xref: /openbmc/linux/kernel/bpf/core.c (revision 06c6fad9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <asm/unaligned.h>
36 
37 /* Registers */
38 #define BPF_R0	regs[BPF_REG_0]
39 #define BPF_R1	regs[BPF_REG_1]
40 #define BPF_R2	regs[BPF_REG_2]
41 #define BPF_R3	regs[BPF_REG_3]
42 #define BPF_R4	regs[BPF_REG_4]
43 #define BPF_R5	regs[BPF_REG_5]
44 #define BPF_R6	regs[BPF_REG_6]
45 #define BPF_R7	regs[BPF_REG_7]
46 #define BPF_R8	regs[BPF_REG_8]
47 #define BPF_R9	regs[BPF_REG_9]
48 #define BPF_R10	regs[BPF_REG_10]
49 
50 /* Named registers */
51 #define DST	regs[insn->dst_reg]
52 #define SRC	regs[insn->src_reg]
53 #define FP	regs[BPF_REG_FP]
54 #define AX	regs[BPF_REG_AX]
55 #define ARG1	regs[BPF_REG_ARG1]
56 #define CTX	regs[BPF_REG_CTX]
57 #define IMM	insn->imm
58 
59 /* No hurry in this branch
60  *
61  * Exported for the bpf jit load helper.
62  */
63 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
64 {
65 	u8 *ptr = NULL;
66 
67 	if (k >= SKF_NET_OFF)
68 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
69 	else if (k >= SKF_LL_OFF)
70 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
71 
72 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
73 		return ptr;
74 
75 	return NULL;
76 }
77 
78 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
79 {
80 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
81 	struct bpf_prog_aux *aux;
82 	struct bpf_prog *fp;
83 
84 	size = round_up(size, PAGE_SIZE);
85 	fp = __vmalloc(size, gfp_flags);
86 	if (fp == NULL)
87 		return NULL;
88 
89 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
90 	if (aux == NULL) {
91 		vfree(fp);
92 		return NULL;
93 	}
94 	fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
95 	if (!fp->active) {
96 		vfree(fp);
97 		kfree(aux);
98 		return NULL;
99 	}
100 
101 	fp->pages = size / PAGE_SIZE;
102 	fp->aux = aux;
103 	fp->aux->prog = fp;
104 	fp->jit_requested = ebpf_jit_enabled();
105 
106 	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
107 	mutex_init(&fp->aux->used_maps_mutex);
108 	mutex_init(&fp->aux->dst_mutex);
109 
110 	return fp;
111 }
112 
113 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
114 {
115 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
116 	struct bpf_prog *prog;
117 	int cpu;
118 
119 	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
120 	if (!prog)
121 		return NULL;
122 
123 	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
124 	if (!prog->stats) {
125 		free_percpu(prog->active);
126 		kfree(prog->aux);
127 		vfree(prog);
128 		return NULL;
129 	}
130 
131 	for_each_possible_cpu(cpu) {
132 		struct bpf_prog_stats *pstats;
133 
134 		pstats = per_cpu_ptr(prog->stats, cpu);
135 		u64_stats_init(&pstats->syncp);
136 	}
137 	return prog;
138 }
139 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
140 
141 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
142 {
143 	if (!prog->aux->nr_linfo || !prog->jit_requested)
144 		return 0;
145 
146 	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
147 					  sizeof(*prog->aux->jited_linfo),
148 					  GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
149 	if (!prog->aux->jited_linfo)
150 		return -ENOMEM;
151 
152 	return 0;
153 }
154 
155 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
156 {
157 	if (prog->aux->jited_linfo &&
158 	    (!prog->jited || !prog->aux->jited_linfo[0])) {
159 		kvfree(prog->aux->jited_linfo);
160 		prog->aux->jited_linfo = NULL;
161 	}
162 
163 	kfree(prog->aux->kfunc_tab);
164 	prog->aux->kfunc_tab = NULL;
165 }
166 
167 /* The jit engine is responsible to provide an array
168  * for insn_off to the jited_off mapping (insn_to_jit_off).
169  *
170  * The idx to this array is the insn_off.  Hence, the insn_off
171  * here is relative to the prog itself instead of the main prog.
172  * This array has one entry for each xlated bpf insn.
173  *
174  * jited_off is the byte off to the last byte of the jited insn.
175  *
176  * Hence, with
177  * insn_start:
178  *      The first bpf insn off of the prog.  The insn off
179  *      here is relative to the main prog.
180  *      e.g. if prog is a subprog, insn_start > 0
181  * linfo_idx:
182  *      The prog's idx to prog->aux->linfo and jited_linfo
183  *
184  * jited_linfo[linfo_idx] = prog->bpf_func
185  *
186  * For i > linfo_idx,
187  *
188  * jited_linfo[i] = prog->bpf_func +
189  *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
190  */
191 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
192 			       const u32 *insn_to_jit_off)
193 {
194 	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
195 	const struct bpf_line_info *linfo;
196 	void **jited_linfo;
197 
198 	if (!prog->aux->jited_linfo)
199 		/* Userspace did not provide linfo */
200 		return;
201 
202 	linfo_idx = prog->aux->linfo_idx;
203 	linfo = &prog->aux->linfo[linfo_idx];
204 	insn_start = linfo[0].insn_off;
205 	insn_end = insn_start + prog->len;
206 
207 	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
208 	jited_linfo[0] = prog->bpf_func;
209 
210 	nr_linfo = prog->aux->nr_linfo - linfo_idx;
211 
212 	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
213 		/* The verifier ensures that linfo[i].insn_off is
214 		 * strictly increasing
215 		 */
216 		jited_linfo[i] = prog->bpf_func +
217 			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
218 }
219 
220 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
221 				  gfp_t gfp_extra_flags)
222 {
223 	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
224 	struct bpf_prog *fp;
225 	u32 pages;
226 
227 	size = round_up(size, PAGE_SIZE);
228 	pages = size / PAGE_SIZE;
229 	if (pages <= fp_old->pages)
230 		return fp_old;
231 
232 	fp = __vmalloc(size, gfp_flags);
233 	if (fp) {
234 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
235 		fp->pages = pages;
236 		fp->aux->prog = fp;
237 
238 		/* We keep fp->aux from fp_old around in the new
239 		 * reallocated structure.
240 		 */
241 		fp_old->aux = NULL;
242 		fp_old->stats = NULL;
243 		fp_old->active = NULL;
244 		__bpf_prog_free(fp_old);
245 	}
246 
247 	return fp;
248 }
249 
250 void __bpf_prog_free(struct bpf_prog *fp)
251 {
252 	if (fp->aux) {
253 		mutex_destroy(&fp->aux->used_maps_mutex);
254 		mutex_destroy(&fp->aux->dst_mutex);
255 		kfree(fp->aux->poke_tab);
256 		kfree(fp->aux);
257 	}
258 	free_percpu(fp->stats);
259 	free_percpu(fp->active);
260 	vfree(fp);
261 }
262 
263 int bpf_prog_calc_tag(struct bpf_prog *fp)
264 {
265 	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
266 	u32 raw_size = bpf_prog_tag_scratch_size(fp);
267 	u32 digest[SHA1_DIGEST_WORDS];
268 	u32 ws[SHA1_WORKSPACE_WORDS];
269 	u32 i, bsize, psize, blocks;
270 	struct bpf_insn *dst;
271 	bool was_ld_map;
272 	u8 *raw, *todo;
273 	__be32 *result;
274 	__be64 *bits;
275 
276 	raw = vmalloc(raw_size);
277 	if (!raw)
278 		return -ENOMEM;
279 
280 	sha1_init(digest);
281 	memset(ws, 0, sizeof(ws));
282 
283 	/* We need to take out the map fd for the digest calculation
284 	 * since they are unstable from user space side.
285 	 */
286 	dst = (void *)raw;
287 	for (i = 0, was_ld_map = false; i < fp->len; i++) {
288 		dst[i] = fp->insnsi[i];
289 		if (!was_ld_map &&
290 		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
291 		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
292 		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
293 			was_ld_map = true;
294 			dst[i].imm = 0;
295 		} else if (was_ld_map &&
296 			   dst[i].code == 0 &&
297 			   dst[i].dst_reg == 0 &&
298 			   dst[i].src_reg == 0 &&
299 			   dst[i].off == 0) {
300 			was_ld_map = false;
301 			dst[i].imm = 0;
302 		} else {
303 			was_ld_map = false;
304 		}
305 	}
306 
307 	psize = bpf_prog_insn_size(fp);
308 	memset(&raw[psize], 0, raw_size - psize);
309 	raw[psize++] = 0x80;
310 
311 	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
312 	blocks = bsize / SHA1_BLOCK_SIZE;
313 	todo   = raw;
314 	if (bsize - psize >= sizeof(__be64)) {
315 		bits = (__be64 *)(todo + bsize - sizeof(__be64));
316 	} else {
317 		bits = (__be64 *)(todo + bsize + bits_offset);
318 		blocks++;
319 	}
320 	*bits = cpu_to_be64((psize - 1) << 3);
321 
322 	while (blocks--) {
323 		sha1_transform(digest, todo, ws);
324 		todo += SHA1_BLOCK_SIZE;
325 	}
326 
327 	result = (__force __be32 *)digest;
328 	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
329 		result[i] = cpu_to_be32(digest[i]);
330 	memcpy(fp->tag, result, sizeof(fp->tag));
331 
332 	vfree(raw);
333 	return 0;
334 }
335 
336 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
337 				s32 end_new, s32 curr, const bool probe_pass)
338 {
339 	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
340 	s32 delta = end_new - end_old;
341 	s64 imm = insn->imm;
342 
343 	if (curr < pos && curr + imm + 1 >= end_old)
344 		imm += delta;
345 	else if (curr >= end_new && curr + imm + 1 < end_new)
346 		imm -= delta;
347 	if (imm < imm_min || imm > imm_max)
348 		return -ERANGE;
349 	if (!probe_pass)
350 		insn->imm = imm;
351 	return 0;
352 }
353 
354 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
355 				s32 end_new, s32 curr, const bool probe_pass)
356 {
357 	const s32 off_min = S16_MIN, off_max = S16_MAX;
358 	s32 delta = end_new - end_old;
359 	s32 off = insn->off;
360 
361 	if (curr < pos && curr + off + 1 >= end_old)
362 		off += delta;
363 	else if (curr >= end_new && curr + off + 1 < end_new)
364 		off -= delta;
365 	if (off < off_min || off > off_max)
366 		return -ERANGE;
367 	if (!probe_pass)
368 		insn->off = off;
369 	return 0;
370 }
371 
372 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
373 			    s32 end_new, const bool probe_pass)
374 {
375 	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
376 	struct bpf_insn *insn = prog->insnsi;
377 	int ret = 0;
378 
379 	for (i = 0; i < insn_cnt; i++, insn++) {
380 		u8 code;
381 
382 		/* In the probing pass we still operate on the original,
383 		 * unpatched image in order to check overflows before we
384 		 * do any other adjustments. Therefore skip the patchlet.
385 		 */
386 		if (probe_pass && i == pos) {
387 			i = end_new;
388 			insn = prog->insnsi + end_old;
389 		}
390 		code = insn->code;
391 		if ((BPF_CLASS(code) != BPF_JMP &&
392 		     BPF_CLASS(code) != BPF_JMP32) ||
393 		    BPF_OP(code) == BPF_EXIT)
394 			continue;
395 		/* Adjust offset of jmps if we cross patch boundaries. */
396 		if (BPF_OP(code) == BPF_CALL) {
397 			if (insn->src_reg != BPF_PSEUDO_CALL)
398 				continue;
399 			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
400 						   end_new, i, probe_pass);
401 		} else {
402 			ret = bpf_adj_delta_to_off(insn, pos, end_old,
403 						   end_new, i, probe_pass);
404 		}
405 		if (ret)
406 			break;
407 	}
408 
409 	return ret;
410 }
411 
412 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
413 {
414 	struct bpf_line_info *linfo;
415 	u32 i, nr_linfo;
416 
417 	nr_linfo = prog->aux->nr_linfo;
418 	if (!nr_linfo || !delta)
419 		return;
420 
421 	linfo = prog->aux->linfo;
422 
423 	for (i = 0; i < nr_linfo; i++)
424 		if (off < linfo[i].insn_off)
425 			break;
426 
427 	/* Push all off < linfo[i].insn_off by delta */
428 	for (; i < nr_linfo; i++)
429 		linfo[i].insn_off += delta;
430 }
431 
432 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
433 				       const struct bpf_insn *patch, u32 len)
434 {
435 	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
436 	const u32 cnt_max = S16_MAX;
437 	struct bpf_prog *prog_adj;
438 	int err;
439 
440 	/* Since our patchlet doesn't expand the image, we're done. */
441 	if (insn_delta == 0) {
442 		memcpy(prog->insnsi + off, patch, sizeof(*patch));
443 		return prog;
444 	}
445 
446 	insn_adj_cnt = prog->len + insn_delta;
447 
448 	/* Reject anything that would potentially let the insn->off
449 	 * target overflow when we have excessive program expansions.
450 	 * We need to probe here before we do any reallocation where
451 	 * we afterwards may not fail anymore.
452 	 */
453 	if (insn_adj_cnt > cnt_max &&
454 	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
455 		return ERR_PTR(err);
456 
457 	/* Several new instructions need to be inserted. Make room
458 	 * for them. Likely, there's no need for a new allocation as
459 	 * last page could have large enough tailroom.
460 	 */
461 	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
462 				    GFP_USER);
463 	if (!prog_adj)
464 		return ERR_PTR(-ENOMEM);
465 
466 	prog_adj->len = insn_adj_cnt;
467 
468 	/* Patching happens in 3 steps:
469 	 *
470 	 * 1) Move over tail of insnsi from next instruction onwards,
471 	 *    so we can patch the single target insn with one or more
472 	 *    new ones (patching is always from 1 to n insns, n > 0).
473 	 * 2) Inject new instructions at the target location.
474 	 * 3) Adjust branch offsets if necessary.
475 	 */
476 	insn_rest = insn_adj_cnt - off - len;
477 
478 	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
479 		sizeof(*patch) * insn_rest);
480 	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
481 
482 	/* We are guaranteed to not fail at this point, otherwise
483 	 * the ship has sailed to reverse to the original state. An
484 	 * overflow cannot happen at this point.
485 	 */
486 	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
487 
488 	bpf_adj_linfo(prog_adj, off, insn_delta);
489 
490 	return prog_adj;
491 }
492 
493 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
494 {
495 	/* Branch offsets can't overflow when program is shrinking, no need
496 	 * to call bpf_adj_branches(..., true) here
497 	 */
498 	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
499 		sizeof(struct bpf_insn) * (prog->len - off - cnt));
500 	prog->len -= cnt;
501 
502 	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
503 }
504 
505 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
506 {
507 	int i;
508 
509 	for (i = 0; i < fp->aux->func_cnt; i++)
510 		bpf_prog_kallsyms_del(fp->aux->func[i]);
511 }
512 
513 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
514 {
515 	bpf_prog_kallsyms_del_subprogs(fp);
516 	bpf_prog_kallsyms_del(fp);
517 }
518 
519 #ifdef CONFIG_BPF_JIT
520 /* All BPF JIT sysctl knobs here. */
521 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
522 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
523 int bpf_jit_harden   __read_mostly;
524 long bpf_jit_limit   __read_mostly;
525 
526 static void
527 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
528 {
529 	const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
530 	unsigned long addr = (unsigned long)hdr;
531 
532 	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
533 
534 	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
535 	prog->aux->ksym.end   = addr + hdr->pages * PAGE_SIZE;
536 }
537 
538 static void
539 bpf_prog_ksym_set_name(struct bpf_prog *prog)
540 {
541 	char *sym = prog->aux->ksym.name;
542 	const char *end = sym + KSYM_NAME_LEN;
543 	const struct btf_type *type;
544 	const char *func_name;
545 
546 	BUILD_BUG_ON(sizeof("bpf_prog_") +
547 		     sizeof(prog->tag) * 2 +
548 		     /* name has been null terminated.
549 		      * We should need +1 for the '_' preceding
550 		      * the name.  However, the null character
551 		      * is double counted between the name and the
552 		      * sizeof("bpf_prog_") above, so we omit
553 		      * the +1 here.
554 		      */
555 		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
556 
557 	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
558 	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
559 
560 	/* prog->aux->name will be ignored if full btf name is available */
561 	if (prog->aux->func_info_cnt) {
562 		type = btf_type_by_id(prog->aux->btf,
563 				      prog->aux->func_info[prog->aux->func_idx].type_id);
564 		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
565 		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
566 		return;
567 	}
568 
569 	if (prog->aux->name[0])
570 		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
571 	else
572 		*sym = 0;
573 }
574 
575 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
576 {
577 	return container_of(n, struct bpf_ksym, tnode)->start;
578 }
579 
580 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
581 					  struct latch_tree_node *b)
582 {
583 	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
584 }
585 
586 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
587 {
588 	unsigned long val = (unsigned long)key;
589 	const struct bpf_ksym *ksym;
590 
591 	ksym = container_of(n, struct bpf_ksym, tnode);
592 
593 	if (val < ksym->start)
594 		return -1;
595 	if (val >= ksym->end)
596 		return  1;
597 
598 	return 0;
599 }
600 
601 static const struct latch_tree_ops bpf_tree_ops = {
602 	.less	= bpf_tree_less,
603 	.comp	= bpf_tree_comp,
604 };
605 
606 static DEFINE_SPINLOCK(bpf_lock);
607 static LIST_HEAD(bpf_kallsyms);
608 static struct latch_tree_root bpf_tree __cacheline_aligned;
609 
610 void bpf_ksym_add(struct bpf_ksym *ksym)
611 {
612 	spin_lock_bh(&bpf_lock);
613 	WARN_ON_ONCE(!list_empty(&ksym->lnode));
614 	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
615 	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
616 	spin_unlock_bh(&bpf_lock);
617 }
618 
619 static void __bpf_ksym_del(struct bpf_ksym *ksym)
620 {
621 	if (list_empty(&ksym->lnode))
622 		return;
623 
624 	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
625 	list_del_rcu(&ksym->lnode);
626 }
627 
628 void bpf_ksym_del(struct bpf_ksym *ksym)
629 {
630 	spin_lock_bh(&bpf_lock);
631 	__bpf_ksym_del(ksym);
632 	spin_unlock_bh(&bpf_lock);
633 }
634 
635 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
636 {
637 	return fp->jited && !bpf_prog_was_classic(fp);
638 }
639 
640 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
641 {
642 	return list_empty(&fp->aux->ksym.lnode) ||
643 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
644 }
645 
646 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
647 {
648 	if (!bpf_prog_kallsyms_candidate(fp) ||
649 	    !bpf_capable())
650 		return;
651 
652 	bpf_prog_ksym_set_addr(fp);
653 	bpf_prog_ksym_set_name(fp);
654 	fp->aux->ksym.prog = true;
655 
656 	bpf_ksym_add(&fp->aux->ksym);
657 }
658 
659 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
660 {
661 	if (!bpf_prog_kallsyms_candidate(fp))
662 		return;
663 
664 	bpf_ksym_del(&fp->aux->ksym);
665 }
666 
667 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
668 {
669 	struct latch_tree_node *n;
670 
671 	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
672 	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
673 }
674 
675 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
676 				 unsigned long *off, char *sym)
677 {
678 	struct bpf_ksym *ksym;
679 	char *ret = NULL;
680 
681 	rcu_read_lock();
682 	ksym = bpf_ksym_find(addr);
683 	if (ksym) {
684 		unsigned long symbol_start = ksym->start;
685 		unsigned long symbol_end = ksym->end;
686 
687 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
688 
689 		ret = sym;
690 		if (size)
691 			*size = symbol_end - symbol_start;
692 		if (off)
693 			*off  = addr - symbol_start;
694 	}
695 	rcu_read_unlock();
696 
697 	return ret;
698 }
699 
700 bool is_bpf_text_address(unsigned long addr)
701 {
702 	bool ret;
703 
704 	rcu_read_lock();
705 	ret = bpf_ksym_find(addr) != NULL;
706 	rcu_read_unlock();
707 
708 	return ret;
709 }
710 
711 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
712 {
713 	struct bpf_ksym *ksym = bpf_ksym_find(addr);
714 
715 	return ksym && ksym->prog ?
716 	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
717 	       NULL;
718 }
719 
720 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
721 {
722 	const struct exception_table_entry *e = NULL;
723 	struct bpf_prog *prog;
724 
725 	rcu_read_lock();
726 	prog = bpf_prog_ksym_find(addr);
727 	if (!prog)
728 		goto out;
729 	if (!prog->aux->num_exentries)
730 		goto out;
731 
732 	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
733 out:
734 	rcu_read_unlock();
735 	return e;
736 }
737 
738 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
739 		    char *sym)
740 {
741 	struct bpf_ksym *ksym;
742 	unsigned int it = 0;
743 	int ret = -ERANGE;
744 
745 	if (!bpf_jit_kallsyms_enabled())
746 		return ret;
747 
748 	rcu_read_lock();
749 	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
750 		if (it++ != symnum)
751 			continue;
752 
753 		strncpy(sym, ksym->name, KSYM_NAME_LEN);
754 
755 		*value = ksym->start;
756 		*type  = BPF_SYM_ELF_TYPE;
757 
758 		ret = 0;
759 		break;
760 	}
761 	rcu_read_unlock();
762 
763 	return ret;
764 }
765 
766 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
767 				struct bpf_jit_poke_descriptor *poke)
768 {
769 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
770 	static const u32 poke_tab_max = 1024;
771 	u32 slot = prog->aux->size_poke_tab;
772 	u32 size = slot + 1;
773 
774 	if (size > poke_tab_max)
775 		return -ENOSPC;
776 	if (poke->tailcall_target || poke->tailcall_target_stable ||
777 	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
778 		return -EINVAL;
779 
780 	switch (poke->reason) {
781 	case BPF_POKE_REASON_TAIL_CALL:
782 		if (!poke->tail_call.map)
783 			return -EINVAL;
784 		break;
785 	default:
786 		return -EINVAL;
787 	}
788 
789 	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
790 	if (!tab)
791 		return -ENOMEM;
792 
793 	memcpy(&tab[slot], poke, sizeof(*poke));
794 	prog->aux->size_poke_tab = size;
795 	prog->aux->poke_tab = tab;
796 
797 	return slot;
798 }
799 
800 static atomic_long_t bpf_jit_current;
801 
802 /* Can be overridden by an arch's JIT compiler if it has a custom,
803  * dedicated BPF backend memory area, or if neither of the two
804  * below apply.
805  */
806 u64 __weak bpf_jit_alloc_exec_limit(void)
807 {
808 #if defined(MODULES_VADDR)
809 	return MODULES_END - MODULES_VADDR;
810 #else
811 	return VMALLOC_END - VMALLOC_START;
812 #endif
813 }
814 
815 static int __init bpf_jit_charge_init(void)
816 {
817 	/* Only used as heuristic here to derive limit. */
818 	bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
819 					    PAGE_SIZE), LONG_MAX);
820 	return 0;
821 }
822 pure_initcall(bpf_jit_charge_init);
823 
824 int bpf_jit_charge_modmem(u32 pages)
825 {
826 	if (atomic_long_add_return(pages, &bpf_jit_current) >
827 	    (bpf_jit_limit >> PAGE_SHIFT)) {
828 		if (!capable(CAP_SYS_ADMIN)) {
829 			atomic_long_sub(pages, &bpf_jit_current);
830 			return -EPERM;
831 		}
832 	}
833 
834 	return 0;
835 }
836 
837 void bpf_jit_uncharge_modmem(u32 pages)
838 {
839 	atomic_long_sub(pages, &bpf_jit_current);
840 }
841 
842 void *__weak bpf_jit_alloc_exec(unsigned long size)
843 {
844 	return module_alloc(size);
845 }
846 
847 void __weak bpf_jit_free_exec(void *addr)
848 {
849 	module_memfree(addr);
850 }
851 
852 struct bpf_binary_header *
853 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
854 		     unsigned int alignment,
855 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
856 {
857 	struct bpf_binary_header *hdr;
858 	u32 size, hole, start, pages;
859 
860 	WARN_ON_ONCE(!is_power_of_2(alignment) ||
861 		     alignment > BPF_IMAGE_ALIGNMENT);
862 
863 	/* Most of BPF filters are really small, but if some of them
864 	 * fill a page, allow at least 128 extra bytes to insert a
865 	 * random section of illegal instructions.
866 	 */
867 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
868 	pages = size / PAGE_SIZE;
869 
870 	if (bpf_jit_charge_modmem(pages))
871 		return NULL;
872 	hdr = bpf_jit_alloc_exec(size);
873 	if (!hdr) {
874 		bpf_jit_uncharge_modmem(pages);
875 		return NULL;
876 	}
877 
878 	/* Fill space with illegal/arch-dep instructions. */
879 	bpf_fill_ill_insns(hdr, size);
880 
881 	hdr->pages = pages;
882 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
883 		     PAGE_SIZE - sizeof(*hdr));
884 	start = (get_random_int() % hole) & ~(alignment - 1);
885 
886 	/* Leave a random number of instructions before BPF code. */
887 	*image_ptr = &hdr->image[start];
888 
889 	return hdr;
890 }
891 
892 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
893 {
894 	u32 pages = hdr->pages;
895 
896 	bpf_jit_free_exec(hdr);
897 	bpf_jit_uncharge_modmem(pages);
898 }
899 
900 /* This symbol is only overridden by archs that have different
901  * requirements than the usual eBPF JITs, f.e. when they only
902  * implement cBPF JIT, do not set images read-only, etc.
903  */
904 void __weak bpf_jit_free(struct bpf_prog *fp)
905 {
906 	if (fp->jited) {
907 		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
908 
909 		bpf_jit_binary_free(hdr);
910 
911 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
912 	}
913 
914 	bpf_prog_unlock_free(fp);
915 }
916 
917 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
918 			  const struct bpf_insn *insn, bool extra_pass,
919 			  u64 *func_addr, bool *func_addr_fixed)
920 {
921 	s16 off = insn->off;
922 	s32 imm = insn->imm;
923 	u8 *addr;
924 
925 	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
926 	if (!*func_addr_fixed) {
927 		/* Place-holder address till the last pass has collected
928 		 * all addresses for JITed subprograms in which case we
929 		 * can pick them up from prog->aux.
930 		 */
931 		if (!extra_pass)
932 			addr = NULL;
933 		else if (prog->aux->func &&
934 			 off >= 0 && off < prog->aux->func_cnt)
935 			addr = (u8 *)prog->aux->func[off]->bpf_func;
936 		else
937 			return -EINVAL;
938 	} else {
939 		/* Address of a BPF helper call. Since part of the core
940 		 * kernel, it's always at a fixed location. __bpf_call_base
941 		 * and the helper with imm relative to it are both in core
942 		 * kernel.
943 		 */
944 		addr = (u8 *)__bpf_call_base + imm;
945 	}
946 
947 	*func_addr = (unsigned long)addr;
948 	return 0;
949 }
950 
951 static int bpf_jit_blind_insn(const struct bpf_insn *from,
952 			      const struct bpf_insn *aux,
953 			      struct bpf_insn *to_buff,
954 			      bool emit_zext)
955 {
956 	struct bpf_insn *to = to_buff;
957 	u32 imm_rnd = get_random_int();
958 	s16 off;
959 
960 	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
961 	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
962 
963 	/* Constraints on AX register:
964 	 *
965 	 * AX register is inaccessible from user space. It is mapped in
966 	 * all JITs, and used here for constant blinding rewrites. It is
967 	 * typically "stateless" meaning its contents are only valid within
968 	 * the executed instruction, but not across several instructions.
969 	 * There are a few exceptions however which are further detailed
970 	 * below.
971 	 *
972 	 * Constant blinding is only used by JITs, not in the interpreter.
973 	 * The interpreter uses AX in some occasions as a local temporary
974 	 * register e.g. in DIV or MOD instructions.
975 	 *
976 	 * In restricted circumstances, the verifier can also use the AX
977 	 * register for rewrites as long as they do not interfere with
978 	 * the above cases!
979 	 */
980 	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
981 		goto out;
982 
983 	if (from->imm == 0 &&
984 	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
985 	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
986 		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
987 		goto out;
988 	}
989 
990 	switch (from->code) {
991 	case BPF_ALU | BPF_ADD | BPF_K:
992 	case BPF_ALU | BPF_SUB | BPF_K:
993 	case BPF_ALU | BPF_AND | BPF_K:
994 	case BPF_ALU | BPF_OR  | BPF_K:
995 	case BPF_ALU | BPF_XOR | BPF_K:
996 	case BPF_ALU | BPF_MUL | BPF_K:
997 	case BPF_ALU | BPF_MOV | BPF_K:
998 	case BPF_ALU | BPF_DIV | BPF_K:
999 	case BPF_ALU | BPF_MOD | BPF_K:
1000 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1001 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1002 		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1003 		break;
1004 
1005 	case BPF_ALU64 | BPF_ADD | BPF_K:
1006 	case BPF_ALU64 | BPF_SUB | BPF_K:
1007 	case BPF_ALU64 | BPF_AND | BPF_K:
1008 	case BPF_ALU64 | BPF_OR  | BPF_K:
1009 	case BPF_ALU64 | BPF_XOR | BPF_K:
1010 	case BPF_ALU64 | BPF_MUL | BPF_K:
1011 	case BPF_ALU64 | BPF_MOV | BPF_K:
1012 	case BPF_ALU64 | BPF_DIV | BPF_K:
1013 	case BPF_ALU64 | BPF_MOD | BPF_K:
1014 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1015 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1016 		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1017 		break;
1018 
1019 	case BPF_JMP | BPF_JEQ  | BPF_K:
1020 	case BPF_JMP | BPF_JNE  | BPF_K:
1021 	case BPF_JMP | BPF_JGT  | BPF_K:
1022 	case BPF_JMP | BPF_JLT  | BPF_K:
1023 	case BPF_JMP | BPF_JGE  | BPF_K:
1024 	case BPF_JMP | BPF_JLE  | BPF_K:
1025 	case BPF_JMP | BPF_JSGT | BPF_K:
1026 	case BPF_JMP | BPF_JSLT | BPF_K:
1027 	case BPF_JMP | BPF_JSGE | BPF_K:
1028 	case BPF_JMP | BPF_JSLE | BPF_K:
1029 	case BPF_JMP | BPF_JSET | BPF_K:
1030 		/* Accommodate for extra offset in case of a backjump. */
1031 		off = from->off;
1032 		if (off < 0)
1033 			off -= 2;
1034 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1035 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1036 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1037 		break;
1038 
1039 	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1040 	case BPF_JMP32 | BPF_JNE  | BPF_K:
1041 	case BPF_JMP32 | BPF_JGT  | BPF_K:
1042 	case BPF_JMP32 | BPF_JLT  | BPF_K:
1043 	case BPF_JMP32 | BPF_JGE  | BPF_K:
1044 	case BPF_JMP32 | BPF_JLE  | BPF_K:
1045 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1046 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1047 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1048 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1049 	case BPF_JMP32 | BPF_JSET | BPF_K:
1050 		/* Accommodate for extra offset in case of a backjump. */
1051 		off = from->off;
1052 		if (off < 0)
1053 			off -= 2;
1054 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1055 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1056 		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1057 				      off);
1058 		break;
1059 
1060 	case BPF_LD | BPF_IMM | BPF_DW:
1061 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1062 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1063 		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1064 		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1065 		break;
1066 	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1067 		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1068 		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1069 		if (emit_zext)
1070 			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1071 		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1072 		break;
1073 
1074 	case BPF_ST | BPF_MEM | BPF_DW:
1075 	case BPF_ST | BPF_MEM | BPF_W:
1076 	case BPF_ST | BPF_MEM | BPF_H:
1077 	case BPF_ST | BPF_MEM | BPF_B:
1078 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1079 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1080 		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1081 		break;
1082 	}
1083 out:
1084 	return to - to_buff;
1085 }
1086 
1087 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1088 					      gfp_t gfp_extra_flags)
1089 {
1090 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1091 	struct bpf_prog *fp;
1092 
1093 	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1094 	if (fp != NULL) {
1095 		/* aux->prog still points to the fp_other one, so
1096 		 * when promoting the clone to the real program,
1097 		 * this still needs to be adapted.
1098 		 */
1099 		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1100 	}
1101 
1102 	return fp;
1103 }
1104 
1105 static void bpf_prog_clone_free(struct bpf_prog *fp)
1106 {
1107 	/* aux was stolen by the other clone, so we cannot free
1108 	 * it from this path! It will be freed eventually by the
1109 	 * other program on release.
1110 	 *
1111 	 * At this point, we don't need a deferred release since
1112 	 * clone is guaranteed to not be locked.
1113 	 */
1114 	fp->aux = NULL;
1115 	fp->stats = NULL;
1116 	fp->active = NULL;
1117 	__bpf_prog_free(fp);
1118 }
1119 
1120 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1121 {
1122 	/* We have to repoint aux->prog to self, as we don't
1123 	 * know whether fp here is the clone or the original.
1124 	 */
1125 	fp->aux->prog = fp;
1126 	bpf_prog_clone_free(fp_other);
1127 }
1128 
1129 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1130 {
1131 	struct bpf_insn insn_buff[16], aux[2];
1132 	struct bpf_prog *clone, *tmp;
1133 	int insn_delta, insn_cnt;
1134 	struct bpf_insn *insn;
1135 	int i, rewritten;
1136 
1137 	if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1138 		return prog;
1139 
1140 	clone = bpf_prog_clone_create(prog, GFP_USER);
1141 	if (!clone)
1142 		return ERR_PTR(-ENOMEM);
1143 
1144 	insn_cnt = clone->len;
1145 	insn = clone->insnsi;
1146 
1147 	for (i = 0; i < insn_cnt; i++, insn++) {
1148 		/* We temporarily need to hold the original ld64 insn
1149 		 * so that we can still access the first part in the
1150 		 * second blinding run.
1151 		 */
1152 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1153 		    insn[1].code == 0)
1154 			memcpy(aux, insn, sizeof(aux));
1155 
1156 		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1157 						clone->aux->verifier_zext);
1158 		if (!rewritten)
1159 			continue;
1160 
1161 		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1162 		if (IS_ERR(tmp)) {
1163 			/* Patching may have repointed aux->prog during
1164 			 * realloc from the original one, so we need to
1165 			 * fix it up here on error.
1166 			 */
1167 			bpf_jit_prog_release_other(prog, clone);
1168 			return tmp;
1169 		}
1170 
1171 		clone = tmp;
1172 		insn_delta = rewritten - 1;
1173 
1174 		/* Walk new program and skip insns we just inserted. */
1175 		insn = clone->insnsi + i + insn_delta;
1176 		insn_cnt += insn_delta;
1177 		i        += insn_delta;
1178 	}
1179 
1180 	clone->blinded = 1;
1181 	return clone;
1182 }
1183 #endif /* CONFIG_BPF_JIT */
1184 
1185 /* Base function for offset calculation. Needs to go into .text section,
1186  * therefore keeping it non-static as well; will also be used by JITs
1187  * anyway later on, so do not let the compiler omit it. This also needs
1188  * to go into kallsyms for correlation from e.g. bpftool, so naming
1189  * must not change.
1190  */
1191 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1192 {
1193 	return 0;
1194 }
1195 EXPORT_SYMBOL_GPL(__bpf_call_base);
1196 
1197 /* All UAPI available opcodes. */
1198 #define BPF_INSN_MAP(INSN_2, INSN_3)		\
1199 	/* 32 bit ALU operations. */		\
1200 	/*   Register based. */			\
1201 	INSN_3(ALU, ADD,  X),			\
1202 	INSN_3(ALU, SUB,  X),			\
1203 	INSN_3(ALU, AND,  X),			\
1204 	INSN_3(ALU, OR,   X),			\
1205 	INSN_3(ALU, LSH,  X),			\
1206 	INSN_3(ALU, RSH,  X),			\
1207 	INSN_3(ALU, XOR,  X),			\
1208 	INSN_3(ALU, MUL,  X),			\
1209 	INSN_3(ALU, MOV,  X),			\
1210 	INSN_3(ALU, ARSH, X),			\
1211 	INSN_3(ALU, DIV,  X),			\
1212 	INSN_3(ALU, MOD,  X),			\
1213 	INSN_2(ALU, NEG),			\
1214 	INSN_3(ALU, END, TO_BE),		\
1215 	INSN_3(ALU, END, TO_LE),		\
1216 	/*   Immediate based. */		\
1217 	INSN_3(ALU, ADD,  K),			\
1218 	INSN_3(ALU, SUB,  K),			\
1219 	INSN_3(ALU, AND,  K),			\
1220 	INSN_3(ALU, OR,   K),			\
1221 	INSN_3(ALU, LSH,  K),			\
1222 	INSN_3(ALU, RSH,  K),			\
1223 	INSN_3(ALU, XOR,  K),			\
1224 	INSN_3(ALU, MUL,  K),			\
1225 	INSN_3(ALU, MOV,  K),			\
1226 	INSN_3(ALU, ARSH, K),			\
1227 	INSN_3(ALU, DIV,  K),			\
1228 	INSN_3(ALU, MOD,  K),			\
1229 	/* 64 bit ALU operations. */		\
1230 	/*   Register based. */			\
1231 	INSN_3(ALU64, ADD,  X),			\
1232 	INSN_3(ALU64, SUB,  X),			\
1233 	INSN_3(ALU64, AND,  X),			\
1234 	INSN_3(ALU64, OR,   X),			\
1235 	INSN_3(ALU64, LSH,  X),			\
1236 	INSN_3(ALU64, RSH,  X),			\
1237 	INSN_3(ALU64, XOR,  X),			\
1238 	INSN_3(ALU64, MUL,  X),			\
1239 	INSN_3(ALU64, MOV,  X),			\
1240 	INSN_3(ALU64, ARSH, X),			\
1241 	INSN_3(ALU64, DIV,  X),			\
1242 	INSN_3(ALU64, MOD,  X),			\
1243 	INSN_2(ALU64, NEG),			\
1244 	/*   Immediate based. */		\
1245 	INSN_3(ALU64, ADD,  K),			\
1246 	INSN_3(ALU64, SUB,  K),			\
1247 	INSN_3(ALU64, AND,  K),			\
1248 	INSN_3(ALU64, OR,   K),			\
1249 	INSN_3(ALU64, LSH,  K),			\
1250 	INSN_3(ALU64, RSH,  K),			\
1251 	INSN_3(ALU64, XOR,  K),			\
1252 	INSN_3(ALU64, MUL,  K),			\
1253 	INSN_3(ALU64, MOV,  K),			\
1254 	INSN_3(ALU64, ARSH, K),			\
1255 	INSN_3(ALU64, DIV,  K),			\
1256 	INSN_3(ALU64, MOD,  K),			\
1257 	/* Call instruction. */			\
1258 	INSN_2(JMP, CALL),			\
1259 	/* Exit instruction. */			\
1260 	INSN_2(JMP, EXIT),			\
1261 	/* 32-bit Jump instructions. */		\
1262 	/*   Register based. */			\
1263 	INSN_3(JMP32, JEQ,  X),			\
1264 	INSN_3(JMP32, JNE,  X),			\
1265 	INSN_3(JMP32, JGT,  X),			\
1266 	INSN_3(JMP32, JLT,  X),			\
1267 	INSN_3(JMP32, JGE,  X),			\
1268 	INSN_3(JMP32, JLE,  X),			\
1269 	INSN_3(JMP32, JSGT, X),			\
1270 	INSN_3(JMP32, JSLT, X),			\
1271 	INSN_3(JMP32, JSGE, X),			\
1272 	INSN_3(JMP32, JSLE, X),			\
1273 	INSN_3(JMP32, JSET, X),			\
1274 	/*   Immediate based. */		\
1275 	INSN_3(JMP32, JEQ,  K),			\
1276 	INSN_3(JMP32, JNE,  K),			\
1277 	INSN_3(JMP32, JGT,  K),			\
1278 	INSN_3(JMP32, JLT,  K),			\
1279 	INSN_3(JMP32, JGE,  K),			\
1280 	INSN_3(JMP32, JLE,  K),			\
1281 	INSN_3(JMP32, JSGT, K),			\
1282 	INSN_3(JMP32, JSLT, K),			\
1283 	INSN_3(JMP32, JSGE, K),			\
1284 	INSN_3(JMP32, JSLE, K),			\
1285 	INSN_3(JMP32, JSET, K),			\
1286 	/* Jump instructions. */		\
1287 	/*   Register based. */			\
1288 	INSN_3(JMP, JEQ,  X),			\
1289 	INSN_3(JMP, JNE,  X),			\
1290 	INSN_3(JMP, JGT,  X),			\
1291 	INSN_3(JMP, JLT,  X),			\
1292 	INSN_3(JMP, JGE,  X),			\
1293 	INSN_3(JMP, JLE,  X),			\
1294 	INSN_3(JMP, JSGT, X),			\
1295 	INSN_3(JMP, JSLT, X),			\
1296 	INSN_3(JMP, JSGE, X),			\
1297 	INSN_3(JMP, JSLE, X),			\
1298 	INSN_3(JMP, JSET, X),			\
1299 	/*   Immediate based. */		\
1300 	INSN_3(JMP, JEQ,  K),			\
1301 	INSN_3(JMP, JNE,  K),			\
1302 	INSN_3(JMP, JGT,  K),			\
1303 	INSN_3(JMP, JLT,  K),			\
1304 	INSN_3(JMP, JGE,  K),			\
1305 	INSN_3(JMP, JLE,  K),			\
1306 	INSN_3(JMP, JSGT, K),			\
1307 	INSN_3(JMP, JSLT, K),			\
1308 	INSN_3(JMP, JSGE, K),			\
1309 	INSN_3(JMP, JSLE, K),			\
1310 	INSN_3(JMP, JSET, K),			\
1311 	INSN_2(JMP, JA),			\
1312 	/* Store instructions. */		\
1313 	/*   Register based. */			\
1314 	INSN_3(STX, MEM,  B),			\
1315 	INSN_3(STX, MEM,  H),			\
1316 	INSN_3(STX, MEM,  W),			\
1317 	INSN_3(STX, MEM,  DW),			\
1318 	INSN_3(STX, ATOMIC, W),			\
1319 	INSN_3(STX, ATOMIC, DW),		\
1320 	/*   Immediate based. */		\
1321 	INSN_3(ST, MEM, B),			\
1322 	INSN_3(ST, MEM, H),			\
1323 	INSN_3(ST, MEM, W),			\
1324 	INSN_3(ST, MEM, DW),			\
1325 	/* Load instructions. */		\
1326 	/*   Register based. */			\
1327 	INSN_3(LDX, MEM, B),			\
1328 	INSN_3(LDX, MEM, H),			\
1329 	INSN_3(LDX, MEM, W),			\
1330 	INSN_3(LDX, MEM, DW),			\
1331 	/*   Immediate based. */		\
1332 	INSN_3(LD, IMM, DW)
1333 
1334 bool bpf_opcode_in_insntable(u8 code)
1335 {
1336 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1337 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1338 	static const bool public_insntable[256] = {
1339 		[0 ... 255] = false,
1340 		/* Now overwrite non-defaults ... */
1341 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1342 		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1343 		[BPF_LD | BPF_ABS | BPF_B] = true,
1344 		[BPF_LD | BPF_ABS | BPF_H] = true,
1345 		[BPF_LD | BPF_ABS | BPF_W] = true,
1346 		[BPF_LD | BPF_IND | BPF_B] = true,
1347 		[BPF_LD | BPF_IND | BPF_H] = true,
1348 		[BPF_LD | BPF_IND | BPF_W] = true,
1349 	};
1350 #undef BPF_INSN_3_TBL
1351 #undef BPF_INSN_2_TBL
1352 	return public_insntable[code];
1353 }
1354 
1355 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1356 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1357 {
1358 	memset(dst, 0, size);
1359 	return -EFAULT;
1360 }
1361 
1362 /**
1363  *	__bpf_prog_run - run eBPF program on a given context
1364  *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1365  *	@insn: is the array of eBPF instructions
1366  *
1367  * Decode and execute eBPF instructions.
1368  */
1369 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1370 {
1371 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1372 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1373 	static const void * const jumptable[256] __annotate_jump_table = {
1374 		[0 ... 255] = &&default_label,
1375 		/* Now overwrite non-defaults ... */
1376 		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1377 		/* Non-UAPI available opcodes. */
1378 		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1379 		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1380 		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1381 		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1382 		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1383 		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1384 	};
1385 #undef BPF_INSN_3_LBL
1386 #undef BPF_INSN_2_LBL
1387 	u32 tail_call_cnt = 0;
1388 
1389 #define CONT	 ({ insn++; goto select_insn; })
1390 #define CONT_JMP ({ insn++; goto select_insn; })
1391 
1392 select_insn:
1393 	goto *jumptable[insn->code];
1394 
1395 	/* ALU */
1396 #define ALU(OPCODE, OP)			\
1397 	ALU64_##OPCODE##_X:		\
1398 		DST = DST OP SRC;	\
1399 		CONT;			\
1400 	ALU_##OPCODE##_X:		\
1401 		DST = (u32) DST OP (u32) SRC;	\
1402 		CONT;			\
1403 	ALU64_##OPCODE##_K:		\
1404 		DST = DST OP IMM;		\
1405 		CONT;			\
1406 	ALU_##OPCODE##_K:		\
1407 		DST = (u32) DST OP (u32) IMM;	\
1408 		CONT;
1409 
1410 	ALU(ADD,  +)
1411 	ALU(SUB,  -)
1412 	ALU(AND,  &)
1413 	ALU(OR,   |)
1414 	ALU(LSH, <<)
1415 	ALU(RSH, >>)
1416 	ALU(XOR,  ^)
1417 	ALU(MUL,  *)
1418 #undef ALU
1419 	ALU_NEG:
1420 		DST = (u32) -DST;
1421 		CONT;
1422 	ALU64_NEG:
1423 		DST = -DST;
1424 		CONT;
1425 	ALU_MOV_X:
1426 		DST = (u32) SRC;
1427 		CONT;
1428 	ALU_MOV_K:
1429 		DST = (u32) IMM;
1430 		CONT;
1431 	ALU64_MOV_X:
1432 		DST = SRC;
1433 		CONT;
1434 	ALU64_MOV_K:
1435 		DST = IMM;
1436 		CONT;
1437 	LD_IMM_DW:
1438 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1439 		insn++;
1440 		CONT;
1441 	ALU_ARSH_X:
1442 		DST = (u64) (u32) (((s32) DST) >> SRC);
1443 		CONT;
1444 	ALU_ARSH_K:
1445 		DST = (u64) (u32) (((s32) DST) >> IMM);
1446 		CONT;
1447 	ALU64_ARSH_X:
1448 		(*(s64 *) &DST) >>= SRC;
1449 		CONT;
1450 	ALU64_ARSH_K:
1451 		(*(s64 *) &DST) >>= IMM;
1452 		CONT;
1453 	ALU64_MOD_X:
1454 		div64_u64_rem(DST, SRC, &AX);
1455 		DST = AX;
1456 		CONT;
1457 	ALU_MOD_X:
1458 		AX = (u32) DST;
1459 		DST = do_div(AX, (u32) SRC);
1460 		CONT;
1461 	ALU64_MOD_K:
1462 		div64_u64_rem(DST, IMM, &AX);
1463 		DST = AX;
1464 		CONT;
1465 	ALU_MOD_K:
1466 		AX = (u32) DST;
1467 		DST = do_div(AX, (u32) IMM);
1468 		CONT;
1469 	ALU64_DIV_X:
1470 		DST = div64_u64(DST, SRC);
1471 		CONT;
1472 	ALU_DIV_X:
1473 		AX = (u32) DST;
1474 		do_div(AX, (u32) SRC);
1475 		DST = (u32) AX;
1476 		CONT;
1477 	ALU64_DIV_K:
1478 		DST = div64_u64(DST, IMM);
1479 		CONT;
1480 	ALU_DIV_K:
1481 		AX = (u32) DST;
1482 		do_div(AX, (u32) IMM);
1483 		DST = (u32) AX;
1484 		CONT;
1485 	ALU_END_TO_BE:
1486 		switch (IMM) {
1487 		case 16:
1488 			DST = (__force u16) cpu_to_be16(DST);
1489 			break;
1490 		case 32:
1491 			DST = (__force u32) cpu_to_be32(DST);
1492 			break;
1493 		case 64:
1494 			DST = (__force u64) cpu_to_be64(DST);
1495 			break;
1496 		}
1497 		CONT;
1498 	ALU_END_TO_LE:
1499 		switch (IMM) {
1500 		case 16:
1501 			DST = (__force u16) cpu_to_le16(DST);
1502 			break;
1503 		case 32:
1504 			DST = (__force u32) cpu_to_le32(DST);
1505 			break;
1506 		case 64:
1507 			DST = (__force u64) cpu_to_le64(DST);
1508 			break;
1509 		}
1510 		CONT;
1511 
1512 	/* CALL */
1513 	JMP_CALL:
1514 		/* Function call scratches BPF_R1-BPF_R5 registers,
1515 		 * preserves BPF_R6-BPF_R9, and stores return value
1516 		 * into BPF_R0.
1517 		 */
1518 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1519 						       BPF_R4, BPF_R5);
1520 		CONT;
1521 
1522 	JMP_CALL_ARGS:
1523 		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1524 							    BPF_R3, BPF_R4,
1525 							    BPF_R5,
1526 							    insn + insn->off + 1);
1527 		CONT;
1528 
1529 	JMP_TAIL_CALL: {
1530 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1531 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1532 		struct bpf_prog *prog;
1533 		u32 index = BPF_R3;
1534 
1535 		if (unlikely(index >= array->map.max_entries))
1536 			goto out;
1537 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1538 			goto out;
1539 
1540 		tail_call_cnt++;
1541 
1542 		prog = READ_ONCE(array->ptrs[index]);
1543 		if (!prog)
1544 			goto out;
1545 
1546 		/* ARG1 at this point is guaranteed to point to CTX from
1547 		 * the verifier side due to the fact that the tail call is
1548 		 * handled like a helper, that is, bpf_tail_call_proto,
1549 		 * where arg1_type is ARG_PTR_TO_CTX.
1550 		 */
1551 		insn = prog->insnsi;
1552 		goto select_insn;
1553 out:
1554 		CONT;
1555 	}
1556 	JMP_JA:
1557 		insn += insn->off;
1558 		CONT;
1559 	JMP_EXIT:
1560 		return BPF_R0;
1561 	/* JMP */
1562 #define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1563 	JMP_##OPCODE##_X:					\
1564 		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1565 			insn += insn->off;			\
1566 			CONT_JMP;				\
1567 		}						\
1568 		CONT;						\
1569 	JMP32_##OPCODE##_X:					\
1570 		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1571 			insn += insn->off;			\
1572 			CONT_JMP;				\
1573 		}						\
1574 		CONT;						\
1575 	JMP_##OPCODE##_K:					\
1576 		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1577 			insn += insn->off;			\
1578 			CONT_JMP;				\
1579 		}						\
1580 		CONT;						\
1581 	JMP32_##OPCODE##_K:					\
1582 		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1583 			insn += insn->off;			\
1584 			CONT_JMP;				\
1585 		}						\
1586 		CONT;
1587 	COND_JMP(u, JEQ, ==)
1588 	COND_JMP(u, JNE, !=)
1589 	COND_JMP(u, JGT, >)
1590 	COND_JMP(u, JLT, <)
1591 	COND_JMP(u, JGE, >=)
1592 	COND_JMP(u, JLE, <=)
1593 	COND_JMP(u, JSET, &)
1594 	COND_JMP(s, JSGT, >)
1595 	COND_JMP(s, JSLT, <)
1596 	COND_JMP(s, JSGE, >=)
1597 	COND_JMP(s, JSLE, <=)
1598 #undef COND_JMP
1599 	/* STX and ST and LDX*/
1600 #define LDST(SIZEOP, SIZE)						\
1601 	STX_MEM_##SIZEOP:						\
1602 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1603 		CONT;							\
1604 	ST_MEM_##SIZEOP:						\
1605 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1606 		CONT;							\
1607 	LDX_MEM_##SIZEOP:						\
1608 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1609 		CONT;
1610 
1611 	LDST(B,   u8)
1612 	LDST(H,  u16)
1613 	LDST(W,  u32)
1614 	LDST(DW, u64)
1615 #undef LDST
1616 #define LDX_PROBE(SIZEOP, SIZE)							\
1617 	LDX_PROBE_MEM_##SIZEOP:							\
1618 		bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off));	\
1619 		CONT;
1620 	LDX_PROBE(B,  1)
1621 	LDX_PROBE(H,  2)
1622 	LDX_PROBE(W,  4)
1623 	LDX_PROBE(DW, 8)
1624 #undef LDX_PROBE
1625 
1626 #define ATOMIC_ALU_OP(BOP, KOP)						\
1627 		case BOP:						\
1628 			if (BPF_SIZE(insn->code) == BPF_W)		\
1629 				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1630 					     (DST + insn->off));	\
1631 			else						\
1632 				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1633 					       (DST + insn->off));	\
1634 			break;						\
1635 		case BOP | BPF_FETCH:					\
1636 			if (BPF_SIZE(insn->code) == BPF_W)		\
1637 				SRC = (u32) atomic_fetch_##KOP(		\
1638 					(u32) SRC,			\
1639 					(atomic_t *)(unsigned long) (DST + insn->off)); \
1640 			else						\
1641 				SRC = (u64) atomic64_fetch_##KOP(	\
1642 					(u64) SRC,			\
1643 					(atomic64_t *)(unsigned long) (DST + insn->off)); \
1644 			break;
1645 
1646 	STX_ATOMIC_DW:
1647 	STX_ATOMIC_W:
1648 		switch (IMM) {
1649 		ATOMIC_ALU_OP(BPF_ADD, add)
1650 		ATOMIC_ALU_OP(BPF_AND, and)
1651 		ATOMIC_ALU_OP(BPF_OR, or)
1652 		ATOMIC_ALU_OP(BPF_XOR, xor)
1653 #undef ATOMIC_ALU_OP
1654 
1655 		case BPF_XCHG:
1656 			if (BPF_SIZE(insn->code) == BPF_W)
1657 				SRC = (u32) atomic_xchg(
1658 					(atomic_t *)(unsigned long) (DST + insn->off),
1659 					(u32) SRC);
1660 			else
1661 				SRC = (u64) atomic64_xchg(
1662 					(atomic64_t *)(unsigned long) (DST + insn->off),
1663 					(u64) SRC);
1664 			break;
1665 		case BPF_CMPXCHG:
1666 			if (BPF_SIZE(insn->code) == BPF_W)
1667 				BPF_R0 = (u32) atomic_cmpxchg(
1668 					(atomic_t *)(unsigned long) (DST + insn->off),
1669 					(u32) BPF_R0, (u32) SRC);
1670 			else
1671 				BPF_R0 = (u64) atomic64_cmpxchg(
1672 					(atomic64_t *)(unsigned long) (DST + insn->off),
1673 					(u64) BPF_R0, (u64) SRC);
1674 			break;
1675 
1676 		default:
1677 			goto default_label;
1678 		}
1679 		CONT;
1680 
1681 	default_label:
1682 		/* If we ever reach this, we have a bug somewhere. Die hard here
1683 		 * instead of just returning 0; we could be somewhere in a subprog,
1684 		 * so execution could continue otherwise which we do /not/ want.
1685 		 *
1686 		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1687 		 */
1688 		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
1689 			insn->code, insn->imm);
1690 		BUG_ON(1);
1691 		return 0;
1692 }
1693 
1694 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1695 #define DEFINE_BPF_PROG_RUN(stack_size) \
1696 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1697 { \
1698 	u64 stack[stack_size / sizeof(u64)]; \
1699 	u64 regs[MAX_BPF_EXT_REG]; \
1700 \
1701 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1702 	ARG1 = (u64) (unsigned long) ctx; \
1703 	return ___bpf_prog_run(regs, insn); \
1704 }
1705 
1706 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1707 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1708 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1709 				      const struct bpf_insn *insn) \
1710 { \
1711 	u64 stack[stack_size / sizeof(u64)]; \
1712 	u64 regs[MAX_BPF_EXT_REG]; \
1713 \
1714 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1715 	BPF_R1 = r1; \
1716 	BPF_R2 = r2; \
1717 	BPF_R3 = r3; \
1718 	BPF_R4 = r4; \
1719 	BPF_R5 = r5; \
1720 	return ___bpf_prog_run(regs, insn); \
1721 }
1722 
1723 #define EVAL1(FN, X) FN(X)
1724 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1725 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1726 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1727 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1728 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1729 
1730 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1731 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1732 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1733 
1734 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1735 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1736 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1737 
1738 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1739 
1740 static unsigned int (*interpreters[])(const void *ctx,
1741 				      const struct bpf_insn *insn) = {
1742 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1743 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1744 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1745 };
1746 #undef PROG_NAME_LIST
1747 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1748 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1749 				  const struct bpf_insn *insn) = {
1750 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1751 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1752 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1753 };
1754 #undef PROG_NAME_LIST
1755 
1756 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1757 {
1758 	stack_depth = max_t(u32, stack_depth, 1);
1759 	insn->off = (s16) insn->imm;
1760 	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1761 		__bpf_call_base_args;
1762 	insn->code = BPF_JMP | BPF_CALL_ARGS;
1763 }
1764 
1765 #else
1766 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1767 					 const struct bpf_insn *insn)
1768 {
1769 	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1770 	 * is not working properly, so warn about it!
1771 	 */
1772 	WARN_ON_ONCE(1);
1773 	return 0;
1774 }
1775 #endif
1776 
1777 bool bpf_prog_array_compatible(struct bpf_array *array,
1778 			       const struct bpf_prog *fp)
1779 {
1780 	if (fp->kprobe_override)
1781 		return false;
1782 
1783 	if (!array->aux->type) {
1784 		/* There's no owner yet where we could check for
1785 		 * compatibility.
1786 		 */
1787 		array->aux->type  = fp->type;
1788 		array->aux->jited = fp->jited;
1789 		return true;
1790 	}
1791 
1792 	return array->aux->type  == fp->type &&
1793 	       array->aux->jited == fp->jited;
1794 }
1795 
1796 static int bpf_check_tail_call(const struct bpf_prog *fp)
1797 {
1798 	struct bpf_prog_aux *aux = fp->aux;
1799 	int i, ret = 0;
1800 
1801 	mutex_lock(&aux->used_maps_mutex);
1802 	for (i = 0; i < aux->used_map_cnt; i++) {
1803 		struct bpf_map *map = aux->used_maps[i];
1804 		struct bpf_array *array;
1805 
1806 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1807 			continue;
1808 
1809 		array = container_of(map, struct bpf_array, map);
1810 		if (!bpf_prog_array_compatible(array, fp)) {
1811 			ret = -EINVAL;
1812 			goto out;
1813 		}
1814 	}
1815 
1816 out:
1817 	mutex_unlock(&aux->used_maps_mutex);
1818 	return ret;
1819 }
1820 
1821 static void bpf_prog_select_func(struct bpf_prog *fp)
1822 {
1823 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1824 	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1825 
1826 	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1827 #else
1828 	fp->bpf_func = __bpf_prog_ret0_warn;
1829 #endif
1830 }
1831 
1832 /**
1833  *	bpf_prog_select_runtime - select exec runtime for BPF program
1834  *	@fp: bpf_prog populated with internal BPF program
1835  *	@err: pointer to error variable
1836  *
1837  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1838  * The BPF program will be executed via BPF_PROG_RUN() macro.
1839  */
1840 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1841 {
1842 	/* In case of BPF to BPF calls, verifier did all the prep
1843 	 * work with regards to JITing, etc.
1844 	 */
1845 	bool jit_needed = false;
1846 
1847 	if (fp->bpf_func)
1848 		goto finalize;
1849 
1850 	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
1851 	    bpf_prog_has_kfunc_call(fp))
1852 		jit_needed = true;
1853 
1854 	bpf_prog_select_func(fp);
1855 
1856 	/* eBPF JITs can rewrite the program in case constant
1857 	 * blinding is active. However, in case of error during
1858 	 * blinding, bpf_int_jit_compile() must always return a
1859 	 * valid program, which in this case would simply not
1860 	 * be JITed, but falls back to the interpreter.
1861 	 */
1862 	if (!bpf_prog_is_dev_bound(fp->aux)) {
1863 		*err = bpf_prog_alloc_jited_linfo(fp);
1864 		if (*err)
1865 			return fp;
1866 
1867 		fp = bpf_int_jit_compile(fp);
1868 		bpf_prog_jit_attempt_done(fp);
1869 		if (!fp->jited && jit_needed) {
1870 			*err = -ENOTSUPP;
1871 			return fp;
1872 		}
1873 	} else {
1874 		*err = bpf_prog_offload_compile(fp);
1875 		if (*err)
1876 			return fp;
1877 	}
1878 
1879 finalize:
1880 	bpf_prog_lock_ro(fp);
1881 
1882 	/* The tail call compatibility check can only be done at
1883 	 * this late stage as we need to determine, if we deal
1884 	 * with JITed or non JITed program concatenations and not
1885 	 * all eBPF JITs might immediately support all features.
1886 	 */
1887 	*err = bpf_check_tail_call(fp);
1888 
1889 	return fp;
1890 }
1891 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1892 
1893 static unsigned int __bpf_prog_ret1(const void *ctx,
1894 				    const struct bpf_insn *insn)
1895 {
1896 	return 1;
1897 }
1898 
1899 static struct bpf_prog_dummy {
1900 	struct bpf_prog prog;
1901 } dummy_bpf_prog = {
1902 	.prog = {
1903 		.bpf_func = __bpf_prog_ret1,
1904 	},
1905 };
1906 
1907 /* to avoid allocating empty bpf_prog_array for cgroups that
1908  * don't have bpf program attached use one global 'empty_prog_array'
1909  * It will not be modified the caller of bpf_prog_array_alloc()
1910  * (since caller requested prog_cnt == 0)
1911  * that pointer should be 'freed' by bpf_prog_array_free()
1912  */
1913 static struct {
1914 	struct bpf_prog_array hdr;
1915 	struct bpf_prog *null_prog;
1916 } empty_prog_array = {
1917 	.null_prog = NULL,
1918 };
1919 
1920 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1921 {
1922 	if (prog_cnt)
1923 		return kzalloc(sizeof(struct bpf_prog_array) +
1924 			       sizeof(struct bpf_prog_array_item) *
1925 			       (prog_cnt + 1),
1926 			       flags);
1927 
1928 	return &empty_prog_array.hdr;
1929 }
1930 
1931 void bpf_prog_array_free(struct bpf_prog_array *progs)
1932 {
1933 	if (!progs || progs == &empty_prog_array.hdr)
1934 		return;
1935 	kfree_rcu(progs, rcu);
1936 }
1937 
1938 int bpf_prog_array_length(struct bpf_prog_array *array)
1939 {
1940 	struct bpf_prog_array_item *item;
1941 	u32 cnt = 0;
1942 
1943 	for (item = array->items; item->prog; item++)
1944 		if (item->prog != &dummy_bpf_prog.prog)
1945 			cnt++;
1946 	return cnt;
1947 }
1948 
1949 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1950 {
1951 	struct bpf_prog_array_item *item;
1952 
1953 	for (item = array->items; item->prog; item++)
1954 		if (item->prog != &dummy_bpf_prog.prog)
1955 			return false;
1956 	return true;
1957 }
1958 
1959 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1960 				     u32 *prog_ids,
1961 				     u32 request_cnt)
1962 {
1963 	struct bpf_prog_array_item *item;
1964 	int i = 0;
1965 
1966 	for (item = array->items; item->prog; item++) {
1967 		if (item->prog == &dummy_bpf_prog.prog)
1968 			continue;
1969 		prog_ids[i] = item->prog->aux->id;
1970 		if (++i == request_cnt) {
1971 			item++;
1972 			break;
1973 		}
1974 	}
1975 
1976 	return !!(item->prog);
1977 }
1978 
1979 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1980 				__u32 __user *prog_ids, u32 cnt)
1981 {
1982 	unsigned long err = 0;
1983 	bool nospc;
1984 	u32 *ids;
1985 
1986 	/* users of this function are doing:
1987 	 * cnt = bpf_prog_array_length();
1988 	 * if (cnt > 0)
1989 	 *     bpf_prog_array_copy_to_user(..., cnt);
1990 	 * so below kcalloc doesn't need extra cnt > 0 check.
1991 	 */
1992 	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1993 	if (!ids)
1994 		return -ENOMEM;
1995 	nospc = bpf_prog_array_copy_core(array, ids, cnt);
1996 	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1997 	kfree(ids);
1998 	if (err)
1999 		return -EFAULT;
2000 	if (nospc)
2001 		return -ENOSPC;
2002 	return 0;
2003 }
2004 
2005 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2006 				struct bpf_prog *old_prog)
2007 {
2008 	struct bpf_prog_array_item *item;
2009 
2010 	for (item = array->items; item->prog; item++)
2011 		if (item->prog == old_prog) {
2012 			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2013 			break;
2014 		}
2015 }
2016 
2017 /**
2018  * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2019  *                                   index into the program array with
2020  *                                   a dummy no-op program.
2021  * @array: a bpf_prog_array
2022  * @index: the index of the program to replace
2023  *
2024  * Skips over dummy programs, by not counting them, when calculating
2025  * the position of the program to replace.
2026  *
2027  * Return:
2028  * * 0		- Success
2029  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2030  * * -ENOENT	- Index out of range
2031  */
2032 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2033 {
2034 	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2035 }
2036 
2037 /**
2038  * bpf_prog_array_update_at() - Updates the program at the given index
2039  *                              into the program array.
2040  * @array: a bpf_prog_array
2041  * @index: the index of the program to update
2042  * @prog: the program to insert into the array
2043  *
2044  * Skips over dummy programs, by not counting them, when calculating
2045  * the position of the program to update.
2046  *
2047  * Return:
2048  * * 0		- Success
2049  * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2050  * * -ENOENT	- Index out of range
2051  */
2052 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2053 			     struct bpf_prog *prog)
2054 {
2055 	struct bpf_prog_array_item *item;
2056 
2057 	if (unlikely(index < 0))
2058 		return -EINVAL;
2059 
2060 	for (item = array->items; item->prog; item++) {
2061 		if (item->prog == &dummy_bpf_prog.prog)
2062 			continue;
2063 		if (!index) {
2064 			WRITE_ONCE(item->prog, prog);
2065 			return 0;
2066 		}
2067 		index--;
2068 	}
2069 	return -ENOENT;
2070 }
2071 
2072 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2073 			struct bpf_prog *exclude_prog,
2074 			struct bpf_prog *include_prog,
2075 			struct bpf_prog_array **new_array)
2076 {
2077 	int new_prog_cnt, carry_prog_cnt = 0;
2078 	struct bpf_prog_array_item *existing;
2079 	struct bpf_prog_array *array;
2080 	bool found_exclude = false;
2081 	int new_prog_idx = 0;
2082 
2083 	/* Figure out how many existing progs we need to carry over to
2084 	 * the new array.
2085 	 */
2086 	if (old_array) {
2087 		existing = old_array->items;
2088 		for (; existing->prog; existing++) {
2089 			if (existing->prog == exclude_prog) {
2090 				found_exclude = true;
2091 				continue;
2092 			}
2093 			if (existing->prog != &dummy_bpf_prog.prog)
2094 				carry_prog_cnt++;
2095 			if (existing->prog == include_prog)
2096 				return -EEXIST;
2097 		}
2098 	}
2099 
2100 	if (exclude_prog && !found_exclude)
2101 		return -ENOENT;
2102 
2103 	/* How many progs (not NULL) will be in the new array? */
2104 	new_prog_cnt = carry_prog_cnt;
2105 	if (include_prog)
2106 		new_prog_cnt += 1;
2107 
2108 	/* Do we have any prog (not NULL) in the new array? */
2109 	if (!new_prog_cnt) {
2110 		*new_array = NULL;
2111 		return 0;
2112 	}
2113 
2114 	/* +1 as the end of prog_array is marked with NULL */
2115 	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2116 	if (!array)
2117 		return -ENOMEM;
2118 
2119 	/* Fill in the new prog array */
2120 	if (carry_prog_cnt) {
2121 		existing = old_array->items;
2122 		for (; existing->prog; existing++)
2123 			if (existing->prog != exclude_prog &&
2124 			    existing->prog != &dummy_bpf_prog.prog) {
2125 				array->items[new_prog_idx++].prog =
2126 					existing->prog;
2127 			}
2128 	}
2129 	if (include_prog)
2130 		array->items[new_prog_idx++].prog = include_prog;
2131 	array->items[new_prog_idx].prog = NULL;
2132 	*new_array = array;
2133 	return 0;
2134 }
2135 
2136 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2137 			     u32 *prog_ids, u32 request_cnt,
2138 			     u32 *prog_cnt)
2139 {
2140 	u32 cnt = 0;
2141 
2142 	if (array)
2143 		cnt = bpf_prog_array_length(array);
2144 
2145 	*prog_cnt = cnt;
2146 
2147 	/* return early if user requested only program count or nothing to copy */
2148 	if (!request_cnt || !cnt)
2149 		return 0;
2150 
2151 	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2152 	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2153 								     : 0;
2154 }
2155 
2156 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2157 			  struct bpf_map **used_maps, u32 len)
2158 {
2159 	struct bpf_map *map;
2160 	u32 i;
2161 
2162 	for (i = 0; i < len; i++) {
2163 		map = used_maps[i];
2164 		if (map->ops->map_poke_untrack)
2165 			map->ops->map_poke_untrack(map, aux);
2166 		bpf_map_put(map);
2167 	}
2168 }
2169 
2170 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2171 {
2172 	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2173 	kfree(aux->used_maps);
2174 }
2175 
2176 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2177 			  struct btf_mod_pair *used_btfs, u32 len)
2178 {
2179 #ifdef CONFIG_BPF_SYSCALL
2180 	struct btf_mod_pair *btf_mod;
2181 	u32 i;
2182 
2183 	for (i = 0; i < len; i++) {
2184 		btf_mod = &used_btfs[i];
2185 		if (btf_mod->module)
2186 			module_put(btf_mod->module);
2187 		btf_put(btf_mod->btf);
2188 	}
2189 #endif
2190 }
2191 
2192 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2193 {
2194 	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2195 	kfree(aux->used_btfs);
2196 }
2197 
2198 static void bpf_prog_free_deferred(struct work_struct *work)
2199 {
2200 	struct bpf_prog_aux *aux;
2201 	int i;
2202 
2203 	aux = container_of(work, struct bpf_prog_aux, work);
2204 	bpf_free_used_maps(aux);
2205 	bpf_free_used_btfs(aux);
2206 	if (bpf_prog_is_dev_bound(aux))
2207 		bpf_prog_offload_destroy(aux->prog);
2208 #ifdef CONFIG_PERF_EVENTS
2209 	if (aux->prog->has_callchain_buf)
2210 		put_callchain_buffers();
2211 #endif
2212 	if (aux->dst_trampoline)
2213 		bpf_trampoline_put(aux->dst_trampoline);
2214 	for (i = 0; i < aux->func_cnt; i++)
2215 		bpf_jit_free(aux->func[i]);
2216 	if (aux->func_cnt) {
2217 		kfree(aux->func);
2218 		bpf_prog_unlock_free(aux->prog);
2219 	} else {
2220 		bpf_jit_free(aux->prog);
2221 	}
2222 }
2223 
2224 /* Free internal BPF program */
2225 void bpf_prog_free(struct bpf_prog *fp)
2226 {
2227 	struct bpf_prog_aux *aux = fp->aux;
2228 
2229 	if (aux->dst_prog)
2230 		bpf_prog_put(aux->dst_prog);
2231 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2232 	schedule_work(&aux->work);
2233 }
2234 EXPORT_SYMBOL_GPL(bpf_prog_free);
2235 
2236 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2237 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2238 
2239 void bpf_user_rnd_init_once(void)
2240 {
2241 	prandom_init_once(&bpf_user_rnd_state);
2242 }
2243 
2244 BPF_CALL_0(bpf_user_rnd_u32)
2245 {
2246 	/* Should someone ever have the rather unwise idea to use some
2247 	 * of the registers passed into this function, then note that
2248 	 * this function is called from native eBPF and classic-to-eBPF
2249 	 * transformations. Register assignments from both sides are
2250 	 * different, f.e. classic always sets fn(ctx, A, X) here.
2251 	 */
2252 	struct rnd_state *state;
2253 	u32 res;
2254 
2255 	state = &get_cpu_var(bpf_user_rnd_state);
2256 	res = prandom_u32_state(state);
2257 	put_cpu_var(bpf_user_rnd_state);
2258 
2259 	return res;
2260 }
2261 
2262 BPF_CALL_0(bpf_get_raw_cpu_id)
2263 {
2264 	return raw_smp_processor_id();
2265 }
2266 
2267 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2268 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2269 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2270 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2271 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2272 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2273 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2274 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2275 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2276 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2277 
2278 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2279 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2280 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2281 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2282 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2283 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2284 
2285 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2286 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2287 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2288 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2289 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2290 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2291 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2292 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2293 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2294 
2295 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2296 {
2297 	return NULL;
2298 }
2299 
2300 u64 __weak
2301 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2302 		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2303 {
2304 	return -ENOTSUPP;
2305 }
2306 EXPORT_SYMBOL_GPL(bpf_event_output);
2307 
2308 /* Always built-in helper functions. */
2309 const struct bpf_func_proto bpf_tail_call_proto = {
2310 	.func		= NULL,
2311 	.gpl_only	= false,
2312 	.ret_type	= RET_VOID,
2313 	.arg1_type	= ARG_PTR_TO_CTX,
2314 	.arg2_type	= ARG_CONST_MAP_PTR,
2315 	.arg3_type	= ARG_ANYTHING,
2316 };
2317 
2318 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2319  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2320  * eBPF and implicitly also cBPF can get JITed!
2321  */
2322 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2323 {
2324 	return prog;
2325 }
2326 
2327 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2328  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2329  */
2330 void __weak bpf_jit_compile(struct bpf_prog *prog)
2331 {
2332 }
2333 
2334 bool __weak bpf_helper_changes_pkt_data(void *func)
2335 {
2336 	return false;
2337 }
2338 
2339 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2340  * analysis code and wants explicit zero extension inserted by verifier.
2341  * Otherwise, return FALSE.
2342  *
2343  * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2344  * you don't override this. JITs that don't want these extra insns can detect
2345  * them using insn_is_zext.
2346  */
2347 bool __weak bpf_jit_needs_zext(void)
2348 {
2349 	return false;
2350 }
2351 
2352 bool __weak bpf_jit_supports_kfunc_call(void)
2353 {
2354 	return false;
2355 }
2356 
2357 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2358  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2359  */
2360 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2361 			 int len)
2362 {
2363 	return -EFAULT;
2364 }
2365 
2366 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2367 			      void *addr1, void *addr2)
2368 {
2369 	return -ENOTSUPP;
2370 }
2371 
2372 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2373 EXPORT_SYMBOL(bpf_stats_enabled_key);
2374 
2375 /* All definitions of tracepoints related to BPF. */
2376 #define CREATE_TRACE_POINTS
2377 #include <linux/bpf_trace.h>
2378 
2379 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2380 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2381