xref: /openbmc/linux/kernel/bpf/cgroup.c (revision 222bd95c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Functions to manage eBPF programs attached to cgroups
4  *
5  * Copyright (c) 2016 Daniel Mack
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/atomic.h>
10 #include <linux/cgroup.h>
11 #include <linux/filter.h>
12 #include <linux/slab.h>
13 #include <linux/sysctl.h>
14 #include <linux/string.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf-cgroup.h>
17 #include <net/sock.h>
18 #include <net/bpf_sk_storage.h>
19 
20 #include "../cgroup/cgroup-internal.h"
21 
22 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE);
23 EXPORT_SYMBOL(cgroup_bpf_enabled_key);
24 
25 void cgroup_bpf_offline(struct cgroup *cgrp)
26 {
27 	cgroup_get(cgrp);
28 	percpu_ref_kill(&cgrp->bpf.refcnt);
29 }
30 
31 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[])
32 {
33 	enum bpf_cgroup_storage_type stype;
34 
35 	for_each_cgroup_storage_type(stype)
36 		bpf_cgroup_storage_free(storages[stype]);
37 }
38 
39 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[],
40 				     struct bpf_cgroup_storage *new_storages[],
41 				     enum bpf_attach_type type,
42 				     struct bpf_prog *prog,
43 				     struct cgroup *cgrp)
44 {
45 	enum bpf_cgroup_storage_type stype;
46 	struct bpf_cgroup_storage_key key;
47 	struct bpf_map *map;
48 
49 	key.cgroup_inode_id = cgroup_id(cgrp);
50 	key.attach_type = type;
51 
52 	for_each_cgroup_storage_type(stype) {
53 		map = prog->aux->cgroup_storage[stype];
54 		if (!map)
55 			continue;
56 
57 		storages[stype] = cgroup_storage_lookup((void *)map, &key, false);
58 		if (storages[stype])
59 			continue;
60 
61 		storages[stype] = bpf_cgroup_storage_alloc(prog, stype);
62 		if (IS_ERR(storages[stype])) {
63 			bpf_cgroup_storages_free(new_storages);
64 			return -ENOMEM;
65 		}
66 
67 		new_storages[stype] = storages[stype];
68 	}
69 
70 	return 0;
71 }
72 
73 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[],
74 				       struct bpf_cgroup_storage *src[])
75 {
76 	enum bpf_cgroup_storage_type stype;
77 
78 	for_each_cgroup_storage_type(stype)
79 		dst[stype] = src[stype];
80 }
81 
82 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[],
83 				     struct cgroup *cgrp,
84 				     enum bpf_attach_type attach_type)
85 {
86 	enum bpf_cgroup_storage_type stype;
87 
88 	for_each_cgroup_storage_type(stype)
89 		bpf_cgroup_storage_link(storages[stype], cgrp, attach_type);
90 }
91 
92 /* Called when bpf_cgroup_link is auto-detached from dying cgroup.
93  * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It
94  * doesn't free link memory, which will eventually be done by bpf_link's
95  * release() callback, when its last FD is closed.
96  */
97 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link)
98 {
99 	cgroup_put(link->cgroup);
100 	link->cgroup = NULL;
101 }
102 
103 /**
104  * cgroup_bpf_release() - put references of all bpf programs and
105  *                        release all cgroup bpf data
106  * @work: work structure embedded into the cgroup to modify
107  */
108 static void cgroup_bpf_release(struct work_struct *work)
109 {
110 	struct cgroup *p, *cgrp = container_of(work, struct cgroup,
111 					       bpf.release_work);
112 	struct bpf_prog_array *old_array;
113 	struct list_head *storages = &cgrp->bpf.storages;
114 	struct bpf_cgroup_storage *storage, *stmp;
115 
116 	unsigned int atype;
117 
118 	mutex_lock(&cgroup_mutex);
119 
120 	for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) {
121 		struct list_head *progs = &cgrp->bpf.progs[atype];
122 		struct bpf_prog_list *pl, *pltmp;
123 
124 		list_for_each_entry_safe(pl, pltmp, progs, node) {
125 			list_del(&pl->node);
126 			if (pl->prog)
127 				bpf_prog_put(pl->prog);
128 			if (pl->link)
129 				bpf_cgroup_link_auto_detach(pl->link);
130 			kfree(pl);
131 			static_branch_dec(&cgroup_bpf_enabled_key[atype]);
132 		}
133 		old_array = rcu_dereference_protected(
134 				cgrp->bpf.effective[atype],
135 				lockdep_is_held(&cgroup_mutex));
136 		bpf_prog_array_free(old_array);
137 	}
138 
139 	list_for_each_entry_safe(storage, stmp, storages, list_cg) {
140 		bpf_cgroup_storage_unlink(storage);
141 		bpf_cgroup_storage_free(storage);
142 	}
143 
144 	mutex_unlock(&cgroup_mutex);
145 
146 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
147 		cgroup_bpf_put(p);
148 
149 	percpu_ref_exit(&cgrp->bpf.refcnt);
150 	cgroup_put(cgrp);
151 }
152 
153 /**
154  * cgroup_bpf_release_fn() - callback used to schedule releasing
155  *                           of bpf cgroup data
156  * @ref: percpu ref counter structure
157  */
158 static void cgroup_bpf_release_fn(struct percpu_ref *ref)
159 {
160 	struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
161 
162 	INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
163 	queue_work(system_wq, &cgrp->bpf.release_work);
164 }
165 
166 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
167  * link or direct prog.
168  */
169 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl)
170 {
171 	if (pl->prog)
172 		return pl->prog;
173 	if (pl->link)
174 		return pl->link->link.prog;
175 	return NULL;
176 }
177 
178 /* count number of elements in the list.
179  * it's slow but the list cannot be long
180  */
181 static u32 prog_list_length(struct list_head *head)
182 {
183 	struct bpf_prog_list *pl;
184 	u32 cnt = 0;
185 
186 	list_for_each_entry(pl, head, node) {
187 		if (!prog_list_prog(pl))
188 			continue;
189 		cnt++;
190 	}
191 	return cnt;
192 }
193 
194 /* if parent has non-overridable prog attached,
195  * disallow attaching new programs to the descendent cgroup.
196  * if parent has overridable or multi-prog, allow attaching
197  */
198 static bool hierarchy_allows_attach(struct cgroup *cgrp,
199 				    enum cgroup_bpf_attach_type atype)
200 {
201 	struct cgroup *p;
202 
203 	p = cgroup_parent(cgrp);
204 	if (!p)
205 		return true;
206 	do {
207 		u32 flags = p->bpf.flags[atype];
208 		u32 cnt;
209 
210 		if (flags & BPF_F_ALLOW_MULTI)
211 			return true;
212 		cnt = prog_list_length(&p->bpf.progs[atype]);
213 		WARN_ON_ONCE(cnt > 1);
214 		if (cnt == 1)
215 			return !!(flags & BPF_F_ALLOW_OVERRIDE);
216 		p = cgroup_parent(p);
217 	} while (p);
218 	return true;
219 }
220 
221 /* compute a chain of effective programs for a given cgroup:
222  * start from the list of programs in this cgroup and add
223  * all parent programs.
224  * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
225  * to programs in this cgroup
226  */
227 static int compute_effective_progs(struct cgroup *cgrp,
228 				   enum cgroup_bpf_attach_type atype,
229 				   struct bpf_prog_array **array)
230 {
231 	struct bpf_prog_array_item *item;
232 	struct bpf_prog_array *progs;
233 	struct bpf_prog_list *pl;
234 	struct cgroup *p = cgrp;
235 	int cnt = 0;
236 
237 	/* count number of effective programs by walking parents */
238 	do {
239 		if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
240 			cnt += prog_list_length(&p->bpf.progs[atype]);
241 		p = cgroup_parent(p);
242 	} while (p);
243 
244 	progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
245 	if (!progs)
246 		return -ENOMEM;
247 
248 	/* populate the array with effective progs */
249 	cnt = 0;
250 	p = cgrp;
251 	do {
252 		if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
253 			continue;
254 
255 		list_for_each_entry(pl, &p->bpf.progs[atype], node) {
256 			if (!prog_list_prog(pl))
257 				continue;
258 
259 			item = &progs->items[cnt];
260 			item->prog = prog_list_prog(pl);
261 			bpf_cgroup_storages_assign(item->cgroup_storage,
262 						   pl->storage);
263 			cnt++;
264 		}
265 	} while ((p = cgroup_parent(p)));
266 
267 	*array = progs;
268 	return 0;
269 }
270 
271 static void activate_effective_progs(struct cgroup *cgrp,
272 				     enum cgroup_bpf_attach_type atype,
273 				     struct bpf_prog_array *old_array)
274 {
275 	old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array,
276 					lockdep_is_held(&cgroup_mutex));
277 	/* free prog array after grace period, since __cgroup_bpf_run_*()
278 	 * might be still walking the array
279 	 */
280 	bpf_prog_array_free(old_array);
281 }
282 
283 /**
284  * cgroup_bpf_inherit() - inherit effective programs from parent
285  * @cgrp: the cgroup to modify
286  */
287 int cgroup_bpf_inherit(struct cgroup *cgrp)
288 {
289 /* has to use marco instead of const int, since compiler thinks
290  * that array below is variable length
291  */
292 #define	NR ARRAY_SIZE(cgrp->bpf.effective)
293 	struct bpf_prog_array *arrays[NR] = {};
294 	struct cgroup *p;
295 	int ret, i;
296 
297 	ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
298 			      GFP_KERNEL);
299 	if (ret)
300 		return ret;
301 
302 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
303 		cgroup_bpf_get(p);
304 
305 	for (i = 0; i < NR; i++)
306 		INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
307 
308 	INIT_LIST_HEAD(&cgrp->bpf.storages);
309 
310 	for (i = 0; i < NR; i++)
311 		if (compute_effective_progs(cgrp, i, &arrays[i]))
312 			goto cleanup;
313 
314 	for (i = 0; i < NR; i++)
315 		activate_effective_progs(cgrp, i, arrays[i]);
316 
317 	return 0;
318 cleanup:
319 	for (i = 0; i < NR; i++)
320 		bpf_prog_array_free(arrays[i]);
321 
322 	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
323 		cgroup_bpf_put(p);
324 
325 	percpu_ref_exit(&cgrp->bpf.refcnt);
326 
327 	return -ENOMEM;
328 }
329 
330 static int update_effective_progs(struct cgroup *cgrp,
331 				  enum cgroup_bpf_attach_type atype)
332 {
333 	struct cgroup_subsys_state *css;
334 	int err;
335 
336 	/* allocate and recompute effective prog arrays */
337 	css_for_each_descendant_pre(css, &cgrp->self) {
338 		struct cgroup *desc = container_of(css, struct cgroup, self);
339 
340 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
341 			continue;
342 
343 		err = compute_effective_progs(desc, atype, &desc->bpf.inactive);
344 		if (err)
345 			goto cleanup;
346 	}
347 
348 	/* all allocations were successful. Activate all prog arrays */
349 	css_for_each_descendant_pre(css, &cgrp->self) {
350 		struct cgroup *desc = container_of(css, struct cgroup, self);
351 
352 		if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
353 			if (unlikely(desc->bpf.inactive)) {
354 				bpf_prog_array_free(desc->bpf.inactive);
355 				desc->bpf.inactive = NULL;
356 			}
357 			continue;
358 		}
359 
360 		activate_effective_progs(desc, atype, desc->bpf.inactive);
361 		desc->bpf.inactive = NULL;
362 	}
363 
364 	return 0;
365 
366 cleanup:
367 	/* oom while computing effective. Free all computed effective arrays
368 	 * since they were not activated
369 	 */
370 	css_for_each_descendant_pre(css, &cgrp->self) {
371 		struct cgroup *desc = container_of(css, struct cgroup, self);
372 
373 		bpf_prog_array_free(desc->bpf.inactive);
374 		desc->bpf.inactive = NULL;
375 	}
376 
377 	return err;
378 }
379 
380 #define BPF_CGROUP_MAX_PROGS 64
381 
382 static struct bpf_prog_list *find_attach_entry(struct list_head *progs,
383 					       struct bpf_prog *prog,
384 					       struct bpf_cgroup_link *link,
385 					       struct bpf_prog *replace_prog,
386 					       bool allow_multi)
387 {
388 	struct bpf_prog_list *pl;
389 
390 	/* single-attach case */
391 	if (!allow_multi) {
392 		if (list_empty(progs))
393 			return NULL;
394 		return list_first_entry(progs, typeof(*pl), node);
395 	}
396 
397 	list_for_each_entry(pl, progs, node) {
398 		if (prog && pl->prog == prog && prog != replace_prog)
399 			/* disallow attaching the same prog twice */
400 			return ERR_PTR(-EINVAL);
401 		if (link && pl->link == link)
402 			/* disallow attaching the same link twice */
403 			return ERR_PTR(-EINVAL);
404 	}
405 
406 	/* direct prog multi-attach w/ replacement case */
407 	if (replace_prog) {
408 		list_for_each_entry(pl, progs, node) {
409 			if (pl->prog == replace_prog)
410 				/* a match found */
411 				return pl;
412 		}
413 		/* prog to replace not found for cgroup */
414 		return ERR_PTR(-ENOENT);
415 	}
416 
417 	return NULL;
418 }
419 
420 /**
421  * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and
422  *                         propagate the change to descendants
423  * @cgrp: The cgroup which descendants to traverse
424  * @prog: A program to attach
425  * @link: A link to attach
426  * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set
427  * @type: Type of attach operation
428  * @flags: Option flags
429  *
430  * Exactly one of @prog or @link can be non-null.
431  * Must be called with cgroup_mutex held.
432  */
433 int __cgroup_bpf_attach(struct cgroup *cgrp,
434 			struct bpf_prog *prog, struct bpf_prog *replace_prog,
435 			struct bpf_cgroup_link *link,
436 			enum bpf_attach_type type, u32 flags)
437 {
438 	u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI));
439 	struct bpf_prog *old_prog = NULL;
440 	struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
441 	struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
442 	enum cgroup_bpf_attach_type atype;
443 	struct bpf_prog_list *pl;
444 	struct list_head *progs;
445 	int err;
446 
447 	if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) ||
448 	    ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI)))
449 		/* invalid combination */
450 		return -EINVAL;
451 	if (link && (prog || replace_prog))
452 		/* only either link or prog/replace_prog can be specified */
453 		return -EINVAL;
454 	if (!!replace_prog != !!(flags & BPF_F_REPLACE))
455 		/* replace_prog implies BPF_F_REPLACE, and vice versa */
456 		return -EINVAL;
457 
458 	atype = to_cgroup_bpf_attach_type(type);
459 	if (atype < 0)
460 		return -EINVAL;
461 
462 	progs = &cgrp->bpf.progs[atype];
463 
464 	if (!hierarchy_allows_attach(cgrp, atype))
465 		return -EPERM;
466 
467 	if (!list_empty(progs) && cgrp->bpf.flags[atype] != saved_flags)
468 		/* Disallow attaching non-overridable on top
469 		 * of existing overridable in this cgroup.
470 		 * Disallow attaching multi-prog if overridable or none
471 		 */
472 		return -EPERM;
473 
474 	if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
475 		return -E2BIG;
476 
477 	pl = find_attach_entry(progs, prog, link, replace_prog,
478 			       flags & BPF_F_ALLOW_MULTI);
479 	if (IS_ERR(pl))
480 		return PTR_ERR(pl);
481 
482 	if (bpf_cgroup_storages_alloc(storage, new_storage, type,
483 				      prog ? : link->link.prog, cgrp))
484 		return -ENOMEM;
485 
486 	if (pl) {
487 		old_prog = pl->prog;
488 	} else {
489 		pl = kmalloc(sizeof(*pl), GFP_KERNEL);
490 		if (!pl) {
491 			bpf_cgroup_storages_free(new_storage);
492 			return -ENOMEM;
493 		}
494 		list_add_tail(&pl->node, progs);
495 	}
496 
497 	pl->prog = prog;
498 	pl->link = link;
499 	bpf_cgroup_storages_assign(pl->storage, storage);
500 	cgrp->bpf.flags[atype] = saved_flags;
501 
502 	err = update_effective_progs(cgrp, atype);
503 	if (err)
504 		goto cleanup;
505 
506 	if (old_prog)
507 		bpf_prog_put(old_prog);
508 	else
509 		static_branch_inc(&cgroup_bpf_enabled_key[atype]);
510 	bpf_cgroup_storages_link(new_storage, cgrp, type);
511 	return 0;
512 
513 cleanup:
514 	if (old_prog) {
515 		pl->prog = old_prog;
516 		pl->link = NULL;
517 	}
518 	bpf_cgroup_storages_free(new_storage);
519 	if (!old_prog) {
520 		list_del(&pl->node);
521 		kfree(pl);
522 	}
523 	return err;
524 }
525 
526 /* Swap updated BPF program for given link in effective program arrays across
527  * all descendant cgroups. This function is guaranteed to succeed.
528  */
529 static void replace_effective_prog(struct cgroup *cgrp,
530 				   enum cgroup_bpf_attach_type atype,
531 				   struct bpf_cgroup_link *link)
532 {
533 	struct bpf_prog_array_item *item;
534 	struct cgroup_subsys_state *css;
535 	struct bpf_prog_array *progs;
536 	struct bpf_prog_list *pl;
537 	struct list_head *head;
538 	struct cgroup *cg;
539 	int pos;
540 
541 	css_for_each_descendant_pre(css, &cgrp->self) {
542 		struct cgroup *desc = container_of(css, struct cgroup, self);
543 
544 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
545 			continue;
546 
547 		/* find position of link in effective progs array */
548 		for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
549 			if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
550 				continue;
551 
552 			head = &cg->bpf.progs[atype];
553 			list_for_each_entry(pl, head, node) {
554 				if (!prog_list_prog(pl))
555 					continue;
556 				if (pl->link == link)
557 					goto found;
558 				pos++;
559 			}
560 		}
561 found:
562 		BUG_ON(!cg);
563 		progs = rcu_dereference_protected(
564 				desc->bpf.effective[atype],
565 				lockdep_is_held(&cgroup_mutex));
566 		item = &progs->items[pos];
567 		WRITE_ONCE(item->prog, link->link.prog);
568 	}
569 }
570 
571 /**
572  * __cgroup_bpf_replace() - Replace link's program and propagate the change
573  *                          to descendants
574  * @cgrp: The cgroup which descendants to traverse
575  * @link: A link for which to replace BPF program
576  * @type: Type of attach operation
577  *
578  * Must be called with cgroup_mutex held.
579  */
580 static int __cgroup_bpf_replace(struct cgroup *cgrp,
581 				struct bpf_cgroup_link *link,
582 				struct bpf_prog *new_prog)
583 {
584 	enum cgroup_bpf_attach_type atype;
585 	struct bpf_prog *old_prog;
586 	struct bpf_prog_list *pl;
587 	struct list_head *progs;
588 	bool found = false;
589 
590 	atype = to_cgroup_bpf_attach_type(link->type);
591 	if (atype < 0)
592 		return -EINVAL;
593 
594 	progs = &cgrp->bpf.progs[atype];
595 
596 	if (link->link.prog->type != new_prog->type)
597 		return -EINVAL;
598 
599 	list_for_each_entry(pl, progs, node) {
600 		if (pl->link == link) {
601 			found = true;
602 			break;
603 		}
604 	}
605 	if (!found)
606 		return -ENOENT;
607 
608 	old_prog = xchg(&link->link.prog, new_prog);
609 	replace_effective_prog(cgrp, atype, link);
610 	bpf_prog_put(old_prog);
611 	return 0;
612 }
613 
614 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog,
615 			      struct bpf_prog *old_prog)
616 {
617 	struct bpf_cgroup_link *cg_link;
618 	int ret;
619 
620 	cg_link = container_of(link, struct bpf_cgroup_link, link);
621 
622 	mutex_lock(&cgroup_mutex);
623 	/* link might have been auto-released by dying cgroup, so fail */
624 	if (!cg_link->cgroup) {
625 		ret = -ENOLINK;
626 		goto out_unlock;
627 	}
628 	if (old_prog && link->prog != old_prog) {
629 		ret = -EPERM;
630 		goto out_unlock;
631 	}
632 	ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
633 out_unlock:
634 	mutex_unlock(&cgroup_mutex);
635 	return ret;
636 }
637 
638 static struct bpf_prog_list *find_detach_entry(struct list_head *progs,
639 					       struct bpf_prog *prog,
640 					       struct bpf_cgroup_link *link,
641 					       bool allow_multi)
642 {
643 	struct bpf_prog_list *pl;
644 
645 	if (!allow_multi) {
646 		if (list_empty(progs))
647 			/* report error when trying to detach and nothing is attached */
648 			return ERR_PTR(-ENOENT);
649 
650 		/* to maintain backward compatibility NONE and OVERRIDE cgroups
651 		 * allow detaching with invalid FD (prog==NULL) in legacy mode
652 		 */
653 		return list_first_entry(progs, typeof(*pl), node);
654 	}
655 
656 	if (!prog && !link)
657 		/* to detach MULTI prog the user has to specify valid FD
658 		 * of the program or link to be detached
659 		 */
660 		return ERR_PTR(-EINVAL);
661 
662 	/* find the prog or link and detach it */
663 	list_for_each_entry(pl, progs, node) {
664 		if (pl->prog == prog && pl->link == link)
665 			return pl;
666 	}
667 	return ERR_PTR(-ENOENT);
668 }
669 
670 /**
671  * purge_effective_progs() - After compute_effective_progs fails to alloc new
672  *                           cgrp->bpf.inactive table we can recover by
673  *                           recomputing the array in place.
674  *
675  * @cgrp: The cgroup which descendants to travers
676  * @prog: A program to detach or NULL
677  * @link: A link to detach or NULL
678  * @atype: Type of detach operation
679  */
680 static void purge_effective_progs(struct cgroup *cgrp, struct bpf_prog *prog,
681 				  struct bpf_cgroup_link *link,
682 				  enum cgroup_bpf_attach_type atype)
683 {
684 	struct cgroup_subsys_state *css;
685 	struct bpf_prog_array *progs;
686 	struct bpf_prog_list *pl;
687 	struct list_head *head;
688 	struct cgroup *cg;
689 	int pos;
690 
691 	/* recompute effective prog array in place */
692 	css_for_each_descendant_pre(css, &cgrp->self) {
693 		struct cgroup *desc = container_of(css, struct cgroup, self);
694 
695 		if (percpu_ref_is_zero(&desc->bpf.refcnt))
696 			continue;
697 
698 		/* find position of link or prog in effective progs array */
699 		for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
700 			if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
701 				continue;
702 
703 			head = &cg->bpf.progs[atype];
704 			list_for_each_entry(pl, head, node) {
705 				if (!prog_list_prog(pl))
706 					continue;
707 				if (pl->prog == prog && pl->link == link)
708 					goto found;
709 				pos++;
710 			}
711 		}
712 
713 		/* no link or prog match, skip the cgroup of this layer */
714 		continue;
715 found:
716 		progs = rcu_dereference_protected(
717 				desc->bpf.effective[atype],
718 				lockdep_is_held(&cgroup_mutex));
719 
720 		/* Remove the program from the array */
721 		WARN_ONCE(bpf_prog_array_delete_safe_at(progs, pos),
722 			  "Failed to purge a prog from array at index %d", pos);
723 	}
724 }
725 
726 /**
727  * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and
728  *                         propagate the change to descendants
729  * @cgrp: The cgroup which descendants to traverse
730  * @prog: A program to detach or NULL
731  * @prog: A link to detach or NULL
732  * @type: Type of detach operation
733  *
734  * At most one of @prog or @link can be non-NULL.
735  * Must be called with cgroup_mutex held.
736  */
737 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
738 			struct bpf_cgroup_link *link, enum bpf_attach_type type)
739 {
740 	enum cgroup_bpf_attach_type atype;
741 	struct bpf_prog *old_prog;
742 	struct bpf_prog_list *pl;
743 	struct list_head *progs;
744 	u32 flags;
745 
746 	atype = to_cgroup_bpf_attach_type(type);
747 	if (atype < 0)
748 		return -EINVAL;
749 
750 	progs = &cgrp->bpf.progs[atype];
751 	flags = cgrp->bpf.flags[atype];
752 
753 	if (prog && link)
754 		/* only one of prog or link can be specified */
755 		return -EINVAL;
756 
757 	pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI);
758 	if (IS_ERR(pl))
759 		return PTR_ERR(pl);
760 
761 	/* mark it deleted, so it's ignored while recomputing effective */
762 	old_prog = pl->prog;
763 	pl->prog = NULL;
764 	pl->link = NULL;
765 
766 	if (update_effective_progs(cgrp, atype)) {
767 		/* if update effective array failed replace the prog with a dummy prog*/
768 		pl->prog = old_prog;
769 		pl->link = link;
770 		purge_effective_progs(cgrp, old_prog, link, atype);
771 	}
772 
773 	/* now can actually delete it from this cgroup list */
774 	list_del(&pl->node);
775 	kfree(pl);
776 	if (list_empty(progs))
777 		/* last program was detached, reset flags to zero */
778 		cgrp->bpf.flags[atype] = 0;
779 	if (old_prog)
780 		bpf_prog_put(old_prog);
781 	static_branch_dec(&cgroup_bpf_enabled_key[atype]);
782 	return 0;
783 }
784 
785 /* Must be called with cgroup_mutex held to avoid races. */
786 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
787 		       union bpf_attr __user *uattr)
788 {
789 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
790 	enum bpf_attach_type type = attr->query.attach_type;
791 	enum cgroup_bpf_attach_type atype;
792 	struct bpf_prog_array *effective;
793 	struct list_head *progs;
794 	struct bpf_prog *prog;
795 	int cnt, ret = 0, i;
796 	u32 flags;
797 
798 	atype = to_cgroup_bpf_attach_type(type);
799 	if (atype < 0)
800 		return -EINVAL;
801 
802 	progs = &cgrp->bpf.progs[atype];
803 	flags = cgrp->bpf.flags[atype];
804 
805 	effective = rcu_dereference_protected(cgrp->bpf.effective[atype],
806 					      lockdep_is_held(&cgroup_mutex));
807 
808 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
809 		cnt = bpf_prog_array_length(effective);
810 	else
811 		cnt = prog_list_length(progs);
812 
813 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
814 		return -EFAULT;
815 	if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
816 		return -EFAULT;
817 	if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
818 		/* return early if user requested only program count + flags */
819 		return 0;
820 	if (attr->query.prog_cnt < cnt) {
821 		cnt = attr->query.prog_cnt;
822 		ret = -ENOSPC;
823 	}
824 
825 	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
826 		return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
827 	} else {
828 		struct bpf_prog_list *pl;
829 		u32 id;
830 
831 		i = 0;
832 		list_for_each_entry(pl, progs, node) {
833 			prog = prog_list_prog(pl);
834 			id = prog->aux->id;
835 			if (copy_to_user(prog_ids + i, &id, sizeof(id)))
836 				return -EFAULT;
837 			if (++i == cnt)
838 				break;
839 		}
840 	}
841 	return ret;
842 }
843 
844 int cgroup_bpf_prog_attach(const union bpf_attr *attr,
845 			   enum bpf_prog_type ptype, struct bpf_prog *prog)
846 {
847 	struct bpf_prog *replace_prog = NULL;
848 	struct cgroup *cgrp;
849 	int ret;
850 
851 	cgrp = cgroup_get_from_fd(attr->target_fd);
852 	if (IS_ERR(cgrp))
853 		return PTR_ERR(cgrp);
854 
855 	if ((attr->attach_flags & BPF_F_ALLOW_MULTI) &&
856 	    (attr->attach_flags & BPF_F_REPLACE)) {
857 		replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype);
858 		if (IS_ERR(replace_prog)) {
859 			cgroup_put(cgrp);
860 			return PTR_ERR(replace_prog);
861 		}
862 	}
863 
864 	ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL,
865 				attr->attach_type, attr->attach_flags);
866 
867 	if (replace_prog)
868 		bpf_prog_put(replace_prog);
869 	cgroup_put(cgrp);
870 	return ret;
871 }
872 
873 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
874 {
875 	struct bpf_prog *prog;
876 	struct cgroup *cgrp;
877 	int ret;
878 
879 	cgrp = cgroup_get_from_fd(attr->target_fd);
880 	if (IS_ERR(cgrp))
881 		return PTR_ERR(cgrp);
882 
883 	prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
884 	if (IS_ERR(prog))
885 		prog = NULL;
886 
887 	ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type);
888 	if (prog)
889 		bpf_prog_put(prog);
890 
891 	cgroup_put(cgrp);
892 	return ret;
893 }
894 
895 static void bpf_cgroup_link_release(struct bpf_link *link)
896 {
897 	struct bpf_cgroup_link *cg_link =
898 		container_of(link, struct bpf_cgroup_link, link);
899 	struct cgroup *cg;
900 
901 	/* link might have been auto-detached by dying cgroup already,
902 	 * in that case our work is done here
903 	 */
904 	if (!cg_link->cgroup)
905 		return;
906 
907 	mutex_lock(&cgroup_mutex);
908 
909 	/* re-check cgroup under lock again */
910 	if (!cg_link->cgroup) {
911 		mutex_unlock(&cgroup_mutex);
912 		return;
913 	}
914 
915 	WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link,
916 				    cg_link->type));
917 
918 	cg = cg_link->cgroup;
919 	cg_link->cgroup = NULL;
920 
921 	mutex_unlock(&cgroup_mutex);
922 
923 	cgroup_put(cg);
924 }
925 
926 static void bpf_cgroup_link_dealloc(struct bpf_link *link)
927 {
928 	struct bpf_cgroup_link *cg_link =
929 		container_of(link, struct bpf_cgroup_link, link);
930 
931 	kfree(cg_link);
932 }
933 
934 static int bpf_cgroup_link_detach(struct bpf_link *link)
935 {
936 	bpf_cgroup_link_release(link);
937 
938 	return 0;
939 }
940 
941 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link,
942 					struct seq_file *seq)
943 {
944 	struct bpf_cgroup_link *cg_link =
945 		container_of(link, struct bpf_cgroup_link, link);
946 	u64 cg_id = 0;
947 
948 	mutex_lock(&cgroup_mutex);
949 	if (cg_link->cgroup)
950 		cg_id = cgroup_id(cg_link->cgroup);
951 	mutex_unlock(&cgroup_mutex);
952 
953 	seq_printf(seq,
954 		   "cgroup_id:\t%llu\n"
955 		   "attach_type:\t%d\n",
956 		   cg_id,
957 		   cg_link->type);
958 }
959 
960 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link,
961 					  struct bpf_link_info *info)
962 {
963 	struct bpf_cgroup_link *cg_link =
964 		container_of(link, struct bpf_cgroup_link, link);
965 	u64 cg_id = 0;
966 
967 	mutex_lock(&cgroup_mutex);
968 	if (cg_link->cgroup)
969 		cg_id = cgroup_id(cg_link->cgroup);
970 	mutex_unlock(&cgroup_mutex);
971 
972 	info->cgroup.cgroup_id = cg_id;
973 	info->cgroup.attach_type = cg_link->type;
974 	return 0;
975 }
976 
977 static const struct bpf_link_ops bpf_cgroup_link_lops = {
978 	.release = bpf_cgroup_link_release,
979 	.dealloc = bpf_cgroup_link_dealloc,
980 	.detach = bpf_cgroup_link_detach,
981 	.update_prog = cgroup_bpf_replace,
982 	.show_fdinfo = bpf_cgroup_link_show_fdinfo,
983 	.fill_link_info = bpf_cgroup_link_fill_link_info,
984 };
985 
986 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
987 {
988 	struct bpf_link_primer link_primer;
989 	struct bpf_cgroup_link *link;
990 	struct cgroup *cgrp;
991 	int err;
992 
993 	if (attr->link_create.flags)
994 		return -EINVAL;
995 
996 	cgrp = cgroup_get_from_fd(attr->link_create.target_fd);
997 	if (IS_ERR(cgrp))
998 		return PTR_ERR(cgrp);
999 
1000 	link = kzalloc(sizeof(*link), GFP_USER);
1001 	if (!link) {
1002 		err = -ENOMEM;
1003 		goto out_put_cgroup;
1004 	}
1005 	bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops,
1006 		      prog);
1007 	link->cgroup = cgrp;
1008 	link->type = attr->link_create.attach_type;
1009 
1010 	err = bpf_link_prime(&link->link, &link_primer);
1011 	if (err) {
1012 		kfree(link);
1013 		goto out_put_cgroup;
1014 	}
1015 
1016 	err = cgroup_bpf_attach(cgrp, NULL, NULL, link,
1017 				link->type, BPF_F_ALLOW_MULTI);
1018 	if (err) {
1019 		bpf_link_cleanup(&link_primer);
1020 		goto out_put_cgroup;
1021 	}
1022 
1023 	return bpf_link_settle(&link_primer);
1024 
1025 out_put_cgroup:
1026 	cgroup_put(cgrp);
1027 	return err;
1028 }
1029 
1030 int cgroup_bpf_prog_query(const union bpf_attr *attr,
1031 			  union bpf_attr __user *uattr)
1032 {
1033 	struct cgroup *cgrp;
1034 	int ret;
1035 
1036 	cgrp = cgroup_get_from_fd(attr->query.target_fd);
1037 	if (IS_ERR(cgrp))
1038 		return PTR_ERR(cgrp);
1039 
1040 	ret = cgroup_bpf_query(cgrp, attr, uattr);
1041 
1042 	cgroup_put(cgrp);
1043 	return ret;
1044 }
1045 
1046 /**
1047  * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
1048  * @sk: The socket sending or receiving traffic
1049  * @skb: The skb that is being sent or received
1050  * @type: The type of program to be exectuted
1051  *
1052  * If no socket is passed, or the socket is not of type INET or INET6,
1053  * this function does nothing and returns 0.
1054  *
1055  * The program type passed in via @type must be suitable for network
1056  * filtering. No further check is performed to assert that.
1057  *
1058  * For egress packets, this function can return:
1059  *   NET_XMIT_SUCCESS    (0)	- continue with packet output
1060  *   NET_XMIT_DROP       (1)	- drop packet and notify TCP to call cwr
1061  *   NET_XMIT_CN         (2)	- continue with packet output and notify TCP
1062  *				  to call cwr
1063  *   -EPERM			- drop packet
1064  *
1065  * For ingress packets, this function will return -EPERM if any
1066  * attached program was found and if it returned != 1 during execution.
1067  * Otherwise 0 is returned.
1068  */
1069 int __cgroup_bpf_run_filter_skb(struct sock *sk,
1070 				struct sk_buff *skb,
1071 				enum cgroup_bpf_attach_type atype)
1072 {
1073 	unsigned int offset = skb->data - skb_network_header(skb);
1074 	struct sock *save_sk;
1075 	void *saved_data_end;
1076 	struct cgroup *cgrp;
1077 	int ret;
1078 
1079 	if (!sk || !sk_fullsock(sk))
1080 		return 0;
1081 
1082 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1083 		return 0;
1084 
1085 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1086 	save_sk = skb->sk;
1087 	skb->sk = sk;
1088 	__skb_push(skb, offset);
1089 
1090 	/* compute pointers for the bpf prog */
1091 	bpf_compute_and_save_data_end(skb, &saved_data_end);
1092 
1093 	if (atype == CGROUP_INET_EGRESS) {
1094 		ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(
1095 			cgrp->bpf.effective[atype], skb, __bpf_prog_run_save_cb);
1096 	} else {
1097 		ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], skb,
1098 					    __bpf_prog_run_save_cb);
1099 		ret = (ret == 1 ? 0 : -EPERM);
1100 	}
1101 	bpf_restore_data_end(skb, saved_data_end);
1102 	__skb_pull(skb, offset);
1103 	skb->sk = save_sk;
1104 
1105 	return ret;
1106 }
1107 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
1108 
1109 /**
1110  * __cgroup_bpf_run_filter_sk() - Run a program on a sock
1111  * @sk: sock structure to manipulate
1112  * @type: The type of program to be exectuted
1113  *
1114  * socket is passed is expected to be of type INET or INET6.
1115  *
1116  * The program type passed in via @type must be suitable for sock
1117  * filtering. No further check is performed to assert that.
1118  *
1119  * This function will return %-EPERM if any if an attached program was found
1120  * and if it returned != 1 during execution. In all other cases, 0 is returned.
1121  */
1122 int __cgroup_bpf_run_filter_sk(struct sock *sk,
1123 			       enum cgroup_bpf_attach_type atype)
1124 {
1125 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1126 	int ret;
1127 
1128 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], sk, bpf_prog_run);
1129 	return ret == 1 ? 0 : -EPERM;
1130 }
1131 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
1132 
1133 /**
1134  * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
1135  *                                       provided by user sockaddr
1136  * @sk: sock struct that will use sockaddr
1137  * @uaddr: sockaddr struct provided by user
1138  * @type: The type of program to be exectuted
1139  * @t_ctx: Pointer to attach type specific context
1140  * @flags: Pointer to u32 which contains higher bits of BPF program
1141  *         return value (OR'ed together).
1142  *
1143  * socket is expected to be of type INET or INET6.
1144  *
1145  * This function will return %-EPERM if an attached program is found and
1146  * returned value != 1 during execution. In all other cases, 0 is returned.
1147  */
1148 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
1149 				      struct sockaddr *uaddr,
1150 				      enum cgroup_bpf_attach_type atype,
1151 				      void *t_ctx,
1152 				      u32 *flags)
1153 {
1154 	struct bpf_sock_addr_kern ctx = {
1155 		.sk = sk,
1156 		.uaddr = uaddr,
1157 		.t_ctx = t_ctx,
1158 	};
1159 	struct sockaddr_storage unspec;
1160 	struct cgroup *cgrp;
1161 	int ret;
1162 
1163 	/* Check socket family since not all sockets represent network
1164 	 * endpoint (e.g. AF_UNIX).
1165 	 */
1166 	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1167 		return 0;
1168 
1169 	if (!ctx.uaddr) {
1170 		memset(&unspec, 0, sizeof(unspec));
1171 		ctx.uaddr = (struct sockaddr *)&unspec;
1172 	}
1173 
1174 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1175 	ret = BPF_PROG_RUN_ARRAY_CG_FLAGS(cgrp->bpf.effective[atype], &ctx,
1176 				          bpf_prog_run, flags);
1177 
1178 	return ret == 1 ? 0 : -EPERM;
1179 }
1180 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
1181 
1182 /**
1183  * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
1184  * @sk: socket to get cgroup from
1185  * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
1186  * sk with connection information (IP addresses, etc.) May not contain
1187  * cgroup info if it is a req sock.
1188  * @type: The type of program to be exectuted
1189  *
1190  * socket passed is expected to be of type INET or INET6.
1191  *
1192  * The program type passed in via @type must be suitable for sock_ops
1193  * filtering. No further check is performed to assert that.
1194  *
1195  * This function will return %-EPERM if any if an attached program was found
1196  * and if it returned != 1 during execution. In all other cases, 0 is returned.
1197  */
1198 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
1199 				     struct bpf_sock_ops_kern *sock_ops,
1200 				     enum cgroup_bpf_attach_type atype)
1201 {
1202 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1203 	int ret;
1204 
1205 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], sock_ops,
1206 				    bpf_prog_run);
1207 	return ret == 1 ? 0 : -EPERM;
1208 }
1209 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
1210 
1211 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
1212 				      short access, enum cgroup_bpf_attach_type atype)
1213 {
1214 	struct cgroup *cgrp;
1215 	struct bpf_cgroup_dev_ctx ctx = {
1216 		.access_type = (access << 16) | dev_type,
1217 		.major = major,
1218 		.minor = minor,
1219 	};
1220 	int allow;
1221 
1222 	rcu_read_lock();
1223 	cgrp = task_dfl_cgroup(current);
1224 	allow = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], &ctx,
1225 				      bpf_prog_run);
1226 	rcu_read_unlock();
1227 
1228 	return !allow;
1229 }
1230 
1231 static const struct bpf_func_proto *
1232 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1233 {
1234 	switch (func_id) {
1235 	case BPF_FUNC_get_current_uid_gid:
1236 		return &bpf_get_current_uid_gid_proto;
1237 	case BPF_FUNC_get_local_storage:
1238 		return &bpf_get_local_storage_proto;
1239 	case BPF_FUNC_get_current_cgroup_id:
1240 		return &bpf_get_current_cgroup_id_proto;
1241 	case BPF_FUNC_perf_event_output:
1242 		return &bpf_event_output_data_proto;
1243 	default:
1244 		return bpf_base_func_proto(func_id);
1245 	}
1246 }
1247 
1248 static const struct bpf_func_proto *
1249 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1250 {
1251 	return cgroup_base_func_proto(func_id, prog);
1252 }
1253 
1254 static bool cgroup_dev_is_valid_access(int off, int size,
1255 				       enum bpf_access_type type,
1256 				       const struct bpf_prog *prog,
1257 				       struct bpf_insn_access_aux *info)
1258 {
1259 	const int size_default = sizeof(__u32);
1260 
1261 	if (type == BPF_WRITE)
1262 		return false;
1263 
1264 	if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
1265 		return false;
1266 	/* The verifier guarantees that size > 0. */
1267 	if (off % size != 0)
1268 		return false;
1269 
1270 	switch (off) {
1271 	case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
1272 		bpf_ctx_record_field_size(info, size_default);
1273 		if (!bpf_ctx_narrow_access_ok(off, size, size_default))
1274 			return false;
1275 		break;
1276 	default:
1277 		if (size != size_default)
1278 			return false;
1279 	}
1280 
1281 	return true;
1282 }
1283 
1284 const struct bpf_prog_ops cg_dev_prog_ops = {
1285 };
1286 
1287 const struct bpf_verifier_ops cg_dev_verifier_ops = {
1288 	.get_func_proto		= cgroup_dev_func_proto,
1289 	.is_valid_access	= cgroup_dev_is_valid_access,
1290 };
1291 
1292 /**
1293  * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
1294  *
1295  * @head: sysctl table header
1296  * @table: sysctl table
1297  * @write: sysctl is being read (= 0) or written (= 1)
1298  * @buf: pointer to buffer (in and out)
1299  * @pcount: value-result argument: value is size of buffer pointed to by @buf,
1300  *	result is size of @new_buf if program set new value, initial value
1301  *	otherwise
1302  * @ppos: value-result argument: value is position at which read from or write
1303  *	to sysctl is happening, result is new position if program overrode it,
1304  *	initial value otherwise
1305  * @type: type of program to be executed
1306  *
1307  * Program is run when sysctl is being accessed, either read or written, and
1308  * can allow or deny such access.
1309  *
1310  * This function will return %-EPERM if an attached program is found and
1311  * returned value != 1 during execution. In all other cases 0 is returned.
1312  */
1313 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
1314 				   struct ctl_table *table, int write,
1315 				   char **buf, size_t *pcount, loff_t *ppos,
1316 				   enum cgroup_bpf_attach_type atype)
1317 {
1318 	struct bpf_sysctl_kern ctx = {
1319 		.head = head,
1320 		.table = table,
1321 		.write = write,
1322 		.ppos = ppos,
1323 		.cur_val = NULL,
1324 		.cur_len = PAGE_SIZE,
1325 		.new_val = NULL,
1326 		.new_len = 0,
1327 		.new_updated = 0,
1328 	};
1329 	struct cgroup *cgrp;
1330 	loff_t pos = 0;
1331 	int ret;
1332 
1333 	ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
1334 	if (!ctx.cur_val ||
1335 	    table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) {
1336 		/* Let BPF program decide how to proceed. */
1337 		ctx.cur_len = 0;
1338 	}
1339 
1340 	if (write && *buf && *pcount) {
1341 		/* BPF program should be able to override new value with a
1342 		 * buffer bigger than provided by user.
1343 		 */
1344 		ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
1345 		ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
1346 		if (ctx.new_val) {
1347 			memcpy(ctx.new_val, *buf, ctx.new_len);
1348 		} else {
1349 			/* Let BPF program decide how to proceed. */
1350 			ctx.new_len = 0;
1351 		}
1352 	}
1353 
1354 	rcu_read_lock();
1355 	cgrp = task_dfl_cgroup(current);
1356 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], &ctx, bpf_prog_run);
1357 	rcu_read_unlock();
1358 
1359 	kfree(ctx.cur_val);
1360 
1361 	if (ret == 1 && ctx.new_updated) {
1362 		kfree(*buf);
1363 		*buf = ctx.new_val;
1364 		*pcount = ctx.new_len;
1365 	} else {
1366 		kfree(ctx.new_val);
1367 	}
1368 
1369 	return ret == 1 ? 0 : -EPERM;
1370 }
1371 
1372 #ifdef CONFIG_NET
1373 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp,
1374 					     enum cgroup_bpf_attach_type attach_type)
1375 {
1376 	struct bpf_prog_array *prog_array;
1377 	bool empty;
1378 
1379 	rcu_read_lock();
1380 	prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]);
1381 	empty = bpf_prog_array_is_empty(prog_array);
1382 	rcu_read_unlock();
1383 
1384 	return empty;
1385 }
1386 
1387 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen,
1388 			     struct bpf_sockopt_buf *buf)
1389 {
1390 	if (unlikely(max_optlen < 0))
1391 		return -EINVAL;
1392 
1393 	if (unlikely(max_optlen > PAGE_SIZE)) {
1394 		/* We don't expose optvals that are greater than PAGE_SIZE
1395 		 * to the BPF program.
1396 		 */
1397 		max_optlen = PAGE_SIZE;
1398 	}
1399 
1400 	if (max_optlen <= sizeof(buf->data)) {
1401 		/* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE
1402 		 * bytes avoid the cost of kzalloc.
1403 		 */
1404 		ctx->optval = buf->data;
1405 		ctx->optval_end = ctx->optval + max_optlen;
1406 		return max_optlen;
1407 	}
1408 
1409 	ctx->optval = kzalloc(max_optlen, GFP_USER);
1410 	if (!ctx->optval)
1411 		return -ENOMEM;
1412 
1413 	ctx->optval_end = ctx->optval + max_optlen;
1414 
1415 	return max_optlen;
1416 }
1417 
1418 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx,
1419 			     struct bpf_sockopt_buf *buf)
1420 {
1421 	if (ctx->optval == buf->data)
1422 		return;
1423 	kfree(ctx->optval);
1424 }
1425 
1426 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx,
1427 				  struct bpf_sockopt_buf *buf)
1428 {
1429 	return ctx->optval != buf->data;
1430 }
1431 
1432 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
1433 				       int *optname, char __user *optval,
1434 				       int *optlen, char **kernel_optval)
1435 {
1436 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1437 	struct bpf_sockopt_buf buf = {};
1438 	struct bpf_sockopt_kern ctx = {
1439 		.sk = sk,
1440 		.level = *level,
1441 		.optname = *optname,
1442 	};
1443 	int ret, max_optlen;
1444 
1445 	/* Opportunistic check to see whether we have any BPF program
1446 	 * attached to the hook so we don't waste time allocating
1447 	 * memory and locking the socket.
1448 	 */
1449 	if (__cgroup_bpf_prog_array_is_empty(cgrp, CGROUP_SETSOCKOPT))
1450 		return 0;
1451 
1452 	/* Allocate a bit more than the initial user buffer for
1453 	 * BPF program. The canonical use case is overriding
1454 	 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1455 	 */
1456 	max_optlen = max_t(int, 16, *optlen);
1457 
1458 	max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1459 	if (max_optlen < 0)
1460 		return max_optlen;
1461 
1462 	ctx.optlen = *optlen;
1463 
1464 	if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) {
1465 		ret = -EFAULT;
1466 		goto out;
1467 	}
1468 
1469 	lock_sock(sk);
1470 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[CGROUP_SETSOCKOPT],
1471 				    &ctx, bpf_prog_run);
1472 	release_sock(sk);
1473 
1474 	if (!ret) {
1475 		ret = -EPERM;
1476 		goto out;
1477 	}
1478 
1479 	if (ctx.optlen == -1) {
1480 		/* optlen set to -1, bypass kernel */
1481 		ret = 1;
1482 	} else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1483 		/* optlen is out of bounds */
1484 		ret = -EFAULT;
1485 	} else {
1486 		/* optlen within bounds, run kernel handler */
1487 		ret = 0;
1488 
1489 		/* export any potential modifications */
1490 		*level = ctx.level;
1491 		*optname = ctx.optname;
1492 
1493 		/* optlen == 0 from BPF indicates that we should
1494 		 * use original userspace data.
1495 		 */
1496 		if (ctx.optlen != 0) {
1497 			*optlen = ctx.optlen;
1498 			/* We've used bpf_sockopt_kern->buf as an intermediary
1499 			 * storage, but the BPF program indicates that we need
1500 			 * to pass this data to the kernel setsockopt handler.
1501 			 * No way to export on-stack buf, have to allocate a
1502 			 * new buffer.
1503 			 */
1504 			if (!sockopt_buf_allocated(&ctx, &buf)) {
1505 				void *p = kmalloc(ctx.optlen, GFP_USER);
1506 
1507 				if (!p) {
1508 					ret = -ENOMEM;
1509 					goto out;
1510 				}
1511 				memcpy(p, ctx.optval, ctx.optlen);
1512 				*kernel_optval = p;
1513 			} else {
1514 				*kernel_optval = ctx.optval;
1515 			}
1516 			/* export and don't free sockopt buf */
1517 			return 0;
1518 		}
1519 	}
1520 
1521 out:
1522 	sockopt_free_buf(&ctx, &buf);
1523 	return ret;
1524 }
1525 
1526 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1527 				       int optname, char __user *optval,
1528 				       int __user *optlen, int max_optlen,
1529 				       int retval)
1530 {
1531 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1532 	struct bpf_sockopt_buf buf = {};
1533 	struct bpf_sockopt_kern ctx = {
1534 		.sk = sk,
1535 		.level = level,
1536 		.optname = optname,
1537 		.retval = retval,
1538 	};
1539 	int ret;
1540 
1541 	/* Opportunistic check to see whether we have any BPF program
1542 	 * attached to the hook so we don't waste time allocating
1543 	 * memory and locking the socket.
1544 	 */
1545 	if (__cgroup_bpf_prog_array_is_empty(cgrp, CGROUP_GETSOCKOPT))
1546 		return retval;
1547 
1548 	ctx.optlen = max_optlen;
1549 
1550 	max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1551 	if (max_optlen < 0)
1552 		return max_optlen;
1553 
1554 	if (!retval) {
1555 		/* If kernel getsockopt finished successfully,
1556 		 * copy whatever was returned to the user back
1557 		 * into our temporary buffer. Set optlen to the
1558 		 * one that kernel returned as well to let
1559 		 * BPF programs inspect the value.
1560 		 */
1561 
1562 		if (get_user(ctx.optlen, optlen)) {
1563 			ret = -EFAULT;
1564 			goto out;
1565 		}
1566 
1567 		if (ctx.optlen < 0) {
1568 			ret = -EFAULT;
1569 			goto out;
1570 		}
1571 
1572 		if (copy_from_user(ctx.optval, optval,
1573 				   min(ctx.optlen, max_optlen)) != 0) {
1574 			ret = -EFAULT;
1575 			goto out;
1576 		}
1577 	}
1578 
1579 	lock_sock(sk);
1580 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[CGROUP_GETSOCKOPT],
1581 				    &ctx, bpf_prog_run);
1582 	release_sock(sk);
1583 
1584 	if (!ret) {
1585 		ret = -EPERM;
1586 		goto out;
1587 	}
1588 
1589 	if (ctx.optlen > max_optlen || ctx.optlen < 0) {
1590 		ret = -EFAULT;
1591 		goto out;
1592 	}
1593 
1594 	/* BPF programs only allowed to set retval to 0, not some
1595 	 * arbitrary value.
1596 	 */
1597 	if (ctx.retval != 0 && ctx.retval != retval) {
1598 		ret = -EFAULT;
1599 		goto out;
1600 	}
1601 
1602 	if (ctx.optlen != 0) {
1603 		if (copy_to_user(optval, ctx.optval, ctx.optlen) ||
1604 		    put_user(ctx.optlen, optlen)) {
1605 			ret = -EFAULT;
1606 			goto out;
1607 		}
1608 	}
1609 
1610 	ret = ctx.retval;
1611 
1612 out:
1613 	sockopt_free_buf(&ctx, &buf);
1614 	return ret;
1615 }
1616 
1617 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level,
1618 					    int optname, void *optval,
1619 					    int *optlen, int retval)
1620 {
1621 	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1622 	struct bpf_sockopt_kern ctx = {
1623 		.sk = sk,
1624 		.level = level,
1625 		.optname = optname,
1626 		.retval = retval,
1627 		.optlen = *optlen,
1628 		.optval = optval,
1629 		.optval_end = optval + *optlen,
1630 	};
1631 	int ret;
1632 
1633 	/* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy
1634 	 * user data back into BPF buffer when reval != 0. This is
1635 	 * done as an optimization to avoid extra copy, assuming
1636 	 * kernel won't populate the data in case of an error.
1637 	 * Here we always pass the data and memset() should
1638 	 * be called if that data shouldn't be "exported".
1639 	 */
1640 
1641 	ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[CGROUP_GETSOCKOPT],
1642 				    &ctx, bpf_prog_run);
1643 	if (!ret)
1644 		return -EPERM;
1645 
1646 	if (ctx.optlen > *optlen)
1647 		return -EFAULT;
1648 
1649 	/* BPF programs only allowed to set retval to 0, not some
1650 	 * arbitrary value.
1651 	 */
1652 	if (ctx.retval != 0 && ctx.retval != retval)
1653 		return -EFAULT;
1654 
1655 	/* BPF programs can shrink the buffer, export the modifications.
1656 	 */
1657 	if (ctx.optlen != 0)
1658 		*optlen = ctx.optlen;
1659 
1660 	return ctx.retval;
1661 }
1662 #endif
1663 
1664 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
1665 			      size_t *lenp)
1666 {
1667 	ssize_t tmp_ret = 0, ret;
1668 
1669 	if (dir->header.parent) {
1670 		tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
1671 		if (tmp_ret < 0)
1672 			return tmp_ret;
1673 	}
1674 
1675 	ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
1676 	if (ret < 0)
1677 		return ret;
1678 	*bufp += ret;
1679 	*lenp -= ret;
1680 	ret += tmp_ret;
1681 
1682 	/* Avoid leading slash. */
1683 	if (!ret)
1684 		return ret;
1685 
1686 	tmp_ret = strscpy(*bufp, "/", *lenp);
1687 	if (tmp_ret < 0)
1688 		return tmp_ret;
1689 	*bufp += tmp_ret;
1690 	*lenp -= tmp_ret;
1691 
1692 	return ret + tmp_ret;
1693 }
1694 
1695 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
1696 	   size_t, buf_len, u64, flags)
1697 {
1698 	ssize_t tmp_ret = 0, ret;
1699 
1700 	if (!buf)
1701 		return -EINVAL;
1702 
1703 	if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
1704 		if (!ctx->head)
1705 			return -EINVAL;
1706 		tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
1707 		if (tmp_ret < 0)
1708 			return tmp_ret;
1709 	}
1710 
1711 	ret = strscpy(buf, ctx->table->procname, buf_len);
1712 
1713 	return ret < 0 ? ret : tmp_ret + ret;
1714 }
1715 
1716 static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
1717 	.func		= bpf_sysctl_get_name,
1718 	.gpl_only	= false,
1719 	.ret_type	= RET_INTEGER,
1720 	.arg1_type	= ARG_PTR_TO_CTX,
1721 	.arg2_type	= ARG_PTR_TO_MEM,
1722 	.arg3_type	= ARG_CONST_SIZE,
1723 	.arg4_type	= ARG_ANYTHING,
1724 };
1725 
1726 static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
1727 			     size_t src_len)
1728 {
1729 	if (!dst)
1730 		return -EINVAL;
1731 
1732 	if (!dst_len)
1733 		return -E2BIG;
1734 
1735 	if (!src || !src_len) {
1736 		memset(dst, 0, dst_len);
1737 		return -EINVAL;
1738 	}
1739 
1740 	memcpy(dst, src, min(dst_len, src_len));
1741 
1742 	if (dst_len > src_len) {
1743 		memset(dst + src_len, '\0', dst_len - src_len);
1744 		return src_len;
1745 	}
1746 
1747 	dst[dst_len - 1] = '\0';
1748 
1749 	return -E2BIG;
1750 }
1751 
1752 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
1753 	   char *, buf, size_t, buf_len)
1754 {
1755 	return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
1756 }
1757 
1758 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
1759 	.func		= bpf_sysctl_get_current_value,
1760 	.gpl_only	= false,
1761 	.ret_type	= RET_INTEGER,
1762 	.arg1_type	= ARG_PTR_TO_CTX,
1763 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1764 	.arg3_type	= ARG_CONST_SIZE,
1765 };
1766 
1767 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
1768 	   size_t, buf_len)
1769 {
1770 	if (!ctx->write) {
1771 		if (buf && buf_len)
1772 			memset(buf, '\0', buf_len);
1773 		return -EINVAL;
1774 	}
1775 	return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
1776 }
1777 
1778 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
1779 	.func		= bpf_sysctl_get_new_value,
1780 	.gpl_only	= false,
1781 	.ret_type	= RET_INTEGER,
1782 	.arg1_type	= ARG_PTR_TO_CTX,
1783 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1784 	.arg3_type	= ARG_CONST_SIZE,
1785 };
1786 
1787 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
1788 	   const char *, buf, size_t, buf_len)
1789 {
1790 	if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
1791 		return -EINVAL;
1792 
1793 	if (buf_len > PAGE_SIZE - 1)
1794 		return -E2BIG;
1795 
1796 	memcpy(ctx->new_val, buf, buf_len);
1797 	ctx->new_len = buf_len;
1798 	ctx->new_updated = 1;
1799 
1800 	return 0;
1801 }
1802 
1803 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
1804 	.func		= bpf_sysctl_set_new_value,
1805 	.gpl_only	= false,
1806 	.ret_type	= RET_INTEGER,
1807 	.arg1_type	= ARG_PTR_TO_CTX,
1808 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1809 	.arg3_type	= ARG_CONST_SIZE,
1810 };
1811 
1812 static const struct bpf_func_proto *
1813 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1814 {
1815 	switch (func_id) {
1816 	case BPF_FUNC_strtol:
1817 		return &bpf_strtol_proto;
1818 	case BPF_FUNC_strtoul:
1819 		return &bpf_strtoul_proto;
1820 	case BPF_FUNC_sysctl_get_name:
1821 		return &bpf_sysctl_get_name_proto;
1822 	case BPF_FUNC_sysctl_get_current_value:
1823 		return &bpf_sysctl_get_current_value_proto;
1824 	case BPF_FUNC_sysctl_get_new_value:
1825 		return &bpf_sysctl_get_new_value_proto;
1826 	case BPF_FUNC_sysctl_set_new_value:
1827 		return &bpf_sysctl_set_new_value_proto;
1828 	case BPF_FUNC_ktime_get_coarse_ns:
1829 		return &bpf_ktime_get_coarse_ns_proto;
1830 	default:
1831 		return cgroup_base_func_proto(func_id, prog);
1832 	}
1833 }
1834 
1835 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
1836 				   const struct bpf_prog *prog,
1837 				   struct bpf_insn_access_aux *info)
1838 {
1839 	const int size_default = sizeof(__u32);
1840 
1841 	if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
1842 		return false;
1843 
1844 	switch (off) {
1845 	case bpf_ctx_range(struct bpf_sysctl, write):
1846 		if (type != BPF_READ)
1847 			return false;
1848 		bpf_ctx_record_field_size(info, size_default);
1849 		return bpf_ctx_narrow_access_ok(off, size, size_default);
1850 	case bpf_ctx_range(struct bpf_sysctl, file_pos):
1851 		if (type == BPF_READ) {
1852 			bpf_ctx_record_field_size(info, size_default);
1853 			return bpf_ctx_narrow_access_ok(off, size, size_default);
1854 		} else {
1855 			return size == size_default;
1856 		}
1857 	default:
1858 		return false;
1859 	}
1860 }
1861 
1862 static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
1863 				     const struct bpf_insn *si,
1864 				     struct bpf_insn *insn_buf,
1865 				     struct bpf_prog *prog, u32 *target_size)
1866 {
1867 	struct bpf_insn *insn = insn_buf;
1868 	u32 read_size;
1869 
1870 	switch (si->off) {
1871 	case offsetof(struct bpf_sysctl, write):
1872 		*insn++ = BPF_LDX_MEM(
1873 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
1874 			bpf_target_off(struct bpf_sysctl_kern, write,
1875 				       sizeof_field(struct bpf_sysctl_kern,
1876 						    write),
1877 				       target_size));
1878 		break;
1879 	case offsetof(struct bpf_sysctl, file_pos):
1880 		/* ppos is a pointer so it should be accessed via indirect
1881 		 * loads and stores. Also for stores additional temporary
1882 		 * register is used since neither src_reg nor dst_reg can be
1883 		 * overridden.
1884 		 */
1885 		if (type == BPF_WRITE) {
1886 			int treg = BPF_REG_9;
1887 
1888 			if (si->src_reg == treg || si->dst_reg == treg)
1889 				--treg;
1890 			if (si->src_reg == treg || si->dst_reg == treg)
1891 				--treg;
1892 			*insn++ = BPF_STX_MEM(
1893 				BPF_DW, si->dst_reg, treg,
1894 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1895 			*insn++ = BPF_LDX_MEM(
1896 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1897 				treg, si->dst_reg,
1898 				offsetof(struct bpf_sysctl_kern, ppos));
1899 			*insn++ = BPF_STX_MEM(
1900 				BPF_SIZEOF(u32), treg, si->src_reg,
1901 				bpf_ctx_narrow_access_offset(
1902 					0, sizeof(u32), sizeof(loff_t)));
1903 			*insn++ = BPF_LDX_MEM(
1904 				BPF_DW, treg, si->dst_reg,
1905 				offsetof(struct bpf_sysctl_kern, tmp_reg));
1906 		} else {
1907 			*insn++ = BPF_LDX_MEM(
1908 				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1909 				si->dst_reg, si->src_reg,
1910 				offsetof(struct bpf_sysctl_kern, ppos));
1911 			read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
1912 			*insn++ = BPF_LDX_MEM(
1913 				BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
1914 				bpf_ctx_narrow_access_offset(
1915 					0, read_size, sizeof(loff_t)));
1916 		}
1917 		*target_size = sizeof(u32);
1918 		break;
1919 	}
1920 
1921 	return insn - insn_buf;
1922 }
1923 
1924 const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
1925 	.get_func_proto		= sysctl_func_proto,
1926 	.is_valid_access	= sysctl_is_valid_access,
1927 	.convert_ctx_access	= sysctl_convert_ctx_access,
1928 };
1929 
1930 const struct bpf_prog_ops cg_sysctl_prog_ops = {
1931 };
1932 
1933 #ifdef CONFIG_NET
1934 BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx)
1935 {
1936 	const struct net *net = ctx ? sock_net(ctx->sk) : &init_net;
1937 
1938 	return net->net_cookie;
1939 }
1940 
1941 static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = {
1942 	.func		= bpf_get_netns_cookie_sockopt,
1943 	.gpl_only	= false,
1944 	.ret_type	= RET_INTEGER,
1945 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
1946 };
1947 #endif
1948 
1949 static const struct bpf_func_proto *
1950 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1951 {
1952 	switch (func_id) {
1953 #ifdef CONFIG_NET
1954 	case BPF_FUNC_get_netns_cookie:
1955 		return &bpf_get_netns_cookie_sockopt_proto;
1956 	case BPF_FUNC_sk_storage_get:
1957 		return &bpf_sk_storage_get_proto;
1958 	case BPF_FUNC_sk_storage_delete:
1959 		return &bpf_sk_storage_delete_proto;
1960 	case BPF_FUNC_setsockopt:
1961 		if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
1962 			return &bpf_sk_setsockopt_proto;
1963 		return NULL;
1964 	case BPF_FUNC_getsockopt:
1965 		if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
1966 			return &bpf_sk_getsockopt_proto;
1967 		return NULL;
1968 #endif
1969 #ifdef CONFIG_INET
1970 	case BPF_FUNC_tcp_sock:
1971 		return &bpf_tcp_sock_proto;
1972 #endif
1973 	default:
1974 		return cgroup_base_func_proto(func_id, prog);
1975 	}
1976 }
1977 
1978 static bool cg_sockopt_is_valid_access(int off, int size,
1979 				       enum bpf_access_type type,
1980 				       const struct bpf_prog *prog,
1981 				       struct bpf_insn_access_aux *info)
1982 {
1983 	const int size_default = sizeof(__u32);
1984 
1985 	if (off < 0 || off >= sizeof(struct bpf_sockopt))
1986 		return false;
1987 
1988 	if (off % size != 0)
1989 		return false;
1990 
1991 	if (type == BPF_WRITE) {
1992 		switch (off) {
1993 		case offsetof(struct bpf_sockopt, retval):
1994 			if (size != size_default)
1995 				return false;
1996 			return prog->expected_attach_type ==
1997 				BPF_CGROUP_GETSOCKOPT;
1998 		case offsetof(struct bpf_sockopt, optname):
1999 			fallthrough;
2000 		case offsetof(struct bpf_sockopt, level):
2001 			if (size != size_default)
2002 				return false;
2003 			return prog->expected_attach_type ==
2004 				BPF_CGROUP_SETSOCKOPT;
2005 		case offsetof(struct bpf_sockopt, optlen):
2006 			return size == size_default;
2007 		default:
2008 			return false;
2009 		}
2010 	}
2011 
2012 	switch (off) {
2013 	case offsetof(struct bpf_sockopt, sk):
2014 		if (size != sizeof(__u64))
2015 			return false;
2016 		info->reg_type = PTR_TO_SOCKET;
2017 		break;
2018 	case offsetof(struct bpf_sockopt, optval):
2019 		if (size != sizeof(__u64))
2020 			return false;
2021 		info->reg_type = PTR_TO_PACKET;
2022 		break;
2023 	case offsetof(struct bpf_sockopt, optval_end):
2024 		if (size != sizeof(__u64))
2025 			return false;
2026 		info->reg_type = PTR_TO_PACKET_END;
2027 		break;
2028 	case offsetof(struct bpf_sockopt, retval):
2029 		if (size != size_default)
2030 			return false;
2031 		return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
2032 	default:
2033 		if (size != size_default)
2034 			return false;
2035 		break;
2036 	}
2037 	return true;
2038 }
2039 
2040 #define CG_SOCKOPT_ACCESS_FIELD(T, F)					\
2041 	T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F),			\
2042 	  si->dst_reg, si->src_reg,					\
2043 	  offsetof(struct bpf_sockopt_kern, F))
2044 
2045 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
2046 					 const struct bpf_insn *si,
2047 					 struct bpf_insn *insn_buf,
2048 					 struct bpf_prog *prog,
2049 					 u32 *target_size)
2050 {
2051 	struct bpf_insn *insn = insn_buf;
2052 
2053 	switch (si->off) {
2054 	case offsetof(struct bpf_sockopt, sk):
2055 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
2056 		break;
2057 	case offsetof(struct bpf_sockopt, level):
2058 		if (type == BPF_WRITE)
2059 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
2060 		else
2061 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
2062 		break;
2063 	case offsetof(struct bpf_sockopt, optname):
2064 		if (type == BPF_WRITE)
2065 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
2066 		else
2067 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
2068 		break;
2069 	case offsetof(struct bpf_sockopt, optlen):
2070 		if (type == BPF_WRITE)
2071 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
2072 		else
2073 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
2074 		break;
2075 	case offsetof(struct bpf_sockopt, retval):
2076 		if (type == BPF_WRITE)
2077 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval);
2078 		else
2079 			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval);
2080 		break;
2081 	case offsetof(struct bpf_sockopt, optval):
2082 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
2083 		break;
2084 	case offsetof(struct bpf_sockopt, optval_end):
2085 		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
2086 		break;
2087 	}
2088 
2089 	return insn - insn_buf;
2090 }
2091 
2092 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
2093 				   bool direct_write,
2094 				   const struct bpf_prog *prog)
2095 {
2096 	/* Nothing to do for sockopt argument. The data is kzalloc'ated.
2097 	 */
2098 	return 0;
2099 }
2100 
2101 const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
2102 	.get_func_proto		= cg_sockopt_func_proto,
2103 	.is_valid_access	= cg_sockopt_is_valid_access,
2104 	.convert_ctx_access	= cg_sockopt_convert_ctx_access,
2105 	.gen_prologue		= cg_sockopt_get_prologue,
2106 };
2107 
2108 const struct bpf_prog_ops cg_sockopt_prog_ops = {
2109 };
2110