= (SRC & 63);
1744 		CONT;
1745 	ALU64_ARSH_K:
1746 		(*(s64 *) &DST) >>= IMM;
1747 		CONT;
1748 	ALU64_MOD_X:
1749 		div64_u64_rem(DST, SRC, &AX);
1750 		DST = AX;
1751 		CONT;
1752 	ALU_MOD_X:
1753 		AX = (u32) DST;
1754 		DST = do_div(AX, (u32) SRC);
1755 		CONT;
1756 	ALU64_MOD_K:
1757 		div64_u64_rem(DST, IMM, &AX);
1758 		DST = AX;
1759 		CONT;
1760 	ALU_MOD_K:
1761 		AX = (u32) DST;
1762 		DST = do_div(AX, (u32) IMM);
1763 		CONT;
1764 	ALU64_DIV_X:
1765 		DST = div64_u64(DST, SRC);
1766 		CONT;
1767 	ALU_DIV_X:
1768 		AX = (u32) DST;
1769 		do_div(AX, (u32) SRC);
1770 		DST = (u32) AX;
1771 		CONT;
1772 	ALU64_DIV_K:
1773 		DST = div64_u64(DST, IMM);
1774 		CONT;
1775 	ALU_DIV_K:
1776 		AX = (u32) DST;
1777 		do_div(AX, (u32) IMM);
1778 		DST = (u32) AX;
1779 		CONT;
1780 	ALU_END_TO_BE:
1781 		switch (IMM) {
1782 		case 16:
1783 			DST = (__force u16) cpu_to_be16(DST);
1784 			break;
1785 		case 32:
1786 			DST = (__force u32) cpu_to_be32(DST);
1787 			break;
1788 		case 64:
1789 			DST = (__force u64) cpu_to_be64(DST);
1790 			break;
1791 		}
1792 		CONT;
1793 	ALU_END_TO_LE:
1794 		switch (IMM) {
1795 		case 16:
1796 			DST = (__force u16) cpu_to_le16(DST);
1797 			break;
1798 		case 32:
1799 			DST = (__force u32) cpu_to_le32(DST);
1800 			break;
1801 		case 64:
1802 			DST = (__force u64) cpu_to_le64(DST);
1803 			break;
1804 		}
1805 		CONT;
1806 
1807 	/* CALL */
1808 	JMP_CALL:
1809 		/* Function call scratches BPF_R1-BPF_R5 registers,
1810 		 * preserves BPF_R6-BPF_R9, and stores return value
1811 		 * into BPF_R0.
1812 		 */
1813 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1814 						       BPF_R4, BPF_R5);
1815 		CONT;
1816 
1817 	JMP_CALL_ARGS:
1818 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1819 							    BPF_R3, BPF_R4,
1820 							    BPF_R5,
1821 							    insn + insn->off + 1);
1822 		CONT;
1823 
1824 	JMP_TAIL_CALL: {
1825 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1826 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1827 		struct bpf_prog *prog;
1828 		u32 index = BPF_R3;
1829 
1830 		if (unlikely(index >= array->map.max_entries))
1831 			goto out;
1832 
1833 		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
1834 			goto out;
1835 
1836 		tail_call_cnt++;
1837 
1838 		prog = READ_ONCE(array->ptrs[index]);
1839 		if (!prog)
1840 			goto out;
1841 
1842 		/* ARG1 at this point is guaranteed to point to CTX from
1843 		 * the verifier side due to the fact that the tail call is
1844 		 * handled like a helper, that is, bpf_tail_call_proto,
1845 		 * where arg1_type is ARG_PTR_TO_CTX.
1846 		 */
1847 		insn = prog->insnsi;
1848 		goto select_insn;
1849 out:
1850 		CONT;
1851 	}
1852 	JMP_JA:
1853 		insn += insn->off;
1854 		CONT;
1855 	JMP_EXIT:
1856 		return BPF_R0;
1857 	/* JMP */
1858 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1859 	JMP_##OPCODE##_X:					\
1860 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1861 			insn += insn->off;			\
1862 			CONT_JMP;				\
1863 		}						\
1864 		CONT;						\
1865 	JMP32_##OPCODE##_X:					\
1866 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1867 			insn += insn->off;			\
1868 			CONT_JMP;				\
1869 		}						\
1870 		CONT;						\
1871 	JMP_##OPCODE##_K:					\
1872 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1873 			insn += insn->off;			\
1874 			CONT_JMP;				\
1875 		}						\
1876 		CONT;						\
1877 	JMP32_##OPCODE##_K:					\
1878 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1879 			insn += insn->off;			\
1880 			CONT_JMP;				\
1881 		}						\
1882 		CONT;
1883 	COND_JMP(u, JEQ, ==)
1884 	COND_JMP(u, JNE, !=)
1885 	COND_JMP(u, JGT, >)
1886 	COND_JMP(u, JLT, <)
1887 	COND_JMP(u, JGE, >=)
1888 	COND_JMP(u, JLE, <=)
1889 	COND_JMP(u, JSET, &)
1890 	COND_JMP(s, JSGT, >)
1891 	COND_JMP(s, JSLT, <)
1892 	COND_JMP(s, JSGE, >=)
1893 	COND_JMP(s, JSLE, <=)
1894 #undef COND_JMP
1895 	/* ST, STX and LDX*/
1896 	ST_NOSPEC:
1897 		/* Speculation barrier for mitigating Speculative Store Bypass.
1898 		 * In case of arm64, we rely on the firmware mitigation as
1899 		 * controlled via the ssbd kernel parameter. Whenever the
1900 		 * mitigation is enabled, it works for all of the kernel code
1901 		 * with no need to provide any additional instructions here.
1902 		 * In case of x86, we use 'lfence' insn for mitigation. We
1903 		 * reuse preexisting logic from Spectre v1 mitigation that
1904 		 * happens to produce the required code on x86 for v4 as well.
1905 		 */
1906 #ifdef CONFIG_X86
1907 		barrier_nospec();
1908 #endif
1909 		CONT;
1910 #define LDST(SIZEOP, SIZE)						\
1911 	STX_MEM_##SIZEOP:						\
1912 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1913 		CONT;							\
1914 	ST_MEM_##SIZEOP:						\
1915 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1916 		CONT;							\
1917 	LDX_MEM_##SIZEOP:						\
1918 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1919 		CONT;							\
1920 	LDX_PROBE_MEM_##SIZEOP:						\
1921 		bpf_probe_read_kernel(&DST, sizeof(SIZE),		\
1922 				      (const void *)(long) (SRC + insn->off));	\
1923 		DST = *((SIZE *)&DST);					\
1924 		CONT;
1925 
1926 	LDST(B,   u8)
1927 	LDST(H,  u16)
1928 	LDST(W,  u32)
1929 	LDST(DW, u64)
1930 #undef LDST
1931 
1932 #define ATOMIC_ALU_OP(BOP, KOP)						\
1933 		case BOP:						\
1934 			if (BPF_SIZE(insn->code) == BPF_W)		\
1935 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1936 					     (DST + insn->off));	\
1937 			else						\
1938 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1939 					       (DST + insn->off));	\
1940 			break;						\
1941 		case BOP | BPF_FETCH:					\
1942 			if (BPF_SIZE(insn->code) == BPF_W)		\
1943 				SRC = (u32) atomic_fetch_##KOP(		\
1944 					(u32) SRC,			\
1945 					(atomic_t *)(unsigned long) (DST + insn->off)); \
1946 			else						\
1947 				SRC = (u64) atomic64_fetch_##KOP(	\
1948 					(u64) SRC,			\
1949 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
1950 			break;
1951 
1952 	STX_ATOMIC_DW:
1953 	STX_ATOMIC_W:
1954 		switch (IMM) {
1955 		ATOMIC_ALU_OP(BPF_ADD, add)
1956 		ATOMIC_ALU_OP(BPF_AND, and)
1957 		ATOMIC_ALU_OP(BPF_OR, or)
1958 		ATOMIC_ALU_OP(BPF_XOR, xor)
1959 #undef ATOMIC_ALU_OP
1960 
1961 		case BPF_XCHG:
1962 			if (BPF_SIZE(insn->code) == BPF_W)
1963 				SRC = (u32) atomic_xchg(
1964 					(atomic_t *)(unsigned long) (DST + insn->off),
1965 					(u32) SRC);
1966 			else
1967 				SRC = (u64) atomic64_xchg(
1968 					(atomic64_t *)(unsigned long) (DST + insn->off),
1969 					(u64) SRC);
1970 			break;
1971 		case BPF_CMPXCHG:
1972 			if (BPF_SIZE(insn->code) == BPF_W)
1973 				BPF_R0 = (u32) atomic_cmpxchg(
1974 					(atomic_t *)(unsigned long) (DST + insn->off),
1975 					(u32) BPF_R0, (u32) SRC);
1976 			else
1977 				BPF_R0 = (u64) atomic64_cmpxchg(
1978 					(atomic64_t *)(unsigned long) (DST + insn->off),
1979 					(u64) BPF_R0, (u64) SRC);
1980 			break;
1981 
1982 		default:
1983 			goto default_label;
1984 		}
1985 		CONT;
1986 
1987 	default_label:
1988 		/* If we ever reach this, we have a bug somewhere. Die hard here
1989 		 * instead of just returning 0; we could be somewhere in a subprog,
1990 		 * so execution could continue otherwise which we do /not/ want.
1991 		 *
1992 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1993 		 */
1994 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
1995 			insn->code, insn->imm);
1996 		BUG_ON(1);
1997 		return 0;
1998 }
1999 
2000 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2001 #define DEFINE_BPF_PROG_RUN(stack_size) \
2002 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2003 { \
2004 	u64 stack[stack_size / sizeof(u64)]; \
2005 	u64 regs[MAX_BPF_EXT_REG]; \
2006 \
2007 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2008 	ARG1 = (u64) (unsigned long) ctx; \
2009 	return ___bpf_prog_run(regs, insn); \
2010 }
2011 
2012 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2013 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2014 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2015 				      const struct bpf_insn *insn) \
2016 { \
2017 	u64 stack[stack_size / sizeof(u64)]; \
2018 	u64 regs[MAX_BPF_EXT_REG]; \
2019 \
2020 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2021 	BPF_R1 = r1; \
2022 	BPF_R2 = r2; \
2023 	BPF_R3 = r3; \
2024 	BPF_R4 = r4; \
2025 	BPF_R5 = r5; \
2026 	return ___bpf_prog_run(regs, insn); \
2027 }
2028 
2029 #define EVAL1(FN, X) FN(X)
2030 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2031 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2032 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2033 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2034 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2035 
2036 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2037 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2038 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2039 
2040 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2041 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2042 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2043 
2044 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2045 
2046 static unsigned int (*interpreters[])(const void *ctx,
2047 				      const struct bpf_insn *insn) = {
2048 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2049 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2050 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2051 };
2052 #undef PROG_NAME_LIST
2053 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2054 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2055 				  const struct bpf_insn *insn) = {
2056 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2057 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2058 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2059 };
2060 #undef PROG_NAME_LIST
2061 
2062 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2063 {
2064 	stack_depth = max_t(u32, stack_depth, 1);
2065 	insn->off = (s16) insn->imm;
2066 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2067 		__bpf_call_base_args;
2068 	insn->code = BPF_JMP | BPF_CALL_ARGS;
2069 }
2070 
2071 #else
2072 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2073 					 const struct bpf_insn *insn)
2074 {
2075 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2076 	 * is not working properly, so warn about it!
2077 	 */
2078 	WARN_ON_ONCE(1);
2079 	return 0;
2080 }
2081 #endif
2082 
2083 bool bpf_prog_map_compatible(struct bpf_map *map,
2084 			     const struct bpf_prog *fp)
2085 {
2086 	bool ret;
2087 
2088 	if (fp->kprobe_override)
2089 		return false;
2090 
2091 	spin_lock(&map->owner.lock);
2092 	if (!map->owner.type) {
2093 		/* There's no owner yet where we could check for
2094 		 * compatibility.
2095 		 */
2096 		map->owner.type  = fp->type;
2097 		map->owner.jited = fp->jited;
2098 		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2099 		ret = true;
2100 	} else {
2101 		ret = map->owner.type  == fp->type &&
2102 		      map->owner.jited == fp->jited &&
2103 		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2104 	}
2105 	spin_unlock(&map->owner.lock);
2106 
2107 	return ret;
2108 }
2109 
2110 static int bpf_check_tail_call(const struct bpf_prog *fp)
2111 {
2112 	struct bpf_prog_aux *aux = fp->aux;
2113 	int i, ret = 0;
2114 
2115 	mutex_lock(&aux->used_maps_mutex);
2116 	for (i = 0; i < aux->used_map_cnt; i++) {
2117 		struct bpf_map *map = aux->used_maps[i];
2118 
2119 		if (!map_type_contains_progs(map))
2120 			continue;
2121 
2122 		if (!bpf_prog_map_compatible(map, fp)) {
2123 			ret = -EINVAL;
2124 			goto out;
2125 		}
2126 	}
2127 
2128 out:
2129 	mutex_unlock(&aux->used_maps_mutex);
2130 	return ret;
2131 }
2132 
2133 static void bpf_prog_select_func(struct bpf_prog *fp)
2134 {
2135 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2136 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2137 
2138 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2139 #else
2140 	fp->bpf_func = __bpf_prog_ret0_warn;
2141 #endif
2142 }
2143 
2144 /**
2145  *	bpf_prog_select_runtime - select exec runtime for BPF program
2146  *	@fp: bpf_prog populated with BPF program
2147  *	@err: pointer to error variable
2148  *
2149  * Try to JIT eBPF program, if JIT is not available, use interpreter.
2150  * The BPF program will be executed via bpf_prog_run() function.
2151  *
2152  * Return: the &fp argument along with &err set to 0 for success or
2153  * a negative errno code on failure
2154  */
2155 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2156 {
2157 	/* In case of BPF to BPF calls, verifier did all the prep
2158 	 * work with regards to JITing, etc.
2159 	 */
2160 	bool jit_needed = false;
2161 
2162 	if (fp->bpf_func)
2163 		goto finalize;
2164 
2165 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2166 	    bpf_prog_has_kfunc_call(fp))
2167 		jit_needed = true;
2168 
2169 	bpf_prog_select_func(fp);
2170 
2171 	/* eBPF JITs can rewrite the program in case constant
2172 	 * blinding is active. However, in case of error during
2173 	 * blinding, bpf_int_jit_compile() must always return a
2174 	 * valid program, which in this case would simply not
2175 	 * be JITed, but falls back to the interpreter.
2176 	 */
2177 	if (!bpf_prog_is_dev_bound(fp->aux)) {
2178 		*err = bpf_prog_alloc_jited_linfo(fp);
2179 		if (*err)
2180 			return fp;
2181 
2182 		fp = bpf_int_jit_compile(fp);
2183 		bpf_prog_jit_attempt_done(fp);
2184 		if (!fp->jited && jit_needed) {
2185 			*err = -ENOTSUPP;
2186 			return fp;
2187 		}
2188 	} else {
2189 		*err = bpf_prog_offload_compile(fp);
2190 		if (*err)
2191 			return fp;
2192 	}
2193 
2194 finalize:
2195 	bpf_prog_lock_ro(fp);
2196 
2197 	/* The tail call compatibility check can only be done at
2198 	 * this late stage as we need to determine, if we deal
2199 	 * with JITed or non JITed program concatenations and not
2200 	 * all eBPF JITs might immediately support all features.
2201 	 */
2202 	*err = bpf_check_tail_call(fp);
2203 
2204 	return fp;
2205 }
2206 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2207 
2208 static unsigned int __bpf_prog_ret1(const void *ctx,
2209 				    const struct bpf_insn *insn)
2210 {
2211 	return 1;
2212 }
2213 
2214 static struct bpf_prog_dummy {
2215 	struct bpf_prog prog;
2216 } dummy_bpf_prog = {
2217 	.prog = {
2218 		.bpf_func = __bpf_prog_ret1,
2219 	},
2220 };
2221 
2222 struct bpf_empty_prog_array bpf_empty_prog_array = {
2223 	.null_prog = NULL,
2224 };
2225 EXPORT_SYMBOL(bpf_empty_prog_array);
2226 
2227 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2228 {
2229 	if (prog_cnt)
2230 		return kzalloc(sizeof(struct bpf_prog_array) +
2231 			       sizeof(struct bpf_prog_array_item) *
2232 			       (prog_cnt + 1),
2233 			       flags);
2234 
2235 	return &bpf_empty_prog_array.hdr;
2236 }
2237 
2238 void bpf_prog_array_free(struct bpf_prog_array *progs)
2239 {
2240 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2241 		return;
2242 	kfree_rcu(progs, rcu);
2243 }
2244 
2245 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2246 {
2247 	struct bpf_prog_array *progs;
2248 
2249 	progs = container_of(rcu, struct bpf_prog_array, rcu);
2250 	kfree_rcu(progs, rcu);
2251 }
2252 
2253 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2254 {
2255 	if (!progs || progs == &bpf_empty_prog_array.hdr)
2256 		return;
2257 	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2258 }
2259 
2260 int bpf_prog_array_length(struct bpf_prog_array *array)
2261 {
2262 	struct bpf_prog_array_item *item;
2263 	u32 cnt = 0;
2264 
2265 	for (item = array->items; item->prog; item++)
2266 		if (item->prog != &dummy_bpf_prog.prog)
2267 			cnt++;
2268 	return cnt;
2269 }
2270 
2271 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2272 {
2273 	struct bpf_prog_array_item *item;
2274 
2275 	for (item = array->items; item->prog; item++)
2276 		if (item->prog != &dummy_bpf_prog.prog)
2277 			return false;
2278 	return true;
2279 }
2280 
2281 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2282 				     u32 *prog_ids,
2283 				     u32 request_cnt)
2284 {
2285 	struct bpf_prog_array_item *item;
2286 	int i = 0;
2287 
2288 	for (item = array->items; item->prog; item++) {
2289 		if (item->prog == &dummy_bpf_prog.prog)
2290 			continue;
2291 		prog_ids[i] = item->prog->aux->id;
2292 		if (++i == request_cnt) {
2293 			item++;
2294 			break;
2295 		}
2296 	}
2297 
2298 	return !!(item->prog);
2299 }
2300 
2301 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2302 				__u32 __user *prog_ids, u32 cnt)
2303 {
2304 	unsigned long err = 0;
2305 	bool nospc;
2306 	u32 *ids;
2307 
2308 	/* users of this function are doing:
2309 	 * cnt = bpf_prog_array_length();
2310 	 * if (cnt > 0)
2311 	 *     bpf_prog_array_copy_to_user(..., cnt);
2312 	 * so below kcalloc doesn't need extra cnt > 0 check.
2313 	 */
2314 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2315 	if (!ids)
2316 		return -ENOMEM;
2317 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2318 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2319 	kfree(ids);
2320 	if (err)
2321 		return -EFAULT;
2322 	if (nospc)
2323 		return -ENOSPC;
2324 	return 0;
2325 }
2326 
2327 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2328 				struct bpf_prog *old_prog)
2329 {
2330 	struct bpf_prog_array_item *item;
2331 
2332 	for (item = array->items; item->prog; item++)
2333 		if (item->prog == old_prog) {
2334 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2335 			break;
2336 		}
2337 }
2338 
2339 /**
2340  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2341  *                                   index into the program array with
2342  *                                   a dummy no-op program.
2343  * @array: a bpf_prog_array
2344  * @index: the index of the program to replace
2345  *
2346  * Skips over dummy programs, by not counting them, when calculating
2347  * the position of the program to replace.
2348  *
2349  * Return:
2350  * * 0		- Success
2351  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2352  * * -ENOENT	- Index out of range
2353  */
2354 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2355 {
2356 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2357 }
2358 
2359 /**
2360  * bpf_prog_array_update_at() - Updates the program at the given index
2361  *                              into the program array.
2362  * @array: a bpf_prog_array
2363  * @index: the index of the program to update
2364  * @prog: the program to insert into the array
2365  *
2366  * Skips over dummy programs, by not counting them, when calculating
2367  * the position of the program to update.
2368  *
2369  * Return:
2370  * * 0		- Success
2371  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2372  * * -ENOENT	- Index out of range
2373  */
2374 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2375 			     struct bpf_prog *prog)
2376 {
2377 	struct bpf_prog_array_item *item;
2378 
2379 	if (unlikely(index < 0))
2380 		return -EINVAL;
2381 
2382 	for (item = array->items; item->prog; item++) {
2383 		if (item->prog == &dummy_bpf_prog.prog)
2384 			continue;
2385 		if (!index) {
2386 			WRITE_ONCE(item->prog, prog);
2387 			return 0;
2388 		}
2389 		index--;
2390 	}
2391 	return -ENOENT;
2392 }
2393 
2394 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2395 			struct bpf_prog *exclude_prog,
2396 			struct bpf_prog *include_prog,
2397 			u64 bpf_cookie,
2398 			struct bpf_prog_array **new_array)
2399 {
2400 	int new_prog_cnt, carry_prog_cnt = 0;
2401 	struct bpf_prog_array_item *existing, *new;
2402 	struct bpf_prog_array *array;
2403 	bool found_exclude = false;
2404 
2405 	/* Figure out how many existing progs we need to carry over to
2406 	 * the new array.
2407 	 */
2408 	if (old_array) {
2409 		existing = old_array->items;
2410 		for (; existing->prog; existing++) {
2411 			if (existing->prog == exclude_prog) {
2412 				found_exclude = true;
2413 				continue;
2414 			}
2415 			if (existing->prog != &dummy_bpf_prog.prog)
2416 				carry_prog_cnt++;
2417 			if (existing->prog == include_prog)
2418 				return -EEXIST;
2419 		}
2420 	}
2421 
2422 	if (exclude_prog && !found_exclude)
2423 		return -ENOENT;
2424 
2425 	/* How many progs (not NULL) will be in the new array? */
2426 	new_prog_cnt = carry_prog_cnt;
2427 	if (include_prog)
2428 		new_prog_cnt += 1;
2429 
2430 	/* Do we have any prog (not NULL) in the new array? */
2431 	if (!new_prog_cnt) {
2432 		*new_array = NULL;
2433 		return 0;
2434 	}
2435 
2436 	/* +1 as the end of prog_array is marked with NULL */
2437 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2438 	if (!array)
2439 		return -ENOMEM;
2440 	new = array->items;
2441 
2442 	/* Fill in the new prog array */
2443 	if (carry_prog_cnt) {
2444 		existing = old_array->items;
2445 		for (; existing->prog; existing++) {
2446 			if (existing->prog == exclude_prog ||
2447 			    existing->prog == &dummy_bpf_prog.prog)
2448 				continue;
2449 
2450 			new->prog = existing->prog;
2451 			new->bpf_cookie = existing->bpf_cookie;
2452 			new++;
2453 		}
2454 	}
2455 	if (include_prog) {
2456 		new->prog = include_prog;
2457 		new->bpf_cookie = bpf_cookie;
2458 		new++;
2459 	}
2460 	new->prog = NULL;
2461 	*new_array = array;
2462 	return 0;
2463 }
2464 
2465 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2466 			     u32 *prog_ids, u32 request_cnt,
2467 			     u32 *prog_cnt)
2468 {
2469 	u32 cnt = 0;
2470 
2471 	if (array)
2472 		cnt = bpf_prog_array_length(array);
2473 
2474 	*prog_cnt = cnt;
2475 
2476 	/* return early if user requested only program count or nothing to copy */
2477 	if (!request_cnt || !cnt)
2478 		return 0;
2479 
2480 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2481 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2482 								     : 0;
2483 }
2484 
2485 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2486 			  struct bpf_map **used_maps, u32 len)
2487 {
2488 	struct bpf_map *map;
2489 	u32 i;
2490 
2491 	for (i = 0; i < len; i++) {
2492 		map = used_maps[i];
2493 		if (map->ops->map_poke_untrack)
2494 			map->ops->map_poke_untrack(map, aux);
2495 		bpf_map_put(map);
2496 	}
2497 }
2498 
2499 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2500 {
2501 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2502 	kfree(aux->used_maps);
2503 }
2504 
2505 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2506 			  struct btf_mod_pair *used_btfs, u32 len)
2507 {
2508 #ifdef CONFIG_BPF_SYSCALL
2509 	struct btf_mod_pair *btf_mod;
2510 	u32 i;
2511 
2512 	for (i = 0; i < len; i++) {
2513 		btf_mod = &used_btfs[i];
2514 		if (btf_mod->module)
2515 			module_put(btf_mod->module);
2516 		btf_put(btf_mod->btf);
2517 	}
2518 #endif
2519 }
2520 
2521 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2522 {
2523 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2524 	kfree(aux->used_btfs);
2525 }
2526 
2527 static void bpf_prog_free_deferred(struct work_struct *work)
2528 {
2529 	struct bpf_prog_aux *aux;
2530 	int i;
2531 
2532 	aux = container_of(work, struct bpf_prog_aux, work);
2533 #ifdef CONFIG_BPF_SYSCALL
2534 	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2535 #endif
2536 #ifdef CONFIG_CGROUP_BPF
2537 	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2538 		bpf_cgroup_atype_put(aux->cgroup_atype);
2539 #endif
2540 	bpf_free_used_maps(aux);
2541 	bpf_free_used_btfs(aux);
2542 	if (bpf_prog_is_dev_bound(aux))
2543 		bpf_prog_offload_destroy(aux->prog);
2544 #ifdef CONFIG_PERF_EVENTS
2545 	if (aux->prog->has_callchain_buf)
2546 		put_callchain_buffers();
2547 #endif
2548 	if (aux->dst_trampoline)
2549 		bpf_trampoline_put(aux->dst_trampoline);
2550 	for (i = 0; i < aux->func_cnt; i++) {
2551 		/* We can just unlink the subprog poke descriptor table as
2552 		 * it was originally linked to the main program and is also
2553 		 * released along with it.
2554 		 */
2555 		aux->func[i]->aux->poke_tab = NULL;
2556 		bpf_jit_free(aux->func[i]);
2557 	}
2558 	if (aux->func_cnt) {
2559 		kfree(aux->func);
2560 		bpf_prog_unlock_free(aux->prog);
2561 	} else {
2562 		bpf_jit_free(aux->prog);
2563 	}
2564 }
2565 
2566 void bpf_prog_free(struct bpf_prog *fp)
2567 {
2568 	struct bpf_prog_aux *aux = fp->aux;
2569 
2570 	if (aux->dst_prog)
2571 		bpf_prog_put(aux->dst_prog);
2572 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2573 	schedule_work(&aux->work);
2574 }
2575 EXPORT_SYMBOL_GPL(bpf_prog_free);
2576 
2577 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2578 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2579 
2580 void bpf_user_rnd_init_once(void)
2581 {
2582 	prandom_init_once(&bpf_user_rnd_state);
2583 }
2584 
2585 BPF_CALL_0(bpf_user_rnd_u32)
2586 {
2587 	/* Should someone ever have the rather unwise idea to use some
2588 	 * of the registers passed into this function, then note that
2589 	 * this function is called from native eBPF and classic-to-eBPF
2590 	 * transformations. Register assignments from both sides are
2591 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2592 	 */
2593 	struct rnd_state *state;
2594 	u32 res;
2595 
2596 	state = &get_cpu_var(bpf_user_rnd_state);
2597 	res = prandom_u32_state(state);
2598 	put_cpu_var(bpf_user_rnd_state);
2599 
2600 	return res;
2601 }
2602 
2603 BPF_CALL_0(bpf_get_raw_cpu_id)
2604 {
2605 	return raw_smp_processor_id();
2606 }
2607 
2608 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2609 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2610 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2611 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2612 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2613 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2614 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2615 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2616 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2617 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2618 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2619 
2620 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2621 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2622 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2623 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2624 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2625 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2626 
2627 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2628 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2629 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2630 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2631 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2632 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2633 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2634 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2635 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2636 const struct bpf_func_proto bpf_set_retval_proto __weak;
2637 const struct bpf_func_proto bpf_get_retval_proto __weak;
2638 
2639 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2640 {
2641 	return NULL;
2642 }
2643 
2644 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2645 {
2646 	return NULL;
2647 }
2648 
2649 u64 __weak
2650 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2651 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2652 {
2653 	return -ENOTSUPP;
2654 }
2655 EXPORT_SYMBOL_GPL(bpf_event_output);
2656 
2657 /* Always built-in helper functions. */
2658 const struct bpf_func_proto bpf_tail_call_proto = {
2659 	.func		= NULL,
2660 	.gpl_only	= false,
2661 	.ret_type	= RET_VOID,
2662 	.arg1_type	= ARG_PTR_TO_CTX,
2663 	.arg2_type	= ARG_CONST_MAP_PTR,
2664 	.arg3_type	= ARG_ANYTHING,
2665 };
2666 
2667 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2668  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2669  * eBPF and implicitly also cBPF can get JITed!
2670  */
2671 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2672 {
2673 	return prog;
2674 }
2675 
2676 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2677  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2678  */
2679 void __weak bpf_jit_compile(struct bpf_prog *prog)
2680 {
2681 }
2682 
2683 bool __weak bpf_helper_changes_pkt_data(void *func)
2684 {
2685 	return false;
2686 }
2687 
2688 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2689  * analysis code and wants explicit zero extension inserted by verifier.
2690  * Otherwise, return FALSE.
2691  *
2692  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2693  * you don't override this. JITs that don't want these extra insns can detect
2694  * them using insn_is_zext.
2695  */
2696 bool __weak bpf_jit_needs_zext(void)
2697 {
2698 	return false;
2699 }
2700 
2701 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2702 bool __weak bpf_jit_supports_subprog_tailcalls(void)
2703 {
2704 	return false;
2705 }
2706 
2707 bool __weak bpf_jit_supports_kfunc_call(void)
2708 {
2709 	return false;
2710 }
2711 
2712 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2713  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2714  */
2715 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2716 			 int len)
2717 {
2718 	return -EFAULT;
2719 }
2720 
2721 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2722 			      void *addr1, void *addr2)
2723 {
2724 	return -ENOTSUPP;
2725 }
2726 
2727 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2728 {
2729 	return ERR_PTR(-ENOTSUPP);
2730 }
2731 
2732 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2733 {
2734 	return -ENOTSUPP;
2735 }
2736 
2737 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2738 EXPORT_SYMBOL(bpf_stats_enabled_key);
2739 
2740 /* All definitions of tracepoints related to BPF. */
2741 #define CREATE_TRACE_POINTS
2742 #include <linux/bpf_trace.h>
2743 
2744 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2745 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2746