xref: /openbmc/linux/kernel/bpf/cgroup.c (revision e10360f8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Functions to manage eBPF programs attached to cgroups
4  *
5  * Copyright (c) 2016 Daniel Mack
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/atomic.h>
10 #include <linux/cgroup.h>
11 #include <linux/filter.h>
12 #include <linux/slab.h>
13 #include <linux/sysctl.h>
14 #include <linux/string.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf-cgroup.h>
17 #include <net/sock.h>
18 #include <net/bpf_sk_storage.h>
19 
20 #include "../cgroup/cgroup-internal.h"
21 
22 DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key);
23 EXPORT_SYMBOL(cgroup_bpf_enabled_key);
24 
25 void cgroup_bpf_offline(struct cgroup *cgrp)
26 {
27 	cgroup_get(cgrp);
28 	percpu_ref_kill(&cgrp->bpf.refcnt);
29 }
30 
31 /**
32  * cgroup_bpf_release() - put references of all bpf programs and
33  *                        release all cgroup bpf data
34  * @work: work structure embedded into the cgroup to modify
35  */
36 static void cgroup_bpf_release(struct work_struct *work)
37 {
38 	struct cgroup *p, *cgrp = container_of(work, struct cgroup,
39 					       bpf.release_work);
40 	enum bpf_cgroup_storage_type stype;
41 	struct bpf_prog_array *old_array;
42 	unsigned int type;
43 
44 	mutex_lock(&cgroup_mutex);
45 
46 	for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) {
47 		struct list_head *progs = &cgrp->bpf.progs[type];
48 		struct bpf_prog_list *pl, *tmp;
49 
50 		list_for_each_entry_safe(pl, tmp, progs, node) {
51 			list_del(&pl->node);
52 			bpf_prog_put(pl->prog);
53 			for_each_cgroup_storage_type(stype) {
54 				bpf_cgroup_storage_unlink(pl->storage[stype]);
55 				bpf_cgroup_storage_free(pl->storage[stype]);
56 			}
57 			kfree(pl);
58 			static_branch_dec(&cgroup_bpf_enabled_key);
59 		}
60 		old_array = rcu_dereference_protected(
61 				cgrp->bpf.effective[type],
62 				lockdep_is_held(&cgroup_mutex));
63 		bpf_prog_array_free(old_array);
64 	}
65 
66 	mutex_unlock(&cgroup_mutex);
67 
68 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
69 		cgroup_bpf_put(p);
70 
71 	percpu_ref_exit(&cgrp->bpf.refcnt);
72 	cgroup_put(cgrp);
73 }
74 
75 /**
76  * cgroup_bpf_release_fn() - callback used to schedule releasing
77  *                           of bpf cgroup data
78  * @ref: percpu ref counter structure
79  */
80 static void cgroup_bpf_release_fn(struct percpu_ref *ref)
81 {
82 	struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
83 
84 	INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
85 	queue_work(system_wq, &cgrp->bpf.release_work);
86 }
87 
88 /* count number of elements in the list.
89  * it's slow but the list cannot be long
90  */
91 static u32 prog_list_length(struct list_head *head)
92 {
93 	struct bpf_prog_list *pl;
94 	u32 cnt = 0;
95 
96 	list_for_each_entry(pl, head, node) {
97 		if (!pl->prog)
98 			continue;
99 		cnt++;
100 	}
101 	return cnt;
102 }
103 
104 /* if parent has non-overridable prog attached,
105  * disallow attaching new programs to the descendent cgroup.
106  * if parent has overridable or multi-prog, allow attaching
107  */
108 static bool hierarchy_allows_attach(struct cgroup *cgrp,
109 				    enum bpf_attach_type type,
110 				    u32 new_flags)
111 {
112 	struct cgroup *p;
113 
114 	p = cgroup_parent(cgrp);
115 	if (!p)
116 		return true;
117 	do {
118 		u32 flags = p->bpf.flags[type];
119 		u32 cnt;
120 
121 		if (flags & BPF_F_ALLOW_MULTI)
122 			return true;
123 		cnt = prog_list_length(&p->bpf.progs[type]);
124 		WARN_ON_ONCE(cnt > 1);
125 		if (cnt == 1)
126 			return !!(flags & BPF_F_ALLOW_OVERRIDE);
127 		p = cgroup_parent(p);
128 	} while (p);
129 	return true;
130 }
131 
132 /* compute a chain of effective programs for a given cgroup:
133  * start from the list of programs in this cgroup and add
134  * all parent programs.
135  * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
136  * to programs in this cgroup
137  */
138 static int compute_effective_progs(struct cgroup *cgrp,
139 				   enum bpf_attach_type type,
140 				   struct bpf_prog_array **array)
141 {
142 	enum bpf_cgroup_storage_type stype;
143 	struct bpf_prog_array *progs;
144 	struct bpf_prog_list *pl;
145 	struct cgroup *p = cgrp;
146 	int cnt = 0;
147 
148 	/* count number of effective programs by walking parents */
149 	do {
150 		if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
151 			cnt += prog_list_length(&p->bpf.progs[type]);
152 		p = cgroup_parent(p);
153 	} while (p);
154 
155 	progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
156 	if (!progs)
157 		return -ENOMEM;
158 
159 	/* populate the array with effective progs */
160 	cnt = 0;
161 	p = cgrp;
162 	do {
163 		if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
164 			continue;
165 
166 		list_for_each_entry(pl, &p->bpf.progs[type], node) {
167 			if (!pl->prog)
168 				continue;
169 
170 			progs->items[cnt].prog = pl->prog;
171 			for_each_cgroup_storage_type(stype)
172 				progs->items[cnt].cgroup_storage[stype] =
173 					pl->storage[stype];
174 			cnt++;
175 		}
176 	} while ((p = cgroup_parent(p)));
177 
178 	*array = progs;
179 	return 0;
180 }
181 
182 static void activate_effective_progs(struct cgroup *cgrp,
183 				     enum bpf_attach_type type,
184 				     struct bpf_prog_array *old_array)
185 {
186 	old_array = rcu_replace_pointer(cgrp->bpf.effective[type], old_array,
187 					lockdep_is_held(&cgroup_mutex));
188 	/* free prog array after grace period, since __cgroup_bpf_run_*()
189 	 * might be still walking the array
190 	 */
191 	bpf_prog_array_free(old_array);
192 }
193 
194 /**
195  * cgroup_bpf_inherit() - inherit effective programs from parent
196  * @cgrp: the cgroup to modify
197  */
198 int cgroup_bpf_inherit(struct cgroup *cgrp)
199 {
200 /* has to use marco instead of const int, since compiler thinks
201  * that array below is variable length
202  */
203 #define	NR ARRAY_SIZE(cgrp->bpf.effective)
204 	struct bpf_prog_array *arrays[NR] = {};
205 	struct cgroup *p;
206 	int ret, i;
207 
208 	ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
209 			      GFP_KERNEL);
210 	if (ret)
211 		return ret;
212 
213 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
214 		cgroup_bpf_get(p);
215 
216 	for (i = 0; i < NR; i++)
217 		INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
218 
219 	for (i = 0; i < NR; i++)
220 		if (compute_effective_progs(cgrp, i, &arrays[i]))
221 			goto cleanup;
222 
223 	for (i = 0; i < NR; i++)
224 		activate_effective_progs(cgrp, i, arrays[i]);
225 
226 	return 0;
227 cleanup:
228 	for (i = 0; i < NR; i++)
229 		bpf_prog_array_free(arrays[i]);
230 
231 	percpu_ref_exit(&cgrp->bpf.refcnt);
232 
233 	return -ENOMEM;
234 }
235 
236 static int update_effective_progs(struct cgroup *cgrp,
237 				  enum bpf_attach_type type)
238 {
239 	struct cgroup_subsys_state *css;
240 	int err;
241 
242 	/* allocate and recompute effective prog arrays */
243 	css_for_each_descendant_pre(css, &cgrp->self) {
244 		struct cgroup *desc = container_of(css, struct cgroup, self);
245 
246 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
247 			continue;
248 
249 		err = compute_effective_progs(desc, type, &desc->bpf.inactive);
250 		if (err)
251 			goto cleanup;
252 	}
253 
254 	/* all allocations were successful. Activate all prog arrays */
255 	css_for_each_descendant_pre(css, &cgrp->self) {
256 		struct cgroup *desc = container_of(css, struct cgroup, self);
257 
258 		if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
259 			if (unlikely(desc->bpf.inactive)) {
260 				bpf_prog_array_free(desc->bpf.inactive);
261 				desc->bpf.inactive = NULL;
262 			}
263 			continue;
264 		}
265 
266 		activate_effective_progs(desc, type, desc->bpf.inactive);
267 		desc->bpf.inactive = NULL;
268 	}
269 
270 	return 0;
271 
272 cleanup:
273 	/* oom while computing effective. Free all computed effective arrays
274 	 * since they were not activated
275 	 */
276 	css_for_each_descendant_pre(css, &cgrp->self) {
277 		struct cgroup *desc = container_of(css, struct cgroup, self);
278 
279 		bpf_prog_array_free(desc->bpf.inactive);
280 		desc->bpf.inactive = NULL;
281 	}
282 
283 	return err;
284 }
285 
286 #define BPF_CGROUP_MAX_PROGS 64
287 
288 /**
289  * __cgroup_bpf_attach() - Attach the program to a cgroup, and
290  *                         propagate the change to descendants
291  * @cgrp: The cgroup which descendants to traverse
292  * @prog: A program to attach
293  * @type: Type of attach operation
294  * @flags: Option flags
295  *
296  * Must be called with cgroup_mutex held.
297  */
298 int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
299 			enum bpf_attach_type type, u32 flags)
300 {
301 	struct list_head *progs = &cgrp->bpf.progs[type];
302 	struct bpf_prog *old_prog = NULL;
303 	struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE],
304 		*old_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {NULL};
305 	enum bpf_cgroup_storage_type stype;
306 	struct bpf_prog_list *pl;
307 	bool pl_was_allocated;
308 	int err;
309 
310 	if ((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI))
311 		/* invalid combination */
312 		return -EINVAL;
313 
314 	if (!hierarchy_allows_attach(cgrp, type, flags))
315 		return -EPERM;
316 
317 	if (!list_empty(progs) && cgrp->bpf.flags[type] != flags)
318 		/* Disallow attaching non-overridable on top
319 		 * of existing overridable in this cgroup.
320 		 * Disallow attaching multi-prog if overridable or none
321 		 */
322 		return -EPERM;
323 
324 	if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
325 		return -E2BIG;
326 
327 	for_each_cgroup_storage_type(stype) {
328 		storage[stype] = bpf_cgroup_storage_alloc(prog, stype);
329 		if (IS_ERR(storage[stype])) {
330 			storage[stype] = NULL;
331 			for_each_cgroup_storage_type(stype)
332 				bpf_cgroup_storage_free(storage[stype]);
333 			return -ENOMEM;
334 		}
335 	}
336 
337 	if (flags & BPF_F_ALLOW_MULTI) {
338 		list_for_each_entry(pl, progs, node) {
339 			if (pl->prog == prog) {
340 				/* disallow attaching the same prog twice */
341 				for_each_cgroup_storage_type(stype)
342 					bpf_cgroup_storage_free(storage[stype]);
343 				return -EINVAL;
344 			}
345 		}
346 
347 		pl = kmalloc(sizeof(*pl), GFP_KERNEL);
348 		if (!pl) {
349 			for_each_cgroup_storage_type(stype)
350 				bpf_cgroup_storage_free(storage[stype]);
351 			return -ENOMEM;
352 		}
353 
354 		pl_was_allocated = true;
355 		pl->prog = prog;
356 		for_each_cgroup_storage_type(stype)
357 			pl->storage[stype] = storage[stype];
358 		list_add_tail(&pl->node, progs);
359 	} else {
360 		if (list_empty(progs)) {
361 			pl = kmalloc(sizeof(*pl), GFP_KERNEL);
362 			if (!pl) {
363 				for_each_cgroup_storage_type(stype)
364 					bpf_cgroup_storage_free(storage[stype]);
365 				return -ENOMEM;
366 			}
367 			pl_was_allocated = true;
368 			list_add_tail(&pl->node, progs);
369 		} else {
370 			pl = list_first_entry(progs, typeof(*pl), node);
371 			old_prog = pl->prog;
372 			for_each_cgroup_storage_type(stype) {
373 				old_storage[stype] = pl->storage[stype];
374 				bpf_cgroup_storage_unlink(old_storage[stype]);
375 			}
376 			pl_was_allocated = false;
377 		}
378 		pl->prog = prog;
379 		for_each_cgroup_storage_type(stype)
380 			pl->storage[stype] = storage[stype];
381 	}
382 
383 	cgrp->bpf.flags[type] = flags;
384 
385 	err = update_effective_progs(cgrp, type);
386 	if (err)
387 		goto cleanup;
388 
389 	static_branch_inc(&cgroup_bpf_enabled_key);
390 	for_each_cgroup_storage_type(stype) {
391 		if (!old_storage[stype])
392 			continue;
393 		bpf_cgroup_storage_free(old_storage[stype]);
394 	}
395 	if (old_prog) {
396 		bpf_prog_put(old_prog);
397 		static_branch_dec(&cgroup_bpf_enabled_key);
398 	}
399 	for_each_cgroup_storage_type(stype)
400 		bpf_cgroup_storage_link(storage[stype], cgrp, type);
401 	return 0;
402 
403 cleanup:
404 	/* and cleanup the prog list */
405 	pl->prog = old_prog;
406 	for_each_cgroup_storage_type(stype) {
407 		bpf_cgroup_storage_free(pl->storage[stype]);
408 		pl->storage[stype] = old_storage[stype];
409 		bpf_cgroup_storage_link(old_storage[stype], cgrp, type);
410 	}
411 	if (pl_was_allocated) {
412 		list_del(&pl->node);
413 		kfree(pl);
414 	}
415 	return err;
416 }
417 
418 /**
419  * __cgroup_bpf_detach() - Detach the program from a cgroup, and
420  *                         propagate the change to descendants
421  * @cgrp: The cgroup which descendants to traverse
422  * @prog: A program to detach or NULL
423  * @type: Type of detach operation
424  *
425  * Must be called with cgroup_mutex held.
426  */
427 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
428 			enum bpf_attach_type type)
429 {
430 	struct list_head *progs = &cgrp->bpf.progs[type];
431 	enum bpf_cgroup_storage_type stype;
432 	u32 flags = cgrp->bpf.flags[type];
433 	struct bpf_prog *old_prog = NULL;
434 	struct bpf_prog_list *pl;
435 	int err;
436 
437 	if (flags & BPF_F_ALLOW_MULTI) {
438 		if (!prog)
439 			/* to detach MULTI prog the user has to specify valid FD
440 			 * of the program to be detached
441 			 */
442 			return -EINVAL;
443 	} else {
444 		if (list_empty(progs))
445 			/* report error when trying to detach and nothing is attached */
446 			return -ENOENT;
447 	}
448 
449 	if (flags & BPF_F_ALLOW_MULTI) {
450 		/* find the prog and detach it */
451 		list_for_each_entry(pl, progs, node) {
452 			if (pl->prog != prog)
453 				continue;
454 			old_prog = prog;
455 			/* mark it deleted, so it's ignored while
456 			 * recomputing effective
457 			 */
458 			pl->prog = NULL;
459 			break;
460 		}
461 		if (!old_prog)
462 			return -ENOENT;
463 	} else {
464 		/* to maintain backward compatibility NONE and OVERRIDE cgroups
465 		 * allow detaching with invalid FD (prog==NULL)
466 		 */
467 		pl = list_first_entry(progs, typeof(*pl), node);
468 		old_prog = pl->prog;
469 		pl->prog = NULL;
470 	}
471 
472 	err = update_effective_progs(cgrp, type);
473 	if (err)
474 		goto cleanup;
475 
476 	/* now can actually delete it from this cgroup list */
477 	list_del(&pl->node);
478 	for_each_cgroup_storage_type(stype) {
479 		bpf_cgroup_storage_unlink(pl->storage[stype]);
480 		bpf_cgroup_storage_free(pl->storage[stype]);
481 	}
482 	kfree(pl);
483 	if (list_empty(progs))
484 		/* last program was detached, reset flags to zero */
485 		cgrp->bpf.flags[type] = 0;
486 
487 	bpf_prog_put(old_prog);
488 	static_branch_dec(&cgroup_bpf_enabled_key);
489 	return 0;
490 
491 cleanup:
492 	/* and restore back old_prog */
493 	pl->prog = old_prog;
494 	return err;
495 }
496 
497 /* Must be called with cgroup_mutex held to avoid races. */
498 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
499 		       union bpf_attr __user *uattr)
500 {
501 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
502 	enum bpf_attach_type type = attr->query.attach_type;
503 	struct list_head *progs = &cgrp->bpf.progs[type];
504 	u32 flags = cgrp->bpf.flags[type];
505 	struct bpf_prog_array *effective;
506 	int cnt, ret = 0, i;
507 
508 	effective = rcu_dereference_protected(cgrp->bpf.effective[type],
509 					      lockdep_is_held(&cgroup_mutex));
510 
511 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
512 		cnt = bpf_prog_array_length(effective);
513 	else
514 		cnt = prog_list_length(progs);
515 
516 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
517 		return -EFAULT;
518 	if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
519 		return -EFAULT;
520 	if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
521 		/* return early if user requested only program count + flags */
522 		return 0;
523 	if (attr->query.prog_cnt < cnt) {
524 		cnt = attr->query.prog_cnt;
525 		ret = -ENOSPC;
526 	}
527 
528 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
529 		return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
530 	} else {
531 		struct bpf_prog_list *pl;
532 		u32 id;
533 
534 		i = 0;
535 		list_for_each_entry(pl, progs, node) {
536 			id = pl->prog->aux->id;
537 			if (copy_to_user(prog_ids + i, &id, sizeof(id)))
538 				return -EFAULT;
539 			if (++i == cnt)
540 				break;
541 		}
542 	}
543 	return ret;
544 }
545 
546 int cgroup_bpf_prog_attach(const union bpf_attr *attr,
547 			   enum bpf_prog_type ptype, struct bpf_prog *prog)
548 {
549 	struct cgroup *cgrp;
550 	int ret;
551 
552 	cgrp = cgroup_get_from_fd(attr->target_fd);
553 	if (IS_ERR(cgrp))
554 		return PTR_ERR(cgrp);
555 
556 	ret = cgroup_bpf_attach(cgrp, prog, attr->attach_type,
557 				attr->attach_flags);
558 	cgroup_put(cgrp);
559 	return ret;
560 }
561 
562 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
563 {
564 	struct bpf_prog *prog;
565 	struct cgroup *cgrp;
566 	int ret;
567 
568 	cgrp = cgroup_get_from_fd(attr->target_fd);
569 	if (IS_ERR(cgrp))
570 		return PTR_ERR(cgrp);
571 
572 	prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
573 	if (IS_ERR(prog))
574 		prog = NULL;
575 
576 	ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, 0);
577 	if (prog)
578 		bpf_prog_put(prog);
579 
580 	cgroup_put(cgrp);
581 	return ret;
582 }
583 
584 int cgroup_bpf_prog_query(const union bpf_attr *attr,
585 			  union bpf_attr __user *uattr)
586 {
587 	struct cgroup *cgrp;
588 	int ret;
589 
590 	cgrp = cgroup_get_from_fd(attr->query.target_fd);
591 	if (IS_ERR(cgrp))
592 		return PTR_ERR(cgrp);
593 
594 	ret = cgroup_bpf_query(cgrp, attr, uattr);
595 
596 	cgroup_put(cgrp);
597 	return ret;
598 }
599 
600 /**
601  * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
602  * @sk: The socket sending or receiving traffic
603  * @skb: The skb that is being sent or received
604  * @type: The type of program to be exectuted
605  *
606  * If no socket is passed, or the socket is not of type INET or INET6,
607  * this function does nothing and returns 0.
608  *
609  * The program type passed in via @type must be suitable for network
610  * filtering. No further check is performed to assert that.
611  *
612  * For egress packets, this function can return:
613  *   NET_XMIT_SUCCESS    (0)	- continue with packet output
614  *   NET_XMIT_DROP       (1)	- drop packet and notify TCP to call cwr
615  *   NET_XMIT_CN         (2)	- continue with packet output and notify TCP
616  *				  to call cwr
617  *   -EPERM			- drop packet
618  *
619  * For ingress packets, this function will return -EPERM if any
620  * attached program was found and if it returned != 1 during execution.
621  * Otherwise 0 is returned.
622  */
623 int __cgroup_bpf_run_filter_skb(struct sock *sk,
624 				struct sk_buff *skb,
625 				enum bpf_attach_type type)
626 {
627 	unsigned int offset = skb->data - skb_network_header(skb);
628 	struct sock *save_sk;
629 	void *saved_data_end;
630 	struct cgroup *cgrp;
631 	int ret;
632 
633 	if (!sk || !sk_fullsock(sk))
634 		return 0;
635 
636 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
637 		return 0;
638 
639 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
640 	save_sk = skb->sk;
641 	skb->sk = sk;
642 	__skb_push(skb, offset);
643 
644 	/* compute pointers for the bpf prog */
645 	bpf_compute_and_save_data_end(skb, &saved_data_end);
646 
647 	if (type == BPF_CGROUP_INET_EGRESS) {
648 		ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(
649 			cgrp->bpf.effective[type], skb, __bpf_prog_run_save_cb);
650 	} else {
651 		ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb,
652 					  __bpf_prog_run_save_cb);
653 		ret = (ret == 1 ? 0 : -EPERM);
654 	}
655 	bpf_restore_data_end(skb, saved_data_end);
656 	__skb_pull(skb, offset);
657 	skb->sk = save_sk;
658 
659 	return ret;
660 }
661 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
662 
663 /**
664  * __cgroup_bpf_run_filter_sk() - Run a program on a sock
665  * @sk: sock structure to manipulate
666  * @type: The type of program to be exectuted
667  *
668  * socket is passed is expected to be of type INET or INET6.
669  *
670  * The program type passed in via @type must be suitable for sock
671  * filtering. No further check is performed to assert that.
672  *
673  * This function will return %-EPERM if any if an attached program was found
674  * and if it returned != 1 during execution. In all other cases, 0 is returned.
675  */
676 int __cgroup_bpf_run_filter_sk(struct sock *sk,
677 			       enum bpf_attach_type type)
678 {
679 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
680 	int ret;
681 
682 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN);
683 	return ret == 1 ? 0 : -EPERM;
684 }
685 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
686 
687 /**
688  * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
689  *                                       provided by user sockaddr
690  * @sk: sock struct that will use sockaddr
691  * @uaddr: sockaddr struct provided by user
692  * @type: The type of program to be exectuted
693  * @t_ctx: Pointer to attach type specific context
694  *
695  * socket is expected to be of type INET or INET6.
696  *
697  * This function will return %-EPERM if an attached program is found and
698  * returned value != 1 during execution. In all other cases, 0 is returned.
699  */
700 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
701 				      struct sockaddr *uaddr,
702 				      enum bpf_attach_type type,
703 				      void *t_ctx)
704 {
705 	struct bpf_sock_addr_kern ctx = {
706 		.sk = sk,
707 		.uaddr = uaddr,
708 		.t_ctx = t_ctx,
709 	};
710 	struct sockaddr_storage unspec;
711 	struct cgroup *cgrp;
712 	int ret;
713 
714 	/* Check socket family since not all sockets represent network
715 	 * endpoint (e.g. AF_UNIX).
716 	 */
717 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
718 		return 0;
719 
720 	if (!ctx.uaddr) {
721 		memset(&unspec, 0, sizeof(unspec));
722 		ctx.uaddr = (struct sockaddr *)&unspec;
723 	}
724 
725 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
726 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
727 
728 	return ret == 1 ? 0 : -EPERM;
729 }
730 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
731 
732 /**
733  * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
734  * @sk: socket to get cgroup from
735  * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
736  * sk with connection information (IP addresses, etc.) May not contain
737  * cgroup info if it is a req sock.
738  * @type: The type of program to be exectuted
739  *
740  * socket passed is expected to be of type INET or INET6.
741  *
742  * The program type passed in via @type must be suitable for sock_ops
743  * filtering. No further check is performed to assert that.
744  *
745  * This function will return %-EPERM if any if an attached program was found
746  * and if it returned != 1 during execution. In all other cases, 0 is returned.
747  */
748 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
749 				     struct bpf_sock_ops_kern *sock_ops,
750 				     enum bpf_attach_type type)
751 {
752 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
753 	int ret;
754 
755 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops,
756 				 BPF_PROG_RUN);
757 	return ret == 1 ? 0 : -EPERM;
758 }
759 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
760 
761 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
762 				      short access, enum bpf_attach_type type)
763 {
764 	struct cgroup *cgrp;
765 	struct bpf_cgroup_dev_ctx ctx = {
766 		.access_type = (access << 16) | dev_type,
767 		.major = major,
768 		.minor = minor,
769 	};
770 	int allow = 1;
771 
772 	rcu_read_lock();
773 	cgrp = task_dfl_cgroup(current);
774 	allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx,
775 				   BPF_PROG_RUN);
776 	rcu_read_unlock();
777 
778 	return !allow;
779 }
780 EXPORT_SYMBOL(__cgroup_bpf_check_dev_permission);
781 
782 static const struct bpf_func_proto *
783 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
784 {
785 	switch (func_id) {
786 	case BPF_FUNC_map_lookup_elem:
787 		return &bpf_map_lookup_elem_proto;
788 	case BPF_FUNC_map_update_elem:
789 		return &bpf_map_update_elem_proto;
790 	case BPF_FUNC_map_delete_elem:
791 		return &bpf_map_delete_elem_proto;
792 	case BPF_FUNC_map_push_elem:
793 		return &bpf_map_push_elem_proto;
794 	case BPF_FUNC_map_pop_elem:
795 		return &bpf_map_pop_elem_proto;
796 	case BPF_FUNC_map_peek_elem:
797 		return &bpf_map_peek_elem_proto;
798 	case BPF_FUNC_get_current_uid_gid:
799 		return &bpf_get_current_uid_gid_proto;
800 	case BPF_FUNC_get_local_storage:
801 		return &bpf_get_local_storage_proto;
802 	case BPF_FUNC_get_current_cgroup_id:
803 		return &bpf_get_current_cgroup_id_proto;
804 	case BPF_FUNC_trace_printk:
805 		if (capable(CAP_SYS_ADMIN))
806 			return bpf_get_trace_printk_proto();
807 		/* fall through */
808 	default:
809 		return NULL;
810 	}
811 }
812 
813 static const struct bpf_func_proto *
814 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
815 {
816 	return cgroup_base_func_proto(func_id, prog);
817 }
818 
819 static bool cgroup_dev_is_valid_access(int off, int size,
820 				       enum bpf_access_type type,
821 				       const struct bpf_prog *prog,
822 				       struct bpf_insn_access_aux *info)
823 {
824 	const int size_default = sizeof(__u32);
825 
826 	if (type == BPF_WRITE)
827 		return false;
828 
829 	if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
830 		return false;
831 	/* The verifier guarantees that size > 0. */
832 	if (off % size != 0)
833 		return false;
834 
835 	switch (off) {
836 	case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
837 		bpf_ctx_record_field_size(info, size_default);
838 		if (!bpf_ctx_narrow_access_ok(off, size, size_default))
839 			return false;
840 		break;
841 	default:
842 		if (size != size_default)
843 			return false;
844 	}
845 
846 	return true;
847 }
848 
849 const struct bpf_prog_ops cg_dev_prog_ops = {
850 };
851 
852 const struct bpf_verifier_ops cg_dev_verifier_ops = {
853 	.get_func_proto		= cgroup_dev_func_proto,
854 	.is_valid_access	= cgroup_dev_is_valid_access,
855 };
856 
857 /**
858  * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
859  *
860  * @head: sysctl table header
861  * @table: sysctl table
862  * @write: sysctl is being read (= 0) or written (= 1)
863  * @buf: pointer to buffer passed by user space
864  * @pcount: value-result argument: value is size of buffer pointed to by @buf,
865  *	result is size of @new_buf if program set new value, initial value
866  *	otherwise
867  * @ppos: value-result argument: value is position at which read from or write
868  *	to sysctl is happening, result is new position if program overrode it,
869  *	initial value otherwise
870  * @new_buf: pointer to pointer to new buffer that will be allocated if program
871  *	overrides new value provided by user space on sysctl write
872  *	NOTE: it's caller responsibility to free *new_buf if it was set
873  * @type: type of program to be executed
874  *
875  * Program is run when sysctl is being accessed, either read or written, and
876  * can allow or deny such access.
877  *
878  * This function will return %-EPERM if an attached program is found and
879  * returned value != 1 during execution. In all other cases 0 is returned.
880  */
881 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
882 				   struct ctl_table *table, int write,
883 				   void __user *buf, size_t *pcount,
884 				   loff_t *ppos, void **new_buf,
885 				   enum bpf_attach_type type)
886 {
887 	struct bpf_sysctl_kern ctx = {
888 		.head = head,
889 		.table = table,
890 		.write = write,
891 		.ppos = ppos,
892 		.cur_val = NULL,
893 		.cur_len = PAGE_SIZE,
894 		.new_val = NULL,
895 		.new_len = 0,
896 		.new_updated = 0,
897 	};
898 	struct cgroup *cgrp;
899 	int ret;
900 
901 	ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
902 	if (ctx.cur_val) {
903 		mm_segment_t old_fs;
904 		loff_t pos = 0;
905 
906 		old_fs = get_fs();
907 		set_fs(KERNEL_DS);
908 		if (table->proc_handler(table, 0, (void __user *)ctx.cur_val,
909 					&ctx.cur_len, &pos)) {
910 			/* Let BPF program decide how to proceed. */
911 			ctx.cur_len = 0;
912 		}
913 		set_fs(old_fs);
914 	} else {
915 		/* Let BPF program decide how to proceed. */
916 		ctx.cur_len = 0;
917 	}
918 
919 	if (write && buf && *pcount) {
920 		/* BPF program should be able to override new value with a
921 		 * buffer bigger than provided by user.
922 		 */
923 		ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
924 		ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
925 		if (!ctx.new_val ||
926 		    copy_from_user(ctx.new_val, buf, ctx.new_len))
927 			/* Let BPF program decide how to proceed. */
928 			ctx.new_len = 0;
929 	}
930 
931 	rcu_read_lock();
932 	cgrp = task_dfl_cgroup(current);
933 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
934 	rcu_read_unlock();
935 
936 	kfree(ctx.cur_val);
937 
938 	if (ret == 1 && ctx.new_updated) {
939 		*new_buf = ctx.new_val;
940 		*pcount = ctx.new_len;
941 	} else {
942 		kfree(ctx.new_val);
943 	}
944 
945 	return ret == 1 ? 0 : -EPERM;
946 }
947 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sysctl);
948 
949 #ifdef CONFIG_NET
950 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp,
951 					     enum bpf_attach_type attach_type)
952 {
953 	struct bpf_prog_array *prog_array;
954 	bool empty;
955 
956 	rcu_read_lock();
957 	prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]);
958 	empty = bpf_prog_array_is_empty(prog_array);
959 	rcu_read_unlock();
960 
961 	return empty;
962 }
963 
964 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen)
965 {
966 	if (unlikely(max_optlen > PAGE_SIZE) || max_optlen < 0)
967 		return -EINVAL;
968 
969 	ctx->optval = kzalloc(max_optlen, GFP_USER);
970 	if (!ctx->optval)
971 		return -ENOMEM;
972 
973 	ctx->optval_end = ctx->optval + max_optlen;
974 
975 	return 0;
976 }
977 
978 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx)
979 {
980 	kfree(ctx->optval);
981 }
982 
983 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
984 				       int *optname, char __user *optval,
985 				       int *optlen, char **kernel_optval)
986 {
987 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
988 	struct bpf_sockopt_kern ctx = {
989 		.sk = sk,
990 		.level = *level,
991 		.optname = *optname,
992 	};
993 	int ret, max_optlen;
994 
995 	/* Opportunistic check to see whether we have any BPF program
996 	 * attached to the hook so we don't waste time allocating
997 	 * memory and locking the socket.
998 	 */
999 	if (!cgroup_bpf_enabled ||
1000 	    __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_SETSOCKOPT))
1001 		return 0;
1002 
1003 	/* Allocate a bit more than the initial user buffer for
1004 	 * BPF program. The canonical use case is overriding
1005 	 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1006 	 */
1007 	max_optlen = max_t(int, 16, *optlen);
1008 
1009 	ret = sockopt_alloc_buf(&ctx, max_optlen);
1010 	if (ret)
1011 		return ret;
1012 
1013 	ctx.optlen = *optlen;
1014 
1015 	if (copy_from_user(ctx.optval, optval, *optlen) != 0) {
1016 		ret = -EFAULT;
1017 		goto out;
1018 	}
1019 
1020 	lock_sock(sk);
1021 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_SETSOCKOPT],
1022 				 &ctx, BPF_PROG_RUN);
1023 	release_sock(sk);
1024 
1025 	if (!ret) {
1026 		ret = -EPERM;
1027 		goto out;
1028 	}
1029 
1030 	if (ctx.optlen == -1) {
1031 		/* optlen set to -1, bypass kernel */
1032 		ret = 1;
1033 	} else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1034 		/* optlen is out of bounds */
1035 		ret = -EFAULT;
1036 	} else {
1037 		/* optlen within bounds, run kernel handler */
1038 		ret = 0;
1039 
1040 		/* export any potential modifications */
1041 		*level = ctx.level;
1042 		*optname = ctx.optname;
1043 		*optlen = ctx.optlen;
1044 		*kernel_optval = ctx.optval;
1045 	}
1046 
1047 out:
1048 	if (ret)
1049 		sockopt_free_buf(&ctx);
1050 	return ret;
1051 }
1052 EXPORT_SYMBOL(__cgroup_bpf_run_filter_setsockopt);
1053 
1054 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1055 				       int optname, char __user *optval,
1056 				       int __user *optlen, int max_optlen,
1057 				       int retval)
1058 {
1059 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1060 	struct bpf_sockopt_kern ctx = {
1061 		.sk = sk,
1062 		.level = level,
1063 		.optname = optname,
1064 		.retval = retval,
1065 	};
1066 	int ret;
1067 
1068 	/* Opportunistic check to see whether we have any BPF program
1069 	 * attached to the hook so we don't waste time allocating
1070 	 * memory and locking the socket.
1071 	 */
1072 	if (!cgroup_bpf_enabled ||
1073 	    __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_GETSOCKOPT))
1074 		return retval;
1075 
1076 	ret = sockopt_alloc_buf(&ctx, max_optlen);
1077 	if (ret)
1078 		return ret;
1079 
1080 	ctx.optlen = max_optlen;
1081 
1082 	if (!retval) {
1083 		/* If kernel getsockopt finished successfully,
1084 		 * copy whatever was returned to the user back
1085 		 * into our temporary buffer. Set optlen to the
1086 		 * one that kernel returned as well to let
1087 		 * BPF programs inspect the value.
1088 		 */
1089 
1090 		if (get_user(ctx.optlen, optlen)) {
1091 			ret = -EFAULT;
1092 			goto out;
1093 		}
1094 
1095 		if (ctx.optlen > max_optlen)
1096 			ctx.optlen = max_optlen;
1097 
1098 		if (copy_from_user(ctx.optval, optval, ctx.optlen) != 0) {
1099 			ret = -EFAULT;
1100 			goto out;
1101 		}
1102 	}
1103 
1104 	lock_sock(sk);
1105 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT],
1106 				 &ctx, BPF_PROG_RUN);
1107 	release_sock(sk);
1108 
1109 	if (!ret) {
1110 		ret = -EPERM;
1111 		goto out;
1112 	}
1113 
1114 	if (ctx.optlen > max_optlen) {
1115 		ret = -EFAULT;
1116 		goto out;
1117 	}
1118 
1119 	/* BPF programs only allowed to set retval to 0, not some
1120 	 * arbitrary value.
1121 	 */
1122 	if (ctx.retval != 0 && ctx.retval != retval) {
1123 		ret = -EFAULT;
1124 		goto out;
1125 	}
1126 
1127 	if (copy_to_user(optval, ctx.optval, ctx.optlen) ||
1128 	    put_user(ctx.optlen, optlen)) {
1129 		ret = -EFAULT;
1130 		goto out;
1131 	}
1132 
1133 	ret = ctx.retval;
1134 
1135 out:
1136 	sockopt_free_buf(&ctx);
1137 	return ret;
1138 }
1139 EXPORT_SYMBOL(__cgroup_bpf_run_filter_getsockopt);
1140 #endif
1141 
1142 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
1143 			      size_t *lenp)
1144 {
1145 	ssize_t tmp_ret = 0, ret;
1146 
1147 	if (dir->header.parent) {
1148 		tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
1149 		if (tmp_ret < 0)
1150 			return tmp_ret;
1151 	}
1152 
1153 	ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
1154 	if (ret < 0)
1155 		return ret;
1156 	*bufp += ret;
1157 	*lenp -= ret;
1158 	ret += tmp_ret;
1159 
1160 	/* Avoid leading slash. */
1161 	if (!ret)
1162 		return ret;
1163 
1164 	tmp_ret = strscpy(*bufp, "/", *lenp);
1165 	if (tmp_ret < 0)
1166 		return tmp_ret;
1167 	*bufp += tmp_ret;
1168 	*lenp -= tmp_ret;
1169 
1170 	return ret + tmp_ret;
1171 }
1172 
1173 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
1174 	   size_t, buf_len, u64, flags)
1175 {
1176 	ssize_t tmp_ret = 0, ret;
1177 
1178 	if (!buf)
1179 		return -EINVAL;
1180 
1181 	if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
1182 		if (!ctx->head)
1183 			return -EINVAL;
1184 		tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
1185 		if (tmp_ret < 0)
1186 			return tmp_ret;
1187 	}
1188 
1189 	ret = strscpy(buf, ctx->table->procname, buf_len);
1190 
1191 	return ret < 0 ? ret : tmp_ret + ret;
1192 }
1193 
1194 static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
1195 	.func		= bpf_sysctl_get_name,
1196 	.gpl_only	= false,
1197 	.ret_type	= RET_INTEGER,
1198 	.arg1_type	= ARG_PTR_TO_CTX,
1199 	.arg2_type	= ARG_PTR_TO_MEM,
1200 	.arg3_type	= ARG_CONST_SIZE,
1201 	.arg4_type	= ARG_ANYTHING,
1202 };
1203 
1204 static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
1205 			     size_t src_len)
1206 {
1207 	if (!dst)
1208 		return -EINVAL;
1209 
1210 	if (!dst_len)
1211 		return -E2BIG;
1212 
1213 	if (!src || !src_len) {
1214 		memset(dst, 0, dst_len);
1215 		return -EINVAL;
1216 	}
1217 
1218 	memcpy(dst, src, min(dst_len, src_len));
1219 
1220 	if (dst_len > src_len) {
1221 		memset(dst + src_len, '\0', dst_len - src_len);
1222 		return src_len;
1223 	}
1224 
1225 	dst[dst_len - 1] = '\0';
1226 
1227 	return -E2BIG;
1228 }
1229 
1230 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
1231 	   char *, buf, size_t, buf_len)
1232 {
1233 	return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
1234 }
1235 
1236 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
1237 	.func		= bpf_sysctl_get_current_value,
1238 	.gpl_only	= false,
1239 	.ret_type	= RET_INTEGER,
1240 	.arg1_type	= ARG_PTR_TO_CTX,
1241 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1242 	.arg3_type	= ARG_CONST_SIZE,
1243 };
1244 
1245 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
1246 	   size_t, buf_len)
1247 {
1248 	if (!ctx->write) {
1249 		if (buf && buf_len)
1250 			memset(buf, '\0', buf_len);
1251 		return -EINVAL;
1252 	}
1253 	return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
1254 }
1255 
1256 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
1257 	.func		= bpf_sysctl_get_new_value,
1258 	.gpl_only	= false,
1259 	.ret_type	= RET_INTEGER,
1260 	.arg1_type	= ARG_PTR_TO_CTX,
1261 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1262 	.arg3_type	= ARG_CONST_SIZE,
1263 };
1264 
1265 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
1266 	   const char *, buf, size_t, buf_len)
1267 {
1268 	if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
1269 		return -EINVAL;
1270 
1271 	if (buf_len > PAGE_SIZE - 1)
1272 		return -E2BIG;
1273 
1274 	memcpy(ctx->new_val, buf, buf_len);
1275 	ctx->new_len = buf_len;
1276 	ctx->new_updated = 1;
1277 
1278 	return 0;
1279 }
1280 
1281 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
1282 	.func		= bpf_sysctl_set_new_value,
1283 	.gpl_only	= false,
1284 	.ret_type	= RET_INTEGER,
1285 	.arg1_type	= ARG_PTR_TO_CTX,
1286 	.arg2_type	= ARG_PTR_TO_MEM,
1287 	.arg3_type	= ARG_CONST_SIZE,
1288 };
1289 
1290 static const struct bpf_func_proto *
1291 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1292 {
1293 	switch (func_id) {
1294 	case BPF_FUNC_strtol:
1295 		return &bpf_strtol_proto;
1296 	case BPF_FUNC_strtoul:
1297 		return &bpf_strtoul_proto;
1298 	case BPF_FUNC_sysctl_get_name:
1299 		return &bpf_sysctl_get_name_proto;
1300 	case BPF_FUNC_sysctl_get_current_value:
1301 		return &bpf_sysctl_get_current_value_proto;
1302 	case BPF_FUNC_sysctl_get_new_value:
1303 		return &bpf_sysctl_get_new_value_proto;
1304 	case BPF_FUNC_sysctl_set_new_value:
1305 		return &bpf_sysctl_set_new_value_proto;
1306 	default:
1307 		return cgroup_base_func_proto(func_id, prog);
1308 	}
1309 }
1310 
1311 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
1312 				   const struct bpf_prog *prog,
1313 				   struct bpf_insn_access_aux *info)
1314 {
1315 	const int size_default = sizeof(__u32);
1316 
1317 	if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
1318 		return false;
1319 
1320 	switch (off) {
1321 	case bpf_ctx_range(struct bpf_sysctl, write):
1322 		if (type != BPF_READ)
1323 			return false;
1324 		bpf_ctx_record_field_size(info, size_default);
1325 		return bpf_ctx_narrow_access_ok(off, size, size_default);
1326 	case bpf_ctx_range(struct bpf_sysctl, file_pos):
1327 		if (type == BPF_READ) {
1328 			bpf_ctx_record_field_size(info, size_default);
1329 			return bpf_ctx_narrow_access_ok(off, size, size_default);
1330 		} else {
1331 			return size == size_default;
1332 		}
1333 	default:
1334 		return false;
1335 	}
1336 }
1337 
1338 static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
1339 				     const struct bpf_insn *si,
1340 				     struct bpf_insn *insn_buf,
1341 				     struct bpf_prog *prog, u32 *target_size)
1342 {
1343 	struct bpf_insn *insn = insn_buf;
1344 	u32 read_size;
1345 
1346 	switch (si->off) {
1347 	case offsetof(struct bpf_sysctl, write):
1348 		*insn++ = BPF_LDX_MEM(
1349 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
1350 			bpf_target_off(struct bpf_sysctl_kern, write,
1351 				       sizeof_field(struct bpf_sysctl_kern,
1352 						    write),
1353 				       target_size));
1354 		break;
1355 	case offsetof(struct bpf_sysctl, file_pos):
1356 		/* ppos is a pointer so it should be accessed via indirect
1357 		 * loads and stores. Also for stores additional temporary
1358 		 * register is used since neither src_reg nor dst_reg can be
1359 		 * overridden.
1360 		 */
1361 		if (type == BPF_WRITE) {
1362 			int treg = BPF_REG_9;
1363 
1364 			if (si->src_reg == treg || si->dst_reg == treg)
1365 				--treg;
1366 			if (si->src_reg == treg || si->dst_reg == treg)
1367 				--treg;
1368 			*insn++ = BPF_STX_MEM(
1369 				BPF_DW, si->dst_reg, treg,
1370 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1371 			*insn++ = BPF_LDX_MEM(
1372 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1373 				treg, si->dst_reg,
1374 				offsetof(struct bpf_sysctl_kern, ppos));
1375 			*insn++ = BPF_STX_MEM(
1376 				BPF_SIZEOF(u32), treg, si->src_reg,
1377 				bpf_ctx_narrow_access_offset(
1378 					0, sizeof(u32), sizeof(loff_t)));
1379 			*insn++ = BPF_LDX_MEM(
1380 				BPF_DW, treg, si->dst_reg,
1381 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1382 		} else {
1383 			*insn++ = BPF_LDX_MEM(
1384 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1385 				si->dst_reg, si->src_reg,
1386 				offsetof(struct bpf_sysctl_kern, ppos));
1387 			read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
1388 			*insn++ = BPF_LDX_MEM(
1389 				BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
1390 				bpf_ctx_narrow_access_offset(
1391 					0, read_size, sizeof(loff_t)));
1392 		}
1393 		*target_size = sizeof(u32);
1394 		break;
1395 	}
1396 
1397 	return insn - insn_buf;
1398 }
1399 
1400 const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
1401 	.get_func_proto		= sysctl_func_proto,
1402 	.is_valid_access	= sysctl_is_valid_access,
1403 	.convert_ctx_access	= sysctl_convert_ctx_access,
1404 };
1405 
1406 const struct bpf_prog_ops cg_sysctl_prog_ops = {
1407 };
1408 
1409 static const struct bpf_func_proto *
1410 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1411 {
1412 	switch (func_id) {
1413 #ifdef CONFIG_NET
1414 	case BPF_FUNC_sk_storage_get:
1415 		return &bpf_sk_storage_get_proto;
1416 	case BPF_FUNC_sk_storage_delete:
1417 		return &bpf_sk_storage_delete_proto;
1418 #endif
1419 #ifdef CONFIG_INET
1420 	case BPF_FUNC_tcp_sock:
1421 		return &bpf_tcp_sock_proto;
1422 #endif
1423 	default:
1424 		return cgroup_base_func_proto(func_id, prog);
1425 	}
1426 }
1427 
1428 static bool cg_sockopt_is_valid_access(int off, int size,
1429 				       enum bpf_access_type type,
1430 				       const struct bpf_prog *prog,
1431 				       struct bpf_insn_access_aux *info)
1432 {
1433 	const int size_default = sizeof(__u32);
1434 
1435 	if (off < 0 || off >= sizeof(struct bpf_sockopt))
1436 		return false;
1437 
1438 	if (off % size != 0)
1439 		return false;
1440 
1441 	if (type == BPF_WRITE) {
1442 		switch (off) {
1443 		case offsetof(struct bpf_sockopt, retval):
1444 			if (size != size_default)
1445 				return false;
1446 			return prog->expected_attach_type ==
1447 				BPF_CGROUP_GETSOCKOPT;
1448 		case offsetof(struct bpf_sockopt, optname):
1449 			/* fallthrough */
1450 		case offsetof(struct bpf_sockopt, level):
1451 			if (size != size_default)
1452 				return false;
1453 			return prog->expected_attach_type ==
1454 				BPF_CGROUP_SETSOCKOPT;
1455 		case offsetof(struct bpf_sockopt, optlen):
1456 			return size == size_default;
1457 		default:
1458 			return false;
1459 		}
1460 	}
1461 
1462 	switch (off) {
1463 	case offsetof(struct bpf_sockopt, sk):
1464 		if (size != sizeof(__u64))
1465 			return false;
1466 		info->reg_type = PTR_TO_SOCKET;
1467 		break;
1468 	case offsetof(struct bpf_sockopt, optval):
1469 		if (size != sizeof(__u64))
1470 			return false;
1471 		info->reg_type = PTR_TO_PACKET;
1472 		break;
1473 	case offsetof(struct bpf_sockopt, optval_end):
1474 		if (size != sizeof(__u64))
1475 			return false;
1476 		info->reg_type = PTR_TO_PACKET_END;
1477 		break;
1478 	case offsetof(struct bpf_sockopt, retval):
1479 		if (size != size_default)
1480 			return false;
1481 		return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
1482 	default:
1483 		if (size != size_default)
1484 			return false;
1485 		break;
1486 	}
1487 	return true;
1488 }
1489 
1490 #define CG_SOCKOPT_ACCESS_FIELD(T, F)					\
1491 	T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F),			\
1492 	  si->dst_reg, si->src_reg,					\
1493 	  offsetof(struct bpf_sockopt_kern, F))
1494 
1495 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
1496 					 const struct bpf_insn *si,
1497 					 struct bpf_insn *insn_buf,
1498 					 struct bpf_prog *prog,
1499 					 u32 *target_size)
1500 {
1501 	struct bpf_insn *insn = insn_buf;
1502 
1503 	switch (si->off) {
1504 	case offsetof(struct bpf_sockopt, sk):
1505 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
1506 		break;
1507 	case offsetof(struct bpf_sockopt, level):
1508 		if (type == BPF_WRITE)
1509 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
1510 		else
1511 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
1512 		break;
1513 	case offsetof(struct bpf_sockopt, optname):
1514 		if (type == BPF_WRITE)
1515 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
1516 		else
1517 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
1518 		break;
1519 	case offsetof(struct bpf_sockopt, optlen):
1520 		if (type == BPF_WRITE)
1521 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
1522 		else
1523 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
1524 		break;
1525 	case offsetof(struct bpf_sockopt, retval):
1526 		if (type == BPF_WRITE)
1527 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval);
1528 		else
1529 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval);
1530 		break;
1531 	case offsetof(struct bpf_sockopt, optval):
1532 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
1533 		break;
1534 	case offsetof(struct bpf_sockopt, optval_end):
1535 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
1536 		break;
1537 	}
1538 
1539 	return insn - insn_buf;
1540 }
1541 
1542 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
1543 				   bool direct_write,
1544 				   const struct bpf_prog *prog)
1545 {
1546 	/* Nothing to do for sockopt argument. The data is kzalloc'ated.
1547 	 */
1548 	return 0;
1549 }
1550 
1551 const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
1552 	.get_func_proto		= cg_sockopt_func_proto,
1553 	.is_valid_access	= cg_sockopt_is_valid_access,
1554 	.convert_ctx_access	= cg_sockopt_convert_ctx_access,
1555 	.gen_prologue		= cg_sockopt_get_prologue,
1556 };
1557 
1558 const struct bpf_prog_ops cg_sockopt_prog_ops = {
1559 };
1560