1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Functions to manage eBPF programs attached to cgroups 4 * 5 * Copyright (c) 2016 Daniel Mack 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/atomic.h> 10 #include <linux/cgroup.h> 11 #include <linux/filter.h> 12 #include <linux/slab.h> 13 #include <linux/sysctl.h> 14 #include <linux/string.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf-cgroup.h> 17 #include <net/sock.h> 18 #include <net/bpf_sk_storage.h> 19 20 #include "../cgroup/cgroup-internal.h" 21 22 DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key); 23 EXPORT_SYMBOL(cgroup_bpf_enabled_key); 24 25 void cgroup_bpf_offline(struct cgroup *cgrp) 26 { 27 cgroup_get(cgrp); 28 percpu_ref_kill(&cgrp->bpf.refcnt); 29 } 30 31 /** 32 * cgroup_bpf_release() - put references of all bpf programs and 33 * release all cgroup bpf data 34 * @work: work structure embedded into the cgroup to modify 35 */ 36 static void cgroup_bpf_release(struct work_struct *work) 37 { 38 struct cgroup *p, *cgrp = container_of(work, struct cgroup, 39 bpf.release_work); 40 enum bpf_cgroup_storage_type stype; 41 struct bpf_prog_array *old_array; 42 unsigned int type; 43 44 mutex_lock(&cgroup_mutex); 45 46 for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) { 47 struct list_head *progs = &cgrp->bpf.progs[type]; 48 struct bpf_prog_list *pl, *tmp; 49 50 list_for_each_entry_safe(pl, tmp, progs, node) { 51 list_del(&pl->node); 52 bpf_prog_put(pl->prog); 53 for_each_cgroup_storage_type(stype) { 54 bpf_cgroup_storage_unlink(pl->storage[stype]); 55 bpf_cgroup_storage_free(pl->storage[stype]); 56 } 57 kfree(pl); 58 static_branch_dec(&cgroup_bpf_enabled_key); 59 } 60 old_array = rcu_dereference_protected( 61 cgrp->bpf.effective[type], 62 lockdep_is_held(&cgroup_mutex)); 63 bpf_prog_array_free(old_array); 64 } 65 66 mutex_unlock(&cgroup_mutex); 67 68 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 69 cgroup_bpf_put(p); 70 71 percpu_ref_exit(&cgrp->bpf.refcnt); 72 cgroup_put(cgrp); 73 } 74 75 /** 76 * cgroup_bpf_release_fn() - callback used to schedule releasing 77 * of bpf cgroup data 78 * @ref: percpu ref counter structure 79 */ 80 static void cgroup_bpf_release_fn(struct percpu_ref *ref) 81 { 82 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt); 83 84 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release); 85 queue_work(system_wq, &cgrp->bpf.release_work); 86 } 87 88 /* count number of elements in the list. 89 * it's slow but the list cannot be long 90 */ 91 static u32 prog_list_length(struct list_head *head) 92 { 93 struct bpf_prog_list *pl; 94 u32 cnt = 0; 95 96 list_for_each_entry(pl, head, node) { 97 if (!pl->prog) 98 continue; 99 cnt++; 100 } 101 return cnt; 102 } 103 104 /* if parent has non-overridable prog attached, 105 * disallow attaching new programs to the descendent cgroup. 106 * if parent has overridable or multi-prog, allow attaching 107 */ 108 static bool hierarchy_allows_attach(struct cgroup *cgrp, 109 enum bpf_attach_type type) 110 { 111 struct cgroup *p; 112 113 p = cgroup_parent(cgrp); 114 if (!p) 115 return true; 116 do { 117 u32 flags = p->bpf.flags[type]; 118 u32 cnt; 119 120 if (flags & BPF_F_ALLOW_MULTI) 121 return true; 122 cnt = prog_list_length(&p->bpf.progs[type]); 123 WARN_ON_ONCE(cnt > 1); 124 if (cnt == 1) 125 return !!(flags & BPF_F_ALLOW_OVERRIDE); 126 p = cgroup_parent(p); 127 } while (p); 128 return true; 129 } 130 131 /* compute a chain of effective programs for a given cgroup: 132 * start from the list of programs in this cgroup and add 133 * all parent programs. 134 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding 135 * to programs in this cgroup 136 */ 137 static int compute_effective_progs(struct cgroup *cgrp, 138 enum bpf_attach_type type, 139 struct bpf_prog_array **array) 140 { 141 enum bpf_cgroup_storage_type stype; 142 struct bpf_prog_array *progs; 143 struct bpf_prog_list *pl; 144 struct cgroup *p = cgrp; 145 int cnt = 0; 146 147 /* count number of effective programs by walking parents */ 148 do { 149 if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI)) 150 cnt += prog_list_length(&p->bpf.progs[type]); 151 p = cgroup_parent(p); 152 } while (p); 153 154 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL); 155 if (!progs) 156 return -ENOMEM; 157 158 /* populate the array with effective progs */ 159 cnt = 0; 160 p = cgrp; 161 do { 162 if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI)) 163 continue; 164 165 list_for_each_entry(pl, &p->bpf.progs[type], node) { 166 if (!pl->prog) 167 continue; 168 169 progs->items[cnt].prog = pl->prog; 170 for_each_cgroup_storage_type(stype) 171 progs->items[cnt].cgroup_storage[stype] = 172 pl->storage[stype]; 173 cnt++; 174 } 175 } while ((p = cgroup_parent(p))); 176 177 *array = progs; 178 return 0; 179 } 180 181 static void activate_effective_progs(struct cgroup *cgrp, 182 enum bpf_attach_type type, 183 struct bpf_prog_array *old_array) 184 { 185 old_array = rcu_replace_pointer(cgrp->bpf.effective[type], old_array, 186 lockdep_is_held(&cgroup_mutex)); 187 /* free prog array after grace period, since __cgroup_bpf_run_*() 188 * might be still walking the array 189 */ 190 bpf_prog_array_free(old_array); 191 } 192 193 /** 194 * cgroup_bpf_inherit() - inherit effective programs from parent 195 * @cgrp: the cgroup to modify 196 */ 197 int cgroup_bpf_inherit(struct cgroup *cgrp) 198 { 199 /* has to use marco instead of const int, since compiler thinks 200 * that array below is variable length 201 */ 202 #define NR ARRAY_SIZE(cgrp->bpf.effective) 203 struct bpf_prog_array *arrays[NR] = {}; 204 struct cgroup *p; 205 int ret, i; 206 207 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0, 208 GFP_KERNEL); 209 if (ret) 210 return ret; 211 212 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 213 cgroup_bpf_get(p); 214 215 for (i = 0; i < NR; i++) 216 INIT_LIST_HEAD(&cgrp->bpf.progs[i]); 217 218 for (i = 0; i < NR; i++) 219 if (compute_effective_progs(cgrp, i, &arrays[i])) 220 goto cleanup; 221 222 for (i = 0; i < NR; i++) 223 activate_effective_progs(cgrp, i, arrays[i]); 224 225 return 0; 226 cleanup: 227 for (i = 0; i < NR; i++) 228 bpf_prog_array_free(arrays[i]); 229 230 percpu_ref_exit(&cgrp->bpf.refcnt); 231 232 return -ENOMEM; 233 } 234 235 static int update_effective_progs(struct cgroup *cgrp, 236 enum bpf_attach_type type) 237 { 238 struct cgroup_subsys_state *css; 239 int err; 240 241 /* allocate and recompute effective prog arrays */ 242 css_for_each_descendant_pre(css, &cgrp->self) { 243 struct cgroup *desc = container_of(css, struct cgroup, self); 244 245 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 246 continue; 247 248 err = compute_effective_progs(desc, type, &desc->bpf.inactive); 249 if (err) 250 goto cleanup; 251 } 252 253 /* all allocations were successful. Activate all prog arrays */ 254 css_for_each_descendant_pre(css, &cgrp->self) { 255 struct cgroup *desc = container_of(css, struct cgroup, self); 256 257 if (percpu_ref_is_zero(&desc->bpf.refcnt)) { 258 if (unlikely(desc->bpf.inactive)) { 259 bpf_prog_array_free(desc->bpf.inactive); 260 desc->bpf.inactive = NULL; 261 } 262 continue; 263 } 264 265 activate_effective_progs(desc, type, desc->bpf.inactive); 266 desc->bpf.inactive = NULL; 267 } 268 269 return 0; 270 271 cleanup: 272 /* oom while computing effective. Free all computed effective arrays 273 * since they were not activated 274 */ 275 css_for_each_descendant_pre(css, &cgrp->self) { 276 struct cgroup *desc = container_of(css, struct cgroup, self); 277 278 bpf_prog_array_free(desc->bpf.inactive); 279 desc->bpf.inactive = NULL; 280 } 281 282 return err; 283 } 284 285 #define BPF_CGROUP_MAX_PROGS 64 286 287 /** 288 * __cgroup_bpf_attach() - Attach the program to a cgroup, and 289 * propagate the change to descendants 290 * @cgrp: The cgroup which descendants to traverse 291 * @prog: A program to attach 292 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set 293 * @type: Type of attach operation 294 * @flags: Option flags 295 * 296 * Must be called with cgroup_mutex held. 297 */ 298 int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 299 struct bpf_prog *replace_prog, 300 enum bpf_attach_type type, u32 flags) 301 { 302 u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI)); 303 struct list_head *progs = &cgrp->bpf.progs[type]; 304 struct bpf_prog *old_prog = NULL; 305 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE], 306 *old_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {NULL}; 307 struct bpf_prog_list *pl, *replace_pl = NULL; 308 enum bpf_cgroup_storage_type stype; 309 int err; 310 311 if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) || 312 ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI))) 313 /* invalid combination */ 314 return -EINVAL; 315 316 if (!hierarchy_allows_attach(cgrp, type)) 317 return -EPERM; 318 319 if (!list_empty(progs) && cgrp->bpf.flags[type] != saved_flags) 320 /* Disallow attaching non-overridable on top 321 * of existing overridable in this cgroup. 322 * Disallow attaching multi-prog if overridable or none 323 */ 324 return -EPERM; 325 326 if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS) 327 return -E2BIG; 328 329 if (flags & BPF_F_ALLOW_MULTI) { 330 list_for_each_entry(pl, progs, node) { 331 if (pl->prog == prog) 332 /* disallow attaching the same prog twice */ 333 return -EINVAL; 334 if (pl->prog == replace_prog) 335 replace_pl = pl; 336 } 337 if ((flags & BPF_F_REPLACE) && !replace_pl) 338 /* prog to replace not found for cgroup */ 339 return -ENOENT; 340 } else if (!list_empty(progs)) { 341 replace_pl = list_first_entry(progs, typeof(*pl), node); 342 } 343 344 for_each_cgroup_storage_type(stype) { 345 storage[stype] = bpf_cgroup_storage_alloc(prog, stype); 346 if (IS_ERR(storage[stype])) { 347 storage[stype] = NULL; 348 for_each_cgroup_storage_type(stype) 349 bpf_cgroup_storage_free(storage[stype]); 350 return -ENOMEM; 351 } 352 } 353 354 if (replace_pl) { 355 pl = replace_pl; 356 old_prog = pl->prog; 357 for_each_cgroup_storage_type(stype) { 358 old_storage[stype] = pl->storage[stype]; 359 bpf_cgroup_storage_unlink(old_storage[stype]); 360 } 361 } else { 362 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 363 if (!pl) { 364 for_each_cgroup_storage_type(stype) 365 bpf_cgroup_storage_free(storage[stype]); 366 return -ENOMEM; 367 } 368 list_add_tail(&pl->node, progs); 369 } 370 371 pl->prog = prog; 372 for_each_cgroup_storage_type(stype) 373 pl->storage[stype] = storage[stype]; 374 375 cgrp->bpf.flags[type] = saved_flags; 376 377 err = update_effective_progs(cgrp, type); 378 if (err) 379 goto cleanup; 380 381 static_branch_inc(&cgroup_bpf_enabled_key); 382 for_each_cgroup_storage_type(stype) { 383 if (!old_storage[stype]) 384 continue; 385 bpf_cgroup_storage_free(old_storage[stype]); 386 } 387 if (old_prog) { 388 bpf_prog_put(old_prog); 389 static_branch_dec(&cgroup_bpf_enabled_key); 390 } 391 for_each_cgroup_storage_type(stype) 392 bpf_cgroup_storage_link(storage[stype], cgrp, type); 393 return 0; 394 395 cleanup: 396 /* and cleanup the prog list */ 397 pl->prog = old_prog; 398 for_each_cgroup_storage_type(stype) { 399 bpf_cgroup_storage_free(pl->storage[stype]); 400 pl->storage[stype] = old_storage[stype]; 401 bpf_cgroup_storage_link(old_storage[stype], cgrp, type); 402 } 403 if (!replace_pl) { 404 list_del(&pl->node); 405 kfree(pl); 406 } 407 return err; 408 } 409 410 /** 411 * __cgroup_bpf_detach() - Detach the program from a cgroup, and 412 * propagate the change to descendants 413 * @cgrp: The cgroup which descendants to traverse 414 * @prog: A program to detach or NULL 415 * @type: Type of detach operation 416 * 417 * Must be called with cgroup_mutex held. 418 */ 419 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 420 enum bpf_attach_type type) 421 { 422 struct list_head *progs = &cgrp->bpf.progs[type]; 423 enum bpf_cgroup_storage_type stype; 424 u32 flags = cgrp->bpf.flags[type]; 425 struct bpf_prog *old_prog = NULL; 426 struct bpf_prog_list *pl; 427 int err; 428 429 if (flags & BPF_F_ALLOW_MULTI) { 430 if (!prog) 431 /* to detach MULTI prog the user has to specify valid FD 432 * of the program to be detached 433 */ 434 return -EINVAL; 435 } else { 436 if (list_empty(progs)) 437 /* report error when trying to detach and nothing is attached */ 438 return -ENOENT; 439 } 440 441 if (flags & BPF_F_ALLOW_MULTI) { 442 /* find the prog and detach it */ 443 list_for_each_entry(pl, progs, node) { 444 if (pl->prog != prog) 445 continue; 446 old_prog = prog; 447 /* mark it deleted, so it's ignored while 448 * recomputing effective 449 */ 450 pl->prog = NULL; 451 break; 452 } 453 if (!old_prog) 454 return -ENOENT; 455 } else { 456 /* to maintain backward compatibility NONE and OVERRIDE cgroups 457 * allow detaching with invalid FD (prog==NULL) 458 */ 459 pl = list_first_entry(progs, typeof(*pl), node); 460 old_prog = pl->prog; 461 pl->prog = NULL; 462 } 463 464 err = update_effective_progs(cgrp, type); 465 if (err) 466 goto cleanup; 467 468 /* now can actually delete it from this cgroup list */ 469 list_del(&pl->node); 470 for_each_cgroup_storage_type(stype) { 471 bpf_cgroup_storage_unlink(pl->storage[stype]); 472 bpf_cgroup_storage_free(pl->storage[stype]); 473 } 474 kfree(pl); 475 if (list_empty(progs)) 476 /* last program was detached, reset flags to zero */ 477 cgrp->bpf.flags[type] = 0; 478 479 bpf_prog_put(old_prog); 480 static_branch_dec(&cgroup_bpf_enabled_key); 481 return 0; 482 483 cleanup: 484 /* and restore back old_prog */ 485 pl->prog = old_prog; 486 return err; 487 } 488 489 /* Must be called with cgroup_mutex held to avoid races. */ 490 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 491 union bpf_attr __user *uattr) 492 { 493 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); 494 enum bpf_attach_type type = attr->query.attach_type; 495 struct list_head *progs = &cgrp->bpf.progs[type]; 496 u32 flags = cgrp->bpf.flags[type]; 497 struct bpf_prog_array *effective; 498 int cnt, ret = 0, i; 499 500 effective = rcu_dereference_protected(cgrp->bpf.effective[type], 501 lockdep_is_held(&cgroup_mutex)); 502 503 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) 504 cnt = bpf_prog_array_length(effective); 505 else 506 cnt = prog_list_length(progs); 507 508 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) 509 return -EFAULT; 510 if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt))) 511 return -EFAULT; 512 if (attr->query.prog_cnt == 0 || !prog_ids || !cnt) 513 /* return early if user requested only program count + flags */ 514 return 0; 515 if (attr->query.prog_cnt < cnt) { 516 cnt = attr->query.prog_cnt; 517 ret = -ENOSPC; 518 } 519 520 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) { 521 return bpf_prog_array_copy_to_user(effective, prog_ids, cnt); 522 } else { 523 struct bpf_prog_list *pl; 524 u32 id; 525 526 i = 0; 527 list_for_each_entry(pl, progs, node) { 528 id = pl->prog->aux->id; 529 if (copy_to_user(prog_ids + i, &id, sizeof(id))) 530 return -EFAULT; 531 if (++i == cnt) 532 break; 533 } 534 } 535 return ret; 536 } 537 538 int cgroup_bpf_prog_attach(const union bpf_attr *attr, 539 enum bpf_prog_type ptype, struct bpf_prog *prog) 540 { 541 struct bpf_prog *replace_prog = NULL; 542 struct cgroup *cgrp; 543 int ret; 544 545 cgrp = cgroup_get_from_fd(attr->target_fd); 546 if (IS_ERR(cgrp)) 547 return PTR_ERR(cgrp); 548 549 if ((attr->attach_flags & BPF_F_ALLOW_MULTI) && 550 (attr->attach_flags & BPF_F_REPLACE)) { 551 replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype); 552 if (IS_ERR(replace_prog)) { 553 cgroup_put(cgrp); 554 return PTR_ERR(replace_prog); 555 } 556 } 557 558 ret = cgroup_bpf_attach(cgrp, prog, replace_prog, attr->attach_type, 559 attr->attach_flags); 560 561 if (replace_prog) 562 bpf_prog_put(replace_prog); 563 cgroup_put(cgrp); 564 return ret; 565 } 566 567 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) 568 { 569 struct bpf_prog *prog; 570 struct cgroup *cgrp; 571 int ret; 572 573 cgrp = cgroup_get_from_fd(attr->target_fd); 574 if (IS_ERR(cgrp)) 575 return PTR_ERR(cgrp); 576 577 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); 578 if (IS_ERR(prog)) 579 prog = NULL; 580 581 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, 0); 582 if (prog) 583 bpf_prog_put(prog); 584 585 cgroup_put(cgrp); 586 return ret; 587 } 588 589 int cgroup_bpf_prog_query(const union bpf_attr *attr, 590 union bpf_attr __user *uattr) 591 { 592 struct cgroup *cgrp; 593 int ret; 594 595 cgrp = cgroup_get_from_fd(attr->query.target_fd); 596 if (IS_ERR(cgrp)) 597 return PTR_ERR(cgrp); 598 599 ret = cgroup_bpf_query(cgrp, attr, uattr); 600 601 cgroup_put(cgrp); 602 return ret; 603 } 604 605 /** 606 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering 607 * @sk: The socket sending or receiving traffic 608 * @skb: The skb that is being sent or received 609 * @type: The type of program to be exectuted 610 * 611 * If no socket is passed, or the socket is not of type INET or INET6, 612 * this function does nothing and returns 0. 613 * 614 * The program type passed in via @type must be suitable for network 615 * filtering. No further check is performed to assert that. 616 * 617 * For egress packets, this function can return: 618 * NET_XMIT_SUCCESS (0) - continue with packet output 619 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr 620 * NET_XMIT_CN (2) - continue with packet output and notify TCP 621 * to call cwr 622 * -EPERM - drop packet 623 * 624 * For ingress packets, this function will return -EPERM if any 625 * attached program was found and if it returned != 1 during execution. 626 * Otherwise 0 is returned. 627 */ 628 int __cgroup_bpf_run_filter_skb(struct sock *sk, 629 struct sk_buff *skb, 630 enum bpf_attach_type type) 631 { 632 unsigned int offset = skb->data - skb_network_header(skb); 633 struct sock *save_sk; 634 void *saved_data_end; 635 struct cgroup *cgrp; 636 int ret; 637 638 if (!sk || !sk_fullsock(sk)) 639 return 0; 640 641 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 642 return 0; 643 644 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 645 save_sk = skb->sk; 646 skb->sk = sk; 647 __skb_push(skb, offset); 648 649 /* compute pointers for the bpf prog */ 650 bpf_compute_and_save_data_end(skb, &saved_data_end); 651 652 if (type == BPF_CGROUP_INET_EGRESS) { 653 ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY( 654 cgrp->bpf.effective[type], skb, __bpf_prog_run_save_cb); 655 } else { 656 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb, 657 __bpf_prog_run_save_cb); 658 ret = (ret == 1 ? 0 : -EPERM); 659 } 660 bpf_restore_data_end(skb, saved_data_end); 661 __skb_pull(skb, offset); 662 skb->sk = save_sk; 663 664 return ret; 665 } 666 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb); 667 668 /** 669 * __cgroup_bpf_run_filter_sk() - Run a program on a sock 670 * @sk: sock structure to manipulate 671 * @type: The type of program to be exectuted 672 * 673 * socket is passed is expected to be of type INET or INET6. 674 * 675 * The program type passed in via @type must be suitable for sock 676 * filtering. No further check is performed to assert that. 677 * 678 * This function will return %-EPERM if any if an attached program was found 679 * and if it returned != 1 during execution. In all other cases, 0 is returned. 680 */ 681 int __cgroup_bpf_run_filter_sk(struct sock *sk, 682 enum bpf_attach_type type) 683 { 684 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 685 int ret; 686 687 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN); 688 return ret == 1 ? 0 : -EPERM; 689 } 690 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk); 691 692 /** 693 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and 694 * provided by user sockaddr 695 * @sk: sock struct that will use sockaddr 696 * @uaddr: sockaddr struct provided by user 697 * @type: The type of program to be exectuted 698 * @t_ctx: Pointer to attach type specific context 699 * 700 * socket is expected to be of type INET or INET6. 701 * 702 * This function will return %-EPERM if an attached program is found and 703 * returned value != 1 during execution. In all other cases, 0 is returned. 704 */ 705 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk, 706 struct sockaddr *uaddr, 707 enum bpf_attach_type type, 708 void *t_ctx) 709 { 710 struct bpf_sock_addr_kern ctx = { 711 .sk = sk, 712 .uaddr = uaddr, 713 .t_ctx = t_ctx, 714 }; 715 struct sockaddr_storage unspec; 716 struct cgroup *cgrp; 717 int ret; 718 719 /* Check socket family since not all sockets represent network 720 * endpoint (e.g. AF_UNIX). 721 */ 722 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 723 return 0; 724 725 if (!ctx.uaddr) { 726 memset(&unspec, 0, sizeof(unspec)); 727 ctx.uaddr = (struct sockaddr *)&unspec; 728 } 729 730 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 731 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN); 732 733 return ret == 1 ? 0 : -EPERM; 734 } 735 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr); 736 737 /** 738 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock 739 * @sk: socket to get cgroup from 740 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains 741 * sk with connection information (IP addresses, etc.) May not contain 742 * cgroup info if it is a req sock. 743 * @type: The type of program to be exectuted 744 * 745 * socket passed is expected to be of type INET or INET6. 746 * 747 * The program type passed in via @type must be suitable for sock_ops 748 * filtering. No further check is performed to assert that. 749 * 750 * This function will return %-EPERM if any if an attached program was found 751 * and if it returned != 1 during execution. In all other cases, 0 is returned. 752 */ 753 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk, 754 struct bpf_sock_ops_kern *sock_ops, 755 enum bpf_attach_type type) 756 { 757 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 758 int ret; 759 760 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops, 761 BPF_PROG_RUN); 762 return ret == 1 ? 0 : -EPERM; 763 } 764 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops); 765 766 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor, 767 short access, enum bpf_attach_type type) 768 { 769 struct cgroup *cgrp; 770 struct bpf_cgroup_dev_ctx ctx = { 771 .access_type = (access << 16) | dev_type, 772 .major = major, 773 .minor = minor, 774 }; 775 int allow = 1; 776 777 rcu_read_lock(); 778 cgrp = task_dfl_cgroup(current); 779 allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, 780 BPF_PROG_RUN); 781 rcu_read_unlock(); 782 783 return !allow; 784 } 785 EXPORT_SYMBOL(__cgroup_bpf_check_dev_permission); 786 787 static const struct bpf_func_proto * 788 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 789 { 790 switch (func_id) { 791 case BPF_FUNC_map_lookup_elem: 792 return &bpf_map_lookup_elem_proto; 793 case BPF_FUNC_map_update_elem: 794 return &bpf_map_update_elem_proto; 795 case BPF_FUNC_map_delete_elem: 796 return &bpf_map_delete_elem_proto; 797 case BPF_FUNC_map_push_elem: 798 return &bpf_map_push_elem_proto; 799 case BPF_FUNC_map_pop_elem: 800 return &bpf_map_pop_elem_proto; 801 case BPF_FUNC_map_peek_elem: 802 return &bpf_map_peek_elem_proto; 803 case BPF_FUNC_get_current_uid_gid: 804 return &bpf_get_current_uid_gid_proto; 805 case BPF_FUNC_get_local_storage: 806 return &bpf_get_local_storage_proto; 807 case BPF_FUNC_get_current_cgroup_id: 808 return &bpf_get_current_cgroup_id_proto; 809 case BPF_FUNC_trace_printk: 810 if (capable(CAP_SYS_ADMIN)) 811 return bpf_get_trace_printk_proto(); 812 /* fall through */ 813 default: 814 return NULL; 815 } 816 } 817 818 static const struct bpf_func_proto * 819 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 820 { 821 return cgroup_base_func_proto(func_id, prog); 822 } 823 824 static bool cgroup_dev_is_valid_access(int off, int size, 825 enum bpf_access_type type, 826 const struct bpf_prog *prog, 827 struct bpf_insn_access_aux *info) 828 { 829 const int size_default = sizeof(__u32); 830 831 if (type == BPF_WRITE) 832 return false; 833 834 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx)) 835 return false; 836 /* The verifier guarantees that size > 0. */ 837 if (off % size != 0) 838 return false; 839 840 switch (off) { 841 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type): 842 bpf_ctx_record_field_size(info, size_default); 843 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 844 return false; 845 break; 846 default: 847 if (size != size_default) 848 return false; 849 } 850 851 return true; 852 } 853 854 const struct bpf_prog_ops cg_dev_prog_ops = { 855 }; 856 857 const struct bpf_verifier_ops cg_dev_verifier_ops = { 858 .get_func_proto = cgroup_dev_func_proto, 859 .is_valid_access = cgroup_dev_is_valid_access, 860 }; 861 862 /** 863 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl 864 * 865 * @head: sysctl table header 866 * @table: sysctl table 867 * @write: sysctl is being read (= 0) or written (= 1) 868 * @buf: pointer to buffer passed by user space 869 * @pcount: value-result argument: value is size of buffer pointed to by @buf, 870 * result is size of @new_buf if program set new value, initial value 871 * otherwise 872 * @ppos: value-result argument: value is position at which read from or write 873 * to sysctl is happening, result is new position if program overrode it, 874 * initial value otherwise 875 * @new_buf: pointer to pointer to new buffer that will be allocated if program 876 * overrides new value provided by user space on sysctl write 877 * NOTE: it's caller responsibility to free *new_buf if it was set 878 * @type: type of program to be executed 879 * 880 * Program is run when sysctl is being accessed, either read or written, and 881 * can allow or deny such access. 882 * 883 * This function will return %-EPERM if an attached program is found and 884 * returned value != 1 during execution. In all other cases 0 is returned. 885 */ 886 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head, 887 struct ctl_table *table, int write, 888 void __user *buf, size_t *pcount, 889 loff_t *ppos, void **new_buf, 890 enum bpf_attach_type type) 891 { 892 struct bpf_sysctl_kern ctx = { 893 .head = head, 894 .table = table, 895 .write = write, 896 .ppos = ppos, 897 .cur_val = NULL, 898 .cur_len = PAGE_SIZE, 899 .new_val = NULL, 900 .new_len = 0, 901 .new_updated = 0, 902 }; 903 struct cgroup *cgrp; 904 int ret; 905 906 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL); 907 if (ctx.cur_val) { 908 mm_segment_t old_fs; 909 loff_t pos = 0; 910 911 old_fs = get_fs(); 912 set_fs(KERNEL_DS); 913 if (table->proc_handler(table, 0, (void __user *)ctx.cur_val, 914 &ctx.cur_len, &pos)) { 915 /* Let BPF program decide how to proceed. */ 916 ctx.cur_len = 0; 917 } 918 set_fs(old_fs); 919 } else { 920 /* Let BPF program decide how to proceed. */ 921 ctx.cur_len = 0; 922 } 923 924 if (write && buf && *pcount) { 925 /* BPF program should be able to override new value with a 926 * buffer bigger than provided by user. 927 */ 928 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL); 929 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount); 930 if (!ctx.new_val || 931 copy_from_user(ctx.new_val, buf, ctx.new_len)) 932 /* Let BPF program decide how to proceed. */ 933 ctx.new_len = 0; 934 } 935 936 rcu_read_lock(); 937 cgrp = task_dfl_cgroup(current); 938 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN); 939 rcu_read_unlock(); 940 941 kfree(ctx.cur_val); 942 943 if (ret == 1 && ctx.new_updated) { 944 *new_buf = ctx.new_val; 945 *pcount = ctx.new_len; 946 } else { 947 kfree(ctx.new_val); 948 } 949 950 return ret == 1 ? 0 : -EPERM; 951 } 952 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sysctl); 953 954 #ifdef CONFIG_NET 955 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp, 956 enum bpf_attach_type attach_type) 957 { 958 struct bpf_prog_array *prog_array; 959 bool empty; 960 961 rcu_read_lock(); 962 prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]); 963 empty = bpf_prog_array_is_empty(prog_array); 964 rcu_read_unlock(); 965 966 return empty; 967 } 968 969 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen) 970 { 971 if (unlikely(max_optlen > PAGE_SIZE) || max_optlen < 0) 972 return -EINVAL; 973 974 ctx->optval = kzalloc(max_optlen, GFP_USER); 975 if (!ctx->optval) 976 return -ENOMEM; 977 978 ctx->optval_end = ctx->optval + max_optlen; 979 980 return 0; 981 } 982 983 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx) 984 { 985 kfree(ctx->optval); 986 } 987 988 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level, 989 int *optname, char __user *optval, 990 int *optlen, char **kernel_optval) 991 { 992 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 993 struct bpf_sockopt_kern ctx = { 994 .sk = sk, 995 .level = *level, 996 .optname = *optname, 997 }; 998 int ret, max_optlen; 999 1000 /* Opportunistic check to see whether we have any BPF program 1001 * attached to the hook so we don't waste time allocating 1002 * memory and locking the socket. 1003 */ 1004 if (!cgroup_bpf_enabled || 1005 __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_SETSOCKOPT)) 1006 return 0; 1007 1008 /* Allocate a bit more than the initial user buffer for 1009 * BPF program. The canonical use case is overriding 1010 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic). 1011 */ 1012 max_optlen = max_t(int, 16, *optlen); 1013 1014 ret = sockopt_alloc_buf(&ctx, max_optlen); 1015 if (ret) 1016 return ret; 1017 1018 ctx.optlen = *optlen; 1019 1020 if (copy_from_user(ctx.optval, optval, *optlen) != 0) { 1021 ret = -EFAULT; 1022 goto out; 1023 } 1024 1025 lock_sock(sk); 1026 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_SETSOCKOPT], 1027 &ctx, BPF_PROG_RUN); 1028 release_sock(sk); 1029 1030 if (!ret) { 1031 ret = -EPERM; 1032 goto out; 1033 } 1034 1035 if (ctx.optlen == -1) { 1036 /* optlen set to -1, bypass kernel */ 1037 ret = 1; 1038 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) { 1039 /* optlen is out of bounds */ 1040 ret = -EFAULT; 1041 } else { 1042 /* optlen within bounds, run kernel handler */ 1043 ret = 0; 1044 1045 /* export any potential modifications */ 1046 *level = ctx.level; 1047 *optname = ctx.optname; 1048 *optlen = ctx.optlen; 1049 *kernel_optval = ctx.optval; 1050 } 1051 1052 out: 1053 if (ret) 1054 sockopt_free_buf(&ctx); 1055 return ret; 1056 } 1057 EXPORT_SYMBOL(__cgroup_bpf_run_filter_setsockopt); 1058 1059 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level, 1060 int optname, char __user *optval, 1061 int __user *optlen, int max_optlen, 1062 int retval) 1063 { 1064 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1065 struct bpf_sockopt_kern ctx = { 1066 .sk = sk, 1067 .level = level, 1068 .optname = optname, 1069 .retval = retval, 1070 }; 1071 int ret; 1072 1073 /* Opportunistic check to see whether we have any BPF program 1074 * attached to the hook so we don't waste time allocating 1075 * memory and locking the socket. 1076 */ 1077 if (!cgroup_bpf_enabled || 1078 __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_GETSOCKOPT)) 1079 return retval; 1080 1081 ret = sockopt_alloc_buf(&ctx, max_optlen); 1082 if (ret) 1083 return ret; 1084 1085 ctx.optlen = max_optlen; 1086 1087 if (!retval) { 1088 /* If kernel getsockopt finished successfully, 1089 * copy whatever was returned to the user back 1090 * into our temporary buffer. Set optlen to the 1091 * one that kernel returned as well to let 1092 * BPF programs inspect the value. 1093 */ 1094 1095 if (get_user(ctx.optlen, optlen)) { 1096 ret = -EFAULT; 1097 goto out; 1098 } 1099 1100 if (ctx.optlen > max_optlen) 1101 ctx.optlen = max_optlen; 1102 1103 if (copy_from_user(ctx.optval, optval, ctx.optlen) != 0) { 1104 ret = -EFAULT; 1105 goto out; 1106 } 1107 } 1108 1109 lock_sock(sk); 1110 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT], 1111 &ctx, BPF_PROG_RUN); 1112 release_sock(sk); 1113 1114 if (!ret) { 1115 ret = -EPERM; 1116 goto out; 1117 } 1118 1119 if (ctx.optlen > max_optlen) { 1120 ret = -EFAULT; 1121 goto out; 1122 } 1123 1124 /* BPF programs only allowed to set retval to 0, not some 1125 * arbitrary value. 1126 */ 1127 if (ctx.retval != 0 && ctx.retval != retval) { 1128 ret = -EFAULT; 1129 goto out; 1130 } 1131 1132 if (copy_to_user(optval, ctx.optval, ctx.optlen) || 1133 put_user(ctx.optlen, optlen)) { 1134 ret = -EFAULT; 1135 goto out; 1136 } 1137 1138 ret = ctx.retval; 1139 1140 out: 1141 sockopt_free_buf(&ctx); 1142 return ret; 1143 } 1144 EXPORT_SYMBOL(__cgroup_bpf_run_filter_getsockopt); 1145 #endif 1146 1147 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp, 1148 size_t *lenp) 1149 { 1150 ssize_t tmp_ret = 0, ret; 1151 1152 if (dir->header.parent) { 1153 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp); 1154 if (tmp_ret < 0) 1155 return tmp_ret; 1156 } 1157 1158 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp); 1159 if (ret < 0) 1160 return ret; 1161 *bufp += ret; 1162 *lenp -= ret; 1163 ret += tmp_ret; 1164 1165 /* Avoid leading slash. */ 1166 if (!ret) 1167 return ret; 1168 1169 tmp_ret = strscpy(*bufp, "/", *lenp); 1170 if (tmp_ret < 0) 1171 return tmp_ret; 1172 *bufp += tmp_ret; 1173 *lenp -= tmp_ret; 1174 1175 return ret + tmp_ret; 1176 } 1177 1178 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf, 1179 size_t, buf_len, u64, flags) 1180 { 1181 ssize_t tmp_ret = 0, ret; 1182 1183 if (!buf) 1184 return -EINVAL; 1185 1186 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) { 1187 if (!ctx->head) 1188 return -EINVAL; 1189 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len); 1190 if (tmp_ret < 0) 1191 return tmp_ret; 1192 } 1193 1194 ret = strscpy(buf, ctx->table->procname, buf_len); 1195 1196 return ret < 0 ? ret : tmp_ret + ret; 1197 } 1198 1199 static const struct bpf_func_proto bpf_sysctl_get_name_proto = { 1200 .func = bpf_sysctl_get_name, 1201 .gpl_only = false, 1202 .ret_type = RET_INTEGER, 1203 .arg1_type = ARG_PTR_TO_CTX, 1204 .arg2_type = ARG_PTR_TO_MEM, 1205 .arg3_type = ARG_CONST_SIZE, 1206 .arg4_type = ARG_ANYTHING, 1207 }; 1208 1209 static int copy_sysctl_value(char *dst, size_t dst_len, char *src, 1210 size_t src_len) 1211 { 1212 if (!dst) 1213 return -EINVAL; 1214 1215 if (!dst_len) 1216 return -E2BIG; 1217 1218 if (!src || !src_len) { 1219 memset(dst, 0, dst_len); 1220 return -EINVAL; 1221 } 1222 1223 memcpy(dst, src, min(dst_len, src_len)); 1224 1225 if (dst_len > src_len) { 1226 memset(dst + src_len, '\0', dst_len - src_len); 1227 return src_len; 1228 } 1229 1230 dst[dst_len - 1] = '\0'; 1231 1232 return -E2BIG; 1233 } 1234 1235 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx, 1236 char *, buf, size_t, buf_len) 1237 { 1238 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len); 1239 } 1240 1241 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = { 1242 .func = bpf_sysctl_get_current_value, 1243 .gpl_only = false, 1244 .ret_type = RET_INTEGER, 1245 .arg1_type = ARG_PTR_TO_CTX, 1246 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1247 .arg3_type = ARG_CONST_SIZE, 1248 }; 1249 1250 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf, 1251 size_t, buf_len) 1252 { 1253 if (!ctx->write) { 1254 if (buf && buf_len) 1255 memset(buf, '\0', buf_len); 1256 return -EINVAL; 1257 } 1258 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len); 1259 } 1260 1261 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = { 1262 .func = bpf_sysctl_get_new_value, 1263 .gpl_only = false, 1264 .ret_type = RET_INTEGER, 1265 .arg1_type = ARG_PTR_TO_CTX, 1266 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1267 .arg3_type = ARG_CONST_SIZE, 1268 }; 1269 1270 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx, 1271 const char *, buf, size_t, buf_len) 1272 { 1273 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len) 1274 return -EINVAL; 1275 1276 if (buf_len > PAGE_SIZE - 1) 1277 return -E2BIG; 1278 1279 memcpy(ctx->new_val, buf, buf_len); 1280 ctx->new_len = buf_len; 1281 ctx->new_updated = 1; 1282 1283 return 0; 1284 } 1285 1286 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = { 1287 .func = bpf_sysctl_set_new_value, 1288 .gpl_only = false, 1289 .ret_type = RET_INTEGER, 1290 .arg1_type = ARG_PTR_TO_CTX, 1291 .arg2_type = ARG_PTR_TO_MEM, 1292 .arg3_type = ARG_CONST_SIZE, 1293 }; 1294 1295 static const struct bpf_func_proto * 1296 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1297 { 1298 switch (func_id) { 1299 case BPF_FUNC_strtol: 1300 return &bpf_strtol_proto; 1301 case BPF_FUNC_strtoul: 1302 return &bpf_strtoul_proto; 1303 case BPF_FUNC_sysctl_get_name: 1304 return &bpf_sysctl_get_name_proto; 1305 case BPF_FUNC_sysctl_get_current_value: 1306 return &bpf_sysctl_get_current_value_proto; 1307 case BPF_FUNC_sysctl_get_new_value: 1308 return &bpf_sysctl_get_new_value_proto; 1309 case BPF_FUNC_sysctl_set_new_value: 1310 return &bpf_sysctl_set_new_value_proto; 1311 default: 1312 return cgroup_base_func_proto(func_id, prog); 1313 } 1314 } 1315 1316 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type, 1317 const struct bpf_prog *prog, 1318 struct bpf_insn_access_aux *info) 1319 { 1320 const int size_default = sizeof(__u32); 1321 1322 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size) 1323 return false; 1324 1325 switch (off) { 1326 case bpf_ctx_range(struct bpf_sysctl, write): 1327 if (type != BPF_READ) 1328 return false; 1329 bpf_ctx_record_field_size(info, size_default); 1330 return bpf_ctx_narrow_access_ok(off, size, size_default); 1331 case bpf_ctx_range(struct bpf_sysctl, file_pos): 1332 if (type == BPF_READ) { 1333 bpf_ctx_record_field_size(info, size_default); 1334 return bpf_ctx_narrow_access_ok(off, size, size_default); 1335 } else { 1336 return size == size_default; 1337 } 1338 default: 1339 return false; 1340 } 1341 } 1342 1343 static u32 sysctl_convert_ctx_access(enum bpf_access_type type, 1344 const struct bpf_insn *si, 1345 struct bpf_insn *insn_buf, 1346 struct bpf_prog *prog, u32 *target_size) 1347 { 1348 struct bpf_insn *insn = insn_buf; 1349 u32 read_size; 1350 1351 switch (si->off) { 1352 case offsetof(struct bpf_sysctl, write): 1353 *insn++ = BPF_LDX_MEM( 1354 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 1355 bpf_target_off(struct bpf_sysctl_kern, write, 1356 sizeof_field(struct bpf_sysctl_kern, 1357 write), 1358 target_size)); 1359 break; 1360 case offsetof(struct bpf_sysctl, file_pos): 1361 /* ppos is a pointer so it should be accessed via indirect 1362 * loads and stores. Also for stores additional temporary 1363 * register is used since neither src_reg nor dst_reg can be 1364 * overridden. 1365 */ 1366 if (type == BPF_WRITE) { 1367 int treg = BPF_REG_9; 1368 1369 if (si->src_reg == treg || si->dst_reg == treg) 1370 --treg; 1371 if (si->src_reg == treg || si->dst_reg == treg) 1372 --treg; 1373 *insn++ = BPF_STX_MEM( 1374 BPF_DW, si->dst_reg, treg, 1375 offsetof(struct bpf_sysctl_kern, tmp_reg)); 1376 *insn++ = BPF_LDX_MEM( 1377 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 1378 treg, si->dst_reg, 1379 offsetof(struct bpf_sysctl_kern, ppos)); 1380 *insn++ = BPF_STX_MEM( 1381 BPF_SIZEOF(u32), treg, si->src_reg, 1382 bpf_ctx_narrow_access_offset( 1383 0, sizeof(u32), sizeof(loff_t))); 1384 *insn++ = BPF_LDX_MEM( 1385 BPF_DW, treg, si->dst_reg, 1386 offsetof(struct bpf_sysctl_kern, tmp_reg)); 1387 } else { 1388 *insn++ = BPF_LDX_MEM( 1389 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 1390 si->dst_reg, si->src_reg, 1391 offsetof(struct bpf_sysctl_kern, ppos)); 1392 read_size = bpf_size_to_bytes(BPF_SIZE(si->code)); 1393 *insn++ = BPF_LDX_MEM( 1394 BPF_SIZE(si->code), si->dst_reg, si->dst_reg, 1395 bpf_ctx_narrow_access_offset( 1396 0, read_size, sizeof(loff_t))); 1397 } 1398 *target_size = sizeof(u32); 1399 break; 1400 } 1401 1402 return insn - insn_buf; 1403 } 1404 1405 const struct bpf_verifier_ops cg_sysctl_verifier_ops = { 1406 .get_func_proto = sysctl_func_proto, 1407 .is_valid_access = sysctl_is_valid_access, 1408 .convert_ctx_access = sysctl_convert_ctx_access, 1409 }; 1410 1411 const struct bpf_prog_ops cg_sysctl_prog_ops = { 1412 }; 1413 1414 static const struct bpf_func_proto * 1415 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1416 { 1417 switch (func_id) { 1418 #ifdef CONFIG_NET 1419 case BPF_FUNC_sk_storage_get: 1420 return &bpf_sk_storage_get_proto; 1421 case BPF_FUNC_sk_storage_delete: 1422 return &bpf_sk_storage_delete_proto; 1423 #endif 1424 #ifdef CONFIG_INET 1425 case BPF_FUNC_tcp_sock: 1426 return &bpf_tcp_sock_proto; 1427 #endif 1428 default: 1429 return cgroup_base_func_proto(func_id, prog); 1430 } 1431 } 1432 1433 static bool cg_sockopt_is_valid_access(int off, int size, 1434 enum bpf_access_type type, 1435 const struct bpf_prog *prog, 1436 struct bpf_insn_access_aux *info) 1437 { 1438 const int size_default = sizeof(__u32); 1439 1440 if (off < 0 || off >= sizeof(struct bpf_sockopt)) 1441 return false; 1442 1443 if (off % size != 0) 1444 return false; 1445 1446 if (type == BPF_WRITE) { 1447 switch (off) { 1448 case offsetof(struct bpf_sockopt, retval): 1449 if (size != size_default) 1450 return false; 1451 return prog->expected_attach_type == 1452 BPF_CGROUP_GETSOCKOPT; 1453 case offsetof(struct bpf_sockopt, optname): 1454 /* fallthrough */ 1455 case offsetof(struct bpf_sockopt, level): 1456 if (size != size_default) 1457 return false; 1458 return prog->expected_attach_type == 1459 BPF_CGROUP_SETSOCKOPT; 1460 case offsetof(struct bpf_sockopt, optlen): 1461 return size == size_default; 1462 default: 1463 return false; 1464 } 1465 } 1466 1467 switch (off) { 1468 case offsetof(struct bpf_sockopt, sk): 1469 if (size != sizeof(__u64)) 1470 return false; 1471 info->reg_type = PTR_TO_SOCKET; 1472 break; 1473 case offsetof(struct bpf_sockopt, optval): 1474 if (size != sizeof(__u64)) 1475 return false; 1476 info->reg_type = PTR_TO_PACKET; 1477 break; 1478 case offsetof(struct bpf_sockopt, optval_end): 1479 if (size != sizeof(__u64)) 1480 return false; 1481 info->reg_type = PTR_TO_PACKET_END; 1482 break; 1483 case offsetof(struct bpf_sockopt, retval): 1484 if (size != size_default) 1485 return false; 1486 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT; 1487 default: 1488 if (size != size_default) 1489 return false; 1490 break; 1491 } 1492 return true; 1493 } 1494 1495 #define CG_SOCKOPT_ACCESS_FIELD(T, F) \ 1496 T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \ 1497 si->dst_reg, si->src_reg, \ 1498 offsetof(struct bpf_sockopt_kern, F)) 1499 1500 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type, 1501 const struct bpf_insn *si, 1502 struct bpf_insn *insn_buf, 1503 struct bpf_prog *prog, 1504 u32 *target_size) 1505 { 1506 struct bpf_insn *insn = insn_buf; 1507 1508 switch (si->off) { 1509 case offsetof(struct bpf_sockopt, sk): 1510 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk); 1511 break; 1512 case offsetof(struct bpf_sockopt, level): 1513 if (type == BPF_WRITE) 1514 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level); 1515 else 1516 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level); 1517 break; 1518 case offsetof(struct bpf_sockopt, optname): 1519 if (type == BPF_WRITE) 1520 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname); 1521 else 1522 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname); 1523 break; 1524 case offsetof(struct bpf_sockopt, optlen): 1525 if (type == BPF_WRITE) 1526 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen); 1527 else 1528 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen); 1529 break; 1530 case offsetof(struct bpf_sockopt, retval): 1531 if (type == BPF_WRITE) 1532 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval); 1533 else 1534 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval); 1535 break; 1536 case offsetof(struct bpf_sockopt, optval): 1537 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval); 1538 break; 1539 case offsetof(struct bpf_sockopt, optval_end): 1540 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end); 1541 break; 1542 } 1543 1544 return insn - insn_buf; 1545 } 1546 1547 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf, 1548 bool direct_write, 1549 const struct bpf_prog *prog) 1550 { 1551 /* Nothing to do for sockopt argument. The data is kzalloc'ated. 1552 */ 1553 return 0; 1554 } 1555 1556 const struct bpf_verifier_ops cg_sockopt_verifier_ops = { 1557 .get_func_proto = cg_sockopt_func_proto, 1558 .is_valid_access = cg_sockopt_is_valid_access, 1559 .convert_ctx_access = cg_sockopt_convert_ctx_access, 1560 .gen_prologue = cg_sockopt_get_prologue, 1561 }; 1562 1563 const struct bpf_prog_ops cg_sockopt_prog_ops = { 1564 }; 1565