xref: /openbmc/linux/kernel/bpf/core.c (revision 25b892b5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 
36 #include <asm/barrier.h>
37 #include <asm/unaligned.h>
38 
39 /* Registers */
40 #define BPF_R0	regs[BPF_REG_0]
41 #define BPF_R1	regs[BPF_REG_1]
42 #define BPF_R2	regs[BPF_REG_2]
43 #define BPF_R3	regs[BPF_REG_3]
44 #define BPF_R4	regs[BPF_REG_4]
45 #define BPF_R5	regs[BPF_REG_5]
46 #define BPF_R6	regs[BPF_REG_6]
47 #define BPF_R7	regs[BPF_REG_7]
48 #define BPF_R8	regs[BPF_REG_8]
49 #define BPF_R9	regs[BPF_REG_9]
50 #define BPF_R10	regs[BPF_REG_10]
51 
52 /* Named registers */
53 #define DST	regs[insn->dst_reg]
54 #define SRC	regs[insn->src_reg]
55 #define FP	regs[BPF_REG_FP]
56 #define AX	regs[BPF_REG_AX]
57 #define ARG1	regs[BPF_REG_ARG1]
58 #define CTX	regs[BPF_REG_CTX]
59 #define IMM	insn->imm
60 
61 /* No hurry in this branch
62  *
63  * Exported for the bpf jit load helper.
64  */
65 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
66 {
67 	u8 *ptr = NULL;
68 
69 	if (k >= SKF_NET_OFF)
70 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
71 	else if (k >= SKF_LL_OFF)
72 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
73 
74 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
75 		return ptr;
76 
77 	return NULL;
78 }
79 
80 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
81 {
82 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
83 	struct bpf_prog_aux *aux;
84 	struct bpf_prog *fp;
85 
86 	size = round_up(size, PAGE_SIZE);
87 	fp = __vmalloc(size, gfp_flags);
88 	if (fp == NULL)
89 		return NULL;
90 
91 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
92 	if (aux == NULL) {
93 		vfree(fp);
94 		return NULL;
95 	}
96 	fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
97 	if (!fp->active) {
98 		vfree(fp);
99 		kfree(aux);
100 		return NULL;
101 	}
102 
103 	fp->pages = size / PAGE_SIZE;
104 	fp->aux = aux;
105 	fp->aux->prog = fp;
106 	fp->jit_requested = ebpf_jit_enabled();
107 
108 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
109 	mutex_init(&fp->aux->used_maps_mutex);
110 	mutex_init(&fp->aux->dst_mutex);
111 
112 	return fp;
113 }
114 
115 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
116 {
117 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
118 	struct bpf_prog *prog;
119 	int cpu;
120 
121 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
122 	if (!prog)
123 		return NULL;
124 
125 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
126 	if (!prog->stats) {
127 		free_percpu(prog->active);
128 		kfree(prog->aux);
129 		vfree(prog);
130 		return NULL;
131 	}
132 
133 	for_each_possible_cpu(cpu) {
134 		struct bpf_prog_stats *pstats;
135 
136 		pstats = per_cpu_ptr(prog->stats, cpu);
137 		u64_stats_init(&pstats->syncp);
138 	}
139 	return prog;
140 }
141 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
142 
143 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
144 {
145 	if (!prog->aux->nr_linfo || !prog->jit_requested)
146 		return 0;
147 
148 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
149 					  sizeof(*prog->aux->jited_linfo),
150 					  GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
151 	if (!prog->aux->jited_linfo)
152 		return -ENOMEM;
153 
154 	return 0;
155 }
156 
157 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
158 {
159 	if (prog->aux->jited_linfo &&
160 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
161 		kvfree(prog->aux->jited_linfo);
162 		prog->aux->jited_linfo = NULL;
163 	}
164 
165 	kfree(prog->aux->kfunc_tab);
166 	prog->aux->kfunc_tab = NULL;
167 }
168 
169 /* The jit engine is responsible to provide an array
170  * for insn_off to the jited_off mapping (insn_to_jit_off).
171  *
172  * The idx to this array is the insn_off.  Hence, the insn_off
173  * here is relative to the prog itself instead of the main prog.
174  * This array has one entry for each xlated bpf insn.
175  *
176  * jited_off is the byte off to the last byte of the jited insn.
177  *
178  * Hence, with
179  * insn_start:
180  *      The first bpf insn off of the prog.  The insn off
181  *      here is relative to the main prog.
182  *      e.g. if prog is a subprog, insn_start > 0
183  * linfo_idx:
184  *      The prog's idx to prog->aux->linfo and jited_linfo
185  *
186  * jited_linfo[linfo_idx] = prog->bpf_func
187  *
188  * For i > linfo_idx,
189  *
190  * jited_linfo[i] = prog->bpf_func +
191  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
192  */
193 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
194 			       const u32 *insn_to_jit_off)
195 {
196 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
197 	const struct bpf_line_info *linfo;
198 	void **jited_linfo;
199 
200 	if (!prog->aux->jited_linfo)
201 		/* Userspace did not provide linfo */
202 		return;
203 
204 	linfo_idx = prog->aux->linfo_idx;
205 	linfo = &prog->aux->linfo[linfo_idx];
206 	insn_start = linfo[0].insn_off;
207 	insn_end = insn_start + prog->len;
208 
209 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
210 	jited_linfo[0] = prog->bpf_func;
211 
212 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
213 
214 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
215 		/* The verifier ensures that linfo[i].insn_off is
216 		 * strictly increasing
217 		 */
218 		jited_linfo[i] = prog->bpf_func +
219 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
220 }
221 
222 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
223 				  gfp_t gfp_extra_flags)
224 {
225 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
226 	struct bpf_prog *fp;
227 	u32 pages;
228 
229 	size = round_up(size, PAGE_SIZE);
230 	pages = size / PAGE_SIZE;
231 	if (pages <= fp_old->pages)
232 		return fp_old;
233 
234 	fp = __vmalloc(size, gfp_flags);
235 	if (fp) {
236 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
237 		fp->pages = pages;
238 		fp->aux->prog = fp;
239 
240 		/* We keep fp->aux from fp_old around in the new
241 		 * reallocated structure.
242 		 */
243 		fp_old->aux = NULL;
244 		fp_old->stats = NULL;
245 		fp_old->active = NULL;
246 		__bpf_prog_free(fp_old);
247 	}
248 
249 	return fp;
250 }
251 
252 void __bpf_prog_free(struct bpf_prog *fp)
253 {
254 	if (fp->aux) {
255 		mutex_destroy(&fp->aux->used_maps_mutex);
256 		mutex_destroy(&fp->aux->dst_mutex);
257 		kfree(fp->aux->poke_tab);
258 		kfree(fp->aux);
259 	}
260 	free_percpu(fp->stats);
261 	free_percpu(fp->active);
262 	vfree(fp);
263 }
264 
265 int bpf_prog_calc_tag(struct bpf_prog *fp)
266 {
267 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
268 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
269 	u32 digest[SHA1_DIGEST_WORDS];
270 	u32 ws[SHA1_WORKSPACE_WORDS];
271 	u32 i, bsize, psize, blocks;
272 	struct bpf_insn *dst;
273 	bool was_ld_map;
274 	u8 *raw, *todo;
275 	__be32 *result;
276 	__be64 *bits;
277 
278 	raw = vmalloc(raw_size);
279 	if (!raw)
280 		return -ENOMEM;
281 
282 	sha1_init(digest);
283 	memset(ws, 0, sizeof(ws));
284 
285 	/* We need to take out the map fd for the digest calculation
286 	 * since they are unstable from user space side.
287 	 */
288 	dst = (void *)raw;
289 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
290 		dst[i] = fp->insnsi[i];
291 		if (!was_ld_map &&
292 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
293 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
294 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
295 			was_ld_map = true;
296 			dst[i].imm = 0;
297 		} else if (was_ld_map &&
298 			   dst[i].code == 0 &&
299 			   dst[i].dst_reg == 0 &&
300 			   dst[i].src_reg == 0 &&
301 			   dst[i].off == 0) {
302 			was_ld_map = false;
303 			dst[i].imm = 0;
304 		} else {
305 			was_ld_map = false;
306 		}
307 	}
308 
309 	psize = bpf_prog_insn_size(fp);
310 	memset(&raw[psize], 0, raw_size - psize);
311 	raw[psize++] = 0x80;
312 
313 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
314 	blocks = bsize / SHA1_BLOCK_SIZE;
315 	todo   = raw;
316 	if (bsize - psize >= sizeof(__be64)) {
317 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
318 	} else {
319 		bits = (__be64 *)(todo + bsize + bits_offset);
320 		blocks++;
321 	}
322 	*bits = cpu_to_be64((psize - 1) << 3);
323 
324 	while (blocks--) {
325 		sha1_transform(digest, todo, ws);
326 		todo += SHA1_BLOCK_SIZE;
327 	}
328 
329 	result = (__force __be32 *)digest;
330 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
331 		result[i] = cpu_to_be32(digest[i]);
332 	memcpy(fp->tag, result, sizeof(fp->tag));
333 
334 	vfree(raw);
335 	return 0;
336 }
337 
338 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
339 				s32 end_new, s32 curr, const bool probe_pass)
340 {
341 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
342 	s32 delta = end_new - end_old;
343 	s64 imm = insn->imm;
344 
345 	if (curr < pos && curr + imm + 1 >= end_old)
346 		imm += delta;
347 	else if (curr >= end_new && curr + imm + 1 < end_new)
348 		imm -= delta;
349 	if (imm < imm_min || imm > imm_max)
350 		return -ERANGE;
351 	if (!probe_pass)
352 		insn->imm = imm;
353 	return 0;
354 }
355 
356 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
357 				s32 end_new, s32 curr, const bool probe_pass)
358 {
359 	const s32 off_min = S16_MIN, off_max = S16_MAX;
360 	s32 delta = end_new - end_old;
361 	s32 off = insn->off;
362 
363 	if (curr < pos && curr + off + 1 >= end_old)
364 		off += delta;
365 	else if (curr >= end_new && curr + off + 1 < end_new)
366 		off -= delta;
367 	if (off < off_min || off > off_max)
368 		return -ERANGE;
369 	if (!probe_pass)
370 		insn->off = off;
371 	return 0;
372 }
373 
374 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
375 			    s32 end_new, const bool probe_pass)
376 {
377 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
378 	struct bpf_insn *insn = prog->insnsi;
379 	int ret = 0;
380 
381 	for (i = 0; i < insn_cnt; i++, insn++) {
382 		u8 code;
383 
384 		/* In the probing pass we still operate on the original,
385 		 * unpatched image in order to check overflows before we
386 		 * do any other adjustments. Therefore skip the patchlet.
387 		 */
388 		if (probe_pass && i == pos) {
389 			i = end_new;
390 			insn = prog->insnsi + end_old;
391 		}
392 		code = insn->code;
393 		if ((BPF_CLASS(code) != BPF_JMP &&
394 		     BPF_CLASS(code) != BPF_JMP32) ||
395 		    BPF_OP(code) == BPF_EXIT)
396 			continue;
397 		/* Adjust offset of jmps if we cross patch boundaries. */
398 		if (BPF_OP(code) == BPF_CALL) {
399 			if (insn->src_reg != BPF_PSEUDO_CALL)
400 				continue;
401 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
402 						   end_new, i, probe_pass);
403 		} else {
404 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
405 						   end_new, i, probe_pass);
406 		}
407 		if (ret)
408 			break;
409 	}
410 
411 	return ret;
412 }
413 
414 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
415 {
416 	struct bpf_line_info *linfo;
417 	u32 i, nr_linfo;
418 
419 	nr_linfo = prog->aux->nr_linfo;
420 	if (!nr_linfo || !delta)
421 		return;
422 
423 	linfo = prog->aux->linfo;
424 
425 	for (i = 0; i < nr_linfo; i++)
426 		if (off < linfo[i].insn_off)
427 			break;
428 
429 	/* Push all off < linfo[i].insn_off by delta */
430 	for (; i < nr_linfo; i++)
431 		linfo[i].insn_off += delta;
432 }
433 
434 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
435 				       const struct bpf_insn *patch, u32 len)
436 {
437 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
438 	const u32 cnt_max = S16_MAX;
439 	struct bpf_prog *prog_adj;
440 	int err;
441 
442 	/* Since our patchlet doesn't expand the image, we're done. */
443 	if (insn_delta == 0) {
444 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
445 		return prog;
446 	}
447 
448 	insn_adj_cnt = prog->len + insn_delta;
449 
450 	/* Reject anything that would potentially let the insn->off
451 	 * target overflow when we have excessive program expansions.
452 	 * We need to probe here before we do any reallocation where
453 	 * we afterwards may not fail anymore.
454 	 */
455 	if (insn_adj_cnt > cnt_max &&
456 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
457 		return ERR_PTR(err);
458 
459 	/* Several new instructions need to be inserted. Make room
460 	 * for them. Likely, there's no need for a new allocation as
461 	 * last page could have large enough tailroom.
462 	 */
463 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
464 				    GFP_USER);
465 	if (!prog_adj)
466 		return ERR_PTR(-ENOMEM);
467 
468 	prog_adj->len = insn_adj_cnt;
469 
470 	/* Patching happens in 3 steps:
471 	 *
472 	 * 1) Move over tail of insnsi from next instruction onwards,
473 	 *    so we can patch the single target insn with one or more
474 	 *    new ones (patching is always from 1 to n insns, n > 0).
475 	 * 2) Inject new instructions at the target location.
476 	 * 3) Adjust branch offsets if necessary.
477 	 */
478 	insn_rest = insn_adj_cnt - off - len;
479 
480 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
481 		sizeof(*patch) * insn_rest);
482 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
483 
484 	/* We are guaranteed to not fail at this point, otherwise
485 	 * the ship has sailed to reverse to the original state. An
486 	 * overflow cannot happen at this point.
487 	 */
488 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
489 
490 	bpf_adj_linfo(prog_adj, off, insn_delta);
491 
492 	return prog_adj;
493 }
494 
495 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
496 {
497 	/* Branch offsets can't overflow when program is shrinking, no need
498 	 * to call bpf_adj_branches(..., true) here
499 	 */
500 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
501 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
502 	prog->len -= cnt;
503 
504 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
505 }
506 
507 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
508 {
509 	int i;
510 
511 	for (i = 0; i < fp->aux->func_cnt; i++)
512 		bpf_prog_kallsyms_del(fp->aux->func[i]);
513 }
514 
515 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
516 {
517 	bpf_prog_kallsyms_del_subprogs(fp);
518 	bpf_prog_kallsyms_del(fp);
519 }
520 
521 #ifdef CONFIG_BPF_JIT
522 /* All BPF JIT sysctl knobs here. */
523 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
524 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
525 int bpf_jit_harden   __read_mostly;
526 long bpf_jit_limit   __read_mostly;
527 
528 static void
529 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
530 {
531 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
532 	unsigned long addr = (unsigned long)hdr;
533 
534 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
535 
536 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
537 	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
538 }
539 
540 static void
541 bpf_prog_ksym_set_name(struct bpf_prog *prog)
542 {
543 	char *sym = prog->aux->ksym.name;
544 	const char *end = sym + KSYM_NAME_LEN;
545 	const struct btf_type *type;
546 	const char *func_name;
547 
548 	BUILD_BUG_ON(sizeof("bpf_prog_") +
549 		     sizeof(prog->tag) * 2 +
550 		     /* name has been null terminated.
551 		      * We should need +1 for the '_' preceding
552 		      * the name.  However, the null character
553 		      * is double counted between the name and the
554 		      * sizeof("bpf_prog_") above, so we omit
555 		      * the +1 here.
556 		      */
557 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
558 
559 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
560 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
561 
562 	/* prog->aux->name will be ignored if full btf name is available */
563 	if (prog->aux->func_info_cnt) {
564 		type = btf_type_by_id(prog->aux->btf,
565 				      prog->aux->func_info[prog->aux->func_idx].type_id);
566 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
567 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
568 		return;
569 	}
570 
571 	if (prog->aux->name[0])
572 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
573 	else
574 		*sym = 0;
575 }
576 
577 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
578 {
579 	return container_of(n, struct bpf_ksym, tnode)->start;
580 }
581 
582 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
583 					  struct latch_tree_node *b)
584 {
585 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
586 }
587 
588 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
589 {
590 	unsigned long val = (unsigned long)key;
591 	const struct bpf_ksym *ksym;
592 
593 	ksym = container_of(n, struct bpf_ksym, tnode);
594 
595 	if (val < ksym->start)
596 		return -1;
597 	if (val >= ksym->end)
598 		return  1;
599 
600 	return 0;
601 }
602 
603 static const struct latch_tree_ops bpf_tree_ops = {
604 	.less	= bpf_tree_less,
605 	.comp	= bpf_tree_comp,
606 };
607 
608 static DEFINE_SPINLOCK(bpf_lock);
609 static LIST_HEAD(bpf_kallsyms);
610 static struct latch_tree_root bpf_tree __cacheline_aligned;
611 
612 void bpf_ksym_add(struct bpf_ksym *ksym)
613 {
614 	spin_lock_bh(&bpf_lock);
615 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
616 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
617 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
618 	spin_unlock_bh(&bpf_lock);
619 }
620 
621 static void __bpf_ksym_del(struct bpf_ksym *ksym)
622 {
623 	if (list_empty(&ksym->lnode))
624 		return;
625 
626 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
627 	list_del_rcu(&ksym->lnode);
628 }
629 
630 void bpf_ksym_del(struct bpf_ksym *ksym)
631 {
632 	spin_lock_bh(&bpf_lock);
633 	__bpf_ksym_del(ksym);
634 	spin_unlock_bh(&bpf_lock);
635 }
636 
637 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
638 {
639 	return fp->jited && !bpf_prog_was_classic(fp);
640 }
641 
642 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
643 {
644 	return list_empty(&fp->aux->ksym.lnode) ||
645 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
646 }
647 
648 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
649 {
650 	if (!bpf_prog_kallsyms_candidate(fp) ||
651 	    !bpf_capable())
652 		return;
653 
654 	bpf_prog_ksym_set_addr(fp);
655 	bpf_prog_ksym_set_name(fp);
656 	fp->aux->ksym.prog = true;
657 
658 	bpf_ksym_add(&fp->aux->ksym);
659 }
660 
661 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
662 {
663 	if (!bpf_prog_kallsyms_candidate(fp))
664 		return;
665 
666 	bpf_ksym_del(&fp->aux->ksym);
667 }
668 
669 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
670 {
671 	struct latch_tree_node *n;
672 
673 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
674 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
675 }
676 
677 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
678 				 unsigned long *off, char *sym)
679 {
680 	struct bpf_ksym *ksym;
681 	char *ret = NULL;
682 
683 	rcu_read_lock();
684 	ksym = bpf_ksym_find(addr);
685 	if (ksym) {
686 		unsigned long symbol_start = ksym->start;
687 		unsigned long symbol_end = ksym->end;
688 
689 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
690 
691 		ret = sym;
692 		if (size)
693 			*size = symbol_end - symbol_start;
694 		if (off)
695 			*off  = addr - symbol_start;
696 	}
697 	rcu_read_unlock();
698 
699 	return ret;
700 }
701 
702 bool is_bpf_text_address(unsigned long addr)
703 {
704 	bool ret;
705 
706 	rcu_read_lock();
707 	ret = bpf_ksym_find(addr) != NULL;
708 	rcu_read_unlock();
709 
710 	return ret;
711 }
712 
713 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
714 {
715 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
716 
717 	return ksym && ksym->prog ?
718 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
719 	       NULL;
720 }
721 
722 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
723 {
724 	const struct exception_table_entry *e = NULL;
725 	struct bpf_prog *prog;
726 
727 	rcu_read_lock();
728 	prog = bpf_prog_ksym_find(addr);
729 	if (!prog)
730 		goto out;
731 	if (!prog->aux->num_exentries)
732 		goto out;
733 
734 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
735 out:
736 	rcu_read_unlock();
737 	return e;
738 }
739 
740 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
741 		    char *sym)
742 {
743 	struct bpf_ksym *ksym;
744 	unsigned int it = 0;
745 	int ret = -ERANGE;
746 
747 	if (!bpf_jit_kallsyms_enabled())
748 		return ret;
749 
750 	rcu_read_lock();
751 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
752 		if (it++ != symnum)
753 			continue;
754 
755 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
756 
757 		*value = ksym->start;
758 		*type  = BPF_SYM_ELF_TYPE;
759 
760 		ret = 0;
761 		break;
762 	}
763 	rcu_read_unlock();
764 
765 	return ret;
766 }
767 
768 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
769 				struct bpf_jit_poke_descriptor *poke)
770 {
771 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
772 	static const u32 poke_tab_max = 1024;
773 	u32 slot = prog->aux->size_poke_tab;
774 	u32 size = slot + 1;
775 
776 	if (size > poke_tab_max)
777 		return -ENOSPC;
778 	if (poke->tailcall_target || poke->tailcall_target_stable ||
779 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
780 		return -EINVAL;
781 
782 	switch (poke->reason) {
783 	case BPF_POKE_REASON_TAIL_CALL:
784 		if (!poke->tail_call.map)
785 			return -EINVAL;
786 		break;
787 	default:
788 		return -EINVAL;
789 	}
790 
791 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
792 	if (!tab)
793 		return -ENOMEM;
794 
795 	memcpy(&tab[slot], poke, sizeof(*poke));
796 	prog->aux->size_poke_tab = size;
797 	prog->aux->poke_tab = tab;
798 
799 	return slot;
800 }
801 
802 static atomic_long_t bpf_jit_current;
803 
804 /* Can be overridden by an arch's JIT compiler if it has a custom,
805  * dedicated BPF backend memory area, or if neither of the two
806  * below apply.
807  */
808 u64 __weak bpf_jit_alloc_exec_limit(void)
809 {
810 #if defined(MODULES_VADDR)
811 	return MODULES_END - MODULES_VADDR;
812 #else
813 	return VMALLOC_END - VMALLOC_START;
814 #endif
815 }
816 
817 static int __init bpf_jit_charge_init(void)
818 {
819 	/* Only used as heuristic here to derive limit. */
820 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
821 					    PAGE_SIZE), LONG_MAX);
822 	return 0;
823 }
824 pure_initcall(bpf_jit_charge_init);
825 
826 int bpf_jit_charge_modmem(u32 pages)
827 {
828 	if (atomic_long_add_return(pages, &bpf_jit_current) >
829 	    (bpf_jit_limit >> PAGE_SHIFT)) {
830 		if (!capable(CAP_SYS_ADMIN)) {
831 			atomic_long_sub(pages, &bpf_jit_current);
832 			return -EPERM;
833 		}
834 	}
835 
836 	return 0;
837 }
838 
839 void bpf_jit_uncharge_modmem(u32 pages)
840 {
841 	atomic_long_sub(pages, &bpf_jit_current);
842 }
843 
844 void *__weak bpf_jit_alloc_exec(unsigned long size)
845 {
846 	return module_alloc(size);
847 }
848 
849 void __weak bpf_jit_free_exec(void *addr)
850 {
851 	module_memfree(addr);
852 }
853 
854 struct bpf_binary_header *
855 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
856 		     unsigned int alignment,
857 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
858 {
859 	struct bpf_binary_header *hdr;
860 	u32 size, hole, start, pages;
861 
862 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
863 		     alignment > BPF_IMAGE_ALIGNMENT);
864 
865 	/* Most of BPF filters are really small, but if some of them
866 	 * fill a page, allow at least 128 extra bytes to insert a
867 	 * random section of illegal instructions.
868 	 */
869 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
870 	pages = size / PAGE_SIZE;
871 
872 	if (bpf_jit_charge_modmem(pages))
873 		return NULL;
874 	hdr = bpf_jit_alloc_exec(size);
875 	if (!hdr) {
876 		bpf_jit_uncharge_modmem(pages);
877 		return NULL;
878 	}
879 
880 	/* Fill space with illegal/arch-dep instructions. */
881 	bpf_fill_ill_insns(hdr, size);
882 
883 	hdr->pages = pages;
884 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
885 		     PAGE_SIZE - sizeof(*hdr));
886 	start = (get_random_int() % hole) & ~(alignment - 1);
887 
888 	/* Leave a random number of instructions before BPF code. */
889 	*image_ptr = &hdr->image[start];
890 
891 	return hdr;
892 }
893 
894 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
895 {
896 	u32 pages = hdr->pages;
897 
898 	bpf_jit_free_exec(hdr);
899 	bpf_jit_uncharge_modmem(pages);
900 }
901 
902 /* This symbol is only overridden by archs that have different
903  * requirements than the usual eBPF JITs, f.e. when they only
904  * implement cBPF JIT, do not set images read-only, etc.
905  */
906 void __weak bpf_jit_free(struct bpf_prog *fp)
907 {
908 	if (fp->jited) {
909 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
910 
911 		bpf_jit_binary_free(hdr);
912 
913 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
914 	}
915 
916 	bpf_prog_unlock_free(fp);
917 }
918 
919 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
920 			  const struct bpf_insn *insn, bool extra_pass,
921 			  u64 *func_addr, bool *func_addr_fixed)
922 {
923 	s16 off = insn->off;
924 	s32 imm = insn->imm;
925 	u8 *addr;
926 
927 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
928 	if (!*func_addr_fixed) {
929 		/* Place-holder address till the last pass has collected
930 		 * all addresses for JITed subprograms in which case we
931 		 * can pick them up from prog->aux.
932 		 */
933 		if (!extra_pass)
934 			addr = NULL;
935 		else if (prog->aux->func &&
936 			 off >= 0 && off < prog->aux->func_cnt)
937 			addr = (u8 *)prog->aux->func[off]->bpf_func;
938 		else
939 			return -EINVAL;
940 	} else {
941 		/* Address of a BPF helper call. Since part of the core
942 		 * kernel, it's always at a fixed location. __bpf_call_base
943 		 * and the helper with imm relative to it are both in core
944 		 * kernel.
945 		 */
946 		addr = (u8 *)__bpf_call_base + imm;
947 	}
948 
949 	*func_addr = (unsigned long)addr;
950 	return 0;
951 }
952 
953 static int bpf_jit_blind_insn(const struct bpf_insn *from,
954 			      const struct bpf_insn *aux,
955 			      struct bpf_insn *to_buff,
956 			      bool emit_zext)
957 {
958 	struct bpf_insn *to = to_buff;
959 	u32 imm_rnd = get_random_int();
960 	s16 off;
961 
962 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
963 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
964 
965 	/* Constraints on AX register:
966 	 *
967 	 * AX register is inaccessible from user space. It is mapped in
968 	 * all JITs, and used here for constant blinding rewrites. It is
969 	 * typically "stateless" meaning its contents are only valid within
970 	 * the executed instruction, but not across several instructions.
971 	 * There are a few exceptions however which are further detailed
972 	 * below.
973 	 *
974 	 * Constant blinding is only used by JITs, not in the interpreter.
975 	 * The interpreter uses AX in some occasions as a local temporary
976 	 * register e.g. in DIV or MOD instructions.
977 	 *
978 	 * In restricted circumstances, the verifier can also use the AX
979 	 * register for rewrites as long as they do not interfere with
980 	 * the above cases!
981 	 */
982 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
983 		goto out;
984 
985 	if (from->imm == 0 &&
986 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
987 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
988 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
989 		goto out;
990 	}
991 
992 	switch (from->code) {
993 	case BPF_ALU | BPF_ADD | BPF_K:
994 	case BPF_ALU | BPF_SUB | BPF_K:
995 	case BPF_ALU | BPF_AND | BPF_K:
996 	case BPF_ALU | BPF_OR  | BPF_K:
997 	case BPF_ALU | BPF_XOR | BPF_K:
998 	case BPF_ALU | BPF_MUL | BPF_K:
999 	case BPF_ALU | BPF_MOV | BPF_K:
1000 	case BPF_ALU | BPF_DIV | BPF_K:
1001 	case BPF_ALU | BPF_MOD | BPF_K:
1002 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1003 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1004 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1005 		break;
1006 
1007 	case BPF_ALU64 | BPF_ADD | BPF_K:
1008 	case BPF_ALU64 | BPF_SUB | BPF_K:
1009 	case BPF_ALU64 | BPF_AND | BPF_K:
1010 	case BPF_ALU64 | BPF_OR  | BPF_K:
1011 	case BPF_ALU64 | BPF_XOR | BPF_K:
1012 	case BPF_ALU64 | BPF_MUL | BPF_K:
1013 	case BPF_ALU64 | BPF_MOV | BPF_K:
1014 	case BPF_ALU64 | BPF_DIV | BPF_K:
1015 	case BPF_ALU64 | BPF_MOD | BPF_K:
1016 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1017 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1018 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1019 		break;
1020 
1021 	case BPF_JMP | BPF_JEQ  | BPF_K:
1022 	case BPF_JMP | BPF_JNE  | BPF_K:
1023 	case BPF_JMP | BPF_JGT  | BPF_K:
1024 	case BPF_JMP | BPF_JLT  | BPF_K:
1025 	case BPF_JMP | BPF_JGE  | BPF_K:
1026 	case BPF_JMP | BPF_JLE  | BPF_K:
1027 	case BPF_JMP | BPF_JSGT | BPF_K:
1028 	case BPF_JMP | BPF_JSLT | BPF_K:
1029 	case BPF_JMP | BPF_JSGE | BPF_K:
1030 	case BPF_JMP | BPF_JSLE | BPF_K:
1031 	case BPF_JMP | BPF_JSET | BPF_K:
1032 		/* Accommodate for extra offset in case of a backjump. */
1033 		off = from->off;
1034 		if (off < 0)
1035 			off -= 2;
1036 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1037 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1038 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1039 		break;
1040 
1041 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1042 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1043 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1044 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1045 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1046 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1047 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1048 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1049 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1050 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1051 	case BPF_JMP32 | BPF_JSET | BPF_K:
1052 		/* Accommodate for extra offset in case of a backjump. */
1053 		off = from->off;
1054 		if (off < 0)
1055 			off -= 2;
1056 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1057 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1058 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1059 				      off);
1060 		break;
1061 
1062 	case BPF_LD | BPF_IMM | BPF_DW:
1063 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1064 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1065 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1066 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1067 		break;
1068 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1069 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1070 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1071 		if (emit_zext)
1072 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1073 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1074 		break;
1075 
1076 	case BPF_ST | BPF_MEM | BPF_DW:
1077 	case BPF_ST | BPF_MEM | BPF_W:
1078 	case BPF_ST | BPF_MEM | BPF_H:
1079 	case BPF_ST | BPF_MEM | BPF_B:
1080 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1081 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1082 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1083 		break;
1084 	}
1085 out:
1086 	return to - to_buff;
1087 }
1088 
1089 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1090 					      gfp_t gfp_extra_flags)
1091 {
1092 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1093 	struct bpf_prog *fp;
1094 
1095 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1096 	if (fp != NULL) {
1097 		/* aux->prog still points to the fp_other one, so
1098 		 * when promoting the clone to the real program,
1099 		 * this still needs to be adapted.
1100 		 */
1101 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1102 	}
1103 
1104 	return fp;
1105 }
1106 
1107 static void bpf_prog_clone_free(struct bpf_prog *fp)
1108 {
1109 	/* aux was stolen by the other clone, so we cannot free
1110 	 * it from this path! It will be freed eventually by the
1111 	 * other program on release.
1112 	 *
1113 	 * At this point, we don't need a deferred release since
1114 	 * clone is guaranteed to not be locked.
1115 	 */
1116 	fp->aux = NULL;
1117 	fp->stats = NULL;
1118 	fp->active = NULL;
1119 	__bpf_prog_free(fp);
1120 }
1121 
1122 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1123 {
1124 	/* We have to repoint aux->prog to self, as we don't
1125 	 * know whether fp here is the clone or the original.
1126 	 */
1127 	fp->aux->prog = fp;
1128 	bpf_prog_clone_free(fp_other);
1129 }
1130 
1131 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1132 {
1133 	struct bpf_insn insn_buff[16], aux[2];
1134 	struct bpf_prog *clone, *tmp;
1135 	int insn_delta, insn_cnt;
1136 	struct bpf_insn *insn;
1137 	int i, rewritten;
1138 
1139 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1140 		return prog;
1141 
1142 	clone = bpf_prog_clone_create(prog, GFP_USER);
1143 	if (!clone)
1144 		return ERR_PTR(-ENOMEM);
1145 
1146 	insn_cnt = clone->len;
1147 	insn = clone->insnsi;
1148 
1149 	for (i = 0; i < insn_cnt; i++, insn++) {
1150 		/* We temporarily need to hold the original ld64 insn
1151 		 * so that we can still access the first part in the
1152 		 * second blinding run.
1153 		 */
1154 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1155 		    insn[1].code == 0)
1156 			memcpy(aux, insn, sizeof(aux));
1157 
1158 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1159 						clone->aux->verifier_zext);
1160 		if (!rewritten)
1161 			continue;
1162 
1163 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1164 		if (IS_ERR(tmp)) {
1165 			/* Patching may have repointed aux->prog during
1166 			 * realloc from the original one, so we need to
1167 			 * fix it up here on error.
1168 			 */
1169 			bpf_jit_prog_release_other(prog, clone);
1170 			return tmp;
1171 		}
1172 
1173 		clone = tmp;
1174 		insn_delta = rewritten - 1;
1175 
1176 		/* Walk new program and skip insns we just inserted. */
1177 		insn = clone->insnsi + i + insn_delta;
1178 		insn_cnt += insn_delta;
1179 		i        += insn_delta;
1180 	}
1181 
1182 	clone->blinded = 1;
1183 	return clone;
1184 }
1185 #endif /* CONFIG_BPF_JIT */
1186 
1187 /* Base function for offset calculation. Needs to go into .text section,
1188  * therefore keeping it non-static as well; will also be used by JITs
1189  * anyway later on, so do not let the compiler omit it. This also needs
1190  * to go into kallsyms for correlation from e.g. bpftool, so naming
1191  * must not change.
1192  */
1193 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1194 {
1195 	return 0;
1196 }
1197 EXPORT_SYMBOL_GPL(__bpf_call_base);
1198 
1199 /* All UAPI available opcodes. */
1200 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1201 	/* 32 bit ALU operations. */		\
1202 	/*   Register based. */			\
1203 	INSN_3(ALU, ADD,  X),			\
1204 	INSN_3(ALU, SUB,  X),			\
1205 	INSN_3(ALU, AND,  X),			\
1206 	INSN_3(ALU, OR,   X),			\
1207 	INSN_3(ALU, LSH,  X),			\
1208 	INSN_3(ALU, RSH,  X),			\
1209 	INSN_3(ALU, XOR,  X),			\
1210 	INSN_3(ALU, MUL,  X),			\
1211 	INSN_3(ALU, MOV,  X),			\
1212 	INSN_3(ALU, ARSH, X),			\
1213 	INSN_3(ALU, DIV,  X),			\
1214 	INSN_3(ALU, MOD,  X),			\
1215 	INSN_2(ALU, NEG),			\
1216 	INSN_3(ALU, END, TO_BE),		\
1217 	INSN_3(ALU, END, TO_LE),		\
1218 	/*   Immediate based. */		\
1219 	INSN_3(ALU, ADD,  K),			\
1220 	INSN_3(ALU, SUB,  K),			\
1221 	INSN_3(ALU, AND,  K),			\
1222 	INSN_3(ALU, OR,   K),			\
1223 	INSN_3(ALU, LSH,  K),			\
1224 	INSN_3(ALU, RSH,  K),			\
1225 	INSN_3(ALU, XOR,  K),			\
1226 	INSN_3(ALU, MUL,  K),			\
1227 	INSN_3(ALU, MOV,  K),			\
1228 	INSN_3(ALU, ARSH, K),			\
1229 	INSN_3(ALU, DIV,  K),			\
1230 	INSN_3(ALU, MOD,  K),			\
1231 	/* 64 bit ALU operations. */		\
1232 	/*   Register based. */			\
1233 	INSN_3(ALU64, ADD,  X),			\
1234 	INSN_3(ALU64, SUB,  X),			\
1235 	INSN_3(ALU64, AND,  X),			\
1236 	INSN_3(ALU64, OR,   X),			\
1237 	INSN_3(ALU64, LSH,  X),			\
1238 	INSN_3(ALU64, RSH,  X),			\
1239 	INSN_3(ALU64, XOR,  X),			\
1240 	INSN_3(ALU64, MUL,  X),			\
1241 	INSN_3(ALU64, MOV,  X),			\
1242 	INSN_3(ALU64, ARSH, X),			\
1243 	INSN_3(ALU64, DIV,  X),			\
1244 	INSN_3(ALU64, MOD,  X),			\
1245 	INSN_2(ALU64, NEG),			\
1246 	/*   Immediate based. */		\
1247 	INSN_3(ALU64, ADD,  K),			\
1248 	INSN_3(ALU64, SUB,  K),			\
1249 	INSN_3(ALU64, AND,  K),			\
1250 	INSN_3(ALU64, OR,   K),			\
1251 	INSN_3(ALU64, LSH,  K),			\
1252 	INSN_3(ALU64, RSH,  K),			\
1253 	INSN_3(ALU64, XOR,  K),			\
1254 	INSN_3(ALU64, MUL,  K),			\
1255 	INSN_3(ALU64, MOV,  K),			\
1256 	INSN_3(ALU64, ARSH, K),			\
1257 	INSN_3(ALU64, DIV,  K),			\
1258 	INSN_3(ALU64, MOD,  K),			\
1259 	/* Call instruction. */			\
1260 	INSN_2(JMP, CALL),			\
1261 	/* Exit instruction. */			\
1262 	INSN_2(JMP, EXIT),			\
1263 	/* 32-bit Jump instructions. */		\
1264 	/*   Register based. */			\
1265 	INSN_3(JMP32, JEQ,  X),			\
1266 	INSN_3(JMP32, JNE,  X),			\
1267 	INSN_3(JMP32, JGT,  X),			\
1268 	INSN_3(JMP32, JLT,  X),			\
1269 	INSN_3(JMP32, JGE,  X),			\
1270 	INSN_3(JMP32, JLE,  X),			\
1271 	INSN_3(JMP32, JSGT, X),			\
1272 	INSN_3(JMP32, JSLT, X),			\
1273 	INSN_3(JMP32, JSGE, X),			\
1274 	INSN_3(JMP32, JSLE, X),			\
1275 	INSN_3(JMP32, JSET, X),			\
1276 	/*   Immediate based. */		\
1277 	INSN_3(JMP32, JEQ,  K),			\
1278 	INSN_3(JMP32, JNE,  K),			\
1279 	INSN_3(JMP32, JGT,  K),			\
1280 	INSN_3(JMP32, JLT,  K),			\
1281 	INSN_3(JMP32, JGE,  K),			\
1282 	INSN_3(JMP32, JLE,  K),			\
1283 	INSN_3(JMP32, JSGT, K),			\
1284 	INSN_3(JMP32, JSLT, K),			\
1285 	INSN_3(JMP32, JSGE, K),			\
1286 	INSN_3(JMP32, JSLE, K),			\
1287 	INSN_3(JMP32, JSET, K),			\
1288 	/* Jump instructions. */		\
1289 	/*   Register based. */			\
1290 	INSN_3(JMP, JEQ,  X),			\
1291 	INSN_3(JMP, JNE,  X),			\
1292 	INSN_3(JMP, JGT,  X),			\
1293 	INSN_3(JMP, JLT,  X),			\
1294 	INSN_3(JMP, JGE,  X),			\
1295 	INSN_3(JMP, JLE,  X),			\
1296 	INSN_3(JMP, JSGT, X),			\
1297 	INSN_3(JMP, JSLT, X),			\
1298 	INSN_3(JMP, JSGE, X),			\
1299 	INSN_3(JMP, JSLE, X),			\
1300 	INSN_3(JMP, JSET, X),			\
1301 	/*   Immediate based. */		\
1302 	INSN_3(JMP, JEQ,  K),			\
1303 	INSN_3(JMP, JNE,  K),			\
1304 	INSN_3(JMP, JGT,  K),			\
1305 	INSN_3(JMP, JLT,  K),			\
1306 	INSN_3(JMP, JGE,  K),			\
1307 	INSN_3(JMP, JLE,  K),			\
1308 	INSN_3(JMP, JSGT, K),			\
1309 	INSN_3(JMP, JSLT, K),			\
1310 	INSN_3(JMP, JSGE, K),			\
1311 	INSN_3(JMP, JSLE, K),			\
1312 	INSN_3(JMP, JSET, K),			\
1313 	INSN_2(JMP, JA),			\
1314 	/* Store instructions. */		\
1315 	/*   Register based. */			\
1316 	INSN_3(STX, MEM,  B),			\
1317 	INSN_3(STX, MEM,  H),			\
1318 	INSN_3(STX, MEM,  W),			\
1319 	INSN_3(STX, MEM,  DW),			\
1320 	INSN_3(STX, ATOMIC, W),			\
1321 	INSN_3(STX, ATOMIC, DW),		\
1322 	/*   Immediate based. */		\
1323 	INSN_3(ST, MEM, B),			\
1324 	INSN_3(ST, MEM, H),			\
1325 	INSN_3(ST, MEM, W),			\
1326 	INSN_3(ST, MEM, DW),			\
1327 	/* Load instructions. */		\
1328 	/*   Register based. */			\
1329 	INSN_3(LDX, MEM, B),			\
1330 	INSN_3(LDX, MEM, H),			\
1331 	INSN_3(LDX, MEM, W),			\
1332 	INSN_3(LDX, MEM, DW),			\
1333 	/*   Immediate based. */		\
1334 	INSN_3(LD, IMM, DW)
1335 
1336 bool bpf_opcode_in_insntable(u8 code)
1337 {
1338 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1339 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1340 	static const bool public_insntable[256] = {
1341 		[0 ... 255] = false,
1342 		/* Now overwrite non-defaults ... */
1343 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1344 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1345 		[BPF_LD | BPF_ABS | BPF_B] = true,
1346 		[BPF_LD | BPF_ABS | BPF_H] = true,
1347 		[BPF_LD | BPF_ABS | BPF_W] = true,
1348 		[BPF_LD | BPF_IND | BPF_B] = true,
1349 		[BPF_LD | BPF_IND | BPF_H] = true,
1350 		[BPF_LD | BPF_IND | BPF_W] = true,
1351 	};
1352 #undef BPF_INSN_3_TBL
1353 #undef BPF_INSN_2_TBL
1354 	return public_insntable[code];
1355 }
1356 
1357 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1358 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1359 {
1360 	memset(dst, 0, size);
1361 	return -EFAULT;
1362 }
1363 
1364 /**
1365  *	___bpf_prog_run - run eBPF program on a given context
1366  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1367  *	@insn: is the array of eBPF instructions
1368  *
1369  * Decode and execute eBPF instructions.
1370  *
1371  * Return: whatever value is in %BPF_R0 at program exit
1372  */
1373 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1374 {
1375 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1376 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1377 	static const void * const jumptable[256] __annotate_jump_table = {
1378 		[0 ... 255] = &&default_label,
1379 		/* Now overwrite non-defaults ... */
1380 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1381 		/* Non-UAPI available opcodes. */
1382 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1383 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1384 		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1385 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1386 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1387 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1388 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1389 	};
1390 #undef BPF_INSN_3_LBL
1391 #undef BPF_INSN_2_LBL
1392 	u32 tail_call_cnt = 0;
1393 
1394 #define CONT	 ({ insn++; goto select_insn; })
1395 #define CONT_JMP ({ insn++; goto select_insn; })
1396 
1397 select_insn:
1398 	goto *jumptable[insn->code];
1399 
1400 	/* Explicitly mask the register-based shift amounts with 63 or 31
1401 	 * to avoid undefined behavior. Normally this won't affect the
1402 	 * generated code, for example, in case of native 64 bit archs such
1403 	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1404 	 * the interpreter. In case of JITs, each of the JIT backends compiles
1405 	 * the BPF shift operations to machine instructions which produce
1406 	 * implementation-defined results in such a case; the resulting
1407 	 * contents of the register may be arbitrary, but program behaviour
1408 	 * as a whole remains defined. In other words, in case of JIT backends,
1409 	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1410 	 */
1411 	/* ALU (shifts) */
1412 #define SHT(OPCODE, OP)					\
1413 	ALU64_##OPCODE##_X:				\
1414 		DST = DST OP (SRC & 63);		\
1415 		CONT;					\
1416 	ALU_##OPCODE##_X:				\
1417 		DST = (u32) DST OP ((u32) SRC & 31);	\
1418 		CONT;					\
1419 	ALU64_##OPCODE##_K:				\
1420 		DST = DST OP IMM;			\
1421 		CONT;					\
1422 	ALU_##OPCODE##_K:				\
1423 		DST = (u32) DST OP (u32) IMM;		\
1424 		CONT;
1425 	/* ALU (rest) */
1426 #define ALU(OPCODE, OP)					\
1427 	ALU64_##OPCODE##_X:				\
1428 		DST = DST OP SRC;			\
1429 		CONT;					\
1430 	ALU_##OPCODE##_X:				\
1431 		DST = (u32) DST OP (u32) SRC;		\
1432 		CONT;					\
1433 	ALU64_##OPCODE##_K:				\
1434 		DST = DST OP IMM;			\
1435 		CONT;					\
1436 	ALU_##OPCODE##_K:				\
1437 		DST = (u32) DST OP (u32) IMM;		\
1438 		CONT;
1439 	ALU(ADD,  +)
1440 	ALU(SUB,  -)
1441 	ALU(AND,  &)
1442 	ALU(OR,   |)
1443 	ALU(XOR,  ^)
1444 	ALU(MUL,  *)
1445 	SHT(LSH, <<)
1446 	SHT(RSH, >>)
1447 #undef SHT
1448 #undef ALU
1449 	ALU_NEG:
1450 		DST = (u32) -DST;
1451 		CONT;
1452 	ALU64_NEG:
1453 		DST = -DST;
1454 		CONT;
1455 	ALU_MOV_X:
1456 		DST = (u32) SRC;
1457 		CONT;
1458 	ALU_MOV_K:
1459 		DST = (u32) IMM;
1460 		CONT;
1461 	ALU64_MOV_X:
1462 		DST = SRC;
1463 		CONT;
1464 	ALU64_MOV_K:
1465 		DST = IMM;
1466 		CONT;
1467 	LD_IMM_DW:
1468 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1469 		insn++;
1470 		CONT;
1471 	ALU_ARSH_X:
1472 		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1473 		CONT;
1474 	ALU_ARSH_K:
1475 		DST = (u64) (u32) (((s32) DST) >> IMM);
1476 		CONT;
1477 	ALU64_ARSH_X:
1478 		(*(s64 *) &DST) >>= (SRC & 63);
1479 		CONT;
1480 	ALU64_ARSH_K:
1481 		(*(s64 *) &DST) >>= IMM;
1482 		CONT;
1483 	ALU64_MOD_X:
1484 		div64_u64_rem(DST, SRC, &AX);
1485 		DST = AX;
1486 		CONT;
1487 	ALU_MOD_X:
1488 		AX = (u32) DST;
1489 		DST = do_div(AX, (u32) SRC);
1490 		CONT;
1491 	ALU64_MOD_K:
1492 		div64_u64_rem(DST, IMM, &AX);
1493 		DST = AX;
1494 		CONT;
1495 	ALU_MOD_K:
1496 		AX = (u32) DST;
1497 		DST = do_div(AX, (u32) IMM);
1498 		CONT;
1499 	ALU64_DIV_X:
1500 		DST = div64_u64(DST, SRC);
1501 		CONT;
1502 	ALU_DIV_X:
1503 		AX = (u32) DST;
1504 		do_div(AX, (u32) SRC);
1505 		DST = (u32) AX;
1506 		CONT;
1507 	ALU64_DIV_K:
1508 		DST = div64_u64(DST, IMM);
1509 		CONT;
1510 	ALU_DIV_K:
1511 		AX = (u32) DST;
1512 		do_div(AX, (u32) IMM);
1513 		DST = (u32) AX;
1514 		CONT;
1515 	ALU_END_TO_BE:
1516 		switch (IMM) {
1517 		case 16:
1518 			DST = (__force u16) cpu_to_be16(DST);
1519 			break;
1520 		case 32:
1521 			DST = (__force u32) cpu_to_be32(DST);
1522 			break;
1523 		case 64:
1524 			DST = (__force u64) cpu_to_be64(DST);
1525 			break;
1526 		}
1527 		CONT;
1528 	ALU_END_TO_LE:
1529 		switch (IMM) {
1530 		case 16:
1531 			DST = (__force u16) cpu_to_le16(DST);
1532 			break;
1533 		case 32:
1534 			DST = (__force u32) cpu_to_le32(DST);
1535 			break;
1536 		case 64:
1537 			DST = (__force u64) cpu_to_le64(DST);
1538 			break;
1539 		}
1540 		CONT;
1541 
1542 	/* CALL */
1543 	JMP_CALL:
1544 		/* Function call scratches BPF_R1-BPF_R5 registers,
1545 		 * preserves BPF_R6-BPF_R9, and stores return value
1546 		 * into BPF_R0.
1547 		 */
1548 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1549 						       BPF_R4, BPF_R5);
1550 		CONT;
1551 
1552 	JMP_CALL_ARGS:
1553 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1554 							    BPF_R3, BPF_R4,
1555 							    BPF_R5,
1556 							    insn + insn->off + 1);
1557 		CONT;
1558 
1559 	JMP_TAIL_CALL: {
1560 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1561 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1562 		struct bpf_prog *prog;
1563 		u32 index = BPF_R3;
1564 
1565 		if (unlikely(index >= array->map.max_entries))
1566 			goto out;
1567 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1568 			goto out;
1569 
1570 		tail_call_cnt++;
1571 
1572 		prog = READ_ONCE(array->ptrs[index]);
1573 		if (!prog)
1574 			goto out;
1575 
1576 		/* ARG1 at this point is guaranteed to point to CTX from
1577 		 * the verifier side due to the fact that the tail call is
1578 		 * handled like a helper, that is, bpf_tail_call_proto,
1579 		 * where arg1_type is ARG_PTR_TO_CTX.
1580 		 */
1581 		insn = prog->insnsi;
1582 		goto select_insn;
1583 out:
1584 		CONT;
1585 	}
1586 	JMP_JA:
1587 		insn += insn->off;
1588 		CONT;
1589 	JMP_EXIT:
1590 		return BPF_R0;
1591 	/* JMP */
1592 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1593 	JMP_##OPCODE##_X:					\
1594 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1595 			insn += insn->off;			\
1596 			CONT_JMP;				\
1597 		}						\
1598 		CONT;						\
1599 	JMP32_##OPCODE##_X:					\
1600 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1601 			insn += insn->off;			\
1602 			CONT_JMP;				\
1603 		}						\
1604 		CONT;						\
1605 	JMP_##OPCODE##_K:					\
1606 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1607 			insn += insn->off;			\
1608 			CONT_JMP;				\
1609 		}						\
1610 		CONT;						\
1611 	JMP32_##OPCODE##_K:					\
1612 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1613 			insn += insn->off;			\
1614 			CONT_JMP;				\
1615 		}						\
1616 		CONT;
1617 	COND_JMP(u, JEQ, ==)
1618 	COND_JMP(u, JNE, !=)
1619 	COND_JMP(u, JGT, >)
1620 	COND_JMP(u, JLT, <)
1621 	COND_JMP(u, JGE, >=)
1622 	COND_JMP(u, JLE, <=)
1623 	COND_JMP(u, JSET, &)
1624 	COND_JMP(s, JSGT, >)
1625 	COND_JMP(s, JSLT, <)
1626 	COND_JMP(s, JSGE, >=)
1627 	COND_JMP(s, JSLE, <=)
1628 #undef COND_JMP
1629 	/* ST, STX and LDX*/
1630 	ST_NOSPEC:
1631 		/* Speculation barrier for mitigating Speculative Store Bypass.
1632 		 * In case of arm64, we rely on the firmware mitigation as
1633 		 * controlled via the ssbd kernel parameter. Whenever the
1634 		 * mitigation is enabled, it works for all of the kernel code
1635 		 * with no need to provide any additional instructions here.
1636 		 * In case of x86, we use 'lfence' insn for mitigation. We
1637 		 * reuse preexisting logic from Spectre v1 mitigation that
1638 		 * happens to produce the required code on x86 for v4 as well.
1639 		 */
1640 #ifdef CONFIG_X86
1641 		barrier_nospec();
1642 #endif
1643 		CONT;
1644 #define LDST(SIZEOP, SIZE)						\
1645 	STX_MEM_##SIZEOP:						\
1646 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1647 		CONT;							\
1648 	ST_MEM_##SIZEOP:						\
1649 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1650 		CONT;							\
1651 	LDX_MEM_##SIZEOP:						\
1652 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1653 		CONT;
1654 
1655 	LDST(B,   u8)
1656 	LDST(H,  u16)
1657 	LDST(W,  u32)
1658 	LDST(DW, u64)
1659 #undef LDST
1660 #define LDX_PROBE(SIZEOP, SIZE)							\
1661 	LDX_PROBE_MEM_##SIZEOP:							\
1662 		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1663 		CONT;
1664 	LDX_PROBE(B,  1)
1665 	LDX_PROBE(H,  2)
1666 	LDX_PROBE(W,  4)
1667 	LDX_PROBE(DW, 8)
1668 #undef LDX_PROBE
1669 
1670 #define ATOMIC_ALU_OP(BOP, KOP)						\
1671 		case BOP:						\
1672 			if (BPF_SIZE(insn->code) == BPF_W)		\
1673 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1674 					     (DST + insn->off));	\
1675 			else						\
1676 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1677 					       (DST + insn->off));	\
1678 			break;						\
1679 		case BOP | BPF_FETCH:					\
1680 			if (BPF_SIZE(insn->code) == BPF_W)		\
1681 				SRC = (u32) atomic_fetch_##KOP(		\
1682 					(u32) SRC,			\
1683 					(atomic_t *)(unsigned long) (DST + insn->off)); \
1684 			else						\
1685 				SRC = (u64) atomic64_fetch_##KOP(	\
1686 					(u64) SRC,			\
1687 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
1688 			break;
1689 
1690 	STX_ATOMIC_DW:
1691 	STX_ATOMIC_W:
1692 		switch (IMM) {
1693 		ATOMIC_ALU_OP(BPF_ADD, add)
1694 		ATOMIC_ALU_OP(BPF_AND, and)
1695 		ATOMIC_ALU_OP(BPF_OR, or)
1696 		ATOMIC_ALU_OP(BPF_XOR, xor)
1697 #undef ATOMIC_ALU_OP
1698 
1699 		case BPF_XCHG:
1700 			if (BPF_SIZE(insn->code) == BPF_W)
1701 				SRC = (u32) atomic_xchg(
1702 					(atomic_t *)(unsigned long) (DST + insn->off),
1703 					(u32) SRC);
1704 			else
1705 				SRC = (u64) atomic64_xchg(
1706 					(atomic64_t *)(unsigned long) (DST + insn->off),
1707 					(u64) SRC);
1708 			break;
1709 		case BPF_CMPXCHG:
1710 			if (BPF_SIZE(insn->code) == BPF_W)
1711 				BPF_R0 = (u32) atomic_cmpxchg(
1712 					(atomic_t *)(unsigned long) (DST + insn->off),
1713 					(u32) BPF_R0, (u32) SRC);
1714 			else
1715 				BPF_R0 = (u64) atomic64_cmpxchg(
1716 					(atomic64_t *)(unsigned long) (DST + insn->off),
1717 					(u64) BPF_R0, (u64) SRC);
1718 			break;
1719 
1720 		default:
1721 			goto default_label;
1722 		}
1723 		CONT;
1724 
1725 	default_label:
1726 		/* If we ever reach this, we have a bug somewhere. Die hard here
1727 		 * instead of just returning 0; we could be somewhere in a subprog,
1728 		 * so execution could continue otherwise which we do /not/ want.
1729 		 *
1730 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1731 		 */
1732 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
1733 			insn->code, insn->imm);
1734 		BUG_ON(1);
1735 		return 0;
1736 }
1737 
1738 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1739 #define DEFINE_BPF_PROG_RUN(stack_size) \
1740 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1741 { \
1742 	u64 stack[stack_size / sizeof(u64)]; \
1743 	u64 regs[MAX_BPF_EXT_REG]; \
1744 \
1745 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1746 	ARG1 = (u64) (unsigned long) ctx; \
1747 	return ___bpf_prog_run(regs, insn); \
1748 }
1749 
1750 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1751 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1752 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1753 				      const struct bpf_insn *insn) \
1754 { \
1755 	u64 stack[stack_size / sizeof(u64)]; \
1756 	u64 regs[MAX_BPF_EXT_REG]; \
1757 \
1758 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1759 	BPF_R1 = r1; \
1760 	BPF_R2 = r2; \
1761 	BPF_R3 = r3; \
1762 	BPF_R4 = r4; \
1763 	BPF_R5 = r5; \
1764 	return ___bpf_prog_run(regs, insn); \
1765 }
1766 
1767 #define EVAL1(FN, X) FN(X)
1768 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1769 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1770 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1771 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1772 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1773 
1774 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1775 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1776 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1777 
1778 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1779 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1780 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1781 
1782 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1783 
1784 static unsigned int (*interpreters[])(const void *ctx,
1785 				      const struct bpf_insn *insn) = {
1786 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1787 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1788 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1789 };
1790 #undef PROG_NAME_LIST
1791 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1792 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1793 				  const struct bpf_insn *insn) = {
1794 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1795 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1796 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1797 };
1798 #undef PROG_NAME_LIST
1799 
1800 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1801 {
1802 	stack_depth = max_t(u32, stack_depth, 1);
1803 	insn->off = (s16) insn->imm;
1804 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1805 		__bpf_call_base_args;
1806 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1807 }
1808 
1809 #else
1810 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1811 					 const struct bpf_insn *insn)
1812 {
1813 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1814 	 * is not working properly, so warn about it!
1815 	 */
1816 	WARN_ON_ONCE(1);
1817 	return 0;
1818 }
1819 #endif
1820 
1821 bool bpf_prog_array_compatible(struct bpf_array *array,
1822 			       const struct bpf_prog *fp)
1823 {
1824 	if (fp->kprobe_override)
1825 		return false;
1826 
1827 	if (!array->aux->type) {
1828 		/* There's no owner yet where we could check for
1829 		 * compatibility.
1830 		 */
1831 		array->aux->type  = fp->type;
1832 		array->aux->jited = fp->jited;
1833 		return true;
1834 	}
1835 
1836 	return array->aux->type  == fp->type &&
1837 	       array->aux->jited == fp->jited;
1838 }
1839 
1840 static int bpf_check_tail_call(const struct bpf_prog *fp)
1841 {
1842 	struct bpf_prog_aux *aux = fp->aux;
1843 	int i, ret = 0;
1844 
1845 	mutex_lock(&aux->used_maps_mutex);
1846 	for (i = 0; i < aux->used_map_cnt; i++) {
1847 		struct bpf_map *map = aux->used_maps[i];
1848 		struct bpf_array *array;
1849 
1850 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1851 			continue;
1852 
1853 		array = container_of(map, struct bpf_array, map);
1854 		if (!bpf_prog_array_compatible(array, fp)) {
1855 			ret = -EINVAL;
1856 			goto out;
1857 		}
1858 	}
1859 
1860 out:
1861 	mutex_unlock(&aux->used_maps_mutex);
1862 	return ret;
1863 }
1864 
1865 static void bpf_prog_select_func(struct bpf_prog *fp)
1866 {
1867 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1868 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1869 
1870 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1871 #else
1872 	fp->bpf_func = __bpf_prog_ret0_warn;
1873 #endif
1874 }
1875 
1876 /**
1877  *	bpf_prog_select_runtime - select exec runtime for BPF program
1878  *	@fp: bpf_prog populated with internal BPF program
1879  *	@err: pointer to error variable
1880  *
1881  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1882  * The BPF program will be executed via bpf_prog_run() function.
1883  *
1884  * Return: the &fp argument along with &err set to 0 for success or
1885  * a negative errno code on failure
1886  */
1887 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1888 {
1889 	/* In case of BPF to BPF calls, verifier did all the prep
1890 	 * work with regards to JITing, etc.
1891 	 */
1892 	bool jit_needed = false;
1893 
1894 	if (fp->bpf_func)
1895 		goto finalize;
1896 
1897 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
1898 	    bpf_prog_has_kfunc_call(fp))
1899 		jit_needed = true;
1900 
1901 	bpf_prog_select_func(fp);
1902 
1903 	/* eBPF JITs can rewrite the program in case constant
1904 	 * blinding is active. However, in case of error during
1905 	 * blinding, bpf_int_jit_compile() must always return a
1906 	 * valid program, which in this case would simply not
1907 	 * be JITed, but falls back to the interpreter.
1908 	 */
1909 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1910 		*err = bpf_prog_alloc_jited_linfo(fp);
1911 		if (*err)
1912 			return fp;
1913 
1914 		fp = bpf_int_jit_compile(fp);
1915 		bpf_prog_jit_attempt_done(fp);
1916 		if (!fp->jited && jit_needed) {
1917 			*err = -ENOTSUPP;
1918 			return fp;
1919 		}
1920 	} else {
1921 		*err = bpf_prog_offload_compile(fp);
1922 		if (*err)
1923 			return fp;
1924 	}
1925 
1926 finalize:
1927 	bpf_prog_lock_ro(fp);
1928 
1929 	/* The tail call compatibility check can only be done at
1930 	 * this late stage as we need to determine, if we deal
1931 	 * with JITed or non JITed program concatenations and not
1932 	 * all eBPF JITs might immediately support all features.
1933 	 */
1934 	*err = bpf_check_tail_call(fp);
1935 
1936 	return fp;
1937 }
1938 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1939 
1940 static unsigned int __bpf_prog_ret1(const void *ctx,
1941 				    const struct bpf_insn *insn)
1942 {
1943 	return 1;
1944 }
1945 
1946 static struct bpf_prog_dummy {
1947 	struct bpf_prog prog;
1948 } dummy_bpf_prog = {
1949 	.prog = {
1950 		.bpf_func = __bpf_prog_ret1,
1951 	},
1952 };
1953 
1954 /* to avoid allocating empty bpf_prog_array for cgroups that
1955  * don't have bpf program attached use one global 'empty_prog_array'
1956  * It will not be modified the caller of bpf_prog_array_alloc()
1957  * (since caller requested prog_cnt == 0)
1958  * that pointer should be 'freed' by bpf_prog_array_free()
1959  */
1960 static struct {
1961 	struct bpf_prog_array hdr;
1962 	struct bpf_prog *null_prog;
1963 } empty_prog_array = {
1964 	.null_prog = NULL,
1965 };
1966 
1967 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1968 {
1969 	if (prog_cnt)
1970 		return kzalloc(sizeof(struct bpf_prog_array) +
1971 			       sizeof(struct bpf_prog_array_item) *
1972 			       (prog_cnt + 1),
1973 			       flags);
1974 
1975 	return &empty_prog_array.hdr;
1976 }
1977 
1978 void bpf_prog_array_free(struct bpf_prog_array *progs)
1979 {
1980 	if (!progs || progs == &empty_prog_array.hdr)
1981 		return;
1982 	kfree_rcu(progs, rcu);
1983 }
1984 
1985 int bpf_prog_array_length(struct bpf_prog_array *array)
1986 {
1987 	struct bpf_prog_array_item *item;
1988 	u32 cnt = 0;
1989 
1990 	for (item = array->items; item->prog; item++)
1991 		if (item->prog != &dummy_bpf_prog.prog)
1992 			cnt++;
1993 	return cnt;
1994 }
1995 
1996 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1997 {
1998 	struct bpf_prog_array_item *item;
1999 
2000 	for (item = array->items; item->prog; item++)
2001 		if (item->prog != &dummy_bpf_prog.prog)
2002 			return false;
2003 	return true;
2004 }
2005 
2006 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2007 				     u32 *prog_ids,
2008 				     u32 request_cnt)
2009 {
2010 	struct bpf_prog_array_item *item;
2011 	int i = 0;
2012 
2013 	for (item = array->items; item->prog; item++) {
2014 		if (item->prog == &dummy_bpf_prog.prog)
2015 			continue;
2016 		prog_ids[i] = item->prog->aux->id;
2017 		if (++i == request_cnt) {
2018 			item++;
2019 			break;
2020 		}
2021 	}
2022 
2023 	return !!(item->prog);
2024 }
2025 
2026 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2027 				__u32 __user *prog_ids, u32 cnt)
2028 {
2029 	unsigned long err = 0;
2030 	bool nospc;
2031 	u32 *ids;
2032 
2033 	/* users of this function are doing:
2034 	 * cnt = bpf_prog_array_length();
2035 	 * if (cnt > 0)
2036 	 *     bpf_prog_array_copy_to_user(..., cnt);
2037 	 * so below kcalloc doesn't need extra cnt > 0 check.
2038 	 */
2039 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2040 	if (!ids)
2041 		return -ENOMEM;
2042 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2043 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2044 	kfree(ids);
2045 	if (err)
2046 		return -EFAULT;
2047 	if (nospc)
2048 		return -ENOSPC;
2049 	return 0;
2050 }
2051 
2052 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2053 				struct bpf_prog *old_prog)
2054 {
2055 	struct bpf_prog_array_item *item;
2056 
2057 	for (item = array->items; item->prog; item++)
2058 		if (item->prog == old_prog) {
2059 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2060 			break;
2061 		}
2062 }
2063 
2064 /**
2065  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2066  *                                   index into the program array with
2067  *                                   a dummy no-op program.
2068  * @array: a bpf_prog_array
2069  * @index: the index of the program to replace
2070  *
2071  * Skips over dummy programs, by not counting them, when calculating
2072  * the position of the program to replace.
2073  *
2074  * Return:
2075  * * 0		- Success
2076  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2077  * * -ENOENT	- Index out of range
2078  */
2079 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2080 {
2081 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2082 }
2083 
2084 /**
2085  * bpf_prog_array_update_at() - Updates the program at the given index
2086  *                              into the program array.
2087  * @array: a bpf_prog_array
2088  * @index: the index of the program to update
2089  * @prog: the program to insert into the array
2090  *
2091  * Skips over dummy programs, by not counting them, when calculating
2092  * the position of the program to update.
2093  *
2094  * Return:
2095  * * 0		- Success
2096  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2097  * * -ENOENT	- Index out of range
2098  */
2099 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2100 			     struct bpf_prog *prog)
2101 {
2102 	struct bpf_prog_array_item *item;
2103 
2104 	if (unlikely(index < 0))
2105 		return -EINVAL;
2106 
2107 	for (item = array->items; item->prog; item++) {
2108 		if (item->prog == &dummy_bpf_prog.prog)
2109 			continue;
2110 		if (!index) {
2111 			WRITE_ONCE(item->prog, prog);
2112 			return 0;
2113 		}
2114 		index--;
2115 	}
2116 	return -ENOENT;
2117 }
2118 
2119 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2120 			struct bpf_prog *exclude_prog,
2121 			struct bpf_prog *include_prog,
2122 			u64 bpf_cookie,
2123 			struct bpf_prog_array **new_array)
2124 {
2125 	int new_prog_cnt, carry_prog_cnt = 0;
2126 	struct bpf_prog_array_item *existing, *new;
2127 	struct bpf_prog_array *array;
2128 	bool found_exclude = false;
2129 
2130 	/* Figure out how many existing progs we need to carry over to
2131 	 * the new array.
2132 	 */
2133 	if (old_array) {
2134 		existing = old_array->items;
2135 		for (; existing->prog; existing++) {
2136 			if (existing->prog == exclude_prog) {
2137 				found_exclude = true;
2138 				continue;
2139 			}
2140 			if (existing->prog != &dummy_bpf_prog.prog)
2141 				carry_prog_cnt++;
2142 			if (existing->prog == include_prog)
2143 				return -EEXIST;
2144 		}
2145 	}
2146 
2147 	if (exclude_prog && !found_exclude)
2148 		return -ENOENT;
2149 
2150 	/* How many progs (not NULL) will be in the new array? */
2151 	new_prog_cnt = carry_prog_cnt;
2152 	if (include_prog)
2153 		new_prog_cnt += 1;
2154 
2155 	/* Do we have any prog (not NULL) in the new array? */
2156 	if (!new_prog_cnt) {
2157 		*new_array = NULL;
2158 		return 0;
2159 	}
2160 
2161 	/* +1 as the end of prog_array is marked with NULL */
2162 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2163 	if (!array)
2164 		return -ENOMEM;
2165 	new = array->items;
2166 
2167 	/* Fill in the new prog array */
2168 	if (carry_prog_cnt) {
2169 		existing = old_array->items;
2170 		for (; existing->prog; existing++) {
2171 			if (existing->prog == exclude_prog ||
2172 			    existing->prog == &dummy_bpf_prog.prog)
2173 				continue;
2174 
2175 			new->prog = existing->prog;
2176 			new->bpf_cookie = existing->bpf_cookie;
2177 			new++;
2178 		}
2179 	}
2180 	if (include_prog) {
2181 		new->prog = include_prog;
2182 		new->bpf_cookie = bpf_cookie;
2183 		new++;
2184 	}
2185 	new->prog = NULL;
2186 	*new_array = array;
2187 	return 0;
2188 }
2189 
2190 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2191 			     u32 *prog_ids, u32 request_cnt,
2192 			     u32 *prog_cnt)
2193 {
2194 	u32 cnt = 0;
2195 
2196 	if (array)
2197 		cnt = bpf_prog_array_length(array);
2198 
2199 	*prog_cnt = cnt;
2200 
2201 	/* return early if user requested only program count or nothing to copy */
2202 	if (!request_cnt || !cnt)
2203 		return 0;
2204 
2205 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2206 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2207 								     : 0;
2208 }
2209 
2210 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2211 			  struct bpf_map **used_maps, u32 len)
2212 {
2213 	struct bpf_map *map;
2214 	u32 i;
2215 
2216 	for (i = 0; i < len; i++) {
2217 		map = used_maps[i];
2218 		if (map->ops->map_poke_untrack)
2219 			map->ops->map_poke_untrack(map, aux);
2220 		bpf_map_put(map);
2221 	}
2222 }
2223 
2224 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2225 {
2226 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2227 	kfree(aux->used_maps);
2228 }
2229 
2230 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2231 			  struct btf_mod_pair *used_btfs, u32 len)
2232 {
2233 #ifdef CONFIG_BPF_SYSCALL
2234 	struct btf_mod_pair *btf_mod;
2235 	u32 i;
2236 
2237 	for (i = 0; i < len; i++) {
2238 		btf_mod = &used_btfs[i];
2239 		if (btf_mod->module)
2240 			module_put(btf_mod->module);
2241 		btf_put(btf_mod->btf);
2242 	}
2243 #endif
2244 }
2245 
2246 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2247 {
2248 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2249 	kfree(aux->used_btfs);
2250 }
2251 
2252 static void bpf_prog_free_deferred(struct work_struct *work)
2253 {
2254 	struct bpf_prog_aux *aux;
2255 	int i;
2256 
2257 	aux = container_of(work, struct bpf_prog_aux, work);
2258 	bpf_free_used_maps(aux);
2259 	bpf_free_used_btfs(aux);
2260 	if (bpf_prog_is_dev_bound(aux))
2261 		bpf_prog_offload_destroy(aux->prog);
2262 #ifdef CONFIG_PERF_EVENTS
2263 	if (aux->prog->has_callchain_buf)
2264 		put_callchain_buffers();
2265 #endif
2266 	if (aux->dst_trampoline)
2267 		bpf_trampoline_put(aux->dst_trampoline);
2268 	for (i = 0; i < aux->func_cnt; i++) {
2269 		/* We can just unlink the subprog poke descriptor table as
2270 		 * it was originally linked to the main program and is also
2271 		 * released along with it.
2272 		 */
2273 		aux->func[i]->aux->poke_tab = NULL;
2274 		bpf_jit_free(aux->func[i]);
2275 	}
2276 	if (aux->func_cnt) {
2277 		kfree(aux->func);
2278 		bpf_prog_unlock_free(aux->prog);
2279 	} else {
2280 		bpf_jit_free(aux->prog);
2281 	}
2282 }
2283 
2284 /* Free internal BPF program */
2285 void bpf_prog_free(struct bpf_prog *fp)
2286 {
2287 	struct bpf_prog_aux *aux = fp->aux;
2288 
2289 	if (aux->dst_prog)
2290 		bpf_prog_put(aux->dst_prog);
2291 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2292 	schedule_work(&aux->work);
2293 }
2294 EXPORT_SYMBOL_GPL(bpf_prog_free);
2295 
2296 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2297 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2298 
2299 void bpf_user_rnd_init_once(void)
2300 {
2301 	prandom_init_once(&bpf_user_rnd_state);
2302 }
2303 
2304 BPF_CALL_0(bpf_user_rnd_u32)
2305 {
2306 	/* Should someone ever have the rather unwise idea to use some
2307 	 * of the registers passed into this function, then note that
2308 	 * this function is called from native eBPF and classic-to-eBPF
2309 	 * transformations. Register assignments from both sides are
2310 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2311 	 */
2312 	struct rnd_state *state;
2313 	u32 res;
2314 
2315 	state = &get_cpu_var(bpf_user_rnd_state);
2316 	res = prandom_u32_state(state);
2317 	put_cpu_var(bpf_user_rnd_state);
2318 
2319 	return res;
2320 }
2321 
2322 BPF_CALL_0(bpf_get_raw_cpu_id)
2323 {
2324 	return raw_smp_processor_id();
2325 }
2326 
2327 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2328 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2329 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2330 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2331 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2332 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2333 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2334 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2335 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2336 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2337 
2338 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2339 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2340 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2341 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2342 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2343 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2344 
2345 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2346 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2347 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2348 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2349 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2350 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2351 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2352 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2353 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2354 
2355 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2356 {
2357 	return NULL;
2358 }
2359 
2360 u64 __weak
2361 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2362 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2363 {
2364 	return -ENOTSUPP;
2365 }
2366 EXPORT_SYMBOL_GPL(bpf_event_output);
2367 
2368 /* Always built-in helper functions. */
2369 const struct bpf_func_proto bpf_tail_call_proto = {
2370 	.func		= NULL,
2371 	.gpl_only	= false,
2372 	.ret_type	= RET_VOID,
2373 	.arg1_type	= ARG_PTR_TO_CTX,
2374 	.arg2_type	= ARG_CONST_MAP_PTR,
2375 	.arg3_type	= ARG_ANYTHING,
2376 };
2377 
2378 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2379  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2380  * eBPF and implicitly also cBPF can get JITed!
2381  */
2382 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2383 {
2384 	return prog;
2385 }
2386 
2387 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2388  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2389  */
2390 void __weak bpf_jit_compile(struct bpf_prog *prog)
2391 {
2392 }
2393 
2394 bool __weak bpf_helper_changes_pkt_data(void *func)
2395 {
2396 	return false;
2397 }
2398 
2399 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2400  * analysis code and wants explicit zero extension inserted by verifier.
2401  * Otherwise, return FALSE.
2402  *
2403  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2404  * you don't override this. JITs that don't want these extra insns can detect
2405  * them using insn_is_zext.
2406  */
2407 bool __weak bpf_jit_needs_zext(void)
2408 {
2409 	return false;
2410 }
2411 
2412 bool __weak bpf_jit_supports_kfunc_call(void)
2413 {
2414 	return false;
2415 }
2416 
2417 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2418  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2419  */
2420 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2421 			 int len)
2422 {
2423 	return -EFAULT;
2424 }
2425 
2426 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2427 			      void *addr1, void *addr2)
2428 {
2429 	return -ENOTSUPP;
2430 }
2431 
2432 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2433 EXPORT_SYMBOL(bpf_stats_enabled_key);
2434 
2435 /* All definitions of tracepoints related to BPF. */
2436 #define CREATE_TRACE_POINTS
2437 #include <linux/bpf_trace.h>
2438 
2439 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2440 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2441