xref: /openbmc/linux/kernel/bpf/core.c (revision 1c2dd16a)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
34 
35 #include <asm/unaligned.h>
36 
37 /* Registers */
38 #define BPF_R0	regs[BPF_REG_0]
39 #define BPF_R1	regs[BPF_REG_1]
40 #define BPF_R2	regs[BPF_REG_2]
41 #define BPF_R3	regs[BPF_REG_3]
42 #define BPF_R4	regs[BPF_REG_4]
43 #define BPF_R5	regs[BPF_REG_5]
44 #define BPF_R6	regs[BPF_REG_6]
45 #define BPF_R7	regs[BPF_REG_7]
46 #define BPF_R8	regs[BPF_REG_8]
47 #define BPF_R9	regs[BPF_REG_9]
48 #define BPF_R10	regs[BPF_REG_10]
49 
50 /* Named registers */
51 #define DST	regs[insn->dst_reg]
52 #define SRC	regs[insn->src_reg]
53 #define FP	regs[BPF_REG_FP]
54 #define ARG1	regs[BPF_REG_ARG1]
55 #define CTX	regs[BPF_REG_CTX]
56 #define IMM	insn->imm
57 
58 /* No hurry in this branch
59  *
60  * Exported for the bpf jit load helper.
61  */
62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
63 {
64 	u8 *ptr = NULL;
65 
66 	if (k >= SKF_NET_OFF)
67 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
68 	else if (k >= SKF_LL_OFF)
69 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
70 
71 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
72 		return ptr;
73 
74 	return NULL;
75 }
76 
77 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
78 {
79 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
80 			  gfp_extra_flags;
81 	struct bpf_prog_aux *aux;
82 	struct bpf_prog *fp;
83 
84 	size = round_up(size, PAGE_SIZE);
85 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
86 	if (fp == NULL)
87 		return NULL;
88 
89 	kmemcheck_annotate_bitfield(fp, meta);
90 
91 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
92 	if (aux == NULL) {
93 		vfree(fp);
94 		return NULL;
95 	}
96 
97 	fp->pages = size / PAGE_SIZE;
98 	fp->aux = aux;
99 	fp->aux->prog = fp;
100 
101 	INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
102 
103 	return fp;
104 }
105 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
106 
107 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
108 				  gfp_t gfp_extra_flags)
109 {
110 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
111 			  gfp_extra_flags;
112 	struct bpf_prog *fp;
113 	u32 pages, delta;
114 	int ret;
115 
116 	BUG_ON(fp_old == NULL);
117 
118 	size = round_up(size, PAGE_SIZE);
119 	pages = size / PAGE_SIZE;
120 	if (pages <= fp_old->pages)
121 		return fp_old;
122 
123 	delta = pages - fp_old->pages;
124 	ret = __bpf_prog_charge(fp_old->aux->user, delta);
125 	if (ret)
126 		return NULL;
127 
128 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
129 	if (fp == NULL) {
130 		__bpf_prog_uncharge(fp_old->aux->user, delta);
131 	} else {
132 		kmemcheck_annotate_bitfield(fp, meta);
133 
134 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
135 		fp->pages = pages;
136 		fp->aux->prog = fp;
137 
138 		/* We keep fp->aux from fp_old around in the new
139 		 * reallocated structure.
140 		 */
141 		fp_old->aux = NULL;
142 		__bpf_prog_free(fp_old);
143 	}
144 
145 	return fp;
146 }
147 
148 void __bpf_prog_free(struct bpf_prog *fp)
149 {
150 	kfree(fp->aux);
151 	vfree(fp);
152 }
153 
154 int bpf_prog_calc_tag(struct bpf_prog *fp)
155 {
156 	const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
157 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
158 	u32 digest[SHA_DIGEST_WORDS];
159 	u32 ws[SHA_WORKSPACE_WORDS];
160 	u32 i, bsize, psize, blocks;
161 	struct bpf_insn *dst;
162 	bool was_ld_map;
163 	u8 *raw, *todo;
164 	__be32 *result;
165 	__be64 *bits;
166 
167 	raw = vmalloc(raw_size);
168 	if (!raw)
169 		return -ENOMEM;
170 
171 	sha_init(digest);
172 	memset(ws, 0, sizeof(ws));
173 
174 	/* We need to take out the map fd for the digest calculation
175 	 * since they are unstable from user space side.
176 	 */
177 	dst = (void *)raw;
178 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
179 		dst[i] = fp->insnsi[i];
180 		if (!was_ld_map &&
181 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
182 		    dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
183 			was_ld_map = true;
184 			dst[i].imm = 0;
185 		} else if (was_ld_map &&
186 			   dst[i].code == 0 &&
187 			   dst[i].dst_reg == 0 &&
188 			   dst[i].src_reg == 0 &&
189 			   dst[i].off == 0) {
190 			was_ld_map = false;
191 			dst[i].imm = 0;
192 		} else {
193 			was_ld_map = false;
194 		}
195 	}
196 
197 	psize = bpf_prog_insn_size(fp);
198 	memset(&raw[psize], 0, raw_size - psize);
199 	raw[psize++] = 0x80;
200 
201 	bsize  = round_up(psize, SHA_MESSAGE_BYTES);
202 	blocks = bsize / SHA_MESSAGE_BYTES;
203 	todo   = raw;
204 	if (bsize - psize >= sizeof(__be64)) {
205 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
206 	} else {
207 		bits = (__be64 *)(todo + bsize + bits_offset);
208 		blocks++;
209 	}
210 	*bits = cpu_to_be64((psize - 1) << 3);
211 
212 	while (blocks--) {
213 		sha_transform(digest, todo, ws);
214 		todo += SHA_MESSAGE_BYTES;
215 	}
216 
217 	result = (__force __be32 *)digest;
218 	for (i = 0; i < SHA_DIGEST_WORDS; i++)
219 		result[i] = cpu_to_be32(digest[i]);
220 	memcpy(fp->tag, result, sizeof(fp->tag));
221 
222 	vfree(raw);
223 	return 0;
224 }
225 
226 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
227 {
228 	return BPF_CLASS(insn->code) == BPF_JMP  &&
229 	       /* Call and Exit are both special jumps with no
230 		* target inside the BPF instruction image.
231 		*/
232 	       BPF_OP(insn->code) != BPF_CALL &&
233 	       BPF_OP(insn->code) != BPF_EXIT;
234 }
235 
236 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
237 {
238 	struct bpf_insn *insn = prog->insnsi;
239 	u32 i, insn_cnt = prog->len;
240 
241 	for (i = 0; i < insn_cnt; i++, insn++) {
242 		if (!bpf_is_jmp_and_has_target(insn))
243 			continue;
244 
245 		/* Adjust offset of jmps if we cross boundaries. */
246 		if (i < pos && i + insn->off + 1 > pos)
247 			insn->off += delta;
248 		else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
249 			insn->off -= delta;
250 	}
251 }
252 
253 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
254 				       const struct bpf_insn *patch, u32 len)
255 {
256 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
257 	struct bpf_prog *prog_adj;
258 
259 	/* Since our patchlet doesn't expand the image, we're done. */
260 	if (insn_delta == 0) {
261 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
262 		return prog;
263 	}
264 
265 	insn_adj_cnt = prog->len + insn_delta;
266 
267 	/* Several new instructions need to be inserted. Make room
268 	 * for them. Likely, there's no need for a new allocation as
269 	 * last page could have large enough tailroom.
270 	 */
271 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
272 				    GFP_USER);
273 	if (!prog_adj)
274 		return NULL;
275 
276 	prog_adj->len = insn_adj_cnt;
277 
278 	/* Patching happens in 3 steps:
279 	 *
280 	 * 1) Move over tail of insnsi from next instruction onwards,
281 	 *    so we can patch the single target insn with one or more
282 	 *    new ones (patching is always from 1 to n insns, n > 0).
283 	 * 2) Inject new instructions at the target location.
284 	 * 3) Adjust branch offsets if necessary.
285 	 */
286 	insn_rest = insn_adj_cnt - off - len;
287 
288 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
289 		sizeof(*patch) * insn_rest);
290 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
291 
292 	bpf_adj_branches(prog_adj, off, insn_delta);
293 
294 	return prog_adj;
295 }
296 
297 #ifdef CONFIG_BPF_JIT
298 static __always_inline void
299 bpf_get_prog_addr_region(const struct bpf_prog *prog,
300 			 unsigned long *symbol_start,
301 			 unsigned long *symbol_end)
302 {
303 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
304 	unsigned long addr = (unsigned long)hdr;
305 
306 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
307 
308 	*symbol_start = addr;
309 	*symbol_end   = addr + hdr->pages * PAGE_SIZE;
310 }
311 
312 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
313 {
314 	BUILD_BUG_ON(sizeof("bpf_prog_") +
315 		     sizeof(prog->tag) * 2 + 1 > KSYM_NAME_LEN);
316 
317 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
318 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
319 	*sym = 0;
320 }
321 
322 static __always_inline unsigned long
323 bpf_get_prog_addr_start(struct latch_tree_node *n)
324 {
325 	unsigned long symbol_start, symbol_end;
326 	const struct bpf_prog_aux *aux;
327 
328 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
329 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
330 
331 	return symbol_start;
332 }
333 
334 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
335 					  struct latch_tree_node *b)
336 {
337 	return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
338 }
339 
340 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
341 {
342 	unsigned long val = (unsigned long)key;
343 	unsigned long symbol_start, symbol_end;
344 	const struct bpf_prog_aux *aux;
345 
346 	aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
347 	bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
348 
349 	if (val < symbol_start)
350 		return -1;
351 	if (val >= symbol_end)
352 		return  1;
353 
354 	return 0;
355 }
356 
357 static const struct latch_tree_ops bpf_tree_ops = {
358 	.less	= bpf_tree_less,
359 	.comp	= bpf_tree_comp,
360 };
361 
362 static DEFINE_SPINLOCK(bpf_lock);
363 static LIST_HEAD(bpf_kallsyms);
364 static struct latch_tree_root bpf_tree __cacheline_aligned;
365 
366 int bpf_jit_kallsyms __read_mostly;
367 
368 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
369 {
370 	WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
371 	list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
372 	latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
373 }
374 
375 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
376 {
377 	if (list_empty(&aux->ksym_lnode))
378 		return;
379 
380 	latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
381 	list_del_rcu(&aux->ksym_lnode);
382 }
383 
384 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
385 {
386 	return fp->jited && !bpf_prog_was_classic(fp);
387 }
388 
389 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
390 {
391 	return list_empty(&fp->aux->ksym_lnode) ||
392 	       fp->aux->ksym_lnode.prev == LIST_POISON2;
393 }
394 
395 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
396 {
397 	if (!bpf_prog_kallsyms_candidate(fp) ||
398 	    !capable(CAP_SYS_ADMIN))
399 		return;
400 
401 	spin_lock_bh(&bpf_lock);
402 	bpf_prog_ksym_node_add(fp->aux);
403 	spin_unlock_bh(&bpf_lock);
404 }
405 
406 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
407 {
408 	if (!bpf_prog_kallsyms_candidate(fp))
409 		return;
410 
411 	spin_lock_bh(&bpf_lock);
412 	bpf_prog_ksym_node_del(fp->aux);
413 	spin_unlock_bh(&bpf_lock);
414 }
415 
416 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
417 {
418 	struct latch_tree_node *n;
419 
420 	if (!bpf_jit_kallsyms_enabled())
421 		return NULL;
422 
423 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
424 	return n ?
425 	       container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
426 	       NULL;
427 }
428 
429 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
430 				 unsigned long *off, char *sym)
431 {
432 	unsigned long symbol_start, symbol_end;
433 	struct bpf_prog *prog;
434 	char *ret = NULL;
435 
436 	rcu_read_lock();
437 	prog = bpf_prog_kallsyms_find(addr);
438 	if (prog) {
439 		bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
440 		bpf_get_prog_name(prog, sym);
441 
442 		ret = sym;
443 		if (size)
444 			*size = symbol_end - symbol_start;
445 		if (off)
446 			*off  = addr - symbol_start;
447 	}
448 	rcu_read_unlock();
449 
450 	return ret;
451 }
452 
453 bool is_bpf_text_address(unsigned long addr)
454 {
455 	bool ret;
456 
457 	rcu_read_lock();
458 	ret = bpf_prog_kallsyms_find(addr) != NULL;
459 	rcu_read_unlock();
460 
461 	return ret;
462 }
463 
464 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
465 		    char *sym)
466 {
467 	unsigned long symbol_start, symbol_end;
468 	struct bpf_prog_aux *aux;
469 	unsigned int it = 0;
470 	int ret = -ERANGE;
471 
472 	if (!bpf_jit_kallsyms_enabled())
473 		return ret;
474 
475 	rcu_read_lock();
476 	list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
477 		if (it++ != symnum)
478 			continue;
479 
480 		bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
481 		bpf_get_prog_name(aux->prog, sym);
482 
483 		*value = symbol_start;
484 		*type  = BPF_SYM_ELF_TYPE;
485 
486 		ret = 0;
487 		break;
488 	}
489 	rcu_read_unlock();
490 
491 	return ret;
492 }
493 
494 struct bpf_binary_header *
495 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
496 		     unsigned int alignment,
497 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
498 {
499 	struct bpf_binary_header *hdr;
500 	unsigned int size, hole, start;
501 
502 	/* Most of BPF filters are really small, but if some of them
503 	 * fill a page, allow at least 128 extra bytes to insert a
504 	 * random section of illegal instructions.
505 	 */
506 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
507 	hdr = module_alloc(size);
508 	if (hdr == NULL)
509 		return NULL;
510 
511 	/* Fill space with illegal/arch-dep instructions. */
512 	bpf_fill_ill_insns(hdr, size);
513 
514 	hdr->pages = size / PAGE_SIZE;
515 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
516 		     PAGE_SIZE - sizeof(*hdr));
517 	start = (get_random_int() % hole) & ~(alignment - 1);
518 
519 	/* Leave a random number of instructions before BPF code. */
520 	*image_ptr = &hdr->image[start];
521 
522 	return hdr;
523 }
524 
525 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
526 {
527 	module_memfree(hdr);
528 }
529 
530 /* This symbol is only overridden by archs that have different
531  * requirements than the usual eBPF JITs, f.e. when they only
532  * implement cBPF JIT, do not set images read-only, etc.
533  */
534 void __weak bpf_jit_free(struct bpf_prog *fp)
535 {
536 	if (fp->jited) {
537 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
538 
539 		bpf_jit_binary_unlock_ro(hdr);
540 		bpf_jit_binary_free(hdr);
541 
542 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
543 	}
544 
545 	bpf_prog_unlock_free(fp);
546 }
547 
548 int bpf_jit_harden __read_mostly;
549 
550 static int bpf_jit_blind_insn(const struct bpf_insn *from,
551 			      const struct bpf_insn *aux,
552 			      struct bpf_insn *to_buff)
553 {
554 	struct bpf_insn *to = to_buff;
555 	u32 imm_rnd = get_random_int();
556 	s16 off;
557 
558 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
559 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
560 
561 	if (from->imm == 0 &&
562 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
563 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
564 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
565 		goto out;
566 	}
567 
568 	switch (from->code) {
569 	case BPF_ALU | BPF_ADD | BPF_K:
570 	case BPF_ALU | BPF_SUB | BPF_K:
571 	case BPF_ALU | BPF_AND | BPF_K:
572 	case BPF_ALU | BPF_OR  | BPF_K:
573 	case BPF_ALU | BPF_XOR | BPF_K:
574 	case BPF_ALU | BPF_MUL | BPF_K:
575 	case BPF_ALU | BPF_MOV | BPF_K:
576 	case BPF_ALU | BPF_DIV | BPF_K:
577 	case BPF_ALU | BPF_MOD | BPF_K:
578 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
579 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
580 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
581 		break;
582 
583 	case BPF_ALU64 | BPF_ADD | BPF_K:
584 	case BPF_ALU64 | BPF_SUB | BPF_K:
585 	case BPF_ALU64 | BPF_AND | BPF_K:
586 	case BPF_ALU64 | BPF_OR  | BPF_K:
587 	case BPF_ALU64 | BPF_XOR | BPF_K:
588 	case BPF_ALU64 | BPF_MUL | BPF_K:
589 	case BPF_ALU64 | BPF_MOV | BPF_K:
590 	case BPF_ALU64 | BPF_DIV | BPF_K:
591 	case BPF_ALU64 | BPF_MOD | BPF_K:
592 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
593 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
594 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
595 		break;
596 
597 	case BPF_JMP | BPF_JEQ  | BPF_K:
598 	case BPF_JMP | BPF_JNE  | BPF_K:
599 	case BPF_JMP | BPF_JGT  | BPF_K:
600 	case BPF_JMP | BPF_JGE  | BPF_K:
601 	case BPF_JMP | BPF_JSGT | BPF_K:
602 	case BPF_JMP | BPF_JSGE | BPF_K:
603 	case BPF_JMP | BPF_JSET | BPF_K:
604 		/* Accommodate for extra offset in case of a backjump. */
605 		off = from->off;
606 		if (off < 0)
607 			off -= 2;
608 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
609 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
610 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
611 		break;
612 
613 	case BPF_LD | BPF_ABS | BPF_W:
614 	case BPF_LD | BPF_ABS | BPF_H:
615 	case BPF_LD | BPF_ABS | BPF_B:
616 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
617 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
618 		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
619 		break;
620 
621 	case BPF_LD | BPF_IND | BPF_W:
622 	case BPF_LD | BPF_IND | BPF_H:
623 	case BPF_LD | BPF_IND | BPF_B:
624 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
625 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
626 		*to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
627 		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
628 		break;
629 
630 	case BPF_LD | BPF_IMM | BPF_DW:
631 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
632 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
633 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
634 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
635 		break;
636 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
637 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
638 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
639 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
640 		break;
641 
642 	case BPF_ST | BPF_MEM | BPF_DW:
643 	case BPF_ST | BPF_MEM | BPF_W:
644 	case BPF_ST | BPF_MEM | BPF_H:
645 	case BPF_ST | BPF_MEM | BPF_B:
646 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
647 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
648 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
649 		break;
650 	}
651 out:
652 	return to - to_buff;
653 }
654 
655 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
656 					      gfp_t gfp_extra_flags)
657 {
658 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
659 			  gfp_extra_flags;
660 	struct bpf_prog *fp;
661 
662 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
663 	if (fp != NULL) {
664 		kmemcheck_annotate_bitfield(fp, meta);
665 
666 		/* aux->prog still points to the fp_other one, so
667 		 * when promoting the clone to the real program,
668 		 * this still needs to be adapted.
669 		 */
670 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
671 	}
672 
673 	return fp;
674 }
675 
676 static void bpf_prog_clone_free(struct bpf_prog *fp)
677 {
678 	/* aux was stolen by the other clone, so we cannot free
679 	 * it from this path! It will be freed eventually by the
680 	 * other program on release.
681 	 *
682 	 * At this point, we don't need a deferred release since
683 	 * clone is guaranteed to not be locked.
684 	 */
685 	fp->aux = NULL;
686 	__bpf_prog_free(fp);
687 }
688 
689 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
690 {
691 	/* We have to repoint aux->prog to self, as we don't
692 	 * know whether fp here is the clone or the original.
693 	 */
694 	fp->aux->prog = fp;
695 	bpf_prog_clone_free(fp_other);
696 }
697 
698 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
699 {
700 	struct bpf_insn insn_buff[16], aux[2];
701 	struct bpf_prog *clone, *tmp;
702 	int insn_delta, insn_cnt;
703 	struct bpf_insn *insn;
704 	int i, rewritten;
705 
706 	if (!bpf_jit_blinding_enabled())
707 		return prog;
708 
709 	clone = bpf_prog_clone_create(prog, GFP_USER);
710 	if (!clone)
711 		return ERR_PTR(-ENOMEM);
712 
713 	insn_cnt = clone->len;
714 	insn = clone->insnsi;
715 
716 	for (i = 0; i < insn_cnt; i++, insn++) {
717 		/* We temporarily need to hold the original ld64 insn
718 		 * so that we can still access the first part in the
719 		 * second blinding run.
720 		 */
721 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
722 		    insn[1].code == 0)
723 			memcpy(aux, insn, sizeof(aux));
724 
725 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
726 		if (!rewritten)
727 			continue;
728 
729 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
730 		if (!tmp) {
731 			/* Patching may have repointed aux->prog during
732 			 * realloc from the original one, so we need to
733 			 * fix it up here on error.
734 			 */
735 			bpf_jit_prog_release_other(prog, clone);
736 			return ERR_PTR(-ENOMEM);
737 		}
738 
739 		clone = tmp;
740 		insn_delta = rewritten - 1;
741 
742 		/* Walk new program and skip insns we just inserted. */
743 		insn = clone->insnsi + i + insn_delta;
744 		insn_cnt += insn_delta;
745 		i        += insn_delta;
746 	}
747 
748 	return clone;
749 }
750 #endif /* CONFIG_BPF_JIT */
751 
752 /* Base function for offset calculation. Needs to go into .text section,
753  * therefore keeping it non-static as well; will also be used by JITs
754  * anyway later on, so do not let the compiler omit it.
755  */
756 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
757 {
758 	return 0;
759 }
760 EXPORT_SYMBOL_GPL(__bpf_call_base);
761 
762 /**
763  *	__bpf_prog_run - run eBPF program on a given context
764  *	@ctx: is the data we are operating on
765  *	@insn: is the array of eBPF instructions
766  *
767  * Decode and execute eBPF instructions.
768  */
769 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
770 {
771 	u64 stack[MAX_BPF_STACK / sizeof(u64)];
772 	u64 regs[MAX_BPF_REG], tmp;
773 	static const void *jumptable[256] = {
774 		[0 ... 255] = &&default_label,
775 		/* Now overwrite non-defaults ... */
776 		/* 32 bit ALU operations */
777 		[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
778 		[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
779 		[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
780 		[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
781 		[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
782 		[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
783 		[BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
784 		[BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
785 		[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
786 		[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
787 		[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
788 		[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
789 		[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
790 		[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
791 		[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
792 		[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
793 		[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
794 		[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
795 		[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
796 		[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
797 		[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
798 		[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
799 		[BPF_ALU | BPF_NEG] = &&ALU_NEG,
800 		[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
801 		[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
802 		/* 64 bit ALU operations */
803 		[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
804 		[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
805 		[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
806 		[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
807 		[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
808 		[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
809 		[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
810 		[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
811 		[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
812 		[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
813 		[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
814 		[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
815 		[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
816 		[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
817 		[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
818 		[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
819 		[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
820 		[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
821 		[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
822 		[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
823 		[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
824 		[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
825 		[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
826 		[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
827 		[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
828 		/* Call instruction */
829 		[BPF_JMP | BPF_CALL] = &&JMP_CALL,
830 		[BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
831 		/* Jumps */
832 		[BPF_JMP | BPF_JA] = &&JMP_JA,
833 		[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
834 		[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
835 		[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
836 		[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
837 		[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
838 		[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
839 		[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
840 		[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
841 		[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
842 		[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
843 		[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
844 		[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
845 		[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
846 		[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
847 		/* Program return */
848 		[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
849 		/* Store instructions */
850 		[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
851 		[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
852 		[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
853 		[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
854 		[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
855 		[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
856 		[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
857 		[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
858 		[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
859 		[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
860 		/* Load instructions */
861 		[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
862 		[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
863 		[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
864 		[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
865 		[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
866 		[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
867 		[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
868 		[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
869 		[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
870 		[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
871 		[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
872 	};
873 	u32 tail_call_cnt = 0;
874 	void *ptr;
875 	int off;
876 
877 #define CONT	 ({ insn++; goto select_insn; })
878 #define CONT_JMP ({ insn++; goto select_insn; })
879 
880 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
881 	ARG1 = (u64) (unsigned long) ctx;
882 
883 select_insn:
884 	goto *jumptable[insn->code];
885 
886 	/* ALU */
887 #define ALU(OPCODE, OP)			\
888 	ALU64_##OPCODE##_X:		\
889 		DST = DST OP SRC;	\
890 		CONT;			\
891 	ALU_##OPCODE##_X:		\
892 		DST = (u32) DST OP (u32) SRC;	\
893 		CONT;			\
894 	ALU64_##OPCODE##_K:		\
895 		DST = DST OP IMM;		\
896 		CONT;			\
897 	ALU_##OPCODE##_K:		\
898 		DST = (u32) DST OP (u32) IMM;	\
899 		CONT;
900 
901 	ALU(ADD,  +)
902 	ALU(SUB,  -)
903 	ALU(AND,  &)
904 	ALU(OR,   |)
905 	ALU(LSH, <<)
906 	ALU(RSH, >>)
907 	ALU(XOR,  ^)
908 	ALU(MUL,  *)
909 #undef ALU
910 	ALU_NEG:
911 		DST = (u32) -DST;
912 		CONT;
913 	ALU64_NEG:
914 		DST = -DST;
915 		CONT;
916 	ALU_MOV_X:
917 		DST = (u32) SRC;
918 		CONT;
919 	ALU_MOV_K:
920 		DST = (u32) IMM;
921 		CONT;
922 	ALU64_MOV_X:
923 		DST = SRC;
924 		CONT;
925 	ALU64_MOV_K:
926 		DST = IMM;
927 		CONT;
928 	LD_IMM_DW:
929 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
930 		insn++;
931 		CONT;
932 	ALU64_ARSH_X:
933 		(*(s64 *) &DST) >>= SRC;
934 		CONT;
935 	ALU64_ARSH_K:
936 		(*(s64 *) &DST) >>= IMM;
937 		CONT;
938 	ALU64_MOD_X:
939 		if (unlikely(SRC == 0))
940 			return 0;
941 		div64_u64_rem(DST, SRC, &tmp);
942 		DST = tmp;
943 		CONT;
944 	ALU_MOD_X:
945 		if (unlikely(SRC == 0))
946 			return 0;
947 		tmp = (u32) DST;
948 		DST = do_div(tmp, (u32) SRC);
949 		CONT;
950 	ALU64_MOD_K:
951 		div64_u64_rem(DST, IMM, &tmp);
952 		DST = tmp;
953 		CONT;
954 	ALU_MOD_K:
955 		tmp = (u32) DST;
956 		DST = do_div(tmp, (u32) IMM);
957 		CONT;
958 	ALU64_DIV_X:
959 		if (unlikely(SRC == 0))
960 			return 0;
961 		DST = div64_u64(DST, SRC);
962 		CONT;
963 	ALU_DIV_X:
964 		if (unlikely(SRC == 0))
965 			return 0;
966 		tmp = (u32) DST;
967 		do_div(tmp, (u32) SRC);
968 		DST = (u32) tmp;
969 		CONT;
970 	ALU64_DIV_K:
971 		DST = div64_u64(DST, IMM);
972 		CONT;
973 	ALU_DIV_K:
974 		tmp = (u32) DST;
975 		do_div(tmp, (u32) IMM);
976 		DST = (u32) tmp;
977 		CONT;
978 	ALU_END_TO_BE:
979 		switch (IMM) {
980 		case 16:
981 			DST = (__force u16) cpu_to_be16(DST);
982 			break;
983 		case 32:
984 			DST = (__force u32) cpu_to_be32(DST);
985 			break;
986 		case 64:
987 			DST = (__force u64) cpu_to_be64(DST);
988 			break;
989 		}
990 		CONT;
991 	ALU_END_TO_LE:
992 		switch (IMM) {
993 		case 16:
994 			DST = (__force u16) cpu_to_le16(DST);
995 			break;
996 		case 32:
997 			DST = (__force u32) cpu_to_le32(DST);
998 			break;
999 		case 64:
1000 			DST = (__force u64) cpu_to_le64(DST);
1001 			break;
1002 		}
1003 		CONT;
1004 
1005 	/* CALL */
1006 	JMP_CALL:
1007 		/* Function call scratches BPF_R1-BPF_R5 registers,
1008 		 * preserves BPF_R6-BPF_R9, and stores return value
1009 		 * into BPF_R0.
1010 		 */
1011 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1012 						       BPF_R4, BPF_R5);
1013 		CONT;
1014 
1015 	JMP_TAIL_CALL: {
1016 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1017 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1018 		struct bpf_prog *prog;
1019 		u64 index = BPF_R3;
1020 
1021 		if (unlikely(index >= array->map.max_entries))
1022 			goto out;
1023 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1024 			goto out;
1025 
1026 		tail_call_cnt++;
1027 
1028 		prog = READ_ONCE(array->ptrs[index]);
1029 		if (!prog)
1030 			goto out;
1031 
1032 		/* ARG1 at this point is guaranteed to point to CTX from
1033 		 * the verifier side due to the fact that the tail call is
1034 		 * handeled like a helper, that is, bpf_tail_call_proto,
1035 		 * where arg1_type is ARG_PTR_TO_CTX.
1036 		 */
1037 		insn = prog->insnsi;
1038 		goto select_insn;
1039 out:
1040 		CONT;
1041 	}
1042 	/* JMP */
1043 	JMP_JA:
1044 		insn += insn->off;
1045 		CONT;
1046 	JMP_JEQ_X:
1047 		if (DST == SRC) {
1048 			insn += insn->off;
1049 			CONT_JMP;
1050 		}
1051 		CONT;
1052 	JMP_JEQ_K:
1053 		if (DST == IMM) {
1054 			insn += insn->off;
1055 			CONT_JMP;
1056 		}
1057 		CONT;
1058 	JMP_JNE_X:
1059 		if (DST != SRC) {
1060 			insn += insn->off;
1061 			CONT_JMP;
1062 		}
1063 		CONT;
1064 	JMP_JNE_K:
1065 		if (DST != IMM) {
1066 			insn += insn->off;
1067 			CONT_JMP;
1068 		}
1069 		CONT;
1070 	JMP_JGT_X:
1071 		if (DST > SRC) {
1072 			insn += insn->off;
1073 			CONT_JMP;
1074 		}
1075 		CONT;
1076 	JMP_JGT_K:
1077 		if (DST > IMM) {
1078 			insn += insn->off;
1079 			CONT_JMP;
1080 		}
1081 		CONT;
1082 	JMP_JGE_X:
1083 		if (DST >= SRC) {
1084 			insn += insn->off;
1085 			CONT_JMP;
1086 		}
1087 		CONT;
1088 	JMP_JGE_K:
1089 		if (DST >= IMM) {
1090 			insn += insn->off;
1091 			CONT_JMP;
1092 		}
1093 		CONT;
1094 	JMP_JSGT_X:
1095 		if (((s64) DST) > ((s64) SRC)) {
1096 			insn += insn->off;
1097 			CONT_JMP;
1098 		}
1099 		CONT;
1100 	JMP_JSGT_K:
1101 		if (((s64) DST) > ((s64) IMM)) {
1102 			insn += insn->off;
1103 			CONT_JMP;
1104 		}
1105 		CONT;
1106 	JMP_JSGE_X:
1107 		if (((s64) DST) >= ((s64) SRC)) {
1108 			insn += insn->off;
1109 			CONT_JMP;
1110 		}
1111 		CONT;
1112 	JMP_JSGE_K:
1113 		if (((s64) DST) >= ((s64) IMM)) {
1114 			insn += insn->off;
1115 			CONT_JMP;
1116 		}
1117 		CONT;
1118 	JMP_JSET_X:
1119 		if (DST & SRC) {
1120 			insn += insn->off;
1121 			CONT_JMP;
1122 		}
1123 		CONT;
1124 	JMP_JSET_K:
1125 		if (DST & IMM) {
1126 			insn += insn->off;
1127 			CONT_JMP;
1128 		}
1129 		CONT;
1130 	JMP_EXIT:
1131 		return BPF_R0;
1132 
1133 	/* STX and ST and LDX*/
1134 #define LDST(SIZEOP, SIZE)						\
1135 	STX_MEM_##SIZEOP:						\
1136 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1137 		CONT;							\
1138 	ST_MEM_##SIZEOP:						\
1139 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1140 		CONT;							\
1141 	LDX_MEM_##SIZEOP:						\
1142 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1143 		CONT;
1144 
1145 	LDST(B,   u8)
1146 	LDST(H,  u16)
1147 	LDST(W,  u32)
1148 	LDST(DW, u64)
1149 #undef LDST
1150 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1151 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1152 			   (DST + insn->off));
1153 		CONT;
1154 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1155 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1156 			     (DST + insn->off));
1157 		CONT;
1158 	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1159 		off = IMM;
1160 load_word:
1161 		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1162 		 * appearing in the programs where ctx == skb
1163 		 * (see may_access_skb() in the verifier). All programs
1164 		 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1165 		 * bpf_convert_filter() saves it in BPF_R6, internal BPF
1166 		 * verifier will check that BPF_R6 == ctx.
1167 		 *
1168 		 * BPF_ABS and BPF_IND are wrappers of function calls,
1169 		 * so they scratch BPF_R1-BPF_R5 registers, preserve
1170 		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
1171 		 *
1172 		 * Implicit input:
1173 		 *   ctx == skb == BPF_R6 == CTX
1174 		 *
1175 		 * Explicit input:
1176 		 *   SRC == any register
1177 		 *   IMM == 32-bit immediate
1178 		 *
1179 		 * Output:
1180 		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1181 		 */
1182 
1183 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1184 		if (likely(ptr != NULL)) {
1185 			BPF_R0 = get_unaligned_be32(ptr);
1186 			CONT;
1187 		}
1188 
1189 		return 0;
1190 	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1191 		off = IMM;
1192 load_half:
1193 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1194 		if (likely(ptr != NULL)) {
1195 			BPF_R0 = get_unaligned_be16(ptr);
1196 			CONT;
1197 		}
1198 
1199 		return 0;
1200 	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1201 		off = IMM;
1202 load_byte:
1203 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1204 		if (likely(ptr != NULL)) {
1205 			BPF_R0 = *(u8 *)ptr;
1206 			CONT;
1207 		}
1208 
1209 		return 0;
1210 	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1211 		off = IMM + SRC;
1212 		goto load_word;
1213 	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1214 		off = IMM + SRC;
1215 		goto load_half;
1216 	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1217 		off = IMM + SRC;
1218 		goto load_byte;
1219 
1220 	default_label:
1221 		/* If we ever reach this, we have a bug somewhere. */
1222 		WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1223 		return 0;
1224 }
1225 STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
1226 
1227 bool bpf_prog_array_compatible(struct bpf_array *array,
1228 			       const struct bpf_prog *fp)
1229 {
1230 	if (!array->owner_prog_type) {
1231 		/* There's no owner yet where we could check for
1232 		 * compatibility.
1233 		 */
1234 		array->owner_prog_type = fp->type;
1235 		array->owner_jited = fp->jited;
1236 
1237 		return true;
1238 	}
1239 
1240 	return array->owner_prog_type == fp->type &&
1241 	       array->owner_jited == fp->jited;
1242 }
1243 
1244 static int bpf_check_tail_call(const struct bpf_prog *fp)
1245 {
1246 	struct bpf_prog_aux *aux = fp->aux;
1247 	int i;
1248 
1249 	for (i = 0; i < aux->used_map_cnt; i++) {
1250 		struct bpf_map *map = aux->used_maps[i];
1251 		struct bpf_array *array;
1252 
1253 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1254 			continue;
1255 
1256 		array = container_of(map, struct bpf_array, map);
1257 		if (!bpf_prog_array_compatible(array, fp))
1258 			return -EINVAL;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 /**
1265  *	bpf_prog_select_runtime - select exec runtime for BPF program
1266  *	@fp: bpf_prog populated with internal BPF program
1267  *	@err: pointer to error variable
1268  *
1269  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1270  * The BPF program will be executed via BPF_PROG_RUN() macro.
1271  */
1272 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1273 {
1274 	fp->bpf_func = (void *) __bpf_prog_run;
1275 
1276 	/* eBPF JITs can rewrite the program in case constant
1277 	 * blinding is active. However, in case of error during
1278 	 * blinding, bpf_int_jit_compile() must always return a
1279 	 * valid program, which in this case would simply not
1280 	 * be JITed, but falls back to the interpreter.
1281 	 */
1282 	fp = bpf_int_jit_compile(fp);
1283 	bpf_prog_lock_ro(fp);
1284 
1285 	/* The tail call compatibility check can only be done at
1286 	 * this late stage as we need to determine, if we deal
1287 	 * with JITed or non JITed program concatenations and not
1288 	 * all eBPF JITs might immediately support all features.
1289 	 */
1290 	*err = bpf_check_tail_call(fp);
1291 
1292 	return fp;
1293 }
1294 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1295 
1296 static void bpf_prog_free_deferred(struct work_struct *work)
1297 {
1298 	struct bpf_prog_aux *aux;
1299 
1300 	aux = container_of(work, struct bpf_prog_aux, work);
1301 	bpf_jit_free(aux->prog);
1302 }
1303 
1304 /* Free internal BPF program */
1305 void bpf_prog_free(struct bpf_prog *fp)
1306 {
1307 	struct bpf_prog_aux *aux = fp->aux;
1308 
1309 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
1310 	schedule_work(&aux->work);
1311 }
1312 EXPORT_SYMBOL_GPL(bpf_prog_free);
1313 
1314 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1315 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1316 
1317 void bpf_user_rnd_init_once(void)
1318 {
1319 	prandom_init_once(&bpf_user_rnd_state);
1320 }
1321 
1322 BPF_CALL_0(bpf_user_rnd_u32)
1323 {
1324 	/* Should someone ever have the rather unwise idea to use some
1325 	 * of the registers passed into this function, then note that
1326 	 * this function is called from native eBPF and classic-to-eBPF
1327 	 * transformations. Register assignments from both sides are
1328 	 * different, f.e. classic always sets fn(ctx, A, X) here.
1329 	 */
1330 	struct rnd_state *state;
1331 	u32 res;
1332 
1333 	state = &get_cpu_var(bpf_user_rnd_state);
1334 	res = prandom_u32_state(state);
1335 	put_cpu_var(bpf_user_rnd_state);
1336 
1337 	return res;
1338 }
1339 
1340 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1341 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1342 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1343 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1344 
1345 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1346 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1347 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1348 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1349 
1350 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1351 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1352 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1353 
1354 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1355 {
1356 	return NULL;
1357 }
1358 
1359 u64 __weak
1360 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1361 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1362 {
1363 	return -ENOTSUPP;
1364 }
1365 
1366 /* Always built-in helper functions. */
1367 const struct bpf_func_proto bpf_tail_call_proto = {
1368 	.func		= NULL,
1369 	.gpl_only	= false,
1370 	.ret_type	= RET_VOID,
1371 	.arg1_type	= ARG_PTR_TO_CTX,
1372 	.arg2_type	= ARG_CONST_MAP_PTR,
1373 	.arg3_type	= ARG_ANYTHING,
1374 };
1375 
1376 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1377  * It is encouraged to implement bpf_int_jit_compile() instead, so that
1378  * eBPF and implicitly also cBPF can get JITed!
1379  */
1380 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1381 {
1382 	return prog;
1383 }
1384 
1385 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1386  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1387  */
1388 void __weak bpf_jit_compile(struct bpf_prog *prog)
1389 {
1390 }
1391 
1392 bool __weak bpf_helper_changes_pkt_data(void *func)
1393 {
1394 	return false;
1395 }
1396 
1397 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1398  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1399  */
1400 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1401 			 int len)
1402 {
1403 	return -EFAULT;
1404 }
1405 
1406 /* All definitions of tracepoints related to BPF. */
1407 #define CREATE_TRACE_POINTS
1408 #include <linux/bpf_trace.h>
1409 
1410 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1411 
1412 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1413 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
1414