1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Functions to manage eBPF programs attached to cgroups 4 * 5 * Copyright (c) 2016 Daniel Mack 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/atomic.h> 10 #include <linux/cgroup.h> 11 #include <linux/filter.h> 12 #include <linux/slab.h> 13 #include <linux/sysctl.h> 14 #include <linux/string.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf-cgroup.h> 17 #include <net/sock.h> 18 #include <net/bpf_sk_storage.h> 19 20 #include "../cgroup/cgroup-internal.h" 21 22 DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key); 23 EXPORT_SYMBOL(cgroup_bpf_enabled_key); 24 25 void cgroup_bpf_offline(struct cgroup *cgrp) 26 { 27 cgroup_get(cgrp); 28 percpu_ref_kill(&cgrp->bpf.refcnt); 29 } 30 31 /** 32 * cgroup_bpf_release() - put references of all bpf programs and 33 * release all cgroup bpf data 34 * @work: work structure embedded into the cgroup to modify 35 */ 36 static void cgroup_bpf_release(struct work_struct *work) 37 { 38 struct cgroup *cgrp = container_of(work, struct cgroup, 39 bpf.release_work); 40 enum bpf_cgroup_storage_type stype; 41 struct bpf_prog_array *old_array; 42 unsigned int type; 43 44 mutex_lock(&cgroup_mutex); 45 46 for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) { 47 struct list_head *progs = &cgrp->bpf.progs[type]; 48 struct bpf_prog_list *pl, *tmp; 49 50 list_for_each_entry_safe(pl, tmp, progs, node) { 51 list_del(&pl->node); 52 bpf_prog_put(pl->prog); 53 for_each_cgroup_storage_type(stype) { 54 bpf_cgroup_storage_unlink(pl->storage[stype]); 55 bpf_cgroup_storage_free(pl->storage[stype]); 56 } 57 kfree(pl); 58 static_branch_dec(&cgroup_bpf_enabled_key); 59 } 60 old_array = rcu_dereference_protected( 61 cgrp->bpf.effective[type], 62 lockdep_is_held(&cgroup_mutex)); 63 bpf_prog_array_free(old_array); 64 } 65 66 mutex_unlock(&cgroup_mutex); 67 68 percpu_ref_exit(&cgrp->bpf.refcnt); 69 cgroup_put(cgrp); 70 } 71 72 /** 73 * cgroup_bpf_release_fn() - callback used to schedule releasing 74 * of bpf cgroup data 75 * @ref: percpu ref counter structure 76 */ 77 static void cgroup_bpf_release_fn(struct percpu_ref *ref) 78 { 79 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt); 80 81 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release); 82 queue_work(system_wq, &cgrp->bpf.release_work); 83 } 84 85 /* count number of elements in the list. 86 * it's slow but the list cannot be long 87 */ 88 static u32 prog_list_length(struct list_head *head) 89 { 90 struct bpf_prog_list *pl; 91 u32 cnt = 0; 92 93 list_for_each_entry(pl, head, node) { 94 if (!pl->prog) 95 continue; 96 cnt++; 97 } 98 return cnt; 99 } 100 101 /* if parent has non-overridable prog attached, 102 * disallow attaching new programs to the descendent cgroup. 103 * if parent has overridable or multi-prog, allow attaching 104 */ 105 static bool hierarchy_allows_attach(struct cgroup *cgrp, 106 enum bpf_attach_type type, 107 u32 new_flags) 108 { 109 struct cgroup *p; 110 111 p = cgroup_parent(cgrp); 112 if (!p) 113 return true; 114 do { 115 u32 flags = p->bpf.flags[type]; 116 u32 cnt; 117 118 if (flags & BPF_F_ALLOW_MULTI) 119 return true; 120 cnt = prog_list_length(&p->bpf.progs[type]); 121 WARN_ON_ONCE(cnt > 1); 122 if (cnt == 1) 123 return !!(flags & BPF_F_ALLOW_OVERRIDE); 124 p = cgroup_parent(p); 125 } while (p); 126 return true; 127 } 128 129 /* compute a chain of effective programs for a given cgroup: 130 * start from the list of programs in this cgroup and add 131 * all parent programs. 132 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding 133 * to programs in this cgroup 134 */ 135 static int compute_effective_progs(struct cgroup *cgrp, 136 enum bpf_attach_type type, 137 struct bpf_prog_array **array) 138 { 139 enum bpf_cgroup_storage_type stype; 140 struct bpf_prog_array *progs; 141 struct bpf_prog_list *pl; 142 struct cgroup *p = cgrp; 143 int cnt = 0; 144 145 /* count number of effective programs by walking parents */ 146 do { 147 if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI)) 148 cnt += prog_list_length(&p->bpf.progs[type]); 149 p = cgroup_parent(p); 150 } while (p); 151 152 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL); 153 if (!progs) 154 return -ENOMEM; 155 156 /* populate the array with effective progs */ 157 cnt = 0; 158 p = cgrp; 159 do { 160 if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI)) 161 continue; 162 163 list_for_each_entry(pl, &p->bpf.progs[type], node) { 164 if (!pl->prog) 165 continue; 166 167 progs->items[cnt].prog = pl->prog; 168 for_each_cgroup_storage_type(stype) 169 progs->items[cnt].cgroup_storage[stype] = 170 pl->storage[stype]; 171 cnt++; 172 } 173 } while ((p = cgroup_parent(p))); 174 175 *array = progs; 176 return 0; 177 } 178 179 static void activate_effective_progs(struct cgroup *cgrp, 180 enum bpf_attach_type type, 181 struct bpf_prog_array *old_array) 182 { 183 rcu_swap_protected(cgrp->bpf.effective[type], old_array, 184 lockdep_is_held(&cgroup_mutex)); 185 /* free prog array after grace period, since __cgroup_bpf_run_*() 186 * might be still walking the array 187 */ 188 bpf_prog_array_free(old_array); 189 } 190 191 /** 192 * cgroup_bpf_inherit() - inherit effective programs from parent 193 * @cgrp: the cgroup to modify 194 */ 195 int cgroup_bpf_inherit(struct cgroup *cgrp) 196 { 197 /* has to use marco instead of const int, since compiler thinks 198 * that array below is variable length 199 */ 200 #define NR ARRAY_SIZE(cgrp->bpf.effective) 201 struct bpf_prog_array *arrays[NR] = {}; 202 int ret, i; 203 204 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0, 205 GFP_KERNEL); 206 if (ret) 207 return ret; 208 209 for (i = 0; i < NR; i++) 210 INIT_LIST_HEAD(&cgrp->bpf.progs[i]); 211 212 for (i = 0; i < NR; i++) 213 if (compute_effective_progs(cgrp, i, &arrays[i])) 214 goto cleanup; 215 216 for (i = 0; i < NR; i++) 217 activate_effective_progs(cgrp, i, arrays[i]); 218 219 return 0; 220 cleanup: 221 for (i = 0; i < NR; i++) 222 bpf_prog_array_free(arrays[i]); 223 224 percpu_ref_exit(&cgrp->bpf.refcnt); 225 226 return -ENOMEM; 227 } 228 229 static int update_effective_progs(struct cgroup *cgrp, 230 enum bpf_attach_type type) 231 { 232 struct cgroup_subsys_state *css; 233 int err; 234 235 /* allocate and recompute effective prog arrays */ 236 css_for_each_descendant_pre(css, &cgrp->self) { 237 struct cgroup *desc = container_of(css, struct cgroup, self); 238 239 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 240 continue; 241 242 err = compute_effective_progs(desc, type, &desc->bpf.inactive); 243 if (err) 244 goto cleanup; 245 } 246 247 /* all allocations were successful. Activate all prog arrays */ 248 css_for_each_descendant_pre(css, &cgrp->self) { 249 struct cgroup *desc = container_of(css, struct cgroup, self); 250 251 if (percpu_ref_is_zero(&desc->bpf.refcnt)) { 252 if (unlikely(desc->bpf.inactive)) { 253 bpf_prog_array_free(desc->bpf.inactive); 254 desc->bpf.inactive = NULL; 255 } 256 continue; 257 } 258 259 activate_effective_progs(desc, type, desc->bpf.inactive); 260 desc->bpf.inactive = NULL; 261 } 262 263 return 0; 264 265 cleanup: 266 /* oom while computing effective. Free all computed effective arrays 267 * since they were not activated 268 */ 269 css_for_each_descendant_pre(css, &cgrp->self) { 270 struct cgroup *desc = container_of(css, struct cgroup, self); 271 272 bpf_prog_array_free(desc->bpf.inactive); 273 desc->bpf.inactive = NULL; 274 } 275 276 return err; 277 } 278 279 #define BPF_CGROUP_MAX_PROGS 64 280 281 /** 282 * __cgroup_bpf_attach() - Attach the program to a cgroup, and 283 * propagate the change to descendants 284 * @cgrp: The cgroup which descendants to traverse 285 * @prog: A program to attach 286 * @type: Type of attach operation 287 * @flags: Option flags 288 * 289 * Must be called with cgroup_mutex held. 290 */ 291 int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 292 enum bpf_attach_type type, u32 flags) 293 { 294 struct list_head *progs = &cgrp->bpf.progs[type]; 295 struct bpf_prog *old_prog = NULL; 296 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE], 297 *old_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {NULL}; 298 enum bpf_cgroup_storage_type stype; 299 struct bpf_prog_list *pl; 300 bool pl_was_allocated; 301 int err; 302 303 if ((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) 304 /* invalid combination */ 305 return -EINVAL; 306 307 if (!hierarchy_allows_attach(cgrp, type, flags)) 308 return -EPERM; 309 310 if (!list_empty(progs) && cgrp->bpf.flags[type] != flags) 311 /* Disallow attaching non-overridable on top 312 * of existing overridable in this cgroup. 313 * Disallow attaching multi-prog if overridable or none 314 */ 315 return -EPERM; 316 317 if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS) 318 return -E2BIG; 319 320 for_each_cgroup_storage_type(stype) { 321 storage[stype] = bpf_cgroup_storage_alloc(prog, stype); 322 if (IS_ERR(storage[stype])) { 323 storage[stype] = NULL; 324 for_each_cgroup_storage_type(stype) 325 bpf_cgroup_storage_free(storage[stype]); 326 return -ENOMEM; 327 } 328 } 329 330 if (flags & BPF_F_ALLOW_MULTI) { 331 list_for_each_entry(pl, progs, node) { 332 if (pl->prog == prog) { 333 /* disallow attaching the same prog twice */ 334 for_each_cgroup_storage_type(stype) 335 bpf_cgroup_storage_free(storage[stype]); 336 return -EINVAL; 337 } 338 } 339 340 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 341 if (!pl) { 342 for_each_cgroup_storage_type(stype) 343 bpf_cgroup_storage_free(storage[stype]); 344 return -ENOMEM; 345 } 346 347 pl_was_allocated = true; 348 pl->prog = prog; 349 for_each_cgroup_storage_type(stype) 350 pl->storage[stype] = storage[stype]; 351 list_add_tail(&pl->node, progs); 352 } else { 353 if (list_empty(progs)) { 354 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 355 if (!pl) { 356 for_each_cgroup_storage_type(stype) 357 bpf_cgroup_storage_free(storage[stype]); 358 return -ENOMEM; 359 } 360 pl_was_allocated = true; 361 list_add_tail(&pl->node, progs); 362 } else { 363 pl = list_first_entry(progs, typeof(*pl), node); 364 old_prog = pl->prog; 365 for_each_cgroup_storage_type(stype) { 366 old_storage[stype] = pl->storage[stype]; 367 bpf_cgroup_storage_unlink(old_storage[stype]); 368 } 369 pl_was_allocated = false; 370 } 371 pl->prog = prog; 372 for_each_cgroup_storage_type(stype) 373 pl->storage[stype] = storage[stype]; 374 } 375 376 cgrp->bpf.flags[type] = flags; 377 378 err = update_effective_progs(cgrp, type); 379 if (err) 380 goto cleanup; 381 382 static_branch_inc(&cgroup_bpf_enabled_key); 383 for_each_cgroup_storage_type(stype) { 384 if (!old_storage[stype]) 385 continue; 386 bpf_cgroup_storage_free(old_storage[stype]); 387 } 388 if (old_prog) { 389 bpf_prog_put(old_prog); 390 static_branch_dec(&cgroup_bpf_enabled_key); 391 } 392 for_each_cgroup_storage_type(stype) 393 bpf_cgroup_storage_link(storage[stype], cgrp, type); 394 return 0; 395 396 cleanup: 397 /* and cleanup the prog list */ 398 pl->prog = old_prog; 399 for_each_cgroup_storage_type(stype) { 400 bpf_cgroup_storage_free(pl->storage[stype]); 401 pl->storage[stype] = old_storage[stype]; 402 bpf_cgroup_storage_link(old_storage[stype], cgrp, type); 403 } 404 if (pl_was_allocated) { 405 list_del(&pl->node); 406 kfree(pl); 407 } 408 return err; 409 } 410 411 /** 412 * __cgroup_bpf_detach() - Detach the program from a cgroup, and 413 * propagate the change to descendants 414 * @cgrp: The cgroup which descendants to traverse 415 * @prog: A program to detach or NULL 416 * @type: Type of detach operation 417 * 418 * Must be called with cgroup_mutex held. 419 */ 420 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 421 enum bpf_attach_type type) 422 { 423 struct list_head *progs = &cgrp->bpf.progs[type]; 424 enum bpf_cgroup_storage_type stype; 425 u32 flags = cgrp->bpf.flags[type]; 426 struct bpf_prog *old_prog = NULL; 427 struct bpf_prog_list *pl; 428 int err; 429 430 if (flags & BPF_F_ALLOW_MULTI) { 431 if (!prog) 432 /* to detach MULTI prog the user has to specify valid FD 433 * of the program to be detached 434 */ 435 return -EINVAL; 436 } else { 437 if (list_empty(progs)) 438 /* report error when trying to detach and nothing is attached */ 439 return -ENOENT; 440 } 441 442 if (flags & BPF_F_ALLOW_MULTI) { 443 /* find the prog and detach it */ 444 list_for_each_entry(pl, progs, node) { 445 if (pl->prog != prog) 446 continue; 447 old_prog = prog; 448 /* mark it deleted, so it's ignored while 449 * recomputing effective 450 */ 451 pl->prog = NULL; 452 break; 453 } 454 if (!old_prog) 455 return -ENOENT; 456 } else { 457 /* to maintain backward compatibility NONE and OVERRIDE cgroups 458 * allow detaching with invalid FD (prog==NULL) 459 */ 460 pl = list_first_entry(progs, typeof(*pl), node); 461 old_prog = pl->prog; 462 pl->prog = NULL; 463 } 464 465 err = update_effective_progs(cgrp, type); 466 if (err) 467 goto cleanup; 468 469 /* now can actually delete it from this cgroup list */ 470 list_del(&pl->node); 471 for_each_cgroup_storage_type(stype) { 472 bpf_cgroup_storage_unlink(pl->storage[stype]); 473 bpf_cgroup_storage_free(pl->storage[stype]); 474 } 475 kfree(pl); 476 if (list_empty(progs)) 477 /* last program was detached, reset flags to zero */ 478 cgrp->bpf.flags[type] = 0; 479 480 bpf_prog_put(old_prog); 481 static_branch_dec(&cgroup_bpf_enabled_key); 482 return 0; 483 484 cleanup: 485 /* and restore back old_prog */ 486 pl->prog = old_prog; 487 return err; 488 } 489 490 /* Must be called with cgroup_mutex held to avoid races. */ 491 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 492 union bpf_attr __user *uattr) 493 { 494 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); 495 enum bpf_attach_type type = attr->query.attach_type; 496 struct list_head *progs = &cgrp->bpf.progs[type]; 497 u32 flags = cgrp->bpf.flags[type]; 498 struct bpf_prog_array *effective; 499 int cnt, ret = 0, i; 500 501 effective = rcu_dereference_protected(cgrp->bpf.effective[type], 502 lockdep_is_held(&cgroup_mutex)); 503 504 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) 505 cnt = bpf_prog_array_length(effective); 506 else 507 cnt = prog_list_length(progs); 508 509 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) 510 return -EFAULT; 511 if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt))) 512 return -EFAULT; 513 if (attr->query.prog_cnt == 0 || !prog_ids || !cnt) 514 /* return early if user requested only program count + flags */ 515 return 0; 516 if (attr->query.prog_cnt < cnt) { 517 cnt = attr->query.prog_cnt; 518 ret = -ENOSPC; 519 } 520 521 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) { 522 return bpf_prog_array_copy_to_user(effective, prog_ids, cnt); 523 } else { 524 struct bpf_prog_list *pl; 525 u32 id; 526 527 i = 0; 528 list_for_each_entry(pl, progs, node) { 529 id = pl->prog->aux->id; 530 if (copy_to_user(prog_ids + i, &id, sizeof(id))) 531 return -EFAULT; 532 if (++i == cnt) 533 break; 534 } 535 } 536 return ret; 537 } 538 539 int cgroup_bpf_prog_attach(const union bpf_attr *attr, 540 enum bpf_prog_type ptype, struct bpf_prog *prog) 541 { 542 struct cgroup *cgrp; 543 int ret; 544 545 cgrp = cgroup_get_from_fd(attr->target_fd); 546 if (IS_ERR(cgrp)) 547 return PTR_ERR(cgrp); 548 549 ret = cgroup_bpf_attach(cgrp, prog, attr->attach_type, 550 attr->attach_flags); 551 cgroup_put(cgrp); 552 return ret; 553 } 554 555 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) 556 { 557 struct bpf_prog *prog; 558 struct cgroup *cgrp; 559 int ret; 560 561 cgrp = cgroup_get_from_fd(attr->target_fd); 562 if (IS_ERR(cgrp)) 563 return PTR_ERR(cgrp); 564 565 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); 566 if (IS_ERR(prog)) 567 prog = NULL; 568 569 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, 0); 570 if (prog) 571 bpf_prog_put(prog); 572 573 cgroup_put(cgrp); 574 return ret; 575 } 576 577 int cgroup_bpf_prog_query(const union bpf_attr *attr, 578 union bpf_attr __user *uattr) 579 { 580 struct cgroup *cgrp; 581 int ret; 582 583 cgrp = cgroup_get_from_fd(attr->query.target_fd); 584 if (IS_ERR(cgrp)) 585 return PTR_ERR(cgrp); 586 587 ret = cgroup_bpf_query(cgrp, attr, uattr); 588 589 cgroup_put(cgrp); 590 return ret; 591 } 592 593 /** 594 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering 595 * @sk: The socket sending or receiving traffic 596 * @skb: The skb that is being sent or received 597 * @type: The type of program to be exectuted 598 * 599 * If no socket is passed, or the socket is not of type INET or INET6, 600 * this function does nothing and returns 0. 601 * 602 * The program type passed in via @type must be suitable for network 603 * filtering. No further check is performed to assert that. 604 * 605 * For egress packets, this function can return: 606 * NET_XMIT_SUCCESS (0) - continue with packet output 607 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr 608 * NET_XMIT_CN (2) - continue with packet output and notify TCP 609 * to call cwr 610 * -EPERM - drop packet 611 * 612 * For ingress packets, this function will return -EPERM if any 613 * attached program was found and if it returned != 1 during execution. 614 * Otherwise 0 is returned. 615 */ 616 int __cgroup_bpf_run_filter_skb(struct sock *sk, 617 struct sk_buff *skb, 618 enum bpf_attach_type type) 619 { 620 unsigned int offset = skb->data - skb_network_header(skb); 621 struct sock *save_sk; 622 void *saved_data_end; 623 struct cgroup *cgrp; 624 int ret; 625 626 if (!sk || !sk_fullsock(sk)) 627 return 0; 628 629 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 630 return 0; 631 632 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 633 save_sk = skb->sk; 634 skb->sk = sk; 635 __skb_push(skb, offset); 636 637 /* compute pointers for the bpf prog */ 638 bpf_compute_and_save_data_end(skb, &saved_data_end); 639 640 if (type == BPF_CGROUP_INET_EGRESS) { 641 ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY( 642 cgrp->bpf.effective[type], skb, __bpf_prog_run_save_cb); 643 } else { 644 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb, 645 __bpf_prog_run_save_cb); 646 ret = (ret == 1 ? 0 : -EPERM); 647 } 648 bpf_restore_data_end(skb, saved_data_end); 649 __skb_pull(skb, offset); 650 skb->sk = save_sk; 651 652 return ret; 653 } 654 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb); 655 656 /** 657 * __cgroup_bpf_run_filter_sk() - Run a program on a sock 658 * @sk: sock structure to manipulate 659 * @type: The type of program to be exectuted 660 * 661 * socket is passed is expected to be of type INET or INET6. 662 * 663 * The program type passed in via @type must be suitable for sock 664 * filtering. No further check is performed to assert that. 665 * 666 * This function will return %-EPERM if any if an attached program was found 667 * and if it returned != 1 during execution. In all other cases, 0 is returned. 668 */ 669 int __cgroup_bpf_run_filter_sk(struct sock *sk, 670 enum bpf_attach_type type) 671 { 672 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 673 int ret; 674 675 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN); 676 return ret == 1 ? 0 : -EPERM; 677 } 678 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk); 679 680 /** 681 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and 682 * provided by user sockaddr 683 * @sk: sock struct that will use sockaddr 684 * @uaddr: sockaddr struct provided by user 685 * @type: The type of program to be exectuted 686 * @t_ctx: Pointer to attach type specific context 687 * 688 * socket is expected to be of type INET or INET6. 689 * 690 * This function will return %-EPERM if an attached program is found and 691 * returned value != 1 during execution. In all other cases, 0 is returned. 692 */ 693 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk, 694 struct sockaddr *uaddr, 695 enum bpf_attach_type type, 696 void *t_ctx) 697 { 698 struct bpf_sock_addr_kern ctx = { 699 .sk = sk, 700 .uaddr = uaddr, 701 .t_ctx = t_ctx, 702 }; 703 struct sockaddr_storage unspec; 704 struct cgroup *cgrp; 705 int ret; 706 707 /* Check socket family since not all sockets represent network 708 * endpoint (e.g. AF_UNIX). 709 */ 710 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 711 return 0; 712 713 if (!ctx.uaddr) { 714 memset(&unspec, 0, sizeof(unspec)); 715 ctx.uaddr = (struct sockaddr *)&unspec; 716 } 717 718 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 719 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN); 720 721 return ret == 1 ? 0 : -EPERM; 722 } 723 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr); 724 725 /** 726 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock 727 * @sk: socket to get cgroup from 728 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains 729 * sk with connection information (IP addresses, etc.) May not contain 730 * cgroup info if it is a req sock. 731 * @type: The type of program to be exectuted 732 * 733 * socket passed is expected to be of type INET or INET6. 734 * 735 * The program type passed in via @type must be suitable for sock_ops 736 * filtering. No further check is performed to assert that. 737 * 738 * This function will return %-EPERM if any if an attached program was found 739 * and if it returned != 1 during execution. In all other cases, 0 is returned. 740 */ 741 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk, 742 struct bpf_sock_ops_kern *sock_ops, 743 enum bpf_attach_type type) 744 { 745 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 746 int ret; 747 748 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops, 749 BPF_PROG_RUN); 750 return ret == 1 ? 0 : -EPERM; 751 } 752 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops); 753 754 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor, 755 short access, enum bpf_attach_type type) 756 { 757 struct cgroup *cgrp; 758 struct bpf_cgroup_dev_ctx ctx = { 759 .access_type = (access << 16) | dev_type, 760 .major = major, 761 .minor = minor, 762 }; 763 int allow = 1; 764 765 rcu_read_lock(); 766 cgrp = task_dfl_cgroup(current); 767 allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, 768 BPF_PROG_RUN); 769 rcu_read_unlock(); 770 771 return !allow; 772 } 773 EXPORT_SYMBOL(__cgroup_bpf_check_dev_permission); 774 775 static const struct bpf_func_proto * 776 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 777 { 778 switch (func_id) { 779 case BPF_FUNC_map_lookup_elem: 780 return &bpf_map_lookup_elem_proto; 781 case BPF_FUNC_map_update_elem: 782 return &bpf_map_update_elem_proto; 783 case BPF_FUNC_map_delete_elem: 784 return &bpf_map_delete_elem_proto; 785 case BPF_FUNC_map_push_elem: 786 return &bpf_map_push_elem_proto; 787 case BPF_FUNC_map_pop_elem: 788 return &bpf_map_pop_elem_proto; 789 case BPF_FUNC_map_peek_elem: 790 return &bpf_map_peek_elem_proto; 791 case BPF_FUNC_get_current_uid_gid: 792 return &bpf_get_current_uid_gid_proto; 793 case BPF_FUNC_get_local_storage: 794 return &bpf_get_local_storage_proto; 795 case BPF_FUNC_get_current_cgroup_id: 796 return &bpf_get_current_cgroup_id_proto; 797 case BPF_FUNC_trace_printk: 798 if (capable(CAP_SYS_ADMIN)) 799 return bpf_get_trace_printk_proto(); 800 /* fall through */ 801 default: 802 return NULL; 803 } 804 } 805 806 static const struct bpf_func_proto * 807 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 808 { 809 return cgroup_base_func_proto(func_id, prog); 810 } 811 812 static bool cgroup_dev_is_valid_access(int off, int size, 813 enum bpf_access_type type, 814 const struct bpf_prog *prog, 815 struct bpf_insn_access_aux *info) 816 { 817 const int size_default = sizeof(__u32); 818 819 if (type == BPF_WRITE) 820 return false; 821 822 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx)) 823 return false; 824 /* The verifier guarantees that size > 0. */ 825 if (off % size != 0) 826 return false; 827 828 switch (off) { 829 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type): 830 bpf_ctx_record_field_size(info, size_default); 831 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 832 return false; 833 break; 834 default: 835 if (size != size_default) 836 return false; 837 } 838 839 return true; 840 } 841 842 const struct bpf_prog_ops cg_dev_prog_ops = { 843 }; 844 845 const struct bpf_verifier_ops cg_dev_verifier_ops = { 846 .get_func_proto = cgroup_dev_func_proto, 847 .is_valid_access = cgroup_dev_is_valid_access, 848 }; 849 850 /** 851 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl 852 * 853 * @head: sysctl table header 854 * @table: sysctl table 855 * @write: sysctl is being read (= 0) or written (= 1) 856 * @buf: pointer to buffer passed by user space 857 * @pcount: value-result argument: value is size of buffer pointed to by @buf, 858 * result is size of @new_buf if program set new value, initial value 859 * otherwise 860 * @ppos: value-result argument: value is position at which read from or write 861 * to sysctl is happening, result is new position if program overrode it, 862 * initial value otherwise 863 * @new_buf: pointer to pointer to new buffer that will be allocated if program 864 * overrides new value provided by user space on sysctl write 865 * NOTE: it's caller responsibility to free *new_buf if it was set 866 * @type: type of program to be executed 867 * 868 * Program is run when sysctl is being accessed, either read or written, and 869 * can allow or deny such access. 870 * 871 * This function will return %-EPERM if an attached program is found and 872 * returned value != 1 during execution. In all other cases 0 is returned. 873 */ 874 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head, 875 struct ctl_table *table, int write, 876 void __user *buf, size_t *pcount, 877 loff_t *ppos, void **new_buf, 878 enum bpf_attach_type type) 879 { 880 struct bpf_sysctl_kern ctx = { 881 .head = head, 882 .table = table, 883 .write = write, 884 .ppos = ppos, 885 .cur_val = NULL, 886 .cur_len = PAGE_SIZE, 887 .new_val = NULL, 888 .new_len = 0, 889 .new_updated = 0, 890 }; 891 struct cgroup *cgrp; 892 int ret; 893 894 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL); 895 if (ctx.cur_val) { 896 mm_segment_t old_fs; 897 loff_t pos = 0; 898 899 old_fs = get_fs(); 900 set_fs(KERNEL_DS); 901 if (table->proc_handler(table, 0, (void __user *)ctx.cur_val, 902 &ctx.cur_len, &pos)) { 903 /* Let BPF program decide how to proceed. */ 904 ctx.cur_len = 0; 905 } 906 set_fs(old_fs); 907 } else { 908 /* Let BPF program decide how to proceed. */ 909 ctx.cur_len = 0; 910 } 911 912 if (write && buf && *pcount) { 913 /* BPF program should be able to override new value with a 914 * buffer bigger than provided by user. 915 */ 916 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL); 917 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount); 918 if (!ctx.new_val || 919 copy_from_user(ctx.new_val, buf, ctx.new_len)) 920 /* Let BPF program decide how to proceed. */ 921 ctx.new_len = 0; 922 } 923 924 rcu_read_lock(); 925 cgrp = task_dfl_cgroup(current); 926 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN); 927 rcu_read_unlock(); 928 929 kfree(ctx.cur_val); 930 931 if (ret == 1 && ctx.new_updated) { 932 *new_buf = ctx.new_val; 933 *pcount = ctx.new_len; 934 } else { 935 kfree(ctx.new_val); 936 } 937 938 return ret == 1 ? 0 : -EPERM; 939 } 940 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sysctl); 941 942 #ifdef CONFIG_NET 943 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp, 944 enum bpf_attach_type attach_type) 945 { 946 struct bpf_prog_array *prog_array; 947 bool empty; 948 949 rcu_read_lock(); 950 prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]); 951 empty = bpf_prog_array_is_empty(prog_array); 952 rcu_read_unlock(); 953 954 return empty; 955 } 956 957 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen) 958 { 959 if (unlikely(max_optlen > PAGE_SIZE) || max_optlen < 0) 960 return -EINVAL; 961 962 ctx->optval = kzalloc(max_optlen, GFP_USER); 963 if (!ctx->optval) 964 return -ENOMEM; 965 966 ctx->optval_end = ctx->optval + max_optlen; 967 968 return 0; 969 } 970 971 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx) 972 { 973 kfree(ctx->optval); 974 } 975 976 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level, 977 int *optname, char __user *optval, 978 int *optlen, char **kernel_optval) 979 { 980 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 981 struct bpf_sockopt_kern ctx = { 982 .sk = sk, 983 .level = *level, 984 .optname = *optname, 985 }; 986 int ret, max_optlen; 987 988 /* Opportunistic check to see whether we have any BPF program 989 * attached to the hook so we don't waste time allocating 990 * memory and locking the socket. 991 */ 992 if (!cgroup_bpf_enabled || 993 __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_SETSOCKOPT)) 994 return 0; 995 996 /* Allocate a bit more than the initial user buffer for 997 * BPF program. The canonical use case is overriding 998 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic). 999 */ 1000 max_optlen = max_t(int, 16, *optlen); 1001 1002 ret = sockopt_alloc_buf(&ctx, max_optlen); 1003 if (ret) 1004 return ret; 1005 1006 ctx.optlen = *optlen; 1007 1008 if (copy_from_user(ctx.optval, optval, *optlen) != 0) { 1009 ret = -EFAULT; 1010 goto out; 1011 } 1012 1013 lock_sock(sk); 1014 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_SETSOCKOPT], 1015 &ctx, BPF_PROG_RUN); 1016 release_sock(sk); 1017 1018 if (!ret) { 1019 ret = -EPERM; 1020 goto out; 1021 } 1022 1023 if (ctx.optlen == -1) { 1024 /* optlen set to -1, bypass kernel */ 1025 ret = 1; 1026 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) { 1027 /* optlen is out of bounds */ 1028 ret = -EFAULT; 1029 } else { 1030 /* optlen within bounds, run kernel handler */ 1031 ret = 0; 1032 1033 /* export any potential modifications */ 1034 *level = ctx.level; 1035 *optname = ctx.optname; 1036 *optlen = ctx.optlen; 1037 *kernel_optval = ctx.optval; 1038 } 1039 1040 out: 1041 if (ret) 1042 sockopt_free_buf(&ctx); 1043 return ret; 1044 } 1045 EXPORT_SYMBOL(__cgroup_bpf_run_filter_setsockopt); 1046 1047 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level, 1048 int optname, char __user *optval, 1049 int __user *optlen, int max_optlen, 1050 int retval) 1051 { 1052 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1053 struct bpf_sockopt_kern ctx = { 1054 .sk = sk, 1055 .level = level, 1056 .optname = optname, 1057 .retval = retval, 1058 }; 1059 int ret; 1060 1061 /* Opportunistic check to see whether we have any BPF program 1062 * attached to the hook so we don't waste time allocating 1063 * memory and locking the socket. 1064 */ 1065 if (!cgroup_bpf_enabled || 1066 __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_GETSOCKOPT)) 1067 return retval; 1068 1069 ret = sockopt_alloc_buf(&ctx, max_optlen); 1070 if (ret) 1071 return ret; 1072 1073 ctx.optlen = max_optlen; 1074 1075 if (!retval) { 1076 /* If kernel getsockopt finished successfully, 1077 * copy whatever was returned to the user back 1078 * into our temporary buffer. Set optlen to the 1079 * one that kernel returned as well to let 1080 * BPF programs inspect the value. 1081 */ 1082 1083 if (get_user(ctx.optlen, optlen)) { 1084 ret = -EFAULT; 1085 goto out; 1086 } 1087 1088 if (ctx.optlen > max_optlen) 1089 ctx.optlen = max_optlen; 1090 1091 if (copy_from_user(ctx.optval, optval, ctx.optlen) != 0) { 1092 ret = -EFAULT; 1093 goto out; 1094 } 1095 } 1096 1097 lock_sock(sk); 1098 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT], 1099 &ctx, BPF_PROG_RUN); 1100 release_sock(sk); 1101 1102 if (!ret) { 1103 ret = -EPERM; 1104 goto out; 1105 } 1106 1107 if (ctx.optlen > max_optlen) { 1108 ret = -EFAULT; 1109 goto out; 1110 } 1111 1112 /* BPF programs only allowed to set retval to 0, not some 1113 * arbitrary value. 1114 */ 1115 if (ctx.retval != 0 && ctx.retval != retval) { 1116 ret = -EFAULT; 1117 goto out; 1118 } 1119 1120 if (copy_to_user(optval, ctx.optval, ctx.optlen) || 1121 put_user(ctx.optlen, optlen)) { 1122 ret = -EFAULT; 1123 goto out; 1124 } 1125 1126 ret = ctx.retval; 1127 1128 out: 1129 sockopt_free_buf(&ctx); 1130 return ret; 1131 } 1132 EXPORT_SYMBOL(__cgroup_bpf_run_filter_getsockopt); 1133 #endif 1134 1135 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp, 1136 size_t *lenp) 1137 { 1138 ssize_t tmp_ret = 0, ret; 1139 1140 if (dir->header.parent) { 1141 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp); 1142 if (tmp_ret < 0) 1143 return tmp_ret; 1144 } 1145 1146 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp); 1147 if (ret < 0) 1148 return ret; 1149 *bufp += ret; 1150 *lenp -= ret; 1151 ret += tmp_ret; 1152 1153 /* Avoid leading slash. */ 1154 if (!ret) 1155 return ret; 1156 1157 tmp_ret = strscpy(*bufp, "/", *lenp); 1158 if (tmp_ret < 0) 1159 return tmp_ret; 1160 *bufp += tmp_ret; 1161 *lenp -= tmp_ret; 1162 1163 return ret + tmp_ret; 1164 } 1165 1166 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf, 1167 size_t, buf_len, u64, flags) 1168 { 1169 ssize_t tmp_ret = 0, ret; 1170 1171 if (!buf) 1172 return -EINVAL; 1173 1174 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) { 1175 if (!ctx->head) 1176 return -EINVAL; 1177 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len); 1178 if (tmp_ret < 0) 1179 return tmp_ret; 1180 } 1181 1182 ret = strscpy(buf, ctx->table->procname, buf_len); 1183 1184 return ret < 0 ? ret : tmp_ret + ret; 1185 } 1186 1187 static const struct bpf_func_proto bpf_sysctl_get_name_proto = { 1188 .func = bpf_sysctl_get_name, 1189 .gpl_only = false, 1190 .ret_type = RET_INTEGER, 1191 .arg1_type = ARG_PTR_TO_CTX, 1192 .arg2_type = ARG_PTR_TO_MEM, 1193 .arg3_type = ARG_CONST_SIZE, 1194 .arg4_type = ARG_ANYTHING, 1195 }; 1196 1197 static int copy_sysctl_value(char *dst, size_t dst_len, char *src, 1198 size_t src_len) 1199 { 1200 if (!dst) 1201 return -EINVAL; 1202 1203 if (!dst_len) 1204 return -E2BIG; 1205 1206 if (!src || !src_len) { 1207 memset(dst, 0, dst_len); 1208 return -EINVAL; 1209 } 1210 1211 memcpy(dst, src, min(dst_len, src_len)); 1212 1213 if (dst_len > src_len) { 1214 memset(dst + src_len, '\0', dst_len - src_len); 1215 return src_len; 1216 } 1217 1218 dst[dst_len - 1] = '\0'; 1219 1220 return -E2BIG; 1221 } 1222 1223 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx, 1224 char *, buf, size_t, buf_len) 1225 { 1226 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len); 1227 } 1228 1229 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = { 1230 .func = bpf_sysctl_get_current_value, 1231 .gpl_only = false, 1232 .ret_type = RET_INTEGER, 1233 .arg1_type = ARG_PTR_TO_CTX, 1234 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1235 .arg3_type = ARG_CONST_SIZE, 1236 }; 1237 1238 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf, 1239 size_t, buf_len) 1240 { 1241 if (!ctx->write) { 1242 if (buf && buf_len) 1243 memset(buf, '\0', buf_len); 1244 return -EINVAL; 1245 } 1246 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len); 1247 } 1248 1249 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = { 1250 .func = bpf_sysctl_get_new_value, 1251 .gpl_only = false, 1252 .ret_type = RET_INTEGER, 1253 .arg1_type = ARG_PTR_TO_CTX, 1254 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1255 .arg3_type = ARG_CONST_SIZE, 1256 }; 1257 1258 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx, 1259 const char *, buf, size_t, buf_len) 1260 { 1261 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len) 1262 return -EINVAL; 1263 1264 if (buf_len > PAGE_SIZE - 1) 1265 return -E2BIG; 1266 1267 memcpy(ctx->new_val, buf, buf_len); 1268 ctx->new_len = buf_len; 1269 ctx->new_updated = 1; 1270 1271 return 0; 1272 } 1273 1274 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = { 1275 .func = bpf_sysctl_set_new_value, 1276 .gpl_only = false, 1277 .ret_type = RET_INTEGER, 1278 .arg1_type = ARG_PTR_TO_CTX, 1279 .arg2_type = ARG_PTR_TO_MEM, 1280 .arg3_type = ARG_CONST_SIZE, 1281 }; 1282 1283 static const struct bpf_func_proto * 1284 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1285 { 1286 switch (func_id) { 1287 case BPF_FUNC_strtol: 1288 return &bpf_strtol_proto; 1289 case BPF_FUNC_strtoul: 1290 return &bpf_strtoul_proto; 1291 case BPF_FUNC_sysctl_get_name: 1292 return &bpf_sysctl_get_name_proto; 1293 case BPF_FUNC_sysctl_get_current_value: 1294 return &bpf_sysctl_get_current_value_proto; 1295 case BPF_FUNC_sysctl_get_new_value: 1296 return &bpf_sysctl_get_new_value_proto; 1297 case BPF_FUNC_sysctl_set_new_value: 1298 return &bpf_sysctl_set_new_value_proto; 1299 default: 1300 return cgroup_base_func_proto(func_id, prog); 1301 } 1302 } 1303 1304 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type, 1305 const struct bpf_prog *prog, 1306 struct bpf_insn_access_aux *info) 1307 { 1308 const int size_default = sizeof(__u32); 1309 1310 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size) 1311 return false; 1312 1313 switch (off) { 1314 case bpf_ctx_range(struct bpf_sysctl, write): 1315 if (type != BPF_READ) 1316 return false; 1317 bpf_ctx_record_field_size(info, size_default); 1318 return bpf_ctx_narrow_access_ok(off, size, size_default); 1319 case bpf_ctx_range(struct bpf_sysctl, file_pos): 1320 if (type == BPF_READ) { 1321 bpf_ctx_record_field_size(info, size_default); 1322 return bpf_ctx_narrow_access_ok(off, size, size_default); 1323 } else { 1324 return size == size_default; 1325 } 1326 default: 1327 return false; 1328 } 1329 } 1330 1331 static u32 sysctl_convert_ctx_access(enum bpf_access_type type, 1332 const struct bpf_insn *si, 1333 struct bpf_insn *insn_buf, 1334 struct bpf_prog *prog, u32 *target_size) 1335 { 1336 struct bpf_insn *insn = insn_buf; 1337 u32 read_size; 1338 1339 switch (si->off) { 1340 case offsetof(struct bpf_sysctl, write): 1341 *insn++ = BPF_LDX_MEM( 1342 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 1343 bpf_target_off(struct bpf_sysctl_kern, write, 1344 FIELD_SIZEOF(struct bpf_sysctl_kern, 1345 write), 1346 target_size)); 1347 break; 1348 case offsetof(struct bpf_sysctl, file_pos): 1349 /* ppos is a pointer so it should be accessed via indirect 1350 * loads and stores. Also for stores additional temporary 1351 * register is used since neither src_reg nor dst_reg can be 1352 * overridden. 1353 */ 1354 if (type == BPF_WRITE) { 1355 int treg = BPF_REG_9; 1356 1357 if (si->src_reg == treg || si->dst_reg == treg) 1358 --treg; 1359 if (si->src_reg == treg || si->dst_reg == treg) 1360 --treg; 1361 *insn++ = BPF_STX_MEM( 1362 BPF_DW, si->dst_reg, treg, 1363 offsetof(struct bpf_sysctl_kern, tmp_reg)); 1364 *insn++ = BPF_LDX_MEM( 1365 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 1366 treg, si->dst_reg, 1367 offsetof(struct bpf_sysctl_kern, ppos)); 1368 *insn++ = BPF_STX_MEM( 1369 BPF_SIZEOF(u32), treg, si->src_reg, 1370 bpf_ctx_narrow_access_offset( 1371 0, sizeof(u32), sizeof(loff_t))); 1372 *insn++ = BPF_LDX_MEM( 1373 BPF_DW, treg, si->dst_reg, 1374 offsetof(struct bpf_sysctl_kern, tmp_reg)); 1375 } else { 1376 *insn++ = BPF_LDX_MEM( 1377 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 1378 si->dst_reg, si->src_reg, 1379 offsetof(struct bpf_sysctl_kern, ppos)); 1380 read_size = bpf_size_to_bytes(BPF_SIZE(si->code)); 1381 *insn++ = BPF_LDX_MEM( 1382 BPF_SIZE(si->code), si->dst_reg, si->dst_reg, 1383 bpf_ctx_narrow_access_offset( 1384 0, read_size, sizeof(loff_t))); 1385 } 1386 *target_size = sizeof(u32); 1387 break; 1388 } 1389 1390 return insn - insn_buf; 1391 } 1392 1393 const struct bpf_verifier_ops cg_sysctl_verifier_ops = { 1394 .get_func_proto = sysctl_func_proto, 1395 .is_valid_access = sysctl_is_valid_access, 1396 .convert_ctx_access = sysctl_convert_ctx_access, 1397 }; 1398 1399 const struct bpf_prog_ops cg_sysctl_prog_ops = { 1400 }; 1401 1402 static const struct bpf_func_proto * 1403 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1404 { 1405 switch (func_id) { 1406 #ifdef CONFIG_NET 1407 case BPF_FUNC_sk_storage_get: 1408 return &bpf_sk_storage_get_proto; 1409 case BPF_FUNC_sk_storage_delete: 1410 return &bpf_sk_storage_delete_proto; 1411 #endif 1412 #ifdef CONFIG_INET 1413 case BPF_FUNC_tcp_sock: 1414 return &bpf_tcp_sock_proto; 1415 #endif 1416 default: 1417 return cgroup_base_func_proto(func_id, prog); 1418 } 1419 } 1420 1421 static bool cg_sockopt_is_valid_access(int off, int size, 1422 enum bpf_access_type type, 1423 const struct bpf_prog *prog, 1424 struct bpf_insn_access_aux *info) 1425 { 1426 const int size_default = sizeof(__u32); 1427 1428 if (off < 0 || off >= sizeof(struct bpf_sockopt)) 1429 return false; 1430 1431 if (off % size != 0) 1432 return false; 1433 1434 if (type == BPF_WRITE) { 1435 switch (off) { 1436 case offsetof(struct bpf_sockopt, retval): 1437 if (size != size_default) 1438 return false; 1439 return prog->expected_attach_type == 1440 BPF_CGROUP_GETSOCKOPT; 1441 case offsetof(struct bpf_sockopt, optname): 1442 /* fallthrough */ 1443 case offsetof(struct bpf_sockopt, level): 1444 if (size != size_default) 1445 return false; 1446 return prog->expected_attach_type == 1447 BPF_CGROUP_SETSOCKOPT; 1448 case offsetof(struct bpf_sockopt, optlen): 1449 return size == size_default; 1450 default: 1451 return false; 1452 } 1453 } 1454 1455 switch (off) { 1456 case offsetof(struct bpf_sockopt, sk): 1457 if (size != sizeof(__u64)) 1458 return false; 1459 info->reg_type = PTR_TO_SOCKET; 1460 break; 1461 case offsetof(struct bpf_sockopt, optval): 1462 if (size != sizeof(__u64)) 1463 return false; 1464 info->reg_type = PTR_TO_PACKET; 1465 break; 1466 case offsetof(struct bpf_sockopt, optval_end): 1467 if (size != sizeof(__u64)) 1468 return false; 1469 info->reg_type = PTR_TO_PACKET_END; 1470 break; 1471 case offsetof(struct bpf_sockopt, retval): 1472 if (size != size_default) 1473 return false; 1474 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT; 1475 default: 1476 if (size != size_default) 1477 return false; 1478 break; 1479 } 1480 return true; 1481 } 1482 1483 #define CG_SOCKOPT_ACCESS_FIELD(T, F) \ 1484 T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \ 1485 si->dst_reg, si->src_reg, \ 1486 offsetof(struct bpf_sockopt_kern, F)) 1487 1488 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type, 1489 const struct bpf_insn *si, 1490 struct bpf_insn *insn_buf, 1491 struct bpf_prog *prog, 1492 u32 *target_size) 1493 { 1494 struct bpf_insn *insn = insn_buf; 1495 1496 switch (si->off) { 1497 case offsetof(struct bpf_sockopt, sk): 1498 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk); 1499 break; 1500 case offsetof(struct bpf_sockopt, level): 1501 if (type == BPF_WRITE) 1502 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level); 1503 else 1504 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level); 1505 break; 1506 case offsetof(struct bpf_sockopt, optname): 1507 if (type == BPF_WRITE) 1508 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname); 1509 else 1510 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname); 1511 break; 1512 case offsetof(struct bpf_sockopt, optlen): 1513 if (type == BPF_WRITE) 1514 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen); 1515 else 1516 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen); 1517 break; 1518 case offsetof(struct bpf_sockopt, retval): 1519 if (type == BPF_WRITE) 1520 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval); 1521 else 1522 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval); 1523 break; 1524 case offsetof(struct bpf_sockopt, optval): 1525 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval); 1526 break; 1527 case offsetof(struct bpf_sockopt, optval_end): 1528 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end); 1529 break; 1530 } 1531 1532 return insn - insn_buf; 1533 } 1534 1535 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf, 1536 bool direct_write, 1537 const struct bpf_prog *prog) 1538 { 1539 /* Nothing to do for sockopt argument. The data is kzalloc'ated. 1540 */ 1541 return 0; 1542 } 1543 1544 const struct bpf_verifier_ops cg_sockopt_verifier_ops = { 1545 .get_func_proto = cg_sockopt_func_proto, 1546 .is_valid_access = cg_sockopt_is_valid_access, 1547 .convert_ctx_access = cg_sockopt_convert_ctx_access, 1548 .gen_prologue = cg_sockopt_get_prologue, 1549 }; 1550 1551 const struct bpf_prog_ops cg_sockopt_prog_ops = { 1552 }; 1553