xref: /openbmc/linux/kernel/bpf/core.c (revision 029f7f3b8701cc7aca8bdb31f0c7edd6a479e357)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 
31 #include <asm/unaligned.h>
32 
33 /* Registers */
34 #define BPF_R0	regs[BPF_REG_0]
35 #define BPF_R1	regs[BPF_REG_1]
36 #define BPF_R2	regs[BPF_REG_2]
37 #define BPF_R3	regs[BPF_REG_3]
38 #define BPF_R4	regs[BPF_REG_4]
39 #define BPF_R5	regs[BPF_REG_5]
40 #define BPF_R6	regs[BPF_REG_6]
41 #define BPF_R7	regs[BPF_REG_7]
42 #define BPF_R8	regs[BPF_REG_8]
43 #define BPF_R9	regs[BPF_REG_9]
44 #define BPF_R10	regs[BPF_REG_10]
45 
46 /* Named registers */
47 #define DST	regs[insn->dst_reg]
48 #define SRC	regs[insn->src_reg]
49 #define FP	regs[BPF_REG_FP]
50 #define ARG1	regs[BPF_REG_ARG1]
51 #define CTX	regs[BPF_REG_CTX]
52 #define IMM	insn->imm
53 
54 /* No hurry in this branch
55  *
56  * Exported for the bpf jit load helper.
57  */
58 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
59 {
60 	u8 *ptr = NULL;
61 
62 	if (k >= SKF_NET_OFF)
63 		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
64 	else if (k >= SKF_LL_OFF)
65 		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
66 
67 	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
68 		return ptr;
69 
70 	return NULL;
71 }
72 
73 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
74 {
75 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
76 			  gfp_extra_flags;
77 	struct bpf_prog_aux *aux;
78 	struct bpf_prog *fp;
79 
80 	size = round_up(size, PAGE_SIZE);
81 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
82 	if (fp == NULL)
83 		return NULL;
84 
85 	kmemcheck_annotate_bitfield(fp, meta);
86 
87 	aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
88 	if (aux == NULL) {
89 		vfree(fp);
90 		return NULL;
91 	}
92 
93 	fp->pages = size / PAGE_SIZE;
94 	fp->aux = aux;
95 	fp->aux->prog = fp;
96 
97 	return fp;
98 }
99 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
100 
101 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
102 				  gfp_t gfp_extra_flags)
103 {
104 	gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
105 			  gfp_extra_flags;
106 	struct bpf_prog *fp;
107 
108 	BUG_ON(fp_old == NULL);
109 
110 	size = round_up(size, PAGE_SIZE);
111 	if (size <= fp_old->pages * PAGE_SIZE)
112 		return fp_old;
113 
114 	fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
115 	if (fp != NULL) {
116 		kmemcheck_annotate_bitfield(fp, meta);
117 
118 		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
119 		fp->pages = size / PAGE_SIZE;
120 		fp->aux->prog = fp;
121 
122 		/* We keep fp->aux from fp_old around in the new
123 		 * reallocated structure.
124 		 */
125 		fp_old->aux = NULL;
126 		__bpf_prog_free(fp_old);
127 	}
128 
129 	return fp;
130 }
131 EXPORT_SYMBOL_GPL(bpf_prog_realloc);
132 
133 void __bpf_prog_free(struct bpf_prog *fp)
134 {
135 	kfree(fp->aux);
136 	vfree(fp);
137 }
138 EXPORT_SYMBOL_GPL(__bpf_prog_free);
139 
140 #ifdef CONFIG_BPF_JIT
141 struct bpf_binary_header *
142 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
143 		     unsigned int alignment,
144 		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
145 {
146 	struct bpf_binary_header *hdr;
147 	unsigned int size, hole, start;
148 
149 	/* Most of BPF filters are really small, but if some of them
150 	 * fill a page, allow at least 128 extra bytes to insert a
151 	 * random section of illegal instructions.
152 	 */
153 	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
154 	hdr = module_alloc(size);
155 	if (hdr == NULL)
156 		return NULL;
157 
158 	/* Fill space with illegal/arch-dep instructions. */
159 	bpf_fill_ill_insns(hdr, size);
160 
161 	hdr->pages = size / PAGE_SIZE;
162 	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
163 		     PAGE_SIZE - sizeof(*hdr));
164 	start = (prandom_u32() % hole) & ~(alignment - 1);
165 
166 	/* Leave a random number of instructions before BPF code. */
167 	*image_ptr = &hdr->image[start];
168 
169 	return hdr;
170 }
171 
172 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
173 {
174 	module_memfree(hdr);
175 }
176 #endif /* CONFIG_BPF_JIT */
177 
178 /* Base function for offset calculation. Needs to go into .text section,
179  * therefore keeping it non-static as well; will also be used by JITs
180  * anyway later on, so do not let the compiler omit it.
181  */
182 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
183 {
184 	return 0;
185 }
186 EXPORT_SYMBOL_GPL(__bpf_call_base);
187 
188 /**
189  *	__bpf_prog_run - run eBPF program on a given context
190  *	@ctx: is the data we are operating on
191  *	@insn: is the array of eBPF instructions
192  *
193  * Decode and execute eBPF instructions.
194  */
195 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
196 {
197 	u64 stack[MAX_BPF_STACK / sizeof(u64)];
198 	u64 regs[MAX_BPF_REG], tmp;
199 	static const void *jumptable[256] = {
200 		[0 ... 255] = &&default_label,
201 		/* Now overwrite non-defaults ... */
202 		/* 32 bit ALU operations */
203 		[BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
204 		[BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
205 		[BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
206 		[BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
207 		[BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
208 		[BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
209 		[BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
210 		[BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
211 		[BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
212 		[BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
213 		[BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
214 		[BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
215 		[BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
216 		[BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
217 		[BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
218 		[BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
219 		[BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
220 		[BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
221 		[BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
222 		[BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
223 		[BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
224 		[BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
225 		[BPF_ALU | BPF_NEG] = &&ALU_NEG,
226 		[BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
227 		[BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
228 		/* 64 bit ALU operations */
229 		[BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
230 		[BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
231 		[BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
232 		[BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
233 		[BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
234 		[BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
235 		[BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
236 		[BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
237 		[BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
238 		[BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
239 		[BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
240 		[BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
241 		[BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
242 		[BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
243 		[BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
244 		[BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
245 		[BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
246 		[BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
247 		[BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
248 		[BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
249 		[BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
250 		[BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
251 		[BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
252 		[BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
253 		[BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
254 		/* Call instruction */
255 		[BPF_JMP | BPF_CALL] = &&JMP_CALL,
256 		[BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
257 		/* Jumps */
258 		[BPF_JMP | BPF_JA] = &&JMP_JA,
259 		[BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
260 		[BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
261 		[BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
262 		[BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
263 		[BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
264 		[BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
265 		[BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
266 		[BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
267 		[BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
268 		[BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
269 		[BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
270 		[BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
271 		[BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
272 		[BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
273 		/* Program return */
274 		[BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
275 		/* Store instructions */
276 		[BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
277 		[BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
278 		[BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
279 		[BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
280 		[BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
281 		[BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
282 		[BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
283 		[BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
284 		[BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
285 		[BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
286 		/* Load instructions */
287 		[BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
288 		[BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
289 		[BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
290 		[BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
291 		[BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
292 		[BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
293 		[BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
294 		[BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
295 		[BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
296 		[BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
297 		[BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
298 	};
299 	u32 tail_call_cnt = 0;
300 	void *ptr;
301 	int off;
302 
303 #define CONT	 ({ insn++; goto select_insn; })
304 #define CONT_JMP ({ insn++; goto select_insn; })
305 
306 	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
307 	ARG1 = (u64) (unsigned long) ctx;
308 
309 	/* Registers used in classic BPF programs need to be reset first. */
310 	regs[BPF_REG_A] = 0;
311 	regs[BPF_REG_X] = 0;
312 
313 select_insn:
314 	goto *jumptable[insn->code];
315 
316 	/* ALU */
317 #define ALU(OPCODE, OP)			\
318 	ALU64_##OPCODE##_X:		\
319 		DST = DST OP SRC;	\
320 		CONT;			\
321 	ALU_##OPCODE##_X:		\
322 		DST = (u32) DST OP (u32) SRC;	\
323 		CONT;			\
324 	ALU64_##OPCODE##_K:		\
325 		DST = DST OP IMM;		\
326 		CONT;			\
327 	ALU_##OPCODE##_K:		\
328 		DST = (u32) DST OP (u32) IMM;	\
329 		CONT;
330 
331 	ALU(ADD,  +)
332 	ALU(SUB,  -)
333 	ALU(AND,  &)
334 	ALU(OR,   |)
335 	ALU(LSH, <<)
336 	ALU(RSH, >>)
337 	ALU(XOR,  ^)
338 	ALU(MUL,  *)
339 #undef ALU
340 	ALU_NEG:
341 		DST = (u32) -DST;
342 		CONT;
343 	ALU64_NEG:
344 		DST = -DST;
345 		CONT;
346 	ALU_MOV_X:
347 		DST = (u32) SRC;
348 		CONT;
349 	ALU_MOV_K:
350 		DST = (u32) IMM;
351 		CONT;
352 	ALU64_MOV_X:
353 		DST = SRC;
354 		CONT;
355 	ALU64_MOV_K:
356 		DST = IMM;
357 		CONT;
358 	LD_IMM_DW:
359 		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
360 		insn++;
361 		CONT;
362 	ALU64_ARSH_X:
363 		(*(s64 *) &DST) >>= SRC;
364 		CONT;
365 	ALU64_ARSH_K:
366 		(*(s64 *) &DST) >>= IMM;
367 		CONT;
368 	ALU64_MOD_X:
369 		if (unlikely(SRC == 0))
370 			return 0;
371 		div64_u64_rem(DST, SRC, &tmp);
372 		DST = tmp;
373 		CONT;
374 	ALU_MOD_X:
375 		if (unlikely(SRC == 0))
376 			return 0;
377 		tmp = (u32) DST;
378 		DST = do_div(tmp, (u32) SRC);
379 		CONT;
380 	ALU64_MOD_K:
381 		div64_u64_rem(DST, IMM, &tmp);
382 		DST = tmp;
383 		CONT;
384 	ALU_MOD_K:
385 		tmp = (u32) DST;
386 		DST = do_div(tmp, (u32) IMM);
387 		CONT;
388 	ALU64_DIV_X:
389 		if (unlikely(SRC == 0))
390 			return 0;
391 		DST = div64_u64(DST, SRC);
392 		CONT;
393 	ALU_DIV_X:
394 		if (unlikely(SRC == 0))
395 			return 0;
396 		tmp = (u32) DST;
397 		do_div(tmp, (u32) SRC);
398 		DST = (u32) tmp;
399 		CONT;
400 	ALU64_DIV_K:
401 		DST = div64_u64(DST, IMM);
402 		CONT;
403 	ALU_DIV_K:
404 		tmp = (u32) DST;
405 		do_div(tmp, (u32) IMM);
406 		DST = (u32) tmp;
407 		CONT;
408 	ALU_END_TO_BE:
409 		switch (IMM) {
410 		case 16:
411 			DST = (__force u16) cpu_to_be16(DST);
412 			break;
413 		case 32:
414 			DST = (__force u32) cpu_to_be32(DST);
415 			break;
416 		case 64:
417 			DST = (__force u64) cpu_to_be64(DST);
418 			break;
419 		}
420 		CONT;
421 	ALU_END_TO_LE:
422 		switch (IMM) {
423 		case 16:
424 			DST = (__force u16) cpu_to_le16(DST);
425 			break;
426 		case 32:
427 			DST = (__force u32) cpu_to_le32(DST);
428 			break;
429 		case 64:
430 			DST = (__force u64) cpu_to_le64(DST);
431 			break;
432 		}
433 		CONT;
434 
435 	/* CALL */
436 	JMP_CALL:
437 		/* Function call scratches BPF_R1-BPF_R5 registers,
438 		 * preserves BPF_R6-BPF_R9, and stores return value
439 		 * into BPF_R0.
440 		 */
441 		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
442 						       BPF_R4, BPF_R5);
443 		CONT;
444 
445 	JMP_TAIL_CALL: {
446 		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
447 		struct bpf_array *array = container_of(map, struct bpf_array, map);
448 		struct bpf_prog *prog;
449 		u64 index = BPF_R3;
450 
451 		if (unlikely(index >= array->map.max_entries))
452 			goto out;
453 
454 		if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
455 			goto out;
456 
457 		tail_call_cnt++;
458 
459 		prog = READ_ONCE(array->ptrs[index]);
460 		if (unlikely(!prog))
461 			goto out;
462 
463 		/* ARG1 at this point is guaranteed to point to CTX from
464 		 * the verifier side due to the fact that the tail call is
465 		 * handeled like a helper, that is, bpf_tail_call_proto,
466 		 * where arg1_type is ARG_PTR_TO_CTX.
467 		 */
468 		insn = prog->insnsi;
469 		goto select_insn;
470 out:
471 		CONT;
472 	}
473 	/* JMP */
474 	JMP_JA:
475 		insn += insn->off;
476 		CONT;
477 	JMP_JEQ_X:
478 		if (DST == SRC) {
479 			insn += insn->off;
480 			CONT_JMP;
481 		}
482 		CONT;
483 	JMP_JEQ_K:
484 		if (DST == IMM) {
485 			insn += insn->off;
486 			CONT_JMP;
487 		}
488 		CONT;
489 	JMP_JNE_X:
490 		if (DST != SRC) {
491 			insn += insn->off;
492 			CONT_JMP;
493 		}
494 		CONT;
495 	JMP_JNE_K:
496 		if (DST != IMM) {
497 			insn += insn->off;
498 			CONT_JMP;
499 		}
500 		CONT;
501 	JMP_JGT_X:
502 		if (DST > SRC) {
503 			insn += insn->off;
504 			CONT_JMP;
505 		}
506 		CONT;
507 	JMP_JGT_K:
508 		if (DST > IMM) {
509 			insn += insn->off;
510 			CONT_JMP;
511 		}
512 		CONT;
513 	JMP_JGE_X:
514 		if (DST >= SRC) {
515 			insn += insn->off;
516 			CONT_JMP;
517 		}
518 		CONT;
519 	JMP_JGE_K:
520 		if (DST >= IMM) {
521 			insn += insn->off;
522 			CONT_JMP;
523 		}
524 		CONT;
525 	JMP_JSGT_X:
526 		if (((s64) DST) > ((s64) SRC)) {
527 			insn += insn->off;
528 			CONT_JMP;
529 		}
530 		CONT;
531 	JMP_JSGT_K:
532 		if (((s64) DST) > ((s64) IMM)) {
533 			insn += insn->off;
534 			CONT_JMP;
535 		}
536 		CONT;
537 	JMP_JSGE_X:
538 		if (((s64) DST) >= ((s64) SRC)) {
539 			insn += insn->off;
540 			CONT_JMP;
541 		}
542 		CONT;
543 	JMP_JSGE_K:
544 		if (((s64) DST) >= ((s64) IMM)) {
545 			insn += insn->off;
546 			CONT_JMP;
547 		}
548 		CONT;
549 	JMP_JSET_X:
550 		if (DST & SRC) {
551 			insn += insn->off;
552 			CONT_JMP;
553 		}
554 		CONT;
555 	JMP_JSET_K:
556 		if (DST & IMM) {
557 			insn += insn->off;
558 			CONT_JMP;
559 		}
560 		CONT;
561 	JMP_EXIT:
562 		return BPF_R0;
563 
564 	/* STX and ST and LDX*/
565 #define LDST(SIZEOP, SIZE)						\
566 	STX_MEM_##SIZEOP:						\
567 		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
568 		CONT;							\
569 	ST_MEM_##SIZEOP:						\
570 		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
571 		CONT;							\
572 	LDX_MEM_##SIZEOP:						\
573 		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
574 		CONT;
575 
576 	LDST(B,   u8)
577 	LDST(H,  u16)
578 	LDST(W,  u32)
579 	LDST(DW, u64)
580 #undef LDST
581 	STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
582 		atomic_add((u32) SRC, (atomic_t *)(unsigned long)
583 			   (DST + insn->off));
584 		CONT;
585 	STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
586 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
587 			     (DST + insn->off));
588 		CONT;
589 	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
590 		off = IMM;
591 load_word:
592 		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
593 		 * only appearing in the programs where ctx ==
594 		 * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
595 		 * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
596 		 * internal BPF verifier will check that BPF_R6 ==
597 		 * ctx.
598 		 *
599 		 * BPF_ABS and BPF_IND are wrappers of function calls,
600 		 * so they scratch BPF_R1-BPF_R5 registers, preserve
601 		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
602 		 *
603 		 * Implicit input:
604 		 *   ctx == skb == BPF_R6 == CTX
605 		 *
606 		 * Explicit input:
607 		 *   SRC == any register
608 		 *   IMM == 32-bit immediate
609 		 *
610 		 * Output:
611 		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
612 		 */
613 
614 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
615 		if (likely(ptr != NULL)) {
616 			BPF_R0 = get_unaligned_be32(ptr);
617 			CONT;
618 		}
619 
620 		return 0;
621 	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
622 		off = IMM;
623 load_half:
624 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
625 		if (likely(ptr != NULL)) {
626 			BPF_R0 = get_unaligned_be16(ptr);
627 			CONT;
628 		}
629 
630 		return 0;
631 	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
632 		off = IMM;
633 load_byte:
634 		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
635 		if (likely(ptr != NULL)) {
636 			BPF_R0 = *(u8 *)ptr;
637 			CONT;
638 		}
639 
640 		return 0;
641 	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
642 		off = IMM + SRC;
643 		goto load_word;
644 	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
645 		off = IMM + SRC;
646 		goto load_half;
647 	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
648 		off = IMM + SRC;
649 		goto load_byte;
650 
651 	default_label:
652 		/* If we ever reach this, we have a bug somewhere. */
653 		WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
654 		return 0;
655 }
656 
657 bool bpf_prog_array_compatible(struct bpf_array *array,
658 			       const struct bpf_prog *fp)
659 {
660 	if (!array->owner_prog_type) {
661 		/* There's no owner yet where we could check for
662 		 * compatibility.
663 		 */
664 		array->owner_prog_type = fp->type;
665 		array->owner_jited = fp->jited;
666 
667 		return true;
668 	}
669 
670 	return array->owner_prog_type == fp->type &&
671 	       array->owner_jited == fp->jited;
672 }
673 
674 static int bpf_check_tail_call(const struct bpf_prog *fp)
675 {
676 	struct bpf_prog_aux *aux = fp->aux;
677 	int i;
678 
679 	for (i = 0; i < aux->used_map_cnt; i++) {
680 		struct bpf_map *map = aux->used_maps[i];
681 		struct bpf_array *array;
682 
683 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
684 			continue;
685 
686 		array = container_of(map, struct bpf_array, map);
687 		if (!bpf_prog_array_compatible(array, fp))
688 			return -EINVAL;
689 	}
690 
691 	return 0;
692 }
693 
694 /**
695  *	bpf_prog_select_runtime - select exec runtime for BPF program
696  *	@fp: bpf_prog populated with internal BPF program
697  *
698  * Try to JIT eBPF program, if JIT is not available, use interpreter.
699  * The BPF program will be executed via BPF_PROG_RUN() macro.
700  */
701 int bpf_prog_select_runtime(struct bpf_prog *fp)
702 {
703 	fp->bpf_func = (void *) __bpf_prog_run;
704 
705 	bpf_int_jit_compile(fp);
706 	bpf_prog_lock_ro(fp);
707 
708 	/* The tail call compatibility check can only be done at
709 	 * this late stage as we need to determine, if we deal
710 	 * with JITed or non JITed program concatenations and not
711 	 * all eBPF JITs might immediately support all features.
712 	 */
713 	return bpf_check_tail_call(fp);
714 }
715 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
716 
717 static void bpf_prog_free_deferred(struct work_struct *work)
718 {
719 	struct bpf_prog_aux *aux;
720 
721 	aux = container_of(work, struct bpf_prog_aux, work);
722 	bpf_jit_free(aux->prog);
723 }
724 
725 /* Free internal BPF program */
726 void bpf_prog_free(struct bpf_prog *fp)
727 {
728 	struct bpf_prog_aux *aux = fp->aux;
729 
730 	INIT_WORK(&aux->work, bpf_prog_free_deferred);
731 	schedule_work(&aux->work);
732 }
733 EXPORT_SYMBOL_GPL(bpf_prog_free);
734 
735 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
736 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
737 
738 void bpf_user_rnd_init_once(void)
739 {
740 	prandom_init_once(&bpf_user_rnd_state);
741 }
742 
743 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
744 {
745 	/* Should someone ever have the rather unwise idea to use some
746 	 * of the registers passed into this function, then note that
747 	 * this function is called from native eBPF and classic-to-eBPF
748 	 * transformations. Register assignments from both sides are
749 	 * different, f.e. classic always sets fn(ctx, A, X) here.
750 	 */
751 	struct rnd_state *state;
752 	u32 res;
753 
754 	state = &get_cpu_var(bpf_user_rnd_state);
755 	res = prandom_u32_state(state);
756 	put_cpu_var(state);
757 
758 	return res;
759 }
760 
761 /* Weak definitions of helper functions in case we don't have bpf syscall. */
762 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
763 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
764 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
765 
766 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
767 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
768 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
769 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
770 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
771 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
772 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
773 {
774 	return NULL;
775 }
776 
777 /* Always built-in helper functions. */
778 const struct bpf_func_proto bpf_tail_call_proto = {
779 	.func		= NULL,
780 	.gpl_only	= false,
781 	.ret_type	= RET_VOID,
782 	.arg1_type	= ARG_PTR_TO_CTX,
783 	.arg2_type	= ARG_CONST_MAP_PTR,
784 	.arg3_type	= ARG_ANYTHING,
785 };
786 
787 /* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
788 void __weak bpf_int_jit_compile(struct bpf_prog *prog)
789 {
790 }
791 
792 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
793  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
794  */
795 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
796 			 int len)
797 {
798 	return -EFAULT;
799 }
800