1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Functions to manage eBPF programs attached to cgroups 4 * 5 * Copyright (c) 2016 Daniel Mack 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/atomic.h> 10 #include <linux/cgroup.h> 11 #include <linux/filter.h> 12 #include <linux/slab.h> 13 #include <linux/sysctl.h> 14 #include <linux/string.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf-cgroup.h> 17 #include <linux/bpf_lsm.h> 18 #include <linux/bpf_verifier.h> 19 #include <net/sock.h> 20 #include <net/bpf_sk_storage.h> 21 22 #include "../cgroup/cgroup-internal.h" 23 24 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE); 25 EXPORT_SYMBOL(cgroup_bpf_enabled_key); 26 27 /* __always_inline is necessary to prevent indirect call through run_prog 28 * function pointer. 29 */ 30 static __always_inline int 31 bpf_prog_run_array_cg(const struct cgroup_bpf *cgrp, 32 enum cgroup_bpf_attach_type atype, 33 const void *ctx, bpf_prog_run_fn run_prog, 34 int retval, u32 *ret_flags) 35 { 36 const struct bpf_prog_array_item *item; 37 const struct bpf_prog *prog; 38 const struct bpf_prog_array *array; 39 struct bpf_run_ctx *old_run_ctx; 40 struct bpf_cg_run_ctx run_ctx; 41 u32 func_ret; 42 43 run_ctx.retval = retval; 44 migrate_disable(); 45 rcu_read_lock(); 46 array = rcu_dereference(cgrp->effective[atype]); 47 item = &array->items[0]; 48 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 49 while ((prog = READ_ONCE(item->prog))) { 50 run_ctx.prog_item = item; 51 func_ret = run_prog(prog, ctx); 52 if (ret_flags) { 53 *(ret_flags) |= (func_ret >> 1); 54 func_ret &= 1; 55 } 56 if (!func_ret && !IS_ERR_VALUE((long)run_ctx.retval)) 57 run_ctx.retval = -EPERM; 58 item++; 59 } 60 bpf_reset_run_ctx(old_run_ctx); 61 rcu_read_unlock(); 62 migrate_enable(); 63 return run_ctx.retval; 64 } 65 66 unsigned int __cgroup_bpf_run_lsm_sock(const void *ctx, 67 const struct bpf_insn *insn) 68 { 69 const struct bpf_prog *shim_prog; 70 struct sock *sk; 71 struct cgroup *cgrp; 72 int ret = 0; 73 u64 *args; 74 75 args = (u64 *)ctx; 76 sk = (void *)(unsigned long)args[0]; 77 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 78 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 79 80 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 81 if (likely(cgrp)) 82 ret = bpf_prog_run_array_cg(&cgrp->bpf, 83 shim_prog->aux->cgroup_atype, 84 ctx, bpf_prog_run, 0, NULL); 85 return ret; 86 } 87 88 unsigned int __cgroup_bpf_run_lsm_socket(const void *ctx, 89 const struct bpf_insn *insn) 90 { 91 const struct bpf_prog *shim_prog; 92 struct socket *sock; 93 struct cgroup *cgrp; 94 int ret = 0; 95 u64 *args; 96 97 args = (u64 *)ctx; 98 sock = (void *)(unsigned long)args[0]; 99 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 100 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 101 102 cgrp = sock_cgroup_ptr(&sock->sk->sk_cgrp_data); 103 if (likely(cgrp)) 104 ret = bpf_prog_run_array_cg(&cgrp->bpf, 105 shim_prog->aux->cgroup_atype, 106 ctx, bpf_prog_run, 0, NULL); 107 return ret; 108 } 109 110 unsigned int __cgroup_bpf_run_lsm_current(const void *ctx, 111 const struct bpf_insn *insn) 112 { 113 const struct bpf_prog *shim_prog; 114 struct cgroup *cgrp; 115 int ret = 0; 116 117 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 118 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 119 120 /* We rely on trampoline's __bpf_prog_enter_lsm_cgroup to grab RCU read lock. */ 121 cgrp = task_dfl_cgroup(current); 122 if (likely(cgrp)) 123 ret = bpf_prog_run_array_cg(&cgrp->bpf, 124 shim_prog->aux->cgroup_atype, 125 ctx, bpf_prog_run, 0, NULL); 126 return ret; 127 } 128 129 #ifdef CONFIG_BPF_LSM 130 struct cgroup_lsm_atype { 131 u32 attach_btf_id; 132 int refcnt; 133 }; 134 135 static struct cgroup_lsm_atype cgroup_lsm_atype[CGROUP_LSM_NUM]; 136 137 static enum cgroup_bpf_attach_type 138 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id) 139 { 140 int i; 141 142 lockdep_assert_held(&cgroup_mutex); 143 144 if (attach_type != BPF_LSM_CGROUP) 145 return to_cgroup_bpf_attach_type(attach_type); 146 147 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++) 148 if (cgroup_lsm_atype[i].attach_btf_id == attach_btf_id) 149 return CGROUP_LSM_START + i; 150 151 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++) 152 if (cgroup_lsm_atype[i].attach_btf_id == 0) 153 return CGROUP_LSM_START + i; 154 155 return -E2BIG; 156 157 } 158 159 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) 160 { 161 int i = cgroup_atype - CGROUP_LSM_START; 162 163 lockdep_assert_held(&cgroup_mutex); 164 165 WARN_ON_ONCE(cgroup_lsm_atype[i].attach_btf_id && 166 cgroup_lsm_atype[i].attach_btf_id != attach_btf_id); 167 168 cgroup_lsm_atype[i].attach_btf_id = attach_btf_id; 169 cgroup_lsm_atype[i].refcnt++; 170 } 171 172 void bpf_cgroup_atype_put(int cgroup_atype) 173 { 174 int i = cgroup_atype - CGROUP_LSM_START; 175 176 mutex_lock(&cgroup_mutex); 177 if (--cgroup_lsm_atype[i].refcnt <= 0) 178 cgroup_lsm_atype[i].attach_btf_id = 0; 179 WARN_ON_ONCE(cgroup_lsm_atype[i].refcnt < 0); 180 mutex_unlock(&cgroup_mutex); 181 } 182 #else 183 static enum cgroup_bpf_attach_type 184 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id) 185 { 186 if (attach_type != BPF_LSM_CGROUP) 187 return to_cgroup_bpf_attach_type(attach_type); 188 return -EOPNOTSUPP; 189 } 190 #endif /* CONFIG_BPF_LSM */ 191 192 void cgroup_bpf_offline(struct cgroup *cgrp) 193 { 194 cgroup_get(cgrp); 195 percpu_ref_kill(&cgrp->bpf.refcnt); 196 } 197 198 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[]) 199 { 200 enum bpf_cgroup_storage_type stype; 201 202 for_each_cgroup_storage_type(stype) 203 bpf_cgroup_storage_free(storages[stype]); 204 } 205 206 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[], 207 struct bpf_cgroup_storage *new_storages[], 208 enum bpf_attach_type type, 209 struct bpf_prog *prog, 210 struct cgroup *cgrp) 211 { 212 enum bpf_cgroup_storage_type stype; 213 struct bpf_cgroup_storage_key key; 214 struct bpf_map *map; 215 216 key.cgroup_inode_id = cgroup_id(cgrp); 217 key.attach_type = type; 218 219 for_each_cgroup_storage_type(stype) { 220 map = prog->aux->cgroup_storage[stype]; 221 if (!map) 222 continue; 223 224 storages[stype] = cgroup_storage_lookup((void *)map, &key, false); 225 if (storages[stype]) 226 continue; 227 228 storages[stype] = bpf_cgroup_storage_alloc(prog, stype); 229 if (IS_ERR(storages[stype])) { 230 bpf_cgroup_storages_free(new_storages); 231 return -ENOMEM; 232 } 233 234 new_storages[stype] = storages[stype]; 235 } 236 237 return 0; 238 } 239 240 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[], 241 struct bpf_cgroup_storage *src[]) 242 { 243 enum bpf_cgroup_storage_type stype; 244 245 for_each_cgroup_storage_type(stype) 246 dst[stype] = src[stype]; 247 } 248 249 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[], 250 struct cgroup *cgrp, 251 enum bpf_attach_type attach_type) 252 { 253 enum bpf_cgroup_storage_type stype; 254 255 for_each_cgroup_storage_type(stype) 256 bpf_cgroup_storage_link(storages[stype], cgrp, attach_type); 257 } 258 259 /* Called when bpf_cgroup_link is auto-detached from dying cgroup. 260 * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It 261 * doesn't free link memory, which will eventually be done by bpf_link's 262 * release() callback, when its last FD is closed. 263 */ 264 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link) 265 { 266 cgroup_put(link->cgroup); 267 link->cgroup = NULL; 268 } 269 270 /** 271 * cgroup_bpf_release() - put references of all bpf programs and 272 * release all cgroup bpf data 273 * @work: work structure embedded into the cgroup to modify 274 */ 275 static void cgroup_bpf_release(struct work_struct *work) 276 { 277 struct cgroup *p, *cgrp = container_of(work, struct cgroup, 278 bpf.release_work); 279 struct bpf_prog_array *old_array; 280 struct list_head *storages = &cgrp->bpf.storages; 281 struct bpf_cgroup_storage *storage, *stmp; 282 283 unsigned int atype; 284 285 mutex_lock(&cgroup_mutex); 286 287 for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) { 288 struct hlist_head *progs = &cgrp->bpf.progs[atype]; 289 struct bpf_prog_list *pl; 290 struct hlist_node *pltmp; 291 292 hlist_for_each_entry_safe(pl, pltmp, progs, node) { 293 hlist_del(&pl->node); 294 if (pl->prog) { 295 if (pl->prog->expected_attach_type == BPF_LSM_CGROUP) 296 bpf_trampoline_unlink_cgroup_shim(pl->prog); 297 bpf_prog_put(pl->prog); 298 } 299 if (pl->link) { 300 if (pl->link->link.prog->expected_attach_type == BPF_LSM_CGROUP) 301 bpf_trampoline_unlink_cgroup_shim(pl->link->link.prog); 302 bpf_cgroup_link_auto_detach(pl->link); 303 } 304 kfree(pl); 305 static_branch_dec(&cgroup_bpf_enabled_key[atype]); 306 } 307 old_array = rcu_dereference_protected( 308 cgrp->bpf.effective[atype], 309 lockdep_is_held(&cgroup_mutex)); 310 bpf_prog_array_free(old_array); 311 } 312 313 list_for_each_entry_safe(storage, stmp, storages, list_cg) { 314 bpf_cgroup_storage_unlink(storage); 315 bpf_cgroup_storage_free(storage); 316 } 317 318 mutex_unlock(&cgroup_mutex); 319 320 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 321 cgroup_bpf_put(p); 322 323 percpu_ref_exit(&cgrp->bpf.refcnt); 324 cgroup_put(cgrp); 325 } 326 327 /** 328 * cgroup_bpf_release_fn() - callback used to schedule releasing 329 * of bpf cgroup data 330 * @ref: percpu ref counter structure 331 */ 332 static void cgroup_bpf_release_fn(struct percpu_ref *ref) 333 { 334 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt); 335 336 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release); 337 queue_work(system_wq, &cgrp->bpf.release_work); 338 } 339 340 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through 341 * link or direct prog. 342 */ 343 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl) 344 { 345 if (pl->prog) 346 return pl->prog; 347 if (pl->link) 348 return pl->link->link.prog; 349 return NULL; 350 } 351 352 /* count number of elements in the list. 353 * it's slow but the list cannot be long 354 */ 355 static u32 prog_list_length(struct hlist_head *head) 356 { 357 struct bpf_prog_list *pl; 358 u32 cnt = 0; 359 360 hlist_for_each_entry(pl, head, node) { 361 if (!prog_list_prog(pl)) 362 continue; 363 cnt++; 364 } 365 return cnt; 366 } 367 368 /* if parent has non-overridable prog attached, 369 * disallow attaching new programs to the descendent cgroup. 370 * if parent has overridable or multi-prog, allow attaching 371 */ 372 static bool hierarchy_allows_attach(struct cgroup *cgrp, 373 enum cgroup_bpf_attach_type atype) 374 { 375 struct cgroup *p; 376 377 p = cgroup_parent(cgrp); 378 if (!p) 379 return true; 380 do { 381 u32 flags = p->bpf.flags[atype]; 382 u32 cnt; 383 384 if (flags & BPF_F_ALLOW_MULTI) 385 return true; 386 cnt = prog_list_length(&p->bpf.progs[atype]); 387 WARN_ON_ONCE(cnt > 1); 388 if (cnt == 1) 389 return !!(flags & BPF_F_ALLOW_OVERRIDE); 390 p = cgroup_parent(p); 391 } while (p); 392 return true; 393 } 394 395 /* compute a chain of effective programs for a given cgroup: 396 * start from the list of programs in this cgroup and add 397 * all parent programs. 398 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding 399 * to programs in this cgroup 400 */ 401 static int compute_effective_progs(struct cgroup *cgrp, 402 enum cgroup_bpf_attach_type atype, 403 struct bpf_prog_array **array) 404 { 405 struct bpf_prog_array_item *item; 406 struct bpf_prog_array *progs; 407 struct bpf_prog_list *pl; 408 struct cgroup *p = cgrp; 409 int cnt = 0; 410 411 /* count number of effective programs by walking parents */ 412 do { 413 if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 414 cnt += prog_list_length(&p->bpf.progs[atype]); 415 p = cgroup_parent(p); 416 } while (p); 417 418 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL); 419 if (!progs) 420 return -ENOMEM; 421 422 /* populate the array with effective progs */ 423 cnt = 0; 424 p = cgrp; 425 do { 426 if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 427 continue; 428 429 hlist_for_each_entry(pl, &p->bpf.progs[atype], node) { 430 if (!prog_list_prog(pl)) 431 continue; 432 433 item = &progs->items[cnt]; 434 item->prog = prog_list_prog(pl); 435 bpf_cgroup_storages_assign(item->cgroup_storage, 436 pl->storage); 437 cnt++; 438 } 439 } while ((p = cgroup_parent(p))); 440 441 *array = progs; 442 return 0; 443 } 444 445 static void activate_effective_progs(struct cgroup *cgrp, 446 enum cgroup_bpf_attach_type atype, 447 struct bpf_prog_array *old_array) 448 { 449 old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array, 450 lockdep_is_held(&cgroup_mutex)); 451 /* free prog array after grace period, since __cgroup_bpf_run_*() 452 * might be still walking the array 453 */ 454 bpf_prog_array_free(old_array); 455 } 456 457 /** 458 * cgroup_bpf_inherit() - inherit effective programs from parent 459 * @cgrp: the cgroup to modify 460 */ 461 int cgroup_bpf_inherit(struct cgroup *cgrp) 462 { 463 /* has to use marco instead of const int, since compiler thinks 464 * that array below is variable length 465 */ 466 #define NR ARRAY_SIZE(cgrp->bpf.effective) 467 struct bpf_prog_array *arrays[NR] = {}; 468 struct cgroup *p; 469 int ret, i; 470 471 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0, 472 GFP_KERNEL); 473 if (ret) 474 return ret; 475 476 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 477 cgroup_bpf_get(p); 478 479 for (i = 0; i < NR; i++) 480 INIT_HLIST_HEAD(&cgrp->bpf.progs[i]); 481 482 INIT_LIST_HEAD(&cgrp->bpf.storages); 483 484 for (i = 0; i < NR; i++) 485 if (compute_effective_progs(cgrp, i, &arrays[i])) 486 goto cleanup; 487 488 for (i = 0; i < NR; i++) 489 activate_effective_progs(cgrp, i, arrays[i]); 490 491 return 0; 492 cleanup: 493 for (i = 0; i < NR; i++) 494 bpf_prog_array_free(arrays[i]); 495 496 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 497 cgroup_bpf_put(p); 498 499 percpu_ref_exit(&cgrp->bpf.refcnt); 500 501 return -ENOMEM; 502 } 503 504 static int update_effective_progs(struct cgroup *cgrp, 505 enum cgroup_bpf_attach_type atype) 506 { 507 struct cgroup_subsys_state *css; 508 int err; 509 510 /* allocate and recompute effective prog arrays */ 511 css_for_each_descendant_pre(css, &cgrp->self) { 512 struct cgroup *desc = container_of(css, struct cgroup, self); 513 514 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 515 continue; 516 517 err = compute_effective_progs(desc, atype, &desc->bpf.inactive); 518 if (err) 519 goto cleanup; 520 } 521 522 /* all allocations were successful. Activate all prog arrays */ 523 css_for_each_descendant_pre(css, &cgrp->self) { 524 struct cgroup *desc = container_of(css, struct cgroup, self); 525 526 if (percpu_ref_is_zero(&desc->bpf.refcnt)) { 527 if (unlikely(desc->bpf.inactive)) { 528 bpf_prog_array_free(desc->bpf.inactive); 529 desc->bpf.inactive = NULL; 530 } 531 continue; 532 } 533 534 activate_effective_progs(desc, atype, desc->bpf.inactive); 535 desc->bpf.inactive = NULL; 536 } 537 538 return 0; 539 540 cleanup: 541 /* oom while computing effective. Free all computed effective arrays 542 * since they were not activated 543 */ 544 css_for_each_descendant_pre(css, &cgrp->self) { 545 struct cgroup *desc = container_of(css, struct cgroup, self); 546 547 bpf_prog_array_free(desc->bpf.inactive); 548 desc->bpf.inactive = NULL; 549 } 550 551 return err; 552 } 553 554 #define BPF_CGROUP_MAX_PROGS 64 555 556 static struct bpf_prog_list *find_attach_entry(struct hlist_head *progs, 557 struct bpf_prog *prog, 558 struct bpf_cgroup_link *link, 559 struct bpf_prog *replace_prog, 560 bool allow_multi) 561 { 562 struct bpf_prog_list *pl; 563 564 /* single-attach case */ 565 if (!allow_multi) { 566 if (hlist_empty(progs)) 567 return NULL; 568 return hlist_entry(progs->first, typeof(*pl), node); 569 } 570 571 hlist_for_each_entry(pl, progs, node) { 572 if (prog && pl->prog == prog && prog != replace_prog) 573 /* disallow attaching the same prog twice */ 574 return ERR_PTR(-EINVAL); 575 if (link && pl->link == link) 576 /* disallow attaching the same link twice */ 577 return ERR_PTR(-EINVAL); 578 } 579 580 /* direct prog multi-attach w/ replacement case */ 581 if (replace_prog) { 582 hlist_for_each_entry(pl, progs, node) { 583 if (pl->prog == replace_prog) 584 /* a match found */ 585 return pl; 586 } 587 /* prog to replace not found for cgroup */ 588 return ERR_PTR(-ENOENT); 589 } 590 591 return NULL; 592 } 593 594 /** 595 * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and 596 * propagate the change to descendants 597 * @cgrp: The cgroup which descendants to traverse 598 * @prog: A program to attach 599 * @link: A link to attach 600 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set 601 * @type: Type of attach operation 602 * @flags: Option flags 603 * 604 * Exactly one of @prog or @link can be non-null. 605 * Must be called with cgroup_mutex held. 606 */ 607 static int __cgroup_bpf_attach(struct cgroup *cgrp, 608 struct bpf_prog *prog, struct bpf_prog *replace_prog, 609 struct bpf_cgroup_link *link, 610 enum bpf_attach_type type, u32 flags) 611 { 612 u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI)); 613 struct bpf_prog *old_prog = NULL; 614 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 615 struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 616 struct bpf_prog *new_prog = prog ? : link->link.prog; 617 enum cgroup_bpf_attach_type atype; 618 struct bpf_prog_list *pl; 619 struct hlist_head *progs; 620 int err; 621 622 if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) || 623 ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI))) 624 /* invalid combination */ 625 return -EINVAL; 626 if (link && (prog || replace_prog)) 627 /* only either link or prog/replace_prog can be specified */ 628 return -EINVAL; 629 if (!!replace_prog != !!(flags & BPF_F_REPLACE)) 630 /* replace_prog implies BPF_F_REPLACE, and vice versa */ 631 return -EINVAL; 632 633 atype = bpf_cgroup_atype_find(type, new_prog->aux->attach_btf_id); 634 if (atype < 0) 635 return -EINVAL; 636 637 progs = &cgrp->bpf.progs[atype]; 638 639 if (!hierarchy_allows_attach(cgrp, atype)) 640 return -EPERM; 641 642 if (!hlist_empty(progs) && cgrp->bpf.flags[atype] != saved_flags) 643 /* Disallow attaching non-overridable on top 644 * of existing overridable in this cgroup. 645 * Disallow attaching multi-prog if overridable or none 646 */ 647 return -EPERM; 648 649 if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS) 650 return -E2BIG; 651 652 pl = find_attach_entry(progs, prog, link, replace_prog, 653 flags & BPF_F_ALLOW_MULTI); 654 if (IS_ERR(pl)) 655 return PTR_ERR(pl); 656 657 if (bpf_cgroup_storages_alloc(storage, new_storage, type, 658 prog ? : link->link.prog, cgrp)) 659 return -ENOMEM; 660 661 if (pl) { 662 old_prog = pl->prog; 663 } else { 664 struct hlist_node *last = NULL; 665 666 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 667 if (!pl) { 668 bpf_cgroup_storages_free(new_storage); 669 return -ENOMEM; 670 } 671 if (hlist_empty(progs)) 672 hlist_add_head(&pl->node, progs); 673 else 674 hlist_for_each(last, progs) { 675 if (last->next) 676 continue; 677 hlist_add_behind(&pl->node, last); 678 break; 679 } 680 } 681 682 pl->prog = prog; 683 pl->link = link; 684 bpf_cgroup_storages_assign(pl->storage, storage); 685 cgrp->bpf.flags[atype] = saved_flags; 686 687 if (type == BPF_LSM_CGROUP) { 688 err = bpf_trampoline_link_cgroup_shim(new_prog, atype); 689 if (err) 690 goto cleanup; 691 } 692 693 err = update_effective_progs(cgrp, atype); 694 if (err) 695 goto cleanup_trampoline; 696 697 if (old_prog) { 698 if (type == BPF_LSM_CGROUP) 699 bpf_trampoline_unlink_cgroup_shim(old_prog); 700 bpf_prog_put(old_prog); 701 } else { 702 static_branch_inc(&cgroup_bpf_enabled_key[atype]); 703 } 704 bpf_cgroup_storages_link(new_storage, cgrp, type); 705 return 0; 706 707 cleanup_trampoline: 708 if (type == BPF_LSM_CGROUP) 709 bpf_trampoline_unlink_cgroup_shim(new_prog); 710 711 cleanup: 712 if (old_prog) { 713 pl->prog = old_prog; 714 pl->link = NULL; 715 } 716 bpf_cgroup_storages_free(new_storage); 717 if (!old_prog) { 718 hlist_del(&pl->node); 719 kfree(pl); 720 } 721 return err; 722 } 723 724 static int cgroup_bpf_attach(struct cgroup *cgrp, 725 struct bpf_prog *prog, struct bpf_prog *replace_prog, 726 struct bpf_cgroup_link *link, 727 enum bpf_attach_type type, 728 u32 flags) 729 { 730 int ret; 731 732 mutex_lock(&cgroup_mutex); 733 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags); 734 mutex_unlock(&cgroup_mutex); 735 return ret; 736 } 737 738 /* Swap updated BPF program for given link in effective program arrays across 739 * all descendant cgroups. This function is guaranteed to succeed. 740 */ 741 static void replace_effective_prog(struct cgroup *cgrp, 742 enum cgroup_bpf_attach_type atype, 743 struct bpf_cgroup_link *link) 744 { 745 struct bpf_prog_array_item *item; 746 struct cgroup_subsys_state *css; 747 struct bpf_prog_array *progs; 748 struct bpf_prog_list *pl; 749 struct hlist_head *head; 750 struct cgroup *cg; 751 int pos; 752 753 css_for_each_descendant_pre(css, &cgrp->self) { 754 struct cgroup *desc = container_of(css, struct cgroup, self); 755 756 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 757 continue; 758 759 /* find position of link in effective progs array */ 760 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { 761 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 762 continue; 763 764 head = &cg->bpf.progs[atype]; 765 hlist_for_each_entry(pl, head, node) { 766 if (!prog_list_prog(pl)) 767 continue; 768 if (pl->link == link) 769 goto found; 770 pos++; 771 } 772 } 773 found: 774 BUG_ON(!cg); 775 progs = rcu_dereference_protected( 776 desc->bpf.effective[atype], 777 lockdep_is_held(&cgroup_mutex)); 778 item = &progs->items[pos]; 779 WRITE_ONCE(item->prog, link->link.prog); 780 } 781 } 782 783 /** 784 * __cgroup_bpf_replace() - Replace link's program and propagate the change 785 * to descendants 786 * @cgrp: The cgroup which descendants to traverse 787 * @link: A link for which to replace BPF program 788 * @type: Type of attach operation 789 * 790 * Must be called with cgroup_mutex held. 791 */ 792 static int __cgroup_bpf_replace(struct cgroup *cgrp, 793 struct bpf_cgroup_link *link, 794 struct bpf_prog *new_prog) 795 { 796 enum cgroup_bpf_attach_type atype; 797 struct bpf_prog *old_prog; 798 struct bpf_prog_list *pl; 799 struct hlist_head *progs; 800 bool found = false; 801 802 atype = bpf_cgroup_atype_find(link->type, new_prog->aux->attach_btf_id); 803 if (atype < 0) 804 return -EINVAL; 805 806 progs = &cgrp->bpf.progs[atype]; 807 808 if (link->link.prog->type != new_prog->type) 809 return -EINVAL; 810 811 hlist_for_each_entry(pl, progs, node) { 812 if (pl->link == link) { 813 found = true; 814 break; 815 } 816 } 817 if (!found) 818 return -ENOENT; 819 820 old_prog = xchg(&link->link.prog, new_prog); 821 replace_effective_prog(cgrp, atype, link); 822 bpf_prog_put(old_prog); 823 return 0; 824 } 825 826 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog, 827 struct bpf_prog *old_prog) 828 { 829 struct bpf_cgroup_link *cg_link; 830 int ret; 831 832 cg_link = container_of(link, struct bpf_cgroup_link, link); 833 834 mutex_lock(&cgroup_mutex); 835 /* link might have been auto-released by dying cgroup, so fail */ 836 if (!cg_link->cgroup) { 837 ret = -ENOLINK; 838 goto out_unlock; 839 } 840 if (old_prog && link->prog != old_prog) { 841 ret = -EPERM; 842 goto out_unlock; 843 } 844 ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog); 845 out_unlock: 846 mutex_unlock(&cgroup_mutex); 847 return ret; 848 } 849 850 static struct bpf_prog_list *find_detach_entry(struct hlist_head *progs, 851 struct bpf_prog *prog, 852 struct bpf_cgroup_link *link, 853 bool allow_multi) 854 { 855 struct bpf_prog_list *pl; 856 857 if (!allow_multi) { 858 if (hlist_empty(progs)) 859 /* report error when trying to detach and nothing is attached */ 860 return ERR_PTR(-ENOENT); 861 862 /* to maintain backward compatibility NONE and OVERRIDE cgroups 863 * allow detaching with invalid FD (prog==NULL) in legacy mode 864 */ 865 return hlist_entry(progs->first, typeof(*pl), node); 866 } 867 868 if (!prog && !link) 869 /* to detach MULTI prog the user has to specify valid FD 870 * of the program or link to be detached 871 */ 872 return ERR_PTR(-EINVAL); 873 874 /* find the prog or link and detach it */ 875 hlist_for_each_entry(pl, progs, node) { 876 if (pl->prog == prog && pl->link == link) 877 return pl; 878 } 879 return ERR_PTR(-ENOENT); 880 } 881 882 /** 883 * purge_effective_progs() - After compute_effective_progs fails to alloc new 884 * cgrp->bpf.inactive table we can recover by 885 * recomputing the array in place. 886 * 887 * @cgrp: The cgroup which descendants to travers 888 * @prog: A program to detach or NULL 889 * @link: A link to detach or NULL 890 * @atype: Type of detach operation 891 */ 892 static void purge_effective_progs(struct cgroup *cgrp, struct bpf_prog *prog, 893 struct bpf_cgroup_link *link, 894 enum cgroup_bpf_attach_type atype) 895 { 896 struct cgroup_subsys_state *css; 897 struct bpf_prog_array *progs; 898 struct bpf_prog_list *pl; 899 struct hlist_head *head; 900 struct cgroup *cg; 901 int pos; 902 903 /* recompute effective prog array in place */ 904 css_for_each_descendant_pre(css, &cgrp->self) { 905 struct cgroup *desc = container_of(css, struct cgroup, self); 906 907 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 908 continue; 909 910 /* find position of link or prog in effective progs array */ 911 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { 912 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 913 continue; 914 915 head = &cg->bpf.progs[atype]; 916 hlist_for_each_entry(pl, head, node) { 917 if (!prog_list_prog(pl)) 918 continue; 919 if (pl->prog == prog && pl->link == link) 920 goto found; 921 pos++; 922 } 923 } 924 found: 925 BUG_ON(!cg); 926 progs = rcu_dereference_protected( 927 desc->bpf.effective[atype], 928 lockdep_is_held(&cgroup_mutex)); 929 930 /* Remove the program from the array */ 931 WARN_ONCE(bpf_prog_array_delete_safe_at(progs, pos), 932 "Failed to purge a prog from array at index %d", pos); 933 } 934 } 935 936 /** 937 * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and 938 * propagate the change to descendants 939 * @cgrp: The cgroup which descendants to traverse 940 * @prog: A program to detach or NULL 941 * @link: A link to detach or NULL 942 * @type: Type of detach operation 943 * 944 * At most one of @prog or @link can be non-NULL. 945 * Must be called with cgroup_mutex held. 946 */ 947 static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 948 struct bpf_cgroup_link *link, enum bpf_attach_type type) 949 { 950 enum cgroup_bpf_attach_type atype; 951 struct bpf_prog *old_prog; 952 struct bpf_prog_list *pl; 953 struct hlist_head *progs; 954 u32 attach_btf_id = 0; 955 u32 flags; 956 957 if (prog) 958 attach_btf_id = prog->aux->attach_btf_id; 959 if (link) 960 attach_btf_id = link->link.prog->aux->attach_btf_id; 961 962 atype = bpf_cgroup_atype_find(type, attach_btf_id); 963 if (atype < 0) 964 return -EINVAL; 965 966 progs = &cgrp->bpf.progs[atype]; 967 flags = cgrp->bpf.flags[atype]; 968 969 if (prog && link) 970 /* only one of prog or link can be specified */ 971 return -EINVAL; 972 973 pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI); 974 if (IS_ERR(pl)) 975 return PTR_ERR(pl); 976 977 /* mark it deleted, so it's ignored while recomputing effective */ 978 old_prog = pl->prog; 979 pl->prog = NULL; 980 pl->link = NULL; 981 982 if (update_effective_progs(cgrp, atype)) { 983 /* if update effective array failed replace the prog with a dummy prog*/ 984 pl->prog = old_prog; 985 pl->link = link; 986 purge_effective_progs(cgrp, old_prog, link, atype); 987 } 988 989 /* now can actually delete it from this cgroup list */ 990 hlist_del(&pl->node); 991 992 kfree(pl); 993 if (hlist_empty(progs)) 994 /* last program was detached, reset flags to zero */ 995 cgrp->bpf.flags[atype] = 0; 996 if (old_prog) { 997 if (type == BPF_LSM_CGROUP) 998 bpf_trampoline_unlink_cgroup_shim(old_prog); 999 bpf_prog_put(old_prog); 1000 } 1001 static_branch_dec(&cgroup_bpf_enabled_key[atype]); 1002 return 0; 1003 } 1004 1005 static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 1006 enum bpf_attach_type type) 1007 { 1008 int ret; 1009 1010 mutex_lock(&cgroup_mutex); 1011 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type); 1012 mutex_unlock(&cgroup_mutex); 1013 return ret; 1014 } 1015 1016 /* Must be called with cgroup_mutex held to avoid races. */ 1017 static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 1018 union bpf_attr __user *uattr) 1019 { 1020 __u32 __user *prog_attach_flags = u64_to_user_ptr(attr->query.prog_attach_flags); 1021 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); 1022 enum bpf_attach_type type = attr->query.attach_type; 1023 enum cgroup_bpf_attach_type from_atype, to_atype; 1024 enum cgroup_bpf_attach_type atype; 1025 struct bpf_prog_array *effective; 1026 int cnt, ret = 0, i; 1027 int total_cnt = 0; 1028 u32 flags; 1029 1030 if (type == BPF_LSM_CGROUP) { 1031 if (attr->query.prog_cnt && prog_ids && !prog_attach_flags) 1032 return -EINVAL; 1033 1034 from_atype = CGROUP_LSM_START; 1035 to_atype = CGROUP_LSM_END; 1036 flags = 0; 1037 } else { 1038 from_atype = to_cgroup_bpf_attach_type(type); 1039 if (from_atype < 0) 1040 return -EINVAL; 1041 to_atype = from_atype; 1042 flags = cgrp->bpf.flags[from_atype]; 1043 } 1044 1045 for (atype = from_atype; atype <= to_atype; atype++) { 1046 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) { 1047 effective = rcu_dereference_protected(cgrp->bpf.effective[atype], 1048 lockdep_is_held(&cgroup_mutex)); 1049 total_cnt += bpf_prog_array_length(effective); 1050 } else { 1051 total_cnt += prog_list_length(&cgrp->bpf.progs[atype]); 1052 } 1053 } 1054 1055 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) 1056 return -EFAULT; 1057 if (copy_to_user(&uattr->query.prog_cnt, &total_cnt, sizeof(total_cnt))) 1058 return -EFAULT; 1059 if (attr->query.prog_cnt == 0 || !prog_ids || !total_cnt) 1060 /* return early if user requested only program count + flags */ 1061 return 0; 1062 1063 if (attr->query.prog_cnt < total_cnt) { 1064 total_cnt = attr->query.prog_cnt; 1065 ret = -ENOSPC; 1066 } 1067 1068 for (atype = from_atype; atype <= to_atype && total_cnt; atype++) { 1069 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) { 1070 effective = rcu_dereference_protected(cgrp->bpf.effective[atype], 1071 lockdep_is_held(&cgroup_mutex)); 1072 cnt = min_t(int, bpf_prog_array_length(effective), total_cnt); 1073 ret = bpf_prog_array_copy_to_user(effective, prog_ids, cnt); 1074 } else { 1075 struct hlist_head *progs; 1076 struct bpf_prog_list *pl; 1077 struct bpf_prog *prog; 1078 u32 id; 1079 1080 progs = &cgrp->bpf.progs[atype]; 1081 cnt = min_t(int, prog_list_length(progs), total_cnt); 1082 i = 0; 1083 hlist_for_each_entry(pl, progs, node) { 1084 prog = prog_list_prog(pl); 1085 id = prog->aux->id; 1086 if (copy_to_user(prog_ids + i, &id, sizeof(id))) 1087 return -EFAULT; 1088 if (++i == cnt) 1089 break; 1090 } 1091 } 1092 1093 if (prog_attach_flags) { 1094 flags = cgrp->bpf.flags[atype]; 1095 1096 for (i = 0; i < cnt; i++) 1097 if (copy_to_user(prog_attach_flags + i, &flags, sizeof(flags))) 1098 return -EFAULT; 1099 prog_attach_flags += cnt; 1100 } 1101 1102 prog_ids += cnt; 1103 total_cnt -= cnt; 1104 } 1105 return ret; 1106 } 1107 1108 static int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 1109 union bpf_attr __user *uattr) 1110 { 1111 int ret; 1112 1113 mutex_lock(&cgroup_mutex); 1114 ret = __cgroup_bpf_query(cgrp, attr, uattr); 1115 mutex_unlock(&cgroup_mutex); 1116 return ret; 1117 } 1118 1119 int cgroup_bpf_prog_attach(const union bpf_attr *attr, 1120 enum bpf_prog_type ptype, struct bpf_prog *prog) 1121 { 1122 struct bpf_prog *replace_prog = NULL; 1123 struct cgroup *cgrp; 1124 int ret; 1125 1126 cgrp = cgroup_get_from_fd(attr->target_fd); 1127 if (IS_ERR(cgrp)) 1128 return PTR_ERR(cgrp); 1129 1130 if ((attr->attach_flags & BPF_F_ALLOW_MULTI) && 1131 (attr->attach_flags & BPF_F_REPLACE)) { 1132 replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype); 1133 if (IS_ERR(replace_prog)) { 1134 cgroup_put(cgrp); 1135 return PTR_ERR(replace_prog); 1136 } 1137 } 1138 1139 ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL, 1140 attr->attach_type, attr->attach_flags); 1141 1142 if (replace_prog) 1143 bpf_prog_put(replace_prog); 1144 cgroup_put(cgrp); 1145 return ret; 1146 } 1147 1148 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) 1149 { 1150 struct bpf_prog *prog; 1151 struct cgroup *cgrp; 1152 int ret; 1153 1154 cgrp = cgroup_get_from_fd(attr->target_fd); 1155 if (IS_ERR(cgrp)) 1156 return PTR_ERR(cgrp); 1157 1158 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); 1159 if (IS_ERR(prog)) 1160 prog = NULL; 1161 1162 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type); 1163 if (prog) 1164 bpf_prog_put(prog); 1165 1166 cgroup_put(cgrp); 1167 return ret; 1168 } 1169 1170 static void bpf_cgroup_link_release(struct bpf_link *link) 1171 { 1172 struct bpf_cgroup_link *cg_link = 1173 container_of(link, struct bpf_cgroup_link, link); 1174 struct cgroup *cg; 1175 1176 /* link might have been auto-detached by dying cgroup already, 1177 * in that case our work is done here 1178 */ 1179 if (!cg_link->cgroup) 1180 return; 1181 1182 mutex_lock(&cgroup_mutex); 1183 1184 /* re-check cgroup under lock again */ 1185 if (!cg_link->cgroup) { 1186 mutex_unlock(&cgroup_mutex); 1187 return; 1188 } 1189 1190 WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link, 1191 cg_link->type)); 1192 if (cg_link->type == BPF_LSM_CGROUP) 1193 bpf_trampoline_unlink_cgroup_shim(cg_link->link.prog); 1194 1195 cg = cg_link->cgroup; 1196 cg_link->cgroup = NULL; 1197 1198 mutex_unlock(&cgroup_mutex); 1199 1200 cgroup_put(cg); 1201 } 1202 1203 static void bpf_cgroup_link_dealloc(struct bpf_link *link) 1204 { 1205 struct bpf_cgroup_link *cg_link = 1206 container_of(link, struct bpf_cgroup_link, link); 1207 1208 kfree(cg_link); 1209 } 1210 1211 static int bpf_cgroup_link_detach(struct bpf_link *link) 1212 { 1213 bpf_cgroup_link_release(link); 1214 1215 return 0; 1216 } 1217 1218 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link, 1219 struct seq_file *seq) 1220 { 1221 struct bpf_cgroup_link *cg_link = 1222 container_of(link, struct bpf_cgroup_link, link); 1223 u64 cg_id = 0; 1224 1225 mutex_lock(&cgroup_mutex); 1226 if (cg_link->cgroup) 1227 cg_id = cgroup_id(cg_link->cgroup); 1228 mutex_unlock(&cgroup_mutex); 1229 1230 seq_printf(seq, 1231 "cgroup_id:\t%llu\n" 1232 "attach_type:\t%d\n", 1233 cg_id, 1234 cg_link->type); 1235 } 1236 1237 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link, 1238 struct bpf_link_info *info) 1239 { 1240 struct bpf_cgroup_link *cg_link = 1241 container_of(link, struct bpf_cgroup_link, link); 1242 u64 cg_id = 0; 1243 1244 mutex_lock(&cgroup_mutex); 1245 if (cg_link->cgroup) 1246 cg_id = cgroup_id(cg_link->cgroup); 1247 mutex_unlock(&cgroup_mutex); 1248 1249 info->cgroup.cgroup_id = cg_id; 1250 info->cgroup.attach_type = cg_link->type; 1251 return 0; 1252 } 1253 1254 static const struct bpf_link_ops bpf_cgroup_link_lops = { 1255 .release = bpf_cgroup_link_release, 1256 .dealloc = bpf_cgroup_link_dealloc, 1257 .detach = bpf_cgroup_link_detach, 1258 .update_prog = cgroup_bpf_replace, 1259 .show_fdinfo = bpf_cgroup_link_show_fdinfo, 1260 .fill_link_info = bpf_cgroup_link_fill_link_info, 1261 }; 1262 1263 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 1264 { 1265 struct bpf_link_primer link_primer; 1266 struct bpf_cgroup_link *link; 1267 struct cgroup *cgrp; 1268 int err; 1269 1270 if (attr->link_create.flags) 1271 return -EINVAL; 1272 1273 cgrp = cgroup_get_from_fd(attr->link_create.target_fd); 1274 if (IS_ERR(cgrp)) 1275 return PTR_ERR(cgrp); 1276 1277 link = kzalloc(sizeof(*link), GFP_USER); 1278 if (!link) { 1279 err = -ENOMEM; 1280 goto out_put_cgroup; 1281 } 1282 bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops, 1283 prog); 1284 link->cgroup = cgrp; 1285 link->type = attr->link_create.attach_type; 1286 1287 err = bpf_link_prime(&link->link, &link_primer); 1288 if (err) { 1289 kfree(link); 1290 goto out_put_cgroup; 1291 } 1292 1293 err = cgroup_bpf_attach(cgrp, NULL, NULL, link, 1294 link->type, BPF_F_ALLOW_MULTI); 1295 if (err) { 1296 bpf_link_cleanup(&link_primer); 1297 goto out_put_cgroup; 1298 } 1299 1300 return bpf_link_settle(&link_primer); 1301 1302 out_put_cgroup: 1303 cgroup_put(cgrp); 1304 return err; 1305 } 1306 1307 int cgroup_bpf_prog_query(const union bpf_attr *attr, 1308 union bpf_attr __user *uattr) 1309 { 1310 struct cgroup *cgrp; 1311 int ret; 1312 1313 cgrp = cgroup_get_from_fd(attr->query.target_fd); 1314 if (IS_ERR(cgrp)) 1315 return PTR_ERR(cgrp); 1316 1317 ret = cgroup_bpf_query(cgrp, attr, uattr); 1318 1319 cgroup_put(cgrp); 1320 return ret; 1321 } 1322 1323 /** 1324 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering 1325 * @sk: The socket sending or receiving traffic 1326 * @skb: The skb that is being sent or received 1327 * @type: The type of program to be executed 1328 * 1329 * If no socket is passed, or the socket is not of type INET or INET6, 1330 * this function does nothing and returns 0. 1331 * 1332 * The program type passed in via @type must be suitable for network 1333 * filtering. No further check is performed to assert that. 1334 * 1335 * For egress packets, this function can return: 1336 * NET_XMIT_SUCCESS (0) - continue with packet output 1337 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr 1338 * NET_XMIT_CN (2) - continue with packet output and notify TCP 1339 * to call cwr 1340 * -err - drop packet 1341 * 1342 * For ingress packets, this function will return -EPERM if any 1343 * attached program was found and if it returned != 1 during execution. 1344 * Otherwise 0 is returned. 1345 */ 1346 int __cgroup_bpf_run_filter_skb(struct sock *sk, 1347 struct sk_buff *skb, 1348 enum cgroup_bpf_attach_type atype) 1349 { 1350 unsigned int offset = skb->data - skb_network_header(skb); 1351 struct sock *save_sk; 1352 void *saved_data_end; 1353 struct cgroup *cgrp; 1354 int ret; 1355 1356 if (!sk || !sk_fullsock(sk)) 1357 return 0; 1358 1359 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 1360 return 0; 1361 1362 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1363 save_sk = skb->sk; 1364 skb->sk = sk; 1365 __skb_push(skb, offset); 1366 1367 /* compute pointers for the bpf prog */ 1368 bpf_compute_and_save_data_end(skb, &saved_data_end); 1369 1370 if (atype == CGROUP_INET_EGRESS) { 1371 u32 flags = 0; 1372 bool cn; 1373 1374 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, skb, 1375 __bpf_prog_run_save_cb, 0, &flags); 1376 1377 /* Return values of CGROUP EGRESS BPF programs are: 1378 * 0: drop packet 1379 * 1: keep packet 1380 * 2: drop packet and cn 1381 * 3: keep packet and cn 1382 * 1383 * The returned value is then converted to one of the NET_XMIT 1384 * or an error code that is then interpreted as drop packet 1385 * (and no cn): 1386 * 0: NET_XMIT_SUCCESS skb should be transmitted 1387 * 1: NET_XMIT_DROP skb should be dropped and cn 1388 * 2: NET_XMIT_CN skb should be transmitted and cn 1389 * 3: -err skb should be dropped 1390 */ 1391 1392 cn = flags & BPF_RET_SET_CN; 1393 if (ret && !IS_ERR_VALUE((long)ret)) 1394 ret = -EFAULT; 1395 if (!ret) 1396 ret = (cn ? NET_XMIT_CN : NET_XMIT_SUCCESS); 1397 else 1398 ret = (cn ? NET_XMIT_DROP : ret); 1399 } else { 1400 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, 1401 skb, __bpf_prog_run_save_cb, 0, 1402 NULL); 1403 if (ret && !IS_ERR_VALUE((long)ret)) 1404 ret = -EFAULT; 1405 } 1406 bpf_restore_data_end(skb, saved_data_end); 1407 __skb_pull(skb, offset); 1408 skb->sk = save_sk; 1409 1410 return ret; 1411 } 1412 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb); 1413 1414 /** 1415 * __cgroup_bpf_run_filter_sk() - Run a program on a sock 1416 * @sk: sock structure to manipulate 1417 * @type: The type of program to be executed 1418 * 1419 * socket is passed is expected to be of type INET or INET6. 1420 * 1421 * The program type passed in via @type must be suitable for sock 1422 * filtering. No further check is performed to assert that. 1423 * 1424 * This function will return %-EPERM if any if an attached program was found 1425 * and if it returned != 1 during execution. In all other cases, 0 is returned. 1426 */ 1427 int __cgroup_bpf_run_filter_sk(struct sock *sk, 1428 enum cgroup_bpf_attach_type atype) 1429 { 1430 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1431 1432 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sk, bpf_prog_run, 0, 1433 NULL); 1434 } 1435 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk); 1436 1437 /** 1438 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and 1439 * provided by user sockaddr 1440 * @sk: sock struct that will use sockaddr 1441 * @uaddr: sockaddr struct provided by user 1442 * @type: The type of program to be executed 1443 * @t_ctx: Pointer to attach type specific context 1444 * @flags: Pointer to u32 which contains higher bits of BPF program 1445 * return value (OR'ed together). 1446 * 1447 * socket is expected to be of type INET or INET6. 1448 * 1449 * This function will return %-EPERM if an attached program is found and 1450 * returned value != 1 during execution. In all other cases, 0 is returned. 1451 */ 1452 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk, 1453 struct sockaddr *uaddr, 1454 enum cgroup_bpf_attach_type atype, 1455 void *t_ctx, 1456 u32 *flags) 1457 { 1458 struct bpf_sock_addr_kern ctx = { 1459 .sk = sk, 1460 .uaddr = uaddr, 1461 .t_ctx = t_ctx, 1462 }; 1463 struct sockaddr_storage unspec; 1464 struct cgroup *cgrp; 1465 1466 /* Check socket family since not all sockets represent network 1467 * endpoint (e.g. AF_UNIX). 1468 */ 1469 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 1470 return 0; 1471 1472 if (!ctx.uaddr) { 1473 memset(&unspec, 0, sizeof(unspec)); 1474 ctx.uaddr = (struct sockaddr *)&unspec; 1475 } 1476 1477 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1478 return bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 1479 0, flags); 1480 } 1481 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr); 1482 1483 /** 1484 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock 1485 * @sk: socket to get cgroup from 1486 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains 1487 * sk with connection information (IP addresses, etc.) May not contain 1488 * cgroup info if it is a req sock. 1489 * @type: The type of program to be executed 1490 * 1491 * socket passed is expected to be of type INET or INET6. 1492 * 1493 * The program type passed in via @type must be suitable for sock_ops 1494 * filtering. No further check is performed to assert that. 1495 * 1496 * This function will return %-EPERM if any if an attached program was found 1497 * and if it returned != 1 during execution. In all other cases, 0 is returned. 1498 */ 1499 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk, 1500 struct bpf_sock_ops_kern *sock_ops, 1501 enum cgroup_bpf_attach_type atype) 1502 { 1503 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1504 1505 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sock_ops, bpf_prog_run, 1506 0, NULL); 1507 } 1508 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops); 1509 1510 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor, 1511 short access, enum cgroup_bpf_attach_type atype) 1512 { 1513 struct cgroup *cgrp; 1514 struct bpf_cgroup_dev_ctx ctx = { 1515 .access_type = (access << 16) | dev_type, 1516 .major = major, 1517 .minor = minor, 1518 }; 1519 int ret; 1520 1521 rcu_read_lock(); 1522 cgrp = task_dfl_cgroup(current); 1523 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, 1524 NULL); 1525 rcu_read_unlock(); 1526 1527 return ret; 1528 } 1529 1530 BPF_CALL_0(bpf_get_retval) 1531 { 1532 struct bpf_cg_run_ctx *ctx = 1533 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1534 1535 return ctx->retval; 1536 } 1537 1538 const struct bpf_func_proto bpf_get_retval_proto = { 1539 .func = bpf_get_retval, 1540 .gpl_only = false, 1541 .ret_type = RET_INTEGER, 1542 }; 1543 1544 BPF_CALL_1(bpf_set_retval, int, retval) 1545 { 1546 struct bpf_cg_run_ctx *ctx = 1547 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1548 1549 ctx->retval = retval; 1550 return 0; 1551 } 1552 1553 const struct bpf_func_proto bpf_set_retval_proto = { 1554 .func = bpf_set_retval, 1555 .gpl_only = false, 1556 .ret_type = RET_INTEGER, 1557 .arg1_type = ARG_ANYTHING, 1558 }; 1559 1560 static const struct bpf_func_proto * 1561 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1562 { 1563 switch (func_id) { 1564 case BPF_FUNC_get_current_uid_gid: 1565 return &bpf_get_current_uid_gid_proto; 1566 case BPF_FUNC_get_local_storage: 1567 return &bpf_get_local_storage_proto; 1568 case BPF_FUNC_get_current_cgroup_id: 1569 return &bpf_get_current_cgroup_id_proto; 1570 case BPF_FUNC_perf_event_output: 1571 return &bpf_event_output_data_proto; 1572 case BPF_FUNC_get_retval: 1573 return &bpf_get_retval_proto; 1574 case BPF_FUNC_set_retval: 1575 return &bpf_set_retval_proto; 1576 default: 1577 return bpf_base_func_proto(func_id); 1578 } 1579 } 1580 1581 static const struct bpf_func_proto * 1582 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1583 { 1584 return cgroup_base_func_proto(func_id, prog); 1585 } 1586 1587 static bool cgroup_dev_is_valid_access(int off, int size, 1588 enum bpf_access_type type, 1589 const struct bpf_prog *prog, 1590 struct bpf_insn_access_aux *info) 1591 { 1592 const int size_default = sizeof(__u32); 1593 1594 if (type == BPF_WRITE) 1595 return false; 1596 1597 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx)) 1598 return false; 1599 /* The verifier guarantees that size > 0. */ 1600 if (off % size != 0) 1601 return false; 1602 1603 switch (off) { 1604 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type): 1605 bpf_ctx_record_field_size(info, size_default); 1606 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 1607 return false; 1608 break; 1609 default: 1610 if (size != size_default) 1611 return false; 1612 } 1613 1614 return true; 1615 } 1616 1617 const struct bpf_prog_ops cg_dev_prog_ops = { 1618 }; 1619 1620 const struct bpf_verifier_ops cg_dev_verifier_ops = { 1621 .get_func_proto = cgroup_dev_func_proto, 1622 .is_valid_access = cgroup_dev_is_valid_access, 1623 }; 1624 1625 /** 1626 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl 1627 * 1628 * @head: sysctl table header 1629 * @table: sysctl table 1630 * @write: sysctl is being read (= 0) or written (= 1) 1631 * @buf: pointer to buffer (in and out) 1632 * @pcount: value-result argument: value is size of buffer pointed to by @buf, 1633 * result is size of @new_buf if program set new value, initial value 1634 * otherwise 1635 * @ppos: value-result argument: value is position at which read from or write 1636 * to sysctl is happening, result is new position if program overrode it, 1637 * initial value otherwise 1638 * @type: type of program to be executed 1639 * 1640 * Program is run when sysctl is being accessed, either read or written, and 1641 * can allow or deny such access. 1642 * 1643 * This function will return %-EPERM if an attached program is found and 1644 * returned value != 1 during execution. In all other cases 0 is returned. 1645 */ 1646 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head, 1647 struct ctl_table *table, int write, 1648 char **buf, size_t *pcount, loff_t *ppos, 1649 enum cgroup_bpf_attach_type atype) 1650 { 1651 struct bpf_sysctl_kern ctx = { 1652 .head = head, 1653 .table = table, 1654 .write = write, 1655 .ppos = ppos, 1656 .cur_val = NULL, 1657 .cur_len = PAGE_SIZE, 1658 .new_val = NULL, 1659 .new_len = 0, 1660 .new_updated = 0, 1661 }; 1662 struct cgroup *cgrp; 1663 loff_t pos = 0; 1664 int ret; 1665 1666 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL); 1667 if (!ctx.cur_val || 1668 table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) { 1669 /* Let BPF program decide how to proceed. */ 1670 ctx.cur_len = 0; 1671 } 1672 1673 if (write && *buf && *pcount) { 1674 /* BPF program should be able to override new value with a 1675 * buffer bigger than provided by user. 1676 */ 1677 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL); 1678 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount); 1679 if (ctx.new_val) { 1680 memcpy(ctx.new_val, *buf, ctx.new_len); 1681 } else { 1682 /* Let BPF program decide how to proceed. */ 1683 ctx.new_len = 0; 1684 } 1685 } 1686 1687 rcu_read_lock(); 1688 cgrp = task_dfl_cgroup(current); 1689 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, 1690 NULL); 1691 rcu_read_unlock(); 1692 1693 kfree(ctx.cur_val); 1694 1695 if (ret == 1 && ctx.new_updated) { 1696 kfree(*buf); 1697 *buf = ctx.new_val; 1698 *pcount = ctx.new_len; 1699 } else { 1700 kfree(ctx.new_val); 1701 } 1702 1703 return ret; 1704 } 1705 1706 #ifdef CONFIG_NET 1707 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen, 1708 struct bpf_sockopt_buf *buf) 1709 { 1710 if (unlikely(max_optlen < 0)) 1711 return -EINVAL; 1712 1713 if (unlikely(max_optlen > PAGE_SIZE)) { 1714 /* We don't expose optvals that are greater than PAGE_SIZE 1715 * to the BPF program. 1716 */ 1717 max_optlen = PAGE_SIZE; 1718 } 1719 1720 if (max_optlen <= sizeof(buf->data)) { 1721 /* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE 1722 * bytes avoid the cost of kzalloc. 1723 */ 1724 ctx->optval = buf->data; 1725 ctx->optval_end = ctx->optval + max_optlen; 1726 return max_optlen; 1727 } 1728 1729 ctx->optval = kzalloc(max_optlen, GFP_USER); 1730 if (!ctx->optval) 1731 return -ENOMEM; 1732 1733 ctx->optval_end = ctx->optval + max_optlen; 1734 1735 return max_optlen; 1736 } 1737 1738 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx, 1739 struct bpf_sockopt_buf *buf) 1740 { 1741 if (ctx->optval == buf->data) 1742 return; 1743 kfree(ctx->optval); 1744 } 1745 1746 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx, 1747 struct bpf_sockopt_buf *buf) 1748 { 1749 return ctx->optval != buf->data; 1750 } 1751 1752 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level, 1753 int *optname, char __user *optval, 1754 int *optlen, char **kernel_optval) 1755 { 1756 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1757 struct bpf_sockopt_buf buf = {}; 1758 struct bpf_sockopt_kern ctx = { 1759 .sk = sk, 1760 .level = *level, 1761 .optname = *optname, 1762 }; 1763 int ret, max_optlen; 1764 1765 /* Allocate a bit more than the initial user buffer for 1766 * BPF program. The canonical use case is overriding 1767 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic). 1768 */ 1769 max_optlen = max_t(int, 16, *optlen); 1770 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); 1771 if (max_optlen < 0) 1772 return max_optlen; 1773 1774 ctx.optlen = *optlen; 1775 1776 if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) { 1777 ret = -EFAULT; 1778 goto out; 1779 } 1780 1781 lock_sock(sk); 1782 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_SETSOCKOPT, 1783 &ctx, bpf_prog_run, 0, NULL); 1784 release_sock(sk); 1785 1786 if (ret) 1787 goto out; 1788 1789 if (ctx.optlen == -1) { 1790 /* optlen set to -1, bypass kernel */ 1791 ret = 1; 1792 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) { 1793 /* optlen is out of bounds */ 1794 ret = -EFAULT; 1795 } else { 1796 /* optlen within bounds, run kernel handler */ 1797 ret = 0; 1798 1799 /* export any potential modifications */ 1800 *level = ctx.level; 1801 *optname = ctx.optname; 1802 1803 /* optlen == 0 from BPF indicates that we should 1804 * use original userspace data. 1805 */ 1806 if (ctx.optlen != 0) { 1807 *optlen = ctx.optlen; 1808 /* We've used bpf_sockopt_kern->buf as an intermediary 1809 * storage, but the BPF program indicates that we need 1810 * to pass this data to the kernel setsockopt handler. 1811 * No way to export on-stack buf, have to allocate a 1812 * new buffer. 1813 */ 1814 if (!sockopt_buf_allocated(&ctx, &buf)) { 1815 void *p = kmalloc(ctx.optlen, GFP_USER); 1816 1817 if (!p) { 1818 ret = -ENOMEM; 1819 goto out; 1820 } 1821 memcpy(p, ctx.optval, ctx.optlen); 1822 *kernel_optval = p; 1823 } else { 1824 *kernel_optval = ctx.optval; 1825 } 1826 /* export and don't free sockopt buf */ 1827 return 0; 1828 } 1829 } 1830 1831 out: 1832 sockopt_free_buf(&ctx, &buf); 1833 return ret; 1834 } 1835 1836 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level, 1837 int optname, char __user *optval, 1838 int __user *optlen, int max_optlen, 1839 int retval) 1840 { 1841 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1842 struct bpf_sockopt_buf buf = {}; 1843 struct bpf_sockopt_kern ctx = { 1844 .sk = sk, 1845 .level = level, 1846 .optname = optname, 1847 .current_task = current, 1848 }; 1849 int ret; 1850 1851 ctx.optlen = max_optlen; 1852 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); 1853 if (max_optlen < 0) 1854 return max_optlen; 1855 1856 if (!retval) { 1857 /* If kernel getsockopt finished successfully, 1858 * copy whatever was returned to the user back 1859 * into our temporary buffer. Set optlen to the 1860 * one that kernel returned as well to let 1861 * BPF programs inspect the value. 1862 */ 1863 1864 if (get_user(ctx.optlen, optlen)) { 1865 ret = -EFAULT; 1866 goto out; 1867 } 1868 1869 if (ctx.optlen < 0) { 1870 ret = -EFAULT; 1871 goto out; 1872 } 1873 1874 if (copy_from_user(ctx.optval, optval, 1875 min(ctx.optlen, max_optlen)) != 0) { 1876 ret = -EFAULT; 1877 goto out; 1878 } 1879 } 1880 1881 lock_sock(sk); 1882 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, 1883 &ctx, bpf_prog_run, retval, NULL); 1884 release_sock(sk); 1885 1886 if (ret < 0) 1887 goto out; 1888 1889 if (ctx.optlen > max_optlen || ctx.optlen < 0) { 1890 ret = -EFAULT; 1891 goto out; 1892 } 1893 1894 if (ctx.optlen != 0) { 1895 if (copy_to_user(optval, ctx.optval, ctx.optlen) || 1896 put_user(ctx.optlen, optlen)) { 1897 ret = -EFAULT; 1898 goto out; 1899 } 1900 } 1901 1902 out: 1903 sockopt_free_buf(&ctx, &buf); 1904 return ret; 1905 } 1906 1907 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level, 1908 int optname, void *optval, 1909 int *optlen, int retval) 1910 { 1911 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1912 struct bpf_sockopt_kern ctx = { 1913 .sk = sk, 1914 .level = level, 1915 .optname = optname, 1916 .optlen = *optlen, 1917 .optval = optval, 1918 .optval_end = optval + *optlen, 1919 .current_task = current, 1920 }; 1921 int ret; 1922 1923 /* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy 1924 * user data back into BPF buffer when reval != 0. This is 1925 * done as an optimization to avoid extra copy, assuming 1926 * kernel won't populate the data in case of an error. 1927 * Here we always pass the data and memset() should 1928 * be called if that data shouldn't be "exported". 1929 */ 1930 1931 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, 1932 &ctx, bpf_prog_run, retval, NULL); 1933 if (ret < 0) 1934 return ret; 1935 1936 if (ctx.optlen > *optlen) 1937 return -EFAULT; 1938 1939 /* BPF programs can shrink the buffer, export the modifications. 1940 */ 1941 if (ctx.optlen != 0) 1942 *optlen = ctx.optlen; 1943 1944 return ret; 1945 } 1946 #endif 1947 1948 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp, 1949 size_t *lenp) 1950 { 1951 ssize_t tmp_ret = 0, ret; 1952 1953 if (dir->header.parent) { 1954 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp); 1955 if (tmp_ret < 0) 1956 return tmp_ret; 1957 } 1958 1959 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp); 1960 if (ret < 0) 1961 return ret; 1962 *bufp += ret; 1963 *lenp -= ret; 1964 ret += tmp_ret; 1965 1966 /* Avoid leading slash. */ 1967 if (!ret) 1968 return ret; 1969 1970 tmp_ret = strscpy(*bufp, "/", *lenp); 1971 if (tmp_ret < 0) 1972 return tmp_ret; 1973 *bufp += tmp_ret; 1974 *lenp -= tmp_ret; 1975 1976 return ret + tmp_ret; 1977 } 1978 1979 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf, 1980 size_t, buf_len, u64, flags) 1981 { 1982 ssize_t tmp_ret = 0, ret; 1983 1984 if (!buf) 1985 return -EINVAL; 1986 1987 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) { 1988 if (!ctx->head) 1989 return -EINVAL; 1990 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len); 1991 if (tmp_ret < 0) 1992 return tmp_ret; 1993 } 1994 1995 ret = strscpy(buf, ctx->table->procname, buf_len); 1996 1997 return ret < 0 ? ret : tmp_ret + ret; 1998 } 1999 2000 static const struct bpf_func_proto bpf_sysctl_get_name_proto = { 2001 .func = bpf_sysctl_get_name, 2002 .gpl_only = false, 2003 .ret_type = RET_INTEGER, 2004 .arg1_type = ARG_PTR_TO_CTX, 2005 .arg2_type = ARG_PTR_TO_MEM, 2006 .arg3_type = ARG_CONST_SIZE, 2007 .arg4_type = ARG_ANYTHING, 2008 }; 2009 2010 static int copy_sysctl_value(char *dst, size_t dst_len, char *src, 2011 size_t src_len) 2012 { 2013 if (!dst) 2014 return -EINVAL; 2015 2016 if (!dst_len) 2017 return -E2BIG; 2018 2019 if (!src || !src_len) { 2020 memset(dst, 0, dst_len); 2021 return -EINVAL; 2022 } 2023 2024 memcpy(dst, src, min(dst_len, src_len)); 2025 2026 if (dst_len > src_len) { 2027 memset(dst + src_len, '\0', dst_len - src_len); 2028 return src_len; 2029 } 2030 2031 dst[dst_len - 1] = '\0'; 2032 2033 return -E2BIG; 2034 } 2035 2036 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx, 2037 char *, buf, size_t, buf_len) 2038 { 2039 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len); 2040 } 2041 2042 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = { 2043 .func = bpf_sysctl_get_current_value, 2044 .gpl_only = false, 2045 .ret_type = RET_INTEGER, 2046 .arg1_type = ARG_PTR_TO_CTX, 2047 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 2048 .arg3_type = ARG_CONST_SIZE, 2049 }; 2050 2051 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf, 2052 size_t, buf_len) 2053 { 2054 if (!ctx->write) { 2055 if (buf && buf_len) 2056 memset(buf, '\0', buf_len); 2057 return -EINVAL; 2058 } 2059 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len); 2060 } 2061 2062 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = { 2063 .func = bpf_sysctl_get_new_value, 2064 .gpl_only = false, 2065 .ret_type = RET_INTEGER, 2066 .arg1_type = ARG_PTR_TO_CTX, 2067 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 2068 .arg3_type = ARG_CONST_SIZE, 2069 }; 2070 2071 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx, 2072 const char *, buf, size_t, buf_len) 2073 { 2074 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len) 2075 return -EINVAL; 2076 2077 if (buf_len > PAGE_SIZE - 1) 2078 return -E2BIG; 2079 2080 memcpy(ctx->new_val, buf, buf_len); 2081 ctx->new_len = buf_len; 2082 ctx->new_updated = 1; 2083 2084 return 0; 2085 } 2086 2087 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = { 2088 .func = bpf_sysctl_set_new_value, 2089 .gpl_only = false, 2090 .ret_type = RET_INTEGER, 2091 .arg1_type = ARG_PTR_TO_CTX, 2092 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 2093 .arg3_type = ARG_CONST_SIZE, 2094 }; 2095 2096 static const struct bpf_func_proto * 2097 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2098 { 2099 switch (func_id) { 2100 case BPF_FUNC_strtol: 2101 return &bpf_strtol_proto; 2102 case BPF_FUNC_strtoul: 2103 return &bpf_strtoul_proto; 2104 case BPF_FUNC_sysctl_get_name: 2105 return &bpf_sysctl_get_name_proto; 2106 case BPF_FUNC_sysctl_get_current_value: 2107 return &bpf_sysctl_get_current_value_proto; 2108 case BPF_FUNC_sysctl_get_new_value: 2109 return &bpf_sysctl_get_new_value_proto; 2110 case BPF_FUNC_sysctl_set_new_value: 2111 return &bpf_sysctl_set_new_value_proto; 2112 case BPF_FUNC_ktime_get_coarse_ns: 2113 return &bpf_ktime_get_coarse_ns_proto; 2114 default: 2115 return cgroup_base_func_proto(func_id, prog); 2116 } 2117 } 2118 2119 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type, 2120 const struct bpf_prog *prog, 2121 struct bpf_insn_access_aux *info) 2122 { 2123 const int size_default = sizeof(__u32); 2124 2125 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size) 2126 return false; 2127 2128 switch (off) { 2129 case bpf_ctx_range(struct bpf_sysctl, write): 2130 if (type != BPF_READ) 2131 return false; 2132 bpf_ctx_record_field_size(info, size_default); 2133 return bpf_ctx_narrow_access_ok(off, size, size_default); 2134 case bpf_ctx_range(struct bpf_sysctl, file_pos): 2135 if (type == BPF_READ) { 2136 bpf_ctx_record_field_size(info, size_default); 2137 return bpf_ctx_narrow_access_ok(off, size, size_default); 2138 } else { 2139 return size == size_default; 2140 } 2141 default: 2142 return false; 2143 } 2144 } 2145 2146 static u32 sysctl_convert_ctx_access(enum bpf_access_type type, 2147 const struct bpf_insn *si, 2148 struct bpf_insn *insn_buf, 2149 struct bpf_prog *prog, u32 *target_size) 2150 { 2151 struct bpf_insn *insn = insn_buf; 2152 u32 read_size; 2153 2154 switch (si->off) { 2155 case offsetof(struct bpf_sysctl, write): 2156 *insn++ = BPF_LDX_MEM( 2157 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 2158 bpf_target_off(struct bpf_sysctl_kern, write, 2159 sizeof_field(struct bpf_sysctl_kern, 2160 write), 2161 target_size)); 2162 break; 2163 case offsetof(struct bpf_sysctl, file_pos): 2164 /* ppos is a pointer so it should be accessed via indirect 2165 * loads and stores. Also for stores additional temporary 2166 * register is used since neither src_reg nor dst_reg can be 2167 * overridden. 2168 */ 2169 if (type == BPF_WRITE) { 2170 int treg = BPF_REG_9; 2171 2172 if (si->src_reg == treg || si->dst_reg == treg) 2173 --treg; 2174 if (si->src_reg == treg || si->dst_reg == treg) 2175 --treg; 2176 *insn++ = BPF_STX_MEM( 2177 BPF_DW, si->dst_reg, treg, 2178 offsetof(struct bpf_sysctl_kern, tmp_reg)); 2179 *insn++ = BPF_LDX_MEM( 2180 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 2181 treg, si->dst_reg, 2182 offsetof(struct bpf_sysctl_kern, ppos)); 2183 *insn++ = BPF_STX_MEM( 2184 BPF_SIZEOF(u32), treg, si->src_reg, 2185 bpf_ctx_narrow_access_offset( 2186 0, sizeof(u32), sizeof(loff_t))); 2187 *insn++ = BPF_LDX_MEM( 2188 BPF_DW, treg, si->dst_reg, 2189 offsetof(struct bpf_sysctl_kern, tmp_reg)); 2190 } else { 2191 *insn++ = BPF_LDX_MEM( 2192 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 2193 si->dst_reg, si->src_reg, 2194 offsetof(struct bpf_sysctl_kern, ppos)); 2195 read_size = bpf_size_to_bytes(BPF_SIZE(si->code)); 2196 *insn++ = BPF_LDX_MEM( 2197 BPF_SIZE(si->code), si->dst_reg, si->dst_reg, 2198 bpf_ctx_narrow_access_offset( 2199 0, read_size, sizeof(loff_t))); 2200 } 2201 *target_size = sizeof(u32); 2202 break; 2203 } 2204 2205 return insn - insn_buf; 2206 } 2207 2208 const struct bpf_verifier_ops cg_sysctl_verifier_ops = { 2209 .get_func_proto = sysctl_func_proto, 2210 .is_valid_access = sysctl_is_valid_access, 2211 .convert_ctx_access = sysctl_convert_ctx_access, 2212 }; 2213 2214 const struct bpf_prog_ops cg_sysctl_prog_ops = { 2215 }; 2216 2217 #ifdef CONFIG_NET 2218 BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx) 2219 { 2220 const struct net *net = ctx ? sock_net(ctx->sk) : &init_net; 2221 2222 return net->net_cookie; 2223 } 2224 2225 static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = { 2226 .func = bpf_get_netns_cookie_sockopt, 2227 .gpl_only = false, 2228 .ret_type = RET_INTEGER, 2229 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 2230 }; 2231 #endif 2232 2233 static const struct bpf_func_proto * 2234 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2235 { 2236 switch (func_id) { 2237 #ifdef CONFIG_NET 2238 case BPF_FUNC_get_netns_cookie: 2239 return &bpf_get_netns_cookie_sockopt_proto; 2240 case BPF_FUNC_sk_storage_get: 2241 return &bpf_sk_storage_get_proto; 2242 case BPF_FUNC_sk_storage_delete: 2243 return &bpf_sk_storage_delete_proto; 2244 case BPF_FUNC_setsockopt: 2245 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) 2246 return &bpf_sk_setsockopt_proto; 2247 return NULL; 2248 case BPF_FUNC_getsockopt: 2249 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) 2250 return &bpf_sk_getsockopt_proto; 2251 return NULL; 2252 #endif 2253 #ifdef CONFIG_INET 2254 case BPF_FUNC_tcp_sock: 2255 return &bpf_tcp_sock_proto; 2256 #endif 2257 default: 2258 return cgroup_base_func_proto(func_id, prog); 2259 } 2260 } 2261 2262 static bool cg_sockopt_is_valid_access(int off, int size, 2263 enum bpf_access_type type, 2264 const struct bpf_prog *prog, 2265 struct bpf_insn_access_aux *info) 2266 { 2267 const int size_default = sizeof(__u32); 2268 2269 if (off < 0 || off >= sizeof(struct bpf_sockopt)) 2270 return false; 2271 2272 if (off % size != 0) 2273 return false; 2274 2275 if (type == BPF_WRITE) { 2276 switch (off) { 2277 case offsetof(struct bpf_sockopt, retval): 2278 if (size != size_default) 2279 return false; 2280 return prog->expected_attach_type == 2281 BPF_CGROUP_GETSOCKOPT; 2282 case offsetof(struct bpf_sockopt, optname): 2283 fallthrough; 2284 case offsetof(struct bpf_sockopt, level): 2285 if (size != size_default) 2286 return false; 2287 return prog->expected_attach_type == 2288 BPF_CGROUP_SETSOCKOPT; 2289 case offsetof(struct bpf_sockopt, optlen): 2290 return size == size_default; 2291 default: 2292 return false; 2293 } 2294 } 2295 2296 switch (off) { 2297 case offsetof(struct bpf_sockopt, sk): 2298 if (size != sizeof(__u64)) 2299 return false; 2300 info->reg_type = PTR_TO_SOCKET; 2301 break; 2302 case offsetof(struct bpf_sockopt, optval): 2303 if (size != sizeof(__u64)) 2304 return false; 2305 info->reg_type = PTR_TO_PACKET; 2306 break; 2307 case offsetof(struct bpf_sockopt, optval_end): 2308 if (size != sizeof(__u64)) 2309 return false; 2310 info->reg_type = PTR_TO_PACKET_END; 2311 break; 2312 case offsetof(struct bpf_sockopt, retval): 2313 if (size != size_default) 2314 return false; 2315 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT; 2316 default: 2317 if (size != size_default) 2318 return false; 2319 break; 2320 } 2321 return true; 2322 } 2323 2324 #define CG_SOCKOPT_ACCESS_FIELD(T, F) \ 2325 T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \ 2326 si->dst_reg, si->src_reg, \ 2327 offsetof(struct bpf_sockopt_kern, F)) 2328 2329 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type, 2330 const struct bpf_insn *si, 2331 struct bpf_insn *insn_buf, 2332 struct bpf_prog *prog, 2333 u32 *target_size) 2334 { 2335 struct bpf_insn *insn = insn_buf; 2336 2337 switch (si->off) { 2338 case offsetof(struct bpf_sockopt, sk): 2339 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk); 2340 break; 2341 case offsetof(struct bpf_sockopt, level): 2342 if (type == BPF_WRITE) 2343 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level); 2344 else 2345 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level); 2346 break; 2347 case offsetof(struct bpf_sockopt, optname): 2348 if (type == BPF_WRITE) 2349 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname); 2350 else 2351 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname); 2352 break; 2353 case offsetof(struct bpf_sockopt, optlen): 2354 if (type == BPF_WRITE) 2355 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen); 2356 else 2357 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen); 2358 break; 2359 case offsetof(struct bpf_sockopt, retval): 2360 BUILD_BUG_ON(offsetof(struct bpf_cg_run_ctx, run_ctx) != 0); 2361 2362 if (type == BPF_WRITE) { 2363 int treg = BPF_REG_9; 2364 2365 if (si->src_reg == treg || si->dst_reg == treg) 2366 --treg; 2367 if (si->src_reg == treg || si->dst_reg == treg) 2368 --treg; 2369 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, treg, 2370 offsetof(struct bpf_sockopt_kern, tmp_reg)); 2371 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), 2372 treg, si->dst_reg, 2373 offsetof(struct bpf_sockopt_kern, current_task)); 2374 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), 2375 treg, treg, 2376 offsetof(struct task_struct, bpf_ctx)); 2377 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), 2378 treg, si->src_reg, 2379 offsetof(struct bpf_cg_run_ctx, retval)); 2380 *insn++ = BPF_LDX_MEM(BPF_DW, treg, si->dst_reg, 2381 offsetof(struct bpf_sockopt_kern, tmp_reg)); 2382 } else { 2383 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), 2384 si->dst_reg, si->src_reg, 2385 offsetof(struct bpf_sockopt_kern, current_task)); 2386 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), 2387 si->dst_reg, si->dst_reg, 2388 offsetof(struct task_struct, bpf_ctx)); 2389 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), 2390 si->dst_reg, si->dst_reg, 2391 offsetof(struct bpf_cg_run_ctx, retval)); 2392 } 2393 break; 2394 case offsetof(struct bpf_sockopt, optval): 2395 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval); 2396 break; 2397 case offsetof(struct bpf_sockopt, optval_end): 2398 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end); 2399 break; 2400 } 2401 2402 return insn - insn_buf; 2403 } 2404 2405 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf, 2406 bool direct_write, 2407 const struct bpf_prog *prog) 2408 { 2409 /* Nothing to do for sockopt argument. The data is kzalloc'ated. 2410 */ 2411 return 0; 2412 } 2413 2414 const struct bpf_verifier_ops cg_sockopt_verifier_ops = { 2415 .get_func_proto = cg_sockopt_func_proto, 2416 .is_valid_access = cg_sockopt_is_valid_access, 2417 .convert_ctx_access = cg_sockopt_convert_ctx_access, 2418 .gen_prologue = cg_sockopt_get_prologue, 2419 }; 2420 2421 const struct bpf_prog_ops cg_sockopt_prog_ops = { 2422 }; 2423