xref: /openbmc/linux/kernel/bpf/core.c (revision 0b26ca68)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <asm/unaligned.h>
36 
37 /* Registers */
38 #define BPF_R0	regs[BPF_REG_0]
39 #define BPF_R1	regs[BPF_REG_1]
40 #define BPF_R2	regs[BPF_REG_2]
41 #define BPF_R3	regs[BPF_REG_3]
42 #define BPF_R4	regs[BPF_REG_4]
43 #define BPF_R5	regs[BPF_REG_5]
44 #define BPF_R6	regs[BPF_REG_6]
45 #define BPF_R7	regs[BPF_REG_7]
46 #define BPF_R8	regs[BPF_REG_8]
47 #define BPF_R9	regs[BPF_REG_9]
48 #define BPF_R10	regs[BPF_REG_10]
49 
50 /* Named registers */
51 #define DST	regs[insn->dst_reg]
52 #define SRC	regs[insn->src_reg]
53 #define FP	regs[BPF_REG_FP]
54 #define AX	regs[BPF_REG_AX]
55 #define ARG1	regs[BPF_REG_ARG1]
56 #define CTX	regs[BPF_REG_CTX]
57 #define IMM	insn->imm
58 
59 /* No hurry in this branch
60  *
61  * Exported for the bpf jit load helper.
62  */
63 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
64 {
65 	u8 *ptr = NULL;
66 
67 	if (k >= SKF_NET_OFF)
68 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
69 	else if (k >= SKF_LL_OFF)
70 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
71 
72 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
73 		return ptr;
74 
75 	return NULL;
76 }
77 
78 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
79 {
80 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
81 	struct bpf_prog_aux *aux;
82 	struct bpf_prog *fp;
83 
84 	size = round_up(size, PAGE_SIZE);
85 	fp = __vmalloc(size, gfp_flags);
86 	if (fp == NULL)
87 		return NULL;
88 
89 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
90 	if (aux == NULL) {
91 		vfree(fp);
92 		return NULL;
93 	}
94 
95 	fp->pages = size / PAGE_SIZE;
96 	fp->aux = aux;
97 	fp->aux->prog = fp;
98 	fp->jit_requested = ebpf_jit_enabled();
99 
100 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
101 	mutex_init(&fp->aux->used_maps_mutex);
102 	mutex_init(&fp->aux->dst_mutex);
103 
104 	return fp;
105 }
106 
107 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
108 {
109 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
110 	struct bpf_prog *prog;
111 	int cpu;
112 
113 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
114 	if (!prog)
115 		return NULL;
116 
117 	prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
118 	if (!prog->aux->stats) {
119 		kfree(prog->aux);
120 		vfree(prog);
121 		return NULL;
122 	}
123 
124 	for_each_possible_cpu(cpu) {
125 		struct bpf_prog_stats *pstats;
126 
127 		pstats = per_cpu_ptr(prog->aux->stats, cpu);
128 		u64_stats_init(&pstats->syncp);
129 	}
130 	return prog;
131 }
132 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
133 
134 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
135 {
136 	if (!prog->aux->nr_linfo || !prog->jit_requested)
137 		return 0;
138 
139 	prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
140 					 sizeof(*prog->aux->jited_linfo),
141 					 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
142 	if (!prog->aux->jited_linfo)
143 		return -ENOMEM;
144 
145 	return 0;
146 }
147 
148 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
149 {
150 	kfree(prog->aux->jited_linfo);
151 	prog->aux->jited_linfo = NULL;
152 }
153 
154 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
155 {
156 	if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
157 		bpf_prog_free_jited_linfo(prog);
158 }
159 
160 /* The jit engine is responsible to provide an array
161  * for insn_off to the jited_off mapping (insn_to_jit_off).
162  *
163  * The idx to this array is the insn_off.  Hence, the insn_off
164  * here is relative to the prog itself instead of the main prog.
165  * This array has one entry for each xlated bpf insn.
166  *
167  * jited_off is the byte off to the last byte of the jited insn.
168  *
169  * Hence, with
170  * insn_start:
171  *      The first bpf insn off of the prog.  The insn off
172  *      here is relative to the main prog.
173  *      e.g. if prog is a subprog, insn_start > 0
174  * linfo_idx:
175  *      The prog's idx to prog->aux->linfo and jited_linfo
176  *
177  * jited_linfo[linfo_idx] = prog->bpf_func
178  *
179  * For i > linfo_idx,
180  *
181  * jited_linfo[i] = prog->bpf_func +
182  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
183  */
184 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
185 			       const u32 *insn_to_jit_off)
186 {
187 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
188 	const struct bpf_line_info *linfo;
189 	void **jited_linfo;
190 
191 	if (!prog->aux->jited_linfo)
192 		/* Userspace did not provide linfo */
193 		return;
194 
195 	linfo_idx = prog->aux->linfo_idx;
196 	linfo = &prog->aux->linfo[linfo_idx];
197 	insn_start = linfo[0].insn_off;
198 	insn_end = insn_start + prog->len;
199 
200 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
201 	jited_linfo[0] = prog->bpf_func;
202 
203 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
204 
205 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
206 		/* The verifier ensures that linfo[i].insn_off is
207 		 * strictly increasing
208 		 */
209 		jited_linfo[i] = prog->bpf_func +
210 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
211 }
212 
213 void bpf_prog_free_linfo(struct bpf_prog *prog)
214 {
215 	bpf_prog_free_jited_linfo(prog);
216 	kvfree(prog->aux->linfo);
217 }
218 
219 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
220 				  gfp_t gfp_extra_flags)
221 {
222 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
223 	struct bpf_prog *fp;
224 	u32 pages;
225 
226 	size = round_up(size, PAGE_SIZE);
227 	pages = size / PAGE_SIZE;
228 	if (pages <= fp_old->pages)
229 		return fp_old;
230 
231 	fp = __vmalloc(size, gfp_flags);
232 	if (fp) {
233 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
234 		fp->pages = pages;
235 		fp->aux->prog = fp;
236 
237 		/* We keep fp->aux from fp_old around in the new
238 		 * reallocated structure.
239 		 */
240 		fp_old->aux = NULL;
241 		__bpf_prog_free(fp_old);
242 	}
243 
244 	return fp;
245 }
246 
247 void __bpf_prog_free(struct bpf_prog *fp)
248 {
249 	if (fp->aux) {
250 		mutex_destroy(&fp->aux->used_maps_mutex);
251 		mutex_destroy(&fp->aux->dst_mutex);
252 		free_percpu(fp->aux->stats);
253 		kfree(fp->aux->poke_tab);
254 		kfree(fp->aux);
255 	}
256 	vfree(fp);
257 }
258 
259 int bpf_prog_calc_tag(struct bpf_prog *fp)
260 {
261 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
262 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
263 	u32 digest[SHA1_DIGEST_WORDS];
264 	u32 ws[SHA1_WORKSPACE_WORDS];
265 	u32 i, bsize, psize, blocks;
266 	struct bpf_insn *dst;
267 	bool was_ld_map;
268 	u8 *raw, *todo;
269 	__be32 *result;
270 	__be64 *bits;
271 
272 	raw = vmalloc(raw_size);
273 	if (!raw)
274 		return -ENOMEM;
275 
276 	sha1_init(digest);
277 	memset(ws, 0, sizeof(ws));
278 
279 	/* We need to take out the map fd for the digest calculation
280 	 * since they are unstable from user space side.
281 	 */
282 	dst = (void *)raw;
283 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
284 		dst[i] = fp->insnsi[i];
285 		if (!was_ld_map &&
286 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
287 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
288 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
289 			was_ld_map = true;
290 			dst[i].imm = 0;
291 		} else if (was_ld_map &&
292 			   dst[i].code == 0 &&
293 			   dst[i].dst_reg == 0 &&
294 			   dst[i].src_reg == 0 &&
295 			   dst[i].off == 0) {
296 			was_ld_map = false;
297 			dst[i].imm = 0;
298 		} else {
299 			was_ld_map = false;
300 		}
301 	}
302 
303 	psize = bpf_prog_insn_size(fp);
304 	memset(&raw[psize], 0, raw_size - psize);
305 	raw[psize++] = 0x80;
306 
307 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
308 	blocks = bsize / SHA1_BLOCK_SIZE;
309 	todo   = raw;
310 	if (bsize - psize >= sizeof(__be64)) {
311 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
312 	} else {
313 		bits = (__be64 *)(todo + bsize + bits_offset);
314 		blocks++;
315 	}
316 	*bits = cpu_to_be64((psize - 1) << 3);
317 
318 	while (blocks--) {
319 		sha1_transform(digest, todo, ws);
320 		todo += SHA1_BLOCK_SIZE;
321 	}
322 
323 	result = (__force __be32 *)digest;
324 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
325 		result[i] = cpu_to_be32(digest[i]);
326 	memcpy(fp->tag, result, sizeof(fp->tag));
327 
328 	vfree(raw);
329 	return 0;
330 }
331 
332 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
333 				s32 end_new, s32 curr, const bool probe_pass)
334 {
335 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
336 	s32 delta = end_new - end_old;
337 	s64 imm = insn->imm;
338 
339 	if (curr < pos && curr + imm + 1 >= end_old)
340 		imm += delta;
341 	else if (curr >= end_new && curr + imm + 1 < end_new)
342 		imm -= delta;
343 	if (imm < imm_min || imm > imm_max)
344 		return -ERANGE;
345 	if (!probe_pass)
346 		insn->imm = imm;
347 	return 0;
348 }
349 
350 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
351 				s32 end_new, s32 curr, const bool probe_pass)
352 {
353 	const s32 off_min = S16_MIN, off_max = S16_MAX;
354 	s32 delta = end_new - end_old;
355 	s32 off = insn->off;
356 
357 	if (curr < pos && curr + off + 1 >= end_old)
358 		off += delta;
359 	else if (curr >= end_new && curr + off + 1 < end_new)
360 		off -= delta;
361 	if (off < off_min || off > off_max)
362 		return -ERANGE;
363 	if (!probe_pass)
364 		insn->off = off;
365 	return 0;
366 }
367 
368 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
369 			    s32 end_new, const bool probe_pass)
370 {
371 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
372 	struct bpf_insn *insn = prog->insnsi;
373 	int ret = 0;
374 
375 	for (i = 0; i < insn_cnt; i++, insn++) {
376 		u8 code;
377 
378 		/* In the probing pass we still operate on the original,
379 		 * unpatched image in order to check overflows before we
380 		 * do any other adjustments. Therefore skip the patchlet.
381 		 */
382 		if (probe_pass && i == pos) {
383 			i = end_new;
384 			insn = prog->insnsi + end_old;
385 		}
386 		code = insn->code;
387 		if ((BPF_CLASS(code) != BPF_JMP &&
388 		     BPF_CLASS(code) != BPF_JMP32) ||
389 		    BPF_OP(code) == BPF_EXIT)
390 			continue;
391 		/* Adjust offset of jmps if we cross patch boundaries. */
392 		if (BPF_OP(code) == BPF_CALL) {
393 			if (insn->src_reg != BPF_PSEUDO_CALL)
394 				continue;
395 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
396 						   end_new, i, probe_pass);
397 		} else {
398 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
399 						   end_new, i, probe_pass);
400 		}
401 		if (ret)
402 			break;
403 	}
404 
405 	return ret;
406 }
407 
408 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
409 {
410 	struct bpf_line_info *linfo;
411 	u32 i, nr_linfo;
412 
413 	nr_linfo = prog->aux->nr_linfo;
414 	if (!nr_linfo || !delta)
415 		return;
416 
417 	linfo = prog->aux->linfo;
418 
419 	for (i = 0; i < nr_linfo; i++)
420 		if (off < linfo[i].insn_off)
421 			break;
422 
423 	/* Push all off < linfo[i].insn_off by delta */
424 	for (; i < nr_linfo; i++)
425 		linfo[i].insn_off += delta;
426 }
427 
428 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
429 				       const struct bpf_insn *patch, u32 len)
430 {
431 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
432 	const u32 cnt_max = S16_MAX;
433 	struct bpf_prog *prog_adj;
434 	int err;
435 
436 	/* Since our patchlet doesn't expand the image, we're done. */
437 	if (insn_delta == 0) {
438 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
439 		return prog;
440 	}
441 
442 	insn_adj_cnt = prog->len + insn_delta;
443 
444 	/* Reject anything that would potentially let the insn->off
445 	 * target overflow when we have excessive program expansions.
446 	 * We need to probe here before we do any reallocation where
447 	 * we afterwards may not fail anymore.
448 	 */
449 	if (insn_adj_cnt > cnt_max &&
450 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
451 		return ERR_PTR(err);
452 
453 	/* Several new instructions need to be inserted. Make room
454 	 * for them. Likely, there's no need for a new allocation as
455 	 * last page could have large enough tailroom.
456 	 */
457 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
458 				    GFP_USER);
459 	if (!prog_adj)
460 		return ERR_PTR(-ENOMEM);
461 
462 	prog_adj->len = insn_adj_cnt;
463 
464 	/* Patching happens in 3 steps:
465 	 *
466 	 * 1) Move over tail of insnsi from next instruction onwards,
467 	 *    so we can patch the single target insn with one or more
468 	 *    new ones (patching is always from 1 to n insns, n > 0).
469 	 * 2) Inject new instructions at the target location.
470 	 * 3) Adjust branch offsets if necessary.
471 	 */
472 	insn_rest = insn_adj_cnt - off - len;
473 
474 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
475 		sizeof(*patch) * insn_rest);
476 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
477 
478 	/* We are guaranteed to not fail at this point, otherwise
479 	 * the ship has sailed to reverse to the original state. An
480 	 * overflow cannot happen at this point.
481 	 */
482 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
483 
484 	bpf_adj_linfo(prog_adj, off, insn_delta);
485 
486 	return prog_adj;
487 }
488 
489 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
490 {
491 	/* Branch offsets can't overflow when program is shrinking, no need
492 	 * to call bpf_adj_branches(..., true) here
493 	 */
494 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
495 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
496 	prog->len -= cnt;
497 
498 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
499 }
500 
501 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
502 {
503 	int i;
504 
505 	for (i = 0; i < fp->aux->func_cnt; i++)
506 		bpf_prog_kallsyms_del(fp->aux->func[i]);
507 }
508 
509 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
510 {
511 	bpf_prog_kallsyms_del_subprogs(fp);
512 	bpf_prog_kallsyms_del(fp);
513 }
514 
515 #ifdef CONFIG_BPF_JIT
516 /* All BPF JIT sysctl knobs here. */
517 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
518 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
519 int bpf_jit_harden   __read_mostly;
520 long bpf_jit_limit   __read_mostly;
521 
522 static void
523 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
524 {
525 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
526 	unsigned long addr = (unsigned long)hdr;
527 
528 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
529 
530 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
531 	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
532 }
533 
534 static void
535 bpf_prog_ksym_set_name(struct bpf_prog *prog)
536 {
537 	char *sym = prog->aux->ksym.name;
538 	const char *end = sym + KSYM_NAME_LEN;
539 	const struct btf_type *type;
540 	const char *func_name;
541 
542 	BUILD_BUG_ON(sizeof("bpf_prog_") +
543 		     sizeof(prog->tag) * 2 +
544 		     /* name has been null terminated.
545 		      * We should need +1 for the '_' preceding
546 		      * the name.  However, the null character
547 		      * is double counted between the name and the
548 		      * sizeof("bpf_prog_") above, so we omit
549 		      * the +1 here.
550 		      */
551 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
552 
553 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
554 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
555 
556 	/* prog->aux->name will be ignored if full btf name is available */
557 	if (prog->aux->func_info_cnt) {
558 		type = btf_type_by_id(prog->aux->btf,
559 				      prog->aux->func_info[prog->aux->func_idx].type_id);
560 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
561 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
562 		return;
563 	}
564 
565 	if (prog->aux->name[0])
566 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
567 	else
568 		*sym = 0;
569 }
570 
571 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
572 {
573 	return container_of(n, struct bpf_ksym, tnode)->start;
574 }
575 
576 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
577 					  struct latch_tree_node *b)
578 {
579 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
580 }
581 
582 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
583 {
584 	unsigned long val = (unsigned long)key;
585 	const struct bpf_ksym *ksym;
586 
587 	ksym = container_of(n, struct bpf_ksym, tnode);
588 
589 	if (val < ksym->start)
590 		return -1;
591 	if (val >= ksym->end)
592 		return  1;
593 
594 	return 0;
595 }
596 
597 static const struct latch_tree_ops bpf_tree_ops = {
598 	.less	= bpf_tree_less,
599 	.comp	= bpf_tree_comp,
600 };
601 
602 static DEFINE_SPINLOCK(bpf_lock);
603 static LIST_HEAD(bpf_kallsyms);
604 static struct latch_tree_root bpf_tree __cacheline_aligned;
605 
606 void bpf_ksym_add(struct bpf_ksym *ksym)
607 {
608 	spin_lock_bh(&bpf_lock);
609 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
610 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
611 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
612 	spin_unlock_bh(&bpf_lock);
613 }
614 
615 static void __bpf_ksym_del(struct bpf_ksym *ksym)
616 {
617 	if (list_empty(&ksym->lnode))
618 		return;
619 
620 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
621 	list_del_rcu(&ksym->lnode);
622 }
623 
624 void bpf_ksym_del(struct bpf_ksym *ksym)
625 {
626 	spin_lock_bh(&bpf_lock);
627 	__bpf_ksym_del(ksym);
628 	spin_unlock_bh(&bpf_lock);
629 }
630 
631 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
632 {
633 	return fp->jited && !bpf_prog_was_classic(fp);
634 }
635 
636 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
637 {
638 	return list_empty(&fp->aux->ksym.lnode) ||
639 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
640 }
641 
642 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
643 {
644 	if (!bpf_prog_kallsyms_candidate(fp) ||
645 	    !bpf_capable())
646 		return;
647 
648 	bpf_prog_ksym_set_addr(fp);
649 	bpf_prog_ksym_set_name(fp);
650 	fp->aux->ksym.prog = true;
651 
652 	bpf_ksym_add(&fp->aux->ksym);
653 }
654 
655 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
656 {
657 	if (!bpf_prog_kallsyms_candidate(fp))
658 		return;
659 
660 	bpf_ksym_del(&fp->aux->ksym);
661 }
662 
663 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
664 {
665 	struct latch_tree_node *n;
666 
667 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
668 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
669 }
670 
671 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
672 				 unsigned long *off, char *sym)
673 {
674 	struct bpf_ksym *ksym;
675 	char *ret = NULL;
676 
677 	rcu_read_lock();
678 	ksym = bpf_ksym_find(addr);
679 	if (ksym) {
680 		unsigned long symbol_start = ksym->start;
681 		unsigned long symbol_end = ksym->end;
682 
683 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
684 
685 		ret = sym;
686 		if (size)
687 			*size = symbol_end - symbol_start;
688 		if (off)
689 			*off  = addr - symbol_start;
690 	}
691 	rcu_read_unlock();
692 
693 	return ret;
694 }
695 
696 bool is_bpf_text_address(unsigned long addr)
697 {
698 	bool ret;
699 
700 	rcu_read_lock();
701 	ret = bpf_ksym_find(addr) != NULL;
702 	rcu_read_unlock();
703 
704 	return ret;
705 }
706 
707 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
708 {
709 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
710 
711 	return ksym && ksym->prog ?
712 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
713 	       NULL;
714 }
715 
716 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
717 {
718 	const struct exception_table_entry *e = NULL;
719 	struct bpf_prog *prog;
720 
721 	rcu_read_lock();
722 	prog = bpf_prog_ksym_find(addr);
723 	if (!prog)
724 		goto out;
725 	if (!prog->aux->num_exentries)
726 		goto out;
727 
728 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
729 out:
730 	rcu_read_unlock();
731 	return e;
732 }
733 
734 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
735 		    char *sym)
736 {
737 	struct bpf_ksym *ksym;
738 	unsigned int it = 0;
739 	int ret = -ERANGE;
740 
741 	if (!bpf_jit_kallsyms_enabled())
742 		return ret;
743 
744 	rcu_read_lock();
745 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
746 		if (it++ != symnum)
747 			continue;
748 
749 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
750 
751 		*value = ksym->start;
752 		*type  = BPF_SYM_ELF_TYPE;
753 
754 		ret = 0;
755 		break;
756 	}
757 	rcu_read_unlock();
758 
759 	return ret;
760 }
761 
762 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
763 				struct bpf_jit_poke_descriptor *poke)
764 {
765 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
766 	static const u32 poke_tab_max = 1024;
767 	u32 slot = prog->aux->size_poke_tab;
768 	u32 size = slot + 1;
769 
770 	if (size > poke_tab_max)
771 		return -ENOSPC;
772 	if (poke->tailcall_target || poke->tailcall_target_stable ||
773 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
774 		return -EINVAL;
775 
776 	switch (poke->reason) {
777 	case BPF_POKE_REASON_TAIL_CALL:
778 		if (!poke->tail_call.map)
779 			return -EINVAL;
780 		break;
781 	default:
782 		return -EINVAL;
783 	}
784 
785 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
786 	if (!tab)
787 		return -ENOMEM;
788 
789 	memcpy(&tab[slot], poke, sizeof(*poke));
790 	prog->aux->size_poke_tab = size;
791 	prog->aux->poke_tab = tab;
792 
793 	return slot;
794 }
795 
796 static atomic_long_t bpf_jit_current;
797 
798 /* Can be overridden by an arch's JIT compiler if it has a custom,
799  * dedicated BPF backend memory area, or if neither of the two
800  * below apply.
801  */
802 u64 __weak bpf_jit_alloc_exec_limit(void)
803 {
804 #if defined(MODULES_VADDR)
805 	return MODULES_END - MODULES_VADDR;
806 #else
807 	return VMALLOC_END - VMALLOC_START;
808 #endif
809 }
810 
811 static int __init bpf_jit_charge_init(void)
812 {
813 	/* Only used as heuristic here to derive limit. */
814 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
815 					    PAGE_SIZE), LONG_MAX);
816 	return 0;
817 }
818 pure_initcall(bpf_jit_charge_init);
819 
820 static int bpf_jit_charge_modmem(u32 pages)
821 {
822 	if (atomic_long_add_return(pages, &bpf_jit_current) >
823 	    (bpf_jit_limit >> PAGE_SHIFT)) {
824 		if (!capable(CAP_SYS_ADMIN)) {
825 			atomic_long_sub(pages, &bpf_jit_current);
826 			return -EPERM;
827 		}
828 	}
829 
830 	return 0;
831 }
832 
833 static void bpf_jit_uncharge_modmem(u32 pages)
834 {
835 	atomic_long_sub(pages, &bpf_jit_current);
836 }
837 
838 void *__weak bpf_jit_alloc_exec(unsigned long size)
839 {
840 	return module_alloc(size);
841 }
842 
843 void __weak bpf_jit_free_exec(void *addr)
844 {
845 	module_memfree(addr);
846 }
847 
848 struct bpf_binary_header *
849 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
850 		     unsigned int alignment,
851 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
852 {
853 	struct bpf_binary_header *hdr;
854 	u32 size, hole, start, pages;
855 
856 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
857 		     alignment > BPF_IMAGE_ALIGNMENT);
858 
859 	/* Most of BPF filters are really small, but if some of them
860 	 * fill a page, allow at least 128 extra bytes to insert a
861 	 * random section of illegal instructions.
862 	 */
863 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
864 	pages = size / PAGE_SIZE;
865 
866 	if (bpf_jit_charge_modmem(pages))
867 		return NULL;
868 	hdr = bpf_jit_alloc_exec(size);
869 	if (!hdr) {
870 		bpf_jit_uncharge_modmem(pages);
871 		return NULL;
872 	}
873 
874 	/* Fill space with illegal/arch-dep instructions. */
875 	bpf_fill_ill_insns(hdr, size);
876 
877 	hdr->pages = pages;
878 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
879 		     PAGE_SIZE - sizeof(*hdr));
880 	start = (get_random_int() % hole) & ~(alignment - 1);
881 
882 	/* Leave a random number of instructions before BPF code. */
883 	*image_ptr = &hdr->image[start];
884 
885 	return hdr;
886 }
887 
888 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
889 {
890 	u32 pages = hdr->pages;
891 
892 	bpf_jit_free_exec(hdr);
893 	bpf_jit_uncharge_modmem(pages);
894 }
895 
896 /* This symbol is only overridden by archs that have different
897  * requirements than the usual eBPF JITs, f.e. when they only
898  * implement cBPF JIT, do not set images read-only, etc.
899  */
900 void __weak bpf_jit_free(struct bpf_prog *fp)
901 {
902 	if (fp->jited) {
903 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
904 
905 		bpf_jit_binary_free(hdr);
906 
907 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
908 	}
909 
910 	bpf_prog_unlock_free(fp);
911 }
912 
913 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
914 			  const struct bpf_insn *insn, bool extra_pass,
915 			  u64 *func_addr, bool *func_addr_fixed)
916 {
917 	s16 off = insn->off;
918 	s32 imm = insn->imm;
919 	u8 *addr;
920 
921 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
922 	if (!*func_addr_fixed) {
923 		/* Place-holder address till the last pass has collected
924 		 * all addresses for JITed subprograms in which case we
925 		 * can pick them up from prog->aux.
926 		 */
927 		if (!extra_pass)
928 			addr = NULL;
929 		else if (prog->aux->func &&
930 			 off >= 0 && off < prog->aux->func_cnt)
931 			addr = (u8 *)prog->aux->func[off]->bpf_func;
932 		else
933 			return -EINVAL;
934 	} else {
935 		/* Address of a BPF helper call. Since part of the core
936 		 * kernel, it's always at a fixed location. __bpf_call_base
937 		 * and the helper with imm relative to it are both in core
938 		 * kernel.
939 		 */
940 		addr = (u8 *)__bpf_call_base + imm;
941 	}
942 
943 	*func_addr = (unsigned long)addr;
944 	return 0;
945 }
946 
947 static int bpf_jit_blind_insn(const struct bpf_insn *from,
948 			      const struct bpf_insn *aux,
949 			      struct bpf_insn *to_buff,
950 			      bool emit_zext)
951 {
952 	struct bpf_insn *to = to_buff;
953 	u32 imm_rnd = get_random_int();
954 	s16 off;
955 
956 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
957 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
958 
959 	/* Constraints on AX register:
960 	 *
961 	 * AX register is inaccessible from user space. It is mapped in
962 	 * all JITs, and used here for constant blinding rewrites. It is
963 	 * typically "stateless" meaning its contents are only valid within
964 	 * the executed instruction, but not across several instructions.
965 	 * There are a few exceptions however which are further detailed
966 	 * below.
967 	 *
968 	 * Constant blinding is only used by JITs, not in the interpreter.
969 	 * The interpreter uses AX in some occasions as a local temporary
970 	 * register e.g. in DIV or MOD instructions.
971 	 *
972 	 * In restricted circumstances, the verifier can also use the AX
973 	 * register for rewrites as long as they do not interfere with
974 	 * the above cases!
975 	 */
976 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
977 		goto out;
978 
979 	if (from->imm == 0 &&
980 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
981 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
982 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
983 		goto out;
984 	}
985 
986 	switch (from->code) {
987 	case BPF_ALU | BPF_ADD | BPF_K:
988 	case BPF_ALU | BPF_SUB | BPF_K:
989 	case BPF_ALU | BPF_AND | BPF_K:
990 	case BPF_ALU | BPF_OR  | BPF_K:
991 	case BPF_ALU | BPF_XOR | BPF_K:
992 	case BPF_ALU | BPF_MUL | BPF_K:
993 	case BPF_ALU | BPF_MOV | BPF_K:
994 	case BPF_ALU | BPF_DIV | BPF_K:
995 	case BPF_ALU | BPF_MOD | BPF_K:
996 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
997 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
998 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
999 		break;
1000 
1001 	case BPF_ALU64 | BPF_ADD | BPF_K:
1002 	case BPF_ALU64 | BPF_SUB | BPF_K:
1003 	case BPF_ALU64 | BPF_AND | BPF_K:
1004 	case BPF_ALU64 | BPF_OR  | BPF_K:
1005 	case BPF_ALU64 | BPF_XOR | BPF_K:
1006 	case BPF_ALU64 | BPF_MUL | BPF_K:
1007 	case BPF_ALU64 | BPF_MOV | BPF_K:
1008 	case BPF_ALU64 | BPF_DIV | BPF_K:
1009 	case BPF_ALU64 | BPF_MOD | BPF_K:
1010 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1011 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1012 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1013 		break;
1014 
1015 	case BPF_JMP | BPF_JEQ  | BPF_K:
1016 	case BPF_JMP | BPF_JNE  | BPF_K:
1017 	case BPF_JMP | BPF_JGT  | BPF_K:
1018 	case BPF_JMP | BPF_JLT  | BPF_K:
1019 	case BPF_JMP | BPF_JGE  | BPF_K:
1020 	case BPF_JMP | BPF_JLE  | BPF_K:
1021 	case BPF_JMP | BPF_JSGT | BPF_K:
1022 	case BPF_JMP | BPF_JSLT | BPF_K:
1023 	case BPF_JMP | BPF_JSGE | BPF_K:
1024 	case BPF_JMP | BPF_JSLE | BPF_K:
1025 	case BPF_JMP | BPF_JSET | BPF_K:
1026 		/* Accommodate for extra offset in case of a backjump. */
1027 		off = from->off;
1028 		if (off < 0)
1029 			off -= 2;
1030 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1031 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1032 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1033 		break;
1034 
1035 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1036 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1037 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1038 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1039 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1040 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1041 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1042 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1043 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1044 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1045 	case BPF_JMP32 | BPF_JSET | BPF_K:
1046 		/* Accommodate for extra offset in case of a backjump. */
1047 		off = from->off;
1048 		if (off < 0)
1049 			off -= 2;
1050 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1051 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1052 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1053 				      off);
1054 		break;
1055 
1056 	case BPF_LD | BPF_IMM | BPF_DW:
1057 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1058 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1059 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1060 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1061 		break;
1062 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1063 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1064 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1065 		if (emit_zext)
1066 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1067 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1068 		break;
1069 
1070 	case BPF_ST | BPF_MEM | BPF_DW:
1071 	case BPF_ST | BPF_MEM | BPF_W:
1072 	case BPF_ST | BPF_MEM | BPF_H:
1073 	case BPF_ST | BPF_MEM | BPF_B:
1074 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1075 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1076 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1077 		break;
1078 	}
1079 out:
1080 	return to - to_buff;
1081 }
1082 
1083 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1084 					      gfp_t gfp_extra_flags)
1085 {
1086 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1087 	struct bpf_prog *fp;
1088 
1089 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1090 	if (fp != NULL) {
1091 		/* aux->prog still points to the fp_other one, so
1092 		 * when promoting the clone to the real program,
1093 		 * this still needs to be adapted.
1094 		 */
1095 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1096 	}
1097 
1098 	return fp;
1099 }
1100 
1101 static void bpf_prog_clone_free(struct bpf_prog *fp)
1102 {
1103 	/* aux was stolen by the other clone, so we cannot free
1104 	 * it from this path! It will be freed eventually by the
1105 	 * other program on release.
1106 	 *
1107 	 * At this point, we don't need a deferred release since
1108 	 * clone is guaranteed to not be locked.
1109 	 */
1110 	fp->aux = NULL;
1111 	__bpf_prog_free(fp);
1112 }
1113 
1114 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1115 {
1116 	/* We have to repoint aux->prog to self, as we don't
1117 	 * know whether fp here is the clone or the original.
1118 	 */
1119 	fp->aux->prog = fp;
1120 	bpf_prog_clone_free(fp_other);
1121 }
1122 
1123 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1124 {
1125 	struct bpf_insn insn_buff[16], aux[2];
1126 	struct bpf_prog *clone, *tmp;
1127 	int insn_delta, insn_cnt;
1128 	struct bpf_insn *insn;
1129 	int i, rewritten;
1130 
1131 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1132 		return prog;
1133 
1134 	clone = bpf_prog_clone_create(prog, GFP_USER);
1135 	if (!clone)
1136 		return ERR_PTR(-ENOMEM);
1137 
1138 	insn_cnt = clone->len;
1139 	insn = clone->insnsi;
1140 
1141 	for (i = 0; i < insn_cnt; i++, insn++) {
1142 		/* We temporarily need to hold the original ld64 insn
1143 		 * so that we can still access the first part in the
1144 		 * second blinding run.
1145 		 */
1146 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1147 		    insn[1].code == 0)
1148 			memcpy(aux, insn, sizeof(aux));
1149 
1150 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1151 						clone->aux->verifier_zext);
1152 		if (!rewritten)
1153 			continue;
1154 
1155 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1156 		if (IS_ERR(tmp)) {
1157 			/* Patching may have repointed aux->prog during
1158 			 * realloc from the original one, so we need to
1159 			 * fix it up here on error.
1160 			 */
1161 			bpf_jit_prog_release_other(prog, clone);
1162 			return tmp;
1163 		}
1164 
1165 		clone = tmp;
1166 		insn_delta = rewritten - 1;
1167 
1168 		/* Walk new program and skip insns we just inserted. */
1169 		insn = clone->insnsi + i + insn_delta;
1170 		insn_cnt += insn_delta;
1171 		i        += insn_delta;
1172 	}
1173 
1174 	clone->blinded = 1;
1175 	return clone;
1176 }
1177 #endif /* CONFIG_BPF_JIT */
1178 
1179 /* Base function for offset calculation. Needs to go into .text section,
1180  * therefore keeping it non-static as well; will also be used by JITs
1181  * anyway later on, so do not let the compiler omit it. This also needs
1182  * to go into kallsyms for correlation from e.g. bpftool, so naming
1183  * must not change.
1184  */
1185 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1186 {
1187 	return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(__bpf_call_base);
1190 
1191 /* All UAPI available opcodes. */
1192 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1193 	/* 32 bit ALU operations. */		\
1194 	/*   Register based. */			\
1195 	INSN_3(ALU, ADD,  X),			\
1196 	INSN_3(ALU, SUB,  X),			\
1197 	INSN_3(ALU, AND,  X),			\
1198 	INSN_3(ALU, OR,   X),			\
1199 	INSN_3(ALU, LSH,  X),			\
1200 	INSN_3(ALU, RSH,  X),			\
1201 	INSN_3(ALU, XOR,  X),			\
1202 	INSN_3(ALU, MUL,  X),			\
1203 	INSN_3(ALU, MOV,  X),			\
1204 	INSN_3(ALU, ARSH, X),			\
1205 	INSN_3(ALU, DIV,  X),			\
1206 	INSN_3(ALU, MOD,  X),			\
1207 	INSN_2(ALU, NEG),			\
1208 	INSN_3(ALU, END, TO_BE),		\
1209 	INSN_3(ALU, END, TO_LE),		\
1210 	/*   Immediate based. */		\
1211 	INSN_3(ALU, ADD,  K),			\
1212 	INSN_3(ALU, SUB,  K),			\
1213 	INSN_3(ALU, AND,  K),			\
1214 	INSN_3(ALU, OR,   K),			\
1215 	INSN_3(ALU, LSH,  K),			\
1216 	INSN_3(ALU, RSH,  K),			\
1217 	INSN_3(ALU, XOR,  K),			\
1218 	INSN_3(ALU, MUL,  K),			\
1219 	INSN_3(ALU, MOV,  K),			\
1220 	INSN_3(ALU, ARSH, K),			\
1221 	INSN_3(ALU, DIV,  K),			\
1222 	INSN_3(ALU, MOD,  K),			\
1223 	/* 64 bit ALU operations. */		\
1224 	/*   Register based. */			\
1225 	INSN_3(ALU64, ADD,  X),			\
1226 	INSN_3(ALU64, SUB,  X),			\
1227 	INSN_3(ALU64, AND,  X),			\
1228 	INSN_3(ALU64, OR,   X),			\
1229 	INSN_3(ALU64, LSH,  X),			\
1230 	INSN_3(ALU64, RSH,  X),			\
1231 	INSN_3(ALU64, XOR,  X),			\
1232 	INSN_3(ALU64, MUL,  X),			\
1233 	INSN_3(ALU64, MOV,  X),			\
1234 	INSN_3(ALU64, ARSH, X),			\
1235 	INSN_3(ALU64, DIV,  X),			\
1236 	INSN_3(ALU64, MOD,  X),			\
1237 	INSN_2(ALU64, NEG),			\
1238 	/*   Immediate based. */		\
1239 	INSN_3(ALU64, ADD,  K),			\
1240 	INSN_3(ALU64, SUB,  K),			\
1241 	INSN_3(ALU64, AND,  K),			\
1242 	INSN_3(ALU64, OR,   K),			\
1243 	INSN_3(ALU64, LSH,  K),			\
1244 	INSN_3(ALU64, RSH,  K),			\
1245 	INSN_3(ALU64, XOR,  K),			\
1246 	INSN_3(ALU64, MUL,  K),			\
1247 	INSN_3(ALU64, MOV,  K),			\
1248 	INSN_3(ALU64, ARSH, K),			\
1249 	INSN_3(ALU64, DIV,  K),			\
1250 	INSN_3(ALU64, MOD,  K),			\
1251 	/* Call instruction. */			\
1252 	INSN_2(JMP, CALL),			\
1253 	/* Exit instruction. */			\
1254 	INSN_2(JMP, EXIT),			\
1255 	/* 32-bit Jump instructions. */		\
1256 	/*   Register based. */			\
1257 	INSN_3(JMP32, JEQ,  X),			\
1258 	INSN_3(JMP32, JNE,  X),			\
1259 	INSN_3(JMP32, JGT,  X),			\
1260 	INSN_3(JMP32, JLT,  X),			\
1261 	INSN_3(JMP32, JGE,  X),			\
1262 	INSN_3(JMP32, JLE,  X),			\
1263 	INSN_3(JMP32, JSGT, X),			\
1264 	INSN_3(JMP32, JSLT, X),			\
1265 	INSN_3(JMP32, JSGE, X),			\
1266 	INSN_3(JMP32, JSLE, X),			\
1267 	INSN_3(JMP32, JSET, X),			\
1268 	/*   Immediate based. */		\
1269 	INSN_3(JMP32, JEQ,  K),			\
1270 	INSN_3(JMP32, JNE,  K),			\
1271 	INSN_3(JMP32, JGT,  K),			\
1272 	INSN_3(JMP32, JLT,  K),			\
1273 	INSN_3(JMP32, JGE,  K),			\
1274 	INSN_3(JMP32, JLE,  K),			\
1275 	INSN_3(JMP32, JSGT, K),			\
1276 	INSN_3(JMP32, JSLT, K),			\
1277 	INSN_3(JMP32, JSGE, K),			\
1278 	INSN_3(JMP32, JSLE, K),			\
1279 	INSN_3(JMP32, JSET, K),			\
1280 	/* Jump instructions. */		\
1281 	/*   Register based. */			\
1282 	INSN_3(JMP, JEQ,  X),			\
1283 	INSN_3(JMP, JNE,  X),			\
1284 	INSN_3(JMP, JGT,  X),			\
1285 	INSN_3(JMP, JLT,  X),			\
1286 	INSN_3(JMP, JGE,  X),			\
1287 	INSN_3(JMP, JLE,  X),			\
1288 	INSN_3(JMP, JSGT, X),			\
1289 	INSN_3(JMP, JSLT, X),			\
1290 	INSN_3(JMP, JSGE, X),			\
1291 	INSN_3(JMP, JSLE, X),			\
1292 	INSN_3(JMP, JSET, X),			\
1293 	/*   Immediate based. */		\
1294 	INSN_3(JMP, JEQ,  K),			\
1295 	INSN_3(JMP, JNE,  K),			\
1296 	INSN_3(JMP, JGT,  K),			\
1297 	INSN_3(JMP, JLT,  K),			\
1298 	INSN_3(JMP, JGE,  K),			\
1299 	INSN_3(JMP, JLE,  K),			\
1300 	INSN_3(JMP, JSGT, K),			\
1301 	INSN_3(JMP, JSLT, K),			\
1302 	INSN_3(JMP, JSGE, K),			\
1303 	INSN_3(JMP, JSLE, K),			\
1304 	INSN_3(JMP, JSET, K),			\
1305 	INSN_2(JMP, JA),			\
1306 	/* Store instructions. */		\
1307 	/*   Register based. */			\
1308 	INSN_3(STX, MEM,  B),			\
1309 	INSN_3(STX, MEM,  H),			\
1310 	INSN_3(STX, MEM,  W),			\
1311 	INSN_3(STX, MEM,  DW),			\
1312 	INSN_3(STX, XADD, W),			\
1313 	INSN_3(STX, XADD, DW),			\
1314 	/*   Immediate based. */		\
1315 	INSN_3(ST, MEM, B),			\
1316 	INSN_3(ST, MEM, H),			\
1317 	INSN_3(ST, MEM, W),			\
1318 	INSN_3(ST, MEM, DW),			\
1319 	/* Load instructions. */		\
1320 	/*   Register based. */			\
1321 	INSN_3(LDX, MEM, B),			\
1322 	INSN_3(LDX, MEM, H),			\
1323 	INSN_3(LDX, MEM, W),			\
1324 	INSN_3(LDX, MEM, DW),			\
1325 	/*   Immediate based. */		\
1326 	INSN_3(LD, IMM, DW)
1327 
1328 bool bpf_opcode_in_insntable(u8 code)
1329 {
1330 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1331 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1332 	static const bool public_insntable[256] = {
1333 		[0 ... 255] = false,
1334 		/* Now overwrite non-defaults ... */
1335 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1336 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1337 		[BPF_LD | BPF_ABS | BPF_B] = true,
1338 		[BPF_LD | BPF_ABS | BPF_H] = true,
1339 		[BPF_LD | BPF_ABS | BPF_W] = true,
1340 		[BPF_LD | BPF_IND | BPF_B] = true,
1341 		[BPF_LD | BPF_IND | BPF_H] = true,
1342 		[BPF_LD | BPF_IND | BPF_W] = true,
1343 	};
1344 #undef BPF_INSN_3_TBL
1345 #undef BPF_INSN_2_TBL
1346 	return public_insntable[code];
1347 }
1348 
1349 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1350 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1351 {
1352 	memset(dst, 0, size);
1353 	return -EFAULT;
1354 }
1355 
1356 /**
1357  *	__bpf_prog_run - run eBPF program on a given context
1358  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1359  *	@insn: is the array of eBPF instructions
1360  *	@stack: is the eBPF storage stack
1361  *
1362  * Decode and execute eBPF instructions.
1363  */
1364 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1365 {
1366 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1367 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1368 	static const void * const jumptable[256] __annotate_jump_table = {
1369 		[0 ... 255] = &&default_label,
1370 		/* Now overwrite non-defaults ... */
1371 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1372 		/* Non-UAPI available opcodes. */
1373 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1374 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1375 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1376 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1377 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1378 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1379 	};
1380 #undef BPF_INSN_3_LBL
1381 #undef BPF_INSN_2_LBL
1382 	u32 tail_call_cnt = 0;
1383 
1384 #define CONT	 ({ insn++; goto select_insn; })
1385 #define CONT_JMP ({ insn++; goto select_insn; })
1386 
1387 select_insn:
1388 	goto *jumptable[insn->code];
1389 
1390 	/* ALU */
1391 #define ALU(OPCODE, OP)			\
1392 	ALU64_##OPCODE##_X:		\
1393 		DST = DST OP SRC;	\
1394 		CONT;			\
1395 	ALU_##OPCODE##_X:		\
1396 		DST = (u32) DST OP (u32) SRC;	\
1397 		CONT;			\
1398 	ALU64_##OPCODE##_K:		\
1399 		DST = DST OP IMM;		\
1400 		CONT;			\
1401 	ALU_##OPCODE##_K:		\
1402 		DST = (u32) DST OP (u32) IMM;	\
1403 		CONT;
1404 
1405 	ALU(ADD,  +)
1406 	ALU(SUB,  -)
1407 	ALU(AND,  &)
1408 	ALU(OR,   |)
1409 	ALU(LSH, <<)
1410 	ALU(RSH, >>)
1411 	ALU(XOR,  ^)
1412 	ALU(MUL,  *)
1413 #undef ALU
1414 	ALU_NEG:
1415 		DST = (u32) -DST;
1416 		CONT;
1417 	ALU64_NEG:
1418 		DST = -DST;
1419 		CONT;
1420 	ALU_MOV_X:
1421 		DST = (u32) SRC;
1422 		CONT;
1423 	ALU_MOV_K:
1424 		DST = (u32) IMM;
1425 		CONT;
1426 	ALU64_MOV_X:
1427 		DST = SRC;
1428 		CONT;
1429 	ALU64_MOV_K:
1430 		DST = IMM;
1431 		CONT;
1432 	LD_IMM_DW:
1433 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1434 		insn++;
1435 		CONT;
1436 	ALU_ARSH_X:
1437 		DST = (u64) (u32) (((s32) DST) >> SRC);
1438 		CONT;
1439 	ALU_ARSH_K:
1440 		DST = (u64) (u32) (((s32) DST) >> IMM);
1441 		CONT;
1442 	ALU64_ARSH_X:
1443 		(*(s64 *) &DST) >>= SRC;
1444 		CONT;
1445 	ALU64_ARSH_K:
1446 		(*(s64 *) &DST) >>= IMM;
1447 		CONT;
1448 	ALU64_MOD_X:
1449 		div64_u64_rem(DST, SRC, &AX);
1450 		DST = AX;
1451 		CONT;
1452 	ALU_MOD_X:
1453 		AX = (u32) DST;
1454 		DST = do_div(AX, (u32) SRC);
1455 		CONT;
1456 	ALU64_MOD_K:
1457 		div64_u64_rem(DST, IMM, &AX);
1458 		DST = AX;
1459 		CONT;
1460 	ALU_MOD_K:
1461 		AX = (u32) DST;
1462 		DST = do_div(AX, (u32) IMM);
1463 		CONT;
1464 	ALU64_DIV_X:
1465 		DST = div64_u64(DST, SRC);
1466 		CONT;
1467 	ALU_DIV_X:
1468 		AX = (u32) DST;
1469 		do_div(AX, (u32) SRC);
1470 		DST = (u32) AX;
1471 		CONT;
1472 	ALU64_DIV_K:
1473 		DST = div64_u64(DST, IMM);
1474 		CONT;
1475 	ALU_DIV_K:
1476 		AX = (u32) DST;
1477 		do_div(AX, (u32) IMM);
1478 		DST = (u32) AX;
1479 		CONT;
1480 	ALU_END_TO_BE:
1481 		switch (IMM) {
1482 		case 16:
1483 			DST = (__force u16) cpu_to_be16(DST);
1484 			break;
1485 		case 32:
1486 			DST = (__force u32) cpu_to_be32(DST);
1487 			break;
1488 		case 64:
1489 			DST = (__force u64) cpu_to_be64(DST);
1490 			break;
1491 		}
1492 		CONT;
1493 	ALU_END_TO_LE:
1494 		switch (IMM) {
1495 		case 16:
1496 			DST = (__force u16) cpu_to_le16(DST);
1497 			break;
1498 		case 32:
1499 			DST = (__force u32) cpu_to_le32(DST);
1500 			break;
1501 		case 64:
1502 			DST = (__force u64) cpu_to_le64(DST);
1503 			break;
1504 		}
1505 		CONT;
1506 
1507 	/* CALL */
1508 	JMP_CALL:
1509 		/* Function call scratches BPF_R1-BPF_R5 registers,
1510 		 * preserves BPF_R6-BPF_R9, and stores return value
1511 		 * into BPF_R0.
1512 		 */
1513 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1514 						       BPF_R4, BPF_R5);
1515 		CONT;
1516 
1517 	JMP_CALL_ARGS:
1518 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1519 							    BPF_R3, BPF_R4,
1520 							    BPF_R5,
1521 							    insn + insn->off + 1);
1522 		CONT;
1523 
1524 	JMP_TAIL_CALL: {
1525 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1526 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1527 		struct bpf_prog *prog;
1528 		u32 index = BPF_R3;
1529 
1530 		if (unlikely(index >= array->map.max_entries))
1531 			goto out;
1532 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1533 			goto out;
1534 
1535 		tail_call_cnt++;
1536 
1537 		prog = READ_ONCE(array->ptrs[index]);
1538 		if (!prog)
1539 			goto out;
1540 
1541 		/* ARG1 at this point is guaranteed to point to CTX from
1542 		 * the verifier side due to the fact that the tail call is
1543 		 * handled like a helper, that is, bpf_tail_call_proto,
1544 		 * where arg1_type is ARG_PTR_TO_CTX.
1545 		 */
1546 		insn = prog->insnsi;
1547 		goto select_insn;
1548 out:
1549 		CONT;
1550 	}
1551 	JMP_JA:
1552 		insn += insn->off;
1553 		CONT;
1554 	JMP_EXIT:
1555 		return BPF_R0;
1556 	/* JMP */
1557 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1558 	JMP_##OPCODE##_X:					\
1559 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1560 			insn += insn->off;			\
1561 			CONT_JMP;				\
1562 		}						\
1563 		CONT;						\
1564 	JMP32_##OPCODE##_X:					\
1565 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1566 			insn += insn->off;			\
1567 			CONT_JMP;				\
1568 		}						\
1569 		CONT;						\
1570 	JMP_##OPCODE##_K:					\
1571 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1572 			insn += insn->off;			\
1573 			CONT_JMP;				\
1574 		}						\
1575 		CONT;						\
1576 	JMP32_##OPCODE##_K:					\
1577 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1578 			insn += insn->off;			\
1579 			CONT_JMP;				\
1580 		}						\
1581 		CONT;
1582 	COND_JMP(u, JEQ, ==)
1583 	COND_JMP(u, JNE, !=)
1584 	COND_JMP(u, JGT, >)
1585 	COND_JMP(u, JLT, <)
1586 	COND_JMP(u, JGE, >=)
1587 	COND_JMP(u, JLE, <=)
1588 	COND_JMP(u, JSET, &)
1589 	COND_JMP(s, JSGT, >)
1590 	COND_JMP(s, JSLT, <)
1591 	COND_JMP(s, JSGE, >=)
1592 	COND_JMP(s, JSLE, <=)
1593 #undef COND_JMP
1594 	/* STX and ST and LDX*/
1595 #define LDST(SIZEOP, SIZE)						\
1596 	STX_MEM_##SIZEOP:						\
1597 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1598 		CONT;							\
1599 	ST_MEM_##SIZEOP:						\
1600 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1601 		CONT;							\
1602 	LDX_MEM_##SIZEOP:						\
1603 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1604 		CONT;
1605 
1606 	LDST(B,   u8)
1607 	LDST(H,  u16)
1608 	LDST(W,  u32)
1609 	LDST(DW, u64)
1610 #undef LDST
1611 #define LDX_PROBE(SIZEOP, SIZE)							\
1612 	LDX_PROBE_MEM_##SIZEOP:							\
1613 		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1614 		CONT;
1615 	LDX_PROBE(B,  1)
1616 	LDX_PROBE(H,  2)
1617 	LDX_PROBE(W,  4)
1618 	LDX_PROBE(DW, 8)
1619 #undef LDX_PROBE
1620 
1621 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1622 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1623 			   (DST + insn->off));
1624 		CONT;
1625 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1626 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1627 			     (DST + insn->off));
1628 		CONT;
1629 
1630 	default_label:
1631 		/* If we ever reach this, we have a bug somewhere. Die hard here
1632 		 * instead of just returning 0; we could be somewhere in a subprog,
1633 		 * so execution could continue otherwise which we do /not/ want.
1634 		 *
1635 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1636 		 */
1637 		pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1638 		BUG_ON(1);
1639 		return 0;
1640 }
1641 
1642 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1643 #define DEFINE_BPF_PROG_RUN(stack_size) \
1644 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1645 { \
1646 	u64 stack[stack_size / sizeof(u64)]; \
1647 	u64 regs[MAX_BPF_EXT_REG]; \
1648 \
1649 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1650 	ARG1 = (u64) (unsigned long) ctx; \
1651 	return ___bpf_prog_run(regs, insn, stack); \
1652 }
1653 
1654 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1655 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1656 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1657 				      const struct bpf_insn *insn) \
1658 { \
1659 	u64 stack[stack_size / sizeof(u64)]; \
1660 	u64 regs[MAX_BPF_EXT_REG]; \
1661 \
1662 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1663 	BPF_R1 = r1; \
1664 	BPF_R2 = r2; \
1665 	BPF_R3 = r3; \
1666 	BPF_R4 = r4; \
1667 	BPF_R5 = r5; \
1668 	return ___bpf_prog_run(regs, insn, stack); \
1669 }
1670 
1671 #define EVAL1(FN, X) FN(X)
1672 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1673 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1674 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1675 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1676 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1677 
1678 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1679 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1680 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1681 
1682 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1683 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1684 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1685 
1686 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1687 
1688 static unsigned int (*interpreters[])(const void *ctx,
1689 				      const struct bpf_insn *insn) = {
1690 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1691 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1692 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1693 };
1694 #undef PROG_NAME_LIST
1695 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1696 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1697 				  const struct bpf_insn *insn) = {
1698 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1699 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1700 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1701 };
1702 #undef PROG_NAME_LIST
1703 
1704 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1705 {
1706 	stack_depth = max_t(u32, stack_depth, 1);
1707 	insn->off = (s16) insn->imm;
1708 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1709 		__bpf_call_base_args;
1710 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1711 }
1712 
1713 #else
1714 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1715 					 const struct bpf_insn *insn)
1716 {
1717 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1718 	 * is not working properly, so warn about it!
1719 	 */
1720 	WARN_ON_ONCE(1);
1721 	return 0;
1722 }
1723 #endif
1724 
1725 bool bpf_prog_array_compatible(struct bpf_array *array,
1726 			       const struct bpf_prog *fp)
1727 {
1728 	if (fp->kprobe_override)
1729 		return false;
1730 
1731 	if (!array->aux->type) {
1732 		/* There's no owner yet where we could check for
1733 		 * compatibility.
1734 		 */
1735 		array->aux->type  = fp->type;
1736 		array->aux->jited = fp->jited;
1737 		return true;
1738 	}
1739 
1740 	return array->aux->type  == fp->type &&
1741 	       array->aux->jited == fp->jited;
1742 }
1743 
1744 static int bpf_check_tail_call(const struct bpf_prog *fp)
1745 {
1746 	struct bpf_prog_aux *aux = fp->aux;
1747 	int i, ret = 0;
1748 
1749 	mutex_lock(&aux->used_maps_mutex);
1750 	for (i = 0; i < aux->used_map_cnt; i++) {
1751 		struct bpf_map *map = aux->used_maps[i];
1752 		struct bpf_array *array;
1753 
1754 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1755 			continue;
1756 
1757 		array = container_of(map, struct bpf_array, map);
1758 		if (!bpf_prog_array_compatible(array, fp)) {
1759 			ret = -EINVAL;
1760 			goto out;
1761 		}
1762 	}
1763 
1764 out:
1765 	mutex_unlock(&aux->used_maps_mutex);
1766 	return ret;
1767 }
1768 
1769 static void bpf_prog_select_func(struct bpf_prog *fp)
1770 {
1771 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1772 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1773 
1774 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1775 #else
1776 	fp->bpf_func = __bpf_prog_ret0_warn;
1777 #endif
1778 }
1779 
1780 /**
1781  *	bpf_prog_select_runtime - select exec runtime for BPF program
1782  *	@fp: bpf_prog populated with internal BPF program
1783  *	@err: pointer to error variable
1784  *
1785  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1786  * The BPF program will be executed via BPF_PROG_RUN() macro.
1787  */
1788 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1789 {
1790 	/* In case of BPF to BPF calls, verifier did all the prep
1791 	 * work with regards to JITing, etc.
1792 	 */
1793 	if (fp->bpf_func)
1794 		goto finalize;
1795 
1796 	bpf_prog_select_func(fp);
1797 
1798 	/* eBPF JITs can rewrite the program in case constant
1799 	 * blinding is active. However, in case of error during
1800 	 * blinding, bpf_int_jit_compile() must always return a
1801 	 * valid program, which in this case would simply not
1802 	 * be JITed, but falls back to the interpreter.
1803 	 */
1804 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1805 		*err = bpf_prog_alloc_jited_linfo(fp);
1806 		if (*err)
1807 			return fp;
1808 
1809 		fp = bpf_int_jit_compile(fp);
1810 		if (!fp->jited) {
1811 			bpf_prog_free_jited_linfo(fp);
1812 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1813 			*err = -ENOTSUPP;
1814 			return fp;
1815 #endif
1816 		} else {
1817 			bpf_prog_free_unused_jited_linfo(fp);
1818 		}
1819 	} else {
1820 		*err = bpf_prog_offload_compile(fp);
1821 		if (*err)
1822 			return fp;
1823 	}
1824 
1825 finalize:
1826 	bpf_prog_lock_ro(fp);
1827 
1828 	/* The tail call compatibility check can only be done at
1829 	 * this late stage as we need to determine, if we deal
1830 	 * with JITed or non JITed program concatenations and not
1831 	 * all eBPF JITs might immediately support all features.
1832 	 */
1833 	*err = bpf_check_tail_call(fp);
1834 
1835 	return fp;
1836 }
1837 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1838 
1839 static unsigned int __bpf_prog_ret1(const void *ctx,
1840 				    const struct bpf_insn *insn)
1841 {
1842 	return 1;
1843 }
1844 
1845 static struct bpf_prog_dummy {
1846 	struct bpf_prog prog;
1847 } dummy_bpf_prog = {
1848 	.prog = {
1849 		.bpf_func = __bpf_prog_ret1,
1850 	},
1851 };
1852 
1853 /* to avoid allocating empty bpf_prog_array for cgroups that
1854  * don't have bpf program attached use one global 'empty_prog_array'
1855  * It will not be modified the caller of bpf_prog_array_alloc()
1856  * (since caller requested prog_cnt == 0)
1857  * that pointer should be 'freed' by bpf_prog_array_free()
1858  */
1859 static struct {
1860 	struct bpf_prog_array hdr;
1861 	struct bpf_prog *null_prog;
1862 } empty_prog_array = {
1863 	.null_prog = NULL,
1864 };
1865 
1866 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1867 {
1868 	if (prog_cnt)
1869 		return kzalloc(sizeof(struct bpf_prog_array) +
1870 			       sizeof(struct bpf_prog_array_item) *
1871 			       (prog_cnt + 1),
1872 			       flags);
1873 
1874 	return &empty_prog_array.hdr;
1875 }
1876 
1877 void bpf_prog_array_free(struct bpf_prog_array *progs)
1878 {
1879 	if (!progs || progs == &empty_prog_array.hdr)
1880 		return;
1881 	kfree_rcu(progs, rcu);
1882 }
1883 
1884 int bpf_prog_array_length(struct bpf_prog_array *array)
1885 {
1886 	struct bpf_prog_array_item *item;
1887 	u32 cnt = 0;
1888 
1889 	for (item = array->items; item->prog; item++)
1890 		if (item->prog != &dummy_bpf_prog.prog)
1891 			cnt++;
1892 	return cnt;
1893 }
1894 
1895 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1896 {
1897 	struct bpf_prog_array_item *item;
1898 
1899 	for (item = array->items; item->prog; item++)
1900 		if (item->prog != &dummy_bpf_prog.prog)
1901 			return false;
1902 	return true;
1903 }
1904 
1905 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1906 				     u32 *prog_ids,
1907 				     u32 request_cnt)
1908 {
1909 	struct bpf_prog_array_item *item;
1910 	int i = 0;
1911 
1912 	for (item = array->items; item->prog; item++) {
1913 		if (item->prog == &dummy_bpf_prog.prog)
1914 			continue;
1915 		prog_ids[i] = item->prog->aux->id;
1916 		if (++i == request_cnt) {
1917 			item++;
1918 			break;
1919 		}
1920 	}
1921 
1922 	return !!(item->prog);
1923 }
1924 
1925 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1926 				__u32 __user *prog_ids, u32 cnt)
1927 {
1928 	unsigned long err = 0;
1929 	bool nospc;
1930 	u32 *ids;
1931 
1932 	/* users of this function are doing:
1933 	 * cnt = bpf_prog_array_length();
1934 	 * if (cnt > 0)
1935 	 *     bpf_prog_array_copy_to_user(..., cnt);
1936 	 * so below kcalloc doesn't need extra cnt > 0 check.
1937 	 */
1938 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1939 	if (!ids)
1940 		return -ENOMEM;
1941 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
1942 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1943 	kfree(ids);
1944 	if (err)
1945 		return -EFAULT;
1946 	if (nospc)
1947 		return -ENOSPC;
1948 	return 0;
1949 }
1950 
1951 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
1952 				struct bpf_prog *old_prog)
1953 {
1954 	struct bpf_prog_array_item *item;
1955 
1956 	for (item = array->items; item->prog; item++)
1957 		if (item->prog == old_prog) {
1958 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1959 			break;
1960 		}
1961 }
1962 
1963 /**
1964  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
1965  *                                   index into the program array with
1966  *                                   a dummy no-op program.
1967  * @array: a bpf_prog_array
1968  * @index: the index of the program to replace
1969  *
1970  * Skips over dummy programs, by not counting them, when calculating
1971  * the position of the program to replace.
1972  *
1973  * Return:
1974  * * 0		- Success
1975  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
1976  * * -ENOENT	- Index out of range
1977  */
1978 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
1979 {
1980 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
1981 }
1982 
1983 /**
1984  * bpf_prog_array_update_at() - Updates the program at the given index
1985  *                              into the program array.
1986  * @array: a bpf_prog_array
1987  * @index: the index of the program to update
1988  * @prog: the program to insert into the array
1989  *
1990  * Skips over dummy programs, by not counting them, when calculating
1991  * the position of the program to update.
1992  *
1993  * Return:
1994  * * 0		- Success
1995  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
1996  * * -ENOENT	- Index out of range
1997  */
1998 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1999 			     struct bpf_prog *prog)
2000 {
2001 	struct bpf_prog_array_item *item;
2002 
2003 	if (unlikely(index < 0))
2004 		return -EINVAL;
2005 
2006 	for (item = array->items; item->prog; item++) {
2007 		if (item->prog == &dummy_bpf_prog.prog)
2008 			continue;
2009 		if (!index) {
2010 			WRITE_ONCE(item->prog, prog);
2011 			return 0;
2012 		}
2013 		index--;
2014 	}
2015 	return -ENOENT;
2016 }
2017 
2018 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2019 			struct bpf_prog *exclude_prog,
2020 			struct bpf_prog *include_prog,
2021 			struct bpf_prog_array **new_array)
2022 {
2023 	int new_prog_cnt, carry_prog_cnt = 0;
2024 	struct bpf_prog_array_item *existing;
2025 	struct bpf_prog_array *array;
2026 	bool found_exclude = false;
2027 	int new_prog_idx = 0;
2028 
2029 	/* Figure out how many existing progs we need to carry over to
2030 	 * the new array.
2031 	 */
2032 	if (old_array) {
2033 		existing = old_array->items;
2034 		for (; existing->prog; existing++) {
2035 			if (existing->prog == exclude_prog) {
2036 				found_exclude = true;
2037 				continue;
2038 			}
2039 			if (existing->prog != &dummy_bpf_prog.prog)
2040 				carry_prog_cnt++;
2041 			if (existing->prog == include_prog)
2042 				return -EEXIST;
2043 		}
2044 	}
2045 
2046 	if (exclude_prog && !found_exclude)
2047 		return -ENOENT;
2048 
2049 	/* How many progs (not NULL) will be in the new array? */
2050 	new_prog_cnt = carry_prog_cnt;
2051 	if (include_prog)
2052 		new_prog_cnt += 1;
2053 
2054 	/* Do we have any prog (not NULL) in the new array? */
2055 	if (!new_prog_cnt) {
2056 		*new_array = NULL;
2057 		return 0;
2058 	}
2059 
2060 	/* +1 as the end of prog_array is marked with NULL */
2061 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2062 	if (!array)
2063 		return -ENOMEM;
2064 
2065 	/* Fill in the new prog array */
2066 	if (carry_prog_cnt) {
2067 		existing = old_array->items;
2068 		for (; existing->prog; existing++)
2069 			if (existing->prog != exclude_prog &&
2070 			    existing->prog != &dummy_bpf_prog.prog) {
2071 				array->items[new_prog_idx++].prog =
2072 					existing->prog;
2073 			}
2074 	}
2075 	if (include_prog)
2076 		array->items[new_prog_idx++].prog = include_prog;
2077 	array->items[new_prog_idx].prog = NULL;
2078 	*new_array = array;
2079 	return 0;
2080 }
2081 
2082 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2083 			     u32 *prog_ids, u32 request_cnt,
2084 			     u32 *prog_cnt)
2085 {
2086 	u32 cnt = 0;
2087 
2088 	if (array)
2089 		cnt = bpf_prog_array_length(array);
2090 
2091 	*prog_cnt = cnt;
2092 
2093 	/* return early if user requested only program count or nothing to copy */
2094 	if (!request_cnt || !cnt)
2095 		return 0;
2096 
2097 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2098 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2099 								     : 0;
2100 }
2101 
2102 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2103 			  struct bpf_map **used_maps, u32 len)
2104 {
2105 	struct bpf_map *map;
2106 	u32 i;
2107 
2108 	for (i = 0; i < len; i++) {
2109 		map = used_maps[i];
2110 		if (map->ops->map_poke_untrack)
2111 			map->ops->map_poke_untrack(map, aux);
2112 		bpf_map_put(map);
2113 	}
2114 }
2115 
2116 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2117 {
2118 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2119 	kfree(aux->used_maps);
2120 }
2121 
2122 static void bpf_prog_free_deferred(struct work_struct *work)
2123 {
2124 	struct bpf_prog_aux *aux;
2125 	int i;
2126 
2127 	aux = container_of(work, struct bpf_prog_aux, work);
2128 	bpf_free_used_maps(aux);
2129 	if (bpf_prog_is_dev_bound(aux))
2130 		bpf_prog_offload_destroy(aux->prog);
2131 #ifdef CONFIG_PERF_EVENTS
2132 	if (aux->prog->has_callchain_buf)
2133 		put_callchain_buffers();
2134 #endif
2135 	if (aux->dst_trampoline)
2136 		bpf_trampoline_put(aux->dst_trampoline);
2137 	for (i = 0; i < aux->func_cnt; i++)
2138 		bpf_jit_free(aux->func[i]);
2139 	if (aux->func_cnt) {
2140 		kfree(aux->func);
2141 		bpf_prog_unlock_free(aux->prog);
2142 	} else {
2143 		bpf_jit_free(aux->prog);
2144 	}
2145 }
2146 
2147 /* Free internal BPF program */
2148 void bpf_prog_free(struct bpf_prog *fp)
2149 {
2150 	struct bpf_prog_aux *aux = fp->aux;
2151 
2152 	if (aux->dst_prog)
2153 		bpf_prog_put(aux->dst_prog);
2154 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2155 	schedule_work(&aux->work);
2156 }
2157 EXPORT_SYMBOL_GPL(bpf_prog_free);
2158 
2159 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2160 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2161 
2162 void bpf_user_rnd_init_once(void)
2163 {
2164 	prandom_init_once(&bpf_user_rnd_state);
2165 }
2166 
2167 BPF_CALL_0(bpf_user_rnd_u32)
2168 {
2169 	/* Should someone ever have the rather unwise idea to use some
2170 	 * of the registers passed into this function, then note that
2171 	 * this function is called from native eBPF and classic-to-eBPF
2172 	 * transformations. Register assignments from both sides are
2173 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2174 	 */
2175 	struct rnd_state *state;
2176 	u32 res;
2177 
2178 	state = &get_cpu_var(bpf_user_rnd_state);
2179 	res = prandom_u32_state(state);
2180 	put_cpu_var(bpf_user_rnd_state);
2181 
2182 	return res;
2183 }
2184 
2185 BPF_CALL_0(bpf_get_raw_cpu_id)
2186 {
2187 	return raw_smp_processor_id();
2188 }
2189 
2190 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2191 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2192 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2193 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2194 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2195 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2196 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2197 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2198 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2199 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2200 
2201 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2202 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2203 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2204 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2205 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2206 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2207 
2208 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2209 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2210 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2211 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2212 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2213 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2214 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2215 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2216 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2217 
2218 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2219 {
2220 	return NULL;
2221 }
2222 
2223 u64 __weak
2224 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2225 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2226 {
2227 	return -ENOTSUPP;
2228 }
2229 EXPORT_SYMBOL_GPL(bpf_event_output);
2230 
2231 /* Always built-in helper functions. */
2232 const struct bpf_func_proto bpf_tail_call_proto = {
2233 	.func		= NULL,
2234 	.gpl_only	= false,
2235 	.ret_type	= RET_VOID,
2236 	.arg1_type	= ARG_PTR_TO_CTX,
2237 	.arg2_type	= ARG_CONST_MAP_PTR,
2238 	.arg3_type	= ARG_ANYTHING,
2239 };
2240 
2241 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2242  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2243  * eBPF and implicitly also cBPF can get JITed!
2244  */
2245 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2246 {
2247 	return prog;
2248 }
2249 
2250 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2251  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2252  */
2253 void __weak bpf_jit_compile(struct bpf_prog *prog)
2254 {
2255 }
2256 
2257 bool __weak bpf_helper_changes_pkt_data(void *func)
2258 {
2259 	return false;
2260 }
2261 
2262 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2263  * analysis code and wants explicit zero extension inserted by verifier.
2264  * Otherwise, return FALSE.
2265  */
2266 bool __weak bpf_jit_needs_zext(void)
2267 {
2268 	return false;
2269 }
2270 
2271 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2272  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2273  */
2274 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2275 			 int len)
2276 {
2277 	return -EFAULT;
2278 }
2279 
2280 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2281 			      void *addr1, void *addr2)
2282 {
2283 	return -ENOTSUPP;
2284 }
2285 
2286 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2287 EXPORT_SYMBOL(bpf_stats_enabled_key);
2288 
2289 /* All definitions of tracepoints related to BPF. */
2290 #define CREATE_TRACE_POINTS
2291 #include <linux/bpf_trace.h>
2292 
2293 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2294 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2295