xref: /openbmc/linux/kernel/bpf/btf.c (revision eca250b1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/kobject.h>
26 #include <linux/sysfs.h>
27 #include <net/sock.h>
28 #include "../tools/lib/bpf/relo_core.h"
29 
30 /* BTF (BPF Type Format) is the meta data format which describes
31  * the data types of BPF program/map.  Hence, it basically focus
32  * on the C programming language which the modern BPF is primary
33  * using.
34  *
35  * ELF Section:
36  * ~~~~~~~~~~~
37  * The BTF data is stored under the ".BTF" ELF section
38  *
39  * struct btf_type:
40  * ~~~~~~~~~~~~~~~
41  * Each 'struct btf_type' object describes a C data type.
42  * Depending on the type it is describing, a 'struct btf_type'
43  * object may be followed by more data.  F.e.
44  * To describe an array, 'struct btf_type' is followed by
45  * 'struct btf_array'.
46  *
47  * 'struct btf_type' and any extra data following it are
48  * 4 bytes aligned.
49  *
50  * Type section:
51  * ~~~~~~~~~~~~~
52  * The BTF type section contains a list of 'struct btf_type' objects.
53  * Each one describes a C type.  Recall from the above section
54  * that a 'struct btf_type' object could be immediately followed by extra
55  * data in order to describe some particular C types.
56  *
57  * type_id:
58  * ~~~~~~~
59  * Each btf_type object is identified by a type_id.  The type_id
60  * is implicitly implied by the location of the btf_type object in
61  * the BTF type section.  The first one has type_id 1.  The second
62  * one has type_id 2...etc.  Hence, an earlier btf_type has
63  * a smaller type_id.
64  *
65  * A btf_type object may refer to another btf_type object by using
66  * type_id (i.e. the "type" in the "struct btf_type").
67  *
68  * NOTE that we cannot assume any reference-order.
69  * A btf_type object can refer to an earlier btf_type object
70  * but it can also refer to a later btf_type object.
71  *
72  * For example, to describe "const void *".  A btf_type
73  * object describing "const" may refer to another btf_type
74  * object describing "void *".  This type-reference is done
75  * by specifying type_id:
76  *
77  * [1] CONST (anon) type_id=2
78  * [2] PTR (anon) type_id=0
79  *
80  * The above is the btf_verifier debug log:
81  *   - Each line started with "[?]" is a btf_type object
82  *   - [?] is the type_id of the btf_type object.
83  *   - CONST/PTR is the BTF_KIND_XXX
84  *   - "(anon)" is the name of the type.  It just
85  *     happens that CONST and PTR has no name.
86  *   - type_id=XXX is the 'u32 type' in btf_type
87  *
88  * NOTE: "void" has type_id 0
89  *
90  * String section:
91  * ~~~~~~~~~~~~~~
92  * The BTF string section contains the names used by the type section.
93  * Each string is referred by an "offset" from the beginning of the
94  * string section.
95  *
96  * Each string is '\0' terminated.
97  *
98  * The first character in the string section must be '\0'
99  * which is used to mean 'anonymous'. Some btf_type may not
100  * have a name.
101  */
102 
103 /* BTF verification:
104  *
105  * To verify BTF data, two passes are needed.
106  *
107  * Pass #1
108  * ~~~~~~~
109  * The first pass is to collect all btf_type objects to
110  * an array: "btf->types".
111  *
112  * Depending on the C type that a btf_type is describing,
113  * a btf_type may be followed by extra data.  We don't know
114  * how many btf_type is there, and more importantly we don't
115  * know where each btf_type is located in the type section.
116  *
117  * Without knowing the location of each type_id, most verifications
118  * cannot be done.  e.g. an earlier btf_type may refer to a later
119  * btf_type (recall the "const void *" above), so we cannot
120  * check this type-reference in the first pass.
121  *
122  * In the first pass, it still does some verifications (e.g.
123  * checking the name is a valid offset to the string section).
124  *
125  * Pass #2
126  * ~~~~~~~
127  * The main focus is to resolve a btf_type that is referring
128  * to another type.
129  *
130  * We have to ensure the referring type:
131  * 1) does exist in the BTF (i.e. in btf->types[])
132  * 2) does not cause a loop:
133  *	struct A {
134  *		struct B b;
135  *	};
136  *
137  *	struct B {
138  *		struct A a;
139  *	};
140  *
141  * btf_type_needs_resolve() decides if a btf_type needs
142  * to be resolved.
143  *
144  * The needs_resolve type implements the "resolve()" ops which
145  * essentially does a DFS and detects backedge.
146  *
147  * During resolve (or DFS), different C types have different
148  * "RESOLVED" conditions.
149  *
150  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
151  * members because a member is always referring to another
152  * type.  A struct's member can be treated as "RESOLVED" if
153  * it is referring to a BTF_KIND_PTR.  Otherwise, the
154  * following valid C struct would be rejected:
155  *
156  *	struct A {
157  *		int m;
158  *		struct A *a;
159  *	};
160  *
161  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
162  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
163  * detect a pointer loop, e.g.:
164  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
165  *                        ^                                         |
166  *                        +-----------------------------------------+
167  *
168  */
169 
170 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
171 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
172 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
173 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
174 #define BITS_ROUNDUP_BYTES(bits) \
175 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
176 
177 #define BTF_INFO_MASK 0x9f00ffff
178 #define BTF_INT_MASK 0x0fffffff
179 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
180 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
181 
182 /* 16MB for 64k structs and each has 16 members and
183  * a few MB spaces for the string section.
184  * The hard limit is S32_MAX.
185  */
186 #define BTF_MAX_SIZE (16 * 1024 * 1024)
187 
188 #define for_each_member_from(i, from, struct_type, member)		\
189 	for (i = from, member = btf_type_member(struct_type) + from;	\
190 	     i < btf_type_vlen(struct_type);				\
191 	     i++, member++)
192 
193 #define for_each_vsi_from(i, from, struct_type, member)				\
194 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
195 	     i < btf_type_vlen(struct_type);					\
196 	     i++, member++)
197 
198 DEFINE_IDR(btf_idr);
199 DEFINE_SPINLOCK(btf_idr_lock);
200 
201 enum btf_kfunc_hook {
202 	BTF_KFUNC_HOOK_XDP,
203 	BTF_KFUNC_HOOK_TC,
204 	BTF_KFUNC_HOOK_STRUCT_OPS,
205 	BTF_KFUNC_HOOK_TRACING,
206 	BTF_KFUNC_HOOK_SYSCALL,
207 	BTF_KFUNC_HOOK_MAX,
208 };
209 
210 enum {
211 	BTF_KFUNC_SET_MAX_CNT = 32,
212 	BTF_DTOR_KFUNC_MAX_CNT = 256,
213 };
214 
215 struct btf_kfunc_set_tab {
216 	struct btf_id_set *sets[BTF_KFUNC_HOOK_MAX][BTF_KFUNC_TYPE_MAX];
217 };
218 
219 struct btf_id_dtor_kfunc_tab {
220 	u32 cnt;
221 	struct btf_id_dtor_kfunc dtors[];
222 };
223 
224 struct btf {
225 	void *data;
226 	struct btf_type **types;
227 	u32 *resolved_ids;
228 	u32 *resolved_sizes;
229 	const char *strings;
230 	void *nohdr_data;
231 	struct btf_header hdr;
232 	u32 nr_types; /* includes VOID for base BTF */
233 	u32 types_size;
234 	u32 data_size;
235 	refcount_t refcnt;
236 	u32 id;
237 	struct rcu_head rcu;
238 	struct btf_kfunc_set_tab *kfunc_set_tab;
239 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
240 
241 	/* split BTF support */
242 	struct btf *base_btf;
243 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
244 	u32 start_str_off; /* first string offset (0 for base BTF) */
245 	char name[MODULE_NAME_LEN];
246 	bool kernel_btf;
247 };
248 
249 enum verifier_phase {
250 	CHECK_META,
251 	CHECK_TYPE,
252 };
253 
254 struct resolve_vertex {
255 	const struct btf_type *t;
256 	u32 type_id;
257 	u16 next_member;
258 };
259 
260 enum visit_state {
261 	NOT_VISITED,
262 	VISITED,
263 	RESOLVED,
264 };
265 
266 enum resolve_mode {
267 	RESOLVE_TBD,	/* To Be Determined */
268 	RESOLVE_PTR,	/* Resolving for Pointer */
269 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
270 					 * or array
271 					 */
272 };
273 
274 #define MAX_RESOLVE_DEPTH 32
275 
276 struct btf_sec_info {
277 	u32 off;
278 	u32 len;
279 };
280 
281 struct btf_verifier_env {
282 	struct btf *btf;
283 	u8 *visit_states;
284 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
285 	struct bpf_verifier_log log;
286 	u32 log_type_id;
287 	u32 top_stack;
288 	enum verifier_phase phase;
289 	enum resolve_mode resolve_mode;
290 };
291 
292 static const char * const btf_kind_str[NR_BTF_KINDS] = {
293 	[BTF_KIND_UNKN]		= "UNKNOWN",
294 	[BTF_KIND_INT]		= "INT",
295 	[BTF_KIND_PTR]		= "PTR",
296 	[BTF_KIND_ARRAY]	= "ARRAY",
297 	[BTF_KIND_STRUCT]	= "STRUCT",
298 	[BTF_KIND_UNION]	= "UNION",
299 	[BTF_KIND_ENUM]		= "ENUM",
300 	[BTF_KIND_FWD]		= "FWD",
301 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
302 	[BTF_KIND_VOLATILE]	= "VOLATILE",
303 	[BTF_KIND_CONST]	= "CONST",
304 	[BTF_KIND_RESTRICT]	= "RESTRICT",
305 	[BTF_KIND_FUNC]		= "FUNC",
306 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
307 	[BTF_KIND_VAR]		= "VAR",
308 	[BTF_KIND_DATASEC]	= "DATASEC",
309 	[BTF_KIND_FLOAT]	= "FLOAT",
310 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
311 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
312 	[BTF_KIND_ENUM64]	= "ENUM64",
313 };
314 
315 const char *btf_type_str(const struct btf_type *t)
316 {
317 	return btf_kind_str[BTF_INFO_KIND(t->info)];
318 }
319 
320 /* Chunk size we use in safe copy of data to be shown. */
321 #define BTF_SHOW_OBJ_SAFE_SIZE		32
322 
323 /*
324  * This is the maximum size of a base type value (equivalent to a
325  * 128-bit int); if we are at the end of our safe buffer and have
326  * less than 16 bytes space we can't be assured of being able
327  * to copy the next type safely, so in such cases we will initiate
328  * a new copy.
329  */
330 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
331 
332 /* Type name size */
333 #define BTF_SHOW_NAME_SIZE		80
334 
335 /*
336  * Common data to all BTF show operations. Private show functions can add
337  * their own data to a structure containing a struct btf_show and consult it
338  * in the show callback.  See btf_type_show() below.
339  *
340  * One challenge with showing nested data is we want to skip 0-valued
341  * data, but in order to figure out whether a nested object is all zeros
342  * we need to walk through it.  As a result, we need to make two passes
343  * when handling structs, unions and arrays; the first path simply looks
344  * for nonzero data, while the second actually does the display.  The first
345  * pass is signalled by show->state.depth_check being set, and if we
346  * encounter a non-zero value we set show->state.depth_to_show to
347  * the depth at which we encountered it.  When we have completed the
348  * first pass, we will know if anything needs to be displayed if
349  * depth_to_show > depth.  See btf_[struct,array]_show() for the
350  * implementation of this.
351  *
352  * Another problem is we want to ensure the data for display is safe to
353  * access.  To support this, the anonymous "struct {} obj" tracks the data
354  * object and our safe copy of it.  We copy portions of the data needed
355  * to the object "copy" buffer, but because its size is limited to
356  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
357  * traverse larger objects for display.
358  *
359  * The various data type show functions all start with a call to
360  * btf_show_start_type() which returns a pointer to the safe copy
361  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
362  * raw data itself).  btf_show_obj_safe() is responsible for
363  * using copy_from_kernel_nofault() to update the safe data if necessary
364  * as we traverse the object's data.  skbuff-like semantics are
365  * used:
366  *
367  * - obj.head points to the start of the toplevel object for display
368  * - obj.size is the size of the toplevel object
369  * - obj.data points to the current point in the original data at
370  *   which our safe data starts.  obj.data will advance as we copy
371  *   portions of the data.
372  *
373  * In most cases a single copy will suffice, but larger data structures
374  * such as "struct task_struct" will require many copies.  The logic in
375  * btf_show_obj_safe() handles the logic that determines if a new
376  * copy_from_kernel_nofault() is needed.
377  */
378 struct btf_show {
379 	u64 flags;
380 	void *target;	/* target of show operation (seq file, buffer) */
381 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
382 	const struct btf *btf;
383 	/* below are used during iteration */
384 	struct {
385 		u8 depth;
386 		u8 depth_to_show;
387 		u8 depth_check;
388 		u8 array_member:1,
389 		   array_terminated:1;
390 		u16 array_encoding;
391 		u32 type_id;
392 		int status;			/* non-zero for error */
393 		const struct btf_type *type;
394 		const struct btf_member *member;
395 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
396 	} state;
397 	struct {
398 		u32 size;
399 		void *head;
400 		void *data;
401 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
402 	} obj;
403 };
404 
405 struct btf_kind_operations {
406 	s32 (*check_meta)(struct btf_verifier_env *env,
407 			  const struct btf_type *t,
408 			  u32 meta_left);
409 	int (*resolve)(struct btf_verifier_env *env,
410 		       const struct resolve_vertex *v);
411 	int (*check_member)(struct btf_verifier_env *env,
412 			    const struct btf_type *struct_type,
413 			    const struct btf_member *member,
414 			    const struct btf_type *member_type);
415 	int (*check_kflag_member)(struct btf_verifier_env *env,
416 				  const struct btf_type *struct_type,
417 				  const struct btf_member *member,
418 				  const struct btf_type *member_type);
419 	void (*log_details)(struct btf_verifier_env *env,
420 			    const struct btf_type *t);
421 	void (*show)(const struct btf *btf, const struct btf_type *t,
422 			 u32 type_id, void *data, u8 bits_offsets,
423 			 struct btf_show *show);
424 };
425 
426 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
427 static struct btf_type btf_void;
428 
429 static int btf_resolve(struct btf_verifier_env *env,
430 		       const struct btf_type *t, u32 type_id);
431 
432 static int btf_func_check(struct btf_verifier_env *env,
433 			  const struct btf_type *t);
434 
435 static bool btf_type_is_modifier(const struct btf_type *t)
436 {
437 	/* Some of them is not strictly a C modifier
438 	 * but they are grouped into the same bucket
439 	 * for BTF concern:
440 	 *   A type (t) that refers to another
441 	 *   type through t->type AND its size cannot
442 	 *   be determined without following the t->type.
443 	 *
444 	 * ptr does not fall into this bucket
445 	 * because its size is always sizeof(void *).
446 	 */
447 	switch (BTF_INFO_KIND(t->info)) {
448 	case BTF_KIND_TYPEDEF:
449 	case BTF_KIND_VOLATILE:
450 	case BTF_KIND_CONST:
451 	case BTF_KIND_RESTRICT:
452 	case BTF_KIND_TYPE_TAG:
453 		return true;
454 	}
455 
456 	return false;
457 }
458 
459 bool btf_type_is_void(const struct btf_type *t)
460 {
461 	return t == &btf_void;
462 }
463 
464 static bool btf_type_is_fwd(const struct btf_type *t)
465 {
466 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
467 }
468 
469 static bool btf_type_nosize(const struct btf_type *t)
470 {
471 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
472 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
473 }
474 
475 static bool btf_type_nosize_or_null(const struct btf_type *t)
476 {
477 	return !t || btf_type_nosize(t);
478 }
479 
480 static bool __btf_type_is_struct(const struct btf_type *t)
481 {
482 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
483 }
484 
485 static bool btf_type_is_array(const struct btf_type *t)
486 {
487 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
488 }
489 
490 static bool btf_type_is_datasec(const struct btf_type *t)
491 {
492 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
493 }
494 
495 static bool btf_type_is_decl_tag(const struct btf_type *t)
496 {
497 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
498 }
499 
500 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
501 {
502 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
503 	       btf_type_is_var(t) || btf_type_is_typedef(t);
504 }
505 
506 u32 btf_nr_types(const struct btf *btf)
507 {
508 	u32 total = 0;
509 
510 	while (btf) {
511 		total += btf->nr_types;
512 		btf = btf->base_btf;
513 	}
514 
515 	return total;
516 }
517 
518 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
519 {
520 	const struct btf_type *t;
521 	const char *tname;
522 	u32 i, total;
523 
524 	total = btf_nr_types(btf);
525 	for (i = 1; i < total; i++) {
526 		t = btf_type_by_id(btf, i);
527 		if (BTF_INFO_KIND(t->info) != kind)
528 			continue;
529 
530 		tname = btf_name_by_offset(btf, t->name_off);
531 		if (!strcmp(tname, name))
532 			return i;
533 	}
534 
535 	return -ENOENT;
536 }
537 
538 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
539 {
540 	struct btf *btf;
541 	s32 ret;
542 	int id;
543 
544 	btf = bpf_get_btf_vmlinux();
545 	if (IS_ERR(btf))
546 		return PTR_ERR(btf);
547 	if (!btf)
548 		return -EINVAL;
549 
550 	ret = btf_find_by_name_kind(btf, name, kind);
551 	/* ret is never zero, since btf_find_by_name_kind returns
552 	 * positive btf_id or negative error.
553 	 */
554 	if (ret > 0) {
555 		btf_get(btf);
556 		*btf_p = btf;
557 		return ret;
558 	}
559 
560 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
561 	spin_lock_bh(&btf_idr_lock);
562 	idr_for_each_entry(&btf_idr, btf, id) {
563 		if (!btf_is_module(btf))
564 			continue;
565 		/* linear search could be slow hence unlock/lock
566 		 * the IDR to avoiding holding it for too long
567 		 */
568 		btf_get(btf);
569 		spin_unlock_bh(&btf_idr_lock);
570 		ret = btf_find_by_name_kind(btf, name, kind);
571 		if (ret > 0) {
572 			*btf_p = btf;
573 			return ret;
574 		}
575 		spin_lock_bh(&btf_idr_lock);
576 		btf_put(btf);
577 	}
578 	spin_unlock_bh(&btf_idr_lock);
579 	return ret;
580 }
581 
582 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
583 					       u32 id, u32 *res_id)
584 {
585 	const struct btf_type *t = btf_type_by_id(btf, id);
586 
587 	while (btf_type_is_modifier(t)) {
588 		id = t->type;
589 		t = btf_type_by_id(btf, t->type);
590 	}
591 
592 	if (res_id)
593 		*res_id = id;
594 
595 	return t;
596 }
597 
598 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
599 					    u32 id, u32 *res_id)
600 {
601 	const struct btf_type *t;
602 
603 	t = btf_type_skip_modifiers(btf, id, NULL);
604 	if (!btf_type_is_ptr(t))
605 		return NULL;
606 
607 	return btf_type_skip_modifiers(btf, t->type, res_id);
608 }
609 
610 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
611 						 u32 id, u32 *res_id)
612 {
613 	const struct btf_type *ptype;
614 
615 	ptype = btf_type_resolve_ptr(btf, id, res_id);
616 	if (ptype && btf_type_is_func_proto(ptype))
617 		return ptype;
618 
619 	return NULL;
620 }
621 
622 /* Types that act only as a source, not sink or intermediate
623  * type when resolving.
624  */
625 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
626 {
627 	return btf_type_is_var(t) ||
628 	       btf_type_is_decl_tag(t) ||
629 	       btf_type_is_datasec(t);
630 }
631 
632 /* What types need to be resolved?
633  *
634  * btf_type_is_modifier() is an obvious one.
635  *
636  * btf_type_is_struct() because its member refers to
637  * another type (through member->type).
638  *
639  * btf_type_is_var() because the variable refers to
640  * another type. btf_type_is_datasec() holds multiple
641  * btf_type_is_var() types that need resolving.
642  *
643  * btf_type_is_array() because its element (array->type)
644  * refers to another type.  Array can be thought of a
645  * special case of struct while array just has the same
646  * member-type repeated by array->nelems of times.
647  */
648 static bool btf_type_needs_resolve(const struct btf_type *t)
649 {
650 	return btf_type_is_modifier(t) ||
651 	       btf_type_is_ptr(t) ||
652 	       btf_type_is_struct(t) ||
653 	       btf_type_is_array(t) ||
654 	       btf_type_is_var(t) ||
655 	       btf_type_is_func(t) ||
656 	       btf_type_is_decl_tag(t) ||
657 	       btf_type_is_datasec(t);
658 }
659 
660 /* t->size can be used */
661 static bool btf_type_has_size(const struct btf_type *t)
662 {
663 	switch (BTF_INFO_KIND(t->info)) {
664 	case BTF_KIND_INT:
665 	case BTF_KIND_STRUCT:
666 	case BTF_KIND_UNION:
667 	case BTF_KIND_ENUM:
668 	case BTF_KIND_DATASEC:
669 	case BTF_KIND_FLOAT:
670 	case BTF_KIND_ENUM64:
671 		return true;
672 	}
673 
674 	return false;
675 }
676 
677 static const char *btf_int_encoding_str(u8 encoding)
678 {
679 	if (encoding == 0)
680 		return "(none)";
681 	else if (encoding == BTF_INT_SIGNED)
682 		return "SIGNED";
683 	else if (encoding == BTF_INT_CHAR)
684 		return "CHAR";
685 	else if (encoding == BTF_INT_BOOL)
686 		return "BOOL";
687 	else
688 		return "UNKN";
689 }
690 
691 static u32 btf_type_int(const struct btf_type *t)
692 {
693 	return *(u32 *)(t + 1);
694 }
695 
696 static const struct btf_array *btf_type_array(const struct btf_type *t)
697 {
698 	return (const struct btf_array *)(t + 1);
699 }
700 
701 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
702 {
703 	return (const struct btf_enum *)(t + 1);
704 }
705 
706 static const struct btf_var *btf_type_var(const struct btf_type *t)
707 {
708 	return (const struct btf_var *)(t + 1);
709 }
710 
711 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
712 {
713 	return (const struct btf_decl_tag *)(t + 1);
714 }
715 
716 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
717 {
718 	return (const struct btf_enum64 *)(t + 1);
719 }
720 
721 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
722 {
723 	return kind_ops[BTF_INFO_KIND(t->info)];
724 }
725 
726 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
727 {
728 	if (!BTF_STR_OFFSET_VALID(offset))
729 		return false;
730 
731 	while (offset < btf->start_str_off)
732 		btf = btf->base_btf;
733 
734 	offset -= btf->start_str_off;
735 	return offset < btf->hdr.str_len;
736 }
737 
738 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
739 {
740 	if ((first ? !isalpha(c) :
741 		     !isalnum(c)) &&
742 	    c != '_' &&
743 	    ((c == '.' && !dot_ok) ||
744 	      c != '.'))
745 		return false;
746 	return true;
747 }
748 
749 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
750 {
751 	while (offset < btf->start_str_off)
752 		btf = btf->base_btf;
753 
754 	offset -= btf->start_str_off;
755 	if (offset < btf->hdr.str_len)
756 		return &btf->strings[offset];
757 
758 	return NULL;
759 }
760 
761 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
762 {
763 	/* offset must be valid */
764 	const char *src = btf_str_by_offset(btf, offset);
765 	const char *src_limit;
766 
767 	if (!__btf_name_char_ok(*src, true, dot_ok))
768 		return false;
769 
770 	/* set a limit on identifier length */
771 	src_limit = src + KSYM_NAME_LEN;
772 	src++;
773 	while (*src && src < src_limit) {
774 		if (!__btf_name_char_ok(*src, false, dot_ok))
775 			return false;
776 		src++;
777 	}
778 
779 	return !*src;
780 }
781 
782 /* Only C-style identifier is permitted. This can be relaxed if
783  * necessary.
784  */
785 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
786 {
787 	return __btf_name_valid(btf, offset, false);
788 }
789 
790 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
791 {
792 	return __btf_name_valid(btf, offset, true);
793 }
794 
795 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
796 {
797 	const char *name;
798 
799 	if (!offset)
800 		return "(anon)";
801 
802 	name = btf_str_by_offset(btf, offset);
803 	return name ?: "(invalid-name-offset)";
804 }
805 
806 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
807 {
808 	return btf_str_by_offset(btf, offset);
809 }
810 
811 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
812 {
813 	while (type_id < btf->start_id)
814 		btf = btf->base_btf;
815 
816 	type_id -= btf->start_id;
817 	if (type_id >= btf->nr_types)
818 		return NULL;
819 	return btf->types[type_id];
820 }
821 
822 /*
823  * Regular int is not a bit field and it must be either
824  * u8/u16/u32/u64 or __int128.
825  */
826 static bool btf_type_int_is_regular(const struct btf_type *t)
827 {
828 	u8 nr_bits, nr_bytes;
829 	u32 int_data;
830 
831 	int_data = btf_type_int(t);
832 	nr_bits = BTF_INT_BITS(int_data);
833 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
834 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
835 	    BTF_INT_OFFSET(int_data) ||
836 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
837 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
838 	     nr_bytes != (2 * sizeof(u64)))) {
839 		return false;
840 	}
841 
842 	return true;
843 }
844 
845 /*
846  * Check that given struct member is a regular int with expected
847  * offset and size.
848  */
849 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
850 			   const struct btf_member *m,
851 			   u32 expected_offset, u32 expected_size)
852 {
853 	const struct btf_type *t;
854 	u32 id, int_data;
855 	u8 nr_bits;
856 
857 	id = m->type;
858 	t = btf_type_id_size(btf, &id, NULL);
859 	if (!t || !btf_type_is_int(t))
860 		return false;
861 
862 	int_data = btf_type_int(t);
863 	nr_bits = BTF_INT_BITS(int_data);
864 	if (btf_type_kflag(s)) {
865 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
866 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
867 
868 		/* if kflag set, int should be a regular int and
869 		 * bit offset should be at byte boundary.
870 		 */
871 		return !bitfield_size &&
872 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
873 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
874 	}
875 
876 	if (BTF_INT_OFFSET(int_data) ||
877 	    BITS_PER_BYTE_MASKED(m->offset) ||
878 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
879 	    BITS_PER_BYTE_MASKED(nr_bits) ||
880 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
881 		return false;
882 
883 	return true;
884 }
885 
886 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
887 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
888 						       u32 id)
889 {
890 	const struct btf_type *t = btf_type_by_id(btf, id);
891 
892 	while (btf_type_is_modifier(t) &&
893 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
894 		t = btf_type_by_id(btf, t->type);
895 	}
896 
897 	return t;
898 }
899 
900 #define BTF_SHOW_MAX_ITER	10
901 
902 #define BTF_KIND_BIT(kind)	(1ULL << kind)
903 
904 /*
905  * Populate show->state.name with type name information.
906  * Format of type name is
907  *
908  * [.member_name = ] (type_name)
909  */
910 static const char *btf_show_name(struct btf_show *show)
911 {
912 	/* BTF_MAX_ITER array suffixes "[]" */
913 	const char *array_suffixes = "[][][][][][][][][][]";
914 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
915 	/* BTF_MAX_ITER pointer suffixes "*" */
916 	const char *ptr_suffixes = "**********";
917 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
918 	const char *name = NULL, *prefix = "", *parens = "";
919 	const struct btf_member *m = show->state.member;
920 	const struct btf_type *t;
921 	const struct btf_array *array;
922 	u32 id = show->state.type_id;
923 	const char *member = NULL;
924 	bool show_member = false;
925 	u64 kinds = 0;
926 	int i;
927 
928 	show->state.name[0] = '\0';
929 
930 	/*
931 	 * Don't show type name if we're showing an array member;
932 	 * in that case we show the array type so don't need to repeat
933 	 * ourselves for each member.
934 	 */
935 	if (show->state.array_member)
936 		return "";
937 
938 	/* Retrieve member name, if any. */
939 	if (m) {
940 		member = btf_name_by_offset(show->btf, m->name_off);
941 		show_member = strlen(member) > 0;
942 		id = m->type;
943 	}
944 
945 	/*
946 	 * Start with type_id, as we have resolved the struct btf_type *
947 	 * via btf_modifier_show() past the parent typedef to the child
948 	 * struct, int etc it is defined as.  In such cases, the type_id
949 	 * still represents the starting type while the struct btf_type *
950 	 * in our show->state points at the resolved type of the typedef.
951 	 */
952 	t = btf_type_by_id(show->btf, id);
953 	if (!t)
954 		return "";
955 
956 	/*
957 	 * The goal here is to build up the right number of pointer and
958 	 * array suffixes while ensuring the type name for a typedef
959 	 * is represented.  Along the way we accumulate a list of
960 	 * BTF kinds we have encountered, since these will inform later
961 	 * display; for example, pointer types will not require an
962 	 * opening "{" for struct, we will just display the pointer value.
963 	 *
964 	 * We also want to accumulate the right number of pointer or array
965 	 * indices in the format string while iterating until we get to
966 	 * the typedef/pointee/array member target type.
967 	 *
968 	 * We start by pointing at the end of pointer and array suffix
969 	 * strings; as we accumulate pointers and arrays we move the pointer
970 	 * or array string backwards so it will show the expected number of
971 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
972 	 * and/or arrays and typedefs are supported as a precaution.
973 	 *
974 	 * We also want to get typedef name while proceeding to resolve
975 	 * type it points to so that we can add parentheses if it is a
976 	 * "typedef struct" etc.
977 	 */
978 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
979 
980 		switch (BTF_INFO_KIND(t->info)) {
981 		case BTF_KIND_TYPEDEF:
982 			if (!name)
983 				name = btf_name_by_offset(show->btf,
984 							       t->name_off);
985 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
986 			id = t->type;
987 			break;
988 		case BTF_KIND_ARRAY:
989 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
990 			parens = "[";
991 			if (!t)
992 				return "";
993 			array = btf_type_array(t);
994 			if (array_suffix > array_suffixes)
995 				array_suffix -= 2;
996 			id = array->type;
997 			break;
998 		case BTF_KIND_PTR:
999 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1000 			if (ptr_suffix > ptr_suffixes)
1001 				ptr_suffix -= 1;
1002 			id = t->type;
1003 			break;
1004 		default:
1005 			id = 0;
1006 			break;
1007 		}
1008 		if (!id)
1009 			break;
1010 		t = btf_type_skip_qualifiers(show->btf, id);
1011 	}
1012 	/* We may not be able to represent this type; bail to be safe */
1013 	if (i == BTF_SHOW_MAX_ITER)
1014 		return "";
1015 
1016 	if (!name)
1017 		name = btf_name_by_offset(show->btf, t->name_off);
1018 
1019 	switch (BTF_INFO_KIND(t->info)) {
1020 	case BTF_KIND_STRUCT:
1021 	case BTF_KIND_UNION:
1022 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1023 			 "struct" : "union";
1024 		/* if it's an array of struct/union, parens is already set */
1025 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1026 			parens = "{";
1027 		break;
1028 	case BTF_KIND_ENUM:
1029 	case BTF_KIND_ENUM64:
1030 		prefix = "enum";
1031 		break;
1032 	default:
1033 		break;
1034 	}
1035 
1036 	/* pointer does not require parens */
1037 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1038 		parens = "";
1039 	/* typedef does not require struct/union/enum prefix */
1040 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1041 		prefix = "";
1042 
1043 	if (!name)
1044 		name = "";
1045 
1046 	/* Even if we don't want type name info, we want parentheses etc */
1047 	if (show->flags & BTF_SHOW_NONAME)
1048 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1049 			 parens);
1050 	else
1051 		snprintf(show->state.name, sizeof(show->state.name),
1052 			 "%s%s%s(%s%s%s%s%s%s)%s",
1053 			 /* first 3 strings comprise ".member = " */
1054 			 show_member ? "." : "",
1055 			 show_member ? member : "",
1056 			 show_member ? " = " : "",
1057 			 /* ...next is our prefix (struct, enum, etc) */
1058 			 prefix,
1059 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1060 			 /* ...this is the type name itself */
1061 			 name,
1062 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1063 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1064 			 array_suffix, parens);
1065 
1066 	return show->state.name;
1067 }
1068 
1069 static const char *__btf_show_indent(struct btf_show *show)
1070 {
1071 	const char *indents = "                                ";
1072 	const char *indent = &indents[strlen(indents)];
1073 
1074 	if ((indent - show->state.depth) >= indents)
1075 		return indent - show->state.depth;
1076 	return indents;
1077 }
1078 
1079 static const char *btf_show_indent(struct btf_show *show)
1080 {
1081 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1082 }
1083 
1084 static const char *btf_show_newline(struct btf_show *show)
1085 {
1086 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1087 }
1088 
1089 static const char *btf_show_delim(struct btf_show *show)
1090 {
1091 	if (show->state.depth == 0)
1092 		return "";
1093 
1094 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1095 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1096 		return "|";
1097 
1098 	return ",";
1099 }
1100 
1101 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1102 {
1103 	va_list args;
1104 
1105 	if (!show->state.depth_check) {
1106 		va_start(args, fmt);
1107 		show->showfn(show, fmt, args);
1108 		va_end(args);
1109 	}
1110 }
1111 
1112 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1113  * format specifiers to the format specifier passed in; these do the work of
1114  * adding indentation, delimiters etc while the caller simply has to specify
1115  * the type value(s) in the format specifier + value(s).
1116  */
1117 #define btf_show_type_value(show, fmt, value)				       \
1118 	do {								       \
1119 		if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||	       \
1120 		    show->state.depth == 0) {				       \
1121 			btf_show(show, "%s%s" fmt "%s%s",		       \
1122 				 btf_show_indent(show),			       \
1123 				 btf_show_name(show),			       \
1124 				 value, btf_show_delim(show),		       \
1125 				 btf_show_newline(show));		       \
1126 			if (show->state.depth > show->state.depth_to_show)     \
1127 				show->state.depth_to_show = show->state.depth; \
1128 		}							       \
1129 	} while (0)
1130 
1131 #define btf_show_type_values(show, fmt, ...)				       \
1132 	do {								       \
1133 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1134 			 btf_show_name(show),				       \
1135 			 __VA_ARGS__, btf_show_delim(show),		       \
1136 			 btf_show_newline(show));			       \
1137 		if (show->state.depth > show->state.depth_to_show)	       \
1138 			show->state.depth_to_show = show->state.depth;	       \
1139 	} while (0)
1140 
1141 /* How much is left to copy to safe buffer after @data? */
1142 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1143 {
1144 	return show->obj.head + show->obj.size - data;
1145 }
1146 
1147 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1148 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1149 {
1150 	return data >= show->obj.data &&
1151 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1152 }
1153 
1154 /*
1155  * If object pointed to by @data of @size falls within our safe buffer, return
1156  * the equivalent pointer to the same safe data.  Assumes
1157  * copy_from_kernel_nofault() has already happened and our safe buffer is
1158  * populated.
1159  */
1160 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1161 {
1162 	if (btf_show_obj_is_safe(show, data, size))
1163 		return show->obj.safe + (data - show->obj.data);
1164 	return NULL;
1165 }
1166 
1167 /*
1168  * Return a safe-to-access version of data pointed to by @data.
1169  * We do this by copying the relevant amount of information
1170  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1171  *
1172  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1173  * safe copy is needed.
1174  *
1175  * Otherwise we need to determine if we have the required amount
1176  * of data (determined by the @data pointer and the size of the
1177  * largest base type we can encounter (represented by
1178  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1179  * that we will be able to print some of the current object,
1180  * and if more is needed a copy will be triggered.
1181  * Some objects such as structs will not fit into the buffer;
1182  * in such cases additional copies when we iterate over their
1183  * members may be needed.
1184  *
1185  * btf_show_obj_safe() is used to return a safe buffer for
1186  * btf_show_start_type(); this ensures that as we recurse into
1187  * nested types we always have safe data for the given type.
1188  * This approach is somewhat wasteful; it's possible for example
1189  * that when iterating over a large union we'll end up copying the
1190  * same data repeatedly, but the goal is safety not performance.
1191  * We use stack data as opposed to per-CPU buffers because the
1192  * iteration over a type can take some time, and preemption handling
1193  * would greatly complicate use of the safe buffer.
1194  */
1195 static void *btf_show_obj_safe(struct btf_show *show,
1196 			       const struct btf_type *t,
1197 			       void *data)
1198 {
1199 	const struct btf_type *rt;
1200 	int size_left, size;
1201 	void *safe = NULL;
1202 
1203 	if (show->flags & BTF_SHOW_UNSAFE)
1204 		return data;
1205 
1206 	rt = btf_resolve_size(show->btf, t, &size);
1207 	if (IS_ERR(rt)) {
1208 		show->state.status = PTR_ERR(rt);
1209 		return NULL;
1210 	}
1211 
1212 	/*
1213 	 * Is this toplevel object? If so, set total object size and
1214 	 * initialize pointers.  Otherwise check if we still fall within
1215 	 * our safe object data.
1216 	 */
1217 	if (show->state.depth == 0) {
1218 		show->obj.size = size;
1219 		show->obj.head = data;
1220 	} else {
1221 		/*
1222 		 * If the size of the current object is > our remaining
1223 		 * safe buffer we _may_ need to do a new copy.  However
1224 		 * consider the case of a nested struct; it's size pushes
1225 		 * us over the safe buffer limit, but showing any individual
1226 		 * struct members does not.  In such cases, we don't need
1227 		 * to initiate a fresh copy yet; however we definitely need
1228 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1229 		 * in our buffer, regardless of the current object size.
1230 		 * The logic here is that as we resolve types we will
1231 		 * hit a base type at some point, and we need to be sure
1232 		 * the next chunk of data is safely available to display
1233 		 * that type info safely.  We cannot rely on the size of
1234 		 * the current object here because it may be much larger
1235 		 * than our current buffer (e.g. task_struct is 8k).
1236 		 * All we want to do here is ensure that we can print the
1237 		 * next basic type, which we can if either
1238 		 * - the current type size is within the safe buffer; or
1239 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1240 		 *   the safe buffer.
1241 		 */
1242 		safe = __btf_show_obj_safe(show, data,
1243 					   min(size,
1244 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1245 	}
1246 
1247 	/*
1248 	 * We need a new copy to our safe object, either because we haven't
1249 	 * yet copied and are initializing safe data, or because the data
1250 	 * we want falls outside the boundaries of the safe object.
1251 	 */
1252 	if (!safe) {
1253 		size_left = btf_show_obj_size_left(show, data);
1254 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1255 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1256 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1257 							      data, size_left);
1258 		if (!show->state.status) {
1259 			show->obj.data = data;
1260 			safe = show->obj.safe;
1261 		}
1262 	}
1263 
1264 	return safe;
1265 }
1266 
1267 /*
1268  * Set the type we are starting to show and return a safe data pointer
1269  * to be used for showing the associated data.
1270  */
1271 static void *btf_show_start_type(struct btf_show *show,
1272 				 const struct btf_type *t,
1273 				 u32 type_id, void *data)
1274 {
1275 	show->state.type = t;
1276 	show->state.type_id = type_id;
1277 	show->state.name[0] = '\0';
1278 
1279 	return btf_show_obj_safe(show, t, data);
1280 }
1281 
1282 static void btf_show_end_type(struct btf_show *show)
1283 {
1284 	show->state.type = NULL;
1285 	show->state.type_id = 0;
1286 	show->state.name[0] = '\0';
1287 }
1288 
1289 static void *btf_show_start_aggr_type(struct btf_show *show,
1290 				      const struct btf_type *t,
1291 				      u32 type_id, void *data)
1292 {
1293 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1294 
1295 	if (!safe_data)
1296 		return safe_data;
1297 
1298 	btf_show(show, "%s%s%s", btf_show_indent(show),
1299 		 btf_show_name(show),
1300 		 btf_show_newline(show));
1301 	show->state.depth++;
1302 	return safe_data;
1303 }
1304 
1305 static void btf_show_end_aggr_type(struct btf_show *show,
1306 				   const char *suffix)
1307 {
1308 	show->state.depth--;
1309 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1310 		 btf_show_delim(show), btf_show_newline(show));
1311 	btf_show_end_type(show);
1312 }
1313 
1314 static void btf_show_start_member(struct btf_show *show,
1315 				  const struct btf_member *m)
1316 {
1317 	show->state.member = m;
1318 }
1319 
1320 static void btf_show_start_array_member(struct btf_show *show)
1321 {
1322 	show->state.array_member = 1;
1323 	btf_show_start_member(show, NULL);
1324 }
1325 
1326 static void btf_show_end_member(struct btf_show *show)
1327 {
1328 	show->state.member = NULL;
1329 }
1330 
1331 static void btf_show_end_array_member(struct btf_show *show)
1332 {
1333 	show->state.array_member = 0;
1334 	btf_show_end_member(show);
1335 }
1336 
1337 static void *btf_show_start_array_type(struct btf_show *show,
1338 				       const struct btf_type *t,
1339 				       u32 type_id,
1340 				       u16 array_encoding,
1341 				       void *data)
1342 {
1343 	show->state.array_encoding = array_encoding;
1344 	show->state.array_terminated = 0;
1345 	return btf_show_start_aggr_type(show, t, type_id, data);
1346 }
1347 
1348 static void btf_show_end_array_type(struct btf_show *show)
1349 {
1350 	show->state.array_encoding = 0;
1351 	show->state.array_terminated = 0;
1352 	btf_show_end_aggr_type(show, "]");
1353 }
1354 
1355 static void *btf_show_start_struct_type(struct btf_show *show,
1356 					const struct btf_type *t,
1357 					u32 type_id,
1358 					void *data)
1359 {
1360 	return btf_show_start_aggr_type(show, t, type_id, data);
1361 }
1362 
1363 static void btf_show_end_struct_type(struct btf_show *show)
1364 {
1365 	btf_show_end_aggr_type(show, "}");
1366 }
1367 
1368 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1369 					      const char *fmt, ...)
1370 {
1371 	va_list args;
1372 
1373 	va_start(args, fmt);
1374 	bpf_verifier_vlog(log, fmt, args);
1375 	va_end(args);
1376 }
1377 
1378 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1379 					    const char *fmt, ...)
1380 {
1381 	struct bpf_verifier_log *log = &env->log;
1382 	va_list args;
1383 
1384 	if (!bpf_verifier_log_needed(log))
1385 		return;
1386 
1387 	va_start(args, fmt);
1388 	bpf_verifier_vlog(log, fmt, args);
1389 	va_end(args);
1390 }
1391 
1392 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1393 						   const struct btf_type *t,
1394 						   bool log_details,
1395 						   const char *fmt, ...)
1396 {
1397 	struct bpf_verifier_log *log = &env->log;
1398 	u8 kind = BTF_INFO_KIND(t->info);
1399 	struct btf *btf = env->btf;
1400 	va_list args;
1401 
1402 	if (!bpf_verifier_log_needed(log))
1403 		return;
1404 
1405 	/* btf verifier prints all types it is processing via
1406 	 * btf_verifier_log_type(..., fmt = NULL).
1407 	 * Skip those prints for in-kernel BTF verification.
1408 	 */
1409 	if (log->level == BPF_LOG_KERNEL && !fmt)
1410 		return;
1411 
1412 	__btf_verifier_log(log, "[%u] %s %s%s",
1413 			   env->log_type_id,
1414 			   btf_kind_str[kind],
1415 			   __btf_name_by_offset(btf, t->name_off),
1416 			   log_details ? " " : "");
1417 
1418 	if (log_details)
1419 		btf_type_ops(t)->log_details(env, t);
1420 
1421 	if (fmt && *fmt) {
1422 		__btf_verifier_log(log, " ");
1423 		va_start(args, fmt);
1424 		bpf_verifier_vlog(log, fmt, args);
1425 		va_end(args);
1426 	}
1427 
1428 	__btf_verifier_log(log, "\n");
1429 }
1430 
1431 #define btf_verifier_log_type(env, t, ...) \
1432 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1433 #define btf_verifier_log_basic(env, t, ...) \
1434 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1435 
1436 __printf(4, 5)
1437 static void btf_verifier_log_member(struct btf_verifier_env *env,
1438 				    const struct btf_type *struct_type,
1439 				    const struct btf_member *member,
1440 				    const char *fmt, ...)
1441 {
1442 	struct bpf_verifier_log *log = &env->log;
1443 	struct btf *btf = env->btf;
1444 	va_list args;
1445 
1446 	if (!bpf_verifier_log_needed(log))
1447 		return;
1448 
1449 	if (log->level == BPF_LOG_KERNEL && !fmt)
1450 		return;
1451 	/* The CHECK_META phase already did a btf dump.
1452 	 *
1453 	 * If member is logged again, it must hit an error in
1454 	 * parsing this member.  It is useful to print out which
1455 	 * struct this member belongs to.
1456 	 */
1457 	if (env->phase != CHECK_META)
1458 		btf_verifier_log_type(env, struct_type, NULL);
1459 
1460 	if (btf_type_kflag(struct_type))
1461 		__btf_verifier_log(log,
1462 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1463 				   __btf_name_by_offset(btf, member->name_off),
1464 				   member->type,
1465 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1466 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1467 	else
1468 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1469 				   __btf_name_by_offset(btf, member->name_off),
1470 				   member->type, member->offset);
1471 
1472 	if (fmt && *fmt) {
1473 		__btf_verifier_log(log, " ");
1474 		va_start(args, fmt);
1475 		bpf_verifier_vlog(log, fmt, args);
1476 		va_end(args);
1477 	}
1478 
1479 	__btf_verifier_log(log, "\n");
1480 }
1481 
1482 __printf(4, 5)
1483 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1484 				 const struct btf_type *datasec_type,
1485 				 const struct btf_var_secinfo *vsi,
1486 				 const char *fmt, ...)
1487 {
1488 	struct bpf_verifier_log *log = &env->log;
1489 	va_list args;
1490 
1491 	if (!bpf_verifier_log_needed(log))
1492 		return;
1493 	if (log->level == BPF_LOG_KERNEL && !fmt)
1494 		return;
1495 	if (env->phase != CHECK_META)
1496 		btf_verifier_log_type(env, datasec_type, NULL);
1497 
1498 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1499 			   vsi->type, vsi->offset, vsi->size);
1500 	if (fmt && *fmt) {
1501 		__btf_verifier_log(log, " ");
1502 		va_start(args, fmt);
1503 		bpf_verifier_vlog(log, fmt, args);
1504 		va_end(args);
1505 	}
1506 
1507 	__btf_verifier_log(log, "\n");
1508 }
1509 
1510 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1511 				 u32 btf_data_size)
1512 {
1513 	struct bpf_verifier_log *log = &env->log;
1514 	const struct btf *btf = env->btf;
1515 	const struct btf_header *hdr;
1516 
1517 	if (!bpf_verifier_log_needed(log))
1518 		return;
1519 
1520 	if (log->level == BPF_LOG_KERNEL)
1521 		return;
1522 	hdr = &btf->hdr;
1523 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1524 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1525 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1526 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1527 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1528 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1529 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1530 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1531 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1532 }
1533 
1534 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1535 {
1536 	struct btf *btf = env->btf;
1537 
1538 	if (btf->types_size == btf->nr_types) {
1539 		/* Expand 'types' array */
1540 
1541 		struct btf_type **new_types;
1542 		u32 expand_by, new_size;
1543 
1544 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1545 			btf_verifier_log(env, "Exceeded max num of types");
1546 			return -E2BIG;
1547 		}
1548 
1549 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1550 		new_size = min_t(u32, BTF_MAX_TYPE,
1551 				 btf->types_size + expand_by);
1552 
1553 		new_types = kvcalloc(new_size, sizeof(*new_types),
1554 				     GFP_KERNEL | __GFP_NOWARN);
1555 		if (!new_types)
1556 			return -ENOMEM;
1557 
1558 		if (btf->nr_types == 0) {
1559 			if (!btf->base_btf) {
1560 				/* lazily init VOID type */
1561 				new_types[0] = &btf_void;
1562 				btf->nr_types++;
1563 			}
1564 		} else {
1565 			memcpy(new_types, btf->types,
1566 			       sizeof(*btf->types) * btf->nr_types);
1567 		}
1568 
1569 		kvfree(btf->types);
1570 		btf->types = new_types;
1571 		btf->types_size = new_size;
1572 	}
1573 
1574 	btf->types[btf->nr_types++] = t;
1575 
1576 	return 0;
1577 }
1578 
1579 static int btf_alloc_id(struct btf *btf)
1580 {
1581 	int id;
1582 
1583 	idr_preload(GFP_KERNEL);
1584 	spin_lock_bh(&btf_idr_lock);
1585 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1586 	if (id > 0)
1587 		btf->id = id;
1588 	spin_unlock_bh(&btf_idr_lock);
1589 	idr_preload_end();
1590 
1591 	if (WARN_ON_ONCE(!id))
1592 		return -ENOSPC;
1593 
1594 	return id > 0 ? 0 : id;
1595 }
1596 
1597 static void btf_free_id(struct btf *btf)
1598 {
1599 	unsigned long flags;
1600 
1601 	/*
1602 	 * In map-in-map, calling map_delete_elem() on outer
1603 	 * map will call bpf_map_put on the inner map.
1604 	 * It will then eventually call btf_free_id()
1605 	 * on the inner map.  Some of the map_delete_elem()
1606 	 * implementation may have irq disabled, so
1607 	 * we need to use the _irqsave() version instead
1608 	 * of the _bh() version.
1609 	 */
1610 	spin_lock_irqsave(&btf_idr_lock, flags);
1611 	idr_remove(&btf_idr, btf->id);
1612 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1613 }
1614 
1615 static void btf_free_kfunc_set_tab(struct btf *btf)
1616 {
1617 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1618 	int hook, type;
1619 
1620 	if (!tab)
1621 		return;
1622 	/* For module BTF, we directly assign the sets being registered, so
1623 	 * there is nothing to free except kfunc_set_tab.
1624 	 */
1625 	if (btf_is_module(btf))
1626 		goto free_tab;
1627 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) {
1628 		for (type = 0; type < ARRAY_SIZE(tab->sets[0]); type++)
1629 			kfree(tab->sets[hook][type]);
1630 	}
1631 free_tab:
1632 	kfree(tab);
1633 	btf->kfunc_set_tab = NULL;
1634 }
1635 
1636 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1637 {
1638 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1639 
1640 	if (!tab)
1641 		return;
1642 	kfree(tab);
1643 	btf->dtor_kfunc_tab = NULL;
1644 }
1645 
1646 static void btf_free(struct btf *btf)
1647 {
1648 	btf_free_dtor_kfunc_tab(btf);
1649 	btf_free_kfunc_set_tab(btf);
1650 	kvfree(btf->types);
1651 	kvfree(btf->resolved_sizes);
1652 	kvfree(btf->resolved_ids);
1653 	kvfree(btf->data);
1654 	kfree(btf);
1655 }
1656 
1657 static void btf_free_rcu(struct rcu_head *rcu)
1658 {
1659 	struct btf *btf = container_of(rcu, struct btf, rcu);
1660 
1661 	btf_free(btf);
1662 }
1663 
1664 void btf_get(struct btf *btf)
1665 {
1666 	refcount_inc(&btf->refcnt);
1667 }
1668 
1669 void btf_put(struct btf *btf)
1670 {
1671 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1672 		btf_free_id(btf);
1673 		call_rcu(&btf->rcu, btf_free_rcu);
1674 	}
1675 }
1676 
1677 static int env_resolve_init(struct btf_verifier_env *env)
1678 {
1679 	struct btf *btf = env->btf;
1680 	u32 nr_types = btf->nr_types;
1681 	u32 *resolved_sizes = NULL;
1682 	u32 *resolved_ids = NULL;
1683 	u8 *visit_states = NULL;
1684 
1685 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1686 				  GFP_KERNEL | __GFP_NOWARN);
1687 	if (!resolved_sizes)
1688 		goto nomem;
1689 
1690 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1691 				GFP_KERNEL | __GFP_NOWARN);
1692 	if (!resolved_ids)
1693 		goto nomem;
1694 
1695 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1696 				GFP_KERNEL | __GFP_NOWARN);
1697 	if (!visit_states)
1698 		goto nomem;
1699 
1700 	btf->resolved_sizes = resolved_sizes;
1701 	btf->resolved_ids = resolved_ids;
1702 	env->visit_states = visit_states;
1703 
1704 	return 0;
1705 
1706 nomem:
1707 	kvfree(resolved_sizes);
1708 	kvfree(resolved_ids);
1709 	kvfree(visit_states);
1710 	return -ENOMEM;
1711 }
1712 
1713 static void btf_verifier_env_free(struct btf_verifier_env *env)
1714 {
1715 	kvfree(env->visit_states);
1716 	kfree(env);
1717 }
1718 
1719 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1720 				     const struct btf_type *next_type)
1721 {
1722 	switch (env->resolve_mode) {
1723 	case RESOLVE_TBD:
1724 		/* int, enum or void is a sink */
1725 		return !btf_type_needs_resolve(next_type);
1726 	case RESOLVE_PTR:
1727 		/* int, enum, void, struct, array, func or func_proto is a sink
1728 		 * for ptr
1729 		 */
1730 		return !btf_type_is_modifier(next_type) &&
1731 			!btf_type_is_ptr(next_type);
1732 	case RESOLVE_STRUCT_OR_ARRAY:
1733 		/* int, enum, void, ptr, func or func_proto is a sink
1734 		 * for struct and array
1735 		 */
1736 		return !btf_type_is_modifier(next_type) &&
1737 			!btf_type_is_array(next_type) &&
1738 			!btf_type_is_struct(next_type);
1739 	default:
1740 		BUG();
1741 	}
1742 }
1743 
1744 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1745 				 u32 type_id)
1746 {
1747 	/* base BTF types should be resolved by now */
1748 	if (type_id < env->btf->start_id)
1749 		return true;
1750 
1751 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1752 }
1753 
1754 static int env_stack_push(struct btf_verifier_env *env,
1755 			  const struct btf_type *t, u32 type_id)
1756 {
1757 	const struct btf *btf = env->btf;
1758 	struct resolve_vertex *v;
1759 
1760 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1761 		return -E2BIG;
1762 
1763 	if (type_id < btf->start_id
1764 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1765 		return -EEXIST;
1766 
1767 	env->visit_states[type_id - btf->start_id] = VISITED;
1768 
1769 	v = &env->stack[env->top_stack++];
1770 	v->t = t;
1771 	v->type_id = type_id;
1772 	v->next_member = 0;
1773 
1774 	if (env->resolve_mode == RESOLVE_TBD) {
1775 		if (btf_type_is_ptr(t))
1776 			env->resolve_mode = RESOLVE_PTR;
1777 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1778 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 static void env_stack_set_next_member(struct btf_verifier_env *env,
1785 				      u16 next_member)
1786 {
1787 	env->stack[env->top_stack - 1].next_member = next_member;
1788 }
1789 
1790 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1791 				   u32 resolved_type_id,
1792 				   u32 resolved_size)
1793 {
1794 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1795 	struct btf *btf = env->btf;
1796 
1797 	type_id -= btf->start_id; /* adjust to local type id */
1798 	btf->resolved_sizes[type_id] = resolved_size;
1799 	btf->resolved_ids[type_id] = resolved_type_id;
1800 	env->visit_states[type_id] = RESOLVED;
1801 }
1802 
1803 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1804 {
1805 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1806 }
1807 
1808 /* Resolve the size of a passed-in "type"
1809  *
1810  * type: is an array (e.g. u32 array[x][y])
1811  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1812  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1813  *             corresponds to the return type.
1814  * *elem_type: u32
1815  * *elem_id: id of u32
1816  * *total_nelems: (x * y).  Hence, individual elem size is
1817  *                (*type_size / *total_nelems)
1818  * *type_id: id of type if it's changed within the function, 0 if not
1819  *
1820  * type: is not an array (e.g. const struct X)
1821  * return type: type "struct X"
1822  * *type_size: sizeof(struct X)
1823  * *elem_type: same as return type ("struct X")
1824  * *elem_id: 0
1825  * *total_nelems: 1
1826  * *type_id: id of type if it's changed within the function, 0 if not
1827  */
1828 static const struct btf_type *
1829 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1830 		   u32 *type_size, const struct btf_type **elem_type,
1831 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1832 {
1833 	const struct btf_type *array_type = NULL;
1834 	const struct btf_array *array = NULL;
1835 	u32 i, size, nelems = 1, id = 0;
1836 
1837 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1838 		switch (BTF_INFO_KIND(type->info)) {
1839 		/* type->size can be used */
1840 		case BTF_KIND_INT:
1841 		case BTF_KIND_STRUCT:
1842 		case BTF_KIND_UNION:
1843 		case BTF_KIND_ENUM:
1844 		case BTF_KIND_FLOAT:
1845 		case BTF_KIND_ENUM64:
1846 			size = type->size;
1847 			goto resolved;
1848 
1849 		case BTF_KIND_PTR:
1850 			size = sizeof(void *);
1851 			goto resolved;
1852 
1853 		/* Modifiers */
1854 		case BTF_KIND_TYPEDEF:
1855 		case BTF_KIND_VOLATILE:
1856 		case BTF_KIND_CONST:
1857 		case BTF_KIND_RESTRICT:
1858 		case BTF_KIND_TYPE_TAG:
1859 			id = type->type;
1860 			type = btf_type_by_id(btf, type->type);
1861 			break;
1862 
1863 		case BTF_KIND_ARRAY:
1864 			if (!array_type)
1865 				array_type = type;
1866 			array = btf_type_array(type);
1867 			if (nelems && array->nelems > U32_MAX / nelems)
1868 				return ERR_PTR(-EINVAL);
1869 			nelems *= array->nelems;
1870 			type = btf_type_by_id(btf, array->type);
1871 			break;
1872 
1873 		/* type without size */
1874 		default:
1875 			return ERR_PTR(-EINVAL);
1876 		}
1877 	}
1878 
1879 	return ERR_PTR(-EINVAL);
1880 
1881 resolved:
1882 	if (nelems && size > U32_MAX / nelems)
1883 		return ERR_PTR(-EINVAL);
1884 
1885 	*type_size = nelems * size;
1886 	if (total_nelems)
1887 		*total_nelems = nelems;
1888 	if (elem_type)
1889 		*elem_type = type;
1890 	if (elem_id)
1891 		*elem_id = array ? array->type : 0;
1892 	if (type_id && id)
1893 		*type_id = id;
1894 
1895 	return array_type ? : type;
1896 }
1897 
1898 const struct btf_type *
1899 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1900 		 u32 *type_size)
1901 {
1902 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1903 }
1904 
1905 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1906 {
1907 	while (type_id < btf->start_id)
1908 		btf = btf->base_btf;
1909 
1910 	return btf->resolved_ids[type_id - btf->start_id];
1911 }
1912 
1913 /* The input param "type_id" must point to a needs_resolve type */
1914 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1915 						  u32 *type_id)
1916 {
1917 	*type_id = btf_resolved_type_id(btf, *type_id);
1918 	return btf_type_by_id(btf, *type_id);
1919 }
1920 
1921 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1922 {
1923 	while (type_id < btf->start_id)
1924 		btf = btf->base_btf;
1925 
1926 	return btf->resolved_sizes[type_id - btf->start_id];
1927 }
1928 
1929 const struct btf_type *btf_type_id_size(const struct btf *btf,
1930 					u32 *type_id, u32 *ret_size)
1931 {
1932 	const struct btf_type *size_type;
1933 	u32 size_type_id = *type_id;
1934 	u32 size = 0;
1935 
1936 	size_type = btf_type_by_id(btf, size_type_id);
1937 	if (btf_type_nosize_or_null(size_type))
1938 		return NULL;
1939 
1940 	if (btf_type_has_size(size_type)) {
1941 		size = size_type->size;
1942 	} else if (btf_type_is_array(size_type)) {
1943 		size = btf_resolved_type_size(btf, size_type_id);
1944 	} else if (btf_type_is_ptr(size_type)) {
1945 		size = sizeof(void *);
1946 	} else {
1947 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1948 				 !btf_type_is_var(size_type)))
1949 			return NULL;
1950 
1951 		size_type_id = btf_resolved_type_id(btf, size_type_id);
1952 		size_type = btf_type_by_id(btf, size_type_id);
1953 		if (btf_type_nosize_or_null(size_type))
1954 			return NULL;
1955 		else if (btf_type_has_size(size_type))
1956 			size = size_type->size;
1957 		else if (btf_type_is_array(size_type))
1958 			size = btf_resolved_type_size(btf, size_type_id);
1959 		else if (btf_type_is_ptr(size_type))
1960 			size = sizeof(void *);
1961 		else
1962 			return NULL;
1963 	}
1964 
1965 	*type_id = size_type_id;
1966 	if (ret_size)
1967 		*ret_size = size;
1968 
1969 	return size_type;
1970 }
1971 
1972 static int btf_df_check_member(struct btf_verifier_env *env,
1973 			       const struct btf_type *struct_type,
1974 			       const struct btf_member *member,
1975 			       const struct btf_type *member_type)
1976 {
1977 	btf_verifier_log_basic(env, struct_type,
1978 			       "Unsupported check_member");
1979 	return -EINVAL;
1980 }
1981 
1982 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1983 				     const struct btf_type *struct_type,
1984 				     const struct btf_member *member,
1985 				     const struct btf_type *member_type)
1986 {
1987 	btf_verifier_log_basic(env, struct_type,
1988 			       "Unsupported check_kflag_member");
1989 	return -EINVAL;
1990 }
1991 
1992 /* Used for ptr, array struct/union and float type members.
1993  * int, enum and modifier types have their specific callback functions.
1994  */
1995 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1996 					  const struct btf_type *struct_type,
1997 					  const struct btf_member *member,
1998 					  const struct btf_type *member_type)
1999 {
2000 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2001 		btf_verifier_log_member(env, struct_type, member,
2002 					"Invalid member bitfield_size");
2003 		return -EINVAL;
2004 	}
2005 
2006 	/* bitfield size is 0, so member->offset represents bit offset only.
2007 	 * It is safe to call non kflag check_member variants.
2008 	 */
2009 	return btf_type_ops(member_type)->check_member(env, struct_type,
2010 						       member,
2011 						       member_type);
2012 }
2013 
2014 static int btf_df_resolve(struct btf_verifier_env *env,
2015 			  const struct resolve_vertex *v)
2016 {
2017 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2018 	return -EINVAL;
2019 }
2020 
2021 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2022 			u32 type_id, void *data, u8 bits_offsets,
2023 			struct btf_show *show)
2024 {
2025 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2026 }
2027 
2028 static int btf_int_check_member(struct btf_verifier_env *env,
2029 				const struct btf_type *struct_type,
2030 				const struct btf_member *member,
2031 				const struct btf_type *member_type)
2032 {
2033 	u32 int_data = btf_type_int(member_type);
2034 	u32 struct_bits_off = member->offset;
2035 	u32 struct_size = struct_type->size;
2036 	u32 nr_copy_bits;
2037 	u32 bytes_offset;
2038 
2039 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2040 		btf_verifier_log_member(env, struct_type, member,
2041 					"bits_offset exceeds U32_MAX");
2042 		return -EINVAL;
2043 	}
2044 
2045 	struct_bits_off += BTF_INT_OFFSET(int_data);
2046 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2047 	nr_copy_bits = BTF_INT_BITS(int_data) +
2048 		BITS_PER_BYTE_MASKED(struct_bits_off);
2049 
2050 	if (nr_copy_bits > BITS_PER_U128) {
2051 		btf_verifier_log_member(env, struct_type, member,
2052 					"nr_copy_bits exceeds 128");
2053 		return -EINVAL;
2054 	}
2055 
2056 	if (struct_size < bytes_offset ||
2057 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2058 		btf_verifier_log_member(env, struct_type, member,
2059 					"Member exceeds struct_size");
2060 		return -EINVAL;
2061 	}
2062 
2063 	return 0;
2064 }
2065 
2066 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2067 				      const struct btf_type *struct_type,
2068 				      const struct btf_member *member,
2069 				      const struct btf_type *member_type)
2070 {
2071 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2072 	u32 int_data = btf_type_int(member_type);
2073 	u32 struct_size = struct_type->size;
2074 	u32 nr_copy_bits;
2075 
2076 	/* a regular int type is required for the kflag int member */
2077 	if (!btf_type_int_is_regular(member_type)) {
2078 		btf_verifier_log_member(env, struct_type, member,
2079 					"Invalid member base type");
2080 		return -EINVAL;
2081 	}
2082 
2083 	/* check sanity of bitfield size */
2084 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2085 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2086 	nr_int_data_bits = BTF_INT_BITS(int_data);
2087 	if (!nr_bits) {
2088 		/* Not a bitfield member, member offset must be at byte
2089 		 * boundary.
2090 		 */
2091 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2092 			btf_verifier_log_member(env, struct_type, member,
2093 						"Invalid member offset");
2094 			return -EINVAL;
2095 		}
2096 
2097 		nr_bits = nr_int_data_bits;
2098 	} else if (nr_bits > nr_int_data_bits) {
2099 		btf_verifier_log_member(env, struct_type, member,
2100 					"Invalid member bitfield_size");
2101 		return -EINVAL;
2102 	}
2103 
2104 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2105 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2106 	if (nr_copy_bits > BITS_PER_U128) {
2107 		btf_verifier_log_member(env, struct_type, member,
2108 					"nr_copy_bits exceeds 128");
2109 		return -EINVAL;
2110 	}
2111 
2112 	if (struct_size < bytes_offset ||
2113 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2114 		btf_verifier_log_member(env, struct_type, member,
2115 					"Member exceeds struct_size");
2116 		return -EINVAL;
2117 	}
2118 
2119 	return 0;
2120 }
2121 
2122 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2123 			      const struct btf_type *t,
2124 			      u32 meta_left)
2125 {
2126 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2127 	u16 encoding;
2128 
2129 	if (meta_left < meta_needed) {
2130 		btf_verifier_log_basic(env, t,
2131 				       "meta_left:%u meta_needed:%u",
2132 				       meta_left, meta_needed);
2133 		return -EINVAL;
2134 	}
2135 
2136 	if (btf_type_vlen(t)) {
2137 		btf_verifier_log_type(env, t, "vlen != 0");
2138 		return -EINVAL;
2139 	}
2140 
2141 	if (btf_type_kflag(t)) {
2142 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2143 		return -EINVAL;
2144 	}
2145 
2146 	int_data = btf_type_int(t);
2147 	if (int_data & ~BTF_INT_MASK) {
2148 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2149 				       int_data);
2150 		return -EINVAL;
2151 	}
2152 
2153 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2154 
2155 	if (nr_bits > BITS_PER_U128) {
2156 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2157 				      BITS_PER_U128);
2158 		return -EINVAL;
2159 	}
2160 
2161 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2162 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2163 		return -EINVAL;
2164 	}
2165 
2166 	/*
2167 	 * Only one of the encoding bits is allowed and it
2168 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2169 	 * Multiple bits can be allowed later if it is found
2170 	 * to be insufficient.
2171 	 */
2172 	encoding = BTF_INT_ENCODING(int_data);
2173 	if (encoding &&
2174 	    encoding != BTF_INT_SIGNED &&
2175 	    encoding != BTF_INT_CHAR &&
2176 	    encoding != BTF_INT_BOOL) {
2177 		btf_verifier_log_type(env, t, "Unsupported encoding");
2178 		return -ENOTSUPP;
2179 	}
2180 
2181 	btf_verifier_log_type(env, t, NULL);
2182 
2183 	return meta_needed;
2184 }
2185 
2186 static void btf_int_log(struct btf_verifier_env *env,
2187 			const struct btf_type *t)
2188 {
2189 	int int_data = btf_type_int(t);
2190 
2191 	btf_verifier_log(env,
2192 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2193 			 t->size, BTF_INT_OFFSET(int_data),
2194 			 BTF_INT_BITS(int_data),
2195 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2196 }
2197 
2198 static void btf_int128_print(struct btf_show *show, void *data)
2199 {
2200 	/* data points to a __int128 number.
2201 	 * Suppose
2202 	 *     int128_num = *(__int128 *)data;
2203 	 * The below formulas shows what upper_num and lower_num represents:
2204 	 *     upper_num = int128_num >> 64;
2205 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2206 	 */
2207 	u64 upper_num, lower_num;
2208 
2209 #ifdef __BIG_ENDIAN_BITFIELD
2210 	upper_num = *(u64 *)data;
2211 	lower_num = *(u64 *)(data + 8);
2212 #else
2213 	upper_num = *(u64 *)(data + 8);
2214 	lower_num = *(u64 *)data;
2215 #endif
2216 	if (upper_num == 0)
2217 		btf_show_type_value(show, "0x%llx", lower_num);
2218 	else
2219 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2220 				     lower_num);
2221 }
2222 
2223 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2224 			     u16 right_shift_bits)
2225 {
2226 	u64 upper_num, lower_num;
2227 
2228 #ifdef __BIG_ENDIAN_BITFIELD
2229 	upper_num = print_num[0];
2230 	lower_num = print_num[1];
2231 #else
2232 	upper_num = print_num[1];
2233 	lower_num = print_num[0];
2234 #endif
2235 
2236 	/* shake out un-needed bits by shift/or operations */
2237 	if (left_shift_bits >= 64) {
2238 		upper_num = lower_num << (left_shift_bits - 64);
2239 		lower_num = 0;
2240 	} else {
2241 		upper_num = (upper_num << left_shift_bits) |
2242 			    (lower_num >> (64 - left_shift_bits));
2243 		lower_num = lower_num << left_shift_bits;
2244 	}
2245 
2246 	if (right_shift_bits >= 64) {
2247 		lower_num = upper_num >> (right_shift_bits - 64);
2248 		upper_num = 0;
2249 	} else {
2250 		lower_num = (lower_num >> right_shift_bits) |
2251 			    (upper_num << (64 - right_shift_bits));
2252 		upper_num = upper_num >> right_shift_bits;
2253 	}
2254 
2255 #ifdef __BIG_ENDIAN_BITFIELD
2256 	print_num[0] = upper_num;
2257 	print_num[1] = lower_num;
2258 #else
2259 	print_num[0] = lower_num;
2260 	print_num[1] = upper_num;
2261 #endif
2262 }
2263 
2264 static void btf_bitfield_show(void *data, u8 bits_offset,
2265 			      u8 nr_bits, struct btf_show *show)
2266 {
2267 	u16 left_shift_bits, right_shift_bits;
2268 	u8 nr_copy_bytes;
2269 	u8 nr_copy_bits;
2270 	u64 print_num[2] = {};
2271 
2272 	nr_copy_bits = nr_bits + bits_offset;
2273 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2274 
2275 	memcpy(print_num, data, nr_copy_bytes);
2276 
2277 #ifdef __BIG_ENDIAN_BITFIELD
2278 	left_shift_bits = bits_offset;
2279 #else
2280 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2281 #endif
2282 	right_shift_bits = BITS_PER_U128 - nr_bits;
2283 
2284 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2285 	btf_int128_print(show, print_num);
2286 }
2287 
2288 
2289 static void btf_int_bits_show(const struct btf *btf,
2290 			      const struct btf_type *t,
2291 			      void *data, u8 bits_offset,
2292 			      struct btf_show *show)
2293 {
2294 	u32 int_data = btf_type_int(t);
2295 	u8 nr_bits = BTF_INT_BITS(int_data);
2296 	u8 total_bits_offset;
2297 
2298 	/*
2299 	 * bits_offset is at most 7.
2300 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2301 	 */
2302 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2303 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2304 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2305 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2306 }
2307 
2308 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2309 			 u32 type_id, void *data, u8 bits_offset,
2310 			 struct btf_show *show)
2311 {
2312 	u32 int_data = btf_type_int(t);
2313 	u8 encoding = BTF_INT_ENCODING(int_data);
2314 	bool sign = encoding & BTF_INT_SIGNED;
2315 	u8 nr_bits = BTF_INT_BITS(int_data);
2316 	void *safe_data;
2317 
2318 	safe_data = btf_show_start_type(show, t, type_id, data);
2319 	if (!safe_data)
2320 		return;
2321 
2322 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2323 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2324 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2325 		goto out;
2326 	}
2327 
2328 	switch (nr_bits) {
2329 	case 128:
2330 		btf_int128_print(show, safe_data);
2331 		break;
2332 	case 64:
2333 		if (sign)
2334 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2335 		else
2336 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2337 		break;
2338 	case 32:
2339 		if (sign)
2340 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2341 		else
2342 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2343 		break;
2344 	case 16:
2345 		if (sign)
2346 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2347 		else
2348 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2349 		break;
2350 	case 8:
2351 		if (show->state.array_encoding == BTF_INT_CHAR) {
2352 			/* check for null terminator */
2353 			if (show->state.array_terminated)
2354 				break;
2355 			if (*(char *)data == '\0') {
2356 				show->state.array_terminated = 1;
2357 				break;
2358 			}
2359 			if (isprint(*(char *)data)) {
2360 				btf_show_type_value(show, "'%c'",
2361 						    *(char *)safe_data);
2362 				break;
2363 			}
2364 		}
2365 		if (sign)
2366 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2367 		else
2368 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2369 		break;
2370 	default:
2371 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2372 		break;
2373 	}
2374 out:
2375 	btf_show_end_type(show);
2376 }
2377 
2378 static const struct btf_kind_operations int_ops = {
2379 	.check_meta = btf_int_check_meta,
2380 	.resolve = btf_df_resolve,
2381 	.check_member = btf_int_check_member,
2382 	.check_kflag_member = btf_int_check_kflag_member,
2383 	.log_details = btf_int_log,
2384 	.show = btf_int_show,
2385 };
2386 
2387 static int btf_modifier_check_member(struct btf_verifier_env *env,
2388 				     const struct btf_type *struct_type,
2389 				     const struct btf_member *member,
2390 				     const struct btf_type *member_type)
2391 {
2392 	const struct btf_type *resolved_type;
2393 	u32 resolved_type_id = member->type;
2394 	struct btf_member resolved_member;
2395 	struct btf *btf = env->btf;
2396 
2397 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2398 	if (!resolved_type) {
2399 		btf_verifier_log_member(env, struct_type, member,
2400 					"Invalid member");
2401 		return -EINVAL;
2402 	}
2403 
2404 	resolved_member = *member;
2405 	resolved_member.type = resolved_type_id;
2406 
2407 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2408 							 &resolved_member,
2409 							 resolved_type);
2410 }
2411 
2412 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2413 					   const struct btf_type *struct_type,
2414 					   const struct btf_member *member,
2415 					   const struct btf_type *member_type)
2416 {
2417 	const struct btf_type *resolved_type;
2418 	u32 resolved_type_id = member->type;
2419 	struct btf_member resolved_member;
2420 	struct btf *btf = env->btf;
2421 
2422 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2423 	if (!resolved_type) {
2424 		btf_verifier_log_member(env, struct_type, member,
2425 					"Invalid member");
2426 		return -EINVAL;
2427 	}
2428 
2429 	resolved_member = *member;
2430 	resolved_member.type = resolved_type_id;
2431 
2432 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2433 							       &resolved_member,
2434 							       resolved_type);
2435 }
2436 
2437 static int btf_ptr_check_member(struct btf_verifier_env *env,
2438 				const struct btf_type *struct_type,
2439 				const struct btf_member *member,
2440 				const struct btf_type *member_type)
2441 {
2442 	u32 struct_size, struct_bits_off, bytes_offset;
2443 
2444 	struct_size = struct_type->size;
2445 	struct_bits_off = member->offset;
2446 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2447 
2448 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2449 		btf_verifier_log_member(env, struct_type, member,
2450 					"Member is not byte aligned");
2451 		return -EINVAL;
2452 	}
2453 
2454 	if (struct_size - bytes_offset < sizeof(void *)) {
2455 		btf_verifier_log_member(env, struct_type, member,
2456 					"Member exceeds struct_size");
2457 		return -EINVAL;
2458 	}
2459 
2460 	return 0;
2461 }
2462 
2463 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2464 				   const struct btf_type *t,
2465 				   u32 meta_left)
2466 {
2467 	const char *value;
2468 
2469 	if (btf_type_vlen(t)) {
2470 		btf_verifier_log_type(env, t, "vlen != 0");
2471 		return -EINVAL;
2472 	}
2473 
2474 	if (btf_type_kflag(t)) {
2475 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2476 		return -EINVAL;
2477 	}
2478 
2479 	if (!BTF_TYPE_ID_VALID(t->type)) {
2480 		btf_verifier_log_type(env, t, "Invalid type_id");
2481 		return -EINVAL;
2482 	}
2483 
2484 	/* typedef/type_tag type must have a valid name, and other ref types,
2485 	 * volatile, const, restrict, should have a null name.
2486 	 */
2487 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2488 		if (!t->name_off ||
2489 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2490 			btf_verifier_log_type(env, t, "Invalid name");
2491 			return -EINVAL;
2492 		}
2493 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2494 		value = btf_name_by_offset(env->btf, t->name_off);
2495 		if (!value || !value[0]) {
2496 			btf_verifier_log_type(env, t, "Invalid name");
2497 			return -EINVAL;
2498 		}
2499 	} else {
2500 		if (t->name_off) {
2501 			btf_verifier_log_type(env, t, "Invalid name");
2502 			return -EINVAL;
2503 		}
2504 	}
2505 
2506 	btf_verifier_log_type(env, t, NULL);
2507 
2508 	return 0;
2509 }
2510 
2511 static int btf_modifier_resolve(struct btf_verifier_env *env,
2512 				const struct resolve_vertex *v)
2513 {
2514 	const struct btf_type *t = v->t;
2515 	const struct btf_type *next_type;
2516 	u32 next_type_id = t->type;
2517 	struct btf *btf = env->btf;
2518 
2519 	next_type = btf_type_by_id(btf, next_type_id);
2520 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2521 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2522 		return -EINVAL;
2523 	}
2524 
2525 	if (!env_type_is_resolve_sink(env, next_type) &&
2526 	    !env_type_is_resolved(env, next_type_id))
2527 		return env_stack_push(env, next_type, next_type_id);
2528 
2529 	/* Figure out the resolved next_type_id with size.
2530 	 * They will be stored in the current modifier's
2531 	 * resolved_ids and resolved_sizes such that it can
2532 	 * save us a few type-following when we use it later (e.g. in
2533 	 * pretty print).
2534 	 */
2535 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2536 		if (env_type_is_resolved(env, next_type_id))
2537 			next_type = btf_type_id_resolve(btf, &next_type_id);
2538 
2539 		/* "typedef void new_void", "const void"...etc */
2540 		if (!btf_type_is_void(next_type) &&
2541 		    !btf_type_is_fwd(next_type) &&
2542 		    !btf_type_is_func_proto(next_type)) {
2543 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2544 			return -EINVAL;
2545 		}
2546 	}
2547 
2548 	env_stack_pop_resolved(env, next_type_id, 0);
2549 
2550 	return 0;
2551 }
2552 
2553 static int btf_var_resolve(struct btf_verifier_env *env,
2554 			   const struct resolve_vertex *v)
2555 {
2556 	const struct btf_type *next_type;
2557 	const struct btf_type *t = v->t;
2558 	u32 next_type_id = t->type;
2559 	struct btf *btf = env->btf;
2560 
2561 	next_type = btf_type_by_id(btf, next_type_id);
2562 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2563 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2564 		return -EINVAL;
2565 	}
2566 
2567 	if (!env_type_is_resolve_sink(env, next_type) &&
2568 	    !env_type_is_resolved(env, next_type_id))
2569 		return env_stack_push(env, next_type, next_type_id);
2570 
2571 	if (btf_type_is_modifier(next_type)) {
2572 		const struct btf_type *resolved_type;
2573 		u32 resolved_type_id;
2574 
2575 		resolved_type_id = next_type_id;
2576 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2577 
2578 		if (btf_type_is_ptr(resolved_type) &&
2579 		    !env_type_is_resolve_sink(env, resolved_type) &&
2580 		    !env_type_is_resolved(env, resolved_type_id))
2581 			return env_stack_push(env, resolved_type,
2582 					      resolved_type_id);
2583 	}
2584 
2585 	/* We must resolve to something concrete at this point, no
2586 	 * forward types or similar that would resolve to size of
2587 	 * zero is allowed.
2588 	 */
2589 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2590 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2591 		return -EINVAL;
2592 	}
2593 
2594 	env_stack_pop_resolved(env, next_type_id, 0);
2595 
2596 	return 0;
2597 }
2598 
2599 static int btf_ptr_resolve(struct btf_verifier_env *env,
2600 			   const struct resolve_vertex *v)
2601 {
2602 	const struct btf_type *next_type;
2603 	const struct btf_type *t = v->t;
2604 	u32 next_type_id = t->type;
2605 	struct btf *btf = env->btf;
2606 
2607 	next_type = btf_type_by_id(btf, next_type_id);
2608 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2609 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2610 		return -EINVAL;
2611 	}
2612 
2613 	if (!env_type_is_resolve_sink(env, next_type) &&
2614 	    !env_type_is_resolved(env, next_type_id))
2615 		return env_stack_push(env, next_type, next_type_id);
2616 
2617 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2618 	 * the modifier may have stopped resolving when it was resolved
2619 	 * to a ptr (last-resolved-ptr).
2620 	 *
2621 	 * We now need to continue from the last-resolved-ptr to
2622 	 * ensure the last-resolved-ptr will not referring back to
2623 	 * the current ptr (t).
2624 	 */
2625 	if (btf_type_is_modifier(next_type)) {
2626 		const struct btf_type *resolved_type;
2627 		u32 resolved_type_id;
2628 
2629 		resolved_type_id = next_type_id;
2630 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2631 
2632 		if (btf_type_is_ptr(resolved_type) &&
2633 		    !env_type_is_resolve_sink(env, resolved_type) &&
2634 		    !env_type_is_resolved(env, resolved_type_id))
2635 			return env_stack_push(env, resolved_type,
2636 					      resolved_type_id);
2637 	}
2638 
2639 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2640 		if (env_type_is_resolved(env, next_type_id))
2641 			next_type = btf_type_id_resolve(btf, &next_type_id);
2642 
2643 		if (!btf_type_is_void(next_type) &&
2644 		    !btf_type_is_fwd(next_type) &&
2645 		    !btf_type_is_func_proto(next_type)) {
2646 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2647 			return -EINVAL;
2648 		}
2649 	}
2650 
2651 	env_stack_pop_resolved(env, next_type_id, 0);
2652 
2653 	return 0;
2654 }
2655 
2656 static void btf_modifier_show(const struct btf *btf,
2657 			      const struct btf_type *t,
2658 			      u32 type_id, void *data,
2659 			      u8 bits_offset, struct btf_show *show)
2660 {
2661 	if (btf->resolved_ids)
2662 		t = btf_type_id_resolve(btf, &type_id);
2663 	else
2664 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2665 
2666 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2667 }
2668 
2669 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2670 			 u32 type_id, void *data, u8 bits_offset,
2671 			 struct btf_show *show)
2672 {
2673 	t = btf_type_id_resolve(btf, &type_id);
2674 
2675 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2676 }
2677 
2678 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2679 			 u32 type_id, void *data, u8 bits_offset,
2680 			 struct btf_show *show)
2681 {
2682 	void *safe_data;
2683 
2684 	safe_data = btf_show_start_type(show, t, type_id, data);
2685 	if (!safe_data)
2686 		return;
2687 
2688 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2689 	if (show->flags & BTF_SHOW_PTR_RAW)
2690 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2691 	else
2692 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2693 	btf_show_end_type(show);
2694 }
2695 
2696 static void btf_ref_type_log(struct btf_verifier_env *env,
2697 			     const struct btf_type *t)
2698 {
2699 	btf_verifier_log(env, "type_id=%u", t->type);
2700 }
2701 
2702 static struct btf_kind_operations modifier_ops = {
2703 	.check_meta = btf_ref_type_check_meta,
2704 	.resolve = btf_modifier_resolve,
2705 	.check_member = btf_modifier_check_member,
2706 	.check_kflag_member = btf_modifier_check_kflag_member,
2707 	.log_details = btf_ref_type_log,
2708 	.show = btf_modifier_show,
2709 };
2710 
2711 static struct btf_kind_operations ptr_ops = {
2712 	.check_meta = btf_ref_type_check_meta,
2713 	.resolve = btf_ptr_resolve,
2714 	.check_member = btf_ptr_check_member,
2715 	.check_kflag_member = btf_generic_check_kflag_member,
2716 	.log_details = btf_ref_type_log,
2717 	.show = btf_ptr_show,
2718 };
2719 
2720 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2721 			      const struct btf_type *t,
2722 			      u32 meta_left)
2723 {
2724 	if (btf_type_vlen(t)) {
2725 		btf_verifier_log_type(env, t, "vlen != 0");
2726 		return -EINVAL;
2727 	}
2728 
2729 	if (t->type) {
2730 		btf_verifier_log_type(env, t, "type != 0");
2731 		return -EINVAL;
2732 	}
2733 
2734 	/* fwd type must have a valid name */
2735 	if (!t->name_off ||
2736 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2737 		btf_verifier_log_type(env, t, "Invalid name");
2738 		return -EINVAL;
2739 	}
2740 
2741 	btf_verifier_log_type(env, t, NULL);
2742 
2743 	return 0;
2744 }
2745 
2746 static void btf_fwd_type_log(struct btf_verifier_env *env,
2747 			     const struct btf_type *t)
2748 {
2749 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2750 }
2751 
2752 static struct btf_kind_operations fwd_ops = {
2753 	.check_meta = btf_fwd_check_meta,
2754 	.resolve = btf_df_resolve,
2755 	.check_member = btf_df_check_member,
2756 	.check_kflag_member = btf_df_check_kflag_member,
2757 	.log_details = btf_fwd_type_log,
2758 	.show = btf_df_show,
2759 };
2760 
2761 static int btf_array_check_member(struct btf_verifier_env *env,
2762 				  const struct btf_type *struct_type,
2763 				  const struct btf_member *member,
2764 				  const struct btf_type *member_type)
2765 {
2766 	u32 struct_bits_off = member->offset;
2767 	u32 struct_size, bytes_offset;
2768 	u32 array_type_id, array_size;
2769 	struct btf *btf = env->btf;
2770 
2771 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2772 		btf_verifier_log_member(env, struct_type, member,
2773 					"Member is not byte aligned");
2774 		return -EINVAL;
2775 	}
2776 
2777 	array_type_id = member->type;
2778 	btf_type_id_size(btf, &array_type_id, &array_size);
2779 	struct_size = struct_type->size;
2780 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2781 	if (struct_size - bytes_offset < array_size) {
2782 		btf_verifier_log_member(env, struct_type, member,
2783 					"Member exceeds struct_size");
2784 		return -EINVAL;
2785 	}
2786 
2787 	return 0;
2788 }
2789 
2790 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2791 				const struct btf_type *t,
2792 				u32 meta_left)
2793 {
2794 	const struct btf_array *array = btf_type_array(t);
2795 	u32 meta_needed = sizeof(*array);
2796 
2797 	if (meta_left < meta_needed) {
2798 		btf_verifier_log_basic(env, t,
2799 				       "meta_left:%u meta_needed:%u",
2800 				       meta_left, meta_needed);
2801 		return -EINVAL;
2802 	}
2803 
2804 	/* array type should not have a name */
2805 	if (t->name_off) {
2806 		btf_verifier_log_type(env, t, "Invalid name");
2807 		return -EINVAL;
2808 	}
2809 
2810 	if (btf_type_vlen(t)) {
2811 		btf_verifier_log_type(env, t, "vlen != 0");
2812 		return -EINVAL;
2813 	}
2814 
2815 	if (btf_type_kflag(t)) {
2816 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2817 		return -EINVAL;
2818 	}
2819 
2820 	if (t->size) {
2821 		btf_verifier_log_type(env, t, "size != 0");
2822 		return -EINVAL;
2823 	}
2824 
2825 	/* Array elem type and index type cannot be in type void,
2826 	 * so !array->type and !array->index_type are not allowed.
2827 	 */
2828 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2829 		btf_verifier_log_type(env, t, "Invalid elem");
2830 		return -EINVAL;
2831 	}
2832 
2833 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2834 		btf_verifier_log_type(env, t, "Invalid index");
2835 		return -EINVAL;
2836 	}
2837 
2838 	btf_verifier_log_type(env, t, NULL);
2839 
2840 	return meta_needed;
2841 }
2842 
2843 static int btf_array_resolve(struct btf_verifier_env *env,
2844 			     const struct resolve_vertex *v)
2845 {
2846 	const struct btf_array *array = btf_type_array(v->t);
2847 	const struct btf_type *elem_type, *index_type;
2848 	u32 elem_type_id, index_type_id;
2849 	struct btf *btf = env->btf;
2850 	u32 elem_size;
2851 
2852 	/* Check array->index_type */
2853 	index_type_id = array->index_type;
2854 	index_type = btf_type_by_id(btf, index_type_id);
2855 	if (btf_type_nosize_or_null(index_type) ||
2856 	    btf_type_is_resolve_source_only(index_type)) {
2857 		btf_verifier_log_type(env, v->t, "Invalid index");
2858 		return -EINVAL;
2859 	}
2860 
2861 	if (!env_type_is_resolve_sink(env, index_type) &&
2862 	    !env_type_is_resolved(env, index_type_id))
2863 		return env_stack_push(env, index_type, index_type_id);
2864 
2865 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2866 	if (!index_type || !btf_type_is_int(index_type) ||
2867 	    !btf_type_int_is_regular(index_type)) {
2868 		btf_verifier_log_type(env, v->t, "Invalid index");
2869 		return -EINVAL;
2870 	}
2871 
2872 	/* Check array->type */
2873 	elem_type_id = array->type;
2874 	elem_type = btf_type_by_id(btf, elem_type_id);
2875 	if (btf_type_nosize_or_null(elem_type) ||
2876 	    btf_type_is_resolve_source_only(elem_type)) {
2877 		btf_verifier_log_type(env, v->t,
2878 				      "Invalid elem");
2879 		return -EINVAL;
2880 	}
2881 
2882 	if (!env_type_is_resolve_sink(env, elem_type) &&
2883 	    !env_type_is_resolved(env, elem_type_id))
2884 		return env_stack_push(env, elem_type, elem_type_id);
2885 
2886 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2887 	if (!elem_type) {
2888 		btf_verifier_log_type(env, v->t, "Invalid elem");
2889 		return -EINVAL;
2890 	}
2891 
2892 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2893 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2894 		return -EINVAL;
2895 	}
2896 
2897 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2898 		btf_verifier_log_type(env, v->t,
2899 				      "Array size overflows U32_MAX");
2900 		return -EINVAL;
2901 	}
2902 
2903 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2904 
2905 	return 0;
2906 }
2907 
2908 static void btf_array_log(struct btf_verifier_env *env,
2909 			  const struct btf_type *t)
2910 {
2911 	const struct btf_array *array = btf_type_array(t);
2912 
2913 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2914 			 array->type, array->index_type, array->nelems);
2915 }
2916 
2917 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2918 			     u32 type_id, void *data, u8 bits_offset,
2919 			     struct btf_show *show)
2920 {
2921 	const struct btf_array *array = btf_type_array(t);
2922 	const struct btf_kind_operations *elem_ops;
2923 	const struct btf_type *elem_type;
2924 	u32 i, elem_size = 0, elem_type_id;
2925 	u16 encoding = 0;
2926 
2927 	elem_type_id = array->type;
2928 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2929 	if (elem_type && btf_type_has_size(elem_type))
2930 		elem_size = elem_type->size;
2931 
2932 	if (elem_type && btf_type_is_int(elem_type)) {
2933 		u32 int_type = btf_type_int(elem_type);
2934 
2935 		encoding = BTF_INT_ENCODING(int_type);
2936 
2937 		/*
2938 		 * BTF_INT_CHAR encoding never seems to be set for
2939 		 * char arrays, so if size is 1 and element is
2940 		 * printable as a char, we'll do that.
2941 		 */
2942 		if (elem_size == 1)
2943 			encoding = BTF_INT_CHAR;
2944 	}
2945 
2946 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2947 		return;
2948 
2949 	if (!elem_type)
2950 		goto out;
2951 	elem_ops = btf_type_ops(elem_type);
2952 
2953 	for (i = 0; i < array->nelems; i++) {
2954 
2955 		btf_show_start_array_member(show);
2956 
2957 		elem_ops->show(btf, elem_type, elem_type_id, data,
2958 			       bits_offset, show);
2959 		data += elem_size;
2960 
2961 		btf_show_end_array_member(show);
2962 
2963 		if (show->state.array_terminated)
2964 			break;
2965 	}
2966 out:
2967 	btf_show_end_array_type(show);
2968 }
2969 
2970 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2971 			   u32 type_id, void *data, u8 bits_offset,
2972 			   struct btf_show *show)
2973 {
2974 	const struct btf_member *m = show->state.member;
2975 
2976 	/*
2977 	 * First check if any members would be shown (are non-zero).
2978 	 * See comments above "struct btf_show" definition for more
2979 	 * details on how this works at a high-level.
2980 	 */
2981 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2982 		if (!show->state.depth_check) {
2983 			show->state.depth_check = show->state.depth + 1;
2984 			show->state.depth_to_show = 0;
2985 		}
2986 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
2987 		show->state.member = m;
2988 
2989 		if (show->state.depth_check != show->state.depth + 1)
2990 			return;
2991 		show->state.depth_check = 0;
2992 
2993 		if (show->state.depth_to_show <= show->state.depth)
2994 			return;
2995 		/*
2996 		 * Reaching here indicates we have recursed and found
2997 		 * non-zero array member(s).
2998 		 */
2999 	}
3000 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3001 }
3002 
3003 static struct btf_kind_operations array_ops = {
3004 	.check_meta = btf_array_check_meta,
3005 	.resolve = btf_array_resolve,
3006 	.check_member = btf_array_check_member,
3007 	.check_kflag_member = btf_generic_check_kflag_member,
3008 	.log_details = btf_array_log,
3009 	.show = btf_array_show,
3010 };
3011 
3012 static int btf_struct_check_member(struct btf_verifier_env *env,
3013 				   const struct btf_type *struct_type,
3014 				   const struct btf_member *member,
3015 				   const struct btf_type *member_type)
3016 {
3017 	u32 struct_bits_off = member->offset;
3018 	u32 struct_size, bytes_offset;
3019 
3020 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3021 		btf_verifier_log_member(env, struct_type, member,
3022 					"Member is not byte aligned");
3023 		return -EINVAL;
3024 	}
3025 
3026 	struct_size = struct_type->size;
3027 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3028 	if (struct_size - bytes_offset < member_type->size) {
3029 		btf_verifier_log_member(env, struct_type, member,
3030 					"Member exceeds struct_size");
3031 		return -EINVAL;
3032 	}
3033 
3034 	return 0;
3035 }
3036 
3037 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3038 				 const struct btf_type *t,
3039 				 u32 meta_left)
3040 {
3041 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3042 	const struct btf_member *member;
3043 	u32 meta_needed, last_offset;
3044 	struct btf *btf = env->btf;
3045 	u32 struct_size = t->size;
3046 	u32 offset;
3047 	u16 i;
3048 
3049 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3050 	if (meta_left < meta_needed) {
3051 		btf_verifier_log_basic(env, t,
3052 				       "meta_left:%u meta_needed:%u",
3053 				       meta_left, meta_needed);
3054 		return -EINVAL;
3055 	}
3056 
3057 	/* struct type either no name or a valid one */
3058 	if (t->name_off &&
3059 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3060 		btf_verifier_log_type(env, t, "Invalid name");
3061 		return -EINVAL;
3062 	}
3063 
3064 	btf_verifier_log_type(env, t, NULL);
3065 
3066 	last_offset = 0;
3067 	for_each_member(i, t, member) {
3068 		if (!btf_name_offset_valid(btf, member->name_off)) {
3069 			btf_verifier_log_member(env, t, member,
3070 						"Invalid member name_offset:%u",
3071 						member->name_off);
3072 			return -EINVAL;
3073 		}
3074 
3075 		/* struct member either no name or a valid one */
3076 		if (member->name_off &&
3077 		    !btf_name_valid_identifier(btf, member->name_off)) {
3078 			btf_verifier_log_member(env, t, member, "Invalid name");
3079 			return -EINVAL;
3080 		}
3081 		/* A member cannot be in type void */
3082 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3083 			btf_verifier_log_member(env, t, member,
3084 						"Invalid type_id");
3085 			return -EINVAL;
3086 		}
3087 
3088 		offset = __btf_member_bit_offset(t, member);
3089 		if (is_union && offset) {
3090 			btf_verifier_log_member(env, t, member,
3091 						"Invalid member bits_offset");
3092 			return -EINVAL;
3093 		}
3094 
3095 		/*
3096 		 * ">" instead of ">=" because the last member could be
3097 		 * "char a[0];"
3098 		 */
3099 		if (last_offset > offset) {
3100 			btf_verifier_log_member(env, t, member,
3101 						"Invalid member bits_offset");
3102 			return -EINVAL;
3103 		}
3104 
3105 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3106 			btf_verifier_log_member(env, t, member,
3107 						"Member bits_offset exceeds its struct size");
3108 			return -EINVAL;
3109 		}
3110 
3111 		btf_verifier_log_member(env, t, member, NULL);
3112 		last_offset = offset;
3113 	}
3114 
3115 	return meta_needed;
3116 }
3117 
3118 static int btf_struct_resolve(struct btf_verifier_env *env,
3119 			      const struct resolve_vertex *v)
3120 {
3121 	const struct btf_member *member;
3122 	int err;
3123 	u16 i;
3124 
3125 	/* Before continue resolving the next_member,
3126 	 * ensure the last member is indeed resolved to a
3127 	 * type with size info.
3128 	 */
3129 	if (v->next_member) {
3130 		const struct btf_type *last_member_type;
3131 		const struct btf_member *last_member;
3132 		u16 last_member_type_id;
3133 
3134 		last_member = btf_type_member(v->t) + v->next_member - 1;
3135 		last_member_type_id = last_member->type;
3136 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3137 						       last_member_type_id)))
3138 			return -EINVAL;
3139 
3140 		last_member_type = btf_type_by_id(env->btf,
3141 						  last_member_type_id);
3142 		if (btf_type_kflag(v->t))
3143 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3144 								last_member,
3145 								last_member_type);
3146 		else
3147 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3148 								last_member,
3149 								last_member_type);
3150 		if (err)
3151 			return err;
3152 	}
3153 
3154 	for_each_member_from(i, v->next_member, v->t, member) {
3155 		u32 member_type_id = member->type;
3156 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3157 								member_type_id);
3158 
3159 		if (btf_type_nosize_or_null(member_type) ||
3160 		    btf_type_is_resolve_source_only(member_type)) {
3161 			btf_verifier_log_member(env, v->t, member,
3162 						"Invalid member");
3163 			return -EINVAL;
3164 		}
3165 
3166 		if (!env_type_is_resolve_sink(env, member_type) &&
3167 		    !env_type_is_resolved(env, member_type_id)) {
3168 			env_stack_set_next_member(env, i + 1);
3169 			return env_stack_push(env, member_type, member_type_id);
3170 		}
3171 
3172 		if (btf_type_kflag(v->t))
3173 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3174 									    member,
3175 									    member_type);
3176 		else
3177 			err = btf_type_ops(member_type)->check_member(env, v->t,
3178 								      member,
3179 								      member_type);
3180 		if (err)
3181 			return err;
3182 	}
3183 
3184 	env_stack_pop_resolved(env, 0, 0);
3185 
3186 	return 0;
3187 }
3188 
3189 static void btf_struct_log(struct btf_verifier_env *env,
3190 			   const struct btf_type *t)
3191 {
3192 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3193 }
3194 
3195 enum btf_field_type {
3196 	BTF_FIELD_SPIN_LOCK,
3197 	BTF_FIELD_TIMER,
3198 	BTF_FIELD_KPTR,
3199 };
3200 
3201 enum {
3202 	BTF_FIELD_IGNORE = 0,
3203 	BTF_FIELD_FOUND  = 1,
3204 };
3205 
3206 struct btf_field_info {
3207 	u32 type_id;
3208 	u32 off;
3209 	enum bpf_kptr_type type;
3210 };
3211 
3212 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3213 			   u32 off, int sz, struct btf_field_info *info)
3214 {
3215 	if (!__btf_type_is_struct(t))
3216 		return BTF_FIELD_IGNORE;
3217 	if (t->size != sz)
3218 		return BTF_FIELD_IGNORE;
3219 	info->off = off;
3220 	return BTF_FIELD_FOUND;
3221 }
3222 
3223 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3224 			 u32 off, int sz, struct btf_field_info *info)
3225 {
3226 	enum bpf_kptr_type type;
3227 	u32 res_id;
3228 
3229 	/* For PTR, sz is always == 8 */
3230 	if (!btf_type_is_ptr(t))
3231 		return BTF_FIELD_IGNORE;
3232 	t = btf_type_by_id(btf, t->type);
3233 
3234 	if (!btf_type_is_type_tag(t))
3235 		return BTF_FIELD_IGNORE;
3236 	/* Reject extra tags */
3237 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3238 		return -EINVAL;
3239 	if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3240 		type = BPF_KPTR_UNREF;
3241 	else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off)))
3242 		type = BPF_KPTR_REF;
3243 	else
3244 		return -EINVAL;
3245 
3246 	/* Get the base type */
3247 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3248 	/* Only pointer to struct is allowed */
3249 	if (!__btf_type_is_struct(t))
3250 		return -EINVAL;
3251 
3252 	info->type_id = res_id;
3253 	info->off = off;
3254 	info->type = type;
3255 	return BTF_FIELD_FOUND;
3256 }
3257 
3258 static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
3259 				 const char *name, int sz, int align,
3260 				 enum btf_field_type field_type,
3261 				 struct btf_field_info *info, int info_cnt)
3262 {
3263 	const struct btf_member *member;
3264 	struct btf_field_info tmp;
3265 	int ret, idx = 0;
3266 	u32 i, off;
3267 
3268 	for_each_member(i, t, member) {
3269 		const struct btf_type *member_type = btf_type_by_id(btf,
3270 								    member->type);
3271 
3272 		if (name && strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
3273 			continue;
3274 
3275 		off = __btf_member_bit_offset(t, member);
3276 		if (off % 8)
3277 			/* valid C code cannot generate such BTF */
3278 			return -EINVAL;
3279 		off /= 8;
3280 		if (off % align)
3281 			return -EINVAL;
3282 
3283 		switch (field_type) {
3284 		case BTF_FIELD_SPIN_LOCK:
3285 		case BTF_FIELD_TIMER:
3286 			ret = btf_find_struct(btf, member_type, off, sz,
3287 					      idx < info_cnt ? &info[idx] : &tmp);
3288 			if (ret < 0)
3289 				return ret;
3290 			break;
3291 		case BTF_FIELD_KPTR:
3292 			ret = btf_find_kptr(btf, member_type, off, sz,
3293 					    idx < info_cnt ? &info[idx] : &tmp);
3294 			if (ret < 0)
3295 				return ret;
3296 			break;
3297 		default:
3298 			return -EFAULT;
3299 		}
3300 
3301 		if (ret == BTF_FIELD_IGNORE)
3302 			continue;
3303 		if (idx >= info_cnt)
3304 			return -E2BIG;
3305 		++idx;
3306 	}
3307 	return idx;
3308 }
3309 
3310 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3311 				const char *name, int sz, int align,
3312 				enum btf_field_type field_type,
3313 				struct btf_field_info *info, int info_cnt)
3314 {
3315 	const struct btf_var_secinfo *vsi;
3316 	struct btf_field_info tmp;
3317 	int ret, idx = 0;
3318 	u32 i, off;
3319 
3320 	for_each_vsi(i, t, vsi) {
3321 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3322 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3323 
3324 		off = vsi->offset;
3325 
3326 		if (name && strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
3327 			continue;
3328 		if (vsi->size != sz)
3329 			continue;
3330 		if (off % align)
3331 			return -EINVAL;
3332 
3333 		switch (field_type) {
3334 		case BTF_FIELD_SPIN_LOCK:
3335 		case BTF_FIELD_TIMER:
3336 			ret = btf_find_struct(btf, var_type, off, sz,
3337 					      idx < info_cnt ? &info[idx] : &tmp);
3338 			if (ret < 0)
3339 				return ret;
3340 			break;
3341 		case BTF_FIELD_KPTR:
3342 			ret = btf_find_kptr(btf, var_type, off, sz,
3343 					    idx < info_cnt ? &info[idx] : &tmp);
3344 			if (ret < 0)
3345 				return ret;
3346 			break;
3347 		default:
3348 			return -EFAULT;
3349 		}
3350 
3351 		if (ret == BTF_FIELD_IGNORE)
3352 			continue;
3353 		if (idx >= info_cnt)
3354 			return -E2BIG;
3355 		++idx;
3356 	}
3357 	return idx;
3358 }
3359 
3360 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3361 			  enum btf_field_type field_type,
3362 			  struct btf_field_info *info, int info_cnt)
3363 {
3364 	const char *name;
3365 	int sz, align;
3366 
3367 	switch (field_type) {
3368 	case BTF_FIELD_SPIN_LOCK:
3369 		name = "bpf_spin_lock";
3370 		sz = sizeof(struct bpf_spin_lock);
3371 		align = __alignof__(struct bpf_spin_lock);
3372 		break;
3373 	case BTF_FIELD_TIMER:
3374 		name = "bpf_timer";
3375 		sz = sizeof(struct bpf_timer);
3376 		align = __alignof__(struct bpf_timer);
3377 		break;
3378 	case BTF_FIELD_KPTR:
3379 		name = NULL;
3380 		sz = sizeof(u64);
3381 		align = 8;
3382 		break;
3383 	default:
3384 		return -EFAULT;
3385 	}
3386 
3387 	if (__btf_type_is_struct(t))
3388 		return btf_find_struct_field(btf, t, name, sz, align, field_type, info, info_cnt);
3389 	else if (btf_type_is_datasec(t))
3390 		return btf_find_datasec_var(btf, t, name, sz, align, field_type, info, info_cnt);
3391 	return -EINVAL;
3392 }
3393 
3394 /* find 'struct bpf_spin_lock' in map value.
3395  * return >= 0 offset if found
3396  * and < 0 in case of error
3397  */
3398 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3399 {
3400 	struct btf_field_info info;
3401 	int ret;
3402 
3403 	ret = btf_find_field(btf, t, BTF_FIELD_SPIN_LOCK, &info, 1);
3404 	if (ret < 0)
3405 		return ret;
3406 	if (!ret)
3407 		return -ENOENT;
3408 	return info.off;
3409 }
3410 
3411 int btf_find_timer(const struct btf *btf, const struct btf_type *t)
3412 {
3413 	struct btf_field_info info;
3414 	int ret;
3415 
3416 	ret = btf_find_field(btf, t, BTF_FIELD_TIMER, &info, 1);
3417 	if (ret < 0)
3418 		return ret;
3419 	if (!ret)
3420 		return -ENOENT;
3421 	return info.off;
3422 }
3423 
3424 struct bpf_map_value_off *btf_parse_kptrs(const struct btf *btf,
3425 					  const struct btf_type *t)
3426 {
3427 	struct btf_field_info info_arr[BPF_MAP_VALUE_OFF_MAX];
3428 	struct bpf_map_value_off *tab;
3429 	struct btf *kernel_btf = NULL;
3430 	struct module *mod = NULL;
3431 	int ret, i, nr_off;
3432 
3433 	ret = btf_find_field(btf, t, BTF_FIELD_KPTR, info_arr, ARRAY_SIZE(info_arr));
3434 	if (ret < 0)
3435 		return ERR_PTR(ret);
3436 	if (!ret)
3437 		return NULL;
3438 
3439 	nr_off = ret;
3440 	tab = kzalloc(offsetof(struct bpf_map_value_off, off[nr_off]), GFP_KERNEL | __GFP_NOWARN);
3441 	if (!tab)
3442 		return ERR_PTR(-ENOMEM);
3443 
3444 	for (i = 0; i < nr_off; i++) {
3445 		const struct btf_type *t;
3446 		s32 id;
3447 
3448 		/* Find type in map BTF, and use it to look up the matching type
3449 		 * in vmlinux or module BTFs, by name and kind.
3450 		 */
3451 		t = btf_type_by_id(btf, info_arr[i].type_id);
3452 		id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3453 				     &kernel_btf);
3454 		if (id < 0) {
3455 			ret = id;
3456 			goto end;
3457 		}
3458 
3459 		/* Find and stash the function pointer for the destruction function that
3460 		 * needs to be eventually invoked from the map free path.
3461 		 */
3462 		if (info_arr[i].type == BPF_KPTR_REF) {
3463 			const struct btf_type *dtor_func;
3464 			const char *dtor_func_name;
3465 			unsigned long addr;
3466 			s32 dtor_btf_id;
3467 
3468 			/* This call also serves as a whitelist of allowed objects that
3469 			 * can be used as a referenced pointer and be stored in a map at
3470 			 * the same time.
3471 			 */
3472 			dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
3473 			if (dtor_btf_id < 0) {
3474 				ret = dtor_btf_id;
3475 				goto end_btf;
3476 			}
3477 
3478 			dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
3479 			if (!dtor_func) {
3480 				ret = -ENOENT;
3481 				goto end_btf;
3482 			}
3483 
3484 			if (btf_is_module(kernel_btf)) {
3485 				mod = btf_try_get_module(kernel_btf);
3486 				if (!mod) {
3487 					ret = -ENXIO;
3488 					goto end_btf;
3489 				}
3490 			}
3491 
3492 			/* We already verified dtor_func to be btf_type_is_func
3493 			 * in register_btf_id_dtor_kfuncs.
3494 			 */
3495 			dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
3496 			addr = kallsyms_lookup_name(dtor_func_name);
3497 			if (!addr) {
3498 				ret = -EINVAL;
3499 				goto end_mod;
3500 			}
3501 			tab->off[i].kptr.dtor = (void *)addr;
3502 		}
3503 
3504 		tab->off[i].offset = info_arr[i].off;
3505 		tab->off[i].type = info_arr[i].type;
3506 		tab->off[i].kptr.btf_id = id;
3507 		tab->off[i].kptr.btf = kernel_btf;
3508 		tab->off[i].kptr.module = mod;
3509 	}
3510 	tab->nr_off = nr_off;
3511 	return tab;
3512 end_mod:
3513 	module_put(mod);
3514 end_btf:
3515 	btf_put(kernel_btf);
3516 end:
3517 	while (i--) {
3518 		btf_put(tab->off[i].kptr.btf);
3519 		if (tab->off[i].kptr.module)
3520 			module_put(tab->off[i].kptr.module);
3521 	}
3522 	kfree(tab);
3523 	return ERR_PTR(ret);
3524 }
3525 
3526 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3527 			      u32 type_id, void *data, u8 bits_offset,
3528 			      struct btf_show *show)
3529 {
3530 	const struct btf_member *member;
3531 	void *safe_data;
3532 	u32 i;
3533 
3534 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3535 	if (!safe_data)
3536 		return;
3537 
3538 	for_each_member(i, t, member) {
3539 		const struct btf_type *member_type = btf_type_by_id(btf,
3540 								member->type);
3541 		const struct btf_kind_operations *ops;
3542 		u32 member_offset, bitfield_size;
3543 		u32 bytes_offset;
3544 		u8 bits8_offset;
3545 
3546 		btf_show_start_member(show, member);
3547 
3548 		member_offset = __btf_member_bit_offset(t, member);
3549 		bitfield_size = __btf_member_bitfield_size(t, member);
3550 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3551 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3552 		if (bitfield_size) {
3553 			safe_data = btf_show_start_type(show, member_type,
3554 							member->type,
3555 							data + bytes_offset);
3556 			if (safe_data)
3557 				btf_bitfield_show(safe_data,
3558 						  bits8_offset,
3559 						  bitfield_size, show);
3560 			btf_show_end_type(show);
3561 		} else {
3562 			ops = btf_type_ops(member_type);
3563 			ops->show(btf, member_type, member->type,
3564 				  data + bytes_offset, bits8_offset, show);
3565 		}
3566 
3567 		btf_show_end_member(show);
3568 	}
3569 
3570 	btf_show_end_struct_type(show);
3571 }
3572 
3573 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3574 			    u32 type_id, void *data, u8 bits_offset,
3575 			    struct btf_show *show)
3576 {
3577 	const struct btf_member *m = show->state.member;
3578 
3579 	/*
3580 	 * First check if any members would be shown (are non-zero).
3581 	 * See comments above "struct btf_show" definition for more
3582 	 * details on how this works at a high-level.
3583 	 */
3584 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3585 		if (!show->state.depth_check) {
3586 			show->state.depth_check = show->state.depth + 1;
3587 			show->state.depth_to_show = 0;
3588 		}
3589 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3590 		/* Restore saved member data here */
3591 		show->state.member = m;
3592 		if (show->state.depth_check != show->state.depth + 1)
3593 			return;
3594 		show->state.depth_check = 0;
3595 
3596 		if (show->state.depth_to_show <= show->state.depth)
3597 			return;
3598 		/*
3599 		 * Reaching here indicates we have recursed and found
3600 		 * non-zero child values.
3601 		 */
3602 	}
3603 
3604 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3605 }
3606 
3607 static struct btf_kind_operations struct_ops = {
3608 	.check_meta = btf_struct_check_meta,
3609 	.resolve = btf_struct_resolve,
3610 	.check_member = btf_struct_check_member,
3611 	.check_kflag_member = btf_generic_check_kflag_member,
3612 	.log_details = btf_struct_log,
3613 	.show = btf_struct_show,
3614 };
3615 
3616 static int btf_enum_check_member(struct btf_verifier_env *env,
3617 				 const struct btf_type *struct_type,
3618 				 const struct btf_member *member,
3619 				 const struct btf_type *member_type)
3620 {
3621 	u32 struct_bits_off = member->offset;
3622 	u32 struct_size, bytes_offset;
3623 
3624 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3625 		btf_verifier_log_member(env, struct_type, member,
3626 					"Member is not byte aligned");
3627 		return -EINVAL;
3628 	}
3629 
3630 	struct_size = struct_type->size;
3631 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3632 	if (struct_size - bytes_offset < member_type->size) {
3633 		btf_verifier_log_member(env, struct_type, member,
3634 					"Member exceeds struct_size");
3635 		return -EINVAL;
3636 	}
3637 
3638 	return 0;
3639 }
3640 
3641 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3642 				       const struct btf_type *struct_type,
3643 				       const struct btf_member *member,
3644 				       const struct btf_type *member_type)
3645 {
3646 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3647 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3648 
3649 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3650 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3651 	if (!nr_bits) {
3652 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3653 			btf_verifier_log_member(env, struct_type, member,
3654 						"Member is not byte aligned");
3655 			return -EINVAL;
3656 		}
3657 
3658 		nr_bits = int_bitsize;
3659 	} else if (nr_bits > int_bitsize) {
3660 		btf_verifier_log_member(env, struct_type, member,
3661 					"Invalid member bitfield_size");
3662 		return -EINVAL;
3663 	}
3664 
3665 	struct_size = struct_type->size;
3666 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3667 	if (struct_size < bytes_end) {
3668 		btf_verifier_log_member(env, struct_type, member,
3669 					"Member exceeds struct_size");
3670 		return -EINVAL;
3671 	}
3672 
3673 	return 0;
3674 }
3675 
3676 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3677 			       const struct btf_type *t,
3678 			       u32 meta_left)
3679 {
3680 	const struct btf_enum *enums = btf_type_enum(t);
3681 	struct btf *btf = env->btf;
3682 	const char *fmt_str;
3683 	u16 i, nr_enums;
3684 	u32 meta_needed;
3685 
3686 	nr_enums = btf_type_vlen(t);
3687 	meta_needed = nr_enums * sizeof(*enums);
3688 
3689 	if (meta_left < meta_needed) {
3690 		btf_verifier_log_basic(env, t,
3691 				       "meta_left:%u meta_needed:%u",
3692 				       meta_left, meta_needed);
3693 		return -EINVAL;
3694 	}
3695 
3696 	if (t->size > 8 || !is_power_of_2(t->size)) {
3697 		btf_verifier_log_type(env, t, "Unexpected size");
3698 		return -EINVAL;
3699 	}
3700 
3701 	/* enum type either no name or a valid one */
3702 	if (t->name_off &&
3703 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3704 		btf_verifier_log_type(env, t, "Invalid name");
3705 		return -EINVAL;
3706 	}
3707 
3708 	btf_verifier_log_type(env, t, NULL);
3709 
3710 	for (i = 0; i < nr_enums; i++) {
3711 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3712 			btf_verifier_log(env, "\tInvalid name_offset:%u",
3713 					 enums[i].name_off);
3714 			return -EINVAL;
3715 		}
3716 
3717 		/* enum member must have a valid name */
3718 		if (!enums[i].name_off ||
3719 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3720 			btf_verifier_log_type(env, t, "Invalid name");
3721 			return -EINVAL;
3722 		}
3723 
3724 		if (env->log.level == BPF_LOG_KERNEL)
3725 			continue;
3726 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
3727 		btf_verifier_log(env, fmt_str,
3728 				 __btf_name_by_offset(btf, enums[i].name_off),
3729 				 enums[i].val);
3730 	}
3731 
3732 	return meta_needed;
3733 }
3734 
3735 static void btf_enum_log(struct btf_verifier_env *env,
3736 			 const struct btf_type *t)
3737 {
3738 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3739 }
3740 
3741 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3742 			  u32 type_id, void *data, u8 bits_offset,
3743 			  struct btf_show *show)
3744 {
3745 	const struct btf_enum *enums = btf_type_enum(t);
3746 	u32 i, nr_enums = btf_type_vlen(t);
3747 	void *safe_data;
3748 	int v;
3749 
3750 	safe_data = btf_show_start_type(show, t, type_id, data);
3751 	if (!safe_data)
3752 		return;
3753 
3754 	v = *(int *)safe_data;
3755 
3756 	for (i = 0; i < nr_enums; i++) {
3757 		if (v != enums[i].val)
3758 			continue;
3759 
3760 		btf_show_type_value(show, "%s",
3761 				    __btf_name_by_offset(btf,
3762 							 enums[i].name_off));
3763 
3764 		btf_show_end_type(show);
3765 		return;
3766 	}
3767 
3768 	if (btf_type_kflag(t))
3769 		btf_show_type_value(show, "%d", v);
3770 	else
3771 		btf_show_type_value(show, "%u", v);
3772 	btf_show_end_type(show);
3773 }
3774 
3775 static struct btf_kind_operations enum_ops = {
3776 	.check_meta = btf_enum_check_meta,
3777 	.resolve = btf_df_resolve,
3778 	.check_member = btf_enum_check_member,
3779 	.check_kflag_member = btf_enum_check_kflag_member,
3780 	.log_details = btf_enum_log,
3781 	.show = btf_enum_show,
3782 };
3783 
3784 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
3785 				 const struct btf_type *t,
3786 				 u32 meta_left)
3787 {
3788 	const struct btf_enum64 *enums = btf_type_enum64(t);
3789 	struct btf *btf = env->btf;
3790 	const char *fmt_str;
3791 	u16 i, nr_enums;
3792 	u32 meta_needed;
3793 
3794 	nr_enums = btf_type_vlen(t);
3795 	meta_needed = nr_enums * sizeof(*enums);
3796 
3797 	if (meta_left < meta_needed) {
3798 		btf_verifier_log_basic(env, t,
3799 				       "meta_left:%u meta_needed:%u",
3800 				       meta_left, meta_needed);
3801 		return -EINVAL;
3802 	}
3803 
3804 	if (t->size > 8 || !is_power_of_2(t->size)) {
3805 		btf_verifier_log_type(env, t, "Unexpected size");
3806 		return -EINVAL;
3807 	}
3808 
3809 	/* enum type either no name or a valid one */
3810 	if (t->name_off &&
3811 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3812 		btf_verifier_log_type(env, t, "Invalid name");
3813 		return -EINVAL;
3814 	}
3815 
3816 	btf_verifier_log_type(env, t, NULL);
3817 
3818 	for (i = 0; i < nr_enums; i++) {
3819 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3820 			btf_verifier_log(env, "\tInvalid name_offset:%u",
3821 					 enums[i].name_off);
3822 			return -EINVAL;
3823 		}
3824 
3825 		/* enum member must have a valid name */
3826 		if (!enums[i].name_off ||
3827 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3828 			btf_verifier_log_type(env, t, "Invalid name");
3829 			return -EINVAL;
3830 		}
3831 
3832 		if (env->log.level == BPF_LOG_KERNEL)
3833 			continue;
3834 
3835 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
3836 		btf_verifier_log(env, fmt_str,
3837 				 __btf_name_by_offset(btf, enums[i].name_off),
3838 				 btf_enum64_value(enums + i));
3839 	}
3840 
3841 	return meta_needed;
3842 }
3843 
3844 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
3845 			    u32 type_id, void *data, u8 bits_offset,
3846 			    struct btf_show *show)
3847 {
3848 	const struct btf_enum64 *enums = btf_type_enum64(t);
3849 	u32 i, nr_enums = btf_type_vlen(t);
3850 	void *safe_data;
3851 	s64 v;
3852 
3853 	safe_data = btf_show_start_type(show, t, type_id, data);
3854 	if (!safe_data)
3855 		return;
3856 
3857 	v = *(u64 *)safe_data;
3858 
3859 	for (i = 0; i < nr_enums; i++) {
3860 		if (v != btf_enum64_value(enums + i))
3861 			continue;
3862 
3863 		btf_show_type_value(show, "%s",
3864 				    __btf_name_by_offset(btf,
3865 							 enums[i].name_off));
3866 
3867 		btf_show_end_type(show);
3868 		return;
3869 	}
3870 
3871 	if (btf_type_kflag(t))
3872 		btf_show_type_value(show, "%lld", v);
3873 	else
3874 		btf_show_type_value(show, "%llu", v);
3875 	btf_show_end_type(show);
3876 }
3877 
3878 static struct btf_kind_operations enum64_ops = {
3879 	.check_meta = btf_enum64_check_meta,
3880 	.resolve = btf_df_resolve,
3881 	.check_member = btf_enum_check_member,
3882 	.check_kflag_member = btf_enum_check_kflag_member,
3883 	.log_details = btf_enum_log,
3884 	.show = btf_enum64_show,
3885 };
3886 
3887 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3888 				     const struct btf_type *t,
3889 				     u32 meta_left)
3890 {
3891 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3892 
3893 	if (meta_left < meta_needed) {
3894 		btf_verifier_log_basic(env, t,
3895 				       "meta_left:%u meta_needed:%u",
3896 				       meta_left, meta_needed);
3897 		return -EINVAL;
3898 	}
3899 
3900 	if (t->name_off) {
3901 		btf_verifier_log_type(env, t, "Invalid name");
3902 		return -EINVAL;
3903 	}
3904 
3905 	if (btf_type_kflag(t)) {
3906 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3907 		return -EINVAL;
3908 	}
3909 
3910 	btf_verifier_log_type(env, t, NULL);
3911 
3912 	return meta_needed;
3913 }
3914 
3915 static void btf_func_proto_log(struct btf_verifier_env *env,
3916 			       const struct btf_type *t)
3917 {
3918 	const struct btf_param *args = (const struct btf_param *)(t + 1);
3919 	u16 nr_args = btf_type_vlen(t), i;
3920 
3921 	btf_verifier_log(env, "return=%u args=(", t->type);
3922 	if (!nr_args) {
3923 		btf_verifier_log(env, "void");
3924 		goto done;
3925 	}
3926 
3927 	if (nr_args == 1 && !args[0].type) {
3928 		/* Only one vararg */
3929 		btf_verifier_log(env, "vararg");
3930 		goto done;
3931 	}
3932 
3933 	btf_verifier_log(env, "%u %s", args[0].type,
3934 			 __btf_name_by_offset(env->btf,
3935 					      args[0].name_off));
3936 	for (i = 1; i < nr_args - 1; i++)
3937 		btf_verifier_log(env, ", %u %s", args[i].type,
3938 				 __btf_name_by_offset(env->btf,
3939 						      args[i].name_off));
3940 
3941 	if (nr_args > 1) {
3942 		const struct btf_param *last_arg = &args[nr_args - 1];
3943 
3944 		if (last_arg->type)
3945 			btf_verifier_log(env, ", %u %s", last_arg->type,
3946 					 __btf_name_by_offset(env->btf,
3947 							      last_arg->name_off));
3948 		else
3949 			btf_verifier_log(env, ", vararg");
3950 	}
3951 
3952 done:
3953 	btf_verifier_log(env, ")");
3954 }
3955 
3956 static struct btf_kind_operations func_proto_ops = {
3957 	.check_meta = btf_func_proto_check_meta,
3958 	.resolve = btf_df_resolve,
3959 	/*
3960 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3961 	 * a struct's member.
3962 	 *
3963 	 * It should be a function pointer instead.
3964 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3965 	 *
3966 	 * Hence, there is no btf_func_check_member().
3967 	 */
3968 	.check_member = btf_df_check_member,
3969 	.check_kflag_member = btf_df_check_kflag_member,
3970 	.log_details = btf_func_proto_log,
3971 	.show = btf_df_show,
3972 };
3973 
3974 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3975 			       const struct btf_type *t,
3976 			       u32 meta_left)
3977 {
3978 	if (!t->name_off ||
3979 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3980 		btf_verifier_log_type(env, t, "Invalid name");
3981 		return -EINVAL;
3982 	}
3983 
3984 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3985 		btf_verifier_log_type(env, t, "Invalid func linkage");
3986 		return -EINVAL;
3987 	}
3988 
3989 	if (btf_type_kflag(t)) {
3990 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3991 		return -EINVAL;
3992 	}
3993 
3994 	btf_verifier_log_type(env, t, NULL);
3995 
3996 	return 0;
3997 }
3998 
3999 static int btf_func_resolve(struct btf_verifier_env *env,
4000 			    const struct resolve_vertex *v)
4001 {
4002 	const struct btf_type *t = v->t;
4003 	u32 next_type_id = t->type;
4004 	int err;
4005 
4006 	err = btf_func_check(env, t);
4007 	if (err)
4008 		return err;
4009 
4010 	env_stack_pop_resolved(env, next_type_id, 0);
4011 	return 0;
4012 }
4013 
4014 static struct btf_kind_operations func_ops = {
4015 	.check_meta = btf_func_check_meta,
4016 	.resolve = btf_func_resolve,
4017 	.check_member = btf_df_check_member,
4018 	.check_kflag_member = btf_df_check_kflag_member,
4019 	.log_details = btf_ref_type_log,
4020 	.show = btf_df_show,
4021 };
4022 
4023 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4024 			      const struct btf_type *t,
4025 			      u32 meta_left)
4026 {
4027 	const struct btf_var *var;
4028 	u32 meta_needed = sizeof(*var);
4029 
4030 	if (meta_left < meta_needed) {
4031 		btf_verifier_log_basic(env, t,
4032 				       "meta_left:%u meta_needed:%u",
4033 				       meta_left, meta_needed);
4034 		return -EINVAL;
4035 	}
4036 
4037 	if (btf_type_vlen(t)) {
4038 		btf_verifier_log_type(env, t, "vlen != 0");
4039 		return -EINVAL;
4040 	}
4041 
4042 	if (btf_type_kflag(t)) {
4043 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4044 		return -EINVAL;
4045 	}
4046 
4047 	if (!t->name_off ||
4048 	    !__btf_name_valid(env->btf, t->name_off, true)) {
4049 		btf_verifier_log_type(env, t, "Invalid name");
4050 		return -EINVAL;
4051 	}
4052 
4053 	/* A var cannot be in type void */
4054 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4055 		btf_verifier_log_type(env, t, "Invalid type_id");
4056 		return -EINVAL;
4057 	}
4058 
4059 	var = btf_type_var(t);
4060 	if (var->linkage != BTF_VAR_STATIC &&
4061 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4062 		btf_verifier_log_type(env, t, "Linkage not supported");
4063 		return -EINVAL;
4064 	}
4065 
4066 	btf_verifier_log_type(env, t, NULL);
4067 
4068 	return meta_needed;
4069 }
4070 
4071 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4072 {
4073 	const struct btf_var *var = btf_type_var(t);
4074 
4075 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4076 }
4077 
4078 static const struct btf_kind_operations var_ops = {
4079 	.check_meta		= btf_var_check_meta,
4080 	.resolve		= btf_var_resolve,
4081 	.check_member		= btf_df_check_member,
4082 	.check_kflag_member	= btf_df_check_kflag_member,
4083 	.log_details		= btf_var_log,
4084 	.show			= btf_var_show,
4085 };
4086 
4087 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4088 				  const struct btf_type *t,
4089 				  u32 meta_left)
4090 {
4091 	const struct btf_var_secinfo *vsi;
4092 	u64 last_vsi_end_off = 0, sum = 0;
4093 	u32 i, meta_needed;
4094 
4095 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4096 	if (meta_left < meta_needed) {
4097 		btf_verifier_log_basic(env, t,
4098 				       "meta_left:%u meta_needed:%u",
4099 				       meta_left, meta_needed);
4100 		return -EINVAL;
4101 	}
4102 
4103 	if (!t->size) {
4104 		btf_verifier_log_type(env, t, "size == 0");
4105 		return -EINVAL;
4106 	}
4107 
4108 	if (btf_type_kflag(t)) {
4109 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4110 		return -EINVAL;
4111 	}
4112 
4113 	if (!t->name_off ||
4114 	    !btf_name_valid_section(env->btf, t->name_off)) {
4115 		btf_verifier_log_type(env, t, "Invalid name");
4116 		return -EINVAL;
4117 	}
4118 
4119 	btf_verifier_log_type(env, t, NULL);
4120 
4121 	for_each_vsi(i, t, vsi) {
4122 		/* A var cannot be in type void */
4123 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4124 			btf_verifier_log_vsi(env, t, vsi,
4125 					     "Invalid type_id");
4126 			return -EINVAL;
4127 		}
4128 
4129 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4130 			btf_verifier_log_vsi(env, t, vsi,
4131 					     "Invalid offset");
4132 			return -EINVAL;
4133 		}
4134 
4135 		if (!vsi->size || vsi->size > t->size) {
4136 			btf_verifier_log_vsi(env, t, vsi,
4137 					     "Invalid size");
4138 			return -EINVAL;
4139 		}
4140 
4141 		last_vsi_end_off = vsi->offset + vsi->size;
4142 		if (last_vsi_end_off > t->size) {
4143 			btf_verifier_log_vsi(env, t, vsi,
4144 					     "Invalid offset+size");
4145 			return -EINVAL;
4146 		}
4147 
4148 		btf_verifier_log_vsi(env, t, vsi, NULL);
4149 		sum += vsi->size;
4150 	}
4151 
4152 	if (t->size < sum) {
4153 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4154 		return -EINVAL;
4155 	}
4156 
4157 	return meta_needed;
4158 }
4159 
4160 static int btf_datasec_resolve(struct btf_verifier_env *env,
4161 			       const struct resolve_vertex *v)
4162 {
4163 	const struct btf_var_secinfo *vsi;
4164 	struct btf *btf = env->btf;
4165 	u16 i;
4166 
4167 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4168 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4169 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4170 								 var_type_id);
4171 		if (!var_type || !btf_type_is_var(var_type)) {
4172 			btf_verifier_log_vsi(env, v->t, vsi,
4173 					     "Not a VAR kind member");
4174 			return -EINVAL;
4175 		}
4176 
4177 		if (!env_type_is_resolve_sink(env, var_type) &&
4178 		    !env_type_is_resolved(env, var_type_id)) {
4179 			env_stack_set_next_member(env, i + 1);
4180 			return env_stack_push(env, var_type, var_type_id);
4181 		}
4182 
4183 		type_id = var_type->type;
4184 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4185 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4186 			return -EINVAL;
4187 		}
4188 
4189 		if (vsi->size < type_size) {
4190 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4191 			return -EINVAL;
4192 		}
4193 	}
4194 
4195 	env_stack_pop_resolved(env, 0, 0);
4196 	return 0;
4197 }
4198 
4199 static void btf_datasec_log(struct btf_verifier_env *env,
4200 			    const struct btf_type *t)
4201 {
4202 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4203 }
4204 
4205 static void btf_datasec_show(const struct btf *btf,
4206 			     const struct btf_type *t, u32 type_id,
4207 			     void *data, u8 bits_offset,
4208 			     struct btf_show *show)
4209 {
4210 	const struct btf_var_secinfo *vsi;
4211 	const struct btf_type *var;
4212 	u32 i;
4213 
4214 	if (!btf_show_start_type(show, t, type_id, data))
4215 		return;
4216 
4217 	btf_show_type_value(show, "section (\"%s\") = {",
4218 			    __btf_name_by_offset(btf, t->name_off));
4219 	for_each_vsi(i, t, vsi) {
4220 		var = btf_type_by_id(btf, vsi->type);
4221 		if (i)
4222 			btf_show(show, ",");
4223 		btf_type_ops(var)->show(btf, var, vsi->type,
4224 					data + vsi->offset, bits_offset, show);
4225 	}
4226 	btf_show_end_type(show);
4227 }
4228 
4229 static const struct btf_kind_operations datasec_ops = {
4230 	.check_meta		= btf_datasec_check_meta,
4231 	.resolve		= btf_datasec_resolve,
4232 	.check_member		= btf_df_check_member,
4233 	.check_kflag_member	= btf_df_check_kflag_member,
4234 	.log_details		= btf_datasec_log,
4235 	.show			= btf_datasec_show,
4236 };
4237 
4238 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4239 				const struct btf_type *t,
4240 				u32 meta_left)
4241 {
4242 	if (btf_type_vlen(t)) {
4243 		btf_verifier_log_type(env, t, "vlen != 0");
4244 		return -EINVAL;
4245 	}
4246 
4247 	if (btf_type_kflag(t)) {
4248 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4249 		return -EINVAL;
4250 	}
4251 
4252 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4253 	    t->size != 16) {
4254 		btf_verifier_log_type(env, t, "Invalid type_size");
4255 		return -EINVAL;
4256 	}
4257 
4258 	btf_verifier_log_type(env, t, NULL);
4259 
4260 	return 0;
4261 }
4262 
4263 static int btf_float_check_member(struct btf_verifier_env *env,
4264 				  const struct btf_type *struct_type,
4265 				  const struct btf_member *member,
4266 				  const struct btf_type *member_type)
4267 {
4268 	u64 start_offset_bytes;
4269 	u64 end_offset_bytes;
4270 	u64 misalign_bits;
4271 	u64 align_bytes;
4272 	u64 align_bits;
4273 
4274 	/* Different architectures have different alignment requirements, so
4275 	 * here we check only for the reasonable minimum. This way we ensure
4276 	 * that types after CO-RE can pass the kernel BTF verifier.
4277 	 */
4278 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4279 	align_bits = align_bytes * BITS_PER_BYTE;
4280 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4281 	if (misalign_bits) {
4282 		btf_verifier_log_member(env, struct_type, member,
4283 					"Member is not properly aligned");
4284 		return -EINVAL;
4285 	}
4286 
4287 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4288 	end_offset_bytes = start_offset_bytes + member_type->size;
4289 	if (end_offset_bytes > struct_type->size) {
4290 		btf_verifier_log_member(env, struct_type, member,
4291 					"Member exceeds struct_size");
4292 		return -EINVAL;
4293 	}
4294 
4295 	return 0;
4296 }
4297 
4298 static void btf_float_log(struct btf_verifier_env *env,
4299 			  const struct btf_type *t)
4300 {
4301 	btf_verifier_log(env, "size=%u", t->size);
4302 }
4303 
4304 static const struct btf_kind_operations float_ops = {
4305 	.check_meta = btf_float_check_meta,
4306 	.resolve = btf_df_resolve,
4307 	.check_member = btf_float_check_member,
4308 	.check_kflag_member = btf_generic_check_kflag_member,
4309 	.log_details = btf_float_log,
4310 	.show = btf_df_show,
4311 };
4312 
4313 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4314 			      const struct btf_type *t,
4315 			      u32 meta_left)
4316 {
4317 	const struct btf_decl_tag *tag;
4318 	u32 meta_needed = sizeof(*tag);
4319 	s32 component_idx;
4320 	const char *value;
4321 
4322 	if (meta_left < meta_needed) {
4323 		btf_verifier_log_basic(env, t,
4324 				       "meta_left:%u meta_needed:%u",
4325 				       meta_left, meta_needed);
4326 		return -EINVAL;
4327 	}
4328 
4329 	value = btf_name_by_offset(env->btf, t->name_off);
4330 	if (!value || !value[0]) {
4331 		btf_verifier_log_type(env, t, "Invalid value");
4332 		return -EINVAL;
4333 	}
4334 
4335 	if (btf_type_vlen(t)) {
4336 		btf_verifier_log_type(env, t, "vlen != 0");
4337 		return -EINVAL;
4338 	}
4339 
4340 	if (btf_type_kflag(t)) {
4341 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4342 		return -EINVAL;
4343 	}
4344 
4345 	component_idx = btf_type_decl_tag(t)->component_idx;
4346 	if (component_idx < -1) {
4347 		btf_verifier_log_type(env, t, "Invalid component_idx");
4348 		return -EINVAL;
4349 	}
4350 
4351 	btf_verifier_log_type(env, t, NULL);
4352 
4353 	return meta_needed;
4354 }
4355 
4356 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4357 			   const struct resolve_vertex *v)
4358 {
4359 	const struct btf_type *next_type;
4360 	const struct btf_type *t = v->t;
4361 	u32 next_type_id = t->type;
4362 	struct btf *btf = env->btf;
4363 	s32 component_idx;
4364 	u32 vlen;
4365 
4366 	next_type = btf_type_by_id(btf, next_type_id);
4367 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4368 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4369 		return -EINVAL;
4370 	}
4371 
4372 	if (!env_type_is_resolve_sink(env, next_type) &&
4373 	    !env_type_is_resolved(env, next_type_id))
4374 		return env_stack_push(env, next_type, next_type_id);
4375 
4376 	component_idx = btf_type_decl_tag(t)->component_idx;
4377 	if (component_idx != -1) {
4378 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4379 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4380 			return -EINVAL;
4381 		}
4382 
4383 		if (btf_type_is_struct(next_type)) {
4384 			vlen = btf_type_vlen(next_type);
4385 		} else {
4386 			/* next_type should be a function */
4387 			next_type = btf_type_by_id(btf, next_type->type);
4388 			vlen = btf_type_vlen(next_type);
4389 		}
4390 
4391 		if ((u32)component_idx >= vlen) {
4392 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4393 			return -EINVAL;
4394 		}
4395 	}
4396 
4397 	env_stack_pop_resolved(env, next_type_id, 0);
4398 
4399 	return 0;
4400 }
4401 
4402 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4403 {
4404 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4405 			 btf_type_decl_tag(t)->component_idx);
4406 }
4407 
4408 static const struct btf_kind_operations decl_tag_ops = {
4409 	.check_meta = btf_decl_tag_check_meta,
4410 	.resolve = btf_decl_tag_resolve,
4411 	.check_member = btf_df_check_member,
4412 	.check_kflag_member = btf_df_check_kflag_member,
4413 	.log_details = btf_decl_tag_log,
4414 	.show = btf_df_show,
4415 };
4416 
4417 static int btf_func_proto_check(struct btf_verifier_env *env,
4418 				const struct btf_type *t)
4419 {
4420 	const struct btf_type *ret_type;
4421 	const struct btf_param *args;
4422 	const struct btf *btf;
4423 	u16 nr_args, i;
4424 	int err;
4425 
4426 	btf = env->btf;
4427 	args = (const struct btf_param *)(t + 1);
4428 	nr_args = btf_type_vlen(t);
4429 
4430 	/* Check func return type which could be "void" (t->type == 0) */
4431 	if (t->type) {
4432 		u32 ret_type_id = t->type;
4433 
4434 		ret_type = btf_type_by_id(btf, ret_type_id);
4435 		if (!ret_type) {
4436 			btf_verifier_log_type(env, t, "Invalid return type");
4437 			return -EINVAL;
4438 		}
4439 
4440 		if (btf_type_needs_resolve(ret_type) &&
4441 		    !env_type_is_resolved(env, ret_type_id)) {
4442 			err = btf_resolve(env, ret_type, ret_type_id);
4443 			if (err)
4444 				return err;
4445 		}
4446 
4447 		/* Ensure the return type is a type that has a size */
4448 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4449 			btf_verifier_log_type(env, t, "Invalid return type");
4450 			return -EINVAL;
4451 		}
4452 	}
4453 
4454 	if (!nr_args)
4455 		return 0;
4456 
4457 	/* Last func arg type_id could be 0 if it is a vararg */
4458 	if (!args[nr_args - 1].type) {
4459 		if (args[nr_args - 1].name_off) {
4460 			btf_verifier_log_type(env, t, "Invalid arg#%u",
4461 					      nr_args);
4462 			return -EINVAL;
4463 		}
4464 		nr_args--;
4465 	}
4466 
4467 	err = 0;
4468 	for (i = 0; i < nr_args; i++) {
4469 		const struct btf_type *arg_type;
4470 		u32 arg_type_id;
4471 
4472 		arg_type_id = args[i].type;
4473 		arg_type = btf_type_by_id(btf, arg_type_id);
4474 		if (!arg_type) {
4475 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4476 			err = -EINVAL;
4477 			break;
4478 		}
4479 
4480 		if (args[i].name_off &&
4481 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4482 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4483 			btf_verifier_log_type(env, t,
4484 					      "Invalid arg#%u", i + 1);
4485 			err = -EINVAL;
4486 			break;
4487 		}
4488 
4489 		if (btf_type_needs_resolve(arg_type) &&
4490 		    !env_type_is_resolved(env, arg_type_id)) {
4491 			err = btf_resolve(env, arg_type, arg_type_id);
4492 			if (err)
4493 				break;
4494 		}
4495 
4496 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4497 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4498 			err = -EINVAL;
4499 			break;
4500 		}
4501 	}
4502 
4503 	return err;
4504 }
4505 
4506 static int btf_func_check(struct btf_verifier_env *env,
4507 			  const struct btf_type *t)
4508 {
4509 	const struct btf_type *proto_type;
4510 	const struct btf_param *args;
4511 	const struct btf *btf;
4512 	u16 nr_args, i;
4513 
4514 	btf = env->btf;
4515 	proto_type = btf_type_by_id(btf, t->type);
4516 
4517 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4518 		btf_verifier_log_type(env, t, "Invalid type_id");
4519 		return -EINVAL;
4520 	}
4521 
4522 	args = (const struct btf_param *)(proto_type + 1);
4523 	nr_args = btf_type_vlen(proto_type);
4524 	for (i = 0; i < nr_args; i++) {
4525 		if (!args[i].name_off && args[i].type) {
4526 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4527 			return -EINVAL;
4528 		}
4529 	}
4530 
4531 	return 0;
4532 }
4533 
4534 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4535 	[BTF_KIND_INT] = &int_ops,
4536 	[BTF_KIND_PTR] = &ptr_ops,
4537 	[BTF_KIND_ARRAY] = &array_ops,
4538 	[BTF_KIND_STRUCT] = &struct_ops,
4539 	[BTF_KIND_UNION] = &struct_ops,
4540 	[BTF_KIND_ENUM] = &enum_ops,
4541 	[BTF_KIND_FWD] = &fwd_ops,
4542 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4543 	[BTF_KIND_VOLATILE] = &modifier_ops,
4544 	[BTF_KIND_CONST] = &modifier_ops,
4545 	[BTF_KIND_RESTRICT] = &modifier_ops,
4546 	[BTF_KIND_FUNC] = &func_ops,
4547 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4548 	[BTF_KIND_VAR] = &var_ops,
4549 	[BTF_KIND_DATASEC] = &datasec_ops,
4550 	[BTF_KIND_FLOAT] = &float_ops,
4551 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4552 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4553 	[BTF_KIND_ENUM64] = &enum64_ops,
4554 };
4555 
4556 static s32 btf_check_meta(struct btf_verifier_env *env,
4557 			  const struct btf_type *t,
4558 			  u32 meta_left)
4559 {
4560 	u32 saved_meta_left = meta_left;
4561 	s32 var_meta_size;
4562 
4563 	if (meta_left < sizeof(*t)) {
4564 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4565 				 env->log_type_id, meta_left, sizeof(*t));
4566 		return -EINVAL;
4567 	}
4568 	meta_left -= sizeof(*t);
4569 
4570 	if (t->info & ~BTF_INFO_MASK) {
4571 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4572 				 env->log_type_id, t->info);
4573 		return -EINVAL;
4574 	}
4575 
4576 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4577 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4578 		btf_verifier_log(env, "[%u] Invalid kind:%u",
4579 				 env->log_type_id, BTF_INFO_KIND(t->info));
4580 		return -EINVAL;
4581 	}
4582 
4583 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
4584 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4585 				 env->log_type_id, t->name_off);
4586 		return -EINVAL;
4587 	}
4588 
4589 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4590 	if (var_meta_size < 0)
4591 		return var_meta_size;
4592 
4593 	meta_left -= var_meta_size;
4594 
4595 	return saved_meta_left - meta_left;
4596 }
4597 
4598 static int btf_check_all_metas(struct btf_verifier_env *env)
4599 {
4600 	struct btf *btf = env->btf;
4601 	struct btf_header *hdr;
4602 	void *cur, *end;
4603 
4604 	hdr = &btf->hdr;
4605 	cur = btf->nohdr_data + hdr->type_off;
4606 	end = cur + hdr->type_len;
4607 
4608 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
4609 	while (cur < end) {
4610 		struct btf_type *t = cur;
4611 		s32 meta_size;
4612 
4613 		meta_size = btf_check_meta(env, t, end - cur);
4614 		if (meta_size < 0)
4615 			return meta_size;
4616 
4617 		btf_add_type(env, t);
4618 		cur += meta_size;
4619 		env->log_type_id++;
4620 	}
4621 
4622 	return 0;
4623 }
4624 
4625 static bool btf_resolve_valid(struct btf_verifier_env *env,
4626 			      const struct btf_type *t,
4627 			      u32 type_id)
4628 {
4629 	struct btf *btf = env->btf;
4630 
4631 	if (!env_type_is_resolved(env, type_id))
4632 		return false;
4633 
4634 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
4635 		return !btf_resolved_type_id(btf, type_id) &&
4636 		       !btf_resolved_type_size(btf, type_id);
4637 
4638 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
4639 		return btf_resolved_type_id(btf, type_id) &&
4640 		       !btf_resolved_type_size(btf, type_id);
4641 
4642 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4643 	    btf_type_is_var(t)) {
4644 		t = btf_type_id_resolve(btf, &type_id);
4645 		return t &&
4646 		       !btf_type_is_modifier(t) &&
4647 		       !btf_type_is_var(t) &&
4648 		       !btf_type_is_datasec(t);
4649 	}
4650 
4651 	if (btf_type_is_array(t)) {
4652 		const struct btf_array *array = btf_type_array(t);
4653 		const struct btf_type *elem_type;
4654 		u32 elem_type_id = array->type;
4655 		u32 elem_size;
4656 
4657 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4658 		return elem_type && !btf_type_is_modifier(elem_type) &&
4659 			(array->nelems * elem_size ==
4660 			 btf_resolved_type_size(btf, type_id));
4661 	}
4662 
4663 	return false;
4664 }
4665 
4666 static int btf_resolve(struct btf_verifier_env *env,
4667 		       const struct btf_type *t, u32 type_id)
4668 {
4669 	u32 save_log_type_id = env->log_type_id;
4670 	const struct resolve_vertex *v;
4671 	int err = 0;
4672 
4673 	env->resolve_mode = RESOLVE_TBD;
4674 	env_stack_push(env, t, type_id);
4675 	while (!err && (v = env_stack_peak(env))) {
4676 		env->log_type_id = v->type_id;
4677 		err = btf_type_ops(v->t)->resolve(env, v);
4678 	}
4679 
4680 	env->log_type_id = type_id;
4681 	if (err == -E2BIG) {
4682 		btf_verifier_log_type(env, t,
4683 				      "Exceeded max resolving depth:%u",
4684 				      MAX_RESOLVE_DEPTH);
4685 	} else if (err == -EEXIST) {
4686 		btf_verifier_log_type(env, t, "Loop detected");
4687 	}
4688 
4689 	/* Final sanity check */
4690 	if (!err && !btf_resolve_valid(env, t, type_id)) {
4691 		btf_verifier_log_type(env, t, "Invalid resolve state");
4692 		err = -EINVAL;
4693 	}
4694 
4695 	env->log_type_id = save_log_type_id;
4696 	return err;
4697 }
4698 
4699 static int btf_check_all_types(struct btf_verifier_env *env)
4700 {
4701 	struct btf *btf = env->btf;
4702 	const struct btf_type *t;
4703 	u32 type_id, i;
4704 	int err;
4705 
4706 	err = env_resolve_init(env);
4707 	if (err)
4708 		return err;
4709 
4710 	env->phase++;
4711 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4712 		type_id = btf->start_id + i;
4713 		t = btf_type_by_id(btf, type_id);
4714 
4715 		env->log_type_id = type_id;
4716 		if (btf_type_needs_resolve(t) &&
4717 		    !env_type_is_resolved(env, type_id)) {
4718 			err = btf_resolve(env, t, type_id);
4719 			if (err)
4720 				return err;
4721 		}
4722 
4723 		if (btf_type_is_func_proto(t)) {
4724 			err = btf_func_proto_check(env, t);
4725 			if (err)
4726 				return err;
4727 		}
4728 	}
4729 
4730 	return 0;
4731 }
4732 
4733 static int btf_parse_type_sec(struct btf_verifier_env *env)
4734 {
4735 	const struct btf_header *hdr = &env->btf->hdr;
4736 	int err;
4737 
4738 	/* Type section must align to 4 bytes */
4739 	if (hdr->type_off & (sizeof(u32) - 1)) {
4740 		btf_verifier_log(env, "Unaligned type_off");
4741 		return -EINVAL;
4742 	}
4743 
4744 	if (!env->btf->base_btf && !hdr->type_len) {
4745 		btf_verifier_log(env, "No type found");
4746 		return -EINVAL;
4747 	}
4748 
4749 	err = btf_check_all_metas(env);
4750 	if (err)
4751 		return err;
4752 
4753 	return btf_check_all_types(env);
4754 }
4755 
4756 static int btf_parse_str_sec(struct btf_verifier_env *env)
4757 {
4758 	const struct btf_header *hdr;
4759 	struct btf *btf = env->btf;
4760 	const char *start, *end;
4761 
4762 	hdr = &btf->hdr;
4763 	start = btf->nohdr_data + hdr->str_off;
4764 	end = start + hdr->str_len;
4765 
4766 	if (end != btf->data + btf->data_size) {
4767 		btf_verifier_log(env, "String section is not at the end");
4768 		return -EINVAL;
4769 	}
4770 
4771 	btf->strings = start;
4772 
4773 	if (btf->base_btf && !hdr->str_len)
4774 		return 0;
4775 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4776 		btf_verifier_log(env, "Invalid string section");
4777 		return -EINVAL;
4778 	}
4779 	if (!btf->base_btf && start[0]) {
4780 		btf_verifier_log(env, "Invalid string section");
4781 		return -EINVAL;
4782 	}
4783 
4784 	return 0;
4785 }
4786 
4787 static const size_t btf_sec_info_offset[] = {
4788 	offsetof(struct btf_header, type_off),
4789 	offsetof(struct btf_header, str_off),
4790 };
4791 
4792 static int btf_sec_info_cmp(const void *a, const void *b)
4793 {
4794 	const struct btf_sec_info *x = a;
4795 	const struct btf_sec_info *y = b;
4796 
4797 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4798 }
4799 
4800 static int btf_check_sec_info(struct btf_verifier_env *env,
4801 			      u32 btf_data_size)
4802 {
4803 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4804 	u32 total, expected_total, i;
4805 	const struct btf_header *hdr;
4806 	const struct btf *btf;
4807 
4808 	btf = env->btf;
4809 	hdr = &btf->hdr;
4810 
4811 	/* Populate the secs from hdr */
4812 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4813 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
4814 						   btf_sec_info_offset[i]);
4815 
4816 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4817 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4818 
4819 	/* Check for gaps and overlap among sections */
4820 	total = 0;
4821 	expected_total = btf_data_size - hdr->hdr_len;
4822 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4823 		if (expected_total < secs[i].off) {
4824 			btf_verifier_log(env, "Invalid section offset");
4825 			return -EINVAL;
4826 		}
4827 		if (total < secs[i].off) {
4828 			/* gap */
4829 			btf_verifier_log(env, "Unsupported section found");
4830 			return -EINVAL;
4831 		}
4832 		if (total > secs[i].off) {
4833 			btf_verifier_log(env, "Section overlap found");
4834 			return -EINVAL;
4835 		}
4836 		if (expected_total - total < secs[i].len) {
4837 			btf_verifier_log(env,
4838 					 "Total section length too long");
4839 			return -EINVAL;
4840 		}
4841 		total += secs[i].len;
4842 	}
4843 
4844 	/* There is data other than hdr and known sections */
4845 	if (expected_total != total) {
4846 		btf_verifier_log(env, "Unsupported section found");
4847 		return -EINVAL;
4848 	}
4849 
4850 	return 0;
4851 }
4852 
4853 static int btf_parse_hdr(struct btf_verifier_env *env)
4854 {
4855 	u32 hdr_len, hdr_copy, btf_data_size;
4856 	const struct btf_header *hdr;
4857 	struct btf *btf;
4858 	int err;
4859 
4860 	btf = env->btf;
4861 	btf_data_size = btf->data_size;
4862 
4863 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
4864 		btf_verifier_log(env, "hdr_len not found");
4865 		return -EINVAL;
4866 	}
4867 
4868 	hdr = btf->data;
4869 	hdr_len = hdr->hdr_len;
4870 	if (btf_data_size < hdr_len) {
4871 		btf_verifier_log(env, "btf_header not found");
4872 		return -EINVAL;
4873 	}
4874 
4875 	/* Ensure the unsupported header fields are zero */
4876 	if (hdr_len > sizeof(btf->hdr)) {
4877 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
4878 		u8 *end = btf->data + hdr_len;
4879 
4880 		for (; expected_zero < end; expected_zero++) {
4881 			if (*expected_zero) {
4882 				btf_verifier_log(env, "Unsupported btf_header");
4883 				return -E2BIG;
4884 			}
4885 		}
4886 	}
4887 
4888 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4889 	memcpy(&btf->hdr, btf->data, hdr_copy);
4890 
4891 	hdr = &btf->hdr;
4892 
4893 	btf_verifier_log_hdr(env, btf_data_size);
4894 
4895 	if (hdr->magic != BTF_MAGIC) {
4896 		btf_verifier_log(env, "Invalid magic");
4897 		return -EINVAL;
4898 	}
4899 
4900 	if (hdr->version != BTF_VERSION) {
4901 		btf_verifier_log(env, "Unsupported version");
4902 		return -ENOTSUPP;
4903 	}
4904 
4905 	if (hdr->flags) {
4906 		btf_verifier_log(env, "Unsupported flags");
4907 		return -ENOTSUPP;
4908 	}
4909 
4910 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4911 		btf_verifier_log(env, "No data");
4912 		return -EINVAL;
4913 	}
4914 
4915 	err = btf_check_sec_info(env, btf_data_size);
4916 	if (err)
4917 		return err;
4918 
4919 	return 0;
4920 }
4921 
4922 static int btf_check_type_tags(struct btf_verifier_env *env,
4923 			       struct btf *btf, int start_id)
4924 {
4925 	int i, n, good_id = start_id - 1;
4926 	bool in_tags;
4927 
4928 	n = btf_nr_types(btf);
4929 	for (i = start_id; i < n; i++) {
4930 		const struct btf_type *t;
4931 		int chain_limit = 32;
4932 		u32 cur_id = i;
4933 
4934 		t = btf_type_by_id(btf, i);
4935 		if (!t)
4936 			return -EINVAL;
4937 		if (!btf_type_is_modifier(t))
4938 			continue;
4939 
4940 		cond_resched();
4941 
4942 		in_tags = btf_type_is_type_tag(t);
4943 		while (btf_type_is_modifier(t)) {
4944 			if (!chain_limit--) {
4945 				btf_verifier_log(env, "Max chain length or cycle detected");
4946 				return -ELOOP;
4947 			}
4948 			if (btf_type_is_type_tag(t)) {
4949 				if (!in_tags) {
4950 					btf_verifier_log(env, "Type tags don't precede modifiers");
4951 					return -EINVAL;
4952 				}
4953 			} else if (in_tags) {
4954 				in_tags = false;
4955 			}
4956 			if (cur_id <= good_id)
4957 				break;
4958 			/* Move to next type */
4959 			cur_id = t->type;
4960 			t = btf_type_by_id(btf, cur_id);
4961 			if (!t)
4962 				return -EINVAL;
4963 		}
4964 		good_id = i;
4965 	}
4966 	return 0;
4967 }
4968 
4969 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
4970 			     u32 log_level, char __user *log_ubuf, u32 log_size)
4971 {
4972 	struct btf_verifier_env *env = NULL;
4973 	struct bpf_verifier_log *log;
4974 	struct btf *btf = NULL;
4975 	u8 *data;
4976 	int err;
4977 
4978 	if (btf_data_size > BTF_MAX_SIZE)
4979 		return ERR_PTR(-E2BIG);
4980 
4981 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4982 	if (!env)
4983 		return ERR_PTR(-ENOMEM);
4984 
4985 	log = &env->log;
4986 	if (log_level || log_ubuf || log_size) {
4987 		/* user requested verbose verifier output
4988 		 * and supplied buffer to store the verification trace
4989 		 */
4990 		log->level = log_level;
4991 		log->ubuf = log_ubuf;
4992 		log->len_total = log_size;
4993 
4994 		/* log attributes have to be sane */
4995 		if (!bpf_verifier_log_attr_valid(log)) {
4996 			err = -EINVAL;
4997 			goto errout;
4998 		}
4999 	}
5000 
5001 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5002 	if (!btf) {
5003 		err = -ENOMEM;
5004 		goto errout;
5005 	}
5006 	env->btf = btf;
5007 
5008 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
5009 	if (!data) {
5010 		err = -ENOMEM;
5011 		goto errout;
5012 	}
5013 
5014 	btf->data = data;
5015 	btf->data_size = btf_data_size;
5016 
5017 	if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
5018 		err = -EFAULT;
5019 		goto errout;
5020 	}
5021 
5022 	err = btf_parse_hdr(env);
5023 	if (err)
5024 		goto errout;
5025 
5026 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5027 
5028 	err = btf_parse_str_sec(env);
5029 	if (err)
5030 		goto errout;
5031 
5032 	err = btf_parse_type_sec(env);
5033 	if (err)
5034 		goto errout;
5035 
5036 	err = btf_check_type_tags(env, btf, 1);
5037 	if (err)
5038 		goto errout;
5039 
5040 	if (log->level && bpf_verifier_log_full(log)) {
5041 		err = -ENOSPC;
5042 		goto errout;
5043 	}
5044 
5045 	btf_verifier_env_free(env);
5046 	refcount_set(&btf->refcnt, 1);
5047 	return btf;
5048 
5049 errout:
5050 	btf_verifier_env_free(env);
5051 	if (btf)
5052 		btf_free(btf);
5053 	return ERR_PTR(err);
5054 }
5055 
5056 extern char __weak __start_BTF[];
5057 extern char __weak __stop_BTF[];
5058 extern struct btf *btf_vmlinux;
5059 
5060 #define BPF_MAP_TYPE(_id, _ops)
5061 #define BPF_LINK_TYPE(_id, _name)
5062 static union {
5063 	struct bpf_ctx_convert {
5064 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5065 	prog_ctx_type _id##_prog; \
5066 	kern_ctx_type _id##_kern;
5067 #include <linux/bpf_types.h>
5068 #undef BPF_PROG_TYPE
5069 	} *__t;
5070 	/* 't' is written once under lock. Read many times. */
5071 	const struct btf_type *t;
5072 } bpf_ctx_convert;
5073 enum {
5074 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5075 	__ctx_convert##_id,
5076 #include <linux/bpf_types.h>
5077 #undef BPF_PROG_TYPE
5078 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5079 };
5080 static u8 bpf_ctx_convert_map[] = {
5081 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5082 	[_id] = __ctx_convert##_id,
5083 #include <linux/bpf_types.h>
5084 #undef BPF_PROG_TYPE
5085 	0, /* avoid empty array */
5086 };
5087 #undef BPF_MAP_TYPE
5088 #undef BPF_LINK_TYPE
5089 
5090 static const struct btf_member *
5091 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5092 		      const struct btf_type *t, enum bpf_prog_type prog_type,
5093 		      int arg)
5094 {
5095 	const struct btf_type *conv_struct;
5096 	const struct btf_type *ctx_struct;
5097 	const struct btf_member *ctx_type;
5098 	const char *tname, *ctx_tname;
5099 
5100 	conv_struct = bpf_ctx_convert.t;
5101 	if (!conv_struct) {
5102 		bpf_log(log, "btf_vmlinux is malformed\n");
5103 		return NULL;
5104 	}
5105 	t = btf_type_by_id(btf, t->type);
5106 	while (btf_type_is_modifier(t))
5107 		t = btf_type_by_id(btf, t->type);
5108 	if (!btf_type_is_struct(t)) {
5109 		/* Only pointer to struct is supported for now.
5110 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5111 		 * is not supported yet.
5112 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5113 		 */
5114 		return NULL;
5115 	}
5116 	tname = btf_name_by_offset(btf, t->name_off);
5117 	if (!tname) {
5118 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5119 		return NULL;
5120 	}
5121 	/* prog_type is valid bpf program type. No need for bounds check. */
5122 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5123 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5124 	 * Like 'struct __sk_buff'
5125 	 */
5126 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5127 	if (!ctx_struct)
5128 		/* should not happen */
5129 		return NULL;
5130 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5131 	if (!ctx_tname) {
5132 		/* should not happen */
5133 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5134 		return NULL;
5135 	}
5136 	/* only compare that prog's ctx type name is the same as
5137 	 * kernel expects. No need to compare field by field.
5138 	 * It's ok for bpf prog to do:
5139 	 * struct __sk_buff {};
5140 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5141 	 * { // no fields of skb are ever used }
5142 	 */
5143 	if (strcmp(ctx_tname, tname))
5144 		return NULL;
5145 	return ctx_type;
5146 }
5147 
5148 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5149 				     struct btf *btf,
5150 				     const struct btf_type *t,
5151 				     enum bpf_prog_type prog_type,
5152 				     int arg)
5153 {
5154 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
5155 
5156 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5157 	if (!prog_ctx_type)
5158 		return -ENOENT;
5159 	kern_ctx_type = prog_ctx_type + 1;
5160 	return kern_ctx_type->type;
5161 }
5162 
5163 BTF_ID_LIST(bpf_ctx_convert_btf_id)
5164 BTF_ID(struct, bpf_ctx_convert)
5165 
5166 struct btf *btf_parse_vmlinux(void)
5167 {
5168 	struct btf_verifier_env *env = NULL;
5169 	struct bpf_verifier_log *log;
5170 	struct btf *btf = NULL;
5171 	int err;
5172 
5173 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5174 	if (!env)
5175 		return ERR_PTR(-ENOMEM);
5176 
5177 	log = &env->log;
5178 	log->level = BPF_LOG_KERNEL;
5179 
5180 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5181 	if (!btf) {
5182 		err = -ENOMEM;
5183 		goto errout;
5184 	}
5185 	env->btf = btf;
5186 
5187 	btf->data = __start_BTF;
5188 	btf->data_size = __stop_BTF - __start_BTF;
5189 	btf->kernel_btf = true;
5190 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
5191 
5192 	err = btf_parse_hdr(env);
5193 	if (err)
5194 		goto errout;
5195 
5196 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5197 
5198 	err = btf_parse_str_sec(env);
5199 	if (err)
5200 		goto errout;
5201 
5202 	err = btf_check_all_metas(env);
5203 	if (err)
5204 		goto errout;
5205 
5206 	err = btf_check_type_tags(env, btf, 1);
5207 	if (err)
5208 		goto errout;
5209 
5210 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
5211 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5212 
5213 	bpf_struct_ops_init(btf, log);
5214 
5215 	refcount_set(&btf->refcnt, 1);
5216 
5217 	err = btf_alloc_id(btf);
5218 	if (err)
5219 		goto errout;
5220 
5221 	btf_verifier_env_free(env);
5222 	return btf;
5223 
5224 errout:
5225 	btf_verifier_env_free(env);
5226 	if (btf) {
5227 		kvfree(btf->types);
5228 		kfree(btf);
5229 	}
5230 	return ERR_PTR(err);
5231 }
5232 
5233 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5234 
5235 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5236 {
5237 	struct btf_verifier_env *env = NULL;
5238 	struct bpf_verifier_log *log;
5239 	struct btf *btf = NULL, *base_btf;
5240 	int err;
5241 
5242 	base_btf = bpf_get_btf_vmlinux();
5243 	if (IS_ERR(base_btf))
5244 		return base_btf;
5245 	if (!base_btf)
5246 		return ERR_PTR(-EINVAL);
5247 
5248 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5249 	if (!env)
5250 		return ERR_PTR(-ENOMEM);
5251 
5252 	log = &env->log;
5253 	log->level = BPF_LOG_KERNEL;
5254 
5255 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5256 	if (!btf) {
5257 		err = -ENOMEM;
5258 		goto errout;
5259 	}
5260 	env->btf = btf;
5261 
5262 	btf->base_btf = base_btf;
5263 	btf->start_id = base_btf->nr_types;
5264 	btf->start_str_off = base_btf->hdr.str_len;
5265 	btf->kernel_btf = true;
5266 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5267 
5268 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5269 	if (!btf->data) {
5270 		err = -ENOMEM;
5271 		goto errout;
5272 	}
5273 	memcpy(btf->data, data, data_size);
5274 	btf->data_size = data_size;
5275 
5276 	err = btf_parse_hdr(env);
5277 	if (err)
5278 		goto errout;
5279 
5280 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5281 
5282 	err = btf_parse_str_sec(env);
5283 	if (err)
5284 		goto errout;
5285 
5286 	err = btf_check_all_metas(env);
5287 	if (err)
5288 		goto errout;
5289 
5290 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5291 	if (err)
5292 		goto errout;
5293 
5294 	btf_verifier_env_free(env);
5295 	refcount_set(&btf->refcnt, 1);
5296 	return btf;
5297 
5298 errout:
5299 	btf_verifier_env_free(env);
5300 	if (btf) {
5301 		kvfree(btf->data);
5302 		kvfree(btf->types);
5303 		kfree(btf);
5304 	}
5305 	return ERR_PTR(err);
5306 }
5307 
5308 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5309 
5310 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5311 {
5312 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5313 
5314 	if (tgt_prog)
5315 		return tgt_prog->aux->btf;
5316 	else
5317 		return prog->aux->attach_btf;
5318 }
5319 
5320 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
5321 {
5322 	/* t comes in already as a pointer */
5323 	t = btf_type_by_id(btf, t->type);
5324 
5325 	/* allow const */
5326 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
5327 		t = btf_type_by_id(btf, t->type);
5328 
5329 	return btf_type_is_int(t);
5330 }
5331 
5332 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5333 		    const struct bpf_prog *prog,
5334 		    struct bpf_insn_access_aux *info)
5335 {
5336 	const struct btf_type *t = prog->aux->attach_func_proto;
5337 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5338 	struct btf *btf = bpf_prog_get_target_btf(prog);
5339 	const char *tname = prog->aux->attach_func_name;
5340 	struct bpf_verifier_log *log = info->log;
5341 	const struct btf_param *args;
5342 	const char *tag_value;
5343 	u32 nr_args, arg;
5344 	int i, ret;
5345 
5346 	if (off % 8) {
5347 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
5348 			tname, off);
5349 		return false;
5350 	}
5351 	arg = off / 8;
5352 	args = (const struct btf_param *)(t + 1);
5353 	/* if (t == NULL) Fall back to default BPF prog with
5354 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5355 	 */
5356 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
5357 	if (prog->aux->attach_btf_trace) {
5358 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
5359 		args++;
5360 		nr_args--;
5361 	}
5362 
5363 	if (arg > nr_args) {
5364 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5365 			tname, arg + 1);
5366 		return false;
5367 	}
5368 
5369 	if (arg == nr_args) {
5370 		switch (prog->expected_attach_type) {
5371 		case BPF_LSM_CGROUP:
5372 		case BPF_LSM_MAC:
5373 		case BPF_TRACE_FEXIT:
5374 			/* When LSM programs are attached to void LSM hooks
5375 			 * they use FEXIT trampolines and when attached to
5376 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
5377 			 *
5378 			 * While the LSM programs are BPF_MODIFY_RETURN-like
5379 			 * the check:
5380 			 *
5381 			 *	if (ret_type != 'int')
5382 			 *		return -EINVAL;
5383 			 *
5384 			 * is _not_ done here. This is still safe as LSM hooks
5385 			 * have only void and int return types.
5386 			 */
5387 			if (!t)
5388 				return true;
5389 			t = btf_type_by_id(btf, t->type);
5390 			break;
5391 		case BPF_MODIFY_RETURN:
5392 			/* For now the BPF_MODIFY_RETURN can only be attached to
5393 			 * functions that return an int.
5394 			 */
5395 			if (!t)
5396 				return false;
5397 
5398 			t = btf_type_skip_modifiers(btf, t->type, NULL);
5399 			if (!btf_type_is_small_int(t)) {
5400 				bpf_log(log,
5401 					"ret type %s not allowed for fmod_ret\n",
5402 					btf_kind_str[BTF_INFO_KIND(t->info)]);
5403 				return false;
5404 			}
5405 			break;
5406 		default:
5407 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5408 				tname, arg + 1);
5409 			return false;
5410 		}
5411 	} else {
5412 		if (!t)
5413 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
5414 			return true;
5415 		t = btf_type_by_id(btf, args[arg].type);
5416 	}
5417 
5418 	/* skip modifiers */
5419 	while (btf_type_is_modifier(t))
5420 		t = btf_type_by_id(btf, t->type);
5421 	if (btf_type_is_small_int(t) || btf_is_any_enum(t))
5422 		/* accessing a scalar */
5423 		return true;
5424 	if (!btf_type_is_ptr(t)) {
5425 		bpf_log(log,
5426 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
5427 			tname, arg,
5428 			__btf_name_by_offset(btf, t->name_off),
5429 			btf_kind_str[BTF_INFO_KIND(t->info)]);
5430 		return false;
5431 	}
5432 
5433 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
5434 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5435 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5436 		u32 type, flag;
5437 
5438 		type = base_type(ctx_arg_info->reg_type);
5439 		flag = type_flag(ctx_arg_info->reg_type);
5440 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
5441 		    (flag & PTR_MAYBE_NULL)) {
5442 			info->reg_type = ctx_arg_info->reg_type;
5443 			return true;
5444 		}
5445 	}
5446 
5447 	if (t->type == 0)
5448 		/* This is a pointer to void.
5449 		 * It is the same as scalar from the verifier safety pov.
5450 		 * No further pointer walking is allowed.
5451 		 */
5452 		return true;
5453 
5454 	if (is_int_ptr(btf, t))
5455 		return true;
5456 
5457 	/* this is a pointer to another type */
5458 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5459 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5460 
5461 		if (ctx_arg_info->offset == off) {
5462 			if (!ctx_arg_info->btf_id) {
5463 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
5464 				return false;
5465 			}
5466 
5467 			info->reg_type = ctx_arg_info->reg_type;
5468 			info->btf = btf_vmlinux;
5469 			info->btf_id = ctx_arg_info->btf_id;
5470 			return true;
5471 		}
5472 	}
5473 
5474 	info->reg_type = PTR_TO_BTF_ID;
5475 	if (tgt_prog) {
5476 		enum bpf_prog_type tgt_type;
5477 
5478 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
5479 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
5480 		else
5481 			tgt_type = tgt_prog->type;
5482 
5483 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5484 		if (ret > 0) {
5485 			info->btf = btf_vmlinux;
5486 			info->btf_id = ret;
5487 			return true;
5488 		} else {
5489 			return false;
5490 		}
5491 	}
5492 
5493 	info->btf = btf;
5494 	info->btf_id = t->type;
5495 	t = btf_type_by_id(btf, t->type);
5496 
5497 	if (btf_type_is_type_tag(t)) {
5498 		tag_value = __btf_name_by_offset(btf, t->name_off);
5499 		if (strcmp(tag_value, "user") == 0)
5500 			info->reg_type |= MEM_USER;
5501 		if (strcmp(tag_value, "percpu") == 0)
5502 			info->reg_type |= MEM_PERCPU;
5503 	}
5504 
5505 	/* skip modifiers */
5506 	while (btf_type_is_modifier(t)) {
5507 		info->btf_id = t->type;
5508 		t = btf_type_by_id(btf, t->type);
5509 	}
5510 	if (!btf_type_is_struct(t)) {
5511 		bpf_log(log,
5512 			"func '%s' arg%d type %s is not a struct\n",
5513 			tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
5514 		return false;
5515 	}
5516 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
5517 		tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
5518 		__btf_name_by_offset(btf, t->name_off));
5519 	return true;
5520 }
5521 
5522 enum bpf_struct_walk_result {
5523 	/* < 0 error */
5524 	WALK_SCALAR = 0,
5525 	WALK_PTR,
5526 	WALK_STRUCT,
5527 };
5528 
5529 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
5530 			   const struct btf_type *t, int off, int size,
5531 			   u32 *next_btf_id, enum bpf_type_flag *flag)
5532 {
5533 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
5534 	const struct btf_type *mtype, *elem_type = NULL;
5535 	const struct btf_member *member;
5536 	const char *tname, *mname, *tag_value;
5537 	u32 vlen, elem_id, mid;
5538 
5539 again:
5540 	tname = __btf_name_by_offset(btf, t->name_off);
5541 	if (!btf_type_is_struct(t)) {
5542 		bpf_log(log, "Type '%s' is not a struct\n", tname);
5543 		return -EINVAL;
5544 	}
5545 
5546 	vlen = btf_type_vlen(t);
5547 	if (off + size > t->size) {
5548 		/* If the last element is a variable size array, we may
5549 		 * need to relax the rule.
5550 		 */
5551 		struct btf_array *array_elem;
5552 
5553 		if (vlen == 0)
5554 			goto error;
5555 
5556 		member = btf_type_member(t) + vlen - 1;
5557 		mtype = btf_type_skip_modifiers(btf, member->type,
5558 						NULL);
5559 		if (!btf_type_is_array(mtype))
5560 			goto error;
5561 
5562 		array_elem = (struct btf_array *)(mtype + 1);
5563 		if (array_elem->nelems != 0)
5564 			goto error;
5565 
5566 		moff = __btf_member_bit_offset(t, member) / 8;
5567 		if (off < moff)
5568 			goto error;
5569 
5570 		/* Only allow structure for now, can be relaxed for
5571 		 * other types later.
5572 		 */
5573 		t = btf_type_skip_modifiers(btf, array_elem->type,
5574 					    NULL);
5575 		if (!btf_type_is_struct(t))
5576 			goto error;
5577 
5578 		off = (off - moff) % t->size;
5579 		goto again;
5580 
5581 error:
5582 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
5583 			tname, off, size);
5584 		return -EACCES;
5585 	}
5586 
5587 	for_each_member(i, t, member) {
5588 		/* offset of the field in bytes */
5589 		moff = __btf_member_bit_offset(t, member) / 8;
5590 		if (off + size <= moff)
5591 			/* won't find anything, field is already too far */
5592 			break;
5593 
5594 		if (__btf_member_bitfield_size(t, member)) {
5595 			u32 end_bit = __btf_member_bit_offset(t, member) +
5596 				__btf_member_bitfield_size(t, member);
5597 
5598 			/* off <= moff instead of off == moff because clang
5599 			 * does not generate a BTF member for anonymous
5600 			 * bitfield like the ":16" here:
5601 			 * struct {
5602 			 *	int :16;
5603 			 *	int x:8;
5604 			 * };
5605 			 */
5606 			if (off <= moff &&
5607 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
5608 				return WALK_SCALAR;
5609 
5610 			/* off may be accessing a following member
5611 			 *
5612 			 * or
5613 			 *
5614 			 * Doing partial access at either end of this
5615 			 * bitfield.  Continue on this case also to
5616 			 * treat it as not accessing this bitfield
5617 			 * and eventually error out as field not
5618 			 * found to keep it simple.
5619 			 * It could be relaxed if there was a legit
5620 			 * partial access case later.
5621 			 */
5622 			continue;
5623 		}
5624 
5625 		/* In case of "off" is pointing to holes of a struct */
5626 		if (off < moff)
5627 			break;
5628 
5629 		/* type of the field */
5630 		mid = member->type;
5631 		mtype = btf_type_by_id(btf, member->type);
5632 		mname = __btf_name_by_offset(btf, member->name_off);
5633 
5634 		mtype = __btf_resolve_size(btf, mtype, &msize,
5635 					   &elem_type, &elem_id, &total_nelems,
5636 					   &mid);
5637 		if (IS_ERR(mtype)) {
5638 			bpf_log(log, "field %s doesn't have size\n", mname);
5639 			return -EFAULT;
5640 		}
5641 
5642 		mtrue_end = moff + msize;
5643 		if (off >= mtrue_end)
5644 			/* no overlap with member, keep iterating */
5645 			continue;
5646 
5647 		if (btf_type_is_array(mtype)) {
5648 			u32 elem_idx;
5649 
5650 			/* __btf_resolve_size() above helps to
5651 			 * linearize a multi-dimensional array.
5652 			 *
5653 			 * The logic here is treating an array
5654 			 * in a struct as the following way:
5655 			 *
5656 			 * struct outer {
5657 			 *	struct inner array[2][2];
5658 			 * };
5659 			 *
5660 			 * looks like:
5661 			 *
5662 			 * struct outer {
5663 			 *	struct inner array_elem0;
5664 			 *	struct inner array_elem1;
5665 			 *	struct inner array_elem2;
5666 			 *	struct inner array_elem3;
5667 			 * };
5668 			 *
5669 			 * When accessing outer->array[1][0], it moves
5670 			 * moff to "array_elem2", set mtype to
5671 			 * "struct inner", and msize also becomes
5672 			 * sizeof(struct inner).  Then most of the
5673 			 * remaining logic will fall through without
5674 			 * caring the current member is an array or
5675 			 * not.
5676 			 *
5677 			 * Unlike mtype/msize/moff, mtrue_end does not
5678 			 * change.  The naming difference ("_true") tells
5679 			 * that it is not always corresponding to
5680 			 * the current mtype/msize/moff.
5681 			 * It is the true end of the current
5682 			 * member (i.e. array in this case).  That
5683 			 * will allow an int array to be accessed like
5684 			 * a scratch space,
5685 			 * i.e. allow access beyond the size of
5686 			 *      the array's element as long as it is
5687 			 *      within the mtrue_end boundary.
5688 			 */
5689 
5690 			/* skip empty array */
5691 			if (moff == mtrue_end)
5692 				continue;
5693 
5694 			msize /= total_nelems;
5695 			elem_idx = (off - moff) / msize;
5696 			moff += elem_idx * msize;
5697 			mtype = elem_type;
5698 			mid = elem_id;
5699 		}
5700 
5701 		/* the 'off' we're looking for is either equal to start
5702 		 * of this field or inside of this struct
5703 		 */
5704 		if (btf_type_is_struct(mtype)) {
5705 			/* our field must be inside that union or struct */
5706 			t = mtype;
5707 
5708 			/* return if the offset matches the member offset */
5709 			if (off == moff) {
5710 				*next_btf_id = mid;
5711 				return WALK_STRUCT;
5712 			}
5713 
5714 			/* adjust offset we're looking for */
5715 			off -= moff;
5716 			goto again;
5717 		}
5718 
5719 		if (btf_type_is_ptr(mtype)) {
5720 			const struct btf_type *stype, *t;
5721 			enum bpf_type_flag tmp_flag = 0;
5722 			u32 id;
5723 
5724 			if (msize != size || off != moff) {
5725 				bpf_log(log,
5726 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5727 					mname, moff, tname, off, size);
5728 				return -EACCES;
5729 			}
5730 
5731 			/* check type tag */
5732 			t = btf_type_by_id(btf, mtype->type);
5733 			if (btf_type_is_type_tag(t)) {
5734 				tag_value = __btf_name_by_offset(btf, t->name_off);
5735 				/* check __user tag */
5736 				if (strcmp(tag_value, "user") == 0)
5737 					tmp_flag = MEM_USER;
5738 				/* check __percpu tag */
5739 				if (strcmp(tag_value, "percpu") == 0)
5740 					tmp_flag = MEM_PERCPU;
5741 			}
5742 
5743 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
5744 			if (btf_type_is_struct(stype)) {
5745 				*next_btf_id = id;
5746 				*flag = tmp_flag;
5747 				return WALK_PTR;
5748 			}
5749 		}
5750 
5751 		/* Allow more flexible access within an int as long as
5752 		 * it is within mtrue_end.
5753 		 * Since mtrue_end could be the end of an array,
5754 		 * that also allows using an array of int as a scratch
5755 		 * space. e.g. skb->cb[].
5756 		 */
5757 		if (off + size > mtrue_end) {
5758 			bpf_log(log,
5759 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5760 				mname, mtrue_end, tname, off, size);
5761 			return -EACCES;
5762 		}
5763 
5764 		return WALK_SCALAR;
5765 	}
5766 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5767 	return -EINVAL;
5768 }
5769 
5770 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
5771 		      const struct btf_type *t, int off, int size,
5772 		      enum bpf_access_type atype __maybe_unused,
5773 		      u32 *next_btf_id, enum bpf_type_flag *flag)
5774 {
5775 	enum bpf_type_flag tmp_flag = 0;
5776 	int err;
5777 	u32 id;
5778 
5779 	do {
5780 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
5781 
5782 		switch (err) {
5783 		case WALK_PTR:
5784 			/* If we found the pointer or scalar on t+off,
5785 			 * we're done.
5786 			 */
5787 			*next_btf_id = id;
5788 			*flag = tmp_flag;
5789 			return PTR_TO_BTF_ID;
5790 		case WALK_SCALAR:
5791 			return SCALAR_VALUE;
5792 		case WALK_STRUCT:
5793 			/* We found nested struct, so continue the search
5794 			 * by diving in it. At this point the offset is
5795 			 * aligned with the new type, so set it to 0.
5796 			 */
5797 			t = btf_type_by_id(btf, id);
5798 			off = 0;
5799 			break;
5800 		default:
5801 			/* It's either error or unknown return value..
5802 			 * scream and leave.
5803 			 */
5804 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5805 				return -EINVAL;
5806 			return err;
5807 		}
5808 	} while (t);
5809 
5810 	return -EINVAL;
5811 }
5812 
5813 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5814  * the same. Trivial ID check is not enough due to module BTFs, because we can
5815  * end up with two different module BTFs, but IDs point to the common type in
5816  * vmlinux BTF.
5817  */
5818 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5819 			       const struct btf *btf2, u32 id2)
5820 {
5821 	if (id1 != id2)
5822 		return false;
5823 	if (btf1 == btf2)
5824 		return true;
5825 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5826 }
5827 
5828 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5829 			  const struct btf *btf, u32 id, int off,
5830 			  const struct btf *need_btf, u32 need_type_id,
5831 			  bool strict)
5832 {
5833 	const struct btf_type *type;
5834 	enum bpf_type_flag flag;
5835 	int err;
5836 
5837 	/* Are we already done? */
5838 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5839 		return true;
5840 	/* In case of strict type match, we do not walk struct, the top level
5841 	 * type match must succeed. When strict is true, off should have already
5842 	 * been 0.
5843 	 */
5844 	if (strict)
5845 		return false;
5846 again:
5847 	type = btf_type_by_id(btf, id);
5848 	if (!type)
5849 		return false;
5850 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
5851 	if (err != WALK_STRUCT)
5852 		return false;
5853 
5854 	/* We found nested struct object. If it matches
5855 	 * the requested ID, we're done. Otherwise let's
5856 	 * continue the search with offset 0 in the new
5857 	 * type.
5858 	 */
5859 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5860 		off = 0;
5861 		goto again;
5862 	}
5863 
5864 	return true;
5865 }
5866 
5867 static int __get_type_size(struct btf *btf, u32 btf_id,
5868 			   const struct btf_type **bad_type)
5869 {
5870 	const struct btf_type *t;
5871 
5872 	if (!btf_id)
5873 		/* void */
5874 		return 0;
5875 	t = btf_type_by_id(btf, btf_id);
5876 	while (t && btf_type_is_modifier(t))
5877 		t = btf_type_by_id(btf, t->type);
5878 	if (!t) {
5879 		*bad_type = btf_type_by_id(btf, 0);
5880 		return -EINVAL;
5881 	}
5882 	if (btf_type_is_ptr(t))
5883 		/* kernel size of pointer. Not BPF's size of pointer*/
5884 		return sizeof(void *);
5885 	if (btf_type_is_int(t) || btf_is_any_enum(t))
5886 		return t->size;
5887 	*bad_type = t;
5888 	return -EINVAL;
5889 }
5890 
5891 int btf_distill_func_proto(struct bpf_verifier_log *log,
5892 			   struct btf *btf,
5893 			   const struct btf_type *func,
5894 			   const char *tname,
5895 			   struct btf_func_model *m)
5896 {
5897 	const struct btf_param *args;
5898 	const struct btf_type *t;
5899 	u32 i, nargs;
5900 	int ret;
5901 
5902 	if (!func) {
5903 		/* BTF function prototype doesn't match the verifier types.
5904 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5905 		 */
5906 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
5907 			m->arg_size[i] = 8;
5908 		m->ret_size = 8;
5909 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5910 		return 0;
5911 	}
5912 	args = (const struct btf_param *)(func + 1);
5913 	nargs = btf_type_vlen(func);
5914 	if (nargs > MAX_BPF_FUNC_ARGS) {
5915 		bpf_log(log,
5916 			"The function %s has %d arguments. Too many.\n",
5917 			tname, nargs);
5918 		return -EINVAL;
5919 	}
5920 	ret = __get_type_size(btf, func->type, &t);
5921 	if (ret < 0) {
5922 		bpf_log(log,
5923 			"The function %s return type %s is unsupported.\n",
5924 			tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5925 		return -EINVAL;
5926 	}
5927 	m->ret_size = ret;
5928 
5929 	for (i = 0; i < nargs; i++) {
5930 		if (i == nargs - 1 && args[i].type == 0) {
5931 			bpf_log(log,
5932 				"The function %s with variable args is unsupported.\n",
5933 				tname);
5934 			return -EINVAL;
5935 		}
5936 		ret = __get_type_size(btf, args[i].type, &t);
5937 		if (ret < 0) {
5938 			bpf_log(log,
5939 				"The function %s arg%d type %s is unsupported.\n",
5940 				tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5941 			return -EINVAL;
5942 		}
5943 		if (ret == 0) {
5944 			bpf_log(log,
5945 				"The function %s has malformed void argument.\n",
5946 				tname);
5947 			return -EINVAL;
5948 		}
5949 		m->arg_size[i] = ret;
5950 	}
5951 	m->nr_args = nargs;
5952 	return 0;
5953 }
5954 
5955 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5956  * t1 points to BTF_KIND_FUNC in btf1
5957  * t2 points to BTF_KIND_FUNC in btf2
5958  * Returns:
5959  * EINVAL - function prototype mismatch
5960  * EFAULT - verifier bug
5961  * 0 - 99% match. The last 1% is validated by the verifier.
5962  */
5963 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5964 				     struct btf *btf1, const struct btf_type *t1,
5965 				     struct btf *btf2, const struct btf_type *t2)
5966 {
5967 	const struct btf_param *args1, *args2;
5968 	const char *fn1, *fn2, *s1, *s2;
5969 	u32 nargs1, nargs2, i;
5970 
5971 	fn1 = btf_name_by_offset(btf1, t1->name_off);
5972 	fn2 = btf_name_by_offset(btf2, t2->name_off);
5973 
5974 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5975 		bpf_log(log, "%s() is not a global function\n", fn1);
5976 		return -EINVAL;
5977 	}
5978 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5979 		bpf_log(log, "%s() is not a global function\n", fn2);
5980 		return -EINVAL;
5981 	}
5982 
5983 	t1 = btf_type_by_id(btf1, t1->type);
5984 	if (!t1 || !btf_type_is_func_proto(t1))
5985 		return -EFAULT;
5986 	t2 = btf_type_by_id(btf2, t2->type);
5987 	if (!t2 || !btf_type_is_func_proto(t2))
5988 		return -EFAULT;
5989 
5990 	args1 = (const struct btf_param *)(t1 + 1);
5991 	nargs1 = btf_type_vlen(t1);
5992 	args2 = (const struct btf_param *)(t2 + 1);
5993 	nargs2 = btf_type_vlen(t2);
5994 
5995 	if (nargs1 != nargs2) {
5996 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
5997 			fn1, nargs1, fn2, nargs2);
5998 		return -EINVAL;
5999 	}
6000 
6001 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6002 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6003 	if (t1->info != t2->info) {
6004 		bpf_log(log,
6005 			"Return type %s of %s() doesn't match type %s of %s()\n",
6006 			btf_type_str(t1), fn1,
6007 			btf_type_str(t2), fn2);
6008 		return -EINVAL;
6009 	}
6010 
6011 	for (i = 0; i < nargs1; i++) {
6012 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6013 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6014 
6015 		if (t1->info != t2->info) {
6016 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6017 				i, fn1, btf_type_str(t1),
6018 				fn2, btf_type_str(t2));
6019 			return -EINVAL;
6020 		}
6021 		if (btf_type_has_size(t1) && t1->size != t2->size) {
6022 			bpf_log(log,
6023 				"arg%d in %s() has size %d while %s() has %d\n",
6024 				i, fn1, t1->size,
6025 				fn2, t2->size);
6026 			return -EINVAL;
6027 		}
6028 
6029 		/* global functions are validated with scalars and pointers
6030 		 * to context only. And only global functions can be replaced.
6031 		 * Hence type check only those types.
6032 		 */
6033 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6034 			continue;
6035 		if (!btf_type_is_ptr(t1)) {
6036 			bpf_log(log,
6037 				"arg%d in %s() has unrecognized type\n",
6038 				i, fn1);
6039 			return -EINVAL;
6040 		}
6041 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6042 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6043 		if (!btf_type_is_struct(t1)) {
6044 			bpf_log(log,
6045 				"arg%d in %s() is not a pointer to context\n",
6046 				i, fn1);
6047 			return -EINVAL;
6048 		}
6049 		if (!btf_type_is_struct(t2)) {
6050 			bpf_log(log,
6051 				"arg%d in %s() is not a pointer to context\n",
6052 				i, fn2);
6053 			return -EINVAL;
6054 		}
6055 		/* This is an optional check to make program writing easier.
6056 		 * Compare names of structs and report an error to the user.
6057 		 * btf_prepare_func_args() already checked that t2 struct
6058 		 * is a context type. btf_prepare_func_args() will check
6059 		 * later that t1 struct is a context type as well.
6060 		 */
6061 		s1 = btf_name_by_offset(btf1, t1->name_off);
6062 		s2 = btf_name_by_offset(btf2, t2->name_off);
6063 		if (strcmp(s1, s2)) {
6064 			bpf_log(log,
6065 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6066 				i, fn1, s1, fn2, s2);
6067 			return -EINVAL;
6068 		}
6069 	}
6070 	return 0;
6071 }
6072 
6073 /* Compare BTFs of given program with BTF of target program */
6074 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6075 			 struct btf *btf2, const struct btf_type *t2)
6076 {
6077 	struct btf *btf1 = prog->aux->btf;
6078 	const struct btf_type *t1;
6079 	u32 btf_id = 0;
6080 
6081 	if (!prog->aux->func_info) {
6082 		bpf_log(log, "Program extension requires BTF\n");
6083 		return -EINVAL;
6084 	}
6085 
6086 	btf_id = prog->aux->func_info[0].type_id;
6087 	if (!btf_id)
6088 		return -EFAULT;
6089 
6090 	t1 = btf_type_by_id(btf1, btf_id);
6091 	if (!t1 || !btf_type_is_func(t1))
6092 		return -EFAULT;
6093 
6094 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6095 }
6096 
6097 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
6098 #ifdef CONFIG_NET
6099 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
6100 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
6101 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
6102 #endif
6103 };
6104 
6105 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
6106 static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log,
6107 					const struct btf *btf,
6108 					const struct btf_type *t, int rec)
6109 {
6110 	const struct btf_type *member_type;
6111 	const struct btf_member *member;
6112 	u32 i;
6113 
6114 	if (!btf_type_is_struct(t))
6115 		return false;
6116 
6117 	for_each_member(i, t, member) {
6118 		const struct btf_array *array;
6119 
6120 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
6121 		if (btf_type_is_struct(member_type)) {
6122 			if (rec >= 3) {
6123 				bpf_log(log, "max struct nesting depth exceeded\n");
6124 				return false;
6125 			}
6126 			if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1))
6127 				return false;
6128 			continue;
6129 		}
6130 		if (btf_type_is_array(member_type)) {
6131 			array = btf_type_array(member_type);
6132 			if (!array->nelems)
6133 				return false;
6134 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
6135 			if (!btf_type_is_scalar(member_type))
6136 				return false;
6137 			continue;
6138 		}
6139 		if (!btf_type_is_scalar(member_type))
6140 			return false;
6141 	}
6142 	return true;
6143 }
6144 
6145 static bool is_kfunc_arg_mem_size(const struct btf *btf,
6146 				  const struct btf_param *arg,
6147 				  const struct bpf_reg_state *reg)
6148 {
6149 	int len, sfx_len = sizeof("__sz") - 1;
6150 	const struct btf_type *t;
6151 	const char *param_name;
6152 
6153 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
6154 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
6155 		return false;
6156 
6157 	/* In the future, this can be ported to use BTF tagging */
6158 	param_name = btf_name_by_offset(btf, arg->name_off);
6159 	if (str_is_empty(param_name))
6160 		return false;
6161 	len = strlen(param_name);
6162 	if (len < sfx_len)
6163 		return false;
6164 	param_name += len - sfx_len;
6165 	if (strncmp(param_name, "__sz", sfx_len))
6166 		return false;
6167 
6168 	return true;
6169 }
6170 
6171 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6172 				    const struct btf *btf, u32 func_id,
6173 				    struct bpf_reg_state *regs,
6174 				    bool ptr_to_mem_ok)
6175 {
6176 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6177 	struct bpf_verifier_log *log = &env->log;
6178 	u32 i, nargs, ref_id, ref_obj_id = 0;
6179 	bool is_kfunc = btf_is_kernel(btf);
6180 	bool rel = false, kptr_get = false;
6181 	const char *func_name, *ref_tname;
6182 	const struct btf_type *t, *ref_t;
6183 	const struct btf_param *args;
6184 	int ref_regno = 0, ret;
6185 
6186 	t = btf_type_by_id(btf, func_id);
6187 	if (!t || !btf_type_is_func(t)) {
6188 		/* These checks were already done by the verifier while loading
6189 		 * struct bpf_func_info or in add_kfunc_call().
6190 		 */
6191 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6192 			func_id);
6193 		return -EFAULT;
6194 	}
6195 	func_name = btf_name_by_offset(btf, t->name_off);
6196 
6197 	t = btf_type_by_id(btf, t->type);
6198 	if (!t || !btf_type_is_func_proto(t)) {
6199 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
6200 		return -EFAULT;
6201 	}
6202 	args = (const struct btf_param *)(t + 1);
6203 	nargs = btf_type_vlen(t);
6204 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6205 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
6206 			MAX_BPF_FUNC_REG_ARGS);
6207 		return -EINVAL;
6208 	}
6209 
6210 	if (is_kfunc) {
6211 		/* Only kfunc can be release func */
6212 		rel = btf_kfunc_id_set_contains(btf, resolve_prog_type(env->prog),
6213 						BTF_KFUNC_TYPE_RELEASE, func_id);
6214 		kptr_get = btf_kfunc_id_set_contains(btf, resolve_prog_type(env->prog),
6215 						     BTF_KFUNC_TYPE_KPTR_ACQUIRE, func_id);
6216 	}
6217 
6218 	/* check that BTF function arguments match actual types that the
6219 	 * verifier sees.
6220 	 */
6221 	for (i = 0; i < nargs; i++) {
6222 		enum bpf_arg_type arg_type = ARG_DONTCARE;
6223 		u32 regno = i + 1;
6224 		struct bpf_reg_state *reg = &regs[regno];
6225 
6226 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6227 		if (btf_type_is_scalar(t)) {
6228 			if (reg->type == SCALAR_VALUE)
6229 				continue;
6230 			bpf_log(log, "R%d is not a scalar\n", regno);
6231 			return -EINVAL;
6232 		}
6233 
6234 		if (!btf_type_is_ptr(t)) {
6235 			bpf_log(log, "Unrecognized arg#%d type %s\n",
6236 				i, btf_type_str(t));
6237 			return -EINVAL;
6238 		}
6239 
6240 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
6241 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6242 
6243 		if (rel && reg->ref_obj_id)
6244 			arg_type |= OBJ_RELEASE;
6245 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
6246 		if (ret < 0)
6247 			return ret;
6248 
6249 		/* kptr_get is only true for kfunc */
6250 		if (i == 0 && kptr_get) {
6251 			struct bpf_map_value_off_desc *off_desc;
6252 
6253 			if (reg->type != PTR_TO_MAP_VALUE) {
6254 				bpf_log(log, "arg#0 expected pointer to map value\n");
6255 				return -EINVAL;
6256 			}
6257 
6258 			/* check_func_arg_reg_off allows var_off for
6259 			 * PTR_TO_MAP_VALUE, but we need fixed offset to find
6260 			 * off_desc.
6261 			 */
6262 			if (!tnum_is_const(reg->var_off)) {
6263 				bpf_log(log, "arg#0 must have constant offset\n");
6264 				return -EINVAL;
6265 			}
6266 
6267 			off_desc = bpf_map_kptr_off_contains(reg->map_ptr, reg->off + reg->var_off.value);
6268 			if (!off_desc || off_desc->type != BPF_KPTR_REF) {
6269 				bpf_log(log, "arg#0 no referenced kptr at map value offset=%llu\n",
6270 					reg->off + reg->var_off.value);
6271 				return -EINVAL;
6272 			}
6273 
6274 			if (!btf_type_is_ptr(ref_t)) {
6275 				bpf_log(log, "arg#0 BTF type must be a double pointer\n");
6276 				return -EINVAL;
6277 			}
6278 
6279 			ref_t = btf_type_skip_modifiers(btf, ref_t->type, &ref_id);
6280 			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6281 
6282 			if (!btf_type_is_struct(ref_t)) {
6283 				bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
6284 					func_name, i, btf_type_str(ref_t), ref_tname);
6285 				return -EINVAL;
6286 			}
6287 			if (!btf_struct_ids_match(log, btf, ref_id, 0, off_desc->kptr.btf,
6288 						  off_desc->kptr.btf_id, true)) {
6289 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s\n",
6290 					func_name, i, btf_type_str(ref_t), ref_tname);
6291 				return -EINVAL;
6292 			}
6293 			/* rest of the arguments can be anything, like normal kfunc */
6294 		} else if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6295 			/* If function expects ctx type in BTF check that caller
6296 			 * is passing PTR_TO_CTX.
6297 			 */
6298 			if (reg->type != PTR_TO_CTX) {
6299 				bpf_log(log,
6300 					"arg#%d expected pointer to ctx, but got %s\n",
6301 					i, btf_type_str(t));
6302 				return -EINVAL;
6303 			}
6304 		} else if (is_kfunc && (reg->type == PTR_TO_BTF_ID ||
6305 			   (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) {
6306 			const struct btf_type *reg_ref_t;
6307 			const struct btf *reg_btf;
6308 			const char *reg_ref_tname;
6309 			u32 reg_ref_id;
6310 
6311 			if (!btf_type_is_struct(ref_t)) {
6312 				bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
6313 					func_name, i, btf_type_str(ref_t),
6314 					ref_tname);
6315 				return -EINVAL;
6316 			}
6317 
6318 			if (reg->type == PTR_TO_BTF_ID) {
6319 				reg_btf = reg->btf;
6320 				reg_ref_id = reg->btf_id;
6321 				/* Ensure only one argument is referenced PTR_TO_BTF_ID */
6322 				if (reg->ref_obj_id) {
6323 					if (ref_obj_id) {
6324 						bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
6325 							regno, reg->ref_obj_id, ref_obj_id);
6326 						return -EFAULT;
6327 					}
6328 					ref_regno = regno;
6329 					ref_obj_id = reg->ref_obj_id;
6330 				}
6331 			} else {
6332 				reg_btf = btf_vmlinux;
6333 				reg_ref_id = *reg2btf_ids[base_type(reg->type)];
6334 			}
6335 
6336 			reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
6337 							    &reg_ref_id);
6338 			reg_ref_tname = btf_name_by_offset(reg_btf,
6339 							   reg_ref_t->name_off);
6340 			if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
6341 						  reg->off, btf, ref_id, rel && reg->ref_obj_id)) {
6342 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
6343 					func_name, i,
6344 					btf_type_str(ref_t), ref_tname,
6345 					regno, btf_type_str(reg_ref_t),
6346 					reg_ref_tname);
6347 				return -EINVAL;
6348 			}
6349 		} else if (ptr_to_mem_ok) {
6350 			const struct btf_type *resolve_ret;
6351 			u32 type_size;
6352 
6353 			if (is_kfunc) {
6354 				bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], &regs[regno + 1]);
6355 
6356 				/* Permit pointer to mem, but only when argument
6357 				 * type is pointer to scalar, or struct composed
6358 				 * (recursively) of scalars.
6359 				 * When arg_mem_size is true, the pointer can be
6360 				 * void *.
6361 				 */
6362 				if (!btf_type_is_scalar(ref_t) &&
6363 				    !__btf_type_is_scalar_struct(log, btf, ref_t, 0) &&
6364 				    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
6365 					bpf_log(log,
6366 						"arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
6367 						i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
6368 					return -EINVAL;
6369 				}
6370 
6371 				/* Check for mem, len pair */
6372 				if (arg_mem_size) {
6373 					if (check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1)) {
6374 						bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n",
6375 							i, i + 1);
6376 						return -EINVAL;
6377 					}
6378 					i++;
6379 					continue;
6380 				}
6381 			}
6382 
6383 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6384 			if (IS_ERR(resolve_ret)) {
6385 				bpf_log(log,
6386 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6387 					i, btf_type_str(ref_t), ref_tname,
6388 					PTR_ERR(resolve_ret));
6389 				return -EINVAL;
6390 			}
6391 
6392 			if (check_mem_reg(env, reg, regno, type_size))
6393 				return -EINVAL;
6394 		} else {
6395 			bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i,
6396 				is_kfunc ? "kernel " : "", func_name, func_id);
6397 			return -EINVAL;
6398 		}
6399 	}
6400 
6401 	/* Either both are set, or neither */
6402 	WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno));
6403 	/* We already made sure ref_obj_id is set only for one argument. We do
6404 	 * allow (!rel && ref_obj_id), so that passing such referenced
6405 	 * PTR_TO_BTF_ID to other kfuncs works. Note that rel is only true when
6406 	 * is_kfunc is true.
6407 	 */
6408 	if (rel && !ref_obj_id) {
6409 		bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
6410 			func_name);
6411 		return -EINVAL;
6412 	}
6413 	/* returns argument register number > 0 in case of reference release kfunc */
6414 	return rel ? ref_regno : 0;
6415 }
6416 
6417 /* Compare BTF of a function with given bpf_reg_state.
6418  * Returns:
6419  * EFAULT - there is a verifier bug. Abort verification.
6420  * EINVAL - there is a type mismatch or BTF is not available.
6421  * 0 - BTF matches with what bpf_reg_state expects.
6422  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6423  */
6424 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6425 				struct bpf_reg_state *regs)
6426 {
6427 	struct bpf_prog *prog = env->prog;
6428 	struct btf *btf = prog->aux->btf;
6429 	bool is_global;
6430 	u32 btf_id;
6431 	int err;
6432 
6433 	if (!prog->aux->func_info)
6434 		return -EINVAL;
6435 
6436 	btf_id = prog->aux->func_info[subprog].type_id;
6437 	if (!btf_id)
6438 		return -EFAULT;
6439 
6440 	if (prog->aux->func_info_aux[subprog].unreliable)
6441 		return -EINVAL;
6442 
6443 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6444 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
6445 
6446 	/* Compiler optimizations can remove arguments from static functions
6447 	 * or mismatched type can be passed into a global function.
6448 	 * In such cases mark the function as unreliable from BTF point of view.
6449 	 */
6450 	if (err)
6451 		prog->aux->func_info_aux[subprog].unreliable = true;
6452 	return err;
6453 }
6454 
6455 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
6456 			      const struct btf *btf, u32 func_id,
6457 			      struct bpf_reg_state *regs)
6458 {
6459 	return btf_check_func_arg_match(env, btf, func_id, regs, true);
6460 }
6461 
6462 /* Convert BTF of a function into bpf_reg_state if possible
6463  * Returns:
6464  * EFAULT - there is a verifier bug. Abort verification.
6465  * EINVAL - cannot convert BTF.
6466  * 0 - Successfully converted BTF into bpf_reg_state
6467  * (either PTR_TO_CTX or SCALAR_VALUE).
6468  */
6469 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6470 			  struct bpf_reg_state *regs)
6471 {
6472 	struct bpf_verifier_log *log = &env->log;
6473 	struct bpf_prog *prog = env->prog;
6474 	enum bpf_prog_type prog_type = prog->type;
6475 	struct btf *btf = prog->aux->btf;
6476 	const struct btf_param *args;
6477 	const struct btf_type *t, *ref_t;
6478 	u32 i, nargs, btf_id;
6479 	const char *tname;
6480 
6481 	if (!prog->aux->func_info ||
6482 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6483 		bpf_log(log, "Verifier bug\n");
6484 		return -EFAULT;
6485 	}
6486 
6487 	btf_id = prog->aux->func_info[subprog].type_id;
6488 	if (!btf_id) {
6489 		bpf_log(log, "Global functions need valid BTF\n");
6490 		return -EFAULT;
6491 	}
6492 
6493 	t = btf_type_by_id(btf, btf_id);
6494 	if (!t || !btf_type_is_func(t)) {
6495 		/* These checks were already done by the verifier while loading
6496 		 * struct bpf_func_info
6497 		 */
6498 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6499 			subprog);
6500 		return -EFAULT;
6501 	}
6502 	tname = btf_name_by_offset(btf, t->name_off);
6503 
6504 	if (log->level & BPF_LOG_LEVEL)
6505 		bpf_log(log, "Validating %s() func#%d...\n",
6506 			tname, subprog);
6507 
6508 	if (prog->aux->func_info_aux[subprog].unreliable) {
6509 		bpf_log(log, "Verifier bug in function %s()\n", tname);
6510 		return -EFAULT;
6511 	}
6512 	if (prog_type == BPF_PROG_TYPE_EXT)
6513 		prog_type = prog->aux->dst_prog->type;
6514 
6515 	t = btf_type_by_id(btf, t->type);
6516 	if (!t || !btf_type_is_func_proto(t)) {
6517 		bpf_log(log, "Invalid type of function %s()\n", tname);
6518 		return -EFAULT;
6519 	}
6520 	args = (const struct btf_param *)(t + 1);
6521 	nargs = btf_type_vlen(t);
6522 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6523 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
6524 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
6525 		return -EINVAL;
6526 	}
6527 	/* check that function returns int */
6528 	t = btf_type_by_id(btf, t->type);
6529 	while (btf_type_is_modifier(t))
6530 		t = btf_type_by_id(btf, t->type);
6531 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
6532 		bpf_log(log,
6533 			"Global function %s() doesn't return scalar. Only those are supported.\n",
6534 			tname);
6535 		return -EINVAL;
6536 	}
6537 	/* Convert BTF function arguments into verifier types.
6538 	 * Only PTR_TO_CTX and SCALAR are supported atm.
6539 	 */
6540 	for (i = 0; i < nargs; i++) {
6541 		struct bpf_reg_state *reg = &regs[i + 1];
6542 
6543 		t = btf_type_by_id(btf, args[i].type);
6544 		while (btf_type_is_modifier(t))
6545 			t = btf_type_by_id(btf, t->type);
6546 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
6547 			reg->type = SCALAR_VALUE;
6548 			continue;
6549 		}
6550 		if (btf_type_is_ptr(t)) {
6551 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6552 				reg->type = PTR_TO_CTX;
6553 				continue;
6554 			}
6555 
6556 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6557 
6558 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
6559 			if (IS_ERR(ref_t)) {
6560 				bpf_log(log,
6561 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6562 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
6563 					PTR_ERR(ref_t));
6564 				return -EINVAL;
6565 			}
6566 
6567 			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
6568 			reg->id = ++env->id_gen;
6569 
6570 			continue;
6571 		}
6572 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
6573 			i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
6574 		return -EINVAL;
6575 	}
6576 	return 0;
6577 }
6578 
6579 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
6580 			  struct btf_show *show)
6581 {
6582 	const struct btf_type *t = btf_type_by_id(btf, type_id);
6583 
6584 	show->btf = btf;
6585 	memset(&show->state, 0, sizeof(show->state));
6586 	memset(&show->obj, 0, sizeof(show->obj));
6587 
6588 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
6589 }
6590 
6591 static void btf_seq_show(struct btf_show *show, const char *fmt,
6592 			 va_list args)
6593 {
6594 	seq_vprintf((struct seq_file *)show->target, fmt, args);
6595 }
6596 
6597 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
6598 			    void *obj, struct seq_file *m, u64 flags)
6599 {
6600 	struct btf_show sseq;
6601 
6602 	sseq.target = m;
6603 	sseq.showfn = btf_seq_show;
6604 	sseq.flags = flags;
6605 
6606 	btf_type_show(btf, type_id, obj, &sseq);
6607 
6608 	return sseq.state.status;
6609 }
6610 
6611 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
6612 		       struct seq_file *m)
6613 {
6614 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
6615 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
6616 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
6617 }
6618 
6619 struct btf_show_snprintf {
6620 	struct btf_show show;
6621 	int len_left;		/* space left in string */
6622 	int len;		/* length we would have written */
6623 };
6624 
6625 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
6626 			      va_list args)
6627 {
6628 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
6629 	int len;
6630 
6631 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
6632 
6633 	if (len < 0) {
6634 		ssnprintf->len_left = 0;
6635 		ssnprintf->len = len;
6636 	} else if (len > ssnprintf->len_left) {
6637 		/* no space, drive on to get length we would have written */
6638 		ssnprintf->len_left = 0;
6639 		ssnprintf->len += len;
6640 	} else {
6641 		ssnprintf->len_left -= len;
6642 		ssnprintf->len += len;
6643 		show->target += len;
6644 	}
6645 }
6646 
6647 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
6648 			   char *buf, int len, u64 flags)
6649 {
6650 	struct btf_show_snprintf ssnprintf;
6651 
6652 	ssnprintf.show.target = buf;
6653 	ssnprintf.show.flags = flags;
6654 	ssnprintf.show.showfn = btf_snprintf_show;
6655 	ssnprintf.len_left = len;
6656 	ssnprintf.len = 0;
6657 
6658 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
6659 
6660 	/* If we encountered an error, return it. */
6661 	if (ssnprintf.show.state.status)
6662 		return ssnprintf.show.state.status;
6663 
6664 	/* Otherwise return length we would have written */
6665 	return ssnprintf.len;
6666 }
6667 
6668 #ifdef CONFIG_PROC_FS
6669 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
6670 {
6671 	const struct btf *btf = filp->private_data;
6672 
6673 	seq_printf(m, "btf_id:\t%u\n", btf->id);
6674 }
6675 #endif
6676 
6677 static int btf_release(struct inode *inode, struct file *filp)
6678 {
6679 	btf_put(filp->private_data);
6680 	return 0;
6681 }
6682 
6683 const struct file_operations btf_fops = {
6684 #ifdef CONFIG_PROC_FS
6685 	.show_fdinfo	= bpf_btf_show_fdinfo,
6686 #endif
6687 	.release	= btf_release,
6688 };
6689 
6690 static int __btf_new_fd(struct btf *btf)
6691 {
6692 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
6693 }
6694 
6695 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
6696 {
6697 	struct btf *btf;
6698 	int ret;
6699 
6700 	btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
6701 			attr->btf_size, attr->btf_log_level,
6702 			u64_to_user_ptr(attr->btf_log_buf),
6703 			attr->btf_log_size);
6704 	if (IS_ERR(btf))
6705 		return PTR_ERR(btf);
6706 
6707 	ret = btf_alloc_id(btf);
6708 	if (ret) {
6709 		btf_free(btf);
6710 		return ret;
6711 	}
6712 
6713 	/*
6714 	 * The BTF ID is published to the userspace.
6715 	 * All BTF free must go through call_rcu() from
6716 	 * now on (i.e. free by calling btf_put()).
6717 	 */
6718 
6719 	ret = __btf_new_fd(btf);
6720 	if (ret < 0)
6721 		btf_put(btf);
6722 
6723 	return ret;
6724 }
6725 
6726 struct btf *btf_get_by_fd(int fd)
6727 {
6728 	struct btf *btf;
6729 	struct fd f;
6730 
6731 	f = fdget(fd);
6732 
6733 	if (!f.file)
6734 		return ERR_PTR(-EBADF);
6735 
6736 	if (f.file->f_op != &btf_fops) {
6737 		fdput(f);
6738 		return ERR_PTR(-EINVAL);
6739 	}
6740 
6741 	btf = f.file->private_data;
6742 	refcount_inc(&btf->refcnt);
6743 	fdput(f);
6744 
6745 	return btf;
6746 }
6747 
6748 int btf_get_info_by_fd(const struct btf *btf,
6749 		       const union bpf_attr *attr,
6750 		       union bpf_attr __user *uattr)
6751 {
6752 	struct bpf_btf_info __user *uinfo;
6753 	struct bpf_btf_info info;
6754 	u32 info_copy, btf_copy;
6755 	void __user *ubtf;
6756 	char __user *uname;
6757 	u32 uinfo_len, uname_len, name_len;
6758 	int ret = 0;
6759 
6760 	uinfo = u64_to_user_ptr(attr->info.info);
6761 	uinfo_len = attr->info.info_len;
6762 
6763 	info_copy = min_t(u32, uinfo_len, sizeof(info));
6764 	memset(&info, 0, sizeof(info));
6765 	if (copy_from_user(&info, uinfo, info_copy))
6766 		return -EFAULT;
6767 
6768 	info.id = btf->id;
6769 	ubtf = u64_to_user_ptr(info.btf);
6770 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
6771 	if (copy_to_user(ubtf, btf->data, btf_copy))
6772 		return -EFAULT;
6773 	info.btf_size = btf->data_size;
6774 
6775 	info.kernel_btf = btf->kernel_btf;
6776 
6777 	uname = u64_to_user_ptr(info.name);
6778 	uname_len = info.name_len;
6779 	if (!uname ^ !uname_len)
6780 		return -EINVAL;
6781 
6782 	name_len = strlen(btf->name);
6783 	info.name_len = name_len;
6784 
6785 	if (uname) {
6786 		if (uname_len >= name_len + 1) {
6787 			if (copy_to_user(uname, btf->name, name_len + 1))
6788 				return -EFAULT;
6789 		} else {
6790 			char zero = '\0';
6791 
6792 			if (copy_to_user(uname, btf->name, uname_len - 1))
6793 				return -EFAULT;
6794 			if (put_user(zero, uname + uname_len - 1))
6795 				return -EFAULT;
6796 			/* let user-space know about too short buffer */
6797 			ret = -ENOSPC;
6798 		}
6799 	}
6800 
6801 	if (copy_to_user(uinfo, &info, info_copy) ||
6802 	    put_user(info_copy, &uattr->info.info_len))
6803 		return -EFAULT;
6804 
6805 	return ret;
6806 }
6807 
6808 int btf_get_fd_by_id(u32 id)
6809 {
6810 	struct btf *btf;
6811 	int fd;
6812 
6813 	rcu_read_lock();
6814 	btf = idr_find(&btf_idr, id);
6815 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
6816 		btf = ERR_PTR(-ENOENT);
6817 	rcu_read_unlock();
6818 
6819 	if (IS_ERR(btf))
6820 		return PTR_ERR(btf);
6821 
6822 	fd = __btf_new_fd(btf);
6823 	if (fd < 0)
6824 		btf_put(btf);
6825 
6826 	return fd;
6827 }
6828 
6829 u32 btf_obj_id(const struct btf *btf)
6830 {
6831 	return btf->id;
6832 }
6833 
6834 bool btf_is_kernel(const struct btf *btf)
6835 {
6836 	return btf->kernel_btf;
6837 }
6838 
6839 bool btf_is_module(const struct btf *btf)
6840 {
6841 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
6842 }
6843 
6844 static int btf_id_cmp_func(const void *a, const void *b)
6845 {
6846 	const int *pa = a, *pb = b;
6847 
6848 	return *pa - *pb;
6849 }
6850 
6851 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
6852 {
6853 	return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
6854 }
6855 
6856 enum {
6857 	BTF_MODULE_F_LIVE = (1 << 0),
6858 };
6859 
6860 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6861 struct btf_module {
6862 	struct list_head list;
6863 	struct module *module;
6864 	struct btf *btf;
6865 	struct bin_attribute *sysfs_attr;
6866 	int flags;
6867 };
6868 
6869 static LIST_HEAD(btf_modules);
6870 static DEFINE_MUTEX(btf_module_mutex);
6871 
6872 static ssize_t
6873 btf_module_read(struct file *file, struct kobject *kobj,
6874 		struct bin_attribute *bin_attr,
6875 		char *buf, loff_t off, size_t len)
6876 {
6877 	const struct btf *btf = bin_attr->private;
6878 
6879 	memcpy(buf, btf->data + off, len);
6880 	return len;
6881 }
6882 
6883 static void purge_cand_cache(struct btf *btf);
6884 
6885 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
6886 			     void *module)
6887 {
6888 	struct btf_module *btf_mod, *tmp;
6889 	struct module *mod = module;
6890 	struct btf *btf;
6891 	int err = 0;
6892 
6893 	if (mod->btf_data_size == 0 ||
6894 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
6895 	     op != MODULE_STATE_GOING))
6896 		goto out;
6897 
6898 	switch (op) {
6899 	case MODULE_STATE_COMING:
6900 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
6901 		if (!btf_mod) {
6902 			err = -ENOMEM;
6903 			goto out;
6904 		}
6905 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
6906 		if (IS_ERR(btf)) {
6907 			pr_warn("failed to validate module [%s] BTF: %ld\n",
6908 				mod->name, PTR_ERR(btf));
6909 			kfree(btf_mod);
6910 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
6911 				err = PTR_ERR(btf);
6912 			goto out;
6913 		}
6914 		err = btf_alloc_id(btf);
6915 		if (err) {
6916 			btf_free(btf);
6917 			kfree(btf_mod);
6918 			goto out;
6919 		}
6920 
6921 		purge_cand_cache(NULL);
6922 		mutex_lock(&btf_module_mutex);
6923 		btf_mod->module = module;
6924 		btf_mod->btf = btf;
6925 		list_add(&btf_mod->list, &btf_modules);
6926 		mutex_unlock(&btf_module_mutex);
6927 
6928 		if (IS_ENABLED(CONFIG_SYSFS)) {
6929 			struct bin_attribute *attr;
6930 
6931 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
6932 			if (!attr)
6933 				goto out;
6934 
6935 			sysfs_bin_attr_init(attr);
6936 			attr->attr.name = btf->name;
6937 			attr->attr.mode = 0444;
6938 			attr->size = btf->data_size;
6939 			attr->private = btf;
6940 			attr->read = btf_module_read;
6941 
6942 			err = sysfs_create_bin_file(btf_kobj, attr);
6943 			if (err) {
6944 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
6945 					mod->name, err);
6946 				kfree(attr);
6947 				err = 0;
6948 				goto out;
6949 			}
6950 
6951 			btf_mod->sysfs_attr = attr;
6952 		}
6953 
6954 		break;
6955 	case MODULE_STATE_LIVE:
6956 		mutex_lock(&btf_module_mutex);
6957 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6958 			if (btf_mod->module != module)
6959 				continue;
6960 
6961 			btf_mod->flags |= BTF_MODULE_F_LIVE;
6962 			break;
6963 		}
6964 		mutex_unlock(&btf_module_mutex);
6965 		break;
6966 	case MODULE_STATE_GOING:
6967 		mutex_lock(&btf_module_mutex);
6968 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6969 			if (btf_mod->module != module)
6970 				continue;
6971 
6972 			list_del(&btf_mod->list);
6973 			if (btf_mod->sysfs_attr)
6974 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
6975 			purge_cand_cache(btf_mod->btf);
6976 			btf_put(btf_mod->btf);
6977 			kfree(btf_mod->sysfs_attr);
6978 			kfree(btf_mod);
6979 			break;
6980 		}
6981 		mutex_unlock(&btf_module_mutex);
6982 		break;
6983 	}
6984 out:
6985 	return notifier_from_errno(err);
6986 }
6987 
6988 static struct notifier_block btf_module_nb = {
6989 	.notifier_call = btf_module_notify,
6990 };
6991 
6992 static int __init btf_module_init(void)
6993 {
6994 	register_module_notifier(&btf_module_nb);
6995 	return 0;
6996 }
6997 
6998 fs_initcall(btf_module_init);
6999 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7000 
7001 struct module *btf_try_get_module(const struct btf *btf)
7002 {
7003 	struct module *res = NULL;
7004 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7005 	struct btf_module *btf_mod, *tmp;
7006 
7007 	mutex_lock(&btf_module_mutex);
7008 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7009 		if (btf_mod->btf != btf)
7010 			continue;
7011 
7012 		/* We must only consider module whose __init routine has
7013 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7014 		 * which is set from the notifier callback for
7015 		 * MODULE_STATE_LIVE.
7016 		 */
7017 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7018 			res = btf_mod->module;
7019 
7020 		break;
7021 	}
7022 	mutex_unlock(&btf_module_mutex);
7023 #endif
7024 
7025 	return res;
7026 }
7027 
7028 /* Returns struct btf corresponding to the struct module.
7029  * This function can return NULL or ERR_PTR.
7030  */
7031 static struct btf *btf_get_module_btf(const struct module *module)
7032 {
7033 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7034 	struct btf_module *btf_mod, *tmp;
7035 #endif
7036 	struct btf *btf = NULL;
7037 
7038 	if (!module) {
7039 		btf = bpf_get_btf_vmlinux();
7040 		if (!IS_ERR_OR_NULL(btf))
7041 			btf_get(btf);
7042 		return btf;
7043 	}
7044 
7045 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7046 	mutex_lock(&btf_module_mutex);
7047 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7048 		if (btf_mod->module != module)
7049 			continue;
7050 
7051 		btf_get(btf_mod->btf);
7052 		btf = btf_mod->btf;
7053 		break;
7054 	}
7055 	mutex_unlock(&btf_module_mutex);
7056 #endif
7057 
7058 	return btf;
7059 }
7060 
7061 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7062 {
7063 	struct btf *btf = NULL;
7064 	int btf_obj_fd = 0;
7065 	long ret;
7066 
7067 	if (flags)
7068 		return -EINVAL;
7069 
7070 	if (name_sz <= 1 || name[name_sz - 1])
7071 		return -EINVAL;
7072 
7073 	ret = bpf_find_btf_id(name, kind, &btf);
7074 	if (ret > 0 && btf_is_module(btf)) {
7075 		btf_obj_fd = __btf_new_fd(btf);
7076 		if (btf_obj_fd < 0) {
7077 			btf_put(btf);
7078 			return btf_obj_fd;
7079 		}
7080 		return ret | (((u64)btf_obj_fd) << 32);
7081 	}
7082 	if (ret > 0)
7083 		btf_put(btf);
7084 	return ret;
7085 }
7086 
7087 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7088 	.func		= bpf_btf_find_by_name_kind,
7089 	.gpl_only	= false,
7090 	.ret_type	= RET_INTEGER,
7091 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7092 	.arg2_type	= ARG_CONST_SIZE,
7093 	.arg3_type	= ARG_ANYTHING,
7094 	.arg4_type	= ARG_ANYTHING,
7095 };
7096 
7097 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7098 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7099 BTF_TRACING_TYPE_xxx
7100 #undef BTF_TRACING_TYPE
7101 
7102 /* Kernel Function (kfunc) BTF ID set registration API */
7103 
7104 static int __btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7105 				    enum btf_kfunc_type type,
7106 				    struct btf_id_set *add_set, bool vmlinux_set)
7107 {
7108 	struct btf_kfunc_set_tab *tab;
7109 	struct btf_id_set *set;
7110 	u32 set_cnt;
7111 	int ret;
7112 
7113 	if (hook >= BTF_KFUNC_HOOK_MAX || type >= BTF_KFUNC_TYPE_MAX) {
7114 		ret = -EINVAL;
7115 		goto end;
7116 	}
7117 
7118 	if (!add_set->cnt)
7119 		return 0;
7120 
7121 	tab = btf->kfunc_set_tab;
7122 	if (!tab) {
7123 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7124 		if (!tab)
7125 			return -ENOMEM;
7126 		btf->kfunc_set_tab = tab;
7127 	}
7128 
7129 	set = tab->sets[hook][type];
7130 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
7131 	 * for module sets.
7132 	 */
7133 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
7134 		ret = -EINVAL;
7135 		goto end;
7136 	}
7137 
7138 	/* We don't need to allocate, concatenate, and sort module sets, because
7139 	 * only one is allowed per hook. Hence, we can directly assign the
7140 	 * pointer and return.
7141 	 */
7142 	if (!vmlinux_set) {
7143 		tab->sets[hook][type] = add_set;
7144 		return 0;
7145 	}
7146 
7147 	/* In case of vmlinux sets, there may be more than one set being
7148 	 * registered per hook. To create a unified set, we allocate a new set
7149 	 * and concatenate all individual sets being registered. While each set
7150 	 * is individually sorted, they may become unsorted when concatenated,
7151 	 * hence re-sorting the final set again is required to make binary
7152 	 * searching the set using btf_id_set_contains function work.
7153 	 */
7154 	set_cnt = set ? set->cnt : 0;
7155 
7156 	if (set_cnt > U32_MAX - add_set->cnt) {
7157 		ret = -EOVERFLOW;
7158 		goto end;
7159 	}
7160 
7161 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7162 		ret = -E2BIG;
7163 		goto end;
7164 	}
7165 
7166 	/* Grow set */
7167 	set = krealloc(tab->sets[hook][type],
7168 		       offsetof(struct btf_id_set, ids[set_cnt + add_set->cnt]),
7169 		       GFP_KERNEL | __GFP_NOWARN);
7170 	if (!set) {
7171 		ret = -ENOMEM;
7172 		goto end;
7173 	}
7174 
7175 	/* For newly allocated set, initialize set->cnt to 0 */
7176 	if (!tab->sets[hook][type])
7177 		set->cnt = 0;
7178 	tab->sets[hook][type] = set;
7179 
7180 	/* Concatenate the two sets */
7181 	memcpy(set->ids + set->cnt, add_set->ids, add_set->cnt * sizeof(set->ids[0]));
7182 	set->cnt += add_set->cnt;
7183 
7184 	sort(set->ids, set->cnt, sizeof(set->ids[0]), btf_id_cmp_func, NULL);
7185 
7186 	return 0;
7187 end:
7188 	btf_free_kfunc_set_tab(btf);
7189 	return ret;
7190 }
7191 
7192 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7193 				  const struct btf_kfunc_id_set *kset)
7194 {
7195 	bool vmlinux_set = !btf_is_module(btf);
7196 	int type, ret = 0;
7197 
7198 	for (type = 0; type < ARRAY_SIZE(kset->sets); type++) {
7199 		if (!kset->sets[type])
7200 			continue;
7201 
7202 		ret = __btf_populate_kfunc_set(btf, hook, type, kset->sets[type], vmlinux_set);
7203 		if (ret)
7204 			break;
7205 	}
7206 	return ret;
7207 }
7208 
7209 static bool __btf_kfunc_id_set_contains(const struct btf *btf,
7210 					enum btf_kfunc_hook hook,
7211 					enum btf_kfunc_type type,
7212 					u32 kfunc_btf_id)
7213 {
7214 	struct btf_id_set *set;
7215 
7216 	if (hook >= BTF_KFUNC_HOOK_MAX || type >= BTF_KFUNC_TYPE_MAX)
7217 		return false;
7218 	if (!btf->kfunc_set_tab)
7219 		return false;
7220 	set = btf->kfunc_set_tab->sets[hook][type];
7221 	if (!set)
7222 		return false;
7223 	return btf_id_set_contains(set, kfunc_btf_id);
7224 }
7225 
7226 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7227 {
7228 	switch (prog_type) {
7229 	case BPF_PROG_TYPE_XDP:
7230 		return BTF_KFUNC_HOOK_XDP;
7231 	case BPF_PROG_TYPE_SCHED_CLS:
7232 		return BTF_KFUNC_HOOK_TC;
7233 	case BPF_PROG_TYPE_STRUCT_OPS:
7234 		return BTF_KFUNC_HOOK_STRUCT_OPS;
7235 	case BPF_PROG_TYPE_TRACING:
7236 		return BTF_KFUNC_HOOK_TRACING;
7237 	case BPF_PROG_TYPE_SYSCALL:
7238 		return BTF_KFUNC_HOOK_SYSCALL;
7239 	default:
7240 		return BTF_KFUNC_HOOK_MAX;
7241 	}
7242 }
7243 
7244 /* Caution:
7245  * Reference to the module (obtained using btf_try_get_module) corresponding to
7246  * the struct btf *MUST* be held when calling this function from verifier
7247  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7248  * keeping the reference for the duration of the call provides the necessary
7249  * protection for looking up a well-formed btf->kfunc_set_tab.
7250  */
7251 bool btf_kfunc_id_set_contains(const struct btf *btf,
7252 			       enum bpf_prog_type prog_type,
7253 			       enum btf_kfunc_type type, u32 kfunc_btf_id)
7254 {
7255 	enum btf_kfunc_hook hook;
7256 
7257 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7258 	return __btf_kfunc_id_set_contains(btf, hook, type, kfunc_btf_id);
7259 }
7260 
7261 /* This function must be invoked only from initcalls/module init functions */
7262 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7263 			      const struct btf_kfunc_id_set *kset)
7264 {
7265 	enum btf_kfunc_hook hook;
7266 	struct btf *btf;
7267 	int ret;
7268 
7269 	btf = btf_get_module_btf(kset->owner);
7270 	if (!btf) {
7271 		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7272 			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7273 			return -ENOENT;
7274 		}
7275 		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7276 			pr_err("missing module BTF, cannot register kfuncs\n");
7277 			return -ENOENT;
7278 		}
7279 		return 0;
7280 	}
7281 	if (IS_ERR(btf))
7282 		return PTR_ERR(btf);
7283 
7284 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7285 	ret = btf_populate_kfunc_set(btf, hook, kset);
7286 	btf_put(btf);
7287 	return ret;
7288 }
7289 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7290 
7291 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7292 {
7293 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7294 	struct btf_id_dtor_kfunc *dtor;
7295 
7296 	if (!tab)
7297 		return -ENOENT;
7298 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7299 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7300 	 */
7301 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7302 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7303 	if (!dtor)
7304 		return -ENOENT;
7305 	return dtor->kfunc_btf_id;
7306 }
7307 
7308 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7309 {
7310 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
7311 	const struct btf_param *args;
7312 	s32 dtor_btf_id;
7313 	u32 nr_args, i;
7314 
7315 	for (i = 0; i < cnt; i++) {
7316 		dtor_btf_id = dtors[i].kfunc_btf_id;
7317 
7318 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
7319 		if (!dtor_func || !btf_type_is_func(dtor_func))
7320 			return -EINVAL;
7321 
7322 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7323 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7324 			return -EINVAL;
7325 
7326 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7327 		t = btf_type_by_id(btf, dtor_func_proto->type);
7328 		if (!t || !btf_type_is_void(t))
7329 			return -EINVAL;
7330 
7331 		nr_args = btf_type_vlen(dtor_func_proto);
7332 		if (nr_args != 1)
7333 			return -EINVAL;
7334 		args = btf_params(dtor_func_proto);
7335 		t = btf_type_by_id(btf, args[0].type);
7336 		/* Allow any pointer type, as width on targets Linux supports
7337 		 * will be same for all pointer types (i.e. sizeof(void *))
7338 		 */
7339 		if (!t || !btf_type_is_ptr(t))
7340 			return -EINVAL;
7341 	}
7342 	return 0;
7343 }
7344 
7345 /* This function must be invoked only from initcalls/module init functions */
7346 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7347 				struct module *owner)
7348 {
7349 	struct btf_id_dtor_kfunc_tab *tab;
7350 	struct btf *btf;
7351 	u32 tab_cnt;
7352 	int ret;
7353 
7354 	btf = btf_get_module_btf(owner);
7355 	if (!btf) {
7356 		if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7357 			pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
7358 			return -ENOENT;
7359 		}
7360 		if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7361 			pr_err("missing module BTF, cannot register dtor kfuncs\n");
7362 			return -ENOENT;
7363 		}
7364 		return 0;
7365 	}
7366 	if (IS_ERR(btf))
7367 		return PTR_ERR(btf);
7368 
7369 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7370 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7371 		ret = -E2BIG;
7372 		goto end;
7373 	}
7374 
7375 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
7376 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
7377 	if (ret < 0)
7378 		goto end;
7379 
7380 	tab = btf->dtor_kfunc_tab;
7381 	/* Only one call allowed for modules */
7382 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
7383 		ret = -EINVAL;
7384 		goto end;
7385 	}
7386 
7387 	tab_cnt = tab ? tab->cnt : 0;
7388 	if (tab_cnt > U32_MAX - add_cnt) {
7389 		ret = -EOVERFLOW;
7390 		goto end;
7391 	}
7392 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7393 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7394 		ret = -E2BIG;
7395 		goto end;
7396 	}
7397 
7398 	tab = krealloc(btf->dtor_kfunc_tab,
7399 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
7400 		       GFP_KERNEL | __GFP_NOWARN);
7401 	if (!tab) {
7402 		ret = -ENOMEM;
7403 		goto end;
7404 	}
7405 
7406 	if (!btf->dtor_kfunc_tab)
7407 		tab->cnt = 0;
7408 	btf->dtor_kfunc_tab = tab;
7409 
7410 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
7411 	tab->cnt += add_cnt;
7412 
7413 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
7414 
7415 	return 0;
7416 end:
7417 	btf_free_dtor_kfunc_tab(btf);
7418 	btf_put(btf);
7419 	return ret;
7420 }
7421 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
7422 
7423 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
7424 
7425 /* Check local and target types for compatibility. This check is used for
7426  * type-based CO-RE relocations and follow slightly different rules than
7427  * field-based relocations. This function assumes that root types were already
7428  * checked for name match. Beyond that initial root-level name check, names
7429  * are completely ignored. Compatibility rules are as follows:
7430  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
7431  *     kind should match for local and target types (i.e., STRUCT is not
7432  *     compatible with UNION);
7433  *   - for ENUMs/ENUM64s, the size is ignored;
7434  *   - for INT, size and signedness are ignored;
7435  *   - for ARRAY, dimensionality is ignored, element types are checked for
7436  *     compatibility recursively;
7437  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
7438  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
7439  *   - FUNC_PROTOs are compatible if they have compatible signature: same
7440  *     number of input args and compatible return and argument types.
7441  * These rules are not set in stone and probably will be adjusted as we get
7442  * more experience with using BPF CO-RE relocations.
7443  */
7444 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
7445 			      const struct btf *targ_btf, __u32 targ_id)
7446 {
7447 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
7448 					   MAX_TYPES_ARE_COMPAT_DEPTH);
7449 }
7450 
7451 #define MAX_TYPES_MATCH_DEPTH 2
7452 
7453 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
7454 			 const struct btf *targ_btf, u32 targ_id)
7455 {
7456 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
7457 				      MAX_TYPES_MATCH_DEPTH);
7458 }
7459 
7460 static bool bpf_core_is_flavor_sep(const char *s)
7461 {
7462 	/* check X___Y name pattern, where X and Y are not underscores */
7463 	return s[0] != '_' &&				      /* X */
7464 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
7465 	       s[4] != '_';				      /* Y */
7466 }
7467 
7468 size_t bpf_core_essential_name_len(const char *name)
7469 {
7470 	size_t n = strlen(name);
7471 	int i;
7472 
7473 	for (i = n - 5; i >= 0; i--) {
7474 		if (bpf_core_is_flavor_sep(name + i))
7475 			return i + 1;
7476 	}
7477 	return n;
7478 }
7479 
7480 struct bpf_cand_cache {
7481 	const char *name;
7482 	u32 name_len;
7483 	u16 kind;
7484 	u16 cnt;
7485 	struct {
7486 		const struct btf *btf;
7487 		u32 id;
7488 	} cands[];
7489 };
7490 
7491 static void bpf_free_cands(struct bpf_cand_cache *cands)
7492 {
7493 	if (!cands->cnt)
7494 		/* empty candidate array was allocated on stack */
7495 		return;
7496 	kfree(cands);
7497 }
7498 
7499 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
7500 {
7501 	kfree(cands->name);
7502 	kfree(cands);
7503 }
7504 
7505 #define VMLINUX_CAND_CACHE_SIZE 31
7506 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
7507 
7508 #define MODULE_CAND_CACHE_SIZE 31
7509 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
7510 
7511 static DEFINE_MUTEX(cand_cache_mutex);
7512 
7513 static void __print_cand_cache(struct bpf_verifier_log *log,
7514 			       struct bpf_cand_cache **cache,
7515 			       int cache_size)
7516 {
7517 	struct bpf_cand_cache *cc;
7518 	int i, j;
7519 
7520 	for (i = 0; i < cache_size; i++) {
7521 		cc = cache[i];
7522 		if (!cc)
7523 			continue;
7524 		bpf_log(log, "[%d]%s(", i, cc->name);
7525 		for (j = 0; j < cc->cnt; j++) {
7526 			bpf_log(log, "%d", cc->cands[j].id);
7527 			if (j < cc->cnt - 1)
7528 				bpf_log(log, " ");
7529 		}
7530 		bpf_log(log, "), ");
7531 	}
7532 }
7533 
7534 static void print_cand_cache(struct bpf_verifier_log *log)
7535 {
7536 	mutex_lock(&cand_cache_mutex);
7537 	bpf_log(log, "vmlinux_cand_cache:");
7538 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7539 	bpf_log(log, "\nmodule_cand_cache:");
7540 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7541 	bpf_log(log, "\n");
7542 	mutex_unlock(&cand_cache_mutex);
7543 }
7544 
7545 static u32 hash_cands(struct bpf_cand_cache *cands)
7546 {
7547 	return jhash(cands->name, cands->name_len, 0);
7548 }
7549 
7550 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
7551 					       struct bpf_cand_cache **cache,
7552 					       int cache_size)
7553 {
7554 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
7555 
7556 	if (cc && cc->name_len == cands->name_len &&
7557 	    !strncmp(cc->name, cands->name, cands->name_len))
7558 		return cc;
7559 	return NULL;
7560 }
7561 
7562 static size_t sizeof_cands(int cnt)
7563 {
7564 	return offsetof(struct bpf_cand_cache, cands[cnt]);
7565 }
7566 
7567 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
7568 						  struct bpf_cand_cache **cache,
7569 						  int cache_size)
7570 {
7571 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
7572 
7573 	if (*cc) {
7574 		bpf_free_cands_from_cache(*cc);
7575 		*cc = NULL;
7576 	}
7577 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
7578 	if (!new_cands) {
7579 		bpf_free_cands(cands);
7580 		return ERR_PTR(-ENOMEM);
7581 	}
7582 	/* strdup the name, since it will stay in cache.
7583 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
7584 	 */
7585 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
7586 	bpf_free_cands(cands);
7587 	if (!new_cands->name) {
7588 		kfree(new_cands);
7589 		return ERR_PTR(-ENOMEM);
7590 	}
7591 	*cc = new_cands;
7592 	return new_cands;
7593 }
7594 
7595 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7596 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
7597 			       int cache_size)
7598 {
7599 	struct bpf_cand_cache *cc;
7600 	int i, j;
7601 
7602 	for (i = 0; i < cache_size; i++) {
7603 		cc = cache[i];
7604 		if (!cc)
7605 			continue;
7606 		if (!btf) {
7607 			/* when new module is loaded purge all of module_cand_cache,
7608 			 * since new module might have candidates with the name
7609 			 * that matches cached cands.
7610 			 */
7611 			bpf_free_cands_from_cache(cc);
7612 			cache[i] = NULL;
7613 			continue;
7614 		}
7615 		/* when module is unloaded purge cache entries
7616 		 * that match module's btf
7617 		 */
7618 		for (j = 0; j < cc->cnt; j++)
7619 			if (cc->cands[j].btf == btf) {
7620 				bpf_free_cands_from_cache(cc);
7621 				cache[i] = NULL;
7622 				break;
7623 			}
7624 	}
7625 
7626 }
7627 
7628 static void purge_cand_cache(struct btf *btf)
7629 {
7630 	mutex_lock(&cand_cache_mutex);
7631 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7632 	mutex_unlock(&cand_cache_mutex);
7633 }
7634 #endif
7635 
7636 static struct bpf_cand_cache *
7637 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
7638 		   int targ_start_id)
7639 {
7640 	struct bpf_cand_cache *new_cands;
7641 	const struct btf_type *t;
7642 	const char *targ_name;
7643 	size_t targ_essent_len;
7644 	int n, i;
7645 
7646 	n = btf_nr_types(targ_btf);
7647 	for (i = targ_start_id; i < n; i++) {
7648 		t = btf_type_by_id(targ_btf, i);
7649 		if (btf_kind(t) != cands->kind)
7650 			continue;
7651 
7652 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
7653 		if (!targ_name)
7654 			continue;
7655 
7656 		/* the resched point is before strncmp to make sure that search
7657 		 * for non-existing name will have a chance to schedule().
7658 		 */
7659 		cond_resched();
7660 
7661 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
7662 			continue;
7663 
7664 		targ_essent_len = bpf_core_essential_name_len(targ_name);
7665 		if (targ_essent_len != cands->name_len)
7666 			continue;
7667 
7668 		/* most of the time there is only one candidate for a given kind+name pair */
7669 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
7670 		if (!new_cands) {
7671 			bpf_free_cands(cands);
7672 			return ERR_PTR(-ENOMEM);
7673 		}
7674 
7675 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
7676 		bpf_free_cands(cands);
7677 		cands = new_cands;
7678 		cands->cands[cands->cnt].btf = targ_btf;
7679 		cands->cands[cands->cnt].id = i;
7680 		cands->cnt++;
7681 	}
7682 	return cands;
7683 }
7684 
7685 static struct bpf_cand_cache *
7686 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
7687 {
7688 	struct bpf_cand_cache *cands, *cc, local_cand = {};
7689 	const struct btf *local_btf = ctx->btf;
7690 	const struct btf_type *local_type;
7691 	const struct btf *main_btf;
7692 	size_t local_essent_len;
7693 	struct btf *mod_btf;
7694 	const char *name;
7695 	int id;
7696 
7697 	main_btf = bpf_get_btf_vmlinux();
7698 	if (IS_ERR(main_btf))
7699 		return ERR_CAST(main_btf);
7700 	if (!main_btf)
7701 		return ERR_PTR(-EINVAL);
7702 
7703 	local_type = btf_type_by_id(local_btf, local_type_id);
7704 	if (!local_type)
7705 		return ERR_PTR(-EINVAL);
7706 
7707 	name = btf_name_by_offset(local_btf, local_type->name_off);
7708 	if (str_is_empty(name))
7709 		return ERR_PTR(-EINVAL);
7710 	local_essent_len = bpf_core_essential_name_len(name);
7711 
7712 	cands = &local_cand;
7713 	cands->name = name;
7714 	cands->kind = btf_kind(local_type);
7715 	cands->name_len = local_essent_len;
7716 
7717 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7718 	/* cands is a pointer to stack here */
7719 	if (cc) {
7720 		if (cc->cnt)
7721 			return cc;
7722 		goto check_modules;
7723 	}
7724 
7725 	/* Attempt to find target candidates in vmlinux BTF first */
7726 	cands = bpf_core_add_cands(cands, main_btf, 1);
7727 	if (IS_ERR(cands))
7728 		return ERR_CAST(cands);
7729 
7730 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
7731 
7732 	/* populate cache even when cands->cnt == 0 */
7733 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7734 	if (IS_ERR(cc))
7735 		return ERR_CAST(cc);
7736 
7737 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
7738 	if (cc->cnt)
7739 		return cc;
7740 
7741 check_modules:
7742 	/* cands is a pointer to stack here and cands->cnt == 0 */
7743 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7744 	if (cc)
7745 		/* if cache has it return it even if cc->cnt == 0 */
7746 		return cc;
7747 
7748 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
7749 	spin_lock_bh(&btf_idr_lock);
7750 	idr_for_each_entry(&btf_idr, mod_btf, id) {
7751 		if (!btf_is_module(mod_btf))
7752 			continue;
7753 		/* linear search could be slow hence unlock/lock
7754 		 * the IDR to avoiding holding it for too long
7755 		 */
7756 		btf_get(mod_btf);
7757 		spin_unlock_bh(&btf_idr_lock);
7758 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
7759 		if (IS_ERR(cands)) {
7760 			btf_put(mod_btf);
7761 			return ERR_CAST(cands);
7762 		}
7763 		spin_lock_bh(&btf_idr_lock);
7764 		btf_put(mod_btf);
7765 	}
7766 	spin_unlock_bh(&btf_idr_lock);
7767 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
7768 	 * or pointer to stack if cands->cnd == 0.
7769 	 * Copy it into the cache even when cands->cnt == 0 and
7770 	 * return the result.
7771 	 */
7772 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7773 }
7774 
7775 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
7776 		   int relo_idx, void *insn)
7777 {
7778 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
7779 	struct bpf_core_cand_list cands = {};
7780 	struct bpf_core_relo_res targ_res;
7781 	struct bpf_core_spec *specs;
7782 	int err;
7783 
7784 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
7785 	 * into arrays of btf_ids of struct fields and array indices.
7786 	 */
7787 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
7788 	if (!specs)
7789 		return -ENOMEM;
7790 
7791 	if (need_cands) {
7792 		struct bpf_cand_cache *cc;
7793 		int i;
7794 
7795 		mutex_lock(&cand_cache_mutex);
7796 		cc = bpf_core_find_cands(ctx, relo->type_id);
7797 		if (IS_ERR(cc)) {
7798 			bpf_log(ctx->log, "target candidate search failed for %d\n",
7799 				relo->type_id);
7800 			err = PTR_ERR(cc);
7801 			goto out;
7802 		}
7803 		if (cc->cnt) {
7804 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
7805 			if (!cands.cands) {
7806 				err = -ENOMEM;
7807 				goto out;
7808 			}
7809 		}
7810 		for (i = 0; i < cc->cnt; i++) {
7811 			bpf_log(ctx->log,
7812 				"CO-RE relocating %s %s: found target candidate [%d]\n",
7813 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
7814 			cands.cands[i].btf = cc->cands[i].btf;
7815 			cands.cands[i].id = cc->cands[i].id;
7816 		}
7817 		cands.len = cc->cnt;
7818 		/* cand_cache_mutex needs to span the cache lookup and
7819 		 * copy of btf pointer into bpf_core_cand_list,
7820 		 * since module can be unloaded while bpf_core_calc_relo_insn
7821 		 * is working with module's btf.
7822 		 */
7823 	}
7824 
7825 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
7826 				      &targ_res);
7827 	if (err)
7828 		goto out;
7829 
7830 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
7831 				  &targ_res);
7832 
7833 out:
7834 	kfree(specs);
7835 	if (need_cands) {
7836 		kfree(cands.cands);
7837 		mutex_unlock(&cand_cache_mutex);
7838 		if (ctx->log->level & BPF_LOG_LEVEL2)
7839 			print_cand_cache(ctx->log);
7840 	}
7841 	return err;
7842 }
7843