xref: /openbmc/linux/kernel/bpf/cgroup.c (revision a9ed15da)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Functions to manage eBPF programs attached to cgroups
4  *
5  * Copyright (c) 2016 Daniel Mack
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/atomic.h>
10 #include <linux/cgroup.h>
11 #include <linux/filter.h>
12 #include <linux/slab.h>
13 #include <linux/sysctl.h>
14 #include <linux/string.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf-cgroup.h>
17 #include <net/sock.h>
18 #include <net/bpf_sk_storage.h>
19 
20 #include "../cgroup/cgroup-internal.h"
21 
22 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_BPF_ATTACH_TYPE);
23 EXPORT_SYMBOL(cgroup_bpf_enabled_key);
24 
25 void cgroup_bpf_offline(struct cgroup *cgrp)
26 {
27 	cgroup_get(cgrp);
28 	percpu_ref_kill(&cgrp->bpf.refcnt);
29 }
30 
31 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[])
32 {
33 	enum bpf_cgroup_storage_type stype;
34 
35 	for_each_cgroup_storage_type(stype)
36 		bpf_cgroup_storage_free(storages[stype]);
37 }
38 
39 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[],
40 				     struct bpf_cgroup_storage *new_storages[],
41 				     enum bpf_attach_type type,
42 				     struct bpf_prog *prog,
43 				     struct cgroup *cgrp)
44 {
45 	enum bpf_cgroup_storage_type stype;
46 	struct bpf_cgroup_storage_key key;
47 	struct bpf_map *map;
48 
49 	key.cgroup_inode_id = cgroup_id(cgrp);
50 	key.attach_type = type;
51 
52 	for_each_cgroup_storage_type(stype) {
53 		map = prog->aux->cgroup_storage[stype];
54 		if (!map)
55 			continue;
56 
57 		storages[stype] = cgroup_storage_lookup((void *)map, &key, false);
58 		if (storages[stype])
59 			continue;
60 
61 		storages[stype] = bpf_cgroup_storage_alloc(prog, stype);
62 		if (IS_ERR(storages[stype])) {
63 			bpf_cgroup_storages_free(new_storages);
64 			return -ENOMEM;
65 		}
66 
67 		new_storages[stype] = storages[stype];
68 	}
69 
70 	return 0;
71 }
72 
73 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[],
74 				       struct bpf_cgroup_storage *src[])
75 {
76 	enum bpf_cgroup_storage_type stype;
77 
78 	for_each_cgroup_storage_type(stype)
79 		dst[stype] = src[stype];
80 }
81 
82 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[],
83 				     struct cgroup *cgrp,
84 				     enum bpf_attach_type attach_type)
85 {
86 	enum bpf_cgroup_storage_type stype;
87 
88 	for_each_cgroup_storage_type(stype)
89 		bpf_cgroup_storage_link(storages[stype], cgrp, attach_type);
90 }
91 
92 /* Called when bpf_cgroup_link is auto-detached from dying cgroup.
93  * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It
94  * doesn't free link memory, which will eventually be done by bpf_link's
95  * release() callback, when its last FD is closed.
96  */
97 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link)
98 {
99 	cgroup_put(link->cgroup);
100 	link->cgroup = NULL;
101 }
102 
103 /**
104  * cgroup_bpf_release() - put references of all bpf programs and
105  *                        release all cgroup bpf data
106  * @work: work structure embedded into the cgroup to modify
107  */
108 static void cgroup_bpf_release(struct work_struct *work)
109 {
110 	struct cgroup *p, *cgrp = container_of(work, struct cgroup,
111 					       bpf.release_work);
112 	struct bpf_prog_array *old_array;
113 	struct list_head *storages = &cgrp->bpf.storages;
114 	struct bpf_cgroup_storage *storage, *stmp;
115 
116 	unsigned int type;
117 
118 	mutex_lock(&cgroup_mutex);
119 
120 	for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) {
121 		struct list_head *progs = &cgrp->bpf.progs[type];
122 		struct bpf_prog_list *pl, *pltmp;
123 
124 		list_for_each_entry_safe(pl, pltmp, progs, node) {
125 			list_del(&pl->node);
126 			if (pl->prog)
127 				bpf_prog_put(pl->prog);
128 			if (pl->link)
129 				bpf_cgroup_link_auto_detach(pl->link);
130 			kfree(pl);
131 			static_branch_dec(&cgroup_bpf_enabled_key[type]);
132 		}
133 		old_array = rcu_dereference_protected(
134 				cgrp->bpf.effective[type],
135 				lockdep_is_held(&cgroup_mutex));
136 		bpf_prog_array_free(old_array);
137 	}
138 
139 	list_for_each_entry_safe(storage, stmp, storages, list_cg) {
140 		bpf_cgroup_storage_unlink(storage);
141 		bpf_cgroup_storage_free(storage);
142 	}
143 
144 	mutex_unlock(&cgroup_mutex);
145 
146 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
147 		cgroup_bpf_put(p);
148 
149 	percpu_ref_exit(&cgrp->bpf.refcnt);
150 	cgroup_put(cgrp);
151 }
152 
153 /**
154  * cgroup_bpf_release_fn() - callback used to schedule releasing
155  *                           of bpf cgroup data
156  * @ref: percpu ref counter structure
157  */
158 static void cgroup_bpf_release_fn(struct percpu_ref *ref)
159 {
160 	struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
161 
162 	INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
163 	queue_work(system_wq, &cgrp->bpf.release_work);
164 }
165 
166 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
167  * link or direct prog.
168  */
169 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl)
170 {
171 	if (pl->prog)
172 		return pl->prog;
173 	if (pl->link)
174 		return pl->link->link.prog;
175 	return NULL;
176 }
177 
178 /* count number of elements in the list.
179  * it's slow but the list cannot be long
180  */
181 static u32 prog_list_length(struct list_head *head)
182 {
183 	struct bpf_prog_list *pl;
184 	u32 cnt = 0;
185 
186 	list_for_each_entry(pl, head, node) {
187 		if (!prog_list_prog(pl))
188 			continue;
189 		cnt++;
190 	}
191 	return cnt;
192 }
193 
194 /* if parent has non-overridable prog attached,
195  * disallow attaching new programs to the descendent cgroup.
196  * if parent has overridable or multi-prog, allow attaching
197  */
198 static bool hierarchy_allows_attach(struct cgroup *cgrp,
199 				    enum bpf_attach_type type)
200 {
201 	struct cgroup *p;
202 
203 	p = cgroup_parent(cgrp);
204 	if (!p)
205 		return true;
206 	do {
207 		u32 flags = p->bpf.flags[type];
208 		u32 cnt;
209 
210 		if (flags & BPF_F_ALLOW_MULTI)
211 			return true;
212 		cnt = prog_list_length(&p->bpf.progs[type]);
213 		WARN_ON_ONCE(cnt > 1);
214 		if (cnt == 1)
215 			return !!(flags & BPF_F_ALLOW_OVERRIDE);
216 		p = cgroup_parent(p);
217 	} while (p);
218 	return true;
219 }
220 
221 /* compute a chain of effective programs for a given cgroup:
222  * start from the list of programs in this cgroup and add
223  * all parent programs.
224  * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
225  * to programs in this cgroup
226  */
227 static int compute_effective_progs(struct cgroup *cgrp,
228 				   enum bpf_attach_type type,
229 				   struct bpf_prog_array **array)
230 {
231 	struct bpf_prog_array_item *item;
232 	struct bpf_prog_array *progs;
233 	struct bpf_prog_list *pl;
234 	struct cgroup *p = cgrp;
235 	int cnt = 0;
236 
237 	/* count number of effective programs by walking parents */
238 	do {
239 		if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
240 			cnt += prog_list_length(&p->bpf.progs[type]);
241 		p = cgroup_parent(p);
242 	} while (p);
243 
244 	progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
245 	if (!progs)
246 		return -ENOMEM;
247 
248 	/* populate the array with effective progs */
249 	cnt = 0;
250 	p = cgrp;
251 	do {
252 		if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
253 			continue;
254 
255 		list_for_each_entry(pl, &p->bpf.progs[type], node) {
256 			if (!prog_list_prog(pl))
257 				continue;
258 
259 			item = &progs->items[cnt];
260 			item->prog = prog_list_prog(pl);
261 			bpf_cgroup_storages_assign(item->cgroup_storage,
262 						   pl->storage);
263 			cnt++;
264 		}
265 	} while ((p = cgroup_parent(p)));
266 
267 	*array = progs;
268 	return 0;
269 }
270 
271 static void activate_effective_progs(struct cgroup *cgrp,
272 				     enum bpf_attach_type type,
273 				     struct bpf_prog_array *old_array)
274 {
275 	old_array = rcu_replace_pointer(cgrp->bpf.effective[type], old_array,
276 					lockdep_is_held(&cgroup_mutex));
277 	/* free prog array after grace period, since __cgroup_bpf_run_*()
278 	 * might be still walking the array
279 	 */
280 	bpf_prog_array_free(old_array);
281 }
282 
283 /**
284  * cgroup_bpf_inherit() - inherit effective programs from parent
285  * @cgrp: the cgroup to modify
286  */
287 int cgroup_bpf_inherit(struct cgroup *cgrp)
288 {
289 /* has to use marco instead of const int, since compiler thinks
290  * that array below is variable length
291  */
292 #define	NR ARRAY_SIZE(cgrp->bpf.effective)
293 	struct bpf_prog_array *arrays[NR] = {};
294 	struct cgroup *p;
295 	int ret, i;
296 
297 	ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
298 			      GFP_KERNEL);
299 	if (ret)
300 		return ret;
301 
302 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
303 		cgroup_bpf_get(p);
304 
305 	for (i = 0; i < NR; i++)
306 		INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
307 
308 	INIT_LIST_HEAD(&cgrp->bpf.storages);
309 
310 	for (i = 0; i < NR; i++)
311 		if (compute_effective_progs(cgrp, i, &arrays[i]))
312 			goto cleanup;
313 
314 	for (i = 0; i < NR; i++)
315 		activate_effective_progs(cgrp, i, arrays[i]);
316 
317 	return 0;
318 cleanup:
319 	for (i = 0; i < NR; i++)
320 		bpf_prog_array_free(arrays[i]);
321 
322 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
323 		cgroup_bpf_put(p);
324 
325 	percpu_ref_exit(&cgrp->bpf.refcnt);
326 
327 	return -ENOMEM;
328 }
329 
330 static int update_effective_progs(struct cgroup *cgrp,
331 				  enum bpf_attach_type type)
332 {
333 	struct cgroup_subsys_state *css;
334 	int err;
335 
336 	/* allocate and recompute effective prog arrays */
337 	css_for_each_descendant_pre(css, &cgrp->self) {
338 		struct cgroup *desc = container_of(css, struct cgroup, self);
339 
340 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
341 			continue;
342 
343 		err = compute_effective_progs(desc, type, &desc->bpf.inactive);
344 		if (err)
345 			goto cleanup;
346 	}
347 
348 	/* all allocations were successful. Activate all prog arrays */
349 	css_for_each_descendant_pre(css, &cgrp->self) {
350 		struct cgroup *desc = container_of(css, struct cgroup, self);
351 
352 		if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
353 			if (unlikely(desc->bpf.inactive)) {
354 				bpf_prog_array_free(desc->bpf.inactive);
355 				desc->bpf.inactive = NULL;
356 			}
357 			continue;
358 		}
359 
360 		activate_effective_progs(desc, type, desc->bpf.inactive);
361 		desc->bpf.inactive = NULL;
362 	}
363 
364 	return 0;
365 
366 cleanup:
367 	/* oom while computing effective. Free all computed effective arrays
368 	 * since they were not activated
369 	 */
370 	css_for_each_descendant_pre(css, &cgrp->self) {
371 		struct cgroup *desc = container_of(css, struct cgroup, self);
372 
373 		bpf_prog_array_free(desc->bpf.inactive);
374 		desc->bpf.inactive = NULL;
375 	}
376 
377 	return err;
378 }
379 
380 #define BPF_CGROUP_MAX_PROGS 64
381 
382 static struct bpf_prog_list *find_attach_entry(struct list_head *progs,
383 					       struct bpf_prog *prog,
384 					       struct bpf_cgroup_link *link,
385 					       struct bpf_prog *replace_prog,
386 					       bool allow_multi)
387 {
388 	struct bpf_prog_list *pl;
389 
390 	/* single-attach case */
391 	if (!allow_multi) {
392 		if (list_empty(progs))
393 			return NULL;
394 		return list_first_entry(progs, typeof(*pl), node);
395 	}
396 
397 	list_for_each_entry(pl, progs, node) {
398 		if (prog && pl->prog == prog && prog != replace_prog)
399 			/* disallow attaching the same prog twice */
400 			return ERR_PTR(-EINVAL);
401 		if (link && pl->link == link)
402 			/* disallow attaching the same link twice */
403 			return ERR_PTR(-EINVAL);
404 	}
405 
406 	/* direct prog multi-attach w/ replacement case */
407 	if (replace_prog) {
408 		list_for_each_entry(pl, progs, node) {
409 			if (pl->prog == replace_prog)
410 				/* a match found */
411 				return pl;
412 		}
413 		/* prog to replace not found for cgroup */
414 		return ERR_PTR(-ENOENT);
415 	}
416 
417 	return NULL;
418 }
419 
420 /**
421  * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and
422  *                         propagate the change to descendants
423  * @cgrp: The cgroup which descendants to traverse
424  * @prog: A program to attach
425  * @link: A link to attach
426  * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set
427  * @type: Type of attach operation
428  * @flags: Option flags
429  *
430  * Exactly one of @prog or @link can be non-null.
431  * Must be called with cgroup_mutex held.
432  */
433 int __cgroup_bpf_attach(struct cgroup *cgrp,
434 			struct bpf_prog *prog, struct bpf_prog *replace_prog,
435 			struct bpf_cgroup_link *link,
436 			enum bpf_attach_type type, u32 flags)
437 {
438 	u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI));
439 	struct list_head *progs = &cgrp->bpf.progs[type];
440 	struct bpf_prog *old_prog = NULL;
441 	struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
442 	struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
443 	struct bpf_prog_list *pl;
444 	int err;
445 
446 	if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) ||
447 	    ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI)))
448 		/* invalid combination */
449 		return -EINVAL;
450 	if (link && (prog || replace_prog))
451 		/* only either link or prog/replace_prog can be specified */
452 		return -EINVAL;
453 	if (!!replace_prog != !!(flags & BPF_F_REPLACE))
454 		/* replace_prog implies BPF_F_REPLACE, and vice versa */
455 		return -EINVAL;
456 
457 	if (!hierarchy_allows_attach(cgrp, type))
458 		return -EPERM;
459 
460 	if (!list_empty(progs) && cgrp->bpf.flags[type] != saved_flags)
461 		/* Disallow attaching non-overridable on top
462 		 * of existing overridable in this cgroup.
463 		 * Disallow attaching multi-prog if overridable or none
464 		 */
465 		return -EPERM;
466 
467 	if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
468 		return -E2BIG;
469 
470 	pl = find_attach_entry(progs, prog, link, replace_prog,
471 			       flags & BPF_F_ALLOW_MULTI);
472 	if (IS_ERR(pl))
473 		return PTR_ERR(pl);
474 
475 	if (bpf_cgroup_storages_alloc(storage, new_storage, type,
476 				      prog ? : link->link.prog, cgrp))
477 		return -ENOMEM;
478 
479 	if (pl) {
480 		old_prog = pl->prog;
481 	} else {
482 		pl = kmalloc(sizeof(*pl), GFP_KERNEL);
483 		if (!pl) {
484 			bpf_cgroup_storages_free(new_storage);
485 			return -ENOMEM;
486 		}
487 		list_add_tail(&pl->node, progs);
488 	}
489 
490 	pl->prog = prog;
491 	pl->link = link;
492 	bpf_cgroup_storages_assign(pl->storage, storage);
493 	cgrp->bpf.flags[type] = saved_flags;
494 
495 	err = update_effective_progs(cgrp, type);
496 	if (err)
497 		goto cleanup;
498 
499 	if (old_prog)
500 		bpf_prog_put(old_prog);
501 	else
502 		static_branch_inc(&cgroup_bpf_enabled_key[type]);
503 	bpf_cgroup_storages_link(new_storage, cgrp, type);
504 	return 0;
505 
506 cleanup:
507 	if (old_prog) {
508 		pl->prog = old_prog;
509 		pl->link = NULL;
510 	}
511 	bpf_cgroup_storages_free(new_storage);
512 	if (!old_prog) {
513 		list_del(&pl->node);
514 		kfree(pl);
515 	}
516 	return err;
517 }
518 
519 /* Swap updated BPF program for given link in effective program arrays across
520  * all descendant cgroups. This function is guaranteed to succeed.
521  */
522 static void replace_effective_prog(struct cgroup *cgrp,
523 				   enum bpf_attach_type type,
524 				   struct bpf_cgroup_link *link)
525 {
526 	struct bpf_prog_array_item *item;
527 	struct cgroup_subsys_state *css;
528 	struct bpf_prog_array *progs;
529 	struct bpf_prog_list *pl;
530 	struct list_head *head;
531 	struct cgroup *cg;
532 	int pos;
533 
534 	css_for_each_descendant_pre(css, &cgrp->self) {
535 		struct cgroup *desc = container_of(css, struct cgroup, self);
536 
537 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
538 			continue;
539 
540 		/* find position of link in effective progs array */
541 		for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
542 			if (pos && !(cg->bpf.flags[type] & BPF_F_ALLOW_MULTI))
543 				continue;
544 
545 			head = &cg->bpf.progs[type];
546 			list_for_each_entry(pl, head, node) {
547 				if (!prog_list_prog(pl))
548 					continue;
549 				if (pl->link == link)
550 					goto found;
551 				pos++;
552 			}
553 		}
554 found:
555 		BUG_ON(!cg);
556 		progs = rcu_dereference_protected(
557 				desc->bpf.effective[type],
558 				lockdep_is_held(&cgroup_mutex));
559 		item = &progs->items[pos];
560 		WRITE_ONCE(item->prog, link->link.prog);
561 	}
562 }
563 
564 /**
565  * __cgroup_bpf_replace() - Replace link's program and propagate the change
566  *                          to descendants
567  * @cgrp: The cgroup which descendants to traverse
568  * @link: A link for which to replace BPF program
569  * @type: Type of attach operation
570  *
571  * Must be called with cgroup_mutex held.
572  */
573 static int __cgroup_bpf_replace(struct cgroup *cgrp,
574 				struct bpf_cgroup_link *link,
575 				struct bpf_prog *new_prog)
576 {
577 	struct list_head *progs = &cgrp->bpf.progs[link->type];
578 	struct bpf_prog *old_prog;
579 	struct bpf_prog_list *pl;
580 	bool found = false;
581 
582 	if (link->link.prog->type != new_prog->type)
583 		return -EINVAL;
584 
585 	list_for_each_entry(pl, progs, node) {
586 		if (pl->link == link) {
587 			found = true;
588 			break;
589 		}
590 	}
591 	if (!found)
592 		return -ENOENT;
593 
594 	old_prog = xchg(&link->link.prog, new_prog);
595 	replace_effective_prog(cgrp, link->type, link);
596 	bpf_prog_put(old_prog);
597 	return 0;
598 }
599 
600 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog,
601 			      struct bpf_prog *old_prog)
602 {
603 	struct bpf_cgroup_link *cg_link;
604 	int ret;
605 
606 	cg_link = container_of(link, struct bpf_cgroup_link, link);
607 
608 	mutex_lock(&cgroup_mutex);
609 	/* link might have been auto-released by dying cgroup, so fail */
610 	if (!cg_link->cgroup) {
611 		ret = -ENOLINK;
612 		goto out_unlock;
613 	}
614 	if (old_prog && link->prog != old_prog) {
615 		ret = -EPERM;
616 		goto out_unlock;
617 	}
618 	ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
619 out_unlock:
620 	mutex_unlock(&cgroup_mutex);
621 	return ret;
622 }
623 
624 static struct bpf_prog_list *find_detach_entry(struct list_head *progs,
625 					       struct bpf_prog *prog,
626 					       struct bpf_cgroup_link *link,
627 					       bool allow_multi)
628 {
629 	struct bpf_prog_list *pl;
630 
631 	if (!allow_multi) {
632 		if (list_empty(progs))
633 			/* report error when trying to detach and nothing is attached */
634 			return ERR_PTR(-ENOENT);
635 
636 		/* to maintain backward compatibility NONE and OVERRIDE cgroups
637 		 * allow detaching with invalid FD (prog==NULL) in legacy mode
638 		 */
639 		return list_first_entry(progs, typeof(*pl), node);
640 	}
641 
642 	if (!prog && !link)
643 		/* to detach MULTI prog the user has to specify valid FD
644 		 * of the program or link to be detached
645 		 */
646 		return ERR_PTR(-EINVAL);
647 
648 	/* find the prog or link and detach it */
649 	list_for_each_entry(pl, progs, node) {
650 		if (pl->prog == prog && pl->link == link)
651 			return pl;
652 	}
653 	return ERR_PTR(-ENOENT);
654 }
655 
656 /**
657  * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and
658  *                         propagate the change to descendants
659  * @cgrp: The cgroup which descendants to traverse
660  * @prog: A program to detach or NULL
661  * @prog: A link to detach or NULL
662  * @type: Type of detach operation
663  *
664  * At most one of @prog or @link can be non-NULL.
665  * Must be called with cgroup_mutex held.
666  */
667 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
668 			struct bpf_cgroup_link *link, enum bpf_attach_type type)
669 {
670 	struct list_head *progs = &cgrp->bpf.progs[type];
671 	u32 flags = cgrp->bpf.flags[type];
672 	struct bpf_prog_list *pl;
673 	struct bpf_prog *old_prog;
674 	int err;
675 
676 	if (prog && link)
677 		/* only one of prog or link can be specified */
678 		return -EINVAL;
679 
680 	pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI);
681 	if (IS_ERR(pl))
682 		return PTR_ERR(pl);
683 
684 	/* mark it deleted, so it's ignored while recomputing effective */
685 	old_prog = pl->prog;
686 	pl->prog = NULL;
687 	pl->link = NULL;
688 
689 	err = update_effective_progs(cgrp, type);
690 	if (err)
691 		goto cleanup;
692 
693 	/* now can actually delete it from this cgroup list */
694 	list_del(&pl->node);
695 	kfree(pl);
696 	if (list_empty(progs))
697 		/* last program was detached, reset flags to zero */
698 		cgrp->bpf.flags[type] = 0;
699 	if (old_prog)
700 		bpf_prog_put(old_prog);
701 	static_branch_dec(&cgroup_bpf_enabled_key[type]);
702 	return 0;
703 
704 cleanup:
705 	/* restore back prog or link */
706 	pl->prog = old_prog;
707 	pl->link = link;
708 	return err;
709 }
710 
711 /* Must be called with cgroup_mutex held to avoid races. */
712 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
713 		       union bpf_attr __user *uattr)
714 {
715 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
716 	enum bpf_attach_type type = attr->query.attach_type;
717 	struct list_head *progs = &cgrp->bpf.progs[type];
718 	u32 flags = cgrp->bpf.flags[type];
719 	struct bpf_prog_array *effective;
720 	struct bpf_prog *prog;
721 	int cnt, ret = 0, i;
722 
723 	effective = rcu_dereference_protected(cgrp->bpf.effective[type],
724 					      lockdep_is_held(&cgroup_mutex));
725 
726 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
727 		cnt = bpf_prog_array_length(effective);
728 	else
729 		cnt = prog_list_length(progs);
730 
731 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
732 		return -EFAULT;
733 	if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
734 		return -EFAULT;
735 	if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
736 		/* return early if user requested only program count + flags */
737 		return 0;
738 	if (attr->query.prog_cnt < cnt) {
739 		cnt = attr->query.prog_cnt;
740 		ret = -ENOSPC;
741 	}
742 
743 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
744 		return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
745 	} else {
746 		struct bpf_prog_list *pl;
747 		u32 id;
748 
749 		i = 0;
750 		list_for_each_entry(pl, progs, node) {
751 			prog = prog_list_prog(pl);
752 			id = prog->aux->id;
753 			if (copy_to_user(prog_ids + i, &id, sizeof(id)))
754 				return -EFAULT;
755 			if (++i == cnt)
756 				break;
757 		}
758 	}
759 	return ret;
760 }
761 
762 int cgroup_bpf_prog_attach(const union bpf_attr *attr,
763 			   enum bpf_prog_type ptype, struct bpf_prog *prog)
764 {
765 	struct bpf_prog *replace_prog = NULL;
766 	struct cgroup *cgrp;
767 	int ret;
768 
769 	cgrp = cgroup_get_from_fd(attr->target_fd);
770 	if (IS_ERR(cgrp))
771 		return PTR_ERR(cgrp);
772 
773 	if ((attr->attach_flags & BPF_F_ALLOW_MULTI) &&
774 	    (attr->attach_flags & BPF_F_REPLACE)) {
775 		replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype);
776 		if (IS_ERR(replace_prog)) {
777 			cgroup_put(cgrp);
778 			return PTR_ERR(replace_prog);
779 		}
780 	}
781 
782 	ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL,
783 				attr->attach_type, attr->attach_flags);
784 
785 	if (replace_prog)
786 		bpf_prog_put(replace_prog);
787 	cgroup_put(cgrp);
788 	return ret;
789 }
790 
791 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
792 {
793 	struct bpf_prog *prog;
794 	struct cgroup *cgrp;
795 	int ret;
796 
797 	cgrp = cgroup_get_from_fd(attr->target_fd);
798 	if (IS_ERR(cgrp))
799 		return PTR_ERR(cgrp);
800 
801 	prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
802 	if (IS_ERR(prog))
803 		prog = NULL;
804 
805 	ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type);
806 	if (prog)
807 		bpf_prog_put(prog);
808 
809 	cgroup_put(cgrp);
810 	return ret;
811 }
812 
813 static void bpf_cgroup_link_release(struct bpf_link *link)
814 {
815 	struct bpf_cgroup_link *cg_link =
816 		container_of(link, struct bpf_cgroup_link, link);
817 	struct cgroup *cg;
818 
819 	/* link might have been auto-detached by dying cgroup already,
820 	 * in that case our work is done here
821 	 */
822 	if (!cg_link->cgroup)
823 		return;
824 
825 	mutex_lock(&cgroup_mutex);
826 
827 	/* re-check cgroup under lock again */
828 	if (!cg_link->cgroup) {
829 		mutex_unlock(&cgroup_mutex);
830 		return;
831 	}
832 
833 	WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link,
834 				    cg_link->type));
835 
836 	cg = cg_link->cgroup;
837 	cg_link->cgroup = NULL;
838 
839 	mutex_unlock(&cgroup_mutex);
840 
841 	cgroup_put(cg);
842 }
843 
844 static void bpf_cgroup_link_dealloc(struct bpf_link *link)
845 {
846 	struct bpf_cgroup_link *cg_link =
847 		container_of(link, struct bpf_cgroup_link, link);
848 
849 	kfree(cg_link);
850 }
851 
852 static int bpf_cgroup_link_detach(struct bpf_link *link)
853 {
854 	bpf_cgroup_link_release(link);
855 
856 	return 0;
857 }
858 
859 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link,
860 					struct seq_file *seq)
861 {
862 	struct bpf_cgroup_link *cg_link =
863 		container_of(link, struct bpf_cgroup_link, link);
864 	u64 cg_id = 0;
865 
866 	mutex_lock(&cgroup_mutex);
867 	if (cg_link->cgroup)
868 		cg_id = cgroup_id(cg_link->cgroup);
869 	mutex_unlock(&cgroup_mutex);
870 
871 	seq_printf(seq,
872 		   "cgroup_id:\t%llu\n"
873 		   "attach_type:\t%d\n",
874 		   cg_id,
875 		   cg_link->type);
876 }
877 
878 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link,
879 					  struct bpf_link_info *info)
880 {
881 	struct bpf_cgroup_link *cg_link =
882 		container_of(link, struct bpf_cgroup_link, link);
883 	u64 cg_id = 0;
884 
885 	mutex_lock(&cgroup_mutex);
886 	if (cg_link->cgroup)
887 		cg_id = cgroup_id(cg_link->cgroup);
888 	mutex_unlock(&cgroup_mutex);
889 
890 	info->cgroup.cgroup_id = cg_id;
891 	info->cgroup.attach_type = cg_link->type;
892 	return 0;
893 }
894 
895 static const struct bpf_link_ops bpf_cgroup_link_lops = {
896 	.release = bpf_cgroup_link_release,
897 	.dealloc = bpf_cgroup_link_dealloc,
898 	.detach = bpf_cgroup_link_detach,
899 	.update_prog = cgroup_bpf_replace,
900 	.show_fdinfo = bpf_cgroup_link_show_fdinfo,
901 	.fill_link_info = bpf_cgroup_link_fill_link_info,
902 };
903 
904 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
905 {
906 	struct bpf_link_primer link_primer;
907 	struct bpf_cgroup_link *link;
908 	struct cgroup *cgrp;
909 	int err;
910 
911 	if (attr->link_create.flags)
912 		return -EINVAL;
913 
914 	cgrp = cgroup_get_from_fd(attr->link_create.target_fd);
915 	if (IS_ERR(cgrp))
916 		return PTR_ERR(cgrp);
917 
918 	link = kzalloc(sizeof(*link), GFP_USER);
919 	if (!link) {
920 		err = -ENOMEM;
921 		goto out_put_cgroup;
922 	}
923 	bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops,
924 		      prog);
925 	link->cgroup = cgrp;
926 	link->type = attr->link_create.attach_type;
927 
928 	err  = bpf_link_prime(&link->link, &link_primer);
929 	if (err) {
930 		kfree(link);
931 		goto out_put_cgroup;
932 	}
933 
934 	err = cgroup_bpf_attach(cgrp, NULL, NULL, link, link->type,
935 				BPF_F_ALLOW_MULTI);
936 	if (err) {
937 		bpf_link_cleanup(&link_primer);
938 		goto out_put_cgroup;
939 	}
940 
941 	return bpf_link_settle(&link_primer);
942 
943 out_put_cgroup:
944 	cgroup_put(cgrp);
945 	return err;
946 }
947 
948 int cgroup_bpf_prog_query(const union bpf_attr *attr,
949 			  union bpf_attr __user *uattr)
950 {
951 	struct cgroup *cgrp;
952 	int ret;
953 
954 	cgrp = cgroup_get_from_fd(attr->query.target_fd);
955 	if (IS_ERR(cgrp))
956 		return PTR_ERR(cgrp);
957 
958 	ret = cgroup_bpf_query(cgrp, attr, uattr);
959 
960 	cgroup_put(cgrp);
961 	return ret;
962 }
963 
964 /**
965  * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
966  * @sk: The socket sending or receiving traffic
967  * @skb: The skb that is being sent or received
968  * @type: The type of program to be exectuted
969  *
970  * If no socket is passed, or the socket is not of type INET or INET6,
971  * this function does nothing and returns 0.
972  *
973  * The program type passed in via @type must be suitable for network
974  * filtering. No further check is performed to assert that.
975  *
976  * For egress packets, this function can return:
977  *   NET_XMIT_SUCCESS    (0)	- continue with packet output
978  *   NET_XMIT_DROP       (1)	- drop packet and notify TCP to call cwr
979  *   NET_XMIT_CN         (2)	- continue with packet output and notify TCP
980  *				  to call cwr
981  *   -EPERM			- drop packet
982  *
983  * For ingress packets, this function will return -EPERM if any
984  * attached program was found and if it returned != 1 during execution.
985  * Otherwise 0 is returned.
986  */
987 int __cgroup_bpf_run_filter_skb(struct sock *sk,
988 				struct sk_buff *skb,
989 				enum bpf_attach_type type)
990 {
991 	unsigned int offset = skb->data - skb_network_header(skb);
992 	struct sock *save_sk;
993 	void *saved_data_end;
994 	struct cgroup *cgrp;
995 	int ret;
996 
997 	if (!sk || !sk_fullsock(sk))
998 		return 0;
999 
1000 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1001 		return 0;
1002 
1003 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1004 	save_sk = skb->sk;
1005 	skb->sk = sk;
1006 	__skb_push(skb, offset);
1007 
1008 	/* compute pointers for the bpf prog */
1009 	bpf_compute_and_save_data_end(skb, &saved_data_end);
1010 
1011 	if (type == BPF_CGROUP_INET_EGRESS) {
1012 		ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(
1013 			cgrp->bpf.effective[type], skb, __bpf_prog_run_save_cb);
1014 	} else {
1015 		ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb,
1016 					  __bpf_prog_run_save_cb);
1017 		ret = (ret == 1 ? 0 : -EPERM);
1018 	}
1019 	bpf_restore_data_end(skb, saved_data_end);
1020 	__skb_pull(skb, offset);
1021 	skb->sk = save_sk;
1022 
1023 	return ret;
1024 }
1025 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
1026 
1027 /**
1028  * __cgroup_bpf_run_filter_sk() - Run a program on a sock
1029  * @sk: sock structure to manipulate
1030  * @type: The type of program to be exectuted
1031  *
1032  * socket is passed is expected to be of type INET or INET6.
1033  *
1034  * The program type passed in via @type must be suitable for sock
1035  * filtering. No further check is performed to assert that.
1036  *
1037  * This function will return %-EPERM if any if an attached program was found
1038  * and if it returned != 1 during execution. In all other cases, 0 is returned.
1039  */
1040 int __cgroup_bpf_run_filter_sk(struct sock *sk,
1041 			       enum bpf_attach_type type)
1042 {
1043 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1044 	int ret;
1045 
1046 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN);
1047 	return ret == 1 ? 0 : -EPERM;
1048 }
1049 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
1050 
1051 /**
1052  * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
1053  *                                       provided by user sockaddr
1054  * @sk: sock struct that will use sockaddr
1055  * @uaddr: sockaddr struct provided by user
1056  * @type: The type of program to be exectuted
1057  * @t_ctx: Pointer to attach type specific context
1058  *
1059  * socket is expected to be of type INET or INET6.
1060  *
1061  * This function will return %-EPERM if an attached program is found and
1062  * returned value != 1 during execution. In all other cases, 0 is returned.
1063  */
1064 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
1065 				      struct sockaddr *uaddr,
1066 				      enum bpf_attach_type type,
1067 				      void *t_ctx)
1068 {
1069 	struct bpf_sock_addr_kern ctx = {
1070 		.sk = sk,
1071 		.uaddr = uaddr,
1072 		.t_ctx = t_ctx,
1073 	};
1074 	struct sockaddr_storage unspec;
1075 	struct cgroup *cgrp;
1076 	int ret;
1077 
1078 	/* Check socket family since not all sockets represent network
1079 	 * endpoint (e.g. AF_UNIX).
1080 	 */
1081 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1082 		return 0;
1083 
1084 	if (!ctx.uaddr) {
1085 		memset(&unspec, 0, sizeof(unspec));
1086 		ctx.uaddr = (struct sockaddr *)&unspec;
1087 	}
1088 
1089 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1090 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
1091 
1092 	return ret == 1 ? 0 : -EPERM;
1093 }
1094 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
1095 
1096 /**
1097  * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
1098  * @sk: socket to get cgroup from
1099  * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
1100  * sk with connection information (IP addresses, etc.) May not contain
1101  * cgroup info if it is a req sock.
1102  * @type: The type of program to be exectuted
1103  *
1104  * socket passed is expected to be of type INET or INET6.
1105  *
1106  * The program type passed in via @type must be suitable for sock_ops
1107  * filtering. No further check is performed to assert that.
1108  *
1109  * This function will return %-EPERM if any if an attached program was found
1110  * and if it returned != 1 during execution. In all other cases, 0 is returned.
1111  */
1112 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
1113 				     struct bpf_sock_ops_kern *sock_ops,
1114 				     enum bpf_attach_type type)
1115 {
1116 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1117 	int ret;
1118 
1119 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops,
1120 				 BPF_PROG_RUN);
1121 	return ret == 1 ? 0 : -EPERM;
1122 }
1123 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
1124 
1125 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
1126 				      short access, enum bpf_attach_type type)
1127 {
1128 	struct cgroup *cgrp;
1129 	struct bpf_cgroup_dev_ctx ctx = {
1130 		.access_type = (access << 16) | dev_type,
1131 		.major = major,
1132 		.minor = minor,
1133 	};
1134 	int allow = 1;
1135 
1136 	rcu_read_lock();
1137 	cgrp = task_dfl_cgroup(current);
1138 	allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx,
1139 				   BPF_PROG_RUN);
1140 	rcu_read_unlock();
1141 
1142 	return !allow;
1143 }
1144 
1145 static const struct bpf_func_proto *
1146 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1147 {
1148 	switch (func_id) {
1149 	case BPF_FUNC_get_current_uid_gid:
1150 		return &bpf_get_current_uid_gid_proto;
1151 	case BPF_FUNC_get_local_storage:
1152 		return &bpf_get_local_storage_proto;
1153 	case BPF_FUNC_get_current_cgroup_id:
1154 		return &bpf_get_current_cgroup_id_proto;
1155 	case BPF_FUNC_perf_event_output:
1156 		return &bpf_event_output_data_proto;
1157 	default:
1158 		return bpf_base_func_proto(func_id);
1159 	}
1160 }
1161 
1162 static const struct bpf_func_proto *
1163 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1164 {
1165 	return cgroup_base_func_proto(func_id, prog);
1166 }
1167 
1168 static bool cgroup_dev_is_valid_access(int off, int size,
1169 				       enum bpf_access_type type,
1170 				       const struct bpf_prog *prog,
1171 				       struct bpf_insn_access_aux *info)
1172 {
1173 	const int size_default = sizeof(__u32);
1174 
1175 	if (type == BPF_WRITE)
1176 		return false;
1177 
1178 	if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
1179 		return false;
1180 	/* The verifier guarantees that size > 0. */
1181 	if (off % size != 0)
1182 		return false;
1183 
1184 	switch (off) {
1185 	case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
1186 		bpf_ctx_record_field_size(info, size_default);
1187 		if (!bpf_ctx_narrow_access_ok(off, size, size_default))
1188 			return false;
1189 		break;
1190 	default:
1191 		if (size != size_default)
1192 			return false;
1193 	}
1194 
1195 	return true;
1196 }
1197 
1198 const struct bpf_prog_ops cg_dev_prog_ops = {
1199 };
1200 
1201 const struct bpf_verifier_ops cg_dev_verifier_ops = {
1202 	.get_func_proto		= cgroup_dev_func_proto,
1203 	.is_valid_access	= cgroup_dev_is_valid_access,
1204 };
1205 
1206 /**
1207  * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
1208  *
1209  * @head: sysctl table header
1210  * @table: sysctl table
1211  * @write: sysctl is being read (= 0) or written (= 1)
1212  * @buf: pointer to buffer (in and out)
1213  * @pcount: value-result argument: value is size of buffer pointed to by @buf,
1214  *	result is size of @new_buf if program set new value, initial value
1215  *	otherwise
1216  * @ppos: value-result argument: value is position at which read from or write
1217  *	to sysctl is happening, result is new position if program overrode it,
1218  *	initial value otherwise
1219  * @type: type of program to be executed
1220  *
1221  * Program is run when sysctl is being accessed, either read or written, and
1222  * can allow or deny such access.
1223  *
1224  * This function will return %-EPERM if an attached program is found and
1225  * returned value != 1 during execution. In all other cases 0 is returned.
1226  */
1227 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
1228 				   struct ctl_table *table, int write,
1229 				   char **buf, size_t *pcount, loff_t *ppos,
1230 				   enum bpf_attach_type type)
1231 {
1232 	struct bpf_sysctl_kern ctx = {
1233 		.head = head,
1234 		.table = table,
1235 		.write = write,
1236 		.ppos = ppos,
1237 		.cur_val = NULL,
1238 		.cur_len = PAGE_SIZE,
1239 		.new_val = NULL,
1240 		.new_len = 0,
1241 		.new_updated = 0,
1242 	};
1243 	struct cgroup *cgrp;
1244 	loff_t pos = 0;
1245 	int ret;
1246 
1247 	ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
1248 	if (!ctx.cur_val ||
1249 	    table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) {
1250 		/* Let BPF program decide how to proceed. */
1251 		ctx.cur_len = 0;
1252 	}
1253 
1254 	if (write && *buf && *pcount) {
1255 		/* BPF program should be able to override new value with a
1256 		 * buffer bigger than provided by user.
1257 		 */
1258 		ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
1259 		ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
1260 		if (ctx.new_val) {
1261 			memcpy(ctx.new_val, *buf, ctx.new_len);
1262 		} else {
1263 			/* Let BPF program decide how to proceed. */
1264 			ctx.new_len = 0;
1265 		}
1266 	}
1267 
1268 	rcu_read_lock();
1269 	cgrp = task_dfl_cgroup(current);
1270 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
1271 	rcu_read_unlock();
1272 
1273 	kfree(ctx.cur_val);
1274 
1275 	if (ret == 1 && ctx.new_updated) {
1276 		kfree(*buf);
1277 		*buf = ctx.new_val;
1278 		*pcount = ctx.new_len;
1279 	} else {
1280 		kfree(ctx.new_val);
1281 	}
1282 
1283 	return ret == 1 ? 0 : -EPERM;
1284 }
1285 
1286 #ifdef CONFIG_NET
1287 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp,
1288 					     enum bpf_attach_type attach_type)
1289 {
1290 	struct bpf_prog_array *prog_array;
1291 	bool empty;
1292 
1293 	rcu_read_lock();
1294 	prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]);
1295 	empty = bpf_prog_array_is_empty(prog_array);
1296 	rcu_read_unlock();
1297 
1298 	return empty;
1299 }
1300 
1301 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen,
1302 			     struct bpf_sockopt_buf *buf)
1303 {
1304 	if (unlikely(max_optlen < 0))
1305 		return -EINVAL;
1306 
1307 	if (unlikely(max_optlen > PAGE_SIZE)) {
1308 		/* We don't expose optvals that are greater than PAGE_SIZE
1309 		 * to the BPF program.
1310 		 */
1311 		max_optlen = PAGE_SIZE;
1312 	}
1313 
1314 	if (max_optlen <= sizeof(buf->data)) {
1315 		/* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE
1316 		 * bytes avoid the cost of kzalloc.
1317 		 */
1318 		ctx->optval = buf->data;
1319 		ctx->optval_end = ctx->optval + max_optlen;
1320 		return max_optlen;
1321 	}
1322 
1323 	ctx->optval = kzalloc(max_optlen, GFP_USER);
1324 	if (!ctx->optval)
1325 		return -ENOMEM;
1326 
1327 	ctx->optval_end = ctx->optval + max_optlen;
1328 
1329 	return max_optlen;
1330 }
1331 
1332 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx,
1333 			     struct bpf_sockopt_buf *buf)
1334 {
1335 	if (ctx->optval == buf->data)
1336 		return;
1337 	kfree(ctx->optval);
1338 }
1339 
1340 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx,
1341 				  struct bpf_sockopt_buf *buf)
1342 {
1343 	return ctx->optval != buf->data;
1344 }
1345 
1346 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
1347 				       int *optname, char __user *optval,
1348 				       int *optlen, char **kernel_optval)
1349 {
1350 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1351 	struct bpf_sockopt_buf buf = {};
1352 	struct bpf_sockopt_kern ctx = {
1353 		.sk = sk,
1354 		.level = *level,
1355 		.optname = *optname,
1356 	};
1357 	int ret, max_optlen;
1358 
1359 	/* Opportunistic check to see whether we have any BPF program
1360 	 * attached to the hook so we don't waste time allocating
1361 	 * memory and locking the socket.
1362 	 */
1363 	if (__cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_SETSOCKOPT))
1364 		return 0;
1365 
1366 	/* Allocate a bit more than the initial user buffer for
1367 	 * BPF program. The canonical use case is overriding
1368 	 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1369 	 */
1370 	max_optlen = max_t(int, 16, *optlen);
1371 
1372 	max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1373 	if (max_optlen < 0)
1374 		return max_optlen;
1375 
1376 	ctx.optlen = *optlen;
1377 
1378 	if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) {
1379 		ret = -EFAULT;
1380 		goto out;
1381 	}
1382 
1383 	lock_sock(sk);
1384 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_SETSOCKOPT],
1385 				 &ctx, BPF_PROG_RUN);
1386 	release_sock(sk);
1387 
1388 	if (!ret) {
1389 		ret = -EPERM;
1390 		goto out;
1391 	}
1392 
1393 	if (ctx.optlen == -1) {
1394 		/* optlen set to -1, bypass kernel */
1395 		ret = 1;
1396 	} else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1397 		/* optlen is out of bounds */
1398 		ret = -EFAULT;
1399 	} else {
1400 		/* optlen within bounds, run kernel handler */
1401 		ret = 0;
1402 
1403 		/* export any potential modifications */
1404 		*level = ctx.level;
1405 		*optname = ctx.optname;
1406 
1407 		/* optlen == 0 from BPF indicates that we should
1408 		 * use original userspace data.
1409 		 */
1410 		if (ctx.optlen != 0) {
1411 			*optlen = ctx.optlen;
1412 			/* We've used bpf_sockopt_kern->buf as an intermediary
1413 			 * storage, but the BPF program indicates that we need
1414 			 * to pass this data to the kernel setsockopt handler.
1415 			 * No way to export on-stack buf, have to allocate a
1416 			 * new buffer.
1417 			 */
1418 			if (!sockopt_buf_allocated(&ctx, &buf)) {
1419 				void *p = kmalloc(ctx.optlen, GFP_USER);
1420 
1421 				if (!p) {
1422 					ret = -ENOMEM;
1423 					goto out;
1424 				}
1425 				memcpy(p, ctx.optval, ctx.optlen);
1426 				*kernel_optval = p;
1427 			} else {
1428 				*kernel_optval = ctx.optval;
1429 			}
1430 			/* export and don't free sockopt buf */
1431 			return 0;
1432 		}
1433 	}
1434 
1435 out:
1436 	sockopt_free_buf(&ctx, &buf);
1437 	return ret;
1438 }
1439 
1440 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1441 				       int optname, char __user *optval,
1442 				       int __user *optlen, int max_optlen,
1443 				       int retval)
1444 {
1445 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1446 	struct bpf_sockopt_buf buf = {};
1447 	struct bpf_sockopt_kern ctx = {
1448 		.sk = sk,
1449 		.level = level,
1450 		.optname = optname,
1451 		.retval = retval,
1452 	};
1453 	int ret;
1454 
1455 	/* Opportunistic check to see whether we have any BPF program
1456 	 * attached to the hook so we don't waste time allocating
1457 	 * memory and locking the socket.
1458 	 */
1459 	if (__cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_GETSOCKOPT))
1460 		return retval;
1461 
1462 	ctx.optlen = max_optlen;
1463 
1464 	max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1465 	if (max_optlen < 0)
1466 		return max_optlen;
1467 
1468 	if (!retval) {
1469 		/* If kernel getsockopt finished successfully,
1470 		 * copy whatever was returned to the user back
1471 		 * into our temporary buffer. Set optlen to the
1472 		 * one that kernel returned as well to let
1473 		 * BPF programs inspect the value.
1474 		 */
1475 
1476 		if (get_user(ctx.optlen, optlen)) {
1477 			ret = -EFAULT;
1478 			goto out;
1479 		}
1480 
1481 		if (copy_from_user(ctx.optval, optval,
1482 				   min(ctx.optlen, max_optlen)) != 0) {
1483 			ret = -EFAULT;
1484 			goto out;
1485 		}
1486 	}
1487 
1488 	lock_sock(sk);
1489 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT],
1490 				 &ctx, BPF_PROG_RUN);
1491 	release_sock(sk);
1492 
1493 	if (!ret) {
1494 		ret = -EPERM;
1495 		goto out;
1496 	}
1497 
1498 	if (ctx.optlen > max_optlen) {
1499 		ret = -EFAULT;
1500 		goto out;
1501 	}
1502 
1503 	/* BPF programs only allowed to set retval to 0, not some
1504 	 * arbitrary value.
1505 	 */
1506 	if (ctx.retval != 0 && ctx.retval != retval) {
1507 		ret = -EFAULT;
1508 		goto out;
1509 	}
1510 
1511 	if (ctx.optlen != 0) {
1512 		if (copy_to_user(optval, ctx.optval, ctx.optlen) ||
1513 		    put_user(ctx.optlen, optlen)) {
1514 			ret = -EFAULT;
1515 			goto out;
1516 		}
1517 	}
1518 
1519 	ret = ctx.retval;
1520 
1521 out:
1522 	sockopt_free_buf(&ctx, &buf);
1523 	return ret;
1524 }
1525 
1526 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level,
1527 					    int optname, void *optval,
1528 					    int *optlen, int retval)
1529 {
1530 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1531 	struct bpf_sockopt_kern ctx = {
1532 		.sk = sk,
1533 		.level = level,
1534 		.optname = optname,
1535 		.retval = retval,
1536 		.optlen = *optlen,
1537 		.optval = optval,
1538 		.optval_end = optval + *optlen,
1539 	};
1540 	int ret;
1541 
1542 	/* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy
1543 	 * user data back into BPF buffer when reval != 0. This is
1544 	 * done as an optimization to avoid extra copy, assuming
1545 	 * kernel won't populate the data in case of an error.
1546 	 * Here we always pass the data and memset() should
1547 	 * be called if that data shouldn't be "exported".
1548 	 */
1549 
1550 	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT],
1551 				 &ctx, BPF_PROG_RUN);
1552 	if (!ret)
1553 		return -EPERM;
1554 
1555 	if (ctx.optlen > *optlen)
1556 		return -EFAULT;
1557 
1558 	/* BPF programs only allowed to set retval to 0, not some
1559 	 * arbitrary value.
1560 	 */
1561 	if (ctx.retval != 0 && ctx.retval != retval)
1562 		return -EFAULT;
1563 
1564 	/* BPF programs can shrink the buffer, export the modifications.
1565 	 */
1566 	if (ctx.optlen != 0)
1567 		*optlen = ctx.optlen;
1568 
1569 	return ctx.retval;
1570 }
1571 #endif
1572 
1573 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
1574 			      size_t *lenp)
1575 {
1576 	ssize_t tmp_ret = 0, ret;
1577 
1578 	if (dir->header.parent) {
1579 		tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
1580 		if (tmp_ret < 0)
1581 			return tmp_ret;
1582 	}
1583 
1584 	ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
1585 	if (ret < 0)
1586 		return ret;
1587 	*bufp += ret;
1588 	*lenp -= ret;
1589 	ret += tmp_ret;
1590 
1591 	/* Avoid leading slash. */
1592 	if (!ret)
1593 		return ret;
1594 
1595 	tmp_ret = strscpy(*bufp, "/", *lenp);
1596 	if (tmp_ret < 0)
1597 		return tmp_ret;
1598 	*bufp += tmp_ret;
1599 	*lenp -= tmp_ret;
1600 
1601 	return ret + tmp_ret;
1602 }
1603 
1604 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
1605 	   size_t, buf_len, u64, flags)
1606 {
1607 	ssize_t tmp_ret = 0, ret;
1608 
1609 	if (!buf)
1610 		return -EINVAL;
1611 
1612 	if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
1613 		if (!ctx->head)
1614 			return -EINVAL;
1615 		tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
1616 		if (tmp_ret < 0)
1617 			return tmp_ret;
1618 	}
1619 
1620 	ret = strscpy(buf, ctx->table->procname, buf_len);
1621 
1622 	return ret < 0 ? ret : tmp_ret + ret;
1623 }
1624 
1625 static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
1626 	.func		= bpf_sysctl_get_name,
1627 	.gpl_only	= false,
1628 	.ret_type	= RET_INTEGER,
1629 	.arg1_type	= ARG_PTR_TO_CTX,
1630 	.arg2_type	= ARG_PTR_TO_MEM,
1631 	.arg3_type	= ARG_CONST_SIZE,
1632 	.arg4_type	= ARG_ANYTHING,
1633 };
1634 
1635 static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
1636 			     size_t src_len)
1637 {
1638 	if (!dst)
1639 		return -EINVAL;
1640 
1641 	if (!dst_len)
1642 		return -E2BIG;
1643 
1644 	if (!src || !src_len) {
1645 		memset(dst, 0, dst_len);
1646 		return -EINVAL;
1647 	}
1648 
1649 	memcpy(dst, src, min(dst_len, src_len));
1650 
1651 	if (dst_len > src_len) {
1652 		memset(dst + src_len, '\0', dst_len - src_len);
1653 		return src_len;
1654 	}
1655 
1656 	dst[dst_len - 1] = '\0';
1657 
1658 	return -E2BIG;
1659 }
1660 
1661 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
1662 	   char *, buf, size_t, buf_len)
1663 {
1664 	return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
1665 }
1666 
1667 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
1668 	.func		= bpf_sysctl_get_current_value,
1669 	.gpl_only	= false,
1670 	.ret_type	= RET_INTEGER,
1671 	.arg1_type	= ARG_PTR_TO_CTX,
1672 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1673 	.arg3_type	= ARG_CONST_SIZE,
1674 };
1675 
1676 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
1677 	   size_t, buf_len)
1678 {
1679 	if (!ctx->write) {
1680 		if (buf && buf_len)
1681 			memset(buf, '\0', buf_len);
1682 		return -EINVAL;
1683 	}
1684 	return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
1685 }
1686 
1687 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
1688 	.func		= bpf_sysctl_get_new_value,
1689 	.gpl_only	= false,
1690 	.ret_type	= RET_INTEGER,
1691 	.arg1_type	= ARG_PTR_TO_CTX,
1692 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1693 	.arg3_type	= ARG_CONST_SIZE,
1694 };
1695 
1696 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
1697 	   const char *, buf, size_t, buf_len)
1698 {
1699 	if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
1700 		return -EINVAL;
1701 
1702 	if (buf_len > PAGE_SIZE - 1)
1703 		return -E2BIG;
1704 
1705 	memcpy(ctx->new_val, buf, buf_len);
1706 	ctx->new_len = buf_len;
1707 	ctx->new_updated = 1;
1708 
1709 	return 0;
1710 }
1711 
1712 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
1713 	.func		= bpf_sysctl_set_new_value,
1714 	.gpl_only	= false,
1715 	.ret_type	= RET_INTEGER,
1716 	.arg1_type	= ARG_PTR_TO_CTX,
1717 	.arg2_type	= ARG_PTR_TO_MEM,
1718 	.arg3_type	= ARG_CONST_SIZE,
1719 };
1720 
1721 static const struct bpf_func_proto *
1722 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1723 {
1724 	switch (func_id) {
1725 	case BPF_FUNC_strtol:
1726 		return &bpf_strtol_proto;
1727 	case BPF_FUNC_strtoul:
1728 		return &bpf_strtoul_proto;
1729 	case BPF_FUNC_sysctl_get_name:
1730 		return &bpf_sysctl_get_name_proto;
1731 	case BPF_FUNC_sysctl_get_current_value:
1732 		return &bpf_sysctl_get_current_value_proto;
1733 	case BPF_FUNC_sysctl_get_new_value:
1734 		return &bpf_sysctl_get_new_value_proto;
1735 	case BPF_FUNC_sysctl_set_new_value:
1736 		return &bpf_sysctl_set_new_value_proto;
1737 	default:
1738 		return cgroup_base_func_proto(func_id, prog);
1739 	}
1740 }
1741 
1742 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
1743 				   const struct bpf_prog *prog,
1744 				   struct bpf_insn_access_aux *info)
1745 {
1746 	const int size_default = sizeof(__u32);
1747 
1748 	if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
1749 		return false;
1750 
1751 	switch (off) {
1752 	case bpf_ctx_range(struct bpf_sysctl, write):
1753 		if (type != BPF_READ)
1754 			return false;
1755 		bpf_ctx_record_field_size(info, size_default);
1756 		return bpf_ctx_narrow_access_ok(off, size, size_default);
1757 	case bpf_ctx_range(struct bpf_sysctl, file_pos):
1758 		if (type == BPF_READ) {
1759 			bpf_ctx_record_field_size(info, size_default);
1760 			return bpf_ctx_narrow_access_ok(off, size, size_default);
1761 		} else {
1762 			return size == size_default;
1763 		}
1764 	default:
1765 		return false;
1766 	}
1767 }
1768 
1769 static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
1770 				     const struct bpf_insn *si,
1771 				     struct bpf_insn *insn_buf,
1772 				     struct bpf_prog *prog, u32 *target_size)
1773 {
1774 	struct bpf_insn *insn = insn_buf;
1775 	u32 read_size;
1776 
1777 	switch (si->off) {
1778 	case offsetof(struct bpf_sysctl, write):
1779 		*insn++ = BPF_LDX_MEM(
1780 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
1781 			bpf_target_off(struct bpf_sysctl_kern, write,
1782 				       sizeof_field(struct bpf_sysctl_kern,
1783 						    write),
1784 				       target_size));
1785 		break;
1786 	case offsetof(struct bpf_sysctl, file_pos):
1787 		/* ppos is a pointer so it should be accessed via indirect
1788 		 * loads and stores. Also for stores additional temporary
1789 		 * register is used since neither src_reg nor dst_reg can be
1790 		 * overridden.
1791 		 */
1792 		if (type == BPF_WRITE) {
1793 			int treg = BPF_REG_9;
1794 
1795 			if (si->src_reg == treg || si->dst_reg == treg)
1796 				--treg;
1797 			if (si->src_reg == treg || si->dst_reg == treg)
1798 				--treg;
1799 			*insn++ = BPF_STX_MEM(
1800 				BPF_DW, si->dst_reg, treg,
1801 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1802 			*insn++ = BPF_LDX_MEM(
1803 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1804 				treg, si->dst_reg,
1805 				offsetof(struct bpf_sysctl_kern, ppos));
1806 			*insn++ = BPF_STX_MEM(
1807 				BPF_SIZEOF(u32), treg, si->src_reg,
1808 				bpf_ctx_narrow_access_offset(
1809 					0, sizeof(u32), sizeof(loff_t)));
1810 			*insn++ = BPF_LDX_MEM(
1811 				BPF_DW, treg, si->dst_reg,
1812 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1813 		} else {
1814 			*insn++ = BPF_LDX_MEM(
1815 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1816 				si->dst_reg, si->src_reg,
1817 				offsetof(struct bpf_sysctl_kern, ppos));
1818 			read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
1819 			*insn++ = BPF_LDX_MEM(
1820 				BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
1821 				bpf_ctx_narrow_access_offset(
1822 					0, read_size, sizeof(loff_t)));
1823 		}
1824 		*target_size = sizeof(u32);
1825 		break;
1826 	}
1827 
1828 	return insn - insn_buf;
1829 }
1830 
1831 const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
1832 	.get_func_proto		= sysctl_func_proto,
1833 	.is_valid_access	= sysctl_is_valid_access,
1834 	.convert_ctx_access	= sysctl_convert_ctx_access,
1835 };
1836 
1837 const struct bpf_prog_ops cg_sysctl_prog_ops = {
1838 };
1839 
1840 static const struct bpf_func_proto *
1841 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1842 {
1843 	switch (func_id) {
1844 #ifdef CONFIG_NET
1845 	case BPF_FUNC_sk_storage_get:
1846 		return &bpf_sk_storage_get_proto;
1847 	case BPF_FUNC_sk_storage_delete:
1848 		return &bpf_sk_storage_delete_proto;
1849 #endif
1850 #ifdef CONFIG_INET
1851 	case BPF_FUNC_tcp_sock:
1852 		return &bpf_tcp_sock_proto;
1853 #endif
1854 	default:
1855 		return cgroup_base_func_proto(func_id, prog);
1856 	}
1857 }
1858 
1859 static bool cg_sockopt_is_valid_access(int off, int size,
1860 				       enum bpf_access_type type,
1861 				       const struct bpf_prog *prog,
1862 				       struct bpf_insn_access_aux *info)
1863 {
1864 	const int size_default = sizeof(__u32);
1865 
1866 	if (off < 0 || off >= sizeof(struct bpf_sockopt))
1867 		return false;
1868 
1869 	if (off % size != 0)
1870 		return false;
1871 
1872 	if (type == BPF_WRITE) {
1873 		switch (off) {
1874 		case offsetof(struct bpf_sockopt, retval):
1875 			if (size != size_default)
1876 				return false;
1877 			return prog->expected_attach_type ==
1878 				BPF_CGROUP_GETSOCKOPT;
1879 		case offsetof(struct bpf_sockopt, optname):
1880 			fallthrough;
1881 		case offsetof(struct bpf_sockopt, level):
1882 			if (size != size_default)
1883 				return false;
1884 			return prog->expected_attach_type ==
1885 				BPF_CGROUP_SETSOCKOPT;
1886 		case offsetof(struct bpf_sockopt, optlen):
1887 			return size == size_default;
1888 		default:
1889 			return false;
1890 		}
1891 	}
1892 
1893 	switch (off) {
1894 	case offsetof(struct bpf_sockopt, sk):
1895 		if (size != sizeof(__u64))
1896 			return false;
1897 		info->reg_type = PTR_TO_SOCKET;
1898 		break;
1899 	case offsetof(struct bpf_sockopt, optval):
1900 		if (size != sizeof(__u64))
1901 			return false;
1902 		info->reg_type = PTR_TO_PACKET;
1903 		break;
1904 	case offsetof(struct bpf_sockopt, optval_end):
1905 		if (size != sizeof(__u64))
1906 			return false;
1907 		info->reg_type = PTR_TO_PACKET_END;
1908 		break;
1909 	case offsetof(struct bpf_sockopt, retval):
1910 		if (size != size_default)
1911 			return false;
1912 		return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
1913 	default:
1914 		if (size != size_default)
1915 			return false;
1916 		break;
1917 	}
1918 	return true;
1919 }
1920 
1921 #define CG_SOCKOPT_ACCESS_FIELD(T, F)					\
1922 	T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F),			\
1923 	  si->dst_reg, si->src_reg,					\
1924 	  offsetof(struct bpf_sockopt_kern, F))
1925 
1926 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
1927 					 const struct bpf_insn *si,
1928 					 struct bpf_insn *insn_buf,
1929 					 struct bpf_prog *prog,
1930 					 u32 *target_size)
1931 {
1932 	struct bpf_insn *insn = insn_buf;
1933 
1934 	switch (si->off) {
1935 	case offsetof(struct bpf_sockopt, sk):
1936 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
1937 		break;
1938 	case offsetof(struct bpf_sockopt, level):
1939 		if (type == BPF_WRITE)
1940 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
1941 		else
1942 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
1943 		break;
1944 	case offsetof(struct bpf_sockopt, optname):
1945 		if (type == BPF_WRITE)
1946 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
1947 		else
1948 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
1949 		break;
1950 	case offsetof(struct bpf_sockopt, optlen):
1951 		if (type == BPF_WRITE)
1952 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
1953 		else
1954 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
1955 		break;
1956 	case offsetof(struct bpf_sockopt, retval):
1957 		if (type == BPF_WRITE)
1958 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval);
1959 		else
1960 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval);
1961 		break;
1962 	case offsetof(struct bpf_sockopt, optval):
1963 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
1964 		break;
1965 	case offsetof(struct bpf_sockopt, optval_end):
1966 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
1967 		break;
1968 	}
1969 
1970 	return insn - insn_buf;
1971 }
1972 
1973 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
1974 				   bool direct_write,
1975 				   const struct bpf_prog *prog)
1976 {
1977 	/* Nothing to do for sockopt argument. The data is kzalloc'ated.
1978 	 */
1979 	return 0;
1980 }
1981 
1982 const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
1983 	.get_func_proto		= cg_sockopt_func_proto,
1984 	.is_valid_access	= cg_sockopt_is_valid_access,
1985 	.convert_ctx_access	= cg_sockopt_convert_ctx_access,
1986 	.gen_prologue		= cg_sockopt_get_prologue,
1987 };
1988 
1989 const struct bpf_prog_ops cg_sockopt_prog_ops = {
1990 };
1991