1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Functions to manage eBPF programs attached to cgroups 4 * 5 * Copyright (c) 2016 Daniel Mack 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/atomic.h> 10 #include <linux/cgroup.h> 11 #include <linux/filter.h> 12 #include <linux/slab.h> 13 #include <linux/sysctl.h> 14 #include <linux/string.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf-cgroup.h> 17 #include <linux/bpf_lsm.h> 18 #include <linux/bpf_verifier.h> 19 #include <net/sock.h> 20 #include <net/bpf_sk_storage.h> 21 22 #include "../cgroup/cgroup-internal.h" 23 24 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE); 25 EXPORT_SYMBOL(cgroup_bpf_enabled_key); 26 27 /* __always_inline is necessary to prevent indirect call through run_prog 28 * function pointer. 29 */ 30 static __always_inline int 31 bpf_prog_run_array_cg(const struct cgroup_bpf *cgrp, 32 enum cgroup_bpf_attach_type atype, 33 const void *ctx, bpf_prog_run_fn run_prog, 34 int retval, u32 *ret_flags) 35 { 36 const struct bpf_prog_array_item *item; 37 const struct bpf_prog *prog; 38 const struct bpf_prog_array *array; 39 struct bpf_run_ctx *old_run_ctx; 40 struct bpf_cg_run_ctx run_ctx; 41 u32 func_ret; 42 43 run_ctx.retval = retval; 44 migrate_disable(); 45 rcu_read_lock(); 46 array = rcu_dereference(cgrp->effective[atype]); 47 item = &array->items[0]; 48 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 49 while ((prog = READ_ONCE(item->prog))) { 50 run_ctx.prog_item = item; 51 func_ret = run_prog(prog, ctx); 52 if (ret_flags) { 53 *(ret_flags) |= (func_ret >> 1); 54 func_ret &= 1; 55 } 56 if (!func_ret && !IS_ERR_VALUE((long)run_ctx.retval)) 57 run_ctx.retval = -EPERM; 58 item++; 59 } 60 bpf_reset_run_ctx(old_run_ctx); 61 rcu_read_unlock(); 62 migrate_enable(); 63 return run_ctx.retval; 64 } 65 66 unsigned int __cgroup_bpf_run_lsm_sock(const void *ctx, 67 const struct bpf_insn *insn) 68 { 69 const struct bpf_prog *shim_prog; 70 struct sock *sk; 71 struct cgroup *cgrp; 72 int ret = 0; 73 u64 *args; 74 75 args = (u64 *)ctx; 76 sk = (void *)(unsigned long)args[0]; 77 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 78 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 79 80 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 81 if (likely(cgrp)) 82 ret = bpf_prog_run_array_cg(&cgrp->bpf, 83 shim_prog->aux->cgroup_atype, 84 ctx, bpf_prog_run, 0, NULL); 85 return ret; 86 } 87 88 unsigned int __cgroup_bpf_run_lsm_socket(const void *ctx, 89 const struct bpf_insn *insn) 90 { 91 const struct bpf_prog *shim_prog; 92 struct socket *sock; 93 struct cgroup *cgrp; 94 int ret = 0; 95 u64 *args; 96 97 args = (u64 *)ctx; 98 sock = (void *)(unsigned long)args[0]; 99 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 100 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 101 102 cgrp = sock_cgroup_ptr(&sock->sk->sk_cgrp_data); 103 if (likely(cgrp)) 104 ret = bpf_prog_run_array_cg(&cgrp->bpf, 105 shim_prog->aux->cgroup_atype, 106 ctx, bpf_prog_run, 0, NULL); 107 return ret; 108 } 109 110 unsigned int __cgroup_bpf_run_lsm_current(const void *ctx, 111 const struct bpf_insn *insn) 112 { 113 const struct bpf_prog *shim_prog; 114 struct cgroup *cgrp; 115 int ret = 0; 116 117 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ 118 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); 119 120 /* We rely on trampoline's __bpf_prog_enter_lsm_cgroup to grab RCU read lock. */ 121 cgrp = task_dfl_cgroup(current); 122 if (likely(cgrp)) 123 ret = bpf_prog_run_array_cg(&cgrp->bpf, 124 shim_prog->aux->cgroup_atype, 125 ctx, bpf_prog_run, 0, NULL); 126 return ret; 127 } 128 129 #ifdef CONFIG_BPF_LSM 130 struct cgroup_lsm_atype { 131 u32 attach_btf_id; 132 int refcnt; 133 }; 134 135 static struct cgroup_lsm_atype cgroup_lsm_atype[CGROUP_LSM_NUM]; 136 137 static enum cgroup_bpf_attach_type 138 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id) 139 { 140 int i; 141 142 lockdep_assert_held(&cgroup_mutex); 143 144 if (attach_type != BPF_LSM_CGROUP) 145 return to_cgroup_bpf_attach_type(attach_type); 146 147 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++) 148 if (cgroup_lsm_atype[i].attach_btf_id == attach_btf_id) 149 return CGROUP_LSM_START + i; 150 151 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++) 152 if (cgroup_lsm_atype[i].attach_btf_id == 0) 153 return CGROUP_LSM_START + i; 154 155 return -E2BIG; 156 157 } 158 159 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) 160 { 161 int i = cgroup_atype - CGROUP_LSM_START; 162 163 lockdep_assert_held(&cgroup_mutex); 164 165 WARN_ON_ONCE(cgroup_lsm_atype[i].attach_btf_id && 166 cgroup_lsm_atype[i].attach_btf_id != attach_btf_id); 167 168 cgroup_lsm_atype[i].attach_btf_id = attach_btf_id; 169 cgroup_lsm_atype[i].refcnt++; 170 } 171 172 void bpf_cgroup_atype_put(int cgroup_atype) 173 { 174 int i = cgroup_atype - CGROUP_LSM_START; 175 176 cgroup_lock(); 177 if (--cgroup_lsm_atype[i].refcnt <= 0) 178 cgroup_lsm_atype[i].attach_btf_id = 0; 179 WARN_ON_ONCE(cgroup_lsm_atype[i].refcnt < 0); 180 cgroup_unlock(); 181 } 182 #else 183 static enum cgroup_bpf_attach_type 184 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id) 185 { 186 if (attach_type != BPF_LSM_CGROUP) 187 return to_cgroup_bpf_attach_type(attach_type); 188 return -EOPNOTSUPP; 189 } 190 #endif /* CONFIG_BPF_LSM */ 191 192 void cgroup_bpf_offline(struct cgroup *cgrp) 193 { 194 cgroup_get(cgrp); 195 percpu_ref_kill(&cgrp->bpf.refcnt); 196 } 197 198 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[]) 199 { 200 enum bpf_cgroup_storage_type stype; 201 202 for_each_cgroup_storage_type(stype) 203 bpf_cgroup_storage_free(storages[stype]); 204 } 205 206 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[], 207 struct bpf_cgroup_storage *new_storages[], 208 enum bpf_attach_type type, 209 struct bpf_prog *prog, 210 struct cgroup *cgrp) 211 { 212 enum bpf_cgroup_storage_type stype; 213 struct bpf_cgroup_storage_key key; 214 struct bpf_map *map; 215 216 key.cgroup_inode_id = cgroup_id(cgrp); 217 key.attach_type = type; 218 219 for_each_cgroup_storage_type(stype) { 220 map = prog->aux->cgroup_storage[stype]; 221 if (!map) 222 continue; 223 224 storages[stype] = cgroup_storage_lookup((void *)map, &key, false); 225 if (storages[stype]) 226 continue; 227 228 storages[stype] = bpf_cgroup_storage_alloc(prog, stype); 229 if (IS_ERR(storages[stype])) { 230 bpf_cgroup_storages_free(new_storages); 231 return -ENOMEM; 232 } 233 234 new_storages[stype] = storages[stype]; 235 } 236 237 return 0; 238 } 239 240 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[], 241 struct bpf_cgroup_storage *src[]) 242 { 243 enum bpf_cgroup_storage_type stype; 244 245 for_each_cgroup_storage_type(stype) 246 dst[stype] = src[stype]; 247 } 248 249 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[], 250 struct cgroup *cgrp, 251 enum bpf_attach_type attach_type) 252 { 253 enum bpf_cgroup_storage_type stype; 254 255 for_each_cgroup_storage_type(stype) 256 bpf_cgroup_storage_link(storages[stype], cgrp, attach_type); 257 } 258 259 /* Called when bpf_cgroup_link is auto-detached from dying cgroup. 260 * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It 261 * doesn't free link memory, which will eventually be done by bpf_link's 262 * release() callback, when its last FD is closed. 263 */ 264 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link) 265 { 266 cgroup_put(link->cgroup); 267 link->cgroup = NULL; 268 } 269 270 /** 271 * cgroup_bpf_release() - put references of all bpf programs and 272 * release all cgroup bpf data 273 * @work: work structure embedded into the cgroup to modify 274 */ 275 static void cgroup_bpf_release(struct work_struct *work) 276 { 277 struct cgroup *p, *cgrp = container_of(work, struct cgroup, 278 bpf.release_work); 279 struct bpf_prog_array *old_array; 280 struct list_head *storages = &cgrp->bpf.storages; 281 struct bpf_cgroup_storage *storage, *stmp; 282 283 unsigned int atype; 284 285 cgroup_lock(); 286 287 for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) { 288 struct hlist_head *progs = &cgrp->bpf.progs[atype]; 289 struct bpf_prog_list *pl; 290 struct hlist_node *pltmp; 291 292 hlist_for_each_entry_safe(pl, pltmp, progs, node) { 293 hlist_del(&pl->node); 294 if (pl->prog) { 295 if (pl->prog->expected_attach_type == BPF_LSM_CGROUP) 296 bpf_trampoline_unlink_cgroup_shim(pl->prog); 297 bpf_prog_put(pl->prog); 298 } 299 if (pl->link) { 300 if (pl->link->link.prog->expected_attach_type == BPF_LSM_CGROUP) 301 bpf_trampoline_unlink_cgroup_shim(pl->link->link.prog); 302 bpf_cgroup_link_auto_detach(pl->link); 303 } 304 kfree(pl); 305 static_branch_dec(&cgroup_bpf_enabled_key[atype]); 306 } 307 old_array = rcu_dereference_protected( 308 cgrp->bpf.effective[atype], 309 lockdep_is_held(&cgroup_mutex)); 310 bpf_prog_array_free(old_array); 311 } 312 313 list_for_each_entry_safe(storage, stmp, storages, list_cg) { 314 bpf_cgroup_storage_unlink(storage); 315 bpf_cgroup_storage_free(storage); 316 } 317 318 cgroup_unlock(); 319 320 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 321 cgroup_bpf_put(p); 322 323 percpu_ref_exit(&cgrp->bpf.refcnt); 324 cgroup_put(cgrp); 325 } 326 327 /** 328 * cgroup_bpf_release_fn() - callback used to schedule releasing 329 * of bpf cgroup data 330 * @ref: percpu ref counter structure 331 */ 332 static void cgroup_bpf_release_fn(struct percpu_ref *ref) 333 { 334 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt); 335 336 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release); 337 queue_work(system_wq, &cgrp->bpf.release_work); 338 } 339 340 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through 341 * link or direct prog. 342 */ 343 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl) 344 { 345 if (pl->prog) 346 return pl->prog; 347 if (pl->link) 348 return pl->link->link.prog; 349 return NULL; 350 } 351 352 /* count number of elements in the list. 353 * it's slow but the list cannot be long 354 */ 355 static u32 prog_list_length(struct hlist_head *head) 356 { 357 struct bpf_prog_list *pl; 358 u32 cnt = 0; 359 360 hlist_for_each_entry(pl, head, node) { 361 if (!prog_list_prog(pl)) 362 continue; 363 cnt++; 364 } 365 return cnt; 366 } 367 368 /* if parent has non-overridable prog attached, 369 * disallow attaching new programs to the descendent cgroup. 370 * if parent has overridable or multi-prog, allow attaching 371 */ 372 static bool hierarchy_allows_attach(struct cgroup *cgrp, 373 enum cgroup_bpf_attach_type atype) 374 { 375 struct cgroup *p; 376 377 p = cgroup_parent(cgrp); 378 if (!p) 379 return true; 380 do { 381 u32 flags = p->bpf.flags[atype]; 382 u32 cnt; 383 384 if (flags & BPF_F_ALLOW_MULTI) 385 return true; 386 cnt = prog_list_length(&p->bpf.progs[atype]); 387 WARN_ON_ONCE(cnt > 1); 388 if (cnt == 1) 389 return !!(flags & BPF_F_ALLOW_OVERRIDE); 390 p = cgroup_parent(p); 391 } while (p); 392 return true; 393 } 394 395 /* compute a chain of effective programs for a given cgroup: 396 * start from the list of programs in this cgroup and add 397 * all parent programs. 398 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding 399 * to programs in this cgroup 400 */ 401 static int compute_effective_progs(struct cgroup *cgrp, 402 enum cgroup_bpf_attach_type atype, 403 struct bpf_prog_array **array) 404 { 405 struct bpf_prog_array_item *item; 406 struct bpf_prog_array *progs; 407 struct bpf_prog_list *pl; 408 struct cgroup *p = cgrp; 409 int cnt = 0; 410 411 /* count number of effective programs by walking parents */ 412 do { 413 if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 414 cnt += prog_list_length(&p->bpf.progs[atype]); 415 p = cgroup_parent(p); 416 } while (p); 417 418 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL); 419 if (!progs) 420 return -ENOMEM; 421 422 /* populate the array with effective progs */ 423 cnt = 0; 424 p = cgrp; 425 do { 426 if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 427 continue; 428 429 hlist_for_each_entry(pl, &p->bpf.progs[atype], node) { 430 if (!prog_list_prog(pl)) 431 continue; 432 433 item = &progs->items[cnt]; 434 item->prog = prog_list_prog(pl); 435 bpf_cgroup_storages_assign(item->cgroup_storage, 436 pl->storage); 437 cnt++; 438 } 439 } while ((p = cgroup_parent(p))); 440 441 *array = progs; 442 return 0; 443 } 444 445 static void activate_effective_progs(struct cgroup *cgrp, 446 enum cgroup_bpf_attach_type atype, 447 struct bpf_prog_array *old_array) 448 { 449 old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array, 450 lockdep_is_held(&cgroup_mutex)); 451 /* free prog array after grace period, since __cgroup_bpf_run_*() 452 * might be still walking the array 453 */ 454 bpf_prog_array_free(old_array); 455 } 456 457 /** 458 * cgroup_bpf_inherit() - inherit effective programs from parent 459 * @cgrp: the cgroup to modify 460 */ 461 int cgroup_bpf_inherit(struct cgroup *cgrp) 462 { 463 /* has to use marco instead of const int, since compiler thinks 464 * that array below is variable length 465 */ 466 #define NR ARRAY_SIZE(cgrp->bpf.effective) 467 struct bpf_prog_array *arrays[NR] = {}; 468 struct cgroup *p; 469 int ret, i; 470 471 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0, 472 GFP_KERNEL); 473 if (ret) 474 return ret; 475 476 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 477 cgroup_bpf_get(p); 478 479 for (i = 0; i < NR; i++) 480 INIT_HLIST_HEAD(&cgrp->bpf.progs[i]); 481 482 INIT_LIST_HEAD(&cgrp->bpf.storages); 483 484 for (i = 0; i < NR; i++) 485 if (compute_effective_progs(cgrp, i, &arrays[i])) 486 goto cleanup; 487 488 for (i = 0; i < NR; i++) 489 activate_effective_progs(cgrp, i, arrays[i]); 490 491 return 0; 492 cleanup: 493 for (i = 0; i < NR; i++) 494 bpf_prog_array_free(arrays[i]); 495 496 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 497 cgroup_bpf_put(p); 498 499 percpu_ref_exit(&cgrp->bpf.refcnt); 500 501 return -ENOMEM; 502 } 503 504 static int update_effective_progs(struct cgroup *cgrp, 505 enum cgroup_bpf_attach_type atype) 506 { 507 struct cgroup_subsys_state *css; 508 int err; 509 510 /* allocate and recompute effective prog arrays */ 511 css_for_each_descendant_pre(css, &cgrp->self) { 512 struct cgroup *desc = container_of(css, struct cgroup, self); 513 514 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 515 continue; 516 517 err = compute_effective_progs(desc, atype, &desc->bpf.inactive); 518 if (err) 519 goto cleanup; 520 } 521 522 /* all allocations were successful. Activate all prog arrays */ 523 css_for_each_descendant_pre(css, &cgrp->self) { 524 struct cgroup *desc = container_of(css, struct cgroup, self); 525 526 if (percpu_ref_is_zero(&desc->bpf.refcnt)) { 527 if (unlikely(desc->bpf.inactive)) { 528 bpf_prog_array_free(desc->bpf.inactive); 529 desc->bpf.inactive = NULL; 530 } 531 continue; 532 } 533 534 activate_effective_progs(desc, atype, desc->bpf.inactive); 535 desc->bpf.inactive = NULL; 536 } 537 538 return 0; 539 540 cleanup: 541 /* oom while computing effective. Free all computed effective arrays 542 * since they were not activated 543 */ 544 css_for_each_descendant_pre(css, &cgrp->self) { 545 struct cgroup *desc = container_of(css, struct cgroup, self); 546 547 bpf_prog_array_free(desc->bpf.inactive); 548 desc->bpf.inactive = NULL; 549 } 550 551 return err; 552 } 553 554 #define BPF_CGROUP_MAX_PROGS 64 555 556 static struct bpf_prog_list *find_attach_entry(struct hlist_head *progs, 557 struct bpf_prog *prog, 558 struct bpf_cgroup_link *link, 559 struct bpf_prog *replace_prog, 560 bool allow_multi) 561 { 562 struct bpf_prog_list *pl; 563 564 /* single-attach case */ 565 if (!allow_multi) { 566 if (hlist_empty(progs)) 567 return NULL; 568 return hlist_entry(progs->first, typeof(*pl), node); 569 } 570 571 hlist_for_each_entry(pl, progs, node) { 572 if (prog && pl->prog == prog && prog != replace_prog) 573 /* disallow attaching the same prog twice */ 574 return ERR_PTR(-EINVAL); 575 if (link && pl->link == link) 576 /* disallow attaching the same link twice */ 577 return ERR_PTR(-EINVAL); 578 } 579 580 /* direct prog multi-attach w/ replacement case */ 581 if (replace_prog) { 582 hlist_for_each_entry(pl, progs, node) { 583 if (pl->prog == replace_prog) 584 /* a match found */ 585 return pl; 586 } 587 /* prog to replace not found for cgroup */ 588 return ERR_PTR(-ENOENT); 589 } 590 591 return NULL; 592 } 593 594 /** 595 * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and 596 * propagate the change to descendants 597 * @cgrp: The cgroup which descendants to traverse 598 * @prog: A program to attach 599 * @link: A link to attach 600 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set 601 * @type: Type of attach operation 602 * @flags: Option flags 603 * 604 * Exactly one of @prog or @link can be non-null. 605 * Must be called with cgroup_mutex held. 606 */ 607 static int __cgroup_bpf_attach(struct cgroup *cgrp, 608 struct bpf_prog *prog, struct bpf_prog *replace_prog, 609 struct bpf_cgroup_link *link, 610 enum bpf_attach_type type, u32 flags) 611 { 612 u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI)); 613 struct bpf_prog *old_prog = NULL; 614 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 615 struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 616 struct bpf_prog *new_prog = prog ? : link->link.prog; 617 enum cgroup_bpf_attach_type atype; 618 struct bpf_prog_list *pl; 619 struct hlist_head *progs; 620 int err; 621 622 if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) || 623 ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI))) 624 /* invalid combination */ 625 return -EINVAL; 626 if (link && (prog || replace_prog)) 627 /* only either link or prog/replace_prog can be specified */ 628 return -EINVAL; 629 if (!!replace_prog != !!(flags & BPF_F_REPLACE)) 630 /* replace_prog implies BPF_F_REPLACE, and vice versa */ 631 return -EINVAL; 632 633 atype = bpf_cgroup_atype_find(type, new_prog->aux->attach_btf_id); 634 if (atype < 0) 635 return -EINVAL; 636 637 progs = &cgrp->bpf.progs[atype]; 638 639 if (!hierarchy_allows_attach(cgrp, atype)) 640 return -EPERM; 641 642 if (!hlist_empty(progs) && cgrp->bpf.flags[atype] != saved_flags) 643 /* Disallow attaching non-overridable on top 644 * of existing overridable in this cgroup. 645 * Disallow attaching multi-prog if overridable or none 646 */ 647 return -EPERM; 648 649 if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS) 650 return -E2BIG; 651 652 pl = find_attach_entry(progs, prog, link, replace_prog, 653 flags & BPF_F_ALLOW_MULTI); 654 if (IS_ERR(pl)) 655 return PTR_ERR(pl); 656 657 if (bpf_cgroup_storages_alloc(storage, new_storage, type, 658 prog ? : link->link.prog, cgrp)) 659 return -ENOMEM; 660 661 if (pl) { 662 old_prog = pl->prog; 663 } else { 664 struct hlist_node *last = NULL; 665 666 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 667 if (!pl) { 668 bpf_cgroup_storages_free(new_storage); 669 return -ENOMEM; 670 } 671 if (hlist_empty(progs)) 672 hlist_add_head(&pl->node, progs); 673 else 674 hlist_for_each(last, progs) { 675 if (last->next) 676 continue; 677 hlist_add_behind(&pl->node, last); 678 break; 679 } 680 } 681 682 pl->prog = prog; 683 pl->link = link; 684 bpf_cgroup_storages_assign(pl->storage, storage); 685 cgrp->bpf.flags[atype] = saved_flags; 686 687 if (type == BPF_LSM_CGROUP) { 688 err = bpf_trampoline_link_cgroup_shim(new_prog, atype); 689 if (err) 690 goto cleanup; 691 } 692 693 err = update_effective_progs(cgrp, atype); 694 if (err) 695 goto cleanup_trampoline; 696 697 if (old_prog) { 698 if (type == BPF_LSM_CGROUP) 699 bpf_trampoline_unlink_cgroup_shim(old_prog); 700 bpf_prog_put(old_prog); 701 } else { 702 static_branch_inc(&cgroup_bpf_enabled_key[atype]); 703 } 704 bpf_cgroup_storages_link(new_storage, cgrp, type); 705 return 0; 706 707 cleanup_trampoline: 708 if (type == BPF_LSM_CGROUP) 709 bpf_trampoline_unlink_cgroup_shim(new_prog); 710 711 cleanup: 712 if (old_prog) { 713 pl->prog = old_prog; 714 pl->link = NULL; 715 } 716 bpf_cgroup_storages_free(new_storage); 717 if (!old_prog) { 718 hlist_del(&pl->node); 719 kfree(pl); 720 } 721 return err; 722 } 723 724 static int cgroup_bpf_attach(struct cgroup *cgrp, 725 struct bpf_prog *prog, struct bpf_prog *replace_prog, 726 struct bpf_cgroup_link *link, 727 enum bpf_attach_type type, 728 u32 flags) 729 { 730 int ret; 731 732 cgroup_lock(); 733 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags); 734 cgroup_unlock(); 735 return ret; 736 } 737 738 /* Swap updated BPF program for given link in effective program arrays across 739 * all descendant cgroups. This function is guaranteed to succeed. 740 */ 741 static void replace_effective_prog(struct cgroup *cgrp, 742 enum cgroup_bpf_attach_type atype, 743 struct bpf_cgroup_link *link) 744 { 745 struct bpf_prog_array_item *item; 746 struct cgroup_subsys_state *css; 747 struct bpf_prog_array *progs; 748 struct bpf_prog_list *pl; 749 struct hlist_head *head; 750 struct cgroup *cg; 751 int pos; 752 753 css_for_each_descendant_pre(css, &cgrp->self) { 754 struct cgroup *desc = container_of(css, struct cgroup, self); 755 756 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 757 continue; 758 759 /* find position of link in effective progs array */ 760 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { 761 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 762 continue; 763 764 head = &cg->bpf.progs[atype]; 765 hlist_for_each_entry(pl, head, node) { 766 if (!prog_list_prog(pl)) 767 continue; 768 if (pl->link == link) 769 goto found; 770 pos++; 771 } 772 } 773 found: 774 BUG_ON(!cg); 775 progs = rcu_dereference_protected( 776 desc->bpf.effective[atype], 777 lockdep_is_held(&cgroup_mutex)); 778 item = &progs->items[pos]; 779 WRITE_ONCE(item->prog, link->link.prog); 780 } 781 } 782 783 /** 784 * __cgroup_bpf_replace() - Replace link's program and propagate the change 785 * to descendants 786 * @cgrp: The cgroup which descendants to traverse 787 * @link: A link for which to replace BPF program 788 * @new_prog: &struct bpf_prog for the target BPF program with its refcnt 789 * incremented 790 * 791 * Must be called with cgroup_mutex held. 792 */ 793 static int __cgroup_bpf_replace(struct cgroup *cgrp, 794 struct bpf_cgroup_link *link, 795 struct bpf_prog *new_prog) 796 { 797 enum cgroup_bpf_attach_type atype; 798 struct bpf_prog *old_prog; 799 struct bpf_prog_list *pl; 800 struct hlist_head *progs; 801 bool found = false; 802 803 atype = bpf_cgroup_atype_find(link->type, new_prog->aux->attach_btf_id); 804 if (atype < 0) 805 return -EINVAL; 806 807 progs = &cgrp->bpf.progs[atype]; 808 809 if (link->link.prog->type != new_prog->type) 810 return -EINVAL; 811 812 hlist_for_each_entry(pl, progs, node) { 813 if (pl->link == link) { 814 found = true; 815 break; 816 } 817 } 818 if (!found) 819 return -ENOENT; 820 821 old_prog = xchg(&link->link.prog, new_prog); 822 replace_effective_prog(cgrp, atype, link); 823 bpf_prog_put(old_prog); 824 return 0; 825 } 826 827 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog, 828 struct bpf_prog *old_prog) 829 { 830 struct bpf_cgroup_link *cg_link; 831 int ret; 832 833 cg_link = container_of(link, struct bpf_cgroup_link, link); 834 835 cgroup_lock(); 836 /* link might have been auto-released by dying cgroup, so fail */ 837 if (!cg_link->cgroup) { 838 ret = -ENOLINK; 839 goto out_unlock; 840 } 841 if (old_prog && link->prog != old_prog) { 842 ret = -EPERM; 843 goto out_unlock; 844 } 845 ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog); 846 out_unlock: 847 cgroup_unlock(); 848 return ret; 849 } 850 851 static struct bpf_prog_list *find_detach_entry(struct hlist_head *progs, 852 struct bpf_prog *prog, 853 struct bpf_cgroup_link *link, 854 bool allow_multi) 855 { 856 struct bpf_prog_list *pl; 857 858 if (!allow_multi) { 859 if (hlist_empty(progs)) 860 /* report error when trying to detach and nothing is attached */ 861 return ERR_PTR(-ENOENT); 862 863 /* to maintain backward compatibility NONE and OVERRIDE cgroups 864 * allow detaching with invalid FD (prog==NULL) in legacy mode 865 */ 866 return hlist_entry(progs->first, typeof(*pl), node); 867 } 868 869 if (!prog && !link) 870 /* to detach MULTI prog the user has to specify valid FD 871 * of the program or link to be detached 872 */ 873 return ERR_PTR(-EINVAL); 874 875 /* find the prog or link and detach it */ 876 hlist_for_each_entry(pl, progs, node) { 877 if (pl->prog == prog && pl->link == link) 878 return pl; 879 } 880 return ERR_PTR(-ENOENT); 881 } 882 883 /** 884 * purge_effective_progs() - After compute_effective_progs fails to alloc new 885 * cgrp->bpf.inactive table we can recover by 886 * recomputing the array in place. 887 * 888 * @cgrp: The cgroup which descendants to travers 889 * @prog: A program to detach or NULL 890 * @link: A link to detach or NULL 891 * @atype: Type of detach operation 892 */ 893 static void purge_effective_progs(struct cgroup *cgrp, struct bpf_prog *prog, 894 struct bpf_cgroup_link *link, 895 enum cgroup_bpf_attach_type atype) 896 { 897 struct cgroup_subsys_state *css; 898 struct bpf_prog_array *progs; 899 struct bpf_prog_list *pl; 900 struct hlist_head *head; 901 struct cgroup *cg; 902 int pos; 903 904 /* recompute effective prog array in place */ 905 css_for_each_descendant_pre(css, &cgrp->self) { 906 struct cgroup *desc = container_of(css, struct cgroup, self); 907 908 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 909 continue; 910 911 /* find position of link or prog in effective progs array */ 912 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { 913 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) 914 continue; 915 916 head = &cg->bpf.progs[atype]; 917 hlist_for_each_entry(pl, head, node) { 918 if (!prog_list_prog(pl)) 919 continue; 920 if (pl->prog == prog && pl->link == link) 921 goto found; 922 pos++; 923 } 924 } 925 926 /* no link or prog match, skip the cgroup of this layer */ 927 continue; 928 found: 929 progs = rcu_dereference_protected( 930 desc->bpf.effective[atype], 931 lockdep_is_held(&cgroup_mutex)); 932 933 /* Remove the program from the array */ 934 WARN_ONCE(bpf_prog_array_delete_safe_at(progs, pos), 935 "Failed to purge a prog from array at index %d", pos); 936 } 937 } 938 939 /** 940 * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and 941 * propagate the change to descendants 942 * @cgrp: The cgroup which descendants to traverse 943 * @prog: A program to detach or NULL 944 * @link: A link to detach or NULL 945 * @type: Type of detach operation 946 * 947 * At most one of @prog or @link can be non-NULL. 948 * Must be called with cgroup_mutex held. 949 */ 950 static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 951 struct bpf_cgroup_link *link, enum bpf_attach_type type) 952 { 953 enum cgroup_bpf_attach_type atype; 954 struct bpf_prog *old_prog; 955 struct bpf_prog_list *pl; 956 struct hlist_head *progs; 957 u32 attach_btf_id = 0; 958 u32 flags; 959 960 if (prog) 961 attach_btf_id = prog->aux->attach_btf_id; 962 if (link) 963 attach_btf_id = link->link.prog->aux->attach_btf_id; 964 965 atype = bpf_cgroup_atype_find(type, attach_btf_id); 966 if (atype < 0) 967 return -EINVAL; 968 969 progs = &cgrp->bpf.progs[atype]; 970 flags = cgrp->bpf.flags[atype]; 971 972 if (prog && link) 973 /* only one of prog or link can be specified */ 974 return -EINVAL; 975 976 pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI); 977 if (IS_ERR(pl)) 978 return PTR_ERR(pl); 979 980 /* mark it deleted, so it's ignored while recomputing effective */ 981 old_prog = pl->prog; 982 pl->prog = NULL; 983 pl->link = NULL; 984 985 if (update_effective_progs(cgrp, atype)) { 986 /* if update effective array failed replace the prog with a dummy prog*/ 987 pl->prog = old_prog; 988 pl->link = link; 989 purge_effective_progs(cgrp, old_prog, link, atype); 990 } 991 992 /* now can actually delete it from this cgroup list */ 993 hlist_del(&pl->node); 994 995 kfree(pl); 996 if (hlist_empty(progs)) 997 /* last program was detached, reset flags to zero */ 998 cgrp->bpf.flags[atype] = 0; 999 if (old_prog) { 1000 if (type == BPF_LSM_CGROUP) 1001 bpf_trampoline_unlink_cgroup_shim(old_prog); 1002 bpf_prog_put(old_prog); 1003 } 1004 static_branch_dec(&cgroup_bpf_enabled_key[atype]); 1005 return 0; 1006 } 1007 1008 static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 1009 enum bpf_attach_type type) 1010 { 1011 int ret; 1012 1013 cgroup_lock(); 1014 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type); 1015 cgroup_unlock(); 1016 return ret; 1017 } 1018 1019 /* Must be called with cgroup_mutex held to avoid races. */ 1020 static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 1021 union bpf_attr __user *uattr) 1022 { 1023 __u32 __user *prog_attach_flags = u64_to_user_ptr(attr->query.prog_attach_flags); 1024 bool effective_query = attr->query.query_flags & BPF_F_QUERY_EFFECTIVE; 1025 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); 1026 enum bpf_attach_type type = attr->query.attach_type; 1027 enum cgroup_bpf_attach_type from_atype, to_atype; 1028 enum cgroup_bpf_attach_type atype; 1029 struct bpf_prog_array *effective; 1030 int cnt, ret = 0, i; 1031 int total_cnt = 0; 1032 u32 flags; 1033 1034 if (effective_query && prog_attach_flags) 1035 return -EINVAL; 1036 1037 if (type == BPF_LSM_CGROUP) { 1038 if (!effective_query && attr->query.prog_cnt && 1039 prog_ids && !prog_attach_flags) 1040 return -EINVAL; 1041 1042 from_atype = CGROUP_LSM_START; 1043 to_atype = CGROUP_LSM_END; 1044 flags = 0; 1045 } else { 1046 from_atype = to_cgroup_bpf_attach_type(type); 1047 if (from_atype < 0) 1048 return -EINVAL; 1049 to_atype = from_atype; 1050 flags = cgrp->bpf.flags[from_atype]; 1051 } 1052 1053 for (atype = from_atype; atype <= to_atype; atype++) { 1054 if (effective_query) { 1055 effective = rcu_dereference_protected(cgrp->bpf.effective[atype], 1056 lockdep_is_held(&cgroup_mutex)); 1057 total_cnt += bpf_prog_array_length(effective); 1058 } else { 1059 total_cnt += prog_list_length(&cgrp->bpf.progs[atype]); 1060 } 1061 } 1062 1063 /* always output uattr->query.attach_flags as 0 during effective query */ 1064 flags = effective_query ? 0 : flags; 1065 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) 1066 return -EFAULT; 1067 if (copy_to_user(&uattr->query.prog_cnt, &total_cnt, sizeof(total_cnt))) 1068 return -EFAULT; 1069 if (attr->query.prog_cnt == 0 || !prog_ids || !total_cnt) 1070 /* return early if user requested only program count + flags */ 1071 return 0; 1072 1073 if (attr->query.prog_cnt < total_cnt) { 1074 total_cnt = attr->query.prog_cnt; 1075 ret = -ENOSPC; 1076 } 1077 1078 for (atype = from_atype; atype <= to_atype && total_cnt; atype++) { 1079 if (effective_query) { 1080 effective = rcu_dereference_protected(cgrp->bpf.effective[atype], 1081 lockdep_is_held(&cgroup_mutex)); 1082 cnt = min_t(int, bpf_prog_array_length(effective), total_cnt); 1083 ret = bpf_prog_array_copy_to_user(effective, prog_ids, cnt); 1084 } else { 1085 struct hlist_head *progs; 1086 struct bpf_prog_list *pl; 1087 struct bpf_prog *prog; 1088 u32 id; 1089 1090 progs = &cgrp->bpf.progs[atype]; 1091 cnt = min_t(int, prog_list_length(progs), total_cnt); 1092 i = 0; 1093 hlist_for_each_entry(pl, progs, node) { 1094 prog = prog_list_prog(pl); 1095 id = prog->aux->id; 1096 if (copy_to_user(prog_ids + i, &id, sizeof(id))) 1097 return -EFAULT; 1098 if (++i == cnt) 1099 break; 1100 } 1101 1102 if (prog_attach_flags) { 1103 flags = cgrp->bpf.flags[atype]; 1104 1105 for (i = 0; i < cnt; i++) 1106 if (copy_to_user(prog_attach_flags + i, 1107 &flags, sizeof(flags))) 1108 return -EFAULT; 1109 prog_attach_flags += cnt; 1110 } 1111 } 1112 1113 prog_ids += cnt; 1114 total_cnt -= cnt; 1115 } 1116 return ret; 1117 } 1118 1119 static int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 1120 union bpf_attr __user *uattr) 1121 { 1122 int ret; 1123 1124 cgroup_lock(); 1125 ret = __cgroup_bpf_query(cgrp, attr, uattr); 1126 cgroup_unlock(); 1127 return ret; 1128 } 1129 1130 int cgroup_bpf_prog_attach(const union bpf_attr *attr, 1131 enum bpf_prog_type ptype, struct bpf_prog *prog) 1132 { 1133 struct bpf_prog *replace_prog = NULL; 1134 struct cgroup *cgrp; 1135 int ret; 1136 1137 cgrp = cgroup_get_from_fd(attr->target_fd); 1138 if (IS_ERR(cgrp)) 1139 return PTR_ERR(cgrp); 1140 1141 if ((attr->attach_flags & BPF_F_ALLOW_MULTI) && 1142 (attr->attach_flags & BPF_F_REPLACE)) { 1143 replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype); 1144 if (IS_ERR(replace_prog)) { 1145 cgroup_put(cgrp); 1146 return PTR_ERR(replace_prog); 1147 } 1148 } 1149 1150 ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL, 1151 attr->attach_type, attr->attach_flags); 1152 1153 if (replace_prog) 1154 bpf_prog_put(replace_prog); 1155 cgroup_put(cgrp); 1156 return ret; 1157 } 1158 1159 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) 1160 { 1161 struct bpf_prog *prog; 1162 struct cgroup *cgrp; 1163 int ret; 1164 1165 cgrp = cgroup_get_from_fd(attr->target_fd); 1166 if (IS_ERR(cgrp)) 1167 return PTR_ERR(cgrp); 1168 1169 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); 1170 if (IS_ERR(prog)) 1171 prog = NULL; 1172 1173 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type); 1174 if (prog) 1175 bpf_prog_put(prog); 1176 1177 cgroup_put(cgrp); 1178 return ret; 1179 } 1180 1181 static void bpf_cgroup_link_release(struct bpf_link *link) 1182 { 1183 struct bpf_cgroup_link *cg_link = 1184 container_of(link, struct bpf_cgroup_link, link); 1185 struct cgroup *cg; 1186 1187 /* link might have been auto-detached by dying cgroup already, 1188 * in that case our work is done here 1189 */ 1190 if (!cg_link->cgroup) 1191 return; 1192 1193 cgroup_lock(); 1194 1195 /* re-check cgroup under lock again */ 1196 if (!cg_link->cgroup) { 1197 cgroup_unlock(); 1198 return; 1199 } 1200 1201 WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link, 1202 cg_link->type)); 1203 if (cg_link->type == BPF_LSM_CGROUP) 1204 bpf_trampoline_unlink_cgroup_shim(cg_link->link.prog); 1205 1206 cg = cg_link->cgroup; 1207 cg_link->cgroup = NULL; 1208 1209 cgroup_unlock(); 1210 1211 cgroup_put(cg); 1212 } 1213 1214 static void bpf_cgroup_link_dealloc(struct bpf_link *link) 1215 { 1216 struct bpf_cgroup_link *cg_link = 1217 container_of(link, struct bpf_cgroup_link, link); 1218 1219 kfree(cg_link); 1220 } 1221 1222 static int bpf_cgroup_link_detach(struct bpf_link *link) 1223 { 1224 bpf_cgroup_link_release(link); 1225 1226 return 0; 1227 } 1228 1229 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link, 1230 struct seq_file *seq) 1231 { 1232 struct bpf_cgroup_link *cg_link = 1233 container_of(link, struct bpf_cgroup_link, link); 1234 u64 cg_id = 0; 1235 1236 cgroup_lock(); 1237 if (cg_link->cgroup) 1238 cg_id = cgroup_id(cg_link->cgroup); 1239 cgroup_unlock(); 1240 1241 seq_printf(seq, 1242 "cgroup_id:\t%llu\n" 1243 "attach_type:\t%d\n", 1244 cg_id, 1245 cg_link->type); 1246 } 1247 1248 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link, 1249 struct bpf_link_info *info) 1250 { 1251 struct bpf_cgroup_link *cg_link = 1252 container_of(link, struct bpf_cgroup_link, link); 1253 u64 cg_id = 0; 1254 1255 cgroup_lock(); 1256 if (cg_link->cgroup) 1257 cg_id = cgroup_id(cg_link->cgroup); 1258 cgroup_unlock(); 1259 1260 info->cgroup.cgroup_id = cg_id; 1261 info->cgroup.attach_type = cg_link->type; 1262 return 0; 1263 } 1264 1265 static const struct bpf_link_ops bpf_cgroup_link_lops = { 1266 .release = bpf_cgroup_link_release, 1267 .dealloc = bpf_cgroup_link_dealloc, 1268 .detach = bpf_cgroup_link_detach, 1269 .update_prog = cgroup_bpf_replace, 1270 .show_fdinfo = bpf_cgroup_link_show_fdinfo, 1271 .fill_link_info = bpf_cgroup_link_fill_link_info, 1272 }; 1273 1274 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 1275 { 1276 struct bpf_link_primer link_primer; 1277 struct bpf_cgroup_link *link; 1278 struct cgroup *cgrp; 1279 int err; 1280 1281 if (attr->link_create.flags) 1282 return -EINVAL; 1283 1284 cgrp = cgroup_get_from_fd(attr->link_create.target_fd); 1285 if (IS_ERR(cgrp)) 1286 return PTR_ERR(cgrp); 1287 1288 link = kzalloc(sizeof(*link), GFP_USER); 1289 if (!link) { 1290 err = -ENOMEM; 1291 goto out_put_cgroup; 1292 } 1293 bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops, 1294 prog); 1295 link->cgroup = cgrp; 1296 link->type = attr->link_create.attach_type; 1297 1298 err = bpf_link_prime(&link->link, &link_primer); 1299 if (err) { 1300 kfree(link); 1301 goto out_put_cgroup; 1302 } 1303 1304 err = cgroup_bpf_attach(cgrp, NULL, NULL, link, 1305 link->type, BPF_F_ALLOW_MULTI); 1306 if (err) { 1307 bpf_link_cleanup(&link_primer); 1308 goto out_put_cgroup; 1309 } 1310 1311 return bpf_link_settle(&link_primer); 1312 1313 out_put_cgroup: 1314 cgroup_put(cgrp); 1315 return err; 1316 } 1317 1318 int cgroup_bpf_prog_query(const union bpf_attr *attr, 1319 union bpf_attr __user *uattr) 1320 { 1321 struct cgroup *cgrp; 1322 int ret; 1323 1324 cgrp = cgroup_get_from_fd(attr->query.target_fd); 1325 if (IS_ERR(cgrp)) 1326 return PTR_ERR(cgrp); 1327 1328 ret = cgroup_bpf_query(cgrp, attr, uattr); 1329 1330 cgroup_put(cgrp); 1331 return ret; 1332 } 1333 1334 /** 1335 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering 1336 * @sk: The socket sending or receiving traffic 1337 * @skb: The skb that is being sent or received 1338 * @atype: The type of program to be executed 1339 * 1340 * If no socket is passed, or the socket is not of type INET or INET6, 1341 * this function does nothing and returns 0. 1342 * 1343 * The program type passed in via @type must be suitable for network 1344 * filtering. No further check is performed to assert that. 1345 * 1346 * For egress packets, this function can return: 1347 * NET_XMIT_SUCCESS (0) - continue with packet output 1348 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr 1349 * NET_XMIT_CN (2) - continue with packet output and notify TCP 1350 * to call cwr 1351 * -err - drop packet 1352 * 1353 * For ingress packets, this function will return -EPERM if any 1354 * attached program was found and if it returned != 1 during execution. 1355 * Otherwise 0 is returned. 1356 */ 1357 int __cgroup_bpf_run_filter_skb(struct sock *sk, 1358 struct sk_buff *skb, 1359 enum cgroup_bpf_attach_type atype) 1360 { 1361 unsigned int offset = skb->data - skb_network_header(skb); 1362 struct sock *save_sk; 1363 void *saved_data_end; 1364 struct cgroup *cgrp; 1365 int ret; 1366 1367 if (!sk || !sk_fullsock(sk)) 1368 return 0; 1369 1370 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 1371 return 0; 1372 1373 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1374 save_sk = skb->sk; 1375 skb->sk = sk; 1376 __skb_push(skb, offset); 1377 1378 /* compute pointers for the bpf prog */ 1379 bpf_compute_and_save_data_end(skb, &saved_data_end); 1380 1381 if (atype == CGROUP_INET_EGRESS) { 1382 u32 flags = 0; 1383 bool cn; 1384 1385 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, skb, 1386 __bpf_prog_run_save_cb, 0, &flags); 1387 1388 /* Return values of CGROUP EGRESS BPF programs are: 1389 * 0: drop packet 1390 * 1: keep packet 1391 * 2: drop packet and cn 1392 * 3: keep packet and cn 1393 * 1394 * The returned value is then converted to one of the NET_XMIT 1395 * or an error code that is then interpreted as drop packet 1396 * (and no cn): 1397 * 0: NET_XMIT_SUCCESS skb should be transmitted 1398 * 1: NET_XMIT_DROP skb should be dropped and cn 1399 * 2: NET_XMIT_CN skb should be transmitted and cn 1400 * 3: -err skb should be dropped 1401 */ 1402 1403 cn = flags & BPF_RET_SET_CN; 1404 if (ret && !IS_ERR_VALUE((long)ret)) 1405 ret = -EFAULT; 1406 if (!ret) 1407 ret = (cn ? NET_XMIT_CN : NET_XMIT_SUCCESS); 1408 else 1409 ret = (cn ? NET_XMIT_DROP : ret); 1410 } else { 1411 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, 1412 skb, __bpf_prog_run_save_cb, 0, 1413 NULL); 1414 if (ret && !IS_ERR_VALUE((long)ret)) 1415 ret = -EFAULT; 1416 } 1417 bpf_restore_data_end(skb, saved_data_end); 1418 __skb_pull(skb, offset); 1419 skb->sk = save_sk; 1420 1421 return ret; 1422 } 1423 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb); 1424 1425 /** 1426 * __cgroup_bpf_run_filter_sk() - Run a program on a sock 1427 * @sk: sock structure to manipulate 1428 * @atype: The type of program to be executed 1429 * 1430 * socket is passed is expected to be of type INET or INET6. 1431 * 1432 * The program type passed in via @type must be suitable for sock 1433 * filtering. No further check is performed to assert that. 1434 * 1435 * This function will return %-EPERM if any if an attached program was found 1436 * and if it returned != 1 during execution. In all other cases, 0 is returned. 1437 */ 1438 int __cgroup_bpf_run_filter_sk(struct sock *sk, 1439 enum cgroup_bpf_attach_type atype) 1440 { 1441 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1442 1443 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sk, bpf_prog_run, 0, 1444 NULL); 1445 } 1446 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk); 1447 1448 /** 1449 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and 1450 * provided by user sockaddr 1451 * @sk: sock struct that will use sockaddr 1452 * @uaddr: sockaddr struct provided by user 1453 * @uaddrlen: Pointer to the size of the sockaddr struct provided by user. It is 1454 * read-only for AF_INET[6] uaddr but can be modified for AF_UNIX 1455 * uaddr. 1456 * @atype: The type of program to be executed 1457 * @t_ctx: Pointer to attach type specific context 1458 * @flags: Pointer to u32 which contains higher bits of BPF program 1459 * return value (OR'ed together). 1460 * 1461 * socket is expected to be of type INET or INET6. 1462 * 1463 * This function will return %-EPERM if an attached program is found and 1464 * returned value != 1 during execution. In all other cases, 0 is returned. 1465 */ 1466 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk, 1467 struct sockaddr *uaddr, 1468 int *uaddrlen, 1469 enum cgroup_bpf_attach_type atype, 1470 void *t_ctx, 1471 u32 *flags) 1472 { 1473 struct bpf_sock_addr_kern ctx = { 1474 .sk = sk, 1475 .uaddr = uaddr, 1476 .t_ctx = t_ctx, 1477 }; 1478 struct sockaddr_storage unspec; 1479 struct cgroup *cgrp; 1480 int ret; 1481 1482 /* Check socket family since not all sockets represent network 1483 * endpoint (e.g. AF_UNIX). 1484 */ 1485 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 1486 return 0; 1487 1488 if (!ctx.uaddr) { 1489 memset(&unspec, 0, sizeof(unspec)); 1490 ctx.uaddr = (struct sockaddr *)&unspec; 1491 ctx.uaddrlen = 0; 1492 } else { 1493 ctx.uaddrlen = *uaddrlen; 1494 } 1495 1496 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1497 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 1498 0, flags); 1499 1500 if (!ret && uaddr) 1501 *uaddrlen = ctx.uaddrlen; 1502 1503 return ret; 1504 } 1505 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr); 1506 1507 /** 1508 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock 1509 * @sk: socket to get cgroup from 1510 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains 1511 * sk with connection information (IP addresses, etc.) May not contain 1512 * cgroup info if it is a req sock. 1513 * @atype: The type of program to be executed 1514 * 1515 * socket passed is expected to be of type INET or INET6. 1516 * 1517 * The program type passed in via @type must be suitable for sock_ops 1518 * filtering. No further check is performed to assert that. 1519 * 1520 * This function will return %-EPERM if any if an attached program was found 1521 * and if it returned != 1 during execution. In all other cases, 0 is returned. 1522 */ 1523 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk, 1524 struct bpf_sock_ops_kern *sock_ops, 1525 enum cgroup_bpf_attach_type atype) 1526 { 1527 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1528 1529 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sock_ops, bpf_prog_run, 1530 0, NULL); 1531 } 1532 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops); 1533 1534 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor, 1535 short access, enum cgroup_bpf_attach_type atype) 1536 { 1537 struct cgroup *cgrp; 1538 struct bpf_cgroup_dev_ctx ctx = { 1539 .access_type = (access << 16) | dev_type, 1540 .major = major, 1541 .minor = minor, 1542 }; 1543 int ret; 1544 1545 rcu_read_lock(); 1546 cgrp = task_dfl_cgroup(current); 1547 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, 1548 NULL); 1549 rcu_read_unlock(); 1550 1551 return ret; 1552 } 1553 1554 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags) 1555 { 1556 /* flags argument is not used now, 1557 * but provides an ability to extend the API. 1558 * verifier checks that its value is correct. 1559 */ 1560 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map); 1561 struct bpf_cgroup_storage *storage; 1562 struct bpf_cg_run_ctx *ctx; 1563 void *ptr; 1564 1565 /* get current cgroup storage from BPF run context */ 1566 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1567 storage = ctx->prog_item->cgroup_storage[stype]; 1568 1569 if (stype == BPF_CGROUP_STORAGE_SHARED) 1570 ptr = &READ_ONCE(storage->buf)->data[0]; 1571 else 1572 ptr = this_cpu_ptr(storage->percpu_buf); 1573 1574 return (unsigned long)ptr; 1575 } 1576 1577 const struct bpf_func_proto bpf_get_local_storage_proto = { 1578 .func = bpf_get_local_storage, 1579 .gpl_only = false, 1580 .ret_type = RET_PTR_TO_MAP_VALUE, 1581 .arg1_type = ARG_CONST_MAP_PTR, 1582 .arg2_type = ARG_ANYTHING, 1583 }; 1584 1585 BPF_CALL_0(bpf_get_retval) 1586 { 1587 struct bpf_cg_run_ctx *ctx = 1588 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1589 1590 return ctx->retval; 1591 } 1592 1593 const struct bpf_func_proto bpf_get_retval_proto = { 1594 .func = bpf_get_retval, 1595 .gpl_only = false, 1596 .ret_type = RET_INTEGER, 1597 }; 1598 1599 BPF_CALL_1(bpf_set_retval, int, retval) 1600 { 1601 struct bpf_cg_run_ctx *ctx = 1602 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 1603 1604 ctx->retval = retval; 1605 return 0; 1606 } 1607 1608 const struct bpf_func_proto bpf_set_retval_proto = { 1609 .func = bpf_set_retval, 1610 .gpl_only = false, 1611 .ret_type = RET_INTEGER, 1612 .arg1_type = ARG_ANYTHING, 1613 }; 1614 1615 static const struct bpf_func_proto * 1616 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1617 { 1618 const struct bpf_func_proto *func_proto; 1619 1620 func_proto = cgroup_common_func_proto(func_id, prog); 1621 if (func_proto) 1622 return func_proto; 1623 1624 func_proto = cgroup_current_func_proto(func_id, prog); 1625 if (func_proto) 1626 return func_proto; 1627 1628 switch (func_id) { 1629 case BPF_FUNC_perf_event_output: 1630 return &bpf_event_output_data_proto; 1631 default: 1632 return bpf_base_func_proto(func_id); 1633 } 1634 } 1635 1636 static bool cgroup_dev_is_valid_access(int off, int size, 1637 enum bpf_access_type type, 1638 const struct bpf_prog *prog, 1639 struct bpf_insn_access_aux *info) 1640 { 1641 const int size_default = sizeof(__u32); 1642 1643 if (type == BPF_WRITE) 1644 return false; 1645 1646 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx)) 1647 return false; 1648 /* The verifier guarantees that size > 0. */ 1649 if (off % size != 0) 1650 return false; 1651 1652 switch (off) { 1653 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type): 1654 bpf_ctx_record_field_size(info, size_default); 1655 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 1656 return false; 1657 break; 1658 default: 1659 if (size != size_default) 1660 return false; 1661 } 1662 1663 return true; 1664 } 1665 1666 const struct bpf_prog_ops cg_dev_prog_ops = { 1667 }; 1668 1669 const struct bpf_verifier_ops cg_dev_verifier_ops = { 1670 .get_func_proto = cgroup_dev_func_proto, 1671 .is_valid_access = cgroup_dev_is_valid_access, 1672 }; 1673 1674 /** 1675 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl 1676 * 1677 * @head: sysctl table header 1678 * @table: sysctl table 1679 * @write: sysctl is being read (= 0) or written (= 1) 1680 * @buf: pointer to buffer (in and out) 1681 * @pcount: value-result argument: value is size of buffer pointed to by @buf, 1682 * result is size of @new_buf if program set new value, initial value 1683 * otherwise 1684 * @ppos: value-result argument: value is position at which read from or write 1685 * to sysctl is happening, result is new position if program overrode it, 1686 * initial value otherwise 1687 * @atype: type of program to be executed 1688 * 1689 * Program is run when sysctl is being accessed, either read or written, and 1690 * can allow or deny such access. 1691 * 1692 * This function will return %-EPERM if an attached program is found and 1693 * returned value != 1 during execution. In all other cases 0 is returned. 1694 */ 1695 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head, 1696 struct ctl_table *table, int write, 1697 char **buf, size_t *pcount, loff_t *ppos, 1698 enum cgroup_bpf_attach_type atype) 1699 { 1700 struct bpf_sysctl_kern ctx = { 1701 .head = head, 1702 .table = table, 1703 .write = write, 1704 .ppos = ppos, 1705 .cur_val = NULL, 1706 .cur_len = PAGE_SIZE, 1707 .new_val = NULL, 1708 .new_len = 0, 1709 .new_updated = 0, 1710 }; 1711 struct cgroup *cgrp; 1712 loff_t pos = 0; 1713 int ret; 1714 1715 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL); 1716 if (!ctx.cur_val || 1717 table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) { 1718 /* Let BPF program decide how to proceed. */ 1719 ctx.cur_len = 0; 1720 } 1721 1722 if (write && *buf && *pcount) { 1723 /* BPF program should be able to override new value with a 1724 * buffer bigger than provided by user. 1725 */ 1726 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL); 1727 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount); 1728 if (ctx.new_val) { 1729 memcpy(ctx.new_val, *buf, ctx.new_len); 1730 } else { 1731 /* Let BPF program decide how to proceed. */ 1732 ctx.new_len = 0; 1733 } 1734 } 1735 1736 rcu_read_lock(); 1737 cgrp = task_dfl_cgroup(current); 1738 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, 1739 NULL); 1740 rcu_read_unlock(); 1741 1742 kfree(ctx.cur_val); 1743 1744 if (ret == 1 && ctx.new_updated) { 1745 kfree(*buf); 1746 *buf = ctx.new_val; 1747 *pcount = ctx.new_len; 1748 } else { 1749 kfree(ctx.new_val); 1750 } 1751 1752 return ret; 1753 } 1754 1755 #ifdef CONFIG_NET 1756 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen, 1757 struct bpf_sockopt_buf *buf) 1758 { 1759 if (unlikely(max_optlen < 0)) 1760 return -EINVAL; 1761 1762 if (unlikely(max_optlen > PAGE_SIZE)) { 1763 /* We don't expose optvals that are greater than PAGE_SIZE 1764 * to the BPF program. 1765 */ 1766 max_optlen = PAGE_SIZE; 1767 } 1768 1769 if (max_optlen <= sizeof(buf->data)) { 1770 /* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE 1771 * bytes avoid the cost of kzalloc. 1772 */ 1773 ctx->optval = buf->data; 1774 ctx->optval_end = ctx->optval + max_optlen; 1775 return max_optlen; 1776 } 1777 1778 ctx->optval = kzalloc(max_optlen, GFP_USER); 1779 if (!ctx->optval) 1780 return -ENOMEM; 1781 1782 ctx->optval_end = ctx->optval + max_optlen; 1783 1784 return max_optlen; 1785 } 1786 1787 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx, 1788 struct bpf_sockopt_buf *buf) 1789 { 1790 if (ctx->optval == buf->data) 1791 return; 1792 kfree(ctx->optval); 1793 } 1794 1795 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx, 1796 struct bpf_sockopt_buf *buf) 1797 { 1798 return ctx->optval != buf->data; 1799 } 1800 1801 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level, 1802 int *optname, sockptr_t optval, 1803 int *optlen, char **kernel_optval) 1804 { 1805 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1806 struct bpf_sockopt_buf buf = {}; 1807 struct bpf_sockopt_kern ctx = { 1808 .sk = sk, 1809 .level = *level, 1810 .optname = *optname, 1811 }; 1812 int ret, max_optlen; 1813 1814 /* Allocate a bit more than the initial user buffer for 1815 * BPF program. The canonical use case is overriding 1816 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic). 1817 */ 1818 max_optlen = max_t(int, 16, *optlen); 1819 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); 1820 if (max_optlen < 0) 1821 return max_optlen; 1822 1823 ctx.optlen = *optlen; 1824 1825 if (copy_from_sockptr(ctx.optval, optval, 1826 min(*optlen, max_optlen))) { 1827 ret = -EFAULT; 1828 goto out; 1829 } 1830 1831 lock_sock(sk); 1832 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_SETSOCKOPT, 1833 &ctx, bpf_prog_run, 0, NULL); 1834 release_sock(sk); 1835 1836 if (ret) 1837 goto out; 1838 1839 if (ctx.optlen == -1) { 1840 /* optlen set to -1, bypass kernel */ 1841 ret = 1; 1842 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) { 1843 /* optlen is out of bounds */ 1844 if (*optlen > PAGE_SIZE && ctx.optlen >= 0) { 1845 pr_info_once("bpf setsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n", 1846 ctx.optlen, max_optlen); 1847 ret = 0; 1848 goto out; 1849 } 1850 ret = -EFAULT; 1851 } else { 1852 /* optlen within bounds, run kernel handler */ 1853 ret = 0; 1854 1855 /* export any potential modifications */ 1856 *level = ctx.level; 1857 *optname = ctx.optname; 1858 1859 /* optlen == 0 from BPF indicates that we should 1860 * use original userspace data. 1861 */ 1862 if (ctx.optlen != 0) { 1863 *optlen = ctx.optlen; 1864 /* We've used bpf_sockopt_kern->buf as an intermediary 1865 * storage, but the BPF program indicates that we need 1866 * to pass this data to the kernel setsockopt handler. 1867 * No way to export on-stack buf, have to allocate a 1868 * new buffer. 1869 */ 1870 if (!sockopt_buf_allocated(&ctx, &buf)) { 1871 void *p = kmalloc(ctx.optlen, GFP_USER); 1872 1873 if (!p) { 1874 ret = -ENOMEM; 1875 goto out; 1876 } 1877 memcpy(p, ctx.optval, ctx.optlen); 1878 *kernel_optval = p; 1879 } else { 1880 *kernel_optval = ctx.optval; 1881 } 1882 /* export and don't free sockopt buf */ 1883 return 0; 1884 } 1885 } 1886 1887 out: 1888 sockopt_free_buf(&ctx, &buf); 1889 return ret; 1890 } 1891 1892 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level, 1893 int optname, sockptr_t optval, 1894 sockptr_t optlen, int max_optlen, 1895 int retval) 1896 { 1897 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1898 struct bpf_sockopt_buf buf = {}; 1899 struct bpf_sockopt_kern ctx = { 1900 .sk = sk, 1901 .level = level, 1902 .optname = optname, 1903 .current_task = current, 1904 }; 1905 int orig_optlen; 1906 int ret; 1907 1908 orig_optlen = max_optlen; 1909 ctx.optlen = max_optlen; 1910 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); 1911 if (max_optlen < 0) 1912 return max_optlen; 1913 1914 if (!retval) { 1915 /* If kernel getsockopt finished successfully, 1916 * copy whatever was returned to the user back 1917 * into our temporary buffer. Set optlen to the 1918 * one that kernel returned as well to let 1919 * BPF programs inspect the value. 1920 */ 1921 if (copy_from_sockptr(&ctx.optlen, optlen, 1922 sizeof(ctx.optlen))) { 1923 ret = -EFAULT; 1924 goto out; 1925 } 1926 1927 if (ctx.optlen < 0) { 1928 ret = -EFAULT; 1929 goto out; 1930 } 1931 orig_optlen = ctx.optlen; 1932 1933 if (copy_from_sockptr(ctx.optval, optval, 1934 min(ctx.optlen, max_optlen))) { 1935 ret = -EFAULT; 1936 goto out; 1937 } 1938 } 1939 1940 lock_sock(sk); 1941 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, 1942 &ctx, bpf_prog_run, retval, NULL); 1943 release_sock(sk); 1944 1945 if (ret < 0) 1946 goto out; 1947 1948 if (!sockptr_is_null(optval) && 1949 (ctx.optlen > max_optlen || ctx.optlen < 0)) { 1950 if (orig_optlen > PAGE_SIZE && ctx.optlen >= 0) { 1951 pr_info_once("bpf getsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n", 1952 ctx.optlen, max_optlen); 1953 ret = retval; 1954 goto out; 1955 } 1956 ret = -EFAULT; 1957 goto out; 1958 } 1959 1960 if (ctx.optlen != 0) { 1961 if (!sockptr_is_null(optval) && 1962 copy_to_sockptr(optval, ctx.optval, ctx.optlen)) { 1963 ret = -EFAULT; 1964 goto out; 1965 } 1966 if (copy_to_sockptr(optlen, &ctx.optlen, sizeof(ctx.optlen))) { 1967 ret = -EFAULT; 1968 goto out; 1969 } 1970 } 1971 1972 out: 1973 sockopt_free_buf(&ctx, &buf); 1974 return ret; 1975 } 1976 1977 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level, 1978 int optname, void *optval, 1979 int *optlen, int retval) 1980 { 1981 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1982 struct bpf_sockopt_kern ctx = { 1983 .sk = sk, 1984 .level = level, 1985 .optname = optname, 1986 .optlen = *optlen, 1987 .optval = optval, 1988 .optval_end = optval + *optlen, 1989 .current_task = current, 1990 }; 1991 int ret; 1992 1993 /* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy 1994 * user data back into BPF buffer when reval != 0. This is 1995 * done as an optimization to avoid extra copy, assuming 1996 * kernel won't populate the data in case of an error. 1997 * Here we always pass the data and memset() should 1998 * be called if that data shouldn't be "exported". 1999 */ 2000 2001 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, 2002 &ctx, bpf_prog_run, retval, NULL); 2003 if (ret < 0) 2004 return ret; 2005 2006 if (ctx.optlen > *optlen) 2007 return -EFAULT; 2008 2009 /* BPF programs can shrink the buffer, export the modifications. 2010 */ 2011 if (ctx.optlen != 0) 2012 *optlen = ctx.optlen; 2013 2014 return ret; 2015 } 2016 #endif 2017 2018 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp, 2019 size_t *lenp) 2020 { 2021 ssize_t tmp_ret = 0, ret; 2022 2023 if (dir->header.parent) { 2024 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp); 2025 if (tmp_ret < 0) 2026 return tmp_ret; 2027 } 2028 2029 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp); 2030 if (ret < 0) 2031 return ret; 2032 *bufp += ret; 2033 *lenp -= ret; 2034 ret += tmp_ret; 2035 2036 /* Avoid leading slash. */ 2037 if (!ret) 2038 return ret; 2039 2040 tmp_ret = strscpy(*bufp, "/", *lenp); 2041 if (tmp_ret < 0) 2042 return tmp_ret; 2043 *bufp += tmp_ret; 2044 *lenp -= tmp_ret; 2045 2046 return ret + tmp_ret; 2047 } 2048 2049 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf, 2050 size_t, buf_len, u64, flags) 2051 { 2052 ssize_t tmp_ret = 0, ret; 2053 2054 if (!buf) 2055 return -EINVAL; 2056 2057 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) { 2058 if (!ctx->head) 2059 return -EINVAL; 2060 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len); 2061 if (tmp_ret < 0) 2062 return tmp_ret; 2063 } 2064 2065 ret = strscpy(buf, ctx->table->procname, buf_len); 2066 2067 return ret < 0 ? ret : tmp_ret + ret; 2068 } 2069 2070 static const struct bpf_func_proto bpf_sysctl_get_name_proto = { 2071 .func = bpf_sysctl_get_name, 2072 .gpl_only = false, 2073 .ret_type = RET_INTEGER, 2074 .arg1_type = ARG_PTR_TO_CTX, 2075 .arg2_type = ARG_PTR_TO_MEM, 2076 .arg3_type = ARG_CONST_SIZE, 2077 .arg4_type = ARG_ANYTHING, 2078 }; 2079 2080 static int copy_sysctl_value(char *dst, size_t dst_len, char *src, 2081 size_t src_len) 2082 { 2083 if (!dst) 2084 return -EINVAL; 2085 2086 if (!dst_len) 2087 return -E2BIG; 2088 2089 if (!src || !src_len) { 2090 memset(dst, 0, dst_len); 2091 return -EINVAL; 2092 } 2093 2094 memcpy(dst, src, min(dst_len, src_len)); 2095 2096 if (dst_len > src_len) { 2097 memset(dst + src_len, '\0', dst_len - src_len); 2098 return src_len; 2099 } 2100 2101 dst[dst_len - 1] = '\0'; 2102 2103 return -E2BIG; 2104 } 2105 2106 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx, 2107 char *, buf, size_t, buf_len) 2108 { 2109 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len); 2110 } 2111 2112 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = { 2113 .func = bpf_sysctl_get_current_value, 2114 .gpl_only = false, 2115 .ret_type = RET_INTEGER, 2116 .arg1_type = ARG_PTR_TO_CTX, 2117 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 2118 .arg3_type = ARG_CONST_SIZE, 2119 }; 2120 2121 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf, 2122 size_t, buf_len) 2123 { 2124 if (!ctx->write) { 2125 if (buf && buf_len) 2126 memset(buf, '\0', buf_len); 2127 return -EINVAL; 2128 } 2129 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len); 2130 } 2131 2132 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = { 2133 .func = bpf_sysctl_get_new_value, 2134 .gpl_only = false, 2135 .ret_type = RET_INTEGER, 2136 .arg1_type = ARG_PTR_TO_CTX, 2137 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 2138 .arg3_type = ARG_CONST_SIZE, 2139 }; 2140 2141 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx, 2142 const char *, buf, size_t, buf_len) 2143 { 2144 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len) 2145 return -EINVAL; 2146 2147 if (buf_len > PAGE_SIZE - 1) 2148 return -E2BIG; 2149 2150 memcpy(ctx->new_val, buf, buf_len); 2151 ctx->new_len = buf_len; 2152 ctx->new_updated = 1; 2153 2154 return 0; 2155 } 2156 2157 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = { 2158 .func = bpf_sysctl_set_new_value, 2159 .gpl_only = false, 2160 .ret_type = RET_INTEGER, 2161 .arg1_type = ARG_PTR_TO_CTX, 2162 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 2163 .arg3_type = ARG_CONST_SIZE, 2164 }; 2165 2166 static const struct bpf_func_proto * 2167 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2168 { 2169 const struct bpf_func_proto *func_proto; 2170 2171 func_proto = cgroup_common_func_proto(func_id, prog); 2172 if (func_proto) 2173 return func_proto; 2174 2175 func_proto = cgroup_current_func_proto(func_id, prog); 2176 if (func_proto) 2177 return func_proto; 2178 2179 switch (func_id) { 2180 case BPF_FUNC_sysctl_get_name: 2181 return &bpf_sysctl_get_name_proto; 2182 case BPF_FUNC_sysctl_get_current_value: 2183 return &bpf_sysctl_get_current_value_proto; 2184 case BPF_FUNC_sysctl_get_new_value: 2185 return &bpf_sysctl_get_new_value_proto; 2186 case BPF_FUNC_sysctl_set_new_value: 2187 return &bpf_sysctl_set_new_value_proto; 2188 case BPF_FUNC_ktime_get_coarse_ns: 2189 return &bpf_ktime_get_coarse_ns_proto; 2190 case BPF_FUNC_perf_event_output: 2191 return &bpf_event_output_data_proto; 2192 default: 2193 return bpf_base_func_proto(func_id); 2194 } 2195 } 2196 2197 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type, 2198 const struct bpf_prog *prog, 2199 struct bpf_insn_access_aux *info) 2200 { 2201 const int size_default = sizeof(__u32); 2202 2203 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size) 2204 return false; 2205 2206 switch (off) { 2207 case bpf_ctx_range(struct bpf_sysctl, write): 2208 if (type != BPF_READ) 2209 return false; 2210 bpf_ctx_record_field_size(info, size_default); 2211 return bpf_ctx_narrow_access_ok(off, size, size_default); 2212 case bpf_ctx_range(struct bpf_sysctl, file_pos): 2213 if (type == BPF_READ) { 2214 bpf_ctx_record_field_size(info, size_default); 2215 return bpf_ctx_narrow_access_ok(off, size, size_default); 2216 } else { 2217 return size == size_default; 2218 } 2219 default: 2220 return false; 2221 } 2222 } 2223 2224 static u32 sysctl_convert_ctx_access(enum bpf_access_type type, 2225 const struct bpf_insn *si, 2226 struct bpf_insn *insn_buf, 2227 struct bpf_prog *prog, u32 *target_size) 2228 { 2229 struct bpf_insn *insn = insn_buf; 2230 u32 read_size; 2231 2232 switch (si->off) { 2233 case offsetof(struct bpf_sysctl, write): 2234 *insn++ = BPF_LDX_MEM( 2235 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 2236 bpf_target_off(struct bpf_sysctl_kern, write, 2237 sizeof_field(struct bpf_sysctl_kern, 2238 write), 2239 target_size)); 2240 break; 2241 case offsetof(struct bpf_sysctl, file_pos): 2242 /* ppos is a pointer so it should be accessed via indirect 2243 * loads and stores. Also for stores additional temporary 2244 * register is used since neither src_reg nor dst_reg can be 2245 * overridden. 2246 */ 2247 if (type == BPF_WRITE) { 2248 int treg = BPF_REG_9; 2249 2250 if (si->src_reg == treg || si->dst_reg == treg) 2251 --treg; 2252 if (si->src_reg == treg || si->dst_reg == treg) 2253 --treg; 2254 *insn++ = BPF_STX_MEM( 2255 BPF_DW, si->dst_reg, treg, 2256 offsetof(struct bpf_sysctl_kern, tmp_reg)); 2257 *insn++ = BPF_LDX_MEM( 2258 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 2259 treg, si->dst_reg, 2260 offsetof(struct bpf_sysctl_kern, ppos)); 2261 *insn++ = BPF_RAW_INSN( 2262 BPF_CLASS(si->code) | BPF_MEM | BPF_SIZEOF(u32), 2263 treg, si->src_reg, 2264 bpf_ctx_narrow_access_offset( 2265 0, sizeof(u32), sizeof(loff_t)), 2266 si->imm); 2267 *insn++ = BPF_LDX_MEM( 2268 BPF_DW, treg, si->dst_reg, 2269 offsetof(struct bpf_sysctl_kern, tmp_reg)); 2270 } else { 2271 *insn++ = BPF_LDX_MEM( 2272 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 2273 si->dst_reg, si->src_reg, 2274 offsetof(struct bpf_sysctl_kern, ppos)); 2275 read_size = bpf_size_to_bytes(BPF_SIZE(si->code)); 2276 *insn++ = BPF_LDX_MEM( 2277 BPF_SIZE(si->code), si->dst_reg, si->dst_reg, 2278 bpf_ctx_narrow_access_offset( 2279 0, read_size, sizeof(loff_t))); 2280 } 2281 *target_size = sizeof(u32); 2282 break; 2283 } 2284 2285 return insn - insn_buf; 2286 } 2287 2288 const struct bpf_verifier_ops cg_sysctl_verifier_ops = { 2289 .get_func_proto = sysctl_func_proto, 2290 .is_valid_access = sysctl_is_valid_access, 2291 .convert_ctx_access = sysctl_convert_ctx_access, 2292 }; 2293 2294 const struct bpf_prog_ops cg_sysctl_prog_ops = { 2295 }; 2296 2297 #ifdef CONFIG_NET 2298 BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx) 2299 { 2300 const struct net *net = ctx ? sock_net(ctx->sk) : &init_net; 2301 2302 return net->net_cookie; 2303 } 2304 2305 static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = { 2306 .func = bpf_get_netns_cookie_sockopt, 2307 .gpl_only = false, 2308 .ret_type = RET_INTEGER, 2309 .arg1_type = ARG_PTR_TO_CTX_OR_NULL, 2310 }; 2311 #endif 2312 2313 static const struct bpf_func_proto * 2314 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2315 { 2316 const struct bpf_func_proto *func_proto; 2317 2318 func_proto = cgroup_common_func_proto(func_id, prog); 2319 if (func_proto) 2320 return func_proto; 2321 2322 func_proto = cgroup_current_func_proto(func_id, prog); 2323 if (func_proto) 2324 return func_proto; 2325 2326 switch (func_id) { 2327 #ifdef CONFIG_NET 2328 case BPF_FUNC_get_netns_cookie: 2329 return &bpf_get_netns_cookie_sockopt_proto; 2330 case BPF_FUNC_sk_storage_get: 2331 return &bpf_sk_storage_get_proto; 2332 case BPF_FUNC_sk_storage_delete: 2333 return &bpf_sk_storage_delete_proto; 2334 case BPF_FUNC_setsockopt: 2335 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) 2336 return &bpf_sk_setsockopt_proto; 2337 return NULL; 2338 case BPF_FUNC_getsockopt: 2339 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) 2340 return &bpf_sk_getsockopt_proto; 2341 return NULL; 2342 #endif 2343 #ifdef CONFIG_INET 2344 case BPF_FUNC_tcp_sock: 2345 return &bpf_tcp_sock_proto; 2346 #endif 2347 case BPF_FUNC_perf_event_output: 2348 return &bpf_event_output_data_proto; 2349 default: 2350 return bpf_base_func_proto(func_id); 2351 } 2352 } 2353 2354 static bool cg_sockopt_is_valid_access(int off, int size, 2355 enum bpf_access_type type, 2356 const struct bpf_prog *prog, 2357 struct bpf_insn_access_aux *info) 2358 { 2359 const int size_default = sizeof(__u32); 2360 2361 if (off < 0 || off >= sizeof(struct bpf_sockopt)) 2362 return false; 2363 2364 if (off % size != 0) 2365 return false; 2366 2367 if (type == BPF_WRITE) { 2368 switch (off) { 2369 case offsetof(struct bpf_sockopt, retval): 2370 if (size != size_default) 2371 return false; 2372 return prog->expected_attach_type == 2373 BPF_CGROUP_GETSOCKOPT; 2374 case offsetof(struct bpf_sockopt, optname): 2375 fallthrough; 2376 case offsetof(struct bpf_sockopt, level): 2377 if (size != size_default) 2378 return false; 2379 return prog->expected_attach_type == 2380 BPF_CGROUP_SETSOCKOPT; 2381 case offsetof(struct bpf_sockopt, optlen): 2382 return size == size_default; 2383 default: 2384 return false; 2385 } 2386 } 2387 2388 switch (off) { 2389 case offsetof(struct bpf_sockopt, sk): 2390 if (size != sizeof(__u64)) 2391 return false; 2392 info->reg_type = PTR_TO_SOCKET; 2393 break; 2394 case offsetof(struct bpf_sockopt, optval): 2395 if (size != sizeof(__u64)) 2396 return false; 2397 info->reg_type = PTR_TO_PACKET; 2398 break; 2399 case offsetof(struct bpf_sockopt, optval_end): 2400 if (size != sizeof(__u64)) 2401 return false; 2402 info->reg_type = PTR_TO_PACKET_END; 2403 break; 2404 case offsetof(struct bpf_sockopt, retval): 2405 if (size != size_default) 2406 return false; 2407 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT; 2408 default: 2409 if (size != size_default) 2410 return false; 2411 break; 2412 } 2413 return true; 2414 } 2415 2416 #define CG_SOCKOPT_READ_FIELD(F) \ 2417 BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \ 2418 si->dst_reg, si->src_reg, \ 2419 offsetof(struct bpf_sockopt_kern, F)) 2420 2421 #define CG_SOCKOPT_WRITE_FIELD(F) \ 2422 BPF_RAW_INSN((BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F) | \ 2423 BPF_MEM | BPF_CLASS(si->code)), \ 2424 si->dst_reg, si->src_reg, \ 2425 offsetof(struct bpf_sockopt_kern, F), \ 2426 si->imm) 2427 2428 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type, 2429 const struct bpf_insn *si, 2430 struct bpf_insn *insn_buf, 2431 struct bpf_prog *prog, 2432 u32 *target_size) 2433 { 2434 struct bpf_insn *insn = insn_buf; 2435 2436 switch (si->off) { 2437 case offsetof(struct bpf_sockopt, sk): 2438 *insn++ = CG_SOCKOPT_READ_FIELD(sk); 2439 break; 2440 case offsetof(struct bpf_sockopt, level): 2441 if (type == BPF_WRITE) 2442 *insn++ = CG_SOCKOPT_WRITE_FIELD(level); 2443 else 2444 *insn++ = CG_SOCKOPT_READ_FIELD(level); 2445 break; 2446 case offsetof(struct bpf_sockopt, optname): 2447 if (type == BPF_WRITE) 2448 *insn++ = CG_SOCKOPT_WRITE_FIELD(optname); 2449 else 2450 *insn++ = CG_SOCKOPT_READ_FIELD(optname); 2451 break; 2452 case offsetof(struct bpf_sockopt, optlen): 2453 if (type == BPF_WRITE) 2454 *insn++ = CG_SOCKOPT_WRITE_FIELD(optlen); 2455 else 2456 *insn++ = CG_SOCKOPT_READ_FIELD(optlen); 2457 break; 2458 case offsetof(struct bpf_sockopt, retval): 2459 BUILD_BUG_ON(offsetof(struct bpf_cg_run_ctx, run_ctx) != 0); 2460 2461 if (type == BPF_WRITE) { 2462 int treg = BPF_REG_9; 2463 2464 if (si->src_reg == treg || si->dst_reg == treg) 2465 --treg; 2466 if (si->src_reg == treg || si->dst_reg == treg) 2467 --treg; 2468 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, treg, 2469 offsetof(struct bpf_sockopt_kern, tmp_reg)); 2470 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), 2471 treg, si->dst_reg, 2472 offsetof(struct bpf_sockopt_kern, current_task)); 2473 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), 2474 treg, treg, 2475 offsetof(struct task_struct, bpf_ctx)); 2476 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_MEM | 2477 BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), 2478 treg, si->src_reg, 2479 offsetof(struct bpf_cg_run_ctx, retval), 2480 si->imm); 2481 *insn++ = BPF_LDX_MEM(BPF_DW, treg, si->dst_reg, 2482 offsetof(struct bpf_sockopt_kern, tmp_reg)); 2483 } else { 2484 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), 2485 si->dst_reg, si->src_reg, 2486 offsetof(struct bpf_sockopt_kern, current_task)); 2487 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), 2488 si->dst_reg, si->dst_reg, 2489 offsetof(struct task_struct, bpf_ctx)); 2490 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), 2491 si->dst_reg, si->dst_reg, 2492 offsetof(struct bpf_cg_run_ctx, retval)); 2493 } 2494 break; 2495 case offsetof(struct bpf_sockopt, optval): 2496 *insn++ = CG_SOCKOPT_READ_FIELD(optval); 2497 break; 2498 case offsetof(struct bpf_sockopt, optval_end): 2499 *insn++ = CG_SOCKOPT_READ_FIELD(optval_end); 2500 break; 2501 } 2502 2503 return insn - insn_buf; 2504 } 2505 2506 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf, 2507 bool direct_write, 2508 const struct bpf_prog *prog) 2509 { 2510 /* Nothing to do for sockopt argument. The data is kzalloc'ated. 2511 */ 2512 return 0; 2513 } 2514 2515 const struct bpf_verifier_ops cg_sockopt_verifier_ops = { 2516 .get_func_proto = cg_sockopt_func_proto, 2517 .is_valid_access = cg_sockopt_is_valid_access, 2518 .convert_ctx_access = cg_sockopt_convert_ctx_access, 2519 .gen_prologue = cg_sockopt_get_prologue, 2520 }; 2521 2522 const struct bpf_prog_ops cg_sockopt_prog_ops = { 2523 }; 2524 2525 /* Common helpers for cgroup hooks. */ 2526 const struct bpf_func_proto * 2527 cgroup_common_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2528 { 2529 switch (func_id) { 2530 case BPF_FUNC_get_local_storage: 2531 return &bpf_get_local_storage_proto; 2532 case BPF_FUNC_get_retval: 2533 switch (prog->expected_attach_type) { 2534 case BPF_CGROUP_INET_INGRESS: 2535 case BPF_CGROUP_INET_EGRESS: 2536 case BPF_CGROUP_SOCK_OPS: 2537 case BPF_CGROUP_UDP4_RECVMSG: 2538 case BPF_CGROUP_UDP6_RECVMSG: 2539 case BPF_CGROUP_INET4_GETPEERNAME: 2540 case BPF_CGROUP_INET6_GETPEERNAME: 2541 case BPF_CGROUP_INET4_GETSOCKNAME: 2542 case BPF_CGROUP_INET6_GETSOCKNAME: 2543 return NULL; 2544 default: 2545 return &bpf_get_retval_proto; 2546 } 2547 case BPF_FUNC_set_retval: 2548 switch (prog->expected_attach_type) { 2549 case BPF_CGROUP_INET_INGRESS: 2550 case BPF_CGROUP_INET_EGRESS: 2551 case BPF_CGROUP_SOCK_OPS: 2552 case BPF_CGROUP_UDP4_RECVMSG: 2553 case BPF_CGROUP_UDP6_RECVMSG: 2554 case BPF_CGROUP_INET4_GETPEERNAME: 2555 case BPF_CGROUP_INET6_GETPEERNAME: 2556 case BPF_CGROUP_INET4_GETSOCKNAME: 2557 case BPF_CGROUP_INET6_GETSOCKNAME: 2558 return NULL; 2559 default: 2560 return &bpf_set_retval_proto; 2561 } 2562 default: 2563 return NULL; 2564 } 2565 } 2566 2567 /* Common helpers for cgroup hooks with valid process context. */ 2568 const struct bpf_func_proto * 2569 cgroup_current_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2570 { 2571 switch (func_id) { 2572 case BPF_FUNC_get_current_uid_gid: 2573 return &bpf_get_current_uid_gid_proto; 2574 case BPF_FUNC_get_current_pid_tgid: 2575 return &bpf_get_current_pid_tgid_proto; 2576 case BPF_FUNC_get_current_comm: 2577 return &bpf_get_current_comm_proto; 2578 #ifdef CONFIG_CGROUP_NET_CLASSID 2579 case BPF_FUNC_get_cgroup_classid: 2580 return &bpf_get_cgroup_classid_curr_proto; 2581 #endif 2582 default: 2583 return NULL; 2584 } 2585 } 2586