xref: /openbmc/linux/kernel/bpf/cgroup.c (revision f10d0596)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Functions to manage eBPF programs attached to cgroups
4  *
5  * Copyright (c) 2016 Daniel Mack
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/atomic.h>
10 #include <linux/cgroup.h>
11 #include <linux/filter.h>
12 #include <linux/slab.h>
13 #include <linux/sysctl.h>
14 #include <linux/string.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf-cgroup.h>
17 #include <net/sock.h>
18 #include <net/bpf_sk_storage.h>
19 
20 #include "../cgroup/cgroup-internal.h"
21 
22 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE);
23 EXPORT_SYMBOL(cgroup_bpf_enabled_key);
24 
25 void cgroup_bpf_offline(struct cgroup *cgrp)
26 {
27 	cgroup_get(cgrp);
28 	percpu_ref_kill(&cgrp->bpf.refcnt);
29 }
30 
31 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[])
32 {
33 	enum bpf_cgroup_storage_type stype;
34 
35 	for_each_cgroup_storage_type(stype)
36 		bpf_cgroup_storage_free(storages[stype]);
37 }
38 
39 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[],
40 				     struct bpf_cgroup_storage *new_storages[],
41 				     enum bpf_attach_type type,
42 				     struct bpf_prog *prog,
43 				     struct cgroup *cgrp)
44 {
45 	enum bpf_cgroup_storage_type stype;
46 	struct bpf_cgroup_storage_key key;
47 	struct bpf_map *map;
48 
49 	key.cgroup_inode_id = cgroup_id(cgrp);
50 	key.attach_type = type;
51 
52 	for_each_cgroup_storage_type(stype) {
53 		map = prog->aux->cgroup_storage[stype];
54 		if (!map)
55 			continue;
56 
57 		storages[stype] = cgroup_storage_lookup((void *)map, &key, false);
58 		if (storages[stype])
59 			continue;
60 
61 		storages[stype] = bpf_cgroup_storage_alloc(prog, stype);
62 		if (IS_ERR(storages[stype])) {
63 			bpf_cgroup_storages_free(new_storages);
64 			return -ENOMEM;
65 		}
66 
67 		new_storages[stype] = storages[stype];
68 	}
69 
70 	return 0;
71 }
72 
73 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[],
74 				       struct bpf_cgroup_storage *src[])
75 {
76 	enum bpf_cgroup_storage_type stype;
77 
78 	for_each_cgroup_storage_type(stype)
79 		dst[stype] = src[stype];
80 }
81 
82 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[],
83 				     struct cgroup *cgrp,
84 				     enum bpf_attach_type attach_type)
85 {
86 	enum bpf_cgroup_storage_type stype;
87 
88 	for_each_cgroup_storage_type(stype)
89 		bpf_cgroup_storage_link(storages[stype], cgrp, attach_type);
90 }
91 
92 /* Called when bpf_cgroup_link is auto-detached from dying cgroup.
93  * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It
94  * doesn't free link memory, which will eventually be done by bpf_link's
95  * release() callback, when its last FD is closed.
96  */
97 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link)
98 {
99 	cgroup_put(link->cgroup);
100 	link->cgroup = NULL;
101 }
102 
103 /**
104  * cgroup_bpf_release() - put references of all bpf programs and
105  *                        release all cgroup bpf data
106  * @work: work structure embedded into the cgroup to modify
107  */
108 static void cgroup_bpf_release(struct work_struct *work)
109 {
110 	struct cgroup *p, *cgrp = container_of(work, struct cgroup,
111 					       bpf.release_work);
112 	struct bpf_prog_array *old_array;
113 	struct list_head *storages = &cgrp->bpf.storages;
114 	struct bpf_cgroup_storage *storage, *stmp;
115 
116 	unsigned int atype;
117 
118 	mutex_lock(&cgroup_mutex);
119 
120 	for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) {
121 		struct list_head *progs = &cgrp->bpf.progs[atype];
122 		struct bpf_prog_list *pl, *pltmp;
123 
124 		list_for_each_entry_safe(pl, pltmp, progs, node) {
125 			list_del(&pl->node);
126 			if (pl->prog)
127 				bpf_prog_put(pl->prog);
128 			if (pl->link)
129 				bpf_cgroup_link_auto_detach(pl->link);
130 			kfree(pl);
131 			static_branch_dec(&cgroup_bpf_enabled_key[atype]);
132 		}
133 		old_array = rcu_dereference_protected(
134 				cgrp->bpf.effective[atype],
135 				lockdep_is_held(&cgroup_mutex));
136 		bpf_prog_array_free(old_array);
137 	}
138 
139 	list_for_each_entry_safe(storage, stmp, storages, list_cg) {
140 		bpf_cgroup_storage_unlink(storage);
141 		bpf_cgroup_storage_free(storage);
142 	}
143 
144 	mutex_unlock(&cgroup_mutex);
145 
146 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
147 		cgroup_bpf_put(p);
148 
149 	percpu_ref_exit(&cgrp->bpf.refcnt);
150 	cgroup_put(cgrp);
151 }
152 
153 /**
154  * cgroup_bpf_release_fn() - callback used to schedule releasing
155  *                           of bpf cgroup data
156  * @ref: percpu ref counter structure
157  */
158 static void cgroup_bpf_release_fn(struct percpu_ref *ref)
159 {
160 	struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
161 
162 	INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
163 	queue_work(system_wq, &cgrp->bpf.release_work);
164 }
165 
166 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
167  * link or direct prog.
168  */
169 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl)
170 {
171 	if (pl->prog)
172 		return pl->prog;
173 	if (pl->link)
174 		return pl->link->link.prog;
175 	return NULL;
176 }
177 
178 /* count number of elements in the list.
179  * it's slow but the list cannot be long
180  */
181 static u32 prog_list_length(struct list_head *head)
182 {
183 	struct bpf_prog_list *pl;
184 	u32 cnt = 0;
185 
186 	list_for_each_entry(pl, head, node) {
187 		if (!prog_list_prog(pl))
188 			continue;
189 		cnt++;
190 	}
191 	return cnt;
192 }
193 
194 /* if parent has non-overridable prog attached,
195  * disallow attaching new programs to the descendent cgroup.
196  * if parent has overridable or multi-prog, allow attaching
197  */
198 static bool hierarchy_allows_attach(struct cgroup *cgrp,
199 				    enum cgroup_bpf_attach_type atype)
200 {
201 	struct cgroup *p;
202 
203 	p = cgroup_parent(cgrp);
204 	if (!p)
205 		return true;
206 	do {
207 		u32 flags = p->bpf.flags[atype];
208 		u32 cnt;
209 
210 		if (flags & BPF_F_ALLOW_MULTI)
211 			return true;
212 		cnt = prog_list_length(&p->bpf.progs[atype]);
213 		WARN_ON_ONCE(cnt > 1);
214 		if (cnt == 1)
215 			return !!(flags & BPF_F_ALLOW_OVERRIDE);
216 		p = cgroup_parent(p);
217 	} while (p);
218 	return true;
219 }
220 
221 /* compute a chain of effective programs for a given cgroup:
222  * start from the list of programs in this cgroup and add
223  * all parent programs.
224  * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
225  * to programs in this cgroup
226  */
227 static int compute_effective_progs(struct cgroup *cgrp,
228 				   enum cgroup_bpf_attach_type atype,
229 				   struct bpf_prog_array **array)
230 {
231 	struct bpf_prog_array_item *item;
232 	struct bpf_prog_array *progs;
233 	struct bpf_prog_list *pl;
234 	struct cgroup *p = cgrp;
235 	int cnt = 0;
236 
237 	/* count number of effective programs by walking parents */
238 	do {
239 		if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
240 			cnt += prog_list_length(&p->bpf.progs[atype]);
241 		p = cgroup_parent(p);
242 	} while (p);
243 
244 	progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
245 	if (!progs)
246 		return -ENOMEM;
247 
248 	/* populate the array with effective progs */
249 	cnt = 0;
250 	p = cgrp;
251 	do {
252 		if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
253 			continue;
254 
255 		list_for_each_entry(pl, &p->bpf.progs[atype], node) {
256 			if (!prog_list_prog(pl))
257 				continue;
258 
259 			item = &progs->items[cnt];
260 			item->prog = prog_list_prog(pl);
261 			bpf_cgroup_storages_assign(item->cgroup_storage,
262 						   pl->storage);
263 			cnt++;
264 		}
265 	} while ((p = cgroup_parent(p)));
266 
267 	*array = progs;
268 	return 0;
269 }
270 
271 static void activate_effective_progs(struct cgroup *cgrp,
272 				     enum cgroup_bpf_attach_type atype,
273 				     struct bpf_prog_array *old_array)
274 {
275 	old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array,
276 					lockdep_is_held(&cgroup_mutex));
277 	/* free prog array after grace period, since __cgroup_bpf_run_*()
278 	 * might be still walking the array
279 	 */
280 	bpf_prog_array_free(old_array);
281 }
282 
283 /**
284  * cgroup_bpf_inherit() - inherit effective programs from parent
285  * @cgrp: the cgroup to modify
286  */
287 int cgroup_bpf_inherit(struct cgroup *cgrp)
288 {
289 /* has to use marco instead of const int, since compiler thinks
290  * that array below is variable length
291  */
292 #define	NR ARRAY_SIZE(cgrp->bpf.effective)
293 	struct bpf_prog_array *arrays[NR] = {};
294 	struct cgroup *p;
295 	int ret, i;
296 
297 	ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
298 			      GFP_KERNEL);
299 	if (ret)
300 		return ret;
301 
302 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
303 		cgroup_bpf_get(p);
304 
305 	for (i = 0; i < NR; i++)
306 		INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
307 
308 	INIT_LIST_HEAD(&cgrp->bpf.storages);
309 
310 	for (i = 0; i < NR; i++)
311 		if (compute_effective_progs(cgrp, i, &arrays[i]))
312 			goto cleanup;
313 
314 	for (i = 0; i < NR; i++)
315 		activate_effective_progs(cgrp, i, arrays[i]);
316 
317 	return 0;
318 cleanup:
319 	for (i = 0; i < NR; i++)
320 		bpf_prog_array_free(arrays[i]);
321 
322 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
323 		cgroup_bpf_put(p);
324 
325 	percpu_ref_exit(&cgrp->bpf.refcnt);
326 
327 	return -ENOMEM;
328 }
329 
330 static int update_effective_progs(struct cgroup *cgrp,
331 				  enum cgroup_bpf_attach_type atype)
332 {
333 	struct cgroup_subsys_state *css;
334 	int err;
335 
336 	/* allocate and recompute effective prog arrays */
337 	css_for_each_descendant_pre(css, &cgrp->self) {
338 		struct cgroup *desc = container_of(css, struct cgroup, self);
339 
340 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
341 			continue;
342 
343 		err = compute_effective_progs(desc, atype, &desc->bpf.inactive);
344 		if (err)
345 			goto cleanup;
346 	}
347 
348 	/* all allocations were successful. Activate all prog arrays */
349 	css_for_each_descendant_pre(css, &cgrp->self) {
350 		struct cgroup *desc = container_of(css, struct cgroup, self);
351 
352 		if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
353 			if (unlikely(desc->bpf.inactive)) {
354 				bpf_prog_array_free(desc->bpf.inactive);
355 				desc->bpf.inactive = NULL;
356 			}
357 			continue;
358 		}
359 
360 		activate_effective_progs(desc, atype, desc->bpf.inactive);
361 		desc->bpf.inactive = NULL;
362 	}
363 
364 	return 0;
365 
366 cleanup:
367 	/* oom while computing effective. Free all computed effective arrays
368 	 * since they were not activated
369 	 */
370 	css_for_each_descendant_pre(css, &cgrp->self) {
371 		struct cgroup *desc = container_of(css, struct cgroup, self);
372 
373 		bpf_prog_array_free(desc->bpf.inactive);
374 		desc->bpf.inactive = NULL;
375 	}
376 
377 	return err;
378 }
379 
380 #define BPF_CGROUP_MAX_PROGS 64
381 
382 static struct bpf_prog_list *find_attach_entry(struct list_head *progs,
383 					       struct bpf_prog *prog,
384 					       struct bpf_cgroup_link *link,
385 					       struct bpf_prog *replace_prog,
386 					       bool allow_multi)
387 {
388 	struct bpf_prog_list *pl;
389 
390 	/* single-attach case */
391 	if (!allow_multi) {
392 		if (list_empty(progs))
393 			return NULL;
394 		return list_first_entry(progs, typeof(*pl), node);
395 	}
396 
397 	list_for_each_entry(pl, progs, node) {
398 		if (prog && pl->prog == prog && prog != replace_prog)
399 			/* disallow attaching the same prog twice */
400 			return ERR_PTR(-EINVAL);
401 		if (link && pl->link == link)
402 			/* disallow attaching the same link twice */
403 			return ERR_PTR(-EINVAL);
404 	}
405 
406 	/* direct prog multi-attach w/ replacement case */
407 	if (replace_prog) {
408 		list_for_each_entry(pl, progs, node) {
409 			if (pl->prog == replace_prog)
410 				/* a match found */
411 				return pl;
412 		}
413 		/* prog to replace not found for cgroup */
414 		return ERR_PTR(-ENOENT);
415 	}
416 
417 	return NULL;
418 }
419 
420 /**
421  * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and
422  *                         propagate the change to descendants
423  * @cgrp: The cgroup which descendants to traverse
424  * @prog: A program to attach
425  * @link: A link to attach
426  * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set
427  * @type: Type of attach operation
428  * @flags: Option flags
429  *
430  * Exactly one of @prog or @link can be non-null.
431  * Must be called with cgroup_mutex held.
432  */
433 static int __cgroup_bpf_attach(struct cgroup *cgrp,
434 			       struct bpf_prog *prog, struct bpf_prog *replace_prog,
435 			       struct bpf_cgroup_link *link,
436 			       enum bpf_attach_type type, u32 flags)
437 {
438 	u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI));
439 	struct bpf_prog *old_prog = NULL;
440 	struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
441 	struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
442 	enum cgroup_bpf_attach_type atype;
443 	struct bpf_prog_list *pl;
444 	struct list_head *progs;
445 	int err;
446 
447 	if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) ||
448 	    ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI)))
449 		/* invalid combination */
450 		return -EINVAL;
451 	if (link && (prog || replace_prog))
452 		/* only either link or prog/replace_prog can be specified */
453 		return -EINVAL;
454 	if (!!replace_prog != !!(flags & BPF_F_REPLACE))
455 		/* replace_prog implies BPF_F_REPLACE, and vice versa */
456 		return -EINVAL;
457 
458 	atype = to_cgroup_bpf_attach_type(type);
459 	if (atype < 0)
460 		return -EINVAL;
461 
462 	progs = &cgrp->bpf.progs[atype];
463 
464 	if (!hierarchy_allows_attach(cgrp, atype))
465 		return -EPERM;
466 
467 	if (!list_empty(progs) && cgrp->bpf.flags[atype] != saved_flags)
468 		/* Disallow attaching non-overridable on top
469 		 * of existing overridable in this cgroup.
470 		 * Disallow attaching multi-prog if overridable or none
471 		 */
472 		return -EPERM;
473 
474 	if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
475 		return -E2BIG;
476 
477 	pl = find_attach_entry(progs, prog, link, replace_prog,
478 			       flags & BPF_F_ALLOW_MULTI);
479 	if (IS_ERR(pl))
480 		return PTR_ERR(pl);
481 
482 	if (bpf_cgroup_storages_alloc(storage, new_storage, type,
483 				      prog ? : link->link.prog, cgrp))
484 		return -ENOMEM;
485 
486 	if (pl) {
487 		old_prog = pl->prog;
488 	} else {
489 		pl = kmalloc(sizeof(*pl), GFP_KERNEL);
490 		if (!pl) {
491 			bpf_cgroup_storages_free(new_storage);
492 			return -ENOMEM;
493 		}
494 		list_add_tail(&pl->node, progs);
495 	}
496 
497 	pl->prog = prog;
498 	pl->link = link;
499 	bpf_cgroup_storages_assign(pl->storage, storage);
500 	cgrp->bpf.flags[atype] = saved_flags;
501 
502 	err = update_effective_progs(cgrp, atype);
503 	if (err)
504 		goto cleanup;
505 
506 	if (old_prog)
507 		bpf_prog_put(old_prog);
508 	else
509 		static_branch_inc(&cgroup_bpf_enabled_key[atype]);
510 	bpf_cgroup_storages_link(new_storage, cgrp, type);
511 	return 0;
512 
513 cleanup:
514 	if (old_prog) {
515 		pl->prog = old_prog;
516 		pl->link = NULL;
517 	}
518 	bpf_cgroup_storages_free(new_storage);
519 	if (!old_prog) {
520 		list_del(&pl->node);
521 		kfree(pl);
522 	}
523 	return err;
524 }
525 
526 static int cgroup_bpf_attach(struct cgroup *cgrp,
527 			     struct bpf_prog *prog, struct bpf_prog *replace_prog,
528 			     struct bpf_cgroup_link *link,
529 			     enum bpf_attach_type type,
530 			     u32 flags)
531 {
532 	int ret;
533 
534 	mutex_lock(&cgroup_mutex);
535 	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
536 	mutex_unlock(&cgroup_mutex);
537 	return ret;
538 }
539 
540 /* Swap updated BPF program for given link in effective program arrays across
541  * all descendant cgroups. This function is guaranteed to succeed.
542  */
543 static void replace_effective_prog(struct cgroup *cgrp,
544 				   enum cgroup_bpf_attach_type atype,
545 				   struct bpf_cgroup_link *link)
546 {
547 	struct bpf_prog_array_item *item;
548 	struct cgroup_subsys_state *css;
549 	struct bpf_prog_array *progs;
550 	struct bpf_prog_list *pl;
551 	struct list_head *head;
552 	struct cgroup *cg;
553 	int pos;
554 
555 	css_for_each_descendant_pre(css, &cgrp->self) {
556 		struct cgroup *desc = container_of(css, struct cgroup, self);
557 
558 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
559 			continue;
560 
561 		/* find position of link in effective progs array */
562 		for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
563 			if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
564 				continue;
565 
566 			head = &cg->bpf.progs[atype];
567 			list_for_each_entry(pl, head, node) {
568 				if (!prog_list_prog(pl))
569 					continue;
570 				if (pl->link == link)
571 					goto found;
572 				pos++;
573 			}
574 		}
575 found:
576 		BUG_ON(!cg);
577 		progs = rcu_dereference_protected(
578 				desc->bpf.effective[atype],
579 				lockdep_is_held(&cgroup_mutex));
580 		item = &progs->items[pos];
581 		WRITE_ONCE(item->prog, link->link.prog);
582 	}
583 }
584 
585 /**
586  * __cgroup_bpf_replace() - Replace link's program and propagate the change
587  *                          to descendants
588  * @cgrp: The cgroup which descendants to traverse
589  * @link: A link for which to replace BPF program
590  * @type: Type of attach operation
591  *
592  * Must be called with cgroup_mutex held.
593  */
594 static int __cgroup_bpf_replace(struct cgroup *cgrp,
595 				struct bpf_cgroup_link *link,
596 				struct bpf_prog *new_prog)
597 {
598 	enum cgroup_bpf_attach_type atype;
599 	struct bpf_prog *old_prog;
600 	struct bpf_prog_list *pl;
601 	struct list_head *progs;
602 	bool found = false;
603 
604 	atype = to_cgroup_bpf_attach_type(link->type);
605 	if (atype < 0)
606 		return -EINVAL;
607 
608 	progs = &cgrp->bpf.progs[atype];
609 
610 	if (link->link.prog->type != new_prog->type)
611 		return -EINVAL;
612 
613 	list_for_each_entry(pl, progs, node) {
614 		if (pl->link == link) {
615 			found = true;
616 			break;
617 		}
618 	}
619 	if (!found)
620 		return -ENOENT;
621 
622 	old_prog = xchg(&link->link.prog, new_prog);
623 	replace_effective_prog(cgrp, atype, link);
624 	bpf_prog_put(old_prog);
625 	return 0;
626 }
627 
628 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog,
629 			      struct bpf_prog *old_prog)
630 {
631 	struct bpf_cgroup_link *cg_link;
632 	int ret;
633 
634 	cg_link = container_of(link, struct bpf_cgroup_link, link);
635 
636 	mutex_lock(&cgroup_mutex);
637 	/* link might have been auto-released by dying cgroup, so fail */
638 	if (!cg_link->cgroup) {
639 		ret = -ENOLINK;
640 		goto out_unlock;
641 	}
642 	if (old_prog && link->prog != old_prog) {
643 		ret = -EPERM;
644 		goto out_unlock;
645 	}
646 	ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
647 out_unlock:
648 	mutex_unlock(&cgroup_mutex);
649 	return ret;
650 }
651 
652 static struct bpf_prog_list *find_detach_entry(struct list_head *progs,
653 					       struct bpf_prog *prog,
654 					       struct bpf_cgroup_link *link,
655 					       bool allow_multi)
656 {
657 	struct bpf_prog_list *pl;
658 
659 	if (!allow_multi) {
660 		if (list_empty(progs))
661 			/* report error when trying to detach and nothing is attached */
662 			return ERR_PTR(-ENOENT);
663 
664 		/* to maintain backward compatibility NONE and OVERRIDE cgroups
665 		 * allow detaching with invalid FD (prog==NULL) in legacy mode
666 		 */
667 		return list_first_entry(progs, typeof(*pl), node);
668 	}
669 
670 	if (!prog && !link)
671 		/* to detach MULTI prog the user has to specify valid FD
672 		 * of the program or link to be detached
673 		 */
674 		return ERR_PTR(-EINVAL);
675 
676 	/* find the prog or link and detach it */
677 	list_for_each_entry(pl, progs, node) {
678 		if (pl->prog == prog && pl->link == link)
679 			return pl;
680 	}
681 	return ERR_PTR(-ENOENT);
682 }
683 
684 /**
685  * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and
686  *                         propagate the change to descendants
687  * @cgrp: The cgroup which descendants to traverse
688  * @prog: A program to detach or NULL
689  * @link: A link to detach or NULL
690  * @type: Type of detach operation
691  *
692  * At most one of @prog or @link can be non-NULL.
693  * Must be called with cgroup_mutex held.
694  */
695 static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
696 			       struct bpf_cgroup_link *link, enum bpf_attach_type type)
697 {
698 	enum cgroup_bpf_attach_type atype;
699 	struct bpf_prog *old_prog;
700 	struct bpf_prog_list *pl;
701 	struct list_head *progs;
702 	u32 flags;
703 	int err;
704 
705 	atype = to_cgroup_bpf_attach_type(type);
706 	if (atype < 0)
707 		return -EINVAL;
708 
709 	progs = &cgrp->bpf.progs[atype];
710 	flags = cgrp->bpf.flags[atype];
711 
712 	if (prog && link)
713 		/* only one of prog or link can be specified */
714 		return -EINVAL;
715 
716 	pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI);
717 	if (IS_ERR(pl))
718 		return PTR_ERR(pl);
719 
720 	/* mark it deleted, so it's ignored while recomputing effective */
721 	old_prog = pl->prog;
722 	pl->prog = NULL;
723 	pl->link = NULL;
724 
725 	err = update_effective_progs(cgrp, atype);
726 	if (err)
727 		goto cleanup;
728 
729 	/* now can actually delete it from this cgroup list */
730 	list_del(&pl->node);
731 	kfree(pl);
732 	if (list_empty(progs))
733 		/* last program was detached, reset flags to zero */
734 		cgrp->bpf.flags[atype] = 0;
735 	if (old_prog)
736 		bpf_prog_put(old_prog);
737 	static_branch_dec(&cgroup_bpf_enabled_key[atype]);
738 	return 0;
739 
740 cleanup:
741 	/* restore back prog or link */
742 	pl->prog = old_prog;
743 	pl->link = link;
744 	return err;
745 }
746 
747 static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
748 			     enum bpf_attach_type type)
749 {
750 	int ret;
751 
752 	mutex_lock(&cgroup_mutex);
753 	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
754 	mutex_unlock(&cgroup_mutex);
755 	return ret;
756 }
757 
758 /* Must be called with cgroup_mutex held to avoid races. */
759 static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
760 			      union bpf_attr __user *uattr)
761 {
762 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
763 	enum bpf_attach_type type = attr->query.attach_type;
764 	enum cgroup_bpf_attach_type atype;
765 	struct bpf_prog_array *effective;
766 	struct list_head *progs;
767 	struct bpf_prog *prog;
768 	int cnt, ret = 0, i;
769 	u32 flags;
770 
771 	atype = to_cgroup_bpf_attach_type(type);
772 	if (atype < 0)
773 		return -EINVAL;
774 
775 	progs = &cgrp->bpf.progs[atype];
776 	flags = cgrp->bpf.flags[atype];
777 
778 	effective = rcu_dereference_protected(cgrp->bpf.effective[atype],
779 					      lockdep_is_held(&cgroup_mutex));
780 
781 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
782 		cnt = bpf_prog_array_length(effective);
783 	else
784 		cnt = prog_list_length(progs);
785 
786 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
787 		return -EFAULT;
788 	if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
789 		return -EFAULT;
790 	if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
791 		/* return early if user requested only program count + flags */
792 		return 0;
793 	if (attr->query.prog_cnt < cnt) {
794 		cnt = attr->query.prog_cnt;
795 		ret = -ENOSPC;
796 	}
797 
798 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
799 		return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
800 	} else {
801 		struct bpf_prog_list *pl;
802 		u32 id;
803 
804 		i = 0;
805 		list_for_each_entry(pl, progs, node) {
806 			prog = prog_list_prog(pl);
807 			id = prog->aux->id;
808 			if (copy_to_user(prog_ids + i, &id, sizeof(id)))
809 				return -EFAULT;
810 			if (++i == cnt)
811 				break;
812 		}
813 	}
814 	return ret;
815 }
816 
817 static int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
818 			    union bpf_attr __user *uattr)
819 {
820 	int ret;
821 
822 	mutex_lock(&cgroup_mutex);
823 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
824 	mutex_unlock(&cgroup_mutex);
825 	return ret;
826 }
827 
828 int cgroup_bpf_prog_attach(const union bpf_attr *attr,
829 			   enum bpf_prog_type ptype, struct bpf_prog *prog)
830 {
831 	struct bpf_prog *replace_prog = NULL;
832 	struct cgroup *cgrp;
833 	int ret;
834 
835 	cgrp = cgroup_get_from_fd(attr->target_fd);
836 	if (IS_ERR(cgrp))
837 		return PTR_ERR(cgrp);
838 
839 	if ((attr->attach_flags & BPF_F_ALLOW_MULTI) &&
840 	    (attr->attach_flags & BPF_F_REPLACE)) {
841 		replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype);
842 		if (IS_ERR(replace_prog)) {
843 			cgroup_put(cgrp);
844 			return PTR_ERR(replace_prog);
845 		}
846 	}
847 
848 	ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL,
849 				attr->attach_type, attr->attach_flags);
850 
851 	if (replace_prog)
852 		bpf_prog_put(replace_prog);
853 	cgroup_put(cgrp);
854 	return ret;
855 }
856 
857 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
858 {
859 	struct bpf_prog *prog;
860 	struct cgroup *cgrp;
861 	int ret;
862 
863 	cgrp = cgroup_get_from_fd(attr->target_fd);
864 	if (IS_ERR(cgrp))
865 		return PTR_ERR(cgrp);
866 
867 	prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
868 	if (IS_ERR(prog))
869 		prog = NULL;
870 
871 	ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type);
872 	if (prog)
873 		bpf_prog_put(prog);
874 
875 	cgroup_put(cgrp);
876 	return ret;
877 }
878 
879 static void bpf_cgroup_link_release(struct bpf_link *link)
880 {
881 	struct bpf_cgroup_link *cg_link =
882 		container_of(link, struct bpf_cgroup_link, link);
883 	struct cgroup *cg;
884 
885 	/* link might have been auto-detached by dying cgroup already,
886 	 * in that case our work is done here
887 	 */
888 	if (!cg_link->cgroup)
889 		return;
890 
891 	mutex_lock(&cgroup_mutex);
892 
893 	/* re-check cgroup under lock again */
894 	if (!cg_link->cgroup) {
895 		mutex_unlock(&cgroup_mutex);
896 		return;
897 	}
898 
899 	WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link,
900 				    cg_link->type));
901 
902 	cg = cg_link->cgroup;
903 	cg_link->cgroup = NULL;
904 
905 	mutex_unlock(&cgroup_mutex);
906 
907 	cgroup_put(cg);
908 }
909 
910 static void bpf_cgroup_link_dealloc(struct bpf_link *link)
911 {
912 	struct bpf_cgroup_link *cg_link =
913 		container_of(link, struct bpf_cgroup_link, link);
914 
915 	kfree(cg_link);
916 }
917 
918 static int bpf_cgroup_link_detach(struct bpf_link *link)
919 {
920 	bpf_cgroup_link_release(link);
921 
922 	return 0;
923 }
924 
925 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link,
926 					struct seq_file *seq)
927 {
928 	struct bpf_cgroup_link *cg_link =
929 		container_of(link, struct bpf_cgroup_link, link);
930 	u64 cg_id = 0;
931 
932 	mutex_lock(&cgroup_mutex);
933 	if (cg_link->cgroup)
934 		cg_id = cgroup_id(cg_link->cgroup);
935 	mutex_unlock(&cgroup_mutex);
936 
937 	seq_printf(seq,
938 		   "cgroup_id:\t%llu\n"
939 		   "attach_type:\t%d\n",
940 		   cg_id,
941 		   cg_link->type);
942 }
943 
944 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link,
945 					  struct bpf_link_info *info)
946 {
947 	struct bpf_cgroup_link *cg_link =
948 		container_of(link, struct bpf_cgroup_link, link);
949 	u64 cg_id = 0;
950 
951 	mutex_lock(&cgroup_mutex);
952 	if (cg_link->cgroup)
953 		cg_id = cgroup_id(cg_link->cgroup);
954 	mutex_unlock(&cgroup_mutex);
955 
956 	info->cgroup.cgroup_id = cg_id;
957 	info->cgroup.attach_type = cg_link->type;
958 	return 0;
959 }
960 
961 static const struct bpf_link_ops bpf_cgroup_link_lops = {
962 	.release = bpf_cgroup_link_release,
963 	.dealloc = bpf_cgroup_link_dealloc,
964 	.detach = bpf_cgroup_link_detach,
965 	.update_prog = cgroup_bpf_replace,
966 	.show_fdinfo = bpf_cgroup_link_show_fdinfo,
967 	.fill_link_info = bpf_cgroup_link_fill_link_info,
968 };
969 
970 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
971 {
972 	struct bpf_link_primer link_primer;
973 	struct bpf_cgroup_link *link;
974 	struct cgroup *cgrp;
975 	int err;
976 
977 	if (attr->link_create.flags)
978 		return -EINVAL;
979 
980 	cgrp = cgroup_get_from_fd(attr->link_create.target_fd);
981 	if (IS_ERR(cgrp))
982 		return PTR_ERR(cgrp);
983 
984 	link = kzalloc(sizeof(*link), GFP_USER);
985 	if (!link) {
986 		err = -ENOMEM;
987 		goto out_put_cgroup;
988 	}
989 	bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops,
990 		      prog);
991 	link->cgroup = cgrp;
992 	link->type = attr->link_create.attach_type;
993 
994 	err = bpf_link_prime(&link->link, &link_primer);
995 	if (err) {
996 		kfree(link);
997 		goto out_put_cgroup;
998 	}
999 
1000 	err = cgroup_bpf_attach(cgrp, NULL, NULL, link,
1001 				link->type, BPF_F_ALLOW_MULTI);
1002 	if (err) {
1003 		bpf_link_cleanup(&link_primer);
1004 		goto out_put_cgroup;
1005 	}
1006 
1007 	return bpf_link_settle(&link_primer);
1008 
1009 out_put_cgroup:
1010 	cgroup_put(cgrp);
1011 	return err;
1012 }
1013 
1014 int cgroup_bpf_prog_query(const union bpf_attr *attr,
1015 			  union bpf_attr __user *uattr)
1016 {
1017 	struct cgroup *cgrp;
1018 	int ret;
1019 
1020 	cgrp = cgroup_get_from_fd(attr->query.target_fd);
1021 	if (IS_ERR(cgrp))
1022 		return PTR_ERR(cgrp);
1023 
1024 	ret = cgroup_bpf_query(cgrp, attr, uattr);
1025 
1026 	cgroup_put(cgrp);
1027 	return ret;
1028 }
1029 
1030 /**
1031  * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
1032  * @sk: The socket sending or receiving traffic
1033  * @skb: The skb that is being sent or received
1034  * @type: The type of program to be exectuted
1035  *
1036  * If no socket is passed, or the socket is not of type INET or INET6,
1037  * this function does nothing and returns 0.
1038  *
1039  * The program type passed in via @type must be suitable for network
1040  * filtering. No further check is performed to assert that.
1041  *
1042  * For egress packets, this function can return:
1043  *   NET_XMIT_SUCCESS    (0)	- continue with packet output
1044  *   NET_XMIT_DROP       (1)	- drop packet and notify TCP to call cwr
1045  *   NET_XMIT_CN         (2)	- continue with packet output and notify TCP
1046  *				  to call cwr
1047  *   -EPERM			- drop packet
1048  *
1049  * For ingress packets, this function will return -EPERM if any
1050  * attached program was found and if it returned != 1 during execution.
1051  * Otherwise 0 is returned.
1052  */
1053 int __cgroup_bpf_run_filter_skb(struct sock *sk,
1054 				struct sk_buff *skb,
1055 				enum cgroup_bpf_attach_type atype)
1056 {
1057 	unsigned int offset = skb->data - skb_network_header(skb);
1058 	struct sock *save_sk;
1059 	void *saved_data_end;
1060 	struct cgroup *cgrp;
1061 	int ret;
1062 
1063 	if (!sk || !sk_fullsock(sk))
1064 		return 0;
1065 
1066 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1067 		return 0;
1068 
1069 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1070 	save_sk = skb->sk;
1071 	skb->sk = sk;
1072 	__skb_push(skb, offset);
1073 
1074 	/* compute pointers for the bpf prog */
1075 	bpf_compute_and_save_data_end(skb, &saved_data_end);
1076 
1077 	if (atype == CGROUP_INET_EGRESS) {
1078 		ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(
1079 			cgrp->bpf.effective[atype], skb, __bpf_prog_run_save_cb);
1080 	} else {
1081 		ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], skb,
1082 					    __bpf_prog_run_save_cb);
1083 	}
1084 	bpf_restore_data_end(skb, saved_data_end);
1085 	__skb_pull(skb, offset);
1086 	skb->sk = save_sk;
1087 
1088 	return ret;
1089 }
1090 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
1091 
1092 /**
1093  * __cgroup_bpf_run_filter_sk() - Run a program on a sock
1094  * @sk: sock structure to manipulate
1095  * @type: The type of program to be exectuted
1096  *
1097  * socket is passed is expected to be of type INET or INET6.
1098  *
1099  * The program type passed in via @type must be suitable for sock
1100  * filtering. No further check is performed to assert that.
1101  *
1102  * This function will return %-EPERM if any if an attached program was found
1103  * and if it returned != 1 during execution. In all other cases, 0 is returned.
1104  */
1105 int __cgroup_bpf_run_filter_sk(struct sock *sk,
1106 			       enum cgroup_bpf_attach_type atype)
1107 {
1108 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1109 
1110 	return BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], sk,
1111 				     bpf_prog_run);
1112 }
1113 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
1114 
1115 /**
1116  * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
1117  *                                       provided by user sockaddr
1118  * @sk: sock struct that will use sockaddr
1119  * @uaddr: sockaddr struct provided by user
1120  * @type: The type of program to be exectuted
1121  * @t_ctx: Pointer to attach type specific context
1122  * @flags: Pointer to u32 which contains higher bits of BPF program
1123  *         return value (OR'ed together).
1124  *
1125  * socket is expected to be of type INET or INET6.
1126  *
1127  * This function will return %-EPERM if an attached program is found and
1128  * returned value != 1 during execution. In all other cases, 0 is returned.
1129  */
1130 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
1131 				      struct sockaddr *uaddr,
1132 				      enum cgroup_bpf_attach_type atype,
1133 				      void *t_ctx,
1134 				      u32 *flags)
1135 {
1136 	struct bpf_sock_addr_kern ctx = {
1137 		.sk = sk,
1138 		.uaddr = uaddr,
1139 		.t_ctx = t_ctx,
1140 	};
1141 	struct sockaddr_storage unspec;
1142 	struct cgroup *cgrp;
1143 
1144 	/* Check socket family since not all sockets represent network
1145 	 * endpoint (e.g. AF_UNIX).
1146 	 */
1147 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1148 		return 0;
1149 
1150 	if (!ctx.uaddr) {
1151 		memset(&unspec, 0, sizeof(unspec));
1152 		ctx.uaddr = (struct sockaddr *)&unspec;
1153 	}
1154 
1155 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1156 	return BPF_PROG_RUN_ARRAY_CG_FLAGS(cgrp->bpf.effective[atype], &ctx,
1157 					   bpf_prog_run, flags);
1158 }
1159 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
1160 
1161 /**
1162  * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
1163  * @sk: socket to get cgroup from
1164  * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
1165  * sk with connection information (IP addresses, etc.) May not contain
1166  * cgroup info if it is a req sock.
1167  * @type: The type of program to be exectuted
1168  *
1169  * socket passed is expected to be of type INET or INET6.
1170  *
1171  * The program type passed in via @type must be suitable for sock_ops
1172  * filtering. No further check is performed to assert that.
1173  *
1174  * This function will return %-EPERM if any if an attached program was found
1175  * and if it returned != 1 during execution. In all other cases, 0 is returned.
1176  */
1177 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
1178 				     struct bpf_sock_ops_kern *sock_ops,
1179 				     enum cgroup_bpf_attach_type atype)
1180 {
1181 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1182 
1183 	return BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], sock_ops,
1184 				     bpf_prog_run);
1185 }
1186 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
1187 
1188 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
1189 				      short access, enum cgroup_bpf_attach_type atype)
1190 {
1191 	struct cgroup *cgrp;
1192 	struct bpf_cgroup_dev_ctx ctx = {
1193 		.access_type = (access << 16) | dev_type,
1194 		.major = major,
1195 		.minor = minor,
1196 	};
1197 	int ret;
1198 
1199 	rcu_read_lock();
1200 	cgrp = task_dfl_cgroup(current);
1201 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], &ctx,
1202 				    bpf_prog_run);
1203 	rcu_read_unlock();
1204 
1205 	return ret;
1206 }
1207 
1208 static const struct bpf_func_proto *
1209 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1210 {
1211 	switch (func_id) {
1212 	case BPF_FUNC_get_current_uid_gid:
1213 		return &bpf_get_current_uid_gid_proto;
1214 	case BPF_FUNC_get_local_storage:
1215 		return &bpf_get_local_storage_proto;
1216 	case BPF_FUNC_get_current_cgroup_id:
1217 		return &bpf_get_current_cgroup_id_proto;
1218 	case BPF_FUNC_perf_event_output:
1219 		return &bpf_event_output_data_proto;
1220 	default:
1221 		return bpf_base_func_proto(func_id);
1222 	}
1223 }
1224 
1225 static const struct bpf_func_proto *
1226 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1227 {
1228 	return cgroup_base_func_proto(func_id, prog);
1229 }
1230 
1231 static bool cgroup_dev_is_valid_access(int off, int size,
1232 				       enum bpf_access_type type,
1233 				       const struct bpf_prog *prog,
1234 				       struct bpf_insn_access_aux *info)
1235 {
1236 	const int size_default = sizeof(__u32);
1237 
1238 	if (type == BPF_WRITE)
1239 		return false;
1240 
1241 	if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
1242 		return false;
1243 	/* The verifier guarantees that size > 0. */
1244 	if (off % size != 0)
1245 		return false;
1246 
1247 	switch (off) {
1248 	case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
1249 		bpf_ctx_record_field_size(info, size_default);
1250 		if (!bpf_ctx_narrow_access_ok(off, size, size_default))
1251 			return false;
1252 		break;
1253 	default:
1254 		if (size != size_default)
1255 			return false;
1256 	}
1257 
1258 	return true;
1259 }
1260 
1261 const struct bpf_prog_ops cg_dev_prog_ops = {
1262 };
1263 
1264 const struct bpf_verifier_ops cg_dev_verifier_ops = {
1265 	.get_func_proto		= cgroup_dev_func_proto,
1266 	.is_valid_access	= cgroup_dev_is_valid_access,
1267 };
1268 
1269 /**
1270  * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
1271  *
1272  * @head: sysctl table header
1273  * @table: sysctl table
1274  * @write: sysctl is being read (= 0) or written (= 1)
1275  * @buf: pointer to buffer (in and out)
1276  * @pcount: value-result argument: value is size of buffer pointed to by @buf,
1277  *	result is size of @new_buf if program set new value, initial value
1278  *	otherwise
1279  * @ppos: value-result argument: value is position at which read from or write
1280  *	to sysctl is happening, result is new position if program overrode it,
1281  *	initial value otherwise
1282  * @type: type of program to be executed
1283  *
1284  * Program is run when sysctl is being accessed, either read or written, and
1285  * can allow or deny such access.
1286  *
1287  * This function will return %-EPERM if an attached program is found and
1288  * returned value != 1 during execution. In all other cases 0 is returned.
1289  */
1290 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
1291 				   struct ctl_table *table, int write,
1292 				   char **buf, size_t *pcount, loff_t *ppos,
1293 				   enum cgroup_bpf_attach_type atype)
1294 {
1295 	struct bpf_sysctl_kern ctx = {
1296 		.head = head,
1297 		.table = table,
1298 		.write = write,
1299 		.ppos = ppos,
1300 		.cur_val = NULL,
1301 		.cur_len = PAGE_SIZE,
1302 		.new_val = NULL,
1303 		.new_len = 0,
1304 		.new_updated = 0,
1305 	};
1306 	struct cgroup *cgrp;
1307 	loff_t pos = 0;
1308 	int ret;
1309 
1310 	ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
1311 	if (!ctx.cur_val ||
1312 	    table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) {
1313 		/* Let BPF program decide how to proceed. */
1314 		ctx.cur_len = 0;
1315 	}
1316 
1317 	if (write && *buf && *pcount) {
1318 		/* BPF program should be able to override new value with a
1319 		 * buffer bigger than provided by user.
1320 		 */
1321 		ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
1322 		ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
1323 		if (ctx.new_val) {
1324 			memcpy(ctx.new_val, *buf, ctx.new_len);
1325 		} else {
1326 			/* Let BPF program decide how to proceed. */
1327 			ctx.new_len = 0;
1328 		}
1329 	}
1330 
1331 	rcu_read_lock();
1332 	cgrp = task_dfl_cgroup(current);
1333 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], &ctx, bpf_prog_run);
1334 	rcu_read_unlock();
1335 
1336 	kfree(ctx.cur_val);
1337 
1338 	if (ret == 1 && ctx.new_updated) {
1339 		kfree(*buf);
1340 		*buf = ctx.new_val;
1341 		*pcount = ctx.new_len;
1342 	} else {
1343 		kfree(ctx.new_val);
1344 	}
1345 
1346 	return ret;
1347 }
1348 
1349 #ifdef CONFIG_NET
1350 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp,
1351 					     enum cgroup_bpf_attach_type attach_type)
1352 {
1353 	struct bpf_prog_array *prog_array;
1354 	bool empty;
1355 
1356 	rcu_read_lock();
1357 	prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]);
1358 	empty = bpf_prog_array_is_empty(prog_array);
1359 	rcu_read_unlock();
1360 
1361 	return empty;
1362 }
1363 
1364 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen,
1365 			     struct bpf_sockopt_buf *buf)
1366 {
1367 	if (unlikely(max_optlen < 0))
1368 		return -EINVAL;
1369 
1370 	if (unlikely(max_optlen > PAGE_SIZE)) {
1371 		/* We don't expose optvals that are greater than PAGE_SIZE
1372 		 * to the BPF program.
1373 		 */
1374 		max_optlen = PAGE_SIZE;
1375 	}
1376 
1377 	if (max_optlen <= sizeof(buf->data)) {
1378 		/* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE
1379 		 * bytes avoid the cost of kzalloc.
1380 		 */
1381 		ctx->optval = buf->data;
1382 		ctx->optval_end = ctx->optval + max_optlen;
1383 		return max_optlen;
1384 	}
1385 
1386 	ctx->optval = kzalloc(max_optlen, GFP_USER);
1387 	if (!ctx->optval)
1388 		return -ENOMEM;
1389 
1390 	ctx->optval_end = ctx->optval + max_optlen;
1391 
1392 	return max_optlen;
1393 }
1394 
1395 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx,
1396 			     struct bpf_sockopt_buf *buf)
1397 {
1398 	if (ctx->optval == buf->data)
1399 		return;
1400 	kfree(ctx->optval);
1401 }
1402 
1403 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx,
1404 				  struct bpf_sockopt_buf *buf)
1405 {
1406 	return ctx->optval != buf->data;
1407 }
1408 
1409 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
1410 				       int *optname, char __user *optval,
1411 				       int *optlen, char **kernel_optval)
1412 {
1413 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1414 	struct bpf_sockopt_buf buf = {};
1415 	struct bpf_sockopt_kern ctx = {
1416 		.sk = sk,
1417 		.level = *level,
1418 		.optname = *optname,
1419 	};
1420 	int ret, max_optlen;
1421 
1422 	/* Opportunistic check to see whether we have any BPF program
1423 	 * attached to the hook so we don't waste time allocating
1424 	 * memory and locking the socket.
1425 	 */
1426 	if (__cgroup_bpf_prog_array_is_empty(cgrp, CGROUP_SETSOCKOPT))
1427 		return 0;
1428 
1429 	/* Allocate a bit more than the initial user buffer for
1430 	 * BPF program. The canonical use case is overriding
1431 	 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1432 	 */
1433 	max_optlen = max_t(int, 16, *optlen);
1434 
1435 	max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1436 	if (max_optlen < 0)
1437 		return max_optlen;
1438 
1439 	ctx.optlen = *optlen;
1440 
1441 	if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) {
1442 		ret = -EFAULT;
1443 		goto out;
1444 	}
1445 
1446 	lock_sock(sk);
1447 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[CGROUP_SETSOCKOPT],
1448 				    &ctx, bpf_prog_run);
1449 	release_sock(sk);
1450 
1451 	if (ret)
1452 		goto out;
1453 
1454 	if (ctx.optlen == -1) {
1455 		/* optlen set to -1, bypass kernel */
1456 		ret = 1;
1457 	} else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1458 		/* optlen is out of bounds */
1459 		ret = -EFAULT;
1460 	} else {
1461 		/* optlen within bounds, run kernel handler */
1462 		ret = 0;
1463 
1464 		/* export any potential modifications */
1465 		*level = ctx.level;
1466 		*optname = ctx.optname;
1467 
1468 		/* optlen == 0 from BPF indicates that we should
1469 		 * use original userspace data.
1470 		 */
1471 		if (ctx.optlen != 0) {
1472 			*optlen = ctx.optlen;
1473 			/* We've used bpf_sockopt_kern->buf as an intermediary
1474 			 * storage, but the BPF program indicates that we need
1475 			 * to pass this data to the kernel setsockopt handler.
1476 			 * No way to export on-stack buf, have to allocate a
1477 			 * new buffer.
1478 			 */
1479 			if (!sockopt_buf_allocated(&ctx, &buf)) {
1480 				void *p = kmalloc(ctx.optlen, GFP_USER);
1481 
1482 				if (!p) {
1483 					ret = -ENOMEM;
1484 					goto out;
1485 				}
1486 				memcpy(p, ctx.optval, ctx.optlen);
1487 				*kernel_optval = p;
1488 			} else {
1489 				*kernel_optval = ctx.optval;
1490 			}
1491 			/* export and don't free sockopt buf */
1492 			return 0;
1493 		}
1494 	}
1495 
1496 out:
1497 	sockopt_free_buf(&ctx, &buf);
1498 	return ret;
1499 }
1500 
1501 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1502 				       int optname, char __user *optval,
1503 				       int __user *optlen, int max_optlen,
1504 				       int retval)
1505 {
1506 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1507 	struct bpf_sockopt_buf buf = {};
1508 	struct bpf_sockopt_kern ctx = {
1509 		.sk = sk,
1510 		.level = level,
1511 		.optname = optname,
1512 		.retval = retval,
1513 	};
1514 	int ret;
1515 
1516 	/* Opportunistic check to see whether we have any BPF program
1517 	 * attached to the hook so we don't waste time allocating
1518 	 * memory and locking the socket.
1519 	 */
1520 	if (__cgroup_bpf_prog_array_is_empty(cgrp, CGROUP_GETSOCKOPT))
1521 		return retval;
1522 
1523 	ctx.optlen = max_optlen;
1524 
1525 	max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1526 	if (max_optlen < 0)
1527 		return max_optlen;
1528 
1529 	if (!retval) {
1530 		/* If kernel getsockopt finished successfully,
1531 		 * copy whatever was returned to the user back
1532 		 * into our temporary buffer. Set optlen to the
1533 		 * one that kernel returned as well to let
1534 		 * BPF programs inspect the value.
1535 		 */
1536 
1537 		if (get_user(ctx.optlen, optlen)) {
1538 			ret = -EFAULT;
1539 			goto out;
1540 		}
1541 
1542 		if (ctx.optlen < 0) {
1543 			ret = -EFAULT;
1544 			goto out;
1545 		}
1546 
1547 		if (copy_from_user(ctx.optval, optval,
1548 				   min(ctx.optlen, max_optlen)) != 0) {
1549 			ret = -EFAULT;
1550 			goto out;
1551 		}
1552 	}
1553 
1554 	lock_sock(sk);
1555 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[CGROUP_GETSOCKOPT],
1556 				    &ctx, bpf_prog_run);
1557 	release_sock(sk);
1558 
1559 	if (ret)
1560 		goto out;
1561 
1562 	if (ctx.optlen > max_optlen || ctx.optlen < 0) {
1563 		ret = -EFAULT;
1564 		goto out;
1565 	}
1566 
1567 	/* BPF programs only allowed to set retval to 0, not some
1568 	 * arbitrary value.
1569 	 */
1570 	if (ctx.retval != 0 && ctx.retval != retval) {
1571 		ret = -EFAULT;
1572 		goto out;
1573 	}
1574 
1575 	if (ctx.optlen != 0) {
1576 		if (copy_to_user(optval, ctx.optval, ctx.optlen) ||
1577 		    put_user(ctx.optlen, optlen)) {
1578 			ret = -EFAULT;
1579 			goto out;
1580 		}
1581 	}
1582 
1583 	ret = ctx.retval;
1584 
1585 out:
1586 	sockopt_free_buf(&ctx, &buf);
1587 	return ret;
1588 }
1589 
1590 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level,
1591 					    int optname, void *optval,
1592 					    int *optlen, int retval)
1593 {
1594 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1595 	struct bpf_sockopt_kern ctx = {
1596 		.sk = sk,
1597 		.level = level,
1598 		.optname = optname,
1599 		.retval = retval,
1600 		.optlen = *optlen,
1601 		.optval = optval,
1602 		.optval_end = optval + *optlen,
1603 	};
1604 	int ret;
1605 
1606 	/* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy
1607 	 * user data back into BPF buffer when reval != 0. This is
1608 	 * done as an optimization to avoid extra copy, assuming
1609 	 * kernel won't populate the data in case of an error.
1610 	 * Here we always pass the data and memset() should
1611 	 * be called if that data shouldn't be "exported".
1612 	 */
1613 
1614 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[CGROUP_GETSOCKOPT],
1615 				    &ctx, bpf_prog_run);
1616 	if (ret)
1617 		return ret;
1618 
1619 	if (ctx.optlen > *optlen)
1620 		return -EFAULT;
1621 
1622 	/* BPF programs only allowed to set retval to 0, not some
1623 	 * arbitrary value.
1624 	 */
1625 	if (ctx.retval != 0 && ctx.retval != retval)
1626 		return -EFAULT;
1627 
1628 	/* BPF programs can shrink the buffer, export the modifications.
1629 	 */
1630 	if (ctx.optlen != 0)
1631 		*optlen = ctx.optlen;
1632 
1633 	return ctx.retval;
1634 }
1635 #endif
1636 
1637 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
1638 			      size_t *lenp)
1639 {
1640 	ssize_t tmp_ret = 0, ret;
1641 
1642 	if (dir->header.parent) {
1643 		tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
1644 		if (tmp_ret < 0)
1645 			return tmp_ret;
1646 	}
1647 
1648 	ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
1649 	if (ret < 0)
1650 		return ret;
1651 	*bufp += ret;
1652 	*lenp -= ret;
1653 	ret += tmp_ret;
1654 
1655 	/* Avoid leading slash. */
1656 	if (!ret)
1657 		return ret;
1658 
1659 	tmp_ret = strscpy(*bufp, "/", *lenp);
1660 	if (tmp_ret < 0)
1661 		return tmp_ret;
1662 	*bufp += tmp_ret;
1663 	*lenp -= tmp_ret;
1664 
1665 	return ret + tmp_ret;
1666 }
1667 
1668 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
1669 	   size_t, buf_len, u64, flags)
1670 {
1671 	ssize_t tmp_ret = 0, ret;
1672 
1673 	if (!buf)
1674 		return -EINVAL;
1675 
1676 	if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
1677 		if (!ctx->head)
1678 			return -EINVAL;
1679 		tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
1680 		if (tmp_ret < 0)
1681 			return tmp_ret;
1682 	}
1683 
1684 	ret = strscpy(buf, ctx->table->procname, buf_len);
1685 
1686 	return ret < 0 ? ret : tmp_ret + ret;
1687 }
1688 
1689 static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
1690 	.func		= bpf_sysctl_get_name,
1691 	.gpl_only	= false,
1692 	.ret_type	= RET_INTEGER,
1693 	.arg1_type	= ARG_PTR_TO_CTX,
1694 	.arg2_type	= ARG_PTR_TO_MEM,
1695 	.arg3_type	= ARG_CONST_SIZE,
1696 	.arg4_type	= ARG_ANYTHING,
1697 };
1698 
1699 static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
1700 			     size_t src_len)
1701 {
1702 	if (!dst)
1703 		return -EINVAL;
1704 
1705 	if (!dst_len)
1706 		return -E2BIG;
1707 
1708 	if (!src || !src_len) {
1709 		memset(dst, 0, dst_len);
1710 		return -EINVAL;
1711 	}
1712 
1713 	memcpy(dst, src, min(dst_len, src_len));
1714 
1715 	if (dst_len > src_len) {
1716 		memset(dst + src_len, '\0', dst_len - src_len);
1717 		return src_len;
1718 	}
1719 
1720 	dst[dst_len - 1] = '\0';
1721 
1722 	return -E2BIG;
1723 }
1724 
1725 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
1726 	   char *, buf, size_t, buf_len)
1727 {
1728 	return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
1729 }
1730 
1731 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
1732 	.func		= bpf_sysctl_get_current_value,
1733 	.gpl_only	= false,
1734 	.ret_type	= RET_INTEGER,
1735 	.arg1_type	= ARG_PTR_TO_CTX,
1736 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1737 	.arg3_type	= ARG_CONST_SIZE,
1738 };
1739 
1740 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
1741 	   size_t, buf_len)
1742 {
1743 	if (!ctx->write) {
1744 		if (buf && buf_len)
1745 			memset(buf, '\0', buf_len);
1746 		return -EINVAL;
1747 	}
1748 	return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
1749 }
1750 
1751 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
1752 	.func		= bpf_sysctl_get_new_value,
1753 	.gpl_only	= false,
1754 	.ret_type	= RET_INTEGER,
1755 	.arg1_type	= ARG_PTR_TO_CTX,
1756 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1757 	.arg3_type	= ARG_CONST_SIZE,
1758 };
1759 
1760 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
1761 	   const char *, buf, size_t, buf_len)
1762 {
1763 	if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
1764 		return -EINVAL;
1765 
1766 	if (buf_len > PAGE_SIZE - 1)
1767 		return -E2BIG;
1768 
1769 	memcpy(ctx->new_val, buf, buf_len);
1770 	ctx->new_len = buf_len;
1771 	ctx->new_updated = 1;
1772 
1773 	return 0;
1774 }
1775 
1776 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
1777 	.func		= bpf_sysctl_set_new_value,
1778 	.gpl_only	= false,
1779 	.ret_type	= RET_INTEGER,
1780 	.arg1_type	= ARG_PTR_TO_CTX,
1781 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1782 	.arg3_type	= ARG_CONST_SIZE,
1783 };
1784 
1785 static const struct bpf_func_proto *
1786 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1787 {
1788 	switch (func_id) {
1789 	case BPF_FUNC_strtol:
1790 		return &bpf_strtol_proto;
1791 	case BPF_FUNC_strtoul:
1792 		return &bpf_strtoul_proto;
1793 	case BPF_FUNC_sysctl_get_name:
1794 		return &bpf_sysctl_get_name_proto;
1795 	case BPF_FUNC_sysctl_get_current_value:
1796 		return &bpf_sysctl_get_current_value_proto;
1797 	case BPF_FUNC_sysctl_get_new_value:
1798 		return &bpf_sysctl_get_new_value_proto;
1799 	case BPF_FUNC_sysctl_set_new_value:
1800 		return &bpf_sysctl_set_new_value_proto;
1801 	case BPF_FUNC_ktime_get_coarse_ns:
1802 		return &bpf_ktime_get_coarse_ns_proto;
1803 	default:
1804 		return cgroup_base_func_proto(func_id, prog);
1805 	}
1806 }
1807 
1808 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
1809 				   const struct bpf_prog *prog,
1810 				   struct bpf_insn_access_aux *info)
1811 {
1812 	const int size_default = sizeof(__u32);
1813 
1814 	if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
1815 		return false;
1816 
1817 	switch (off) {
1818 	case bpf_ctx_range(struct bpf_sysctl, write):
1819 		if (type != BPF_READ)
1820 			return false;
1821 		bpf_ctx_record_field_size(info, size_default);
1822 		return bpf_ctx_narrow_access_ok(off, size, size_default);
1823 	case bpf_ctx_range(struct bpf_sysctl, file_pos):
1824 		if (type == BPF_READ) {
1825 			bpf_ctx_record_field_size(info, size_default);
1826 			return bpf_ctx_narrow_access_ok(off, size, size_default);
1827 		} else {
1828 			return size == size_default;
1829 		}
1830 	default:
1831 		return false;
1832 	}
1833 }
1834 
1835 static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
1836 				     const struct bpf_insn *si,
1837 				     struct bpf_insn *insn_buf,
1838 				     struct bpf_prog *prog, u32 *target_size)
1839 {
1840 	struct bpf_insn *insn = insn_buf;
1841 	u32 read_size;
1842 
1843 	switch (si->off) {
1844 	case offsetof(struct bpf_sysctl, write):
1845 		*insn++ = BPF_LDX_MEM(
1846 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
1847 			bpf_target_off(struct bpf_sysctl_kern, write,
1848 				       sizeof_field(struct bpf_sysctl_kern,
1849 						    write),
1850 				       target_size));
1851 		break;
1852 	case offsetof(struct bpf_sysctl, file_pos):
1853 		/* ppos is a pointer so it should be accessed via indirect
1854 		 * loads and stores. Also for stores additional temporary
1855 		 * register is used since neither src_reg nor dst_reg can be
1856 		 * overridden.
1857 		 */
1858 		if (type == BPF_WRITE) {
1859 			int treg = BPF_REG_9;
1860 
1861 			if (si->src_reg == treg || si->dst_reg == treg)
1862 				--treg;
1863 			if (si->src_reg == treg || si->dst_reg == treg)
1864 				--treg;
1865 			*insn++ = BPF_STX_MEM(
1866 				BPF_DW, si->dst_reg, treg,
1867 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1868 			*insn++ = BPF_LDX_MEM(
1869 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1870 				treg, si->dst_reg,
1871 				offsetof(struct bpf_sysctl_kern, ppos));
1872 			*insn++ = BPF_STX_MEM(
1873 				BPF_SIZEOF(u32), treg, si->src_reg,
1874 				bpf_ctx_narrow_access_offset(
1875 					0, sizeof(u32), sizeof(loff_t)));
1876 			*insn++ = BPF_LDX_MEM(
1877 				BPF_DW, treg, si->dst_reg,
1878 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1879 		} else {
1880 			*insn++ = BPF_LDX_MEM(
1881 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1882 				si->dst_reg, si->src_reg,
1883 				offsetof(struct bpf_sysctl_kern, ppos));
1884 			read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
1885 			*insn++ = BPF_LDX_MEM(
1886 				BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
1887 				bpf_ctx_narrow_access_offset(
1888 					0, read_size, sizeof(loff_t)));
1889 		}
1890 		*target_size = sizeof(u32);
1891 		break;
1892 	}
1893 
1894 	return insn - insn_buf;
1895 }
1896 
1897 const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
1898 	.get_func_proto		= sysctl_func_proto,
1899 	.is_valid_access	= sysctl_is_valid_access,
1900 	.convert_ctx_access	= sysctl_convert_ctx_access,
1901 };
1902 
1903 const struct bpf_prog_ops cg_sysctl_prog_ops = {
1904 };
1905 
1906 #ifdef CONFIG_NET
1907 BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx)
1908 {
1909 	const struct net *net = ctx ? sock_net(ctx->sk) : &init_net;
1910 
1911 	return net->net_cookie;
1912 }
1913 
1914 static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = {
1915 	.func		= bpf_get_netns_cookie_sockopt,
1916 	.gpl_only	= false,
1917 	.ret_type	= RET_INTEGER,
1918 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
1919 };
1920 #endif
1921 
1922 static const struct bpf_func_proto *
1923 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1924 {
1925 	switch (func_id) {
1926 #ifdef CONFIG_NET
1927 	case BPF_FUNC_get_netns_cookie:
1928 		return &bpf_get_netns_cookie_sockopt_proto;
1929 	case BPF_FUNC_sk_storage_get:
1930 		return &bpf_sk_storage_get_proto;
1931 	case BPF_FUNC_sk_storage_delete:
1932 		return &bpf_sk_storage_delete_proto;
1933 	case BPF_FUNC_setsockopt:
1934 		if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
1935 			return &bpf_sk_setsockopt_proto;
1936 		return NULL;
1937 	case BPF_FUNC_getsockopt:
1938 		if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
1939 			return &bpf_sk_getsockopt_proto;
1940 		return NULL;
1941 #endif
1942 #ifdef CONFIG_INET
1943 	case BPF_FUNC_tcp_sock:
1944 		return &bpf_tcp_sock_proto;
1945 #endif
1946 	default:
1947 		return cgroup_base_func_proto(func_id, prog);
1948 	}
1949 }
1950 
1951 static bool cg_sockopt_is_valid_access(int off, int size,
1952 				       enum bpf_access_type type,
1953 				       const struct bpf_prog *prog,
1954 				       struct bpf_insn_access_aux *info)
1955 {
1956 	const int size_default = sizeof(__u32);
1957 
1958 	if (off < 0 || off >= sizeof(struct bpf_sockopt))
1959 		return false;
1960 
1961 	if (off % size != 0)
1962 		return false;
1963 
1964 	if (type == BPF_WRITE) {
1965 		switch (off) {
1966 		case offsetof(struct bpf_sockopt, retval):
1967 			if (size != size_default)
1968 				return false;
1969 			return prog->expected_attach_type ==
1970 				BPF_CGROUP_GETSOCKOPT;
1971 		case offsetof(struct bpf_sockopt, optname):
1972 			fallthrough;
1973 		case offsetof(struct bpf_sockopt, level):
1974 			if (size != size_default)
1975 				return false;
1976 			return prog->expected_attach_type ==
1977 				BPF_CGROUP_SETSOCKOPT;
1978 		case offsetof(struct bpf_sockopt, optlen):
1979 			return size == size_default;
1980 		default:
1981 			return false;
1982 		}
1983 	}
1984 
1985 	switch (off) {
1986 	case offsetof(struct bpf_sockopt, sk):
1987 		if (size != sizeof(__u64))
1988 			return false;
1989 		info->reg_type = PTR_TO_SOCKET;
1990 		break;
1991 	case offsetof(struct bpf_sockopt, optval):
1992 		if (size != sizeof(__u64))
1993 			return false;
1994 		info->reg_type = PTR_TO_PACKET;
1995 		break;
1996 	case offsetof(struct bpf_sockopt, optval_end):
1997 		if (size != sizeof(__u64))
1998 			return false;
1999 		info->reg_type = PTR_TO_PACKET_END;
2000 		break;
2001 	case offsetof(struct bpf_sockopt, retval):
2002 		if (size != size_default)
2003 			return false;
2004 		return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
2005 	default:
2006 		if (size != size_default)
2007 			return false;
2008 		break;
2009 	}
2010 	return true;
2011 }
2012 
2013 #define CG_SOCKOPT_ACCESS_FIELD(T, F)					\
2014 	T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F),			\
2015 	  si->dst_reg, si->src_reg,					\
2016 	  offsetof(struct bpf_sockopt_kern, F))
2017 
2018 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
2019 					 const struct bpf_insn *si,
2020 					 struct bpf_insn *insn_buf,
2021 					 struct bpf_prog *prog,
2022 					 u32 *target_size)
2023 {
2024 	struct bpf_insn *insn = insn_buf;
2025 
2026 	switch (si->off) {
2027 	case offsetof(struct bpf_sockopt, sk):
2028 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
2029 		break;
2030 	case offsetof(struct bpf_sockopt, level):
2031 		if (type == BPF_WRITE)
2032 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
2033 		else
2034 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
2035 		break;
2036 	case offsetof(struct bpf_sockopt, optname):
2037 		if (type == BPF_WRITE)
2038 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
2039 		else
2040 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
2041 		break;
2042 	case offsetof(struct bpf_sockopt, optlen):
2043 		if (type == BPF_WRITE)
2044 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
2045 		else
2046 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
2047 		break;
2048 	case offsetof(struct bpf_sockopt, retval):
2049 		if (type == BPF_WRITE)
2050 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval);
2051 		else
2052 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval);
2053 		break;
2054 	case offsetof(struct bpf_sockopt, optval):
2055 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
2056 		break;
2057 	case offsetof(struct bpf_sockopt, optval_end):
2058 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
2059 		break;
2060 	}
2061 
2062 	return insn - insn_buf;
2063 }
2064 
2065 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
2066 				   bool direct_write,
2067 				   const struct bpf_prog *prog)
2068 {
2069 	/* Nothing to do for sockopt argument. The data is kzalloc'ated.
2070 	 */
2071 	return 0;
2072 }
2073 
2074 const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
2075 	.get_func_proto		= cg_sockopt_func_proto,
2076 	.is_valid_access	= cg_sockopt_is_valid_access,
2077 	.convert_ctx_access	= cg_sockopt_convert_ctx_access,
2078 	.gen_prologue		= cg_sockopt_get_prologue,
2079 };
2080 
2081 const struct bpf_prog_ops cg_sockopt_prog_ops = {
2082 };
2083