xref: /openbmc/linux/kernel/bpf/btf.c (revision ed1666f6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/slab.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/uaccess.h>
14 #include <linux/kernel.h>
15 #include <linux/idr.h>
16 #include <linux/sort.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/btf.h>
19 
20 /* BTF (BPF Type Format) is the meta data format which describes
21  * the data types of BPF program/map.  Hence, it basically focus
22  * on the C programming language which the modern BPF is primary
23  * using.
24  *
25  * ELF Section:
26  * ~~~~~~~~~~~
27  * The BTF data is stored under the ".BTF" ELF section
28  *
29  * struct btf_type:
30  * ~~~~~~~~~~~~~~~
31  * Each 'struct btf_type' object describes a C data type.
32  * Depending on the type it is describing, a 'struct btf_type'
33  * object may be followed by more data.  F.e.
34  * To describe an array, 'struct btf_type' is followed by
35  * 'struct btf_array'.
36  *
37  * 'struct btf_type' and any extra data following it are
38  * 4 bytes aligned.
39  *
40  * Type section:
41  * ~~~~~~~~~~~~~
42  * The BTF type section contains a list of 'struct btf_type' objects.
43  * Each one describes a C type.  Recall from the above section
44  * that a 'struct btf_type' object could be immediately followed by extra
45  * data in order to desribe some particular C types.
46  *
47  * type_id:
48  * ~~~~~~~
49  * Each btf_type object is identified by a type_id.  The type_id
50  * is implicitly implied by the location of the btf_type object in
51  * the BTF type section.  The first one has type_id 1.  The second
52  * one has type_id 2...etc.  Hence, an earlier btf_type has
53  * a smaller type_id.
54  *
55  * A btf_type object may refer to another btf_type object by using
56  * type_id (i.e. the "type" in the "struct btf_type").
57  *
58  * NOTE that we cannot assume any reference-order.
59  * A btf_type object can refer to an earlier btf_type object
60  * but it can also refer to a later btf_type object.
61  *
62  * For example, to describe "const void *".  A btf_type
63  * object describing "const" may refer to another btf_type
64  * object describing "void *".  This type-reference is done
65  * by specifying type_id:
66  *
67  * [1] CONST (anon) type_id=2
68  * [2] PTR (anon) type_id=0
69  *
70  * The above is the btf_verifier debug log:
71  *   - Each line started with "[?]" is a btf_type object
72  *   - [?] is the type_id of the btf_type object.
73  *   - CONST/PTR is the BTF_KIND_XXX
74  *   - "(anon)" is the name of the type.  It just
75  *     happens that CONST and PTR has no name.
76  *   - type_id=XXX is the 'u32 type' in btf_type
77  *
78  * NOTE: "void" has type_id 0
79  *
80  * String section:
81  * ~~~~~~~~~~~~~~
82  * The BTF string section contains the names used by the type section.
83  * Each string is referred by an "offset" from the beginning of the
84  * string section.
85  *
86  * Each string is '\0' terminated.
87  *
88  * The first character in the string section must be '\0'
89  * which is used to mean 'anonymous'. Some btf_type may not
90  * have a name.
91  */
92 
93 /* BTF verification:
94  *
95  * To verify BTF data, two passes are needed.
96  *
97  * Pass #1
98  * ~~~~~~~
99  * The first pass is to collect all btf_type objects to
100  * an array: "btf->types".
101  *
102  * Depending on the C type that a btf_type is describing,
103  * a btf_type may be followed by extra data.  We don't know
104  * how many btf_type is there, and more importantly we don't
105  * know where each btf_type is located in the type section.
106  *
107  * Without knowing the location of each type_id, most verifications
108  * cannot be done.  e.g. an earlier btf_type may refer to a later
109  * btf_type (recall the "const void *" above), so we cannot
110  * check this type-reference in the first pass.
111  *
112  * In the first pass, it still does some verifications (e.g.
113  * checking the name is a valid offset to the string section).
114  *
115  * Pass #2
116  * ~~~~~~~
117  * The main focus is to resolve a btf_type that is referring
118  * to another type.
119  *
120  * We have to ensure the referring type:
121  * 1) does exist in the BTF (i.e. in btf->types[])
122  * 2) does not cause a loop:
123  *	struct A {
124  *		struct B b;
125  *	};
126  *
127  *	struct B {
128  *		struct A a;
129  *	};
130  *
131  * btf_type_needs_resolve() decides if a btf_type needs
132  * to be resolved.
133  *
134  * The needs_resolve type implements the "resolve()" ops which
135  * essentially does a DFS and detects backedge.
136  *
137  * During resolve (or DFS), different C types have different
138  * "RESOLVED" conditions.
139  *
140  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
141  * members because a member is always referring to another
142  * type.  A struct's member can be treated as "RESOLVED" if
143  * it is referring to a BTF_KIND_PTR.  Otherwise, the
144  * following valid C struct would be rejected:
145  *
146  *	struct A {
147  *		int m;
148  *		struct A *a;
149  *	};
150  *
151  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
152  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
153  * detect a pointer loop, e.g.:
154  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
155  *                        ^                                         |
156  *                        +-----------------------------------------+
157  *
158  */
159 
160 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
164 #define BITS_ROUNDUP_BYTES(bits) \
165 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
166 
167 #define BTF_INFO_MASK 0x8f00ffff
168 #define BTF_INT_MASK 0x0fffffff
169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
171 
172 /* 16MB for 64k structs and each has 16 members and
173  * a few MB spaces for the string section.
174  * The hard limit is S32_MAX.
175  */
176 #define BTF_MAX_SIZE (16 * 1024 * 1024)
177 
178 #define for_each_member(i, struct_type, member)			\
179 	for (i = 0, member = btf_type_member(struct_type);	\
180 	     i < btf_type_vlen(struct_type);			\
181 	     i++, member++)
182 
183 #define for_each_member_from(i, from, struct_type, member)		\
184 	for (i = from, member = btf_type_member(struct_type) + from;	\
185 	     i < btf_type_vlen(struct_type);				\
186 	     i++, member++)
187 
188 static DEFINE_IDR(btf_idr);
189 static DEFINE_SPINLOCK(btf_idr_lock);
190 
191 struct btf {
192 	void *data;
193 	struct btf_type **types;
194 	u32 *resolved_ids;
195 	u32 *resolved_sizes;
196 	const char *strings;
197 	void *nohdr_data;
198 	struct btf_header hdr;
199 	u32 nr_types;
200 	u32 types_size;
201 	u32 data_size;
202 	refcount_t refcnt;
203 	u32 id;
204 	struct rcu_head rcu;
205 };
206 
207 enum verifier_phase {
208 	CHECK_META,
209 	CHECK_TYPE,
210 };
211 
212 struct resolve_vertex {
213 	const struct btf_type *t;
214 	u32 type_id;
215 	u16 next_member;
216 };
217 
218 enum visit_state {
219 	NOT_VISITED,
220 	VISITED,
221 	RESOLVED,
222 };
223 
224 enum resolve_mode {
225 	RESOLVE_TBD,	/* To Be Determined */
226 	RESOLVE_PTR,	/* Resolving for Pointer */
227 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
228 					 * or array
229 					 */
230 };
231 
232 #define MAX_RESOLVE_DEPTH 32
233 
234 struct btf_sec_info {
235 	u32 off;
236 	u32 len;
237 };
238 
239 struct btf_verifier_env {
240 	struct btf *btf;
241 	u8 *visit_states;
242 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
243 	struct bpf_verifier_log log;
244 	u32 log_type_id;
245 	u32 top_stack;
246 	enum verifier_phase phase;
247 	enum resolve_mode resolve_mode;
248 };
249 
250 static const char * const btf_kind_str[NR_BTF_KINDS] = {
251 	[BTF_KIND_UNKN]		= "UNKNOWN",
252 	[BTF_KIND_INT]		= "INT",
253 	[BTF_KIND_PTR]		= "PTR",
254 	[BTF_KIND_ARRAY]	= "ARRAY",
255 	[BTF_KIND_STRUCT]	= "STRUCT",
256 	[BTF_KIND_UNION]	= "UNION",
257 	[BTF_KIND_ENUM]		= "ENUM",
258 	[BTF_KIND_FWD]		= "FWD",
259 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
260 	[BTF_KIND_VOLATILE]	= "VOLATILE",
261 	[BTF_KIND_CONST]	= "CONST",
262 	[BTF_KIND_RESTRICT]	= "RESTRICT",
263 	[BTF_KIND_FUNC]		= "FUNC",
264 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
265 };
266 
267 struct btf_kind_operations {
268 	s32 (*check_meta)(struct btf_verifier_env *env,
269 			  const struct btf_type *t,
270 			  u32 meta_left);
271 	int (*resolve)(struct btf_verifier_env *env,
272 		       const struct resolve_vertex *v);
273 	int (*check_member)(struct btf_verifier_env *env,
274 			    const struct btf_type *struct_type,
275 			    const struct btf_member *member,
276 			    const struct btf_type *member_type);
277 	int (*check_kflag_member)(struct btf_verifier_env *env,
278 				  const struct btf_type *struct_type,
279 				  const struct btf_member *member,
280 				  const struct btf_type *member_type);
281 	void (*log_details)(struct btf_verifier_env *env,
282 			    const struct btf_type *t);
283 	void (*seq_show)(const struct btf *btf, const struct btf_type *t,
284 			 u32 type_id, void *data, u8 bits_offsets,
285 			 struct seq_file *m);
286 };
287 
288 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
289 static struct btf_type btf_void;
290 
291 static int btf_resolve(struct btf_verifier_env *env,
292 		       const struct btf_type *t, u32 type_id);
293 
294 static bool btf_type_is_modifier(const struct btf_type *t)
295 {
296 	/* Some of them is not strictly a C modifier
297 	 * but they are grouped into the same bucket
298 	 * for BTF concern:
299 	 *   A type (t) that refers to another
300 	 *   type through t->type AND its size cannot
301 	 *   be determined without following the t->type.
302 	 *
303 	 * ptr does not fall into this bucket
304 	 * because its size is always sizeof(void *).
305 	 */
306 	switch (BTF_INFO_KIND(t->info)) {
307 	case BTF_KIND_TYPEDEF:
308 	case BTF_KIND_VOLATILE:
309 	case BTF_KIND_CONST:
310 	case BTF_KIND_RESTRICT:
311 		return true;
312 	}
313 
314 	return false;
315 }
316 
317 static bool btf_type_is_void(const struct btf_type *t)
318 {
319 	return t == &btf_void;
320 }
321 
322 static bool btf_type_is_fwd(const struct btf_type *t)
323 {
324 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
325 }
326 
327 static bool btf_type_is_func(const struct btf_type *t)
328 {
329 	return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC;
330 }
331 
332 static bool btf_type_is_func_proto(const struct btf_type *t)
333 {
334 	return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO;
335 }
336 
337 static bool btf_type_nosize(const struct btf_type *t)
338 {
339 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
340 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
341 }
342 
343 static bool btf_type_nosize_or_null(const struct btf_type *t)
344 {
345 	return !t || btf_type_nosize(t);
346 }
347 
348 /* union is only a special case of struct:
349  * all its offsetof(member) == 0
350  */
351 static bool btf_type_is_struct(const struct btf_type *t)
352 {
353 	u8 kind = BTF_INFO_KIND(t->info);
354 
355 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
356 }
357 
358 static bool __btf_type_is_struct(const struct btf_type *t)
359 {
360 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
361 }
362 
363 static bool btf_type_is_array(const struct btf_type *t)
364 {
365 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
366 }
367 
368 static bool btf_type_is_ptr(const struct btf_type *t)
369 {
370 	return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
371 }
372 
373 static bool btf_type_is_int(const struct btf_type *t)
374 {
375 	return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
376 }
377 
378 /* What types need to be resolved?
379  *
380  * btf_type_is_modifier() is an obvious one.
381  *
382  * btf_type_is_struct() because its member refers to
383  * another type (through member->type).
384 
385  * btf_type_is_array() because its element (array->type)
386  * refers to another type.  Array can be thought of a
387  * special case of struct while array just has the same
388  * member-type repeated by array->nelems of times.
389  */
390 static bool btf_type_needs_resolve(const struct btf_type *t)
391 {
392 	return btf_type_is_modifier(t) ||
393 		btf_type_is_ptr(t) ||
394 		btf_type_is_struct(t) ||
395 		btf_type_is_array(t);
396 }
397 
398 /* t->size can be used */
399 static bool btf_type_has_size(const struct btf_type *t)
400 {
401 	switch (BTF_INFO_KIND(t->info)) {
402 	case BTF_KIND_INT:
403 	case BTF_KIND_STRUCT:
404 	case BTF_KIND_UNION:
405 	case BTF_KIND_ENUM:
406 		return true;
407 	}
408 
409 	return false;
410 }
411 
412 static const char *btf_int_encoding_str(u8 encoding)
413 {
414 	if (encoding == 0)
415 		return "(none)";
416 	else if (encoding == BTF_INT_SIGNED)
417 		return "SIGNED";
418 	else if (encoding == BTF_INT_CHAR)
419 		return "CHAR";
420 	else if (encoding == BTF_INT_BOOL)
421 		return "BOOL";
422 	else
423 		return "UNKN";
424 }
425 
426 static u16 btf_type_vlen(const struct btf_type *t)
427 {
428 	return BTF_INFO_VLEN(t->info);
429 }
430 
431 static bool btf_type_kflag(const struct btf_type *t)
432 {
433 	return BTF_INFO_KFLAG(t->info);
434 }
435 
436 static u32 btf_member_bit_offset(const struct btf_type *struct_type,
437 			     const struct btf_member *member)
438 {
439 	return btf_type_kflag(struct_type) ? BTF_MEMBER_BIT_OFFSET(member->offset)
440 					   : member->offset;
441 }
442 
443 static u32 btf_member_bitfield_size(const struct btf_type *struct_type,
444 				    const struct btf_member *member)
445 {
446 	return btf_type_kflag(struct_type) ? BTF_MEMBER_BITFIELD_SIZE(member->offset)
447 					   : 0;
448 }
449 
450 static u32 btf_type_int(const struct btf_type *t)
451 {
452 	return *(u32 *)(t + 1);
453 }
454 
455 static const struct btf_array *btf_type_array(const struct btf_type *t)
456 {
457 	return (const struct btf_array *)(t + 1);
458 }
459 
460 static const struct btf_member *btf_type_member(const struct btf_type *t)
461 {
462 	return (const struct btf_member *)(t + 1);
463 }
464 
465 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
466 {
467 	return (const struct btf_enum *)(t + 1);
468 }
469 
470 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
471 {
472 	return kind_ops[BTF_INFO_KIND(t->info)];
473 }
474 
475 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
476 {
477 	return BTF_STR_OFFSET_VALID(offset) &&
478 		offset < btf->hdr.str_len;
479 }
480 
481 /* Only C-style identifier is permitted. This can be relaxed if
482  * necessary.
483  */
484 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
485 {
486 	/* offset must be valid */
487 	const char *src = &btf->strings[offset];
488 	const char *src_limit;
489 
490 	if (!isalpha(*src) && *src != '_')
491 		return false;
492 
493 	/* set a limit on identifier length */
494 	src_limit = src + KSYM_NAME_LEN;
495 	src++;
496 	while (*src && src < src_limit) {
497 		if (!isalnum(*src) && *src != '_')
498 			return false;
499 		src++;
500 	}
501 
502 	return !*src;
503 }
504 
505 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
506 {
507 	if (!offset)
508 		return "(anon)";
509 	else if (offset < btf->hdr.str_len)
510 		return &btf->strings[offset];
511 	else
512 		return "(invalid-name-offset)";
513 }
514 
515 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
516 {
517 	if (offset < btf->hdr.str_len)
518 		return &btf->strings[offset];
519 
520 	return NULL;
521 }
522 
523 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
524 {
525 	if (type_id > btf->nr_types)
526 		return NULL;
527 
528 	return btf->types[type_id];
529 }
530 
531 /*
532  * Regular int is not a bit field and it must be either
533  * u8/u16/u32/u64 or __int128.
534  */
535 static bool btf_type_int_is_regular(const struct btf_type *t)
536 {
537 	u8 nr_bits, nr_bytes;
538 	u32 int_data;
539 
540 	int_data = btf_type_int(t);
541 	nr_bits = BTF_INT_BITS(int_data);
542 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
543 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
544 	    BTF_INT_OFFSET(int_data) ||
545 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
546 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
547 	     nr_bytes != (2 * sizeof(u64)))) {
548 		return false;
549 	}
550 
551 	return true;
552 }
553 
554 /*
555  * Check that given struct member is a regular int with expected
556  * offset and size.
557  */
558 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
559 			   const struct btf_member *m,
560 			   u32 expected_offset, u32 expected_size)
561 {
562 	const struct btf_type *t;
563 	u32 id, int_data;
564 	u8 nr_bits;
565 
566 	id = m->type;
567 	t = btf_type_id_size(btf, &id, NULL);
568 	if (!t || !btf_type_is_int(t))
569 		return false;
570 
571 	int_data = btf_type_int(t);
572 	nr_bits = BTF_INT_BITS(int_data);
573 	if (btf_type_kflag(s)) {
574 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
575 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
576 
577 		/* if kflag set, int should be a regular int and
578 		 * bit offset should be at byte boundary.
579 		 */
580 		return !bitfield_size &&
581 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
582 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
583 	}
584 
585 	if (BTF_INT_OFFSET(int_data) ||
586 	    BITS_PER_BYTE_MASKED(m->offset) ||
587 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
588 	    BITS_PER_BYTE_MASKED(nr_bits) ||
589 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
590 		return false;
591 
592 	return true;
593 }
594 
595 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
596 					      const char *fmt, ...)
597 {
598 	va_list args;
599 
600 	va_start(args, fmt);
601 	bpf_verifier_vlog(log, fmt, args);
602 	va_end(args);
603 }
604 
605 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
606 					    const char *fmt, ...)
607 {
608 	struct bpf_verifier_log *log = &env->log;
609 	va_list args;
610 
611 	if (!bpf_verifier_log_needed(log))
612 		return;
613 
614 	va_start(args, fmt);
615 	bpf_verifier_vlog(log, fmt, args);
616 	va_end(args);
617 }
618 
619 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
620 						   const struct btf_type *t,
621 						   bool log_details,
622 						   const char *fmt, ...)
623 {
624 	struct bpf_verifier_log *log = &env->log;
625 	u8 kind = BTF_INFO_KIND(t->info);
626 	struct btf *btf = env->btf;
627 	va_list args;
628 
629 	if (!bpf_verifier_log_needed(log))
630 		return;
631 
632 	__btf_verifier_log(log, "[%u] %s %s%s",
633 			   env->log_type_id,
634 			   btf_kind_str[kind],
635 			   __btf_name_by_offset(btf, t->name_off),
636 			   log_details ? " " : "");
637 
638 	if (log_details)
639 		btf_type_ops(t)->log_details(env, t);
640 
641 	if (fmt && *fmt) {
642 		__btf_verifier_log(log, " ");
643 		va_start(args, fmt);
644 		bpf_verifier_vlog(log, fmt, args);
645 		va_end(args);
646 	}
647 
648 	__btf_verifier_log(log, "\n");
649 }
650 
651 #define btf_verifier_log_type(env, t, ...) \
652 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
653 #define btf_verifier_log_basic(env, t, ...) \
654 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
655 
656 __printf(4, 5)
657 static void btf_verifier_log_member(struct btf_verifier_env *env,
658 				    const struct btf_type *struct_type,
659 				    const struct btf_member *member,
660 				    const char *fmt, ...)
661 {
662 	struct bpf_verifier_log *log = &env->log;
663 	struct btf *btf = env->btf;
664 	va_list args;
665 
666 	if (!bpf_verifier_log_needed(log))
667 		return;
668 
669 	/* The CHECK_META phase already did a btf dump.
670 	 *
671 	 * If member is logged again, it must hit an error in
672 	 * parsing this member.  It is useful to print out which
673 	 * struct this member belongs to.
674 	 */
675 	if (env->phase != CHECK_META)
676 		btf_verifier_log_type(env, struct_type, NULL);
677 
678 	if (btf_type_kflag(struct_type))
679 		__btf_verifier_log(log,
680 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
681 				   __btf_name_by_offset(btf, member->name_off),
682 				   member->type,
683 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
684 				   BTF_MEMBER_BIT_OFFSET(member->offset));
685 	else
686 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
687 				   __btf_name_by_offset(btf, member->name_off),
688 				   member->type, member->offset);
689 
690 	if (fmt && *fmt) {
691 		__btf_verifier_log(log, " ");
692 		va_start(args, fmt);
693 		bpf_verifier_vlog(log, fmt, args);
694 		va_end(args);
695 	}
696 
697 	__btf_verifier_log(log, "\n");
698 }
699 
700 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
701 				 u32 btf_data_size)
702 {
703 	struct bpf_verifier_log *log = &env->log;
704 	const struct btf *btf = env->btf;
705 	const struct btf_header *hdr;
706 
707 	if (!bpf_verifier_log_needed(log))
708 		return;
709 
710 	hdr = &btf->hdr;
711 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
712 	__btf_verifier_log(log, "version: %u\n", hdr->version);
713 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
714 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
715 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
716 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
717 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
718 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
719 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
720 }
721 
722 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
723 {
724 	struct btf *btf = env->btf;
725 
726 	/* < 2 because +1 for btf_void which is always in btf->types[0].
727 	 * btf_void is not accounted in btf->nr_types because btf_void
728 	 * does not come from the BTF file.
729 	 */
730 	if (btf->types_size - btf->nr_types < 2) {
731 		/* Expand 'types' array */
732 
733 		struct btf_type **new_types;
734 		u32 expand_by, new_size;
735 
736 		if (btf->types_size == BTF_MAX_TYPE) {
737 			btf_verifier_log(env, "Exceeded max num of types");
738 			return -E2BIG;
739 		}
740 
741 		expand_by = max_t(u32, btf->types_size >> 2, 16);
742 		new_size = min_t(u32, BTF_MAX_TYPE,
743 				 btf->types_size + expand_by);
744 
745 		new_types = kvcalloc(new_size, sizeof(*new_types),
746 				     GFP_KERNEL | __GFP_NOWARN);
747 		if (!new_types)
748 			return -ENOMEM;
749 
750 		if (btf->nr_types == 0)
751 			new_types[0] = &btf_void;
752 		else
753 			memcpy(new_types, btf->types,
754 			       sizeof(*btf->types) * (btf->nr_types + 1));
755 
756 		kvfree(btf->types);
757 		btf->types = new_types;
758 		btf->types_size = new_size;
759 	}
760 
761 	btf->types[++(btf->nr_types)] = t;
762 
763 	return 0;
764 }
765 
766 static int btf_alloc_id(struct btf *btf)
767 {
768 	int id;
769 
770 	idr_preload(GFP_KERNEL);
771 	spin_lock_bh(&btf_idr_lock);
772 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
773 	if (id > 0)
774 		btf->id = id;
775 	spin_unlock_bh(&btf_idr_lock);
776 	idr_preload_end();
777 
778 	if (WARN_ON_ONCE(!id))
779 		return -ENOSPC;
780 
781 	return id > 0 ? 0 : id;
782 }
783 
784 static void btf_free_id(struct btf *btf)
785 {
786 	unsigned long flags;
787 
788 	/*
789 	 * In map-in-map, calling map_delete_elem() on outer
790 	 * map will call bpf_map_put on the inner map.
791 	 * It will then eventually call btf_free_id()
792 	 * on the inner map.  Some of the map_delete_elem()
793 	 * implementation may have irq disabled, so
794 	 * we need to use the _irqsave() version instead
795 	 * of the _bh() version.
796 	 */
797 	spin_lock_irqsave(&btf_idr_lock, flags);
798 	idr_remove(&btf_idr, btf->id);
799 	spin_unlock_irqrestore(&btf_idr_lock, flags);
800 }
801 
802 static void btf_free(struct btf *btf)
803 {
804 	kvfree(btf->types);
805 	kvfree(btf->resolved_sizes);
806 	kvfree(btf->resolved_ids);
807 	kvfree(btf->data);
808 	kfree(btf);
809 }
810 
811 static void btf_free_rcu(struct rcu_head *rcu)
812 {
813 	struct btf *btf = container_of(rcu, struct btf, rcu);
814 
815 	btf_free(btf);
816 }
817 
818 void btf_put(struct btf *btf)
819 {
820 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
821 		btf_free_id(btf);
822 		call_rcu(&btf->rcu, btf_free_rcu);
823 	}
824 }
825 
826 static int env_resolve_init(struct btf_verifier_env *env)
827 {
828 	struct btf *btf = env->btf;
829 	u32 nr_types = btf->nr_types;
830 	u32 *resolved_sizes = NULL;
831 	u32 *resolved_ids = NULL;
832 	u8 *visit_states = NULL;
833 
834 	/* +1 for btf_void */
835 	resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
836 				  GFP_KERNEL | __GFP_NOWARN);
837 	if (!resolved_sizes)
838 		goto nomem;
839 
840 	resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
841 				GFP_KERNEL | __GFP_NOWARN);
842 	if (!resolved_ids)
843 		goto nomem;
844 
845 	visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
846 				GFP_KERNEL | __GFP_NOWARN);
847 	if (!visit_states)
848 		goto nomem;
849 
850 	btf->resolved_sizes = resolved_sizes;
851 	btf->resolved_ids = resolved_ids;
852 	env->visit_states = visit_states;
853 
854 	return 0;
855 
856 nomem:
857 	kvfree(resolved_sizes);
858 	kvfree(resolved_ids);
859 	kvfree(visit_states);
860 	return -ENOMEM;
861 }
862 
863 static void btf_verifier_env_free(struct btf_verifier_env *env)
864 {
865 	kvfree(env->visit_states);
866 	kfree(env);
867 }
868 
869 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
870 				     const struct btf_type *next_type)
871 {
872 	switch (env->resolve_mode) {
873 	case RESOLVE_TBD:
874 		/* int, enum or void is a sink */
875 		return !btf_type_needs_resolve(next_type);
876 	case RESOLVE_PTR:
877 		/* int, enum, void, struct, array, func or func_proto is a sink
878 		 * for ptr
879 		 */
880 		return !btf_type_is_modifier(next_type) &&
881 			!btf_type_is_ptr(next_type);
882 	case RESOLVE_STRUCT_OR_ARRAY:
883 		/* int, enum, void, ptr, func or func_proto is a sink
884 		 * for struct and array
885 		 */
886 		return !btf_type_is_modifier(next_type) &&
887 			!btf_type_is_array(next_type) &&
888 			!btf_type_is_struct(next_type);
889 	default:
890 		BUG();
891 	}
892 }
893 
894 static bool env_type_is_resolved(const struct btf_verifier_env *env,
895 				 u32 type_id)
896 {
897 	return env->visit_states[type_id] == RESOLVED;
898 }
899 
900 static int env_stack_push(struct btf_verifier_env *env,
901 			  const struct btf_type *t, u32 type_id)
902 {
903 	struct resolve_vertex *v;
904 
905 	if (env->top_stack == MAX_RESOLVE_DEPTH)
906 		return -E2BIG;
907 
908 	if (env->visit_states[type_id] != NOT_VISITED)
909 		return -EEXIST;
910 
911 	env->visit_states[type_id] = VISITED;
912 
913 	v = &env->stack[env->top_stack++];
914 	v->t = t;
915 	v->type_id = type_id;
916 	v->next_member = 0;
917 
918 	if (env->resolve_mode == RESOLVE_TBD) {
919 		if (btf_type_is_ptr(t))
920 			env->resolve_mode = RESOLVE_PTR;
921 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
922 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
923 	}
924 
925 	return 0;
926 }
927 
928 static void env_stack_set_next_member(struct btf_verifier_env *env,
929 				      u16 next_member)
930 {
931 	env->stack[env->top_stack - 1].next_member = next_member;
932 }
933 
934 static void env_stack_pop_resolved(struct btf_verifier_env *env,
935 				   u32 resolved_type_id,
936 				   u32 resolved_size)
937 {
938 	u32 type_id = env->stack[--(env->top_stack)].type_id;
939 	struct btf *btf = env->btf;
940 
941 	btf->resolved_sizes[type_id] = resolved_size;
942 	btf->resolved_ids[type_id] = resolved_type_id;
943 	env->visit_states[type_id] = RESOLVED;
944 }
945 
946 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
947 {
948 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
949 }
950 
951 /* The input param "type_id" must point to a needs_resolve type */
952 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
953 						  u32 *type_id)
954 {
955 	*type_id = btf->resolved_ids[*type_id];
956 	return btf_type_by_id(btf, *type_id);
957 }
958 
959 const struct btf_type *btf_type_id_size(const struct btf *btf,
960 					u32 *type_id, u32 *ret_size)
961 {
962 	const struct btf_type *size_type;
963 	u32 size_type_id = *type_id;
964 	u32 size = 0;
965 
966 	size_type = btf_type_by_id(btf, size_type_id);
967 	if (btf_type_nosize_or_null(size_type))
968 		return NULL;
969 
970 	if (btf_type_has_size(size_type)) {
971 		size = size_type->size;
972 	} else if (btf_type_is_array(size_type)) {
973 		size = btf->resolved_sizes[size_type_id];
974 	} else if (btf_type_is_ptr(size_type)) {
975 		size = sizeof(void *);
976 	} else {
977 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type)))
978 			return NULL;
979 
980 		size = btf->resolved_sizes[size_type_id];
981 		size_type_id = btf->resolved_ids[size_type_id];
982 		size_type = btf_type_by_id(btf, size_type_id);
983 		if (btf_type_nosize_or_null(size_type))
984 			return NULL;
985 	}
986 
987 	*type_id = size_type_id;
988 	if (ret_size)
989 		*ret_size = size;
990 
991 	return size_type;
992 }
993 
994 static int btf_df_check_member(struct btf_verifier_env *env,
995 			       const struct btf_type *struct_type,
996 			       const struct btf_member *member,
997 			       const struct btf_type *member_type)
998 {
999 	btf_verifier_log_basic(env, struct_type,
1000 			       "Unsupported check_member");
1001 	return -EINVAL;
1002 }
1003 
1004 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1005 				     const struct btf_type *struct_type,
1006 				     const struct btf_member *member,
1007 				     const struct btf_type *member_type)
1008 {
1009 	btf_verifier_log_basic(env, struct_type,
1010 			       "Unsupported check_kflag_member");
1011 	return -EINVAL;
1012 }
1013 
1014 /* Used for ptr, array and struct/union type members.
1015  * int, enum and modifier types have their specific callback functions.
1016  */
1017 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1018 					  const struct btf_type *struct_type,
1019 					  const struct btf_member *member,
1020 					  const struct btf_type *member_type)
1021 {
1022 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1023 		btf_verifier_log_member(env, struct_type, member,
1024 					"Invalid member bitfield_size");
1025 		return -EINVAL;
1026 	}
1027 
1028 	/* bitfield size is 0, so member->offset represents bit offset only.
1029 	 * It is safe to call non kflag check_member variants.
1030 	 */
1031 	return btf_type_ops(member_type)->check_member(env, struct_type,
1032 						       member,
1033 						       member_type);
1034 }
1035 
1036 static int btf_df_resolve(struct btf_verifier_env *env,
1037 			  const struct resolve_vertex *v)
1038 {
1039 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1040 	return -EINVAL;
1041 }
1042 
1043 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1044 			    u32 type_id, void *data, u8 bits_offsets,
1045 			    struct seq_file *m)
1046 {
1047 	seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1048 }
1049 
1050 static int btf_int_check_member(struct btf_verifier_env *env,
1051 				const struct btf_type *struct_type,
1052 				const struct btf_member *member,
1053 				const struct btf_type *member_type)
1054 {
1055 	u32 int_data = btf_type_int(member_type);
1056 	u32 struct_bits_off = member->offset;
1057 	u32 struct_size = struct_type->size;
1058 	u32 nr_copy_bits;
1059 	u32 bytes_offset;
1060 
1061 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1062 		btf_verifier_log_member(env, struct_type, member,
1063 					"bits_offset exceeds U32_MAX");
1064 		return -EINVAL;
1065 	}
1066 
1067 	struct_bits_off += BTF_INT_OFFSET(int_data);
1068 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1069 	nr_copy_bits = BTF_INT_BITS(int_data) +
1070 		BITS_PER_BYTE_MASKED(struct_bits_off);
1071 
1072 	if (nr_copy_bits > BITS_PER_U128) {
1073 		btf_verifier_log_member(env, struct_type, member,
1074 					"nr_copy_bits exceeds 128");
1075 		return -EINVAL;
1076 	}
1077 
1078 	if (struct_size < bytes_offset ||
1079 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1080 		btf_verifier_log_member(env, struct_type, member,
1081 					"Member exceeds struct_size");
1082 		return -EINVAL;
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1089 				      const struct btf_type *struct_type,
1090 				      const struct btf_member *member,
1091 				      const struct btf_type *member_type)
1092 {
1093 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1094 	u32 int_data = btf_type_int(member_type);
1095 	u32 struct_size = struct_type->size;
1096 	u32 nr_copy_bits;
1097 
1098 	/* a regular int type is required for the kflag int member */
1099 	if (!btf_type_int_is_regular(member_type)) {
1100 		btf_verifier_log_member(env, struct_type, member,
1101 					"Invalid member base type");
1102 		return -EINVAL;
1103 	}
1104 
1105 	/* check sanity of bitfield size */
1106 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1107 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1108 	nr_int_data_bits = BTF_INT_BITS(int_data);
1109 	if (!nr_bits) {
1110 		/* Not a bitfield member, member offset must be at byte
1111 		 * boundary.
1112 		 */
1113 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1114 			btf_verifier_log_member(env, struct_type, member,
1115 						"Invalid member offset");
1116 			return -EINVAL;
1117 		}
1118 
1119 		nr_bits = nr_int_data_bits;
1120 	} else if (nr_bits > nr_int_data_bits) {
1121 		btf_verifier_log_member(env, struct_type, member,
1122 					"Invalid member bitfield_size");
1123 		return -EINVAL;
1124 	}
1125 
1126 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1127 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1128 	if (nr_copy_bits > BITS_PER_U128) {
1129 		btf_verifier_log_member(env, struct_type, member,
1130 					"nr_copy_bits exceeds 128");
1131 		return -EINVAL;
1132 	}
1133 
1134 	if (struct_size < bytes_offset ||
1135 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1136 		btf_verifier_log_member(env, struct_type, member,
1137 					"Member exceeds struct_size");
1138 		return -EINVAL;
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1145 			      const struct btf_type *t,
1146 			      u32 meta_left)
1147 {
1148 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1149 	u16 encoding;
1150 
1151 	if (meta_left < meta_needed) {
1152 		btf_verifier_log_basic(env, t,
1153 				       "meta_left:%u meta_needed:%u",
1154 				       meta_left, meta_needed);
1155 		return -EINVAL;
1156 	}
1157 
1158 	if (btf_type_vlen(t)) {
1159 		btf_verifier_log_type(env, t, "vlen != 0");
1160 		return -EINVAL;
1161 	}
1162 
1163 	if (btf_type_kflag(t)) {
1164 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1165 		return -EINVAL;
1166 	}
1167 
1168 	int_data = btf_type_int(t);
1169 	if (int_data & ~BTF_INT_MASK) {
1170 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1171 				       int_data);
1172 		return -EINVAL;
1173 	}
1174 
1175 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1176 
1177 	if (nr_bits > BITS_PER_U128) {
1178 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1179 				      BITS_PER_U128);
1180 		return -EINVAL;
1181 	}
1182 
1183 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1184 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1185 		return -EINVAL;
1186 	}
1187 
1188 	/*
1189 	 * Only one of the encoding bits is allowed and it
1190 	 * should be sufficient for the pretty print purpose (i.e. decoding).
1191 	 * Multiple bits can be allowed later if it is found
1192 	 * to be insufficient.
1193 	 */
1194 	encoding = BTF_INT_ENCODING(int_data);
1195 	if (encoding &&
1196 	    encoding != BTF_INT_SIGNED &&
1197 	    encoding != BTF_INT_CHAR &&
1198 	    encoding != BTF_INT_BOOL) {
1199 		btf_verifier_log_type(env, t, "Unsupported encoding");
1200 		return -ENOTSUPP;
1201 	}
1202 
1203 	btf_verifier_log_type(env, t, NULL);
1204 
1205 	return meta_needed;
1206 }
1207 
1208 static void btf_int_log(struct btf_verifier_env *env,
1209 			const struct btf_type *t)
1210 {
1211 	int int_data = btf_type_int(t);
1212 
1213 	btf_verifier_log(env,
1214 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1215 			 t->size, BTF_INT_OFFSET(int_data),
1216 			 BTF_INT_BITS(int_data),
1217 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1218 }
1219 
1220 static void btf_int128_print(struct seq_file *m, void *data)
1221 {
1222 	/* data points to a __int128 number.
1223 	 * Suppose
1224 	 *     int128_num = *(__int128 *)data;
1225 	 * The below formulas shows what upper_num and lower_num represents:
1226 	 *     upper_num = int128_num >> 64;
1227 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1228 	 */
1229 	u64 upper_num, lower_num;
1230 
1231 #ifdef __BIG_ENDIAN_BITFIELD
1232 	upper_num = *(u64 *)data;
1233 	lower_num = *(u64 *)(data + 8);
1234 #else
1235 	upper_num = *(u64 *)(data + 8);
1236 	lower_num = *(u64 *)data;
1237 #endif
1238 	if (upper_num == 0)
1239 		seq_printf(m, "0x%llx", lower_num);
1240 	else
1241 		seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
1242 }
1243 
1244 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
1245 			     u16 right_shift_bits)
1246 {
1247 	u64 upper_num, lower_num;
1248 
1249 #ifdef __BIG_ENDIAN_BITFIELD
1250 	upper_num = print_num[0];
1251 	lower_num = print_num[1];
1252 #else
1253 	upper_num = print_num[1];
1254 	lower_num = print_num[0];
1255 #endif
1256 
1257 	/* shake out un-needed bits by shift/or operations */
1258 	if (left_shift_bits >= 64) {
1259 		upper_num = lower_num << (left_shift_bits - 64);
1260 		lower_num = 0;
1261 	} else {
1262 		upper_num = (upper_num << left_shift_bits) |
1263 			    (lower_num >> (64 - left_shift_bits));
1264 		lower_num = lower_num << left_shift_bits;
1265 	}
1266 
1267 	if (right_shift_bits >= 64) {
1268 		lower_num = upper_num >> (right_shift_bits - 64);
1269 		upper_num = 0;
1270 	} else {
1271 		lower_num = (lower_num >> right_shift_bits) |
1272 			    (upper_num << (64 - right_shift_bits));
1273 		upper_num = upper_num >> right_shift_bits;
1274 	}
1275 
1276 #ifdef __BIG_ENDIAN_BITFIELD
1277 	print_num[0] = upper_num;
1278 	print_num[1] = lower_num;
1279 #else
1280 	print_num[0] = lower_num;
1281 	print_num[1] = upper_num;
1282 #endif
1283 }
1284 
1285 static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1286 				  u8 nr_bits, struct seq_file *m)
1287 {
1288 	u16 left_shift_bits, right_shift_bits;
1289 	u8 nr_copy_bytes;
1290 	u8 nr_copy_bits;
1291 	u64 print_num[2] = {};
1292 
1293 	nr_copy_bits = nr_bits + bits_offset;
1294 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1295 
1296 	memcpy(print_num, data, nr_copy_bytes);
1297 
1298 #ifdef __BIG_ENDIAN_BITFIELD
1299 	left_shift_bits = bits_offset;
1300 #else
1301 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
1302 #endif
1303 	right_shift_bits = BITS_PER_U128 - nr_bits;
1304 
1305 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
1306 	btf_int128_print(m, print_num);
1307 }
1308 
1309 
1310 static void btf_int_bits_seq_show(const struct btf *btf,
1311 				  const struct btf_type *t,
1312 				  void *data, u8 bits_offset,
1313 				  struct seq_file *m)
1314 {
1315 	u32 int_data = btf_type_int(t);
1316 	u8 nr_bits = BTF_INT_BITS(int_data);
1317 	u8 total_bits_offset;
1318 
1319 	/*
1320 	 * bits_offset is at most 7.
1321 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
1322 	 */
1323 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1324 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1325 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1326 	btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
1327 }
1328 
1329 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1330 			     u32 type_id, void *data, u8 bits_offset,
1331 			     struct seq_file *m)
1332 {
1333 	u32 int_data = btf_type_int(t);
1334 	u8 encoding = BTF_INT_ENCODING(int_data);
1335 	bool sign = encoding & BTF_INT_SIGNED;
1336 	u8 nr_bits = BTF_INT_BITS(int_data);
1337 
1338 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
1339 	    BITS_PER_BYTE_MASKED(nr_bits)) {
1340 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1341 		return;
1342 	}
1343 
1344 	switch (nr_bits) {
1345 	case 128:
1346 		btf_int128_print(m, data);
1347 		break;
1348 	case 64:
1349 		if (sign)
1350 			seq_printf(m, "%lld", *(s64 *)data);
1351 		else
1352 			seq_printf(m, "%llu", *(u64 *)data);
1353 		break;
1354 	case 32:
1355 		if (sign)
1356 			seq_printf(m, "%d", *(s32 *)data);
1357 		else
1358 			seq_printf(m, "%u", *(u32 *)data);
1359 		break;
1360 	case 16:
1361 		if (sign)
1362 			seq_printf(m, "%d", *(s16 *)data);
1363 		else
1364 			seq_printf(m, "%u", *(u16 *)data);
1365 		break;
1366 	case 8:
1367 		if (sign)
1368 			seq_printf(m, "%d", *(s8 *)data);
1369 		else
1370 			seq_printf(m, "%u", *(u8 *)data);
1371 		break;
1372 	default:
1373 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1374 	}
1375 }
1376 
1377 static const struct btf_kind_operations int_ops = {
1378 	.check_meta = btf_int_check_meta,
1379 	.resolve = btf_df_resolve,
1380 	.check_member = btf_int_check_member,
1381 	.check_kflag_member = btf_int_check_kflag_member,
1382 	.log_details = btf_int_log,
1383 	.seq_show = btf_int_seq_show,
1384 };
1385 
1386 static int btf_modifier_check_member(struct btf_verifier_env *env,
1387 				     const struct btf_type *struct_type,
1388 				     const struct btf_member *member,
1389 				     const struct btf_type *member_type)
1390 {
1391 	const struct btf_type *resolved_type;
1392 	u32 resolved_type_id = member->type;
1393 	struct btf_member resolved_member;
1394 	struct btf *btf = env->btf;
1395 
1396 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1397 	if (!resolved_type) {
1398 		btf_verifier_log_member(env, struct_type, member,
1399 					"Invalid member");
1400 		return -EINVAL;
1401 	}
1402 
1403 	resolved_member = *member;
1404 	resolved_member.type = resolved_type_id;
1405 
1406 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
1407 							 &resolved_member,
1408 							 resolved_type);
1409 }
1410 
1411 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1412 					   const struct btf_type *struct_type,
1413 					   const struct btf_member *member,
1414 					   const struct btf_type *member_type)
1415 {
1416 	const struct btf_type *resolved_type;
1417 	u32 resolved_type_id = member->type;
1418 	struct btf_member resolved_member;
1419 	struct btf *btf = env->btf;
1420 
1421 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1422 	if (!resolved_type) {
1423 		btf_verifier_log_member(env, struct_type, member,
1424 					"Invalid member");
1425 		return -EINVAL;
1426 	}
1427 
1428 	resolved_member = *member;
1429 	resolved_member.type = resolved_type_id;
1430 
1431 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1432 							       &resolved_member,
1433 							       resolved_type);
1434 }
1435 
1436 static int btf_ptr_check_member(struct btf_verifier_env *env,
1437 				const struct btf_type *struct_type,
1438 				const struct btf_member *member,
1439 				const struct btf_type *member_type)
1440 {
1441 	u32 struct_size, struct_bits_off, bytes_offset;
1442 
1443 	struct_size = struct_type->size;
1444 	struct_bits_off = member->offset;
1445 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1446 
1447 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1448 		btf_verifier_log_member(env, struct_type, member,
1449 					"Member is not byte aligned");
1450 		return -EINVAL;
1451 	}
1452 
1453 	if (struct_size - bytes_offset < sizeof(void *)) {
1454 		btf_verifier_log_member(env, struct_type, member,
1455 					"Member exceeds struct_size");
1456 		return -EINVAL;
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1463 				   const struct btf_type *t,
1464 				   u32 meta_left)
1465 {
1466 	if (btf_type_vlen(t)) {
1467 		btf_verifier_log_type(env, t, "vlen != 0");
1468 		return -EINVAL;
1469 	}
1470 
1471 	if (btf_type_kflag(t)) {
1472 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1473 		return -EINVAL;
1474 	}
1475 
1476 	if (!BTF_TYPE_ID_VALID(t->type)) {
1477 		btf_verifier_log_type(env, t, "Invalid type_id");
1478 		return -EINVAL;
1479 	}
1480 
1481 	/* typedef type must have a valid name, and other ref types,
1482 	 * volatile, const, restrict, should have a null name.
1483 	 */
1484 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1485 		if (!t->name_off ||
1486 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
1487 			btf_verifier_log_type(env, t, "Invalid name");
1488 			return -EINVAL;
1489 		}
1490 	} else {
1491 		if (t->name_off) {
1492 			btf_verifier_log_type(env, t, "Invalid name");
1493 			return -EINVAL;
1494 		}
1495 	}
1496 
1497 	btf_verifier_log_type(env, t, NULL);
1498 
1499 	return 0;
1500 }
1501 
1502 static int btf_modifier_resolve(struct btf_verifier_env *env,
1503 				const struct resolve_vertex *v)
1504 {
1505 	const struct btf_type *t = v->t;
1506 	const struct btf_type *next_type;
1507 	u32 next_type_id = t->type;
1508 	struct btf *btf = env->btf;
1509 	u32 next_type_size = 0;
1510 
1511 	next_type = btf_type_by_id(btf, next_type_id);
1512 	if (!next_type) {
1513 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1514 		return -EINVAL;
1515 	}
1516 
1517 	if (!env_type_is_resolve_sink(env, next_type) &&
1518 	    !env_type_is_resolved(env, next_type_id))
1519 		return env_stack_push(env, next_type, next_type_id);
1520 
1521 	/* Figure out the resolved next_type_id with size.
1522 	 * They will be stored in the current modifier's
1523 	 * resolved_ids and resolved_sizes such that it can
1524 	 * save us a few type-following when we use it later (e.g. in
1525 	 * pretty print).
1526 	 */
1527 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) {
1528 		if (env_type_is_resolved(env, next_type_id))
1529 			next_type = btf_type_id_resolve(btf, &next_type_id);
1530 
1531 		/* "typedef void new_void", "const void"...etc */
1532 		if (!btf_type_is_void(next_type) &&
1533 		    !btf_type_is_fwd(next_type) &&
1534 		    !btf_type_is_func_proto(next_type)) {
1535 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1536 			return -EINVAL;
1537 		}
1538 	}
1539 
1540 	env_stack_pop_resolved(env, next_type_id, next_type_size);
1541 
1542 	return 0;
1543 }
1544 
1545 static int btf_ptr_resolve(struct btf_verifier_env *env,
1546 			   const struct resolve_vertex *v)
1547 {
1548 	const struct btf_type *next_type;
1549 	const struct btf_type *t = v->t;
1550 	u32 next_type_id = t->type;
1551 	struct btf *btf = env->btf;
1552 
1553 	next_type = btf_type_by_id(btf, next_type_id);
1554 	if (!next_type) {
1555 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1556 		return -EINVAL;
1557 	}
1558 
1559 	if (!env_type_is_resolve_sink(env, next_type) &&
1560 	    !env_type_is_resolved(env, next_type_id))
1561 		return env_stack_push(env, next_type, next_type_id);
1562 
1563 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1564 	 * the modifier may have stopped resolving when it was resolved
1565 	 * to a ptr (last-resolved-ptr).
1566 	 *
1567 	 * We now need to continue from the last-resolved-ptr to
1568 	 * ensure the last-resolved-ptr will not referring back to
1569 	 * the currenct ptr (t).
1570 	 */
1571 	if (btf_type_is_modifier(next_type)) {
1572 		const struct btf_type *resolved_type;
1573 		u32 resolved_type_id;
1574 
1575 		resolved_type_id = next_type_id;
1576 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1577 
1578 		if (btf_type_is_ptr(resolved_type) &&
1579 		    !env_type_is_resolve_sink(env, resolved_type) &&
1580 		    !env_type_is_resolved(env, resolved_type_id))
1581 			return env_stack_push(env, resolved_type,
1582 					      resolved_type_id);
1583 	}
1584 
1585 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1586 		if (env_type_is_resolved(env, next_type_id))
1587 			next_type = btf_type_id_resolve(btf, &next_type_id);
1588 
1589 		if (!btf_type_is_void(next_type) &&
1590 		    !btf_type_is_fwd(next_type) &&
1591 		    !btf_type_is_func_proto(next_type)) {
1592 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1593 			return -EINVAL;
1594 		}
1595 	}
1596 
1597 	env_stack_pop_resolved(env, next_type_id, 0);
1598 
1599 	return 0;
1600 }
1601 
1602 static void btf_modifier_seq_show(const struct btf *btf,
1603 				  const struct btf_type *t,
1604 				  u32 type_id, void *data,
1605 				  u8 bits_offset, struct seq_file *m)
1606 {
1607 	t = btf_type_id_resolve(btf, &type_id);
1608 
1609 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1610 }
1611 
1612 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1613 			     u32 type_id, void *data, u8 bits_offset,
1614 			     struct seq_file *m)
1615 {
1616 	/* It is a hashed value */
1617 	seq_printf(m, "%p", *(void **)data);
1618 }
1619 
1620 static void btf_ref_type_log(struct btf_verifier_env *env,
1621 			     const struct btf_type *t)
1622 {
1623 	btf_verifier_log(env, "type_id=%u", t->type);
1624 }
1625 
1626 static struct btf_kind_operations modifier_ops = {
1627 	.check_meta = btf_ref_type_check_meta,
1628 	.resolve = btf_modifier_resolve,
1629 	.check_member = btf_modifier_check_member,
1630 	.check_kflag_member = btf_modifier_check_kflag_member,
1631 	.log_details = btf_ref_type_log,
1632 	.seq_show = btf_modifier_seq_show,
1633 };
1634 
1635 static struct btf_kind_operations ptr_ops = {
1636 	.check_meta = btf_ref_type_check_meta,
1637 	.resolve = btf_ptr_resolve,
1638 	.check_member = btf_ptr_check_member,
1639 	.check_kflag_member = btf_generic_check_kflag_member,
1640 	.log_details = btf_ref_type_log,
1641 	.seq_show = btf_ptr_seq_show,
1642 };
1643 
1644 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1645 			      const struct btf_type *t,
1646 			      u32 meta_left)
1647 {
1648 	if (btf_type_vlen(t)) {
1649 		btf_verifier_log_type(env, t, "vlen != 0");
1650 		return -EINVAL;
1651 	}
1652 
1653 	if (t->type) {
1654 		btf_verifier_log_type(env, t, "type != 0");
1655 		return -EINVAL;
1656 	}
1657 
1658 	/* fwd type must have a valid name */
1659 	if (!t->name_off ||
1660 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1661 		btf_verifier_log_type(env, t, "Invalid name");
1662 		return -EINVAL;
1663 	}
1664 
1665 	btf_verifier_log_type(env, t, NULL);
1666 
1667 	return 0;
1668 }
1669 
1670 static void btf_fwd_type_log(struct btf_verifier_env *env,
1671 			     const struct btf_type *t)
1672 {
1673 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1674 }
1675 
1676 static struct btf_kind_operations fwd_ops = {
1677 	.check_meta = btf_fwd_check_meta,
1678 	.resolve = btf_df_resolve,
1679 	.check_member = btf_df_check_member,
1680 	.check_kflag_member = btf_df_check_kflag_member,
1681 	.log_details = btf_fwd_type_log,
1682 	.seq_show = btf_df_seq_show,
1683 };
1684 
1685 static int btf_array_check_member(struct btf_verifier_env *env,
1686 				  const struct btf_type *struct_type,
1687 				  const struct btf_member *member,
1688 				  const struct btf_type *member_type)
1689 {
1690 	u32 struct_bits_off = member->offset;
1691 	u32 struct_size, bytes_offset;
1692 	u32 array_type_id, array_size;
1693 	struct btf *btf = env->btf;
1694 
1695 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1696 		btf_verifier_log_member(env, struct_type, member,
1697 					"Member is not byte aligned");
1698 		return -EINVAL;
1699 	}
1700 
1701 	array_type_id = member->type;
1702 	btf_type_id_size(btf, &array_type_id, &array_size);
1703 	struct_size = struct_type->size;
1704 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1705 	if (struct_size - bytes_offset < array_size) {
1706 		btf_verifier_log_member(env, struct_type, member,
1707 					"Member exceeds struct_size");
1708 		return -EINVAL;
1709 	}
1710 
1711 	return 0;
1712 }
1713 
1714 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1715 				const struct btf_type *t,
1716 				u32 meta_left)
1717 {
1718 	const struct btf_array *array = btf_type_array(t);
1719 	u32 meta_needed = sizeof(*array);
1720 
1721 	if (meta_left < meta_needed) {
1722 		btf_verifier_log_basic(env, t,
1723 				       "meta_left:%u meta_needed:%u",
1724 				       meta_left, meta_needed);
1725 		return -EINVAL;
1726 	}
1727 
1728 	/* array type should not have a name */
1729 	if (t->name_off) {
1730 		btf_verifier_log_type(env, t, "Invalid name");
1731 		return -EINVAL;
1732 	}
1733 
1734 	if (btf_type_vlen(t)) {
1735 		btf_verifier_log_type(env, t, "vlen != 0");
1736 		return -EINVAL;
1737 	}
1738 
1739 	if (btf_type_kflag(t)) {
1740 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1741 		return -EINVAL;
1742 	}
1743 
1744 	if (t->size) {
1745 		btf_verifier_log_type(env, t, "size != 0");
1746 		return -EINVAL;
1747 	}
1748 
1749 	/* Array elem type and index type cannot be in type void,
1750 	 * so !array->type and !array->index_type are not allowed.
1751 	 */
1752 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1753 		btf_verifier_log_type(env, t, "Invalid elem");
1754 		return -EINVAL;
1755 	}
1756 
1757 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1758 		btf_verifier_log_type(env, t, "Invalid index");
1759 		return -EINVAL;
1760 	}
1761 
1762 	btf_verifier_log_type(env, t, NULL);
1763 
1764 	return meta_needed;
1765 }
1766 
1767 static int btf_array_resolve(struct btf_verifier_env *env,
1768 			     const struct resolve_vertex *v)
1769 {
1770 	const struct btf_array *array = btf_type_array(v->t);
1771 	const struct btf_type *elem_type, *index_type;
1772 	u32 elem_type_id, index_type_id;
1773 	struct btf *btf = env->btf;
1774 	u32 elem_size;
1775 
1776 	/* Check array->index_type */
1777 	index_type_id = array->index_type;
1778 	index_type = btf_type_by_id(btf, index_type_id);
1779 	if (btf_type_nosize_or_null(index_type)) {
1780 		btf_verifier_log_type(env, v->t, "Invalid index");
1781 		return -EINVAL;
1782 	}
1783 
1784 	if (!env_type_is_resolve_sink(env, index_type) &&
1785 	    !env_type_is_resolved(env, index_type_id))
1786 		return env_stack_push(env, index_type, index_type_id);
1787 
1788 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
1789 	if (!index_type || !btf_type_is_int(index_type) ||
1790 	    !btf_type_int_is_regular(index_type)) {
1791 		btf_verifier_log_type(env, v->t, "Invalid index");
1792 		return -EINVAL;
1793 	}
1794 
1795 	/* Check array->type */
1796 	elem_type_id = array->type;
1797 	elem_type = btf_type_by_id(btf, elem_type_id);
1798 	if (btf_type_nosize_or_null(elem_type)) {
1799 		btf_verifier_log_type(env, v->t,
1800 				      "Invalid elem");
1801 		return -EINVAL;
1802 	}
1803 
1804 	if (!env_type_is_resolve_sink(env, elem_type) &&
1805 	    !env_type_is_resolved(env, elem_type_id))
1806 		return env_stack_push(env, elem_type, elem_type_id);
1807 
1808 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1809 	if (!elem_type) {
1810 		btf_verifier_log_type(env, v->t, "Invalid elem");
1811 		return -EINVAL;
1812 	}
1813 
1814 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
1815 		btf_verifier_log_type(env, v->t, "Invalid array of int");
1816 		return -EINVAL;
1817 	}
1818 
1819 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
1820 		btf_verifier_log_type(env, v->t,
1821 				      "Array size overflows U32_MAX");
1822 		return -EINVAL;
1823 	}
1824 
1825 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1826 
1827 	return 0;
1828 }
1829 
1830 static void btf_array_log(struct btf_verifier_env *env,
1831 			  const struct btf_type *t)
1832 {
1833 	const struct btf_array *array = btf_type_array(t);
1834 
1835 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1836 			 array->type, array->index_type, array->nelems);
1837 }
1838 
1839 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1840 			       u32 type_id, void *data, u8 bits_offset,
1841 			       struct seq_file *m)
1842 {
1843 	const struct btf_array *array = btf_type_array(t);
1844 	const struct btf_kind_operations *elem_ops;
1845 	const struct btf_type *elem_type;
1846 	u32 i, elem_size, elem_type_id;
1847 
1848 	elem_type_id = array->type;
1849 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1850 	elem_ops = btf_type_ops(elem_type);
1851 	seq_puts(m, "[");
1852 	for (i = 0; i < array->nelems; i++) {
1853 		if (i)
1854 			seq_puts(m, ",");
1855 
1856 		elem_ops->seq_show(btf, elem_type, elem_type_id, data,
1857 				   bits_offset, m);
1858 		data += elem_size;
1859 	}
1860 	seq_puts(m, "]");
1861 }
1862 
1863 static struct btf_kind_operations array_ops = {
1864 	.check_meta = btf_array_check_meta,
1865 	.resolve = btf_array_resolve,
1866 	.check_member = btf_array_check_member,
1867 	.check_kflag_member = btf_generic_check_kflag_member,
1868 	.log_details = btf_array_log,
1869 	.seq_show = btf_array_seq_show,
1870 };
1871 
1872 static int btf_struct_check_member(struct btf_verifier_env *env,
1873 				   const struct btf_type *struct_type,
1874 				   const struct btf_member *member,
1875 				   const struct btf_type *member_type)
1876 {
1877 	u32 struct_bits_off = member->offset;
1878 	u32 struct_size, bytes_offset;
1879 
1880 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1881 		btf_verifier_log_member(env, struct_type, member,
1882 					"Member is not byte aligned");
1883 		return -EINVAL;
1884 	}
1885 
1886 	struct_size = struct_type->size;
1887 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1888 	if (struct_size - bytes_offset < member_type->size) {
1889 		btf_verifier_log_member(env, struct_type, member,
1890 					"Member exceeds struct_size");
1891 		return -EINVAL;
1892 	}
1893 
1894 	return 0;
1895 }
1896 
1897 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
1898 				 const struct btf_type *t,
1899 				 u32 meta_left)
1900 {
1901 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
1902 	const struct btf_member *member;
1903 	u32 meta_needed, last_offset;
1904 	struct btf *btf = env->btf;
1905 	u32 struct_size = t->size;
1906 	u32 offset;
1907 	u16 i;
1908 
1909 	meta_needed = btf_type_vlen(t) * sizeof(*member);
1910 	if (meta_left < meta_needed) {
1911 		btf_verifier_log_basic(env, t,
1912 				       "meta_left:%u meta_needed:%u",
1913 				       meta_left, meta_needed);
1914 		return -EINVAL;
1915 	}
1916 
1917 	/* struct type either no name or a valid one */
1918 	if (t->name_off &&
1919 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1920 		btf_verifier_log_type(env, t, "Invalid name");
1921 		return -EINVAL;
1922 	}
1923 
1924 	btf_verifier_log_type(env, t, NULL);
1925 
1926 	last_offset = 0;
1927 	for_each_member(i, t, member) {
1928 		if (!btf_name_offset_valid(btf, member->name_off)) {
1929 			btf_verifier_log_member(env, t, member,
1930 						"Invalid member name_offset:%u",
1931 						member->name_off);
1932 			return -EINVAL;
1933 		}
1934 
1935 		/* struct member either no name or a valid one */
1936 		if (member->name_off &&
1937 		    !btf_name_valid_identifier(btf, member->name_off)) {
1938 			btf_verifier_log_member(env, t, member, "Invalid name");
1939 			return -EINVAL;
1940 		}
1941 		/* A member cannot be in type void */
1942 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
1943 			btf_verifier_log_member(env, t, member,
1944 						"Invalid type_id");
1945 			return -EINVAL;
1946 		}
1947 
1948 		offset = btf_member_bit_offset(t, member);
1949 		if (is_union && offset) {
1950 			btf_verifier_log_member(env, t, member,
1951 						"Invalid member bits_offset");
1952 			return -EINVAL;
1953 		}
1954 
1955 		/*
1956 		 * ">" instead of ">=" because the last member could be
1957 		 * "char a[0];"
1958 		 */
1959 		if (last_offset > offset) {
1960 			btf_verifier_log_member(env, t, member,
1961 						"Invalid member bits_offset");
1962 			return -EINVAL;
1963 		}
1964 
1965 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
1966 			btf_verifier_log_member(env, t, member,
1967 						"Member bits_offset exceeds its struct size");
1968 			return -EINVAL;
1969 		}
1970 
1971 		btf_verifier_log_member(env, t, member, NULL);
1972 		last_offset = offset;
1973 	}
1974 
1975 	return meta_needed;
1976 }
1977 
1978 static int btf_struct_resolve(struct btf_verifier_env *env,
1979 			      const struct resolve_vertex *v)
1980 {
1981 	const struct btf_member *member;
1982 	int err;
1983 	u16 i;
1984 
1985 	/* Before continue resolving the next_member,
1986 	 * ensure the last member is indeed resolved to a
1987 	 * type with size info.
1988 	 */
1989 	if (v->next_member) {
1990 		const struct btf_type *last_member_type;
1991 		const struct btf_member *last_member;
1992 		u16 last_member_type_id;
1993 
1994 		last_member = btf_type_member(v->t) + v->next_member - 1;
1995 		last_member_type_id = last_member->type;
1996 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
1997 						       last_member_type_id)))
1998 			return -EINVAL;
1999 
2000 		last_member_type = btf_type_by_id(env->btf,
2001 						  last_member_type_id);
2002 		if (btf_type_kflag(v->t))
2003 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2004 								last_member,
2005 								last_member_type);
2006 		else
2007 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
2008 								last_member,
2009 								last_member_type);
2010 		if (err)
2011 			return err;
2012 	}
2013 
2014 	for_each_member_from(i, v->next_member, v->t, member) {
2015 		u32 member_type_id = member->type;
2016 		const struct btf_type *member_type = btf_type_by_id(env->btf,
2017 								member_type_id);
2018 
2019 		if (btf_type_nosize_or_null(member_type)) {
2020 			btf_verifier_log_member(env, v->t, member,
2021 						"Invalid member");
2022 			return -EINVAL;
2023 		}
2024 
2025 		if (!env_type_is_resolve_sink(env, member_type) &&
2026 		    !env_type_is_resolved(env, member_type_id)) {
2027 			env_stack_set_next_member(env, i + 1);
2028 			return env_stack_push(env, member_type, member_type_id);
2029 		}
2030 
2031 		if (btf_type_kflag(v->t))
2032 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2033 									    member,
2034 									    member_type);
2035 		else
2036 			err = btf_type_ops(member_type)->check_member(env, v->t,
2037 								      member,
2038 								      member_type);
2039 		if (err)
2040 			return err;
2041 	}
2042 
2043 	env_stack_pop_resolved(env, 0, 0);
2044 
2045 	return 0;
2046 }
2047 
2048 static void btf_struct_log(struct btf_verifier_env *env,
2049 			   const struct btf_type *t)
2050 {
2051 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2052 }
2053 
2054 /* find 'struct bpf_spin_lock' in map value.
2055  * return >= 0 offset if found
2056  * and < 0 in case of error
2057  */
2058 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2059 {
2060 	const struct btf_member *member;
2061 	u32 i, off = -ENOENT;
2062 
2063 	if (!__btf_type_is_struct(t))
2064 		return -EINVAL;
2065 
2066 	for_each_member(i, t, member) {
2067 		const struct btf_type *member_type = btf_type_by_id(btf,
2068 								    member->type);
2069 		if (!__btf_type_is_struct(member_type))
2070 			continue;
2071 		if (member_type->size != sizeof(struct bpf_spin_lock))
2072 			continue;
2073 		if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2074 			   "bpf_spin_lock"))
2075 			continue;
2076 		if (off != -ENOENT)
2077 			/* only one 'struct bpf_spin_lock' is allowed */
2078 			return -E2BIG;
2079 		off = btf_member_bit_offset(t, member);
2080 		if (off % 8)
2081 			/* valid C code cannot generate such BTF */
2082 			return -EINVAL;
2083 		off /= 8;
2084 		if (off % __alignof__(struct bpf_spin_lock))
2085 			/* valid struct bpf_spin_lock will be 4 byte aligned */
2086 			return -EINVAL;
2087 	}
2088 	return off;
2089 }
2090 
2091 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
2092 				u32 type_id, void *data, u8 bits_offset,
2093 				struct seq_file *m)
2094 {
2095 	const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
2096 	const struct btf_member *member;
2097 	u32 i;
2098 
2099 	seq_puts(m, "{");
2100 	for_each_member(i, t, member) {
2101 		const struct btf_type *member_type = btf_type_by_id(btf,
2102 								member->type);
2103 		const struct btf_kind_operations *ops;
2104 		u32 member_offset, bitfield_size;
2105 		u32 bytes_offset;
2106 		u8 bits8_offset;
2107 
2108 		if (i)
2109 			seq_puts(m, seq);
2110 
2111 		member_offset = btf_member_bit_offset(t, member);
2112 		bitfield_size = btf_member_bitfield_size(t, member);
2113 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2114 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2115 		if (bitfield_size) {
2116 			btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
2117 					      bitfield_size, m);
2118 		} else {
2119 			ops = btf_type_ops(member_type);
2120 			ops->seq_show(btf, member_type, member->type,
2121 				      data + bytes_offset, bits8_offset, m);
2122 		}
2123 	}
2124 	seq_puts(m, "}");
2125 }
2126 
2127 static struct btf_kind_operations struct_ops = {
2128 	.check_meta = btf_struct_check_meta,
2129 	.resolve = btf_struct_resolve,
2130 	.check_member = btf_struct_check_member,
2131 	.check_kflag_member = btf_generic_check_kflag_member,
2132 	.log_details = btf_struct_log,
2133 	.seq_show = btf_struct_seq_show,
2134 };
2135 
2136 static int btf_enum_check_member(struct btf_verifier_env *env,
2137 				 const struct btf_type *struct_type,
2138 				 const struct btf_member *member,
2139 				 const struct btf_type *member_type)
2140 {
2141 	u32 struct_bits_off = member->offset;
2142 	u32 struct_size, bytes_offset;
2143 
2144 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2145 		btf_verifier_log_member(env, struct_type, member,
2146 					"Member is not byte aligned");
2147 		return -EINVAL;
2148 	}
2149 
2150 	struct_size = struct_type->size;
2151 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2152 	if (struct_size - bytes_offset < sizeof(int)) {
2153 		btf_verifier_log_member(env, struct_type, member,
2154 					"Member exceeds struct_size");
2155 		return -EINVAL;
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2162 				       const struct btf_type *struct_type,
2163 				       const struct btf_member *member,
2164 				       const struct btf_type *member_type)
2165 {
2166 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2167 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2168 
2169 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2170 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2171 	if (!nr_bits) {
2172 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2173 			btf_verifier_log_member(env, struct_type, member,
2174 						"Member is not byte aligned");
2175 				return -EINVAL;
2176 		}
2177 
2178 		nr_bits = int_bitsize;
2179 	} else if (nr_bits > int_bitsize) {
2180 		btf_verifier_log_member(env, struct_type, member,
2181 					"Invalid member bitfield_size");
2182 		return -EINVAL;
2183 	}
2184 
2185 	struct_size = struct_type->size;
2186 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2187 	if (struct_size < bytes_end) {
2188 		btf_verifier_log_member(env, struct_type, member,
2189 					"Member exceeds struct_size");
2190 		return -EINVAL;
2191 	}
2192 
2193 	return 0;
2194 }
2195 
2196 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2197 			       const struct btf_type *t,
2198 			       u32 meta_left)
2199 {
2200 	const struct btf_enum *enums = btf_type_enum(t);
2201 	struct btf *btf = env->btf;
2202 	u16 i, nr_enums;
2203 	u32 meta_needed;
2204 
2205 	nr_enums = btf_type_vlen(t);
2206 	meta_needed = nr_enums * sizeof(*enums);
2207 
2208 	if (meta_left < meta_needed) {
2209 		btf_verifier_log_basic(env, t,
2210 				       "meta_left:%u meta_needed:%u",
2211 				       meta_left, meta_needed);
2212 		return -EINVAL;
2213 	}
2214 
2215 	if (btf_type_kflag(t)) {
2216 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2217 		return -EINVAL;
2218 	}
2219 
2220 	if (t->size != sizeof(int)) {
2221 		btf_verifier_log_type(env, t, "Expected size:%zu",
2222 				      sizeof(int));
2223 		return -EINVAL;
2224 	}
2225 
2226 	/* enum type either no name or a valid one */
2227 	if (t->name_off &&
2228 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2229 		btf_verifier_log_type(env, t, "Invalid name");
2230 		return -EINVAL;
2231 	}
2232 
2233 	btf_verifier_log_type(env, t, NULL);
2234 
2235 	for (i = 0; i < nr_enums; i++) {
2236 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2237 			btf_verifier_log(env, "\tInvalid name_offset:%u",
2238 					 enums[i].name_off);
2239 			return -EINVAL;
2240 		}
2241 
2242 		/* enum member must have a valid name */
2243 		if (!enums[i].name_off ||
2244 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
2245 			btf_verifier_log_type(env, t, "Invalid name");
2246 			return -EINVAL;
2247 		}
2248 
2249 
2250 		btf_verifier_log(env, "\t%s val=%d\n",
2251 				 __btf_name_by_offset(btf, enums[i].name_off),
2252 				 enums[i].val);
2253 	}
2254 
2255 	return meta_needed;
2256 }
2257 
2258 static void btf_enum_log(struct btf_verifier_env *env,
2259 			 const struct btf_type *t)
2260 {
2261 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2262 }
2263 
2264 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2265 			      u32 type_id, void *data, u8 bits_offset,
2266 			      struct seq_file *m)
2267 {
2268 	const struct btf_enum *enums = btf_type_enum(t);
2269 	u32 i, nr_enums = btf_type_vlen(t);
2270 	int v = *(int *)data;
2271 
2272 	for (i = 0; i < nr_enums; i++) {
2273 		if (v == enums[i].val) {
2274 			seq_printf(m, "%s",
2275 				   __btf_name_by_offset(btf,
2276 							enums[i].name_off));
2277 			return;
2278 		}
2279 	}
2280 
2281 	seq_printf(m, "%d", v);
2282 }
2283 
2284 static struct btf_kind_operations enum_ops = {
2285 	.check_meta = btf_enum_check_meta,
2286 	.resolve = btf_df_resolve,
2287 	.check_member = btf_enum_check_member,
2288 	.check_kflag_member = btf_enum_check_kflag_member,
2289 	.log_details = btf_enum_log,
2290 	.seq_show = btf_enum_seq_show,
2291 };
2292 
2293 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2294 				     const struct btf_type *t,
2295 				     u32 meta_left)
2296 {
2297 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2298 
2299 	if (meta_left < meta_needed) {
2300 		btf_verifier_log_basic(env, t,
2301 				       "meta_left:%u meta_needed:%u",
2302 				       meta_left, meta_needed);
2303 		return -EINVAL;
2304 	}
2305 
2306 	if (t->name_off) {
2307 		btf_verifier_log_type(env, t, "Invalid name");
2308 		return -EINVAL;
2309 	}
2310 
2311 	if (btf_type_kflag(t)) {
2312 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2313 		return -EINVAL;
2314 	}
2315 
2316 	btf_verifier_log_type(env, t, NULL);
2317 
2318 	return meta_needed;
2319 }
2320 
2321 static void btf_func_proto_log(struct btf_verifier_env *env,
2322 			       const struct btf_type *t)
2323 {
2324 	const struct btf_param *args = (const struct btf_param *)(t + 1);
2325 	u16 nr_args = btf_type_vlen(t), i;
2326 
2327 	btf_verifier_log(env, "return=%u args=(", t->type);
2328 	if (!nr_args) {
2329 		btf_verifier_log(env, "void");
2330 		goto done;
2331 	}
2332 
2333 	if (nr_args == 1 && !args[0].type) {
2334 		/* Only one vararg */
2335 		btf_verifier_log(env, "vararg");
2336 		goto done;
2337 	}
2338 
2339 	btf_verifier_log(env, "%u %s", args[0].type,
2340 			 __btf_name_by_offset(env->btf,
2341 					      args[0].name_off));
2342 	for (i = 1; i < nr_args - 1; i++)
2343 		btf_verifier_log(env, ", %u %s", args[i].type,
2344 				 __btf_name_by_offset(env->btf,
2345 						      args[i].name_off));
2346 
2347 	if (nr_args > 1) {
2348 		const struct btf_param *last_arg = &args[nr_args - 1];
2349 
2350 		if (last_arg->type)
2351 			btf_verifier_log(env, ", %u %s", last_arg->type,
2352 					 __btf_name_by_offset(env->btf,
2353 							      last_arg->name_off));
2354 		else
2355 			btf_verifier_log(env, ", vararg");
2356 	}
2357 
2358 done:
2359 	btf_verifier_log(env, ")");
2360 }
2361 
2362 static struct btf_kind_operations func_proto_ops = {
2363 	.check_meta = btf_func_proto_check_meta,
2364 	.resolve = btf_df_resolve,
2365 	/*
2366 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
2367 	 * a struct's member.
2368 	 *
2369 	 * It should be a funciton pointer instead.
2370 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2371 	 *
2372 	 * Hence, there is no btf_func_check_member().
2373 	 */
2374 	.check_member = btf_df_check_member,
2375 	.check_kflag_member = btf_df_check_kflag_member,
2376 	.log_details = btf_func_proto_log,
2377 	.seq_show = btf_df_seq_show,
2378 };
2379 
2380 static s32 btf_func_check_meta(struct btf_verifier_env *env,
2381 			       const struct btf_type *t,
2382 			       u32 meta_left)
2383 {
2384 	if (!t->name_off ||
2385 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2386 		btf_verifier_log_type(env, t, "Invalid name");
2387 		return -EINVAL;
2388 	}
2389 
2390 	if (btf_type_vlen(t)) {
2391 		btf_verifier_log_type(env, t, "vlen != 0");
2392 		return -EINVAL;
2393 	}
2394 
2395 	if (btf_type_kflag(t)) {
2396 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2397 		return -EINVAL;
2398 	}
2399 
2400 	btf_verifier_log_type(env, t, NULL);
2401 
2402 	return 0;
2403 }
2404 
2405 static struct btf_kind_operations func_ops = {
2406 	.check_meta = btf_func_check_meta,
2407 	.resolve = btf_df_resolve,
2408 	.check_member = btf_df_check_member,
2409 	.check_kflag_member = btf_df_check_kflag_member,
2410 	.log_details = btf_ref_type_log,
2411 	.seq_show = btf_df_seq_show,
2412 };
2413 
2414 static int btf_func_proto_check(struct btf_verifier_env *env,
2415 				const struct btf_type *t)
2416 {
2417 	const struct btf_type *ret_type;
2418 	const struct btf_param *args;
2419 	const struct btf *btf;
2420 	u16 nr_args, i;
2421 	int err;
2422 
2423 	btf = env->btf;
2424 	args = (const struct btf_param *)(t + 1);
2425 	nr_args = btf_type_vlen(t);
2426 
2427 	/* Check func return type which could be "void" (t->type == 0) */
2428 	if (t->type) {
2429 		u32 ret_type_id = t->type;
2430 
2431 		ret_type = btf_type_by_id(btf, ret_type_id);
2432 		if (!ret_type) {
2433 			btf_verifier_log_type(env, t, "Invalid return type");
2434 			return -EINVAL;
2435 		}
2436 
2437 		if (btf_type_needs_resolve(ret_type) &&
2438 		    !env_type_is_resolved(env, ret_type_id)) {
2439 			err = btf_resolve(env, ret_type, ret_type_id);
2440 			if (err)
2441 				return err;
2442 		}
2443 
2444 		/* Ensure the return type is a type that has a size */
2445 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2446 			btf_verifier_log_type(env, t, "Invalid return type");
2447 			return -EINVAL;
2448 		}
2449 	}
2450 
2451 	if (!nr_args)
2452 		return 0;
2453 
2454 	/* Last func arg type_id could be 0 if it is a vararg */
2455 	if (!args[nr_args - 1].type) {
2456 		if (args[nr_args - 1].name_off) {
2457 			btf_verifier_log_type(env, t, "Invalid arg#%u",
2458 					      nr_args);
2459 			return -EINVAL;
2460 		}
2461 		nr_args--;
2462 	}
2463 
2464 	err = 0;
2465 	for (i = 0; i < nr_args; i++) {
2466 		const struct btf_type *arg_type;
2467 		u32 arg_type_id;
2468 
2469 		arg_type_id = args[i].type;
2470 		arg_type = btf_type_by_id(btf, arg_type_id);
2471 		if (!arg_type) {
2472 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2473 			err = -EINVAL;
2474 			break;
2475 		}
2476 
2477 		if (args[i].name_off &&
2478 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
2479 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
2480 			btf_verifier_log_type(env, t,
2481 					      "Invalid arg#%u", i + 1);
2482 			err = -EINVAL;
2483 			break;
2484 		}
2485 
2486 		if (btf_type_needs_resolve(arg_type) &&
2487 		    !env_type_is_resolved(env, arg_type_id)) {
2488 			err = btf_resolve(env, arg_type, arg_type_id);
2489 			if (err)
2490 				break;
2491 		}
2492 
2493 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2494 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2495 			err = -EINVAL;
2496 			break;
2497 		}
2498 	}
2499 
2500 	return err;
2501 }
2502 
2503 static int btf_func_check(struct btf_verifier_env *env,
2504 			  const struct btf_type *t)
2505 {
2506 	const struct btf_type *proto_type;
2507 	const struct btf_param *args;
2508 	const struct btf *btf;
2509 	u16 nr_args, i;
2510 
2511 	btf = env->btf;
2512 	proto_type = btf_type_by_id(btf, t->type);
2513 
2514 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
2515 		btf_verifier_log_type(env, t, "Invalid type_id");
2516 		return -EINVAL;
2517 	}
2518 
2519 	args = (const struct btf_param *)(proto_type + 1);
2520 	nr_args = btf_type_vlen(proto_type);
2521 	for (i = 0; i < nr_args; i++) {
2522 		if (!args[i].name_off && args[i].type) {
2523 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2524 			return -EINVAL;
2525 		}
2526 	}
2527 
2528 	return 0;
2529 }
2530 
2531 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
2532 	[BTF_KIND_INT] = &int_ops,
2533 	[BTF_KIND_PTR] = &ptr_ops,
2534 	[BTF_KIND_ARRAY] = &array_ops,
2535 	[BTF_KIND_STRUCT] = &struct_ops,
2536 	[BTF_KIND_UNION] = &struct_ops,
2537 	[BTF_KIND_ENUM] = &enum_ops,
2538 	[BTF_KIND_FWD] = &fwd_ops,
2539 	[BTF_KIND_TYPEDEF] = &modifier_ops,
2540 	[BTF_KIND_VOLATILE] = &modifier_ops,
2541 	[BTF_KIND_CONST] = &modifier_ops,
2542 	[BTF_KIND_RESTRICT] = &modifier_ops,
2543 	[BTF_KIND_FUNC] = &func_ops,
2544 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
2545 };
2546 
2547 static s32 btf_check_meta(struct btf_verifier_env *env,
2548 			  const struct btf_type *t,
2549 			  u32 meta_left)
2550 {
2551 	u32 saved_meta_left = meta_left;
2552 	s32 var_meta_size;
2553 
2554 	if (meta_left < sizeof(*t)) {
2555 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
2556 				 env->log_type_id, meta_left, sizeof(*t));
2557 		return -EINVAL;
2558 	}
2559 	meta_left -= sizeof(*t);
2560 
2561 	if (t->info & ~BTF_INFO_MASK) {
2562 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
2563 				 env->log_type_id, t->info);
2564 		return -EINVAL;
2565 	}
2566 
2567 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
2568 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
2569 		btf_verifier_log(env, "[%u] Invalid kind:%u",
2570 				 env->log_type_id, BTF_INFO_KIND(t->info));
2571 		return -EINVAL;
2572 	}
2573 
2574 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
2575 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
2576 				 env->log_type_id, t->name_off);
2577 		return -EINVAL;
2578 	}
2579 
2580 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
2581 	if (var_meta_size < 0)
2582 		return var_meta_size;
2583 
2584 	meta_left -= var_meta_size;
2585 
2586 	return saved_meta_left - meta_left;
2587 }
2588 
2589 static int btf_check_all_metas(struct btf_verifier_env *env)
2590 {
2591 	struct btf *btf = env->btf;
2592 	struct btf_header *hdr;
2593 	void *cur, *end;
2594 
2595 	hdr = &btf->hdr;
2596 	cur = btf->nohdr_data + hdr->type_off;
2597 	end = cur + hdr->type_len;
2598 
2599 	env->log_type_id = 1;
2600 	while (cur < end) {
2601 		struct btf_type *t = cur;
2602 		s32 meta_size;
2603 
2604 		meta_size = btf_check_meta(env, t, end - cur);
2605 		if (meta_size < 0)
2606 			return meta_size;
2607 
2608 		btf_add_type(env, t);
2609 		cur += meta_size;
2610 		env->log_type_id++;
2611 	}
2612 
2613 	return 0;
2614 }
2615 
2616 static bool btf_resolve_valid(struct btf_verifier_env *env,
2617 			      const struct btf_type *t,
2618 			      u32 type_id)
2619 {
2620 	struct btf *btf = env->btf;
2621 
2622 	if (!env_type_is_resolved(env, type_id))
2623 		return false;
2624 
2625 	if (btf_type_is_struct(t))
2626 		return !btf->resolved_ids[type_id] &&
2627 			!btf->resolved_sizes[type_id];
2628 
2629 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) {
2630 		t = btf_type_id_resolve(btf, &type_id);
2631 		return t && !btf_type_is_modifier(t);
2632 	}
2633 
2634 	if (btf_type_is_array(t)) {
2635 		const struct btf_array *array = btf_type_array(t);
2636 		const struct btf_type *elem_type;
2637 		u32 elem_type_id = array->type;
2638 		u32 elem_size;
2639 
2640 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2641 		return elem_type && !btf_type_is_modifier(elem_type) &&
2642 			(array->nelems * elem_size ==
2643 			 btf->resolved_sizes[type_id]);
2644 	}
2645 
2646 	return false;
2647 }
2648 
2649 static int btf_resolve(struct btf_verifier_env *env,
2650 		       const struct btf_type *t, u32 type_id)
2651 {
2652 	u32 save_log_type_id = env->log_type_id;
2653 	const struct resolve_vertex *v;
2654 	int err = 0;
2655 
2656 	env->resolve_mode = RESOLVE_TBD;
2657 	env_stack_push(env, t, type_id);
2658 	while (!err && (v = env_stack_peak(env))) {
2659 		env->log_type_id = v->type_id;
2660 		err = btf_type_ops(v->t)->resolve(env, v);
2661 	}
2662 
2663 	env->log_type_id = type_id;
2664 	if (err == -E2BIG) {
2665 		btf_verifier_log_type(env, t,
2666 				      "Exceeded max resolving depth:%u",
2667 				      MAX_RESOLVE_DEPTH);
2668 	} else if (err == -EEXIST) {
2669 		btf_verifier_log_type(env, t, "Loop detected");
2670 	}
2671 
2672 	/* Final sanity check */
2673 	if (!err && !btf_resolve_valid(env, t, type_id)) {
2674 		btf_verifier_log_type(env, t, "Invalid resolve state");
2675 		err = -EINVAL;
2676 	}
2677 
2678 	env->log_type_id = save_log_type_id;
2679 	return err;
2680 }
2681 
2682 static int btf_check_all_types(struct btf_verifier_env *env)
2683 {
2684 	struct btf *btf = env->btf;
2685 	u32 type_id;
2686 	int err;
2687 
2688 	err = env_resolve_init(env);
2689 	if (err)
2690 		return err;
2691 
2692 	env->phase++;
2693 	for (type_id = 1; type_id <= btf->nr_types; type_id++) {
2694 		const struct btf_type *t = btf_type_by_id(btf, type_id);
2695 
2696 		env->log_type_id = type_id;
2697 		if (btf_type_needs_resolve(t) &&
2698 		    !env_type_is_resolved(env, type_id)) {
2699 			err = btf_resolve(env, t, type_id);
2700 			if (err)
2701 				return err;
2702 		}
2703 
2704 		if (btf_type_is_func_proto(t)) {
2705 			err = btf_func_proto_check(env, t);
2706 			if (err)
2707 				return err;
2708 		}
2709 
2710 		if (btf_type_is_func(t)) {
2711 			err = btf_func_check(env, t);
2712 			if (err)
2713 				return err;
2714 		}
2715 	}
2716 
2717 	return 0;
2718 }
2719 
2720 static int btf_parse_type_sec(struct btf_verifier_env *env)
2721 {
2722 	const struct btf_header *hdr = &env->btf->hdr;
2723 	int err;
2724 
2725 	/* Type section must align to 4 bytes */
2726 	if (hdr->type_off & (sizeof(u32) - 1)) {
2727 		btf_verifier_log(env, "Unaligned type_off");
2728 		return -EINVAL;
2729 	}
2730 
2731 	if (!hdr->type_len) {
2732 		btf_verifier_log(env, "No type found");
2733 		return -EINVAL;
2734 	}
2735 
2736 	err = btf_check_all_metas(env);
2737 	if (err)
2738 		return err;
2739 
2740 	return btf_check_all_types(env);
2741 }
2742 
2743 static int btf_parse_str_sec(struct btf_verifier_env *env)
2744 {
2745 	const struct btf_header *hdr;
2746 	struct btf *btf = env->btf;
2747 	const char *start, *end;
2748 
2749 	hdr = &btf->hdr;
2750 	start = btf->nohdr_data + hdr->str_off;
2751 	end = start + hdr->str_len;
2752 
2753 	if (end != btf->data + btf->data_size) {
2754 		btf_verifier_log(env, "String section is not at the end");
2755 		return -EINVAL;
2756 	}
2757 
2758 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
2759 	    start[0] || end[-1]) {
2760 		btf_verifier_log(env, "Invalid string section");
2761 		return -EINVAL;
2762 	}
2763 
2764 	btf->strings = start;
2765 
2766 	return 0;
2767 }
2768 
2769 static const size_t btf_sec_info_offset[] = {
2770 	offsetof(struct btf_header, type_off),
2771 	offsetof(struct btf_header, str_off),
2772 };
2773 
2774 static int btf_sec_info_cmp(const void *a, const void *b)
2775 {
2776 	const struct btf_sec_info *x = a;
2777 	const struct btf_sec_info *y = b;
2778 
2779 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
2780 }
2781 
2782 static int btf_check_sec_info(struct btf_verifier_env *env,
2783 			      u32 btf_data_size)
2784 {
2785 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
2786 	u32 total, expected_total, i;
2787 	const struct btf_header *hdr;
2788 	const struct btf *btf;
2789 
2790 	btf = env->btf;
2791 	hdr = &btf->hdr;
2792 
2793 	/* Populate the secs from hdr */
2794 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
2795 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
2796 						   btf_sec_info_offset[i]);
2797 
2798 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
2799 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
2800 
2801 	/* Check for gaps and overlap among sections */
2802 	total = 0;
2803 	expected_total = btf_data_size - hdr->hdr_len;
2804 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
2805 		if (expected_total < secs[i].off) {
2806 			btf_verifier_log(env, "Invalid section offset");
2807 			return -EINVAL;
2808 		}
2809 		if (total < secs[i].off) {
2810 			/* gap */
2811 			btf_verifier_log(env, "Unsupported section found");
2812 			return -EINVAL;
2813 		}
2814 		if (total > secs[i].off) {
2815 			btf_verifier_log(env, "Section overlap found");
2816 			return -EINVAL;
2817 		}
2818 		if (expected_total - total < secs[i].len) {
2819 			btf_verifier_log(env,
2820 					 "Total section length too long");
2821 			return -EINVAL;
2822 		}
2823 		total += secs[i].len;
2824 	}
2825 
2826 	/* There is data other than hdr and known sections */
2827 	if (expected_total != total) {
2828 		btf_verifier_log(env, "Unsupported section found");
2829 		return -EINVAL;
2830 	}
2831 
2832 	return 0;
2833 }
2834 
2835 static int btf_parse_hdr(struct btf_verifier_env *env)
2836 {
2837 	u32 hdr_len, hdr_copy, btf_data_size;
2838 	const struct btf_header *hdr;
2839 	struct btf *btf;
2840 	int err;
2841 
2842 	btf = env->btf;
2843 	btf_data_size = btf->data_size;
2844 
2845 	if (btf_data_size <
2846 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
2847 		btf_verifier_log(env, "hdr_len not found");
2848 		return -EINVAL;
2849 	}
2850 
2851 	hdr = btf->data;
2852 	hdr_len = hdr->hdr_len;
2853 	if (btf_data_size < hdr_len) {
2854 		btf_verifier_log(env, "btf_header not found");
2855 		return -EINVAL;
2856 	}
2857 
2858 	/* Ensure the unsupported header fields are zero */
2859 	if (hdr_len > sizeof(btf->hdr)) {
2860 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
2861 		u8 *end = btf->data + hdr_len;
2862 
2863 		for (; expected_zero < end; expected_zero++) {
2864 			if (*expected_zero) {
2865 				btf_verifier_log(env, "Unsupported btf_header");
2866 				return -E2BIG;
2867 			}
2868 		}
2869 	}
2870 
2871 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
2872 	memcpy(&btf->hdr, btf->data, hdr_copy);
2873 
2874 	hdr = &btf->hdr;
2875 
2876 	btf_verifier_log_hdr(env, btf_data_size);
2877 
2878 	if (hdr->magic != BTF_MAGIC) {
2879 		btf_verifier_log(env, "Invalid magic");
2880 		return -EINVAL;
2881 	}
2882 
2883 	if (hdr->version != BTF_VERSION) {
2884 		btf_verifier_log(env, "Unsupported version");
2885 		return -ENOTSUPP;
2886 	}
2887 
2888 	if (hdr->flags) {
2889 		btf_verifier_log(env, "Unsupported flags");
2890 		return -ENOTSUPP;
2891 	}
2892 
2893 	if (btf_data_size == hdr->hdr_len) {
2894 		btf_verifier_log(env, "No data");
2895 		return -EINVAL;
2896 	}
2897 
2898 	err = btf_check_sec_info(env, btf_data_size);
2899 	if (err)
2900 		return err;
2901 
2902 	return 0;
2903 }
2904 
2905 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
2906 			     u32 log_level, char __user *log_ubuf, u32 log_size)
2907 {
2908 	struct btf_verifier_env *env = NULL;
2909 	struct bpf_verifier_log *log;
2910 	struct btf *btf = NULL;
2911 	u8 *data;
2912 	int err;
2913 
2914 	if (btf_data_size > BTF_MAX_SIZE)
2915 		return ERR_PTR(-E2BIG);
2916 
2917 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
2918 	if (!env)
2919 		return ERR_PTR(-ENOMEM);
2920 
2921 	log = &env->log;
2922 	if (log_level || log_ubuf || log_size) {
2923 		/* user requested verbose verifier output
2924 		 * and supplied buffer to store the verification trace
2925 		 */
2926 		log->level = log_level;
2927 		log->ubuf = log_ubuf;
2928 		log->len_total = log_size;
2929 
2930 		/* log attributes have to be sane */
2931 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
2932 		    !log->level || !log->ubuf) {
2933 			err = -EINVAL;
2934 			goto errout;
2935 		}
2936 	}
2937 
2938 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
2939 	if (!btf) {
2940 		err = -ENOMEM;
2941 		goto errout;
2942 	}
2943 	env->btf = btf;
2944 
2945 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
2946 	if (!data) {
2947 		err = -ENOMEM;
2948 		goto errout;
2949 	}
2950 
2951 	btf->data = data;
2952 	btf->data_size = btf_data_size;
2953 
2954 	if (copy_from_user(data, btf_data, btf_data_size)) {
2955 		err = -EFAULT;
2956 		goto errout;
2957 	}
2958 
2959 	err = btf_parse_hdr(env);
2960 	if (err)
2961 		goto errout;
2962 
2963 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
2964 
2965 	err = btf_parse_str_sec(env);
2966 	if (err)
2967 		goto errout;
2968 
2969 	err = btf_parse_type_sec(env);
2970 	if (err)
2971 		goto errout;
2972 
2973 	if (log->level && bpf_verifier_log_full(log)) {
2974 		err = -ENOSPC;
2975 		goto errout;
2976 	}
2977 
2978 	btf_verifier_env_free(env);
2979 	refcount_set(&btf->refcnt, 1);
2980 	return btf;
2981 
2982 errout:
2983 	btf_verifier_env_free(env);
2984 	if (btf)
2985 		btf_free(btf);
2986 	return ERR_PTR(err);
2987 }
2988 
2989 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
2990 		       struct seq_file *m)
2991 {
2992 	const struct btf_type *t = btf_type_by_id(btf, type_id);
2993 
2994 	btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
2995 }
2996 
2997 static int btf_release(struct inode *inode, struct file *filp)
2998 {
2999 	btf_put(filp->private_data);
3000 	return 0;
3001 }
3002 
3003 const struct file_operations btf_fops = {
3004 	.release	= btf_release,
3005 };
3006 
3007 static int __btf_new_fd(struct btf *btf)
3008 {
3009 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
3010 }
3011 
3012 int btf_new_fd(const union bpf_attr *attr)
3013 {
3014 	struct btf *btf;
3015 	int ret;
3016 
3017 	btf = btf_parse(u64_to_user_ptr(attr->btf),
3018 			attr->btf_size, attr->btf_log_level,
3019 			u64_to_user_ptr(attr->btf_log_buf),
3020 			attr->btf_log_size);
3021 	if (IS_ERR(btf))
3022 		return PTR_ERR(btf);
3023 
3024 	ret = btf_alloc_id(btf);
3025 	if (ret) {
3026 		btf_free(btf);
3027 		return ret;
3028 	}
3029 
3030 	/*
3031 	 * The BTF ID is published to the userspace.
3032 	 * All BTF free must go through call_rcu() from
3033 	 * now on (i.e. free by calling btf_put()).
3034 	 */
3035 
3036 	ret = __btf_new_fd(btf);
3037 	if (ret < 0)
3038 		btf_put(btf);
3039 
3040 	return ret;
3041 }
3042 
3043 struct btf *btf_get_by_fd(int fd)
3044 {
3045 	struct btf *btf;
3046 	struct fd f;
3047 
3048 	f = fdget(fd);
3049 
3050 	if (!f.file)
3051 		return ERR_PTR(-EBADF);
3052 
3053 	if (f.file->f_op != &btf_fops) {
3054 		fdput(f);
3055 		return ERR_PTR(-EINVAL);
3056 	}
3057 
3058 	btf = f.file->private_data;
3059 	refcount_inc(&btf->refcnt);
3060 	fdput(f);
3061 
3062 	return btf;
3063 }
3064 
3065 int btf_get_info_by_fd(const struct btf *btf,
3066 		       const union bpf_attr *attr,
3067 		       union bpf_attr __user *uattr)
3068 {
3069 	struct bpf_btf_info __user *uinfo;
3070 	struct bpf_btf_info info = {};
3071 	u32 info_copy, btf_copy;
3072 	void __user *ubtf;
3073 	u32 uinfo_len;
3074 
3075 	uinfo = u64_to_user_ptr(attr->info.info);
3076 	uinfo_len = attr->info.info_len;
3077 
3078 	info_copy = min_t(u32, uinfo_len, sizeof(info));
3079 	if (copy_from_user(&info, uinfo, info_copy))
3080 		return -EFAULT;
3081 
3082 	info.id = btf->id;
3083 	ubtf = u64_to_user_ptr(info.btf);
3084 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
3085 	if (copy_to_user(ubtf, btf->data, btf_copy))
3086 		return -EFAULT;
3087 	info.btf_size = btf->data_size;
3088 
3089 	if (copy_to_user(uinfo, &info, info_copy) ||
3090 	    put_user(info_copy, &uattr->info.info_len))
3091 		return -EFAULT;
3092 
3093 	return 0;
3094 }
3095 
3096 int btf_get_fd_by_id(u32 id)
3097 {
3098 	struct btf *btf;
3099 	int fd;
3100 
3101 	rcu_read_lock();
3102 	btf = idr_find(&btf_idr, id);
3103 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
3104 		btf = ERR_PTR(-ENOENT);
3105 	rcu_read_unlock();
3106 
3107 	if (IS_ERR(btf))
3108 		return PTR_ERR(btf);
3109 
3110 	fd = __btf_new_fd(btf);
3111 	if (fd < 0)
3112 		btf_put(btf);
3113 
3114 	return fd;
3115 }
3116 
3117 u32 btf_id(const struct btf *btf)
3118 {
3119 	return btf->id;
3120 }
3121