1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Functions to manage eBPF programs attached to cgroups 4 * 5 * Copyright (c) 2016 Daniel Mack 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/atomic.h> 10 #include <linux/cgroup.h> 11 #include <linux/filter.h> 12 #include <linux/slab.h> 13 #include <linux/sysctl.h> 14 #include <linux/string.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf-cgroup.h> 17 #include <net/sock.h> 18 #include <net/bpf_sk_storage.h> 19 20 #include "../cgroup/cgroup-internal.h" 21 22 DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key); 23 EXPORT_SYMBOL(cgroup_bpf_enabled_key); 24 25 void cgroup_bpf_offline(struct cgroup *cgrp) 26 { 27 cgroup_get(cgrp); 28 percpu_ref_kill(&cgrp->bpf.refcnt); 29 } 30 31 /** 32 * cgroup_bpf_release() - put references of all bpf programs and 33 * release all cgroup bpf data 34 * @work: work structure embedded into the cgroup to modify 35 */ 36 static void cgroup_bpf_release(struct work_struct *work) 37 { 38 struct cgroup *p, *cgrp = container_of(work, struct cgroup, 39 bpf.release_work); 40 enum bpf_cgroup_storage_type stype; 41 struct bpf_prog_array *old_array; 42 unsigned int type; 43 44 mutex_lock(&cgroup_mutex); 45 46 for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) { 47 struct list_head *progs = &cgrp->bpf.progs[type]; 48 struct bpf_prog_list *pl, *tmp; 49 50 list_for_each_entry_safe(pl, tmp, progs, node) { 51 list_del(&pl->node); 52 bpf_prog_put(pl->prog); 53 for_each_cgroup_storage_type(stype) { 54 bpf_cgroup_storage_unlink(pl->storage[stype]); 55 bpf_cgroup_storage_free(pl->storage[stype]); 56 } 57 kfree(pl); 58 static_branch_dec(&cgroup_bpf_enabled_key); 59 } 60 old_array = rcu_dereference_protected( 61 cgrp->bpf.effective[type], 62 lockdep_is_held(&cgroup_mutex)); 63 bpf_prog_array_free(old_array); 64 } 65 66 mutex_unlock(&cgroup_mutex); 67 68 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 69 cgroup_bpf_put(p); 70 71 percpu_ref_exit(&cgrp->bpf.refcnt); 72 cgroup_put(cgrp); 73 } 74 75 /** 76 * cgroup_bpf_release_fn() - callback used to schedule releasing 77 * of bpf cgroup data 78 * @ref: percpu ref counter structure 79 */ 80 static void cgroup_bpf_release_fn(struct percpu_ref *ref) 81 { 82 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt); 83 84 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release); 85 queue_work(system_wq, &cgrp->bpf.release_work); 86 } 87 88 /* count number of elements in the list. 89 * it's slow but the list cannot be long 90 */ 91 static u32 prog_list_length(struct list_head *head) 92 { 93 struct bpf_prog_list *pl; 94 u32 cnt = 0; 95 96 list_for_each_entry(pl, head, node) { 97 if (!pl->prog) 98 continue; 99 cnt++; 100 } 101 return cnt; 102 } 103 104 /* if parent has non-overridable prog attached, 105 * disallow attaching new programs to the descendent cgroup. 106 * if parent has overridable or multi-prog, allow attaching 107 */ 108 static bool hierarchy_allows_attach(struct cgroup *cgrp, 109 enum bpf_attach_type type) 110 { 111 struct cgroup *p; 112 113 p = cgroup_parent(cgrp); 114 if (!p) 115 return true; 116 do { 117 u32 flags = p->bpf.flags[type]; 118 u32 cnt; 119 120 if (flags & BPF_F_ALLOW_MULTI) 121 return true; 122 cnt = prog_list_length(&p->bpf.progs[type]); 123 WARN_ON_ONCE(cnt > 1); 124 if (cnt == 1) 125 return !!(flags & BPF_F_ALLOW_OVERRIDE); 126 p = cgroup_parent(p); 127 } while (p); 128 return true; 129 } 130 131 /* compute a chain of effective programs for a given cgroup: 132 * start from the list of programs in this cgroup and add 133 * all parent programs. 134 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding 135 * to programs in this cgroup 136 */ 137 static int compute_effective_progs(struct cgroup *cgrp, 138 enum bpf_attach_type type, 139 struct bpf_prog_array **array) 140 { 141 enum bpf_cgroup_storage_type stype; 142 struct bpf_prog_array *progs; 143 struct bpf_prog_list *pl; 144 struct cgroup *p = cgrp; 145 int cnt = 0; 146 147 /* count number of effective programs by walking parents */ 148 do { 149 if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI)) 150 cnt += prog_list_length(&p->bpf.progs[type]); 151 p = cgroup_parent(p); 152 } while (p); 153 154 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL); 155 if (!progs) 156 return -ENOMEM; 157 158 /* populate the array with effective progs */ 159 cnt = 0; 160 p = cgrp; 161 do { 162 if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI)) 163 continue; 164 165 list_for_each_entry(pl, &p->bpf.progs[type], node) { 166 if (!pl->prog) 167 continue; 168 169 progs->items[cnt].prog = pl->prog; 170 for_each_cgroup_storage_type(stype) 171 progs->items[cnt].cgroup_storage[stype] = 172 pl->storage[stype]; 173 cnt++; 174 } 175 } while ((p = cgroup_parent(p))); 176 177 *array = progs; 178 return 0; 179 } 180 181 static void activate_effective_progs(struct cgroup *cgrp, 182 enum bpf_attach_type type, 183 struct bpf_prog_array *old_array) 184 { 185 old_array = rcu_replace_pointer(cgrp->bpf.effective[type], old_array, 186 lockdep_is_held(&cgroup_mutex)); 187 /* free prog array after grace period, since __cgroup_bpf_run_*() 188 * might be still walking the array 189 */ 190 bpf_prog_array_free(old_array); 191 } 192 193 /** 194 * cgroup_bpf_inherit() - inherit effective programs from parent 195 * @cgrp: the cgroup to modify 196 */ 197 int cgroup_bpf_inherit(struct cgroup *cgrp) 198 { 199 /* has to use marco instead of const int, since compiler thinks 200 * that array below is variable length 201 */ 202 #define NR ARRAY_SIZE(cgrp->bpf.effective) 203 struct bpf_prog_array *arrays[NR] = {}; 204 struct cgroup *p; 205 int ret, i; 206 207 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0, 208 GFP_KERNEL); 209 if (ret) 210 return ret; 211 212 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 213 cgroup_bpf_get(p); 214 215 for (i = 0; i < NR; i++) 216 INIT_LIST_HEAD(&cgrp->bpf.progs[i]); 217 218 for (i = 0; i < NR; i++) 219 if (compute_effective_progs(cgrp, i, &arrays[i])) 220 goto cleanup; 221 222 for (i = 0; i < NR; i++) 223 activate_effective_progs(cgrp, i, arrays[i]); 224 225 return 0; 226 cleanup: 227 for (i = 0; i < NR; i++) 228 bpf_prog_array_free(arrays[i]); 229 230 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 231 cgroup_bpf_put(p); 232 233 percpu_ref_exit(&cgrp->bpf.refcnt); 234 235 return -ENOMEM; 236 } 237 238 static int update_effective_progs(struct cgroup *cgrp, 239 enum bpf_attach_type type) 240 { 241 struct cgroup_subsys_state *css; 242 int err; 243 244 /* allocate and recompute effective prog arrays */ 245 css_for_each_descendant_pre(css, &cgrp->self) { 246 struct cgroup *desc = container_of(css, struct cgroup, self); 247 248 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 249 continue; 250 251 err = compute_effective_progs(desc, type, &desc->bpf.inactive); 252 if (err) 253 goto cleanup; 254 } 255 256 /* all allocations were successful. Activate all prog arrays */ 257 css_for_each_descendant_pre(css, &cgrp->self) { 258 struct cgroup *desc = container_of(css, struct cgroup, self); 259 260 if (percpu_ref_is_zero(&desc->bpf.refcnt)) { 261 if (unlikely(desc->bpf.inactive)) { 262 bpf_prog_array_free(desc->bpf.inactive); 263 desc->bpf.inactive = NULL; 264 } 265 continue; 266 } 267 268 activate_effective_progs(desc, type, desc->bpf.inactive); 269 desc->bpf.inactive = NULL; 270 } 271 272 return 0; 273 274 cleanup: 275 /* oom while computing effective. Free all computed effective arrays 276 * since they were not activated 277 */ 278 css_for_each_descendant_pre(css, &cgrp->self) { 279 struct cgroup *desc = container_of(css, struct cgroup, self); 280 281 bpf_prog_array_free(desc->bpf.inactive); 282 desc->bpf.inactive = NULL; 283 } 284 285 return err; 286 } 287 288 #define BPF_CGROUP_MAX_PROGS 64 289 290 /** 291 * __cgroup_bpf_attach() - Attach the program to a cgroup, and 292 * propagate the change to descendants 293 * @cgrp: The cgroup which descendants to traverse 294 * @prog: A program to attach 295 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set 296 * @type: Type of attach operation 297 * @flags: Option flags 298 * 299 * Must be called with cgroup_mutex held. 300 */ 301 int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 302 struct bpf_prog *replace_prog, 303 enum bpf_attach_type type, u32 flags) 304 { 305 u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI)); 306 struct list_head *progs = &cgrp->bpf.progs[type]; 307 struct bpf_prog *old_prog = NULL; 308 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 309 struct bpf_cgroup_storage *old_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 310 struct bpf_prog_list *pl, *replace_pl = NULL; 311 enum bpf_cgroup_storage_type stype; 312 int err; 313 314 if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) || 315 ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI))) 316 /* invalid combination */ 317 return -EINVAL; 318 319 if (!hierarchy_allows_attach(cgrp, type)) 320 return -EPERM; 321 322 if (!list_empty(progs) && cgrp->bpf.flags[type] != saved_flags) 323 /* Disallow attaching non-overridable on top 324 * of existing overridable in this cgroup. 325 * Disallow attaching multi-prog if overridable or none 326 */ 327 return -EPERM; 328 329 if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS) 330 return -E2BIG; 331 332 if (flags & BPF_F_ALLOW_MULTI) { 333 list_for_each_entry(pl, progs, node) { 334 if (pl->prog == prog) 335 /* disallow attaching the same prog twice */ 336 return -EINVAL; 337 if (pl->prog == replace_prog) 338 replace_pl = pl; 339 } 340 if ((flags & BPF_F_REPLACE) && !replace_pl) 341 /* prog to replace not found for cgroup */ 342 return -ENOENT; 343 } else if (!list_empty(progs)) { 344 replace_pl = list_first_entry(progs, typeof(*pl), node); 345 } 346 347 for_each_cgroup_storage_type(stype) { 348 storage[stype] = bpf_cgroup_storage_alloc(prog, stype); 349 if (IS_ERR(storage[stype])) { 350 storage[stype] = NULL; 351 for_each_cgroup_storage_type(stype) 352 bpf_cgroup_storage_free(storage[stype]); 353 return -ENOMEM; 354 } 355 } 356 357 if (replace_pl) { 358 pl = replace_pl; 359 old_prog = pl->prog; 360 for_each_cgroup_storage_type(stype) { 361 old_storage[stype] = pl->storage[stype]; 362 bpf_cgroup_storage_unlink(old_storage[stype]); 363 } 364 } else { 365 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 366 if (!pl) { 367 for_each_cgroup_storage_type(stype) 368 bpf_cgroup_storage_free(storage[stype]); 369 return -ENOMEM; 370 } 371 list_add_tail(&pl->node, progs); 372 } 373 374 pl->prog = prog; 375 for_each_cgroup_storage_type(stype) 376 pl->storage[stype] = storage[stype]; 377 378 cgrp->bpf.flags[type] = saved_flags; 379 380 err = update_effective_progs(cgrp, type); 381 if (err) 382 goto cleanup; 383 384 static_branch_inc(&cgroup_bpf_enabled_key); 385 for_each_cgroup_storage_type(stype) { 386 if (!old_storage[stype]) 387 continue; 388 bpf_cgroup_storage_free(old_storage[stype]); 389 } 390 if (old_prog) { 391 bpf_prog_put(old_prog); 392 static_branch_dec(&cgroup_bpf_enabled_key); 393 } 394 for_each_cgroup_storage_type(stype) 395 bpf_cgroup_storage_link(storage[stype], cgrp, type); 396 return 0; 397 398 cleanup: 399 /* and cleanup the prog list */ 400 pl->prog = old_prog; 401 for_each_cgroup_storage_type(stype) { 402 bpf_cgroup_storage_free(pl->storage[stype]); 403 pl->storage[stype] = old_storage[stype]; 404 bpf_cgroup_storage_link(old_storage[stype], cgrp, type); 405 } 406 if (!replace_pl) { 407 list_del(&pl->node); 408 kfree(pl); 409 } 410 return err; 411 } 412 413 /** 414 * __cgroup_bpf_detach() - Detach the program from a cgroup, and 415 * propagate the change to descendants 416 * @cgrp: The cgroup which descendants to traverse 417 * @prog: A program to detach or NULL 418 * @type: Type of detach operation 419 * 420 * Must be called with cgroup_mutex held. 421 */ 422 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 423 enum bpf_attach_type type) 424 { 425 struct list_head *progs = &cgrp->bpf.progs[type]; 426 enum bpf_cgroup_storage_type stype; 427 u32 flags = cgrp->bpf.flags[type]; 428 struct bpf_prog *old_prog = NULL; 429 struct bpf_prog_list *pl; 430 int err; 431 432 if (flags & BPF_F_ALLOW_MULTI) { 433 if (!prog) 434 /* to detach MULTI prog the user has to specify valid FD 435 * of the program to be detached 436 */ 437 return -EINVAL; 438 } else { 439 if (list_empty(progs)) 440 /* report error when trying to detach and nothing is attached */ 441 return -ENOENT; 442 } 443 444 if (flags & BPF_F_ALLOW_MULTI) { 445 /* find the prog and detach it */ 446 list_for_each_entry(pl, progs, node) { 447 if (pl->prog != prog) 448 continue; 449 old_prog = prog; 450 /* mark it deleted, so it's ignored while 451 * recomputing effective 452 */ 453 pl->prog = NULL; 454 break; 455 } 456 if (!old_prog) 457 return -ENOENT; 458 } else { 459 /* to maintain backward compatibility NONE and OVERRIDE cgroups 460 * allow detaching with invalid FD (prog==NULL) 461 */ 462 pl = list_first_entry(progs, typeof(*pl), node); 463 old_prog = pl->prog; 464 pl->prog = NULL; 465 } 466 467 err = update_effective_progs(cgrp, type); 468 if (err) 469 goto cleanup; 470 471 /* now can actually delete it from this cgroup list */ 472 list_del(&pl->node); 473 for_each_cgroup_storage_type(stype) { 474 bpf_cgroup_storage_unlink(pl->storage[stype]); 475 bpf_cgroup_storage_free(pl->storage[stype]); 476 } 477 kfree(pl); 478 if (list_empty(progs)) 479 /* last program was detached, reset flags to zero */ 480 cgrp->bpf.flags[type] = 0; 481 482 bpf_prog_put(old_prog); 483 static_branch_dec(&cgroup_bpf_enabled_key); 484 return 0; 485 486 cleanup: 487 /* and restore back old_prog */ 488 pl->prog = old_prog; 489 return err; 490 } 491 492 /* Must be called with cgroup_mutex held to avoid races. */ 493 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 494 union bpf_attr __user *uattr) 495 { 496 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); 497 enum bpf_attach_type type = attr->query.attach_type; 498 struct list_head *progs = &cgrp->bpf.progs[type]; 499 u32 flags = cgrp->bpf.flags[type]; 500 struct bpf_prog_array *effective; 501 int cnt, ret = 0, i; 502 503 effective = rcu_dereference_protected(cgrp->bpf.effective[type], 504 lockdep_is_held(&cgroup_mutex)); 505 506 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) 507 cnt = bpf_prog_array_length(effective); 508 else 509 cnt = prog_list_length(progs); 510 511 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) 512 return -EFAULT; 513 if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt))) 514 return -EFAULT; 515 if (attr->query.prog_cnt == 0 || !prog_ids || !cnt) 516 /* return early if user requested only program count + flags */ 517 return 0; 518 if (attr->query.prog_cnt < cnt) { 519 cnt = attr->query.prog_cnt; 520 ret = -ENOSPC; 521 } 522 523 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) { 524 return bpf_prog_array_copy_to_user(effective, prog_ids, cnt); 525 } else { 526 struct bpf_prog_list *pl; 527 u32 id; 528 529 i = 0; 530 list_for_each_entry(pl, progs, node) { 531 id = pl->prog->aux->id; 532 if (copy_to_user(prog_ids + i, &id, sizeof(id))) 533 return -EFAULT; 534 if (++i == cnt) 535 break; 536 } 537 } 538 return ret; 539 } 540 541 int cgroup_bpf_prog_attach(const union bpf_attr *attr, 542 enum bpf_prog_type ptype, struct bpf_prog *prog) 543 { 544 struct bpf_prog *replace_prog = NULL; 545 struct cgroup *cgrp; 546 int ret; 547 548 cgrp = cgroup_get_from_fd(attr->target_fd); 549 if (IS_ERR(cgrp)) 550 return PTR_ERR(cgrp); 551 552 if ((attr->attach_flags & BPF_F_ALLOW_MULTI) && 553 (attr->attach_flags & BPF_F_REPLACE)) { 554 replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype); 555 if (IS_ERR(replace_prog)) { 556 cgroup_put(cgrp); 557 return PTR_ERR(replace_prog); 558 } 559 } 560 561 ret = cgroup_bpf_attach(cgrp, prog, replace_prog, attr->attach_type, 562 attr->attach_flags); 563 564 if (replace_prog) 565 bpf_prog_put(replace_prog); 566 cgroup_put(cgrp); 567 return ret; 568 } 569 570 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) 571 { 572 struct bpf_prog *prog; 573 struct cgroup *cgrp; 574 int ret; 575 576 cgrp = cgroup_get_from_fd(attr->target_fd); 577 if (IS_ERR(cgrp)) 578 return PTR_ERR(cgrp); 579 580 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); 581 if (IS_ERR(prog)) 582 prog = NULL; 583 584 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, 0); 585 if (prog) 586 bpf_prog_put(prog); 587 588 cgroup_put(cgrp); 589 return ret; 590 } 591 592 int cgroup_bpf_prog_query(const union bpf_attr *attr, 593 union bpf_attr __user *uattr) 594 { 595 struct cgroup *cgrp; 596 int ret; 597 598 cgrp = cgroup_get_from_fd(attr->query.target_fd); 599 if (IS_ERR(cgrp)) 600 return PTR_ERR(cgrp); 601 602 ret = cgroup_bpf_query(cgrp, attr, uattr); 603 604 cgroup_put(cgrp); 605 return ret; 606 } 607 608 /** 609 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering 610 * @sk: The socket sending or receiving traffic 611 * @skb: The skb that is being sent or received 612 * @type: The type of program to be exectuted 613 * 614 * If no socket is passed, or the socket is not of type INET or INET6, 615 * this function does nothing and returns 0. 616 * 617 * The program type passed in via @type must be suitable for network 618 * filtering. No further check is performed to assert that. 619 * 620 * For egress packets, this function can return: 621 * NET_XMIT_SUCCESS (0) - continue with packet output 622 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr 623 * NET_XMIT_CN (2) - continue with packet output and notify TCP 624 * to call cwr 625 * -EPERM - drop packet 626 * 627 * For ingress packets, this function will return -EPERM if any 628 * attached program was found and if it returned != 1 during execution. 629 * Otherwise 0 is returned. 630 */ 631 int __cgroup_bpf_run_filter_skb(struct sock *sk, 632 struct sk_buff *skb, 633 enum bpf_attach_type type) 634 { 635 unsigned int offset = skb->data - skb_network_header(skb); 636 struct sock *save_sk; 637 void *saved_data_end; 638 struct cgroup *cgrp; 639 int ret; 640 641 if (!sk || !sk_fullsock(sk)) 642 return 0; 643 644 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 645 return 0; 646 647 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 648 save_sk = skb->sk; 649 skb->sk = sk; 650 __skb_push(skb, offset); 651 652 /* compute pointers for the bpf prog */ 653 bpf_compute_and_save_data_end(skb, &saved_data_end); 654 655 if (type == BPF_CGROUP_INET_EGRESS) { 656 ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY( 657 cgrp->bpf.effective[type], skb, __bpf_prog_run_save_cb); 658 } else { 659 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb, 660 __bpf_prog_run_save_cb); 661 ret = (ret == 1 ? 0 : -EPERM); 662 } 663 bpf_restore_data_end(skb, saved_data_end); 664 __skb_pull(skb, offset); 665 skb->sk = save_sk; 666 667 return ret; 668 } 669 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb); 670 671 /** 672 * __cgroup_bpf_run_filter_sk() - Run a program on a sock 673 * @sk: sock structure to manipulate 674 * @type: The type of program to be exectuted 675 * 676 * socket is passed is expected to be of type INET or INET6. 677 * 678 * The program type passed in via @type must be suitable for sock 679 * filtering. No further check is performed to assert that. 680 * 681 * This function will return %-EPERM if any if an attached program was found 682 * and if it returned != 1 during execution. In all other cases, 0 is returned. 683 */ 684 int __cgroup_bpf_run_filter_sk(struct sock *sk, 685 enum bpf_attach_type type) 686 { 687 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 688 int ret; 689 690 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN); 691 return ret == 1 ? 0 : -EPERM; 692 } 693 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk); 694 695 /** 696 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and 697 * provided by user sockaddr 698 * @sk: sock struct that will use sockaddr 699 * @uaddr: sockaddr struct provided by user 700 * @type: The type of program to be exectuted 701 * @t_ctx: Pointer to attach type specific context 702 * 703 * socket is expected to be of type INET or INET6. 704 * 705 * This function will return %-EPERM if an attached program is found and 706 * returned value != 1 during execution. In all other cases, 0 is returned. 707 */ 708 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk, 709 struct sockaddr *uaddr, 710 enum bpf_attach_type type, 711 void *t_ctx) 712 { 713 struct bpf_sock_addr_kern ctx = { 714 .sk = sk, 715 .uaddr = uaddr, 716 .t_ctx = t_ctx, 717 }; 718 struct sockaddr_storage unspec; 719 struct cgroup *cgrp; 720 int ret; 721 722 /* Check socket family since not all sockets represent network 723 * endpoint (e.g. AF_UNIX). 724 */ 725 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 726 return 0; 727 728 if (!ctx.uaddr) { 729 memset(&unspec, 0, sizeof(unspec)); 730 ctx.uaddr = (struct sockaddr *)&unspec; 731 } 732 733 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 734 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN); 735 736 return ret == 1 ? 0 : -EPERM; 737 } 738 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr); 739 740 /** 741 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock 742 * @sk: socket to get cgroup from 743 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains 744 * sk with connection information (IP addresses, etc.) May not contain 745 * cgroup info if it is a req sock. 746 * @type: The type of program to be exectuted 747 * 748 * socket passed is expected to be of type INET or INET6. 749 * 750 * The program type passed in via @type must be suitable for sock_ops 751 * filtering. No further check is performed to assert that. 752 * 753 * This function will return %-EPERM if any if an attached program was found 754 * and if it returned != 1 during execution. In all other cases, 0 is returned. 755 */ 756 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk, 757 struct bpf_sock_ops_kern *sock_ops, 758 enum bpf_attach_type type) 759 { 760 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 761 int ret; 762 763 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops, 764 BPF_PROG_RUN); 765 return ret == 1 ? 0 : -EPERM; 766 } 767 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops); 768 769 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor, 770 short access, enum bpf_attach_type type) 771 { 772 struct cgroup *cgrp; 773 struct bpf_cgroup_dev_ctx ctx = { 774 .access_type = (access << 16) | dev_type, 775 .major = major, 776 .minor = minor, 777 }; 778 int allow = 1; 779 780 rcu_read_lock(); 781 cgrp = task_dfl_cgroup(current); 782 allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, 783 BPF_PROG_RUN); 784 rcu_read_unlock(); 785 786 return !allow; 787 } 788 EXPORT_SYMBOL(__cgroup_bpf_check_dev_permission); 789 790 static const struct bpf_func_proto * 791 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 792 { 793 switch (func_id) { 794 case BPF_FUNC_map_lookup_elem: 795 return &bpf_map_lookup_elem_proto; 796 case BPF_FUNC_map_update_elem: 797 return &bpf_map_update_elem_proto; 798 case BPF_FUNC_map_delete_elem: 799 return &bpf_map_delete_elem_proto; 800 case BPF_FUNC_map_push_elem: 801 return &bpf_map_push_elem_proto; 802 case BPF_FUNC_map_pop_elem: 803 return &bpf_map_pop_elem_proto; 804 case BPF_FUNC_map_peek_elem: 805 return &bpf_map_peek_elem_proto; 806 case BPF_FUNC_get_current_uid_gid: 807 return &bpf_get_current_uid_gid_proto; 808 case BPF_FUNC_get_local_storage: 809 return &bpf_get_local_storage_proto; 810 case BPF_FUNC_get_current_cgroup_id: 811 return &bpf_get_current_cgroup_id_proto; 812 case BPF_FUNC_trace_printk: 813 if (capable(CAP_SYS_ADMIN)) 814 return bpf_get_trace_printk_proto(); 815 /* fall through */ 816 default: 817 return NULL; 818 } 819 } 820 821 static const struct bpf_func_proto * 822 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 823 { 824 return cgroup_base_func_proto(func_id, prog); 825 } 826 827 static bool cgroup_dev_is_valid_access(int off, int size, 828 enum bpf_access_type type, 829 const struct bpf_prog *prog, 830 struct bpf_insn_access_aux *info) 831 { 832 const int size_default = sizeof(__u32); 833 834 if (type == BPF_WRITE) 835 return false; 836 837 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx)) 838 return false; 839 /* The verifier guarantees that size > 0. */ 840 if (off % size != 0) 841 return false; 842 843 switch (off) { 844 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type): 845 bpf_ctx_record_field_size(info, size_default); 846 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 847 return false; 848 break; 849 default: 850 if (size != size_default) 851 return false; 852 } 853 854 return true; 855 } 856 857 const struct bpf_prog_ops cg_dev_prog_ops = { 858 }; 859 860 const struct bpf_verifier_ops cg_dev_verifier_ops = { 861 .get_func_proto = cgroup_dev_func_proto, 862 .is_valid_access = cgroup_dev_is_valid_access, 863 }; 864 865 /** 866 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl 867 * 868 * @head: sysctl table header 869 * @table: sysctl table 870 * @write: sysctl is being read (= 0) or written (= 1) 871 * @buf: pointer to buffer passed by user space 872 * @pcount: value-result argument: value is size of buffer pointed to by @buf, 873 * result is size of @new_buf if program set new value, initial value 874 * otherwise 875 * @ppos: value-result argument: value is position at which read from or write 876 * to sysctl is happening, result is new position if program overrode it, 877 * initial value otherwise 878 * @new_buf: pointer to pointer to new buffer that will be allocated if program 879 * overrides new value provided by user space on sysctl write 880 * NOTE: it's caller responsibility to free *new_buf if it was set 881 * @type: type of program to be executed 882 * 883 * Program is run when sysctl is being accessed, either read or written, and 884 * can allow or deny such access. 885 * 886 * This function will return %-EPERM if an attached program is found and 887 * returned value != 1 during execution. In all other cases 0 is returned. 888 */ 889 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head, 890 struct ctl_table *table, int write, 891 void __user *buf, size_t *pcount, 892 loff_t *ppos, void **new_buf, 893 enum bpf_attach_type type) 894 { 895 struct bpf_sysctl_kern ctx = { 896 .head = head, 897 .table = table, 898 .write = write, 899 .ppos = ppos, 900 .cur_val = NULL, 901 .cur_len = PAGE_SIZE, 902 .new_val = NULL, 903 .new_len = 0, 904 .new_updated = 0, 905 }; 906 struct cgroup *cgrp; 907 int ret; 908 909 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL); 910 if (ctx.cur_val) { 911 mm_segment_t old_fs; 912 loff_t pos = 0; 913 914 old_fs = get_fs(); 915 set_fs(KERNEL_DS); 916 if (table->proc_handler(table, 0, (void __user *)ctx.cur_val, 917 &ctx.cur_len, &pos)) { 918 /* Let BPF program decide how to proceed. */ 919 ctx.cur_len = 0; 920 } 921 set_fs(old_fs); 922 } else { 923 /* Let BPF program decide how to proceed. */ 924 ctx.cur_len = 0; 925 } 926 927 if (write && buf && *pcount) { 928 /* BPF program should be able to override new value with a 929 * buffer bigger than provided by user. 930 */ 931 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL); 932 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount); 933 if (!ctx.new_val || 934 copy_from_user(ctx.new_val, buf, ctx.new_len)) 935 /* Let BPF program decide how to proceed. */ 936 ctx.new_len = 0; 937 } 938 939 rcu_read_lock(); 940 cgrp = task_dfl_cgroup(current); 941 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN); 942 rcu_read_unlock(); 943 944 kfree(ctx.cur_val); 945 946 if (ret == 1 && ctx.new_updated) { 947 *new_buf = ctx.new_val; 948 *pcount = ctx.new_len; 949 } else { 950 kfree(ctx.new_val); 951 } 952 953 return ret == 1 ? 0 : -EPERM; 954 } 955 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sysctl); 956 957 #ifdef CONFIG_NET 958 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp, 959 enum bpf_attach_type attach_type) 960 { 961 struct bpf_prog_array *prog_array; 962 bool empty; 963 964 rcu_read_lock(); 965 prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]); 966 empty = bpf_prog_array_is_empty(prog_array); 967 rcu_read_unlock(); 968 969 return empty; 970 } 971 972 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen) 973 { 974 if (unlikely(max_optlen > PAGE_SIZE) || max_optlen < 0) 975 return -EINVAL; 976 977 ctx->optval = kzalloc(max_optlen, GFP_USER); 978 if (!ctx->optval) 979 return -ENOMEM; 980 981 ctx->optval_end = ctx->optval + max_optlen; 982 983 return 0; 984 } 985 986 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx) 987 { 988 kfree(ctx->optval); 989 } 990 991 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level, 992 int *optname, char __user *optval, 993 int *optlen, char **kernel_optval) 994 { 995 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 996 struct bpf_sockopt_kern ctx = { 997 .sk = sk, 998 .level = *level, 999 .optname = *optname, 1000 }; 1001 int ret, max_optlen; 1002 1003 /* Opportunistic check to see whether we have any BPF program 1004 * attached to the hook so we don't waste time allocating 1005 * memory and locking the socket. 1006 */ 1007 if (!cgroup_bpf_enabled || 1008 __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_SETSOCKOPT)) 1009 return 0; 1010 1011 /* Allocate a bit more than the initial user buffer for 1012 * BPF program. The canonical use case is overriding 1013 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic). 1014 */ 1015 max_optlen = max_t(int, 16, *optlen); 1016 1017 ret = sockopt_alloc_buf(&ctx, max_optlen); 1018 if (ret) 1019 return ret; 1020 1021 ctx.optlen = *optlen; 1022 1023 if (copy_from_user(ctx.optval, optval, *optlen) != 0) { 1024 ret = -EFAULT; 1025 goto out; 1026 } 1027 1028 lock_sock(sk); 1029 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_SETSOCKOPT], 1030 &ctx, BPF_PROG_RUN); 1031 release_sock(sk); 1032 1033 if (!ret) { 1034 ret = -EPERM; 1035 goto out; 1036 } 1037 1038 if (ctx.optlen == -1) { 1039 /* optlen set to -1, bypass kernel */ 1040 ret = 1; 1041 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) { 1042 /* optlen is out of bounds */ 1043 ret = -EFAULT; 1044 } else { 1045 /* optlen within bounds, run kernel handler */ 1046 ret = 0; 1047 1048 /* export any potential modifications */ 1049 *level = ctx.level; 1050 *optname = ctx.optname; 1051 *optlen = ctx.optlen; 1052 *kernel_optval = ctx.optval; 1053 } 1054 1055 out: 1056 if (ret) 1057 sockopt_free_buf(&ctx); 1058 return ret; 1059 } 1060 EXPORT_SYMBOL(__cgroup_bpf_run_filter_setsockopt); 1061 1062 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level, 1063 int optname, char __user *optval, 1064 int __user *optlen, int max_optlen, 1065 int retval) 1066 { 1067 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1068 struct bpf_sockopt_kern ctx = { 1069 .sk = sk, 1070 .level = level, 1071 .optname = optname, 1072 .retval = retval, 1073 }; 1074 int ret; 1075 1076 /* Opportunistic check to see whether we have any BPF program 1077 * attached to the hook so we don't waste time allocating 1078 * memory and locking the socket. 1079 */ 1080 if (!cgroup_bpf_enabled || 1081 __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_GETSOCKOPT)) 1082 return retval; 1083 1084 ret = sockopt_alloc_buf(&ctx, max_optlen); 1085 if (ret) 1086 return ret; 1087 1088 ctx.optlen = max_optlen; 1089 1090 if (!retval) { 1091 /* If kernel getsockopt finished successfully, 1092 * copy whatever was returned to the user back 1093 * into our temporary buffer. Set optlen to the 1094 * one that kernel returned as well to let 1095 * BPF programs inspect the value. 1096 */ 1097 1098 if (get_user(ctx.optlen, optlen)) { 1099 ret = -EFAULT; 1100 goto out; 1101 } 1102 1103 if (ctx.optlen > max_optlen) 1104 ctx.optlen = max_optlen; 1105 1106 if (copy_from_user(ctx.optval, optval, ctx.optlen) != 0) { 1107 ret = -EFAULT; 1108 goto out; 1109 } 1110 } 1111 1112 lock_sock(sk); 1113 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT], 1114 &ctx, BPF_PROG_RUN); 1115 release_sock(sk); 1116 1117 if (!ret) { 1118 ret = -EPERM; 1119 goto out; 1120 } 1121 1122 if (ctx.optlen > max_optlen) { 1123 ret = -EFAULT; 1124 goto out; 1125 } 1126 1127 /* BPF programs only allowed to set retval to 0, not some 1128 * arbitrary value. 1129 */ 1130 if (ctx.retval != 0 && ctx.retval != retval) { 1131 ret = -EFAULT; 1132 goto out; 1133 } 1134 1135 if (copy_to_user(optval, ctx.optval, ctx.optlen) || 1136 put_user(ctx.optlen, optlen)) { 1137 ret = -EFAULT; 1138 goto out; 1139 } 1140 1141 ret = ctx.retval; 1142 1143 out: 1144 sockopt_free_buf(&ctx); 1145 return ret; 1146 } 1147 EXPORT_SYMBOL(__cgroup_bpf_run_filter_getsockopt); 1148 #endif 1149 1150 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp, 1151 size_t *lenp) 1152 { 1153 ssize_t tmp_ret = 0, ret; 1154 1155 if (dir->header.parent) { 1156 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp); 1157 if (tmp_ret < 0) 1158 return tmp_ret; 1159 } 1160 1161 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp); 1162 if (ret < 0) 1163 return ret; 1164 *bufp += ret; 1165 *lenp -= ret; 1166 ret += tmp_ret; 1167 1168 /* Avoid leading slash. */ 1169 if (!ret) 1170 return ret; 1171 1172 tmp_ret = strscpy(*bufp, "/", *lenp); 1173 if (tmp_ret < 0) 1174 return tmp_ret; 1175 *bufp += tmp_ret; 1176 *lenp -= tmp_ret; 1177 1178 return ret + tmp_ret; 1179 } 1180 1181 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf, 1182 size_t, buf_len, u64, flags) 1183 { 1184 ssize_t tmp_ret = 0, ret; 1185 1186 if (!buf) 1187 return -EINVAL; 1188 1189 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) { 1190 if (!ctx->head) 1191 return -EINVAL; 1192 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len); 1193 if (tmp_ret < 0) 1194 return tmp_ret; 1195 } 1196 1197 ret = strscpy(buf, ctx->table->procname, buf_len); 1198 1199 return ret < 0 ? ret : tmp_ret + ret; 1200 } 1201 1202 static const struct bpf_func_proto bpf_sysctl_get_name_proto = { 1203 .func = bpf_sysctl_get_name, 1204 .gpl_only = false, 1205 .ret_type = RET_INTEGER, 1206 .arg1_type = ARG_PTR_TO_CTX, 1207 .arg2_type = ARG_PTR_TO_MEM, 1208 .arg3_type = ARG_CONST_SIZE, 1209 .arg4_type = ARG_ANYTHING, 1210 }; 1211 1212 static int copy_sysctl_value(char *dst, size_t dst_len, char *src, 1213 size_t src_len) 1214 { 1215 if (!dst) 1216 return -EINVAL; 1217 1218 if (!dst_len) 1219 return -E2BIG; 1220 1221 if (!src || !src_len) { 1222 memset(dst, 0, dst_len); 1223 return -EINVAL; 1224 } 1225 1226 memcpy(dst, src, min(dst_len, src_len)); 1227 1228 if (dst_len > src_len) { 1229 memset(dst + src_len, '\0', dst_len - src_len); 1230 return src_len; 1231 } 1232 1233 dst[dst_len - 1] = '\0'; 1234 1235 return -E2BIG; 1236 } 1237 1238 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx, 1239 char *, buf, size_t, buf_len) 1240 { 1241 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len); 1242 } 1243 1244 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = { 1245 .func = bpf_sysctl_get_current_value, 1246 .gpl_only = false, 1247 .ret_type = RET_INTEGER, 1248 .arg1_type = ARG_PTR_TO_CTX, 1249 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1250 .arg3_type = ARG_CONST_SIZE, 1251 }; 1252 1253 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf, 1254 size_t, buf_len) 1255 { 1256 if (!ctx->write) { 1257 if (buf && buf_len) 1258 memset(buf, '\0', buf_len); 1259 return -EINVAL; 1260 } 1261 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len); 1262 } 1263 1264 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = { 1265 .func = bpf_sysctl_get_new_value, 1266 .gpl_only = false, 1267 .ret_type = RET_INTEGER, 1268 .arg1_type = ARG_PTR_TO_CTX, 1269 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1270 .arg3_type = ARG_CONST_SIZE, 1271 }; 1272 1273 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx, 1274 const char *, buf, size_t, buf_len) 1275 { 1276 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len) 1277 return -EINVAL; 1278 1279 if (buf_len > PAGE_SIZE - 1) 1280 return -E2BIG; 1281 1282 memcpy(ctx->new_val, buf, buf_len); 1283 ctx->new_len = buf_len; 1284 ctx->new_updated = 1; 1285 1286 return 0; 1287 } 1288 1289 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = { 1290 .func = bpf_sysctl_set_new_value, 1291 .gpl_only = false, 1292 .ret_type = RET_INTEGER, 1293 .arg1_type = ARG_PTR_TO_CTX, 1294 .arg2_type = ARG_PTR_TO_MEM, 1295 .arg3_type = ARG_CONST_SIZE, 1296 }; 1297 1298 static const struct bpf_func_proto * 1299 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1300 { 1301 switch (func_id) { 1302 case BPF_FUNC_strtol: 1303 return &bpf_strtol_proto; 1304 case BPF_FUNC_strtoul: 1305 return &bpf_strtoul_proto; 1306 case BPF_FUNC_sysctl_get_name: 1307 return &bpf_sysctl_get_name_proto; 1308 case BPF_FUNC_sysctl_get_current_value: 1309 return &bpf_sysctl_get_current_value_proto; 1310 case BPF_FUNC_sysctl_get_new_value: 1311 return &bpf_sysctl_get_new_value_proto; 1312 case BPF_FUNC_sysctl_set_new_value: 1313 return &bpf_sysctl_set_new_value_proto; 1314 default: 1315 return cgroup_base_func_proto(func_id, prog); 1316 } 1317 } 1318 1319 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type, 1320 const struct bpf_prog *prog, 1321 struct bpf_insn_access_aux *info) 1322 { 1323 const int size_default = sizeof(__u32); 1324 1325 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size) 1326 return false; 1327 1328 switch (off) { 1329 case bpf_ctx_range(struct bpf_sysctl, write): 1330 if (type != BPF_READ) 1331 return false; 1332 bpf_ctx_record_field_size(info, size_default); 1333 return bpf_ctx_narrow_access_ok(off, size, size_default); 1334 case bpf_ctx_range(struct bpf_sysctl, file_pos): 1335 if (type == BPF_READ) { 1336 bpf_ctx_record_field_size(info, size_default); 1337 return bpf_ctx_narrow_access_ok(off, size, size_default); 1338 } else { 1339 return size == size_default; 1340 } 1341 default: 1342 return false; 1343 } 1344 } 1345 1346 static u32 sysctl_convert_ctx_access(enum bpf_access_type type, 1347 const struct bpf_insn *si, 1348 struct bpf_insn *insn_buf, 1349 struct bpf_prog *prog, u32 *target_size) 1350 { 1351 struct bpf_insn *insn = insn_buf; 1352 u32 read_size; 1353 1354 switch (si->off) { 1355 case offsetof(struct bpf_sysctl, write): 1356 *insn++ = BPF_LDX_MEM( 1357 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 1358 bpf_target_off(struct bpf_sysctl_kern, write, 1359 sizeof_field(struct bpf_sysctl_kern, 1360 write), 1361 target_size)); 1362 break; 1363 case offsetof(struct bpf_sysctl, file_pos): 1364 /* ppos is a pointer so it should be accessed via indirect 1365 * loads and stores. Also for stores additional temporary 1366 * register is used since neither src_reg nor dst_reg can be 1367 * overridden. 1368 */ 1369 if (type == BPF_WRITE) { 1370 int treg = BPF_REG_9; 1371 1372 if (si->src_reg == treg || si->dst_reg == treg) 1373 --treg; 1374 if (si->src_reg == treg || si->dst_reg == treg) 1375 --treg; 1376 *insn++ = BPF_STX_MEM( 1377 BPF_DW, si->dst_reg, treg, 1378 offsetof(struct bpf_sysctl_kern, tmp_reg)); 1379 *insn++ = BPF_LDX_MEM( 1380 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 1381 treg, si->dst_reg, 1382 offsetof(struct bpf_sysctl_kern, ppos)); 1383 *insn++ = BPF_STX_MEM( 1384 BPF_SIZEOF(u32), treg, si->src_reg, 1385 bpf_ctx_narrow_access_offset( 1386 0, sizeof(u32), sizeof(loff_t))); 1387 *insn++ = BPF_LDX_MEM( 1388 BPF_DW, treg, si->dst_reg, 1389 offsetof(struct bpf_sysctl_kern, tmp_reg)); 1390 } else { 1391 *insn++ = BPF_LDX_MEM( 1392 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 1393 si->dst_reg, si->src_reg, 1394 offsetof(struct bpf_sysctl_kern, ppos)); 1395 read_size = bpf_size_to_bytes(BPF_SIZE(si->code)); 1396 *insn++ = BPF_LDX_MEM( 1397 BPF_SIZE(si->code), si->dst_reg, si->dst_reg, 1398 bpf_ctx_narrow_access_offset( 1399 0, read_size, sizeof(loff_t))); 1400 } 1401 *target_size = sizeof(u32); 1402 break; 1403 } 1404 1405 return insn - insn_buf; 1406 } 1407 1408 const struct bpf_verifier_ops cg_sysctl_verifier_ops = { 1409 .get_func_proto = sysctl_func_proto, 1410 .is_valid_access = sysctl_is_valid_access, 1411 .convert_ctx_access = sysctl_convert_ctx_access, 1412 }; 1413 1414 const struct bpf_prog_ops cg_sysctl_prog_ops = { 1415 }; 1416 1417 static const struct bpf_func_proto * 1418 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1419 { 1420 switch (func_id) { 1421 #ifdef CONFIG_NET 1422 case BPF_FUNC_sk_storage_get: 1423 return &bpf_sk_storage_get_proto; 1424 case BPF_FUNC_sk_storage_delete: 1425 return &bpf_sk_storage_delete_proto; 1426 #endif 1427 #ifdef CONFIG_INET 1428 case BPF_FUNC_tcp_sock: 1429 return &bpf_tcp_sock_proto; 1430 #endif 1431 default: 1432 return cgroup_base_func_proto(func_id, prog); 1433 } 1434 } 1435 1436 static bool cg_sockopt_is_valid_access(int off, int size, 1437 enum bpf_access_type type, 1438 const struct bpf_prog *prog, 1439 struct bpf_insn_access_aux *info) 1440 { 1441 const int size_default = sizeof(__u32); 1442 1443 if (off < 0 || off >= sizeof(struct bpf_sockopt)) 1444 return false; 1445 1446 if (off % size != 0) 1447 return false; 1448 1449 if (type == BPF_WRITE) { 1450 switch (off) { 1451 case offsetof(struct bpf_sockopt, retval): 1452 if (size != size_default) 1453 return false; 1454 return prog->expected_attach_type == 1455 BPF_CGROUP_GETSOCKOPT; 1456 case offsetof(struct bpf_sockopt, optname): 1457 /* fallthrough */ 1458 case offsetof(struct bpf_sockopt, level): 1459 if (size != size_default) 1460 return false; 1461 return prog->expected_attach_type == 1462 BPF_CGROUP_SETSOCKOPT; 1463 case offsetof(struct bpf_sockopt, optlen): 1464 return size == size_default; 1465 default: 1466 return false; 1467 } 1468 } 1469 1470 switch (off) { 1471 case offsetof(struct bpf_sockopt, sk): 1472 if (size != sizeof(__u64)) 1473 return false; 1474 info->reg_type = PTR_TO_SOCKET; 1475 break; 1476 case offsetof(struct bpf_sockopt, optval): 1477 if (size != sizeof(__u64)) 1478 return false; 1479 info->reg_type = PTR_TO_PACKET; 1480 break; 1481 case offsetof(struct bpf_sockopt, optval_end): 1482 if (size != sizeof(__u64)) 1483 return false; 1484 info->reg_type = PTR_TO_PACKET_END; 1485 break; 1486 case offsetof(struct bpf_sockopt, retval): 1487 if (size != size_default) 1488 return false; 1489 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT; 1490 default: 1491 if (size != size_default) 1492 return false; 1493 break; 1494 } 1495 return true; 1496 } 1497 1498 #define CG_SOCKOPT_ACCESS_FIELD(T, F) \ 1499 T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \ 1500 si->dst_reg, si->src_reg, \ 1501 offsetof(struct bpf_sockopt_kern, F)) 1502 1503 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type, 1504 const struct bpf_insn *si, 1505 struct bpf_insn *insn_buf, 1506 struct bpf_prog *prog, 1507 u32 *target_size) 1508 { 1509 struct bpf_insn *insn = insn_buf; 1510 1511 switch (si->off) { 1512 case offsetof(struct bpf_sockopt, sk): 1513 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk); 1514 break; 1515 case offsetof(struct bpf_sockopt, level): 1516 if (type == BPF_WRITE) 1517 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level); 1518 else 1519 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level); 1520 break; 1521 case offsetof(struct bpf_sockopt, optname): 1522 if (type == BPF_WRITE) 1523 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname); 1524 else 1525 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname); 1526 break; 1527 case offsetof(struct bpf_sockopt, optlen): 1528 if (type == BPF_WRITE) 1529 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen); 1530 else 1531 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen); 1532 break; 1533 case offsetof(struct bpf_sockopt, retval): 1534 if (type == BPF_WRITE) 1535 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval); 1536 else 1537 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval); 1538 break; 1539 case offsetof(struct bpf_sockopt, optval): 1540 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval); 1541 break; 1542 case offsetof(struct bpf_sockopt, optval_end): 1543 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end); 1544 break; 1545 } 1546 1547 return insn - insn_buf; 1548 } 1549 1550 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf, 1551 bool direct_write, 1552 const struct bpf_prog *prog) 1553 { 1554 /* Nothing to do for sockopt argument. The data is kzalloc'ated. 1555 */ 1556 return 0; 1557 } 1558 1559 const struct bpf_verifier_ops cg_sockopt_verifier_ops = { 1560 .get_func_proto = cg_sockopt_func_proto, 1561 .is_valid_access = cg_sockopt_is_valid_access, 1562 .convert_ctx_access = cg_sockopt_convert_ctx_access, 1563 .gen_prologue = cg_sockopt_get_prologue, 1564 }; 1565 1566 const struct bpf_prog_ops cg_sockopt_prog_ops = { 1567 }; 1568