1 /* 2 * Linux Socket Filter - Kernel level socket filtering 3 * 4 * Based on the design of the Berkeley Packet Filter. The new 5 * internal format has been designed by PLUMgrid: 6 * 7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com 8 * 9 * Authors: 10 * 11 * Jay Schulist <jschlst@samba.org> 12 * Alexei Starovoitov <ast@plumgrid.com> 13 * Daniel Borkmann <dborkman@redhat.com> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 * 20 * Andi Kleen - Fix a few bad bugs and races. 21 * Kris Katterjohn - Added many additional checks in bpf_check_classic() 22 */ 23 24 #include <linux/filter.h> 25 #include <linux/skbuff.h> 26 #include <linux/vmalloc.h> 27 #include <linux/random.h> 28 #include <linux/moduleloader.h> 29 #include <linux/bpf.h> 30 #include <linux/frame.h> 31 #include <linux/rbtree_latch.h> 32 #include <linux/kallsyms.h> 33 #include <linux/rcupdate.h> 34 35 #include <asm/unaligned.h> 36 37 /* Registers */ 38 #define BPF_R0 regs[BPF_REG_0] 39 #define BPF_R1 regs[BPF_REG_1] 40 #define BPF_R2 regs[BPF_REG_2] 41 #define BPF_R3 regs[BPF_REG_3] 42 #define BPF_R4 regs[BPF_REG_4] 43 #define BPF_R5 regs[BPF_REG_5] 44 #define BPF_R6 regs[BPF_REG_6] 45 #define BPF_R7 regs[BPF_REG_7] 46 #define BPF_R8 regs[BPF_REG_8] 47 #define BPF_R9 regs[BPF_REG_9] 48 #define BPF_R10 regs[BPF_REG_10] 49 50 /* Named registers */ 51 #define DST regs[insn->dst_reg] 52 #define SRC regs[insn->src_reg] 53 #define FP regs[BPF_REG_FP] 54 #define ARG1 regs[BPF_REG_ARG1] 55 #define CTX regs[BPF_REG_CTX] 56 #define IMM insn->imm 57 58 /* No hurry in this branch 59 * 60 * Exported for the bpf jit load helper. 61 */ 62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size) 63 { 64 u8 *ptr = NULL; 65 66 if (k >= SKF_NET_OFF) 67 ptr = skb_network_header(skb) + k - SKF_NET_OFF; 68 else if (k >= SKF_LL_OFF) 69 ptr = skb_mac_header(skb) + k - SKF_LL_OFF; 70 71 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb)) 72 return ptr; 73 74 return NULL; 75 } 76 77 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags) 78 { 79 gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO | 80 gfp_extra_flags; 81 struct bpf_prog_aux *aux; 82 struct bpf_prog *fp; 83 84 size = round_up(size, PAGE_SIZE); 85 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL); 86 if (fp == NULL) 87 return NULL; 88 89 kmemcheck_annotate_bitfield(fp, meta); 90 91 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags); 92 if (aux == NULL) { 93 vfree(fp); 94 return NULL; 95 } 96 97 fp->pages = size / PAGE_SIZE; 98 fp->aux = aux; 99 fp->aux->prog = fp; 100 101 INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode); 102 103 return fp; 104 } 105 EXPORT_SYMBOL_GPL(bpf_prog_alloc); 106 107 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 108 gfp_t gfp_extra_flags) 109 { 110 gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO | 111 gfp_extra_flags; 112 struct bpf_prog *fp; 113 u32 pages, delta; 114 int ret; 115 116 BUG_ON(fp_old == NULL); 117 118 size = round_up(size, PAGE_SIZE); 119 pages = size / PAGE_SIZE; 120 if (pages <= fp_old->pages) 121 return fp_old; 122 123 delta = pages - fp_old->pages; 124 ret = __bpf_prog_charge(fp_old->aux->user, delta); 125 if (ret) 126 return NULL; 127 128 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL); 129 if (fp == NULL) { 130 __bpf_prog_uncharge(fp_old->aux->user, delta); 131 } else { 132 kmemcheck_annotate_bitfield(fp, meta); 133 134 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE); 135 fp->pages = pages; 136 fp->aux->prog = fp; 137 138 /* We keep fp->aux from fp_old around in the new 139 * reallocated structure. 140 */ 141 fp_old->aux = NULL; 142 __bpf_prog_free(fp_old); 143 } 144 145 return fp; 146 } 147 148 void __bpf_prog_free(struct bpf_prog *fp) 149 { 150 kfree(fp->aux); 151 vfree(fp); 152 } 153 154 int bpf_prog_calc_tag(struct bpf_prog *fp) 155 { 156 const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64); 157 u32 raw_size = bpf_prog_tag_scratch_size(fp); 158 u32 digest[SHA_DIGEST_WORDS]; 159 u32 ws[SHA_WORKSPACE_WORDS]; 160 u32 i, bsize, psize, blocks; 161 struct bpf_insn *dst; 162 bool was_ld_map; 163 u8 *raw, *todo; 164 __be32 *result; 165 __be64 *bits; 166 167 raw = vmalloc(raw_size); 168 if (!raw) 169 return -ENOMEM; 170 171 sha_init(digest); 172 memset(ws, 0, sizeof(ws)); 173 174 /* We need to take out the map fd for the digest calculation 175 * since they are unstable from user space side. 176 */ 177 dst = (void *)raw; 178 for (i = 0, was_ld_map = false; i < fp->len; i++) { 179 dst[i] = fp->insnsi[i]; 180 if (!was_ld_map && 181 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) && 182 dst[i].src_reg == BPF_PSEUDO_MAP_FD) { 183 was_ld_map = true; 184 dst[i].imm = 0; 185 } else if (was_ld_map && 186 dst[i].code == 0 && 187 dst[i].dst_reg == 0 && 188 dst[i].src_reg == 0 && 189 dst[i].off == 0) { 190 was_ld_map = false; 191 dst[i].imm = 0; 192 } else { 193 was_ld_map = false; 194 } 195 } 196 197 psize = bpf_prog_insn_size(fp); 198 memset(&raw[psize], 0, raw_size - psize); 199 raw[psize++] = 0x80; 200 201 bsize = round_up(psize, SHA_MESSAGE_BYTES); 202 blocks = bsize / SHA_MESSAGE_BYTES; 203 todo = raw; 204 if (bsize - psize >= sizeof(__be64)) { 205 bits = (__be64 *)(todo + bsize - sizeof(__be64)); 206 } else { 207 bits = (__be64 *)(todo + bsize + bits_offset); 208 blocks++; 209 } 210 *bits = cpu_to_be64((psize - 1) << 3); 211 212 while (blocks--) { 213 sha_transform(digest, todo, ws); 214 todo += SHA_MESSAGE_BYTES; 215 } 216 217 result = (__force __be32 *)digest; 218 for (i = 0; i < SHA_DIGEST_WORDS; i++) 219 result[i] = cpu_to_be32(digest[i]); 220 memcpy(fp->tag, result, sizeof(fp->tag)); 221 222 vfree(raw); 223 return 0; 224 } 225 226 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn) 227 { 228 return BPF_CLASS(insn->code) == BPF_JMP && 229 /* Call and Exit are both special jumps with no 230 * target inside the BPF instruction image. 231 */ 232 BPF_OP(insn->code) != BPF_CALL && 233 BPF_OP(insn->code) != BPF_EXIT; 234 } 235 236 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta) 237 { 238 struct bpf_insn *insn = prog->insnsi; 239 u32 i, insn_cnt = prog->len; 240 241 for (i = 0; i < insn_cnt; i++, insn++) { 242 if (!bpf_is_jmp_and_has_target(insn)) 243 continue; 244 245 /* Adjust offset of jmps if we cross boundaries. */ 246 if (i < pos && i + insn->off + 1 > pos) 247 insn->off += delta; 248 else if (i > pos + delta && i + insn->off + 1 <= pos + delta) 249 insn->off -= delta; 250 } 251 } 252 253 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 254 const struct bpf_insn *patch, u32 len) 255 { 256 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1; 257 struct bpf_prog *prog_adj; 258 259 /* Since our patchlet doesn't expand the image, we're done. */ 260 if (insn_delta == 0) { 261 memcpy(prog->insnsi + off, patch, sizeof(*patch)); 262 return prog; 263 } 264 265 insn_adj_cnt = prog->len + insn_delta; 266 267 /* Several new instructions need to be inserted. Make room 268 * for them. Likely, there's no need for a new allocation as 269 * last page could have large enough tailroom. 270 */ 271 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt), 272 GFP_USER); 273 if (!prog_adj) 274 return NULL; 275 276 prog_adj->len = insn_adj_cnt; 277 278 /* Patching happens in 3 steps: 279 * 280 * 1) Move over tail of insnsi from next instruction onwards, 281 * so we can patch the single target insn with one or more 282 * new ones (patching is always from 1 to n insns, n > 0). 283 * 2) Inject new instructions at the target location. 284 * 3) Adjust branch offsets if necessary. 285 */ 286 insn_rest = insn_adj_cnt - off - len; 287 288 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1, 289 sizeof(*patch) * insn_rest); 290 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len); 291 292 bpf_adj_branches(prog_adj, off, insn_delta); 293 294 return prog_adj; 295 } 296 297 #ifdef CONFIG_BPF_JIT 298 static __always_inline void 299 bpf_get_prog_addr_region(const struct bpf_prog *prog, 300 unsigned long *symbol_start, 301 unsigned long *symbol_end) 302 { 303 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog); 304 unsigned long addr = (unsigned long)hdr; 305 306 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog)); 307 308 *symbol_start = addr; 309 *symbol_end = addr + hdr->pages * PAGE_SIZE; 310 } 311 312 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym) 313 { 314 BUILD_BUG_ON(sizeof("bpf_prog_") + 315 sizeof(prog->tag) * 2 + 1 > KSYM_NAME_LEN); 316 317 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_"); 318 sym = bin2hex(sym, prog->tag, sizeof(prog->tag)); 319 *sym = 0; 320 } 321 322 static __always_inline unsigned long 323 bpf_get_prog_addr_start(struct latch_tree_node *n) 324 { 325 unsigned long symbol_start, symbol_end; 326 const struct bpf_prog_aux *aux; 327 328 aux = container_of(n, struct bpf_prog_aux, ksym_tnode); 329 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end); 330 331 return symbol_start; 332 } 333 334 static __always_inline bool bpf_tree_less(struct latch_tree_node *a, 335 struct latch_tree_node *b) 336 { 337 return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b); 338 } 339 340 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n) 341 { 342 unsigned long val = (unsigned long)key; 343 unsigned long symbol_start, symbol_end; 344 const struct bpf_prog_aux *aux; 345 346 aux = container_of(n, struct bpf_prog_aux, ksym_tnode); 347 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end); 348 349 if (val < symbol_start) 350 return -1; 351 if (val >= symbol_end) 352 return 1; 353 354 return 0; 355 } 356 357 static const struct latch_tree_ops bpf_tree_ops = { 358 .less = bpf_tree_less, 359 .comp = bpf_tree_comp, 360 }; 361 362 static DEFINE_SPINLOCK(bpf_lock); 363 static LIST_HEAD(bpf_kallsyms); 364 static struct latch_tree_root bpf_tree __cacheline_aligned; 365 366 int bpf_jit_kallsyms __read_mostly; 367 368 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux) 369 { 370 WARN_ON_ONCE(!list_empty(&aux->ksym_lnode)); 371 list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms); 372 latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops); 373 } 374 375 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux) 376 { 377 if (list_empty(&aux->ksym_lnode)) 378 return; 379 380 latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops); 381 list_del_rcu(&aux->ksym_lnode); 382 } 383 384 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp) 385 { 386 return fp->jited && !bpf_prog_was_classic(fp); 387 } 388 389 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) 390 { 391 return list_empty(&fp->aux->ksym_lnode) || 392 fp->aux->ksym_lnode.prev == LIST_POISON2; 393 } 394 395 void bpf_prog_kallsyms_add(struct bpf_prog *fp) 396 { 397 if (!bpf_prog_kallsyms_candidate(fp) || 398 !capable(CAP_SYS_ADMIN)) 399 return; 400 401 spin_lock_bh(&bpf_lock); 402 bpf_prog_ksym_node_add(fp->aux); 403 spin_unlock_bh(&bpf_lock); 404 } 405 406 void bpf_prog_kallsyms_del(struct bpf_prog *fp) 407 { 408 if (!bpf_prog_kallsyms_candidate(fp)) 409 return; 410 411 spin_lock_bh(&bpf_lock); 412 bpf_prog_ksym_node_del(fp->aux); 413 spin_unlock_bh(&bpf_lock); 414 } 415 416 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr) 417 { 418 struct latch_tree_node *n; 419 420 if (!bpf_jit_kallsyms_enabled()) 421 return NULL; 422 423 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops); 424 return n ? 425 container_of(n, struct bpf_prog_aux, ksym_tnode)->prog : 426 NULL; 427 } 428 429 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 430 unsigned long *off, char *sym) 431 { 432 unsigned long symbol_start, symbol_end; 433 struct bpf_prog *prog; 434 char *ret = NULL; 435 436 rcu_read_lock(); 437 prog = bpf_prog_kallsyms_find(addr); 438 if (prog) { 439 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end); 440 bpf_get_prog_name(prog, sym); 441 442 ret = sym; 443 if (size) 444 *size = symbol_end - symbol_start; 445 if (off) 446 *off = addr - symbol_start; 447 } 448 rcu_read_unlock(); 449 450 return ret; 451 } 452 453 bool is_bpf_text_address(unsigned long addr) 454 { 455 bool ret; 456 457 rcu_read_lock(); 458 ret = bpf_prog_kallsyms_find(addr) != NULL; 459 rcu_read_unlock(); 460 461 return ret; 462 } 463 464 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 465 char *sym) 466 { 467 unsigned long symbol_start, symbol_end; 468 struct bpf_prog_aux *aux; 469 unsigned int it = 0; 470 int ret = -ERANGE; 471 472 if (!bpf_jit_kallsyms_enabled()) 473 return ret; 474 475 rcu_read_lock(); 476 list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) { 477 if (it++ != symnum) 478 continue; 479 480 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end); 481 bpf_get_prog_name(aux->prog, sym); 482 483 *value = symbol_start; 484 *type = BPF_SYM_ELF_TYPE; 485 486 ret = 0; 487 break; 488 } 489 rcu_read_unlock(); 490 491 return ret; 492 } 493 494 struct bpf_binary_header * 495 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 496 unsigned int alignment, 497 bpf_jit_fill_hole_t bpf_fill_ill_insns) 498 { 499 struct bpf_binary_header *hdr; 500 unsigned int size, hole, start; 501 502 /* Most of BPF filters are really small, but if some of them 503 * fill a page, allow at least 128 extra bytes to insert a 504 * random section of illegal instructions. 505 */ 506 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE); 507 hdr = module_alloc(size); 508 if (hdr == NULL) 509 return NULL; 510 511 /* Fill space with illegal/arch-dep instructions. */ 512 bpf_fill_ill_insns(hdr, size); 513 514 hdr->pages = size / PAGE_SIZE; 515 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)), 516 PAGE_SIZE - sizeof(*hdr)); 517 start = (get_random_int() % hole) & ~(alignment - 1); 518 519 /* Leave a random number of instructions before BPF code. */ 520 *image_ptr = &hdr->image[start]; 521 522 return hdr; 523 } 524 525 void bpf_jit_binary_free(struct bpf_binary_header *hdr) 526 { 527 module_memfree(hdr); 528 } 529 530 /* This symbol is only overridden by archs that have different 531 * requirements than the usual eBPF JITs, f.e. when they only 532 * implement cBPF JIT, do not set images read-only, etc. 533 */ 534 void __weak bpf_jit_free(struct bpf_prog *fp) 535 { 536 if (fp->jited) { 537 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp); 538 539 bpf_jit_binary_unlock_ro(hdr); 540 bpf_jit_binary_free(hdr); 541 542 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp)); 543 } 544 545 bpf_prog_unlock_free(fp); 546 } 547 548 int bpf_jit_harden __read_mostly; 549 550 static int bpf_jit_blind_insn(const struct bpf_insn *from, 551 const struct bpf_insn *aux, 552 struct bpf_insn *to_buff) 553 { 554 struct bpf_insn *to = to_buff; 555 u32 imm_rnd = get_random_int(); 556 s16 off; 557 558 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG); 559 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG); 560 561 if (from->imm == 0 && 562 (from->code == (BPF_ALU | BPF_MOV | BPF_K) || 563 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) { 564 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg); 565 goto out; 566 } 567 568 switch (from->code) { 569 case BPF_ALU | BPF_ADD | BPF_K: 570 case BPF_ALU | BPF_SUB | BPF_K: 571 case BPF_ALU | BPF_AND | BPF_K: 572 case BPF_ALU | BPF_OR | BPF_K: 573 case BPF_ALU | BPF_XOR | BPF_K: 574 case BPF_ALU | BPF_MUL | BPF_K: 575 case BPF_ALU | BPF_MOV | BPF_K: 576 case BPF_ALU | BPF_DIV | BPF_K: 577 case BPF_ALU | BPF_MOD | BPF_K: 578 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 579 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 580 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX); 581 break; 582 583 case BPF_ALU64 | BPF_ADD | BPF_K: 584 case BPF_ALU64 | BPF_SUB | BPF_K: 585 case BPF_ALU64 | BPF_AND | BPF_K: 586 case BPF_ALU64 | BPF_OR | BPF_K: 587 case BPF_ALU64 | BPF_XOR | BPF_K: 588 case BPF_ALU64 | BPF_MUL | BPF_K: 589 case BPF_ALU64 | BPF_MOV | BPF_K: 590 case BPF_ALU64 | BPF_DIV | BPF_K: 591 case BPF_ALU64 | BPF_MOD | BPF_K: 592 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 593 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 594 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX); 595 break; 596 597 case BPF_JMP | BPF_JEQ | BPF_K: 598 case BPF_JMP | BPF_JNE | BPF_K: 599 case BPF_JMP | BPF_JGT | BPF_K: 600 case BPF_JMP | BPF_JGE | BPF_K: 601 case BPF_JMP | BPF_JSGT | BPF_K: 602 case BPF_JMP | BPF_JSGE | BPF_K: 603 case BPF_JMP | BPF_JSET | BPF_K: 604 /* Accommodate for extra offset in case of a backjump. */ 605 off = from->off; 606 if (off < 0) 607 off -= 2; 608 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 609 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 610 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off); 611 break; 612 613 case BPF_LD | BPF_ABS | BPF_W: 614 case BPF_LD | BPF_ABS | BPF_H: 615 case BPF_LD | BPF_ABS | BPF_B: 616 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 617 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 618 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0); 619 break; 620 621 case BPF_LD | BPF_IND | BPF_W: 622 case BPF_LD | BPF_IND | BPF_H: 623 case BPF_LD | BPF_IND | BPF_B: 624 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 625 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 626 *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg); 627 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0); 628 break; 629 630 case BPF_LD | BPF_IMM | BPF_DW: 631 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm); 632 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 633 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 634 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX); 635 break; 636 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */ 637 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm); 638 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 639 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX); 640 break; 641 642 case BPF_ST | BPF_MEM | BPF_DW: 643 case BPF_ST | BPF_MEM | BPF_W: 644 case BPF_ST | BPF_MEM | BPF_H: 645 case BPF_ST | BPF_MEM | BPF_B: 646 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); 647 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); 648 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off); 649 break; 650 } 651 out: 652 return to - to_buff; 653 } 654 655 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other, 656 gfp_t gfp_extra_flags) 657 { 658 gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO | 659 gfp_extra_flags; 660 struct bpf_prog *fp; 661 662 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL); 663 if (fp != NULL) { 664 kmemcheck_annotate_bitfield(fp, meta); 665 666 /* aux->prog still points to the fp_other one, so 667 * when promoting the clone to the real program, 668 * this still needs to be adapted. 669 */ 670 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE); 671 } 672 673 return fp; 674 } 675 676 static void bpf_prog_clone_free(struct bpf_prog *fp) 677 { 678 /* aux was stolen by the other clone, so we cannot free 679 * it from this path! It will be freed eventually by the 680 * other program on release. 681 * 682 * At this point, we don't need a deferred release since 683 * clone is guaranteed to not be locked. 684 */ 685 fp->aux = NULL; 686 __bpf_prog_free(fp); 687 } 688 689 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other) 690 { 691 /* We have to repoint aux->prog to self, as we don't 692 * know whether fp here is the clone or the original. 693 */ 694 fp->aux->prog = fp; 695 bpf_prog_clone_free(fp_other); 696 } 697 698 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog) 699 { 700 struct bpf_insn insn_buff[16], aux[2]; 701 struct bpf_prog *clone, *tmp; 702 int insn_delta, insn_cnt; 703 struct bpf_insn *insn; 704 int i, rewritten; 705 706 if (!bpf_jit_blinding_enabled()) 707 return prog; 708 709 clone = bpf_prog_clone_create(prog, GFP_USER); 710 if (!clone) 711 return ERR_PTR(-ENOMEM); 712 713 insn_cnt = clone->len; 714 insn = clone->insnsi; 715 716 for (i = 0; i < insn_cnt; i++, insn++) { 717 /* We temporarily need to hold the original ld64 insn 718 * so that we can still access the first part in the 719 * second blinding run. 720 */ 721 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) && 722 insn[1].code == 0) 723 memcpy(aux, insn, sizeof(aux)); 724 725 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff); 726 if (!rewritten) 727 continue; 728 729 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten); 730 if (!tmp) { 731 /* Patching may have repointed aux->prog during 732 * realloc from the original one, so we need to 733 * fix it up here on error. 734 */ 735 bpf_jit_prog_release_other(prog, clone); 736 return ERR_PTR(-ENOMEM); 737 } 738 739 clone = tmp; 740 insn_delta = rewritten - 1; 741 742 /* Walk new program and skip insns we just inserted. */ 743 insn = clone->insnsi + i + insn_delta; 744 insn_cnt += insn_delta; 745 i += insn_delta; 746 } 747 748 return clone; 749 } 750 #endif /* CONFIG_BPF_JIT */ 751 752 /* Base function for offset calculation. Needs to go into .text section, 753 * therefore keeping it non-static as well; will also be used by JITs 754 * anyway later on, so do not let the compiler omit it. 755 */ 756 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 757 { 758 return 0; 759 } 760 EXPORT_SYMBOL_GPL(__bpf_call_base); 761 762 /** 763 * __bpf_prog_run - run eBPF program on a given context 764 * @ctx: is the data we are operating on 765 * @insn: is the array of eBPF instructions 766 * 767 * Decode and execute eBPF instructions. 768 */ 769 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn) 770 { 771 u64 stack[MAX_BPF_STACK / sizeof(u64)]; 772 u64 regs[MAX_BPF_REG], tmp; 773 static const void *jumptable[256] = { 774 [0 ... 255] = &&default_label, 775 /* Now overwrite non-defaults ... */ 776 /* 32 bit ALU operations */ 777 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X, 778 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K, 779 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X, 780 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K, 781 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X, 782 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K, 783 [BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X, 784 [BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K, 785 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X, 786 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K, 787 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X, 788 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K, 789 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X, 790 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K, 791 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X, 792 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K, 793 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X, 794 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K, 795 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X, 796 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K, 797 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X, 798 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K, 799 [BPF_ALU | BPF_NEG] = &&ALU_NEG, 800 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE, 801 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE, 802 /* 64 bit ALU operations */ 803 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X, 804 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K, 805 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X, 806 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K, 807 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X, 808 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K, 809 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X, 810 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K, 811 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X, 812 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K, 813 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X, 814 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K, 815 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X, 816 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K, 817 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X, 818 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K, 819 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X, 820 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K, 821 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X, 822 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K, 823 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X, 824 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K, 825 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X, 826 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K, 827 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG, 828 /* Call instruction */ 829 [BPF_JMP | BPF_CALL] = &&JMP_CALL, 830 [BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL, 831 /* Jumps */ 832 [BPF_JMP | BPF_JA] = &&JMP_JA, 833 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X, 834 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K, 835 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X, 836 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K, 837 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X, 838 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K, 839 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X, 840 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K, 841 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X, 842 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K, 843 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X, 844 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K, 845 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X, 846 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K, 847 /* Program return */ 848 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT, 849 /* Store instructions */ 850 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B, 851 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H, 852 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W, 853 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW, 854 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W, 855 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW, 856 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B, 857 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H, 858 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W, 859 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW, 860 /* Load instructions */ 861 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B, 862 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H, 863 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W, 864 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW, 865 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W, 866 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H, 867 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B, 868 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W, 869 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H, 870 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B, 871 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW, 872 }; 873 u32 tail_call_cnt = 0; 874 void *ptr; 875 int off; 876 877 #define CONT ({ insn++; goto select_insn; }) 878 #define CONT_JMP ({ insn++; goto select_insn; }) 879 880 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; 881 ARG1 = (u64) (unsigned long) ctx; 882 883 select_insn: 884 goto *jumptable[insn->code]; 885 886 /* ALU */ 887 #define ALU(OPCODE, OP) \ 888 ALU64_##OPCODE##_X: \ 889 DST = DST OP SRC; \ 890 CONT; \ 891 ALU_##OPCODE##_X: \ 892 DST = (u32) DST OP (u32) SRC; \ 893 CONT; \ 894 ALU64_##OPCODE##_K: \ 895 DST = DST OP IMM; \ 896 CONT; \ 897 ALU_##OPCODE##_K: \ 898 DST = (u32) DST OP (u32) IMM; \ 899 CONT; 900 901 ALU(ADD, +) 902 ALU(SUB, -) 903 ALU(AND, &) 904 ALU(OR, |) 905 ALU(LSH, <<) 906 ALU(RSH, >>) 907 ALU(XOR, ^) 908 ALU(MUL, *) 909 #undef ALU 910 ALU_NEG: 911 DST = (u32) -DST; 912 CONT; 913 ALU64_NEG: 914 DST = -DST; 915 CONT; 916 ALU_MOV_X: 917 DST = (u32) SRC; 918 CONT; 919 ALU_MOV_K: 920 DST = (u32) IMM; 921 CONT; 922 ALU64_MOV_X: 923 DST = SRC; 924 CONT; 925 ALU64_MOV_K: 926 DST = IMM; 927 CONT; 928 LD_IMM_DW: 929 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32; 930 insn++; 931 CONT; 932 ALU64_ARSH_X: 933 (*(s64 *) &DST) >>= SRC; 934 CONT; 935 ALU64_ARSH_K: 936 (*(s64 *) &DST) >>= IMM; 937 CONT; 938 ALU64_MOD_X: 939 if (unlikely(SRC == 0)) 940 return 0; 941 div64_u64_rem(DST, SRC, &tmp); 942 DST = tmp; 943 CONT; 944 ALU_MOD_X: 945 if (unlikely(SRC == 0)) 946 return 0; 947 tmp = (u32) DST; 948 DST = do_div(tmp, (u32) SRC); 949 CONT; 950 ALU64_MOD_K: 951 div64_u64_rem(DST, IMM, &tmp); 952 DST = tmp; 953 CONT; 954 ALU_MOD_K: 955 tmp = (u32) DST; 956 DST = do_div(tmp, (u32) IMM); 957 CONT; 958 ALU64_DIV_X: 959 if (unlikely(SRC == 0)) 960 return 0; 961 DST = div64_u64(DST, SRC); 962 CONT; 963 ALU_DIV_X: 964 if (unlikely(SRC == 0)) 965 return 0; 966 tmp = (u32) DST; 967 do_div(tmp, (u32) SRC); 968 DST = (u32) tmp; 969 CONT; 970 ALU64_DIV_K: 971 DST = div64_u64(DST, IMM); 972 CONT; 973 ALU_DIV_K: 974 tmp = (u32) DST; 975 do_div(tmp, (u32) IMM); 976 DST = (u32) tmp; 977 CONT; 978 ALU_END_TO_BE: 979 switch (IMM) { 980 case 16: 981 DST = (__force u16) cpu_to_be16(DST); 982 break; 983 case 32: 984 DST = (__force u32) cpu_to_be32(DST); 985 break; 986 case 64: 987 DST = (__force u64) cpu_to_be64(DST); 988 break; 989 } 990 CONT; 991 ALU_END_TO_LE: 992 switch (IMM) { 993 case 16: 994 DST = (__force u16) cpu_to_le16(DST); 995 break; 996 case 32: 997 DST = (__force u32) cpu_to_le32(DST); 998 break; 999 case 64: 1000 DST = (__force u64) cpu_to_le64(DST); 1001 break; 1002 } 1003 CONT; 1004 1005 /* CALL */ 1006 JMP_CALL: 1007 /* Function call scratches BPF_R1-BPF_R5 registers, 1008 * preserves BPF_R6-BPF_R9, and stores return value 1009 * into BPF_R0. 1010 */ 1011 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3, 1012 BPF_R4, BPF_R5); 1013 CONT; 1014 1015 JMP_TAIL_CALL: { 1016 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2; 1017 struct bpf_array *array = container_of(map, struct bpf_array, map); 1018 struct bpf_prog *prog; 1019 u64 index = BPF_R3; 1020 1021 if (unlikely(index >= array->map.max_entries)) 1022 goto out; 1023 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT)) 1024 goto out; 1025 1026 tail_call_cnt++; 1027 1028 prog = READ_ONCE(array->ptrs[index]); 1029 if (!prog) 1030 goto out; 1031 1032 /* ARG1 at this point is guaranteed to point to CTX from 1033 * the verifier side due to the fact that the tail call is 1034 * handeled like a helper, that is, bpf_tail_call_proto, 1035 * where arg1_type is ARG_PTR_TO_CTX. 1036 */ 1037 insn = prog->insnsi; 1038 goto select_insn; 1039 out: 1040 CONT; 1041 } 1042 /* JMP */ 1043 JMP_JA: 1044 insn += insn->off; 1045 CONT; 1046 JMP_JEQ_X: 1047 if (DST == SRC) { 1048 insn += insn->off; 1049 CONT_JMP; 1050 } 1051 CONT; 1052 JMP_JEQ_K: 1053 if (DST == IMM) { 1054 insn += insn->off; 1055 CONT_JMP; 1056 } 1057 CONT; 1058 JMP_JNE_X: 1059 if (DST != SRC) { 1060 insn += insn->off; 1061 CONT_JMP; 1062 } 1063 CONT; 1064 JMP_JNE_K: 1065 if (DST != IMM) { 1066 insn += insn->off; 1067 CONT_JMP; 1068 } 1069 CONT; 1070 JMP_JGT_X: 1071 if (DST > SRC) { 1072 insn += insn->off; 1073 CONT_JMP; 1074 } 1075 CONT; 1076 JMP_JGT_K: 1077 if (DST > IMM) { 1078 insn += insn->off; 1079 CONT_JMP; 1080 } 1081 CONT; 1082 JMP_JGE_X: 1083 if (DST >= SRC) { 1084 insn += insn->off; 1085 CONT_JMP; 1086 } 1087 CONT; 1088 JMP_JGE_K: 1089 if (DST >= IMM) { 1090 insn += insn->off; 1091 CONT_JMP; 1092 } 1093 CONT; 1094 JMP_JSGT_X: 1095 if (((s64) DST) > ((s64) SRC)) { 1096 insn += insn->off; 1097 CONT_JMP; 1098 } 1099 CONT; 1100 JMP_JSGT_K: 1101 if (((s64) DST) > ((s64) IMM)) { 1102 insn += insn->off; 1103 CONT_JMP; 1104 } 1105 CONT; 1106 JMP_JSGE_X: 1107 if (((s64) DST) >= ((s64) SRC)) { 1108 insn += insn->off; 1109 CONT_JMP; 1110 } 1111 CONT; 1112 JMP_JSGE_K: 1113 if (((s64) DST) >= ((s64) IMM)) { 1114 insn += insn->off; 1115 CONT_JMP; 1116 } 1117 CONT; 1118 JMP_JSET_X: 1119 if (DST & SRC) { 1120 insn += insn->off; 1121 CONT_JMP; 1122 } 1123 CONT; 1124 JMP_JSET_K: 1125 if (DST & IMM) { 1126 insn += insn->off; 1127 CONT_JMP; 1128 } 1129 CONT; 1130 JMP_EXIT: 1131 return BPF_R0; 1132 1133 /* STX and ST and LDX*/ 1134 #define LDST(SIZEOP, SIZE) \ 1135 STX_MEM_##SIZEOP: \ 1136 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \ 1137 CONT; \ 1138 ST_MEM_##SIZEOP: \ 1139 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \ 1140 CONT; \ 1141 LDX_MEM_##SIZEOP: \ 1142 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \ 1143 CONT; 1144 1145 LDST(B, u8) 1146 LDST(H, u16) 1147 LDST(W, u32) 1148 LDST(DW, u64) 1149 #undef LDST 1150 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */ 1151 atomic_add((u32) SRC, (atomic_t *)(unsigned long) 1152 (DST + insn->off)); 1153 CONT; 1154 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */ 1155 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long) 1156 (DST + insn->off)); 1157 CONT; 1158 LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */ 1159 off = IMM; 1160 load_word: 1161 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only 1162 * appearing in the programs where ctx == skb 1163 * (see may_access_skb() in the verifier). All programs 1164 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6, 1165 * bpf_convert_filter() saves it in BPF_R6, internal BPF 1166 * verifier will check that BPF_R6 == ctx. 1167 * 1168 * BPF_ABS and BPF_IND are wrappers of function calls, 1169 * so they scratch BPF_R1-BPF_R5 registers, preserve 1170 * BPF_R6-BPF_R9, and store return value into BPF_R0. 1171 * 1172 * Implicit input: 1173 * ctx == skb == BPF_R6 == CTX 1174 * 1175 * Explicit input: 1176 * SRC == any register 1177 * IMM == 32-bit immediate 1178 * 1179 * Output: 1180 * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness 1181 */ 1182 1183 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp); 1184 if (likely(ptr != NULL)) { 1185 BPF_R0 = get_unaligned_be32(ptr); 1186 CONT; 1187 } 1188 1189 return 0; 1190 LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */ 1191 off = IMM; 1192 load_half: 1193 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp); 1194 if (likely(ptr != NULL)) { 1195 BPF_R0 = get_unaligned_be16(ptr); 1196 CONT; 1197 } 1198 1199 return 0; 1200 LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */ 1201 off = IMM; 1202 load_byte: 1203 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp); 1204 if (likely(ptr != NULL)) { 1205 BPF_R0 = *(u8 *)ptr; 1206 CONT; 1207 } 1208 1209 return 0; 1210 LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */ 1211 off = IMM + SRC; 1212 goto load_word; 1213 LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */ 1214 off = IMM + SRC; 1215 goto load_half; 1216 LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */ 1217 off = IMM + SRC; 1218 goto load_byte; 1219 1220 default_label: 1221 /* If we ever reach this, we have a bug somewhere. */ 1222 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code); 1223 return 0; 1224 } 1225 STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */ 1226 1227 bool bpf_prog_array_compatible(struct bpf_array *array, 1228 const struct bpf_prog *fp) 1229 { 1230 if (!array->owner_prog_type) { 1231 /* There's no owner yet where we could check for 1232 * compatibility. 1233 */ 1234 array->owner_prog_type = fp->type; 1235 array->owner_jited = fp->jited; 1236 1237 return true; 1238 } 1239 1240 return array->owner_prog_type == fp->type && 1241 array->owner_jited == fp->jited; 1242 } 1243 1244 static int bpf_check_tail_call(const struct bpf_prog *fp) 1245 { 1246 struct bpf_prog_aux *aux = fp->aux; 1247 int i; 1248 1249 for (i = 0; i < aux->used_map_cnt; i++) { 1250 struct bpf_map *map = aux->used_maps[i]; 1251 struct bpf_array *array; 1252 1253 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 1254 continue; 1255 1256 array = container_of(map, struct bpf_array, map); 1257 if (!bpf_prog_array_compatible(array, fp)) 1258 return -EINVAL; 1259 } 1260 1261 return 0; 1262 } 1263 1264 /** 1265 * bpf_prog_select_runtime - select exec runtime for BPF program 1266 * @fp: bpf_prog populated with internal BPF program 1267 * @err: pointer to error variable 1268 * 1269 * Try to JIT eBPF program, if JIT is not available, use interpreter. 1270 * The BPF program will be executed via BPF_PROG_RUN() macro. 1271 */ 1272 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err) 1273 { 1274 fp->bpf_func = (void *) __bpf_prog_run; 1275 1276 /* eBPF JITs can rewrite the program in case constant 1277 * blinding is active. However, in case of error during 1278 * blinding, bpf_int_jit_compile() must always return a 1279 * valid program, which in this case would simply not 1280 * be JITed, but falls back to the interpreter. 1281 */ 1282 fp = bpf_int_jit_compile(fp); 1283 bpf_prog_lock_ro(fp); 1284 1285 /* The tail call compatibility check can only be done at 1286 * this late stage as we need to determine, if we deal 1287 * with JITed or non JITed program concatenations and not 1288 * all eBPF JITs might immediately support all features. 1289 */ 1290 *err = bpf_check_tail_call(fp); 1291 1292 return fp; 1293 } 1294 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime); 1295 1296 static void bpf_prog_free_deferred(struct work_struct *work) 1297 { 1298 struct bpf_prog_aux *aux; 1299 1300 aux = container_of(work, struct bpf_prog_aux, work); 1301 bpf_jit_free(aux->prog); 1302 } 1303 1304 /* Free internal BPF program */ 1305 void bpf_prog_free(struct bpf_prog *fp) 1306 { 1307 struct bpf_prog_aux *aux = fp->aux; 1308 1309 INIT_WORK(&aux->work, bpf_prog_free_deferred); 1310 schedule_work(&aux->work); 1311 } 1312 EXPORT_SYMBOL_GPL(bpf_prog_free); 1313 1314 /* RNG for unpriviledged user space with separated state from prandom_u32(). */ 1315 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state); 1316 1317 void bpf_user_rnd_init_once(void) 1318 { 1319 prandom_init_once(&bpf_user_rnd_state); 1320 } 1321 1322 BPF_CALL_0(bpf_user_rnd_u32) 1323 { 1324 /* Should someone ever have the rather unwise idea to use some 1325 * of the registers passed into this function, then note that 1326 * this function is called from native eBPF and classic-to-eBPF 1327 * transformations. Register assignments from both sides are 1328 * different, f.e. classic always sets fn(ctx, A, X) here. 1329 */ 1330 struct rnd_state *state; 1331 u32 res; 1332 1333 state = &get_cpu_var(bpf_user_rnd_state); 1334 res = prandom_u32_state(state); 1335 put_cpu_var(bpf_user_rnd_state); 1336 1337 return res; 1338 } 1339 1340 /* Weak definitions of helper functions in case we don't have bpf syscall. */ 1341 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak; 1342 const struct bpf_func_proto bpf_map_update_elem_proto __weak; 1343 const struct bpf_func_proto bpf_map_delete_elem_proto __weak; 1344 1345 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak; 1346 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak; 1347 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak; 1348 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak; 1349 1350 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak; 1351 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak; 1352 const struct bpf_func_proto bpf_get_current_comm_proto __weak; 1353 1354 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void) 1355 { 1356 return NULL; 1357 } 1358 1359 u64 __weak 1360 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1361 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) 1362 { 1363 return -ENOTSUPP; 1364 } 1365 1366 /* Always built-in helper functions. */ 1367 const struct bpf_func_proto bpf_tail_call_proto = { 1368 .func = NULL, 1369 .gpl_only = false, 1370 .ret_type = RET_VOID, 1371 .arg1_type = ARG_PTR_TO_CTX, 1372 .arg2_type = ARG_CONST_MAP_PTR, 1373 .arg3_type = ARG_ANYTHING, 1374 }; 1375 1376 /* Stub for JITs that only support cBPF. eBPF programs are interpreted. 1377 * It is encouraged to implement bpf_int_jit_compile() instead, so that 1378 * eBPF and implicitly also cBPF can get JITed! 1379 */ 1380 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog) 1381 { 1382 return prog; 1383 } 1384 1385 /* Stub for JITs that support eBPF. All cBPF code gets transformed into 1386 * eBPF by the kernel and is later compiled by bpf_int_jit_compile(). 1387 */ 1388 void __weak bpf_jit_compile(struct bpf_prog *prog) 1389 { 1390 } 1391 1392 bool __weak bpf_helper_changes_pkt_data(void *func) 1393 { 1394 return false; 1395 } 1396 1397 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call 1398 * skb_copy_bits(), so provide a weak definition of it for NET-less config. 1399 */ 1400 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to, 1401 int len) 1402 { 1403 return -EFAULT; 1404 } 1405 1406 /* All definitions of tracepoints related to BPF. */ 1407 #define CREATE_TRACE_POINTS 1408 #include <linux/bpf_trace.h> 1409 1410 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception); 1411 1412 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type); 1413 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu); 1414