1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/skmsg.h> 23 #include <linux/perf_event.h> 24 #include <linux/bsearch.h> 25 #include <linux/kobject.h> 26 #include <linux/sysfs.h> 27 #include <net/sock.h> 28 29 /* BTF (BPF Type Format) is the meta data format which describes 30 * the data types of BPF program/map. Hence, it basically focus 31 * on the C programming language which the modern BPF is primary 32 * using. 33 * 34 * ELF Section: 35 * ~~~~~~~~~~~ 36 * The BTF data is stored under the ".BTF" ELF section 37 * 38 * struct btf_type: 39 * ~~~~~~~~~~~~~~~ 40 * Each 'struct btf_type' object describes a C data type. 41 * Depending on the type it is describing, a 'struct btf_type' 42 * object may be followed by more data. F.e. 43 * To describe an array, 'struct btf_type' is followed by 44 * 'struct btf_array'. 45 * 46 * 'struct btf_type' and any extra data following it are 47 * 4 bytes aligned. 48 * 49 * Type section: 50 * ~~~~~~~~~~~~~ 51 * The BTF type section contains a list of 'struct btf_type' objects. 52 * Each one describes a C type. Recall from the above section 53 * that a 'struct btf_type' object could be immediately followed by extra 54 * data in order to describe some particular C types. 55 * 56 * type_id: 57 * ~~~~~~~ 58 * Each btf_type object is identified by a type_id. The type_id 59 * is implicitly implied by the location of the btf_type object in 60 * the BTF type section. The first one has type_id 1. The second 61 * one has type_id 2...etc. Hence, an earlier btf_type has 62 * a smaller type_id. 63 * 64 * A btf_type object may refer to another btf_type object by using 65 * type_id (i.e. the "type" in the "struct btf_type"). 66 * 67 * NOTE that we cannot assume any reference-order. 68 * A btf_type object can refer to an earlier btf_type object 69 * but it can also refer to a later btf_type object. 70 * 71 * For example, to describe "const void *". A btf_type 72 * object describing "const" may refer to another btf_type 73 * object describing "void *". This type-reference is done 74 * by specifying type_id: 75 * 76 * [1] CONST (anon) type_id=2 77 * [2] PTR (anon) type_id=0 78 * 79 * The above is the btf_verifier debug log: 80 * - Each line started with "[?]" is a btf_type object 81 * - [?] is the type_id of the btf_type object. 82 * - CONST/PTR is the BTF_KIND_XXX 83 * - "(anon)" is the name of the type. It just 84 * happens that CONST and PTR has no name. 85 * - type_id=XXX is the 'u32 type' in btf_type 86 * 87 * NOTE: "void" has type_id 0 88 * 89 * String section: 90 * ~~~~~~~~~~~~~~ 91 * The BTF string section contains the names used by the type section. 92 * Each string is referred by an "offset" from the beginning of the 93 * string section. 94 * 95 * Each string is '\0' terminated. 96 * 97 * The first character in the string section must be '\0' 98 * which is used to mean 'anonymous'. Some btf_type may not 99 * have a name. 100 */ 101 102 /* BTF verification: 103 * 104 * To verify BTF data, two passes are needed. 105 * 106 * Pass #1 107 * ~~~~~~~ 108 * The first pass is to collect all btf_type objects to 109 * an array: "btf->types". 110 * 111 * Depending on the C type that a btf_type is describing, 112 * a btf_type may be followed by extra data. We don't know 113 * how many btf_type is there, and more importantly we don't 114 * know where each btf_type is located in the type section. 115 * 116 * Without knowing the location of each type_id, most verifications 117 * cannot be done. e.g. an earlier btf_type may refer to a later 118 * btf_type (recall the "const void *" above), so we cannot 119 * check this type-reference in the first pass. 120 * 121 * In the first pass, it still does some verifications (e.g. 122 * checking the name is a valid offset to the string section). 123 * 124 * Pass #2 125 * ~~~~~~~ 126 * The main focus is to resolve a btf_type that is referring 127 * to another type. 128 * 129 * We have to ensure the referring type: 130 * 1) does exist in the BTF (i.e. in btf->types[]) 131 * 2) does not cause a loop: 132 * struct A { 133 * struct B b; 134 * }; 135 * 136 * struct B { 137 * struct A a; 138 * }; 139 * 140 * btf_type_needs_resolve() decides if a btf_type needs 141 * to be resolved. 142 * 143 * The needs_resolve type implements the "resolve()" ops which 144 * essentially does a DFS and detects backedge. 145 * 146 * During resolve (or DFS), different C types have different 147 * "RESOLVED" conditions. 148 * 149 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 150 * members because a member is always referring to another 151 * type. A struct's member can be treated as "RESOLVED" if 152 * it is referring to a BTF_KIND_PTR. Otherwise, the 153 * following valid C struct would be rejected: 154 * 155 * struct A { 156 * int m; 157 * struct A *a; 158 * }; 159 * 160 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 161 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 162 * detect a pointer loop, e.g.: 163 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 164 * ^ | 165 * +-----------------------------------------+ 166 * 167 */ 168 169 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 170 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 171 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 172 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 173 #define BITS_ROUNDUP_BYTES(bits) \ 174 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 175 176 #define BTF_INFO_MASK 0x9f00ffff 177 #define BTF_INT_MASK 0x0fffffff 178 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 179 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 180 181 /* 16MB for 64k structs and each has 16 members and 182 * a few MB spaces for the string section. 183 * The hard limit is S32_MAX. 184 */ 185 #define BTF_MAX_SIZE (16 * 1024 * 1024) 186 187 #define for_each_member_from(i, from, struct_type, member) \ 188 for (i = from, member = btf_type_member(struct_type) + from; \ 189 i < btf_type_vlen(struct_type); \ 190 i++, member++) 191 192 #define for_each_vsi_from(i, from, struct_type, member) \ 193 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 194 i < btf_type_vlen(struct_type); \ 195 i++, member++) 196 197 DEFINE_IDR(btf_idr); 198 DEFINE_SPINLOCK(btf_idr_lock); 199 200 struct btf { 201 void *data; 202 struct btf_type **types; 203 u32 *resolved_ids; 204 u32 *resolved_sizes; 205 const char *strings; 206 void *nohdr_data; 207 struct btf_header hdr; 208 u32 nr_types; /* includes VOID for base BTF */ 209 u32 types_size; 210 u32 data_size; 211 refcount_t refcnt; 212 u32 id; 213 struct rcu_head rcu; 214 215 /* split BTF support */ 216 struct btf *base_btf; 217 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 218 u32 start_str_off; /* first string offset (0 for base BTF) */ 219 char name[MODULE_NAME_LEN]; 220 bool kernel_btf; 221 }; 222 223 enum verifier_phase { 224 CHECK_META, 225 CHECK_TYPE, 226 }; 227 228 struct resolve_vertex { 229 const struct btf_type *t; 230 u32 type_id; 231 u16 next_member; 232 }; 233 234 enum visit_state { 235 NOT_VISITED, 236 VISITED, 237 RESOLVED, 238 }; 239 240 enum resolve_mode { 241 RESOLVE_TBD, /* To Be Determined */ 242 RESOLVE_PTR, /* Resolving for Pointer */ 243 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 244 * or array 245 */ 246 }; 247 248 #define MAX_RESOLVE_DEPTH 32 249 250 struct btf_sec_info { 251 u32 off; 252 u32 len; 253 }; 254 255 struct btf_verifier_env { 256 struct btf *btf; 257 u8 *visit_states; 258 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 259 struct bpf_verifier_log log; 260 u32 log_type_id; 261 u32 top_stack; 262 enum verifier_phase phase; 263 enum resolve_mode resolve_mode; 264 }; 265 266 static const char * const btf_kind_str[NR_BTF_KINDS] = { 267 [BTF_KIND_UNKN] = "UNKNOWN", 268 [BTF_KIND_INT] = "INT", 269 [BTF_KIND_PTR] = "PTR", 270 [BTF_KIND_ARRAY] = "ARRAY", 271 [BTF_KIND_STRUCT] = "STRUCT", 272 [BTF_KIND_UNION] = "UNION", 273 [BTF_KIND_ENUM] = "ENUM", 274 [BTF_KIND_FWD] = "FWD", 275 [BTF_KIND_TYPEDEF] = "TYPEDEF", 276 [BTF_KIND_VOLATILE] = "VOLATILE", 277 [BTF_KIND_CONST] = "CONST", 278 [BTF_KIND_RESTRICT] = "RESTRICT", 279 [BTF_KIND_FUNC] = "FUNC", 280 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 281 [BTF_KIND_VAR] = "VAR", 282 [BTF_KIND_DATASEC] = "DATASEC", 283 [BTF_KIND_FLOAT] = "FLOAT", 284 }; 285 286 const char *btf_type_str(const struct btf_type *t) 287 { 288 return btf_kind_str[BTF_INFO_KIND(t->info)]; 289 } 290 291 /* Chunk size we use in safe copy of data to be shown. */ 292 #define BTF_SHOW_OBJ_SAFE_SIZE 32 293 294 /* 295 * This is the maximum size of a base type value (equivalent to a 296 * 128-bit int); if we are at the end of our safe buffer and have 297 * less than 16 bytes space we can't be assured of being able 298 * to copy the next type safely, so in such cases we will initiate 299 * a new copy. 300 */ 301 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 302 303 /* Type name size */ 304 #define BTF_SHOW_NAME_SIZE 80 305 306 /* 307 * Common data to all BTF show operations. Private show functions can add 308 * their own data to a structure containing a struct btf_show and consult it 309 * in the show callback. See btf_type_show() below. 310 * 311 * One challenge with showing nested data is we want to skip 0-valued 312 * data, but in order to figure out whether a nested object is all zeros 313 * we need to walk through it. As a result, we need to make two passes 314 * when handling structs, unions and arrays; the first path simply looks 315 * for nonzero data, while the second actually does the display. The first 316 * pass is signalled by show->state.depth_check being set, and if we 317 * encounter a non-zero value we set show->state.depth_to_show to 318 * the depth at which we encountered it. When we have completed the 319 * first pass, we will know if anything needs to be displayed if 320 * depth_to_show > depth. See btf_[struct,array]_show() for the 321 * implementation of this. 322 * 323 * Another problem is we want to ensure the data for display is safe to 324 * access. To support this, the anonymous "struct {} obj" tracks the data 325 * object and our safe copy of it. We copy portions of the data needed 326 * to the object "copy" buffer, but because its size is limited to 327 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 328 * traverse larger objects for display. 329 * 330 * The various data type show functions all start with a call to 331 * btf_show_start_type() which returns a pointer to the safe copy 332 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 333 * raw data itself). btf_show_obj_safe() is responsible for 334 * using copy_from_kernel_nofault() to update the safe data if necessary 335 * as we traverse the object's data. skbuff-like semantics are 336 * used: 337 * 338 * - obj.head points to the start of the toplevel object for display 339 * - obj.size is the size of the toplevel object 340 * - obj.data points to the current point in the original data at 341 * which our safe data starts. obj.data will advance as we copy 342 * portions of the data. 343 * 344 * In most cases a single copy will suffice, but larger data structures 345 * such as "struct task_struct" will require many copies. The logic in 346 * btf_show_obj_safe() handles the logic that determines if a new 347 * copy_from_kernel_nofault() is needed. 348 */ 349 struct btf_show { 350 u64 flags; 351 void *target; /* target of show operation (seq file, buffer) */ 352 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 353 const struct btf *btf; 354 /* below are used during iteration */ 355 struct { 356 u8 depth; 357 u8 depth_to_show; 358 u8 depth_check; 359 u8 array_member:1, 360 array_terminated:1; 361 u16 array_encoding; 362 u32 type_id; 363 int status; /* non-zero for error */ 364 const struct btf_type *type; 365 const struct btf_member *member; 366 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 367 } state; 368 struct { 369 u32 size; 370 void *head; 371 void *data; 372 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 373 } obj; 374 }; 375 376 struct btf_kind_operations { 377 s32 (*check_meta)(struct btf_verifier_env *env, 378 const struct btf_type *t, 379 u32 meta_left); 380 int (*resolve)(struct btf_verifier_env *env, 381 const struct resolve_vertex *v); 382 int (*check_member)(struct btf_verifier_env *env, 383 const struct btf_type *struct_type, 384 const struct btf_member *member, 385 const struct btf_type *member_type); 386 int (*check_kflag_member)(struct btf_verifier_env *env, 387 const struct btf_type *struct_type, 388 const struct btf_member *member, 389 const struct btf_type *member_type); 390 void (*log_details)(struct btf_verifier_env *env, 391 const struct btf_type *t); 392 void (*show)(const struct btf *btf, const struct btf_type *t, 393 u32 type_id, void *data, u8 bits_offsets, 394 struct btf_show *show); 395 }; 396 397 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 398 static struct btf_type btf_void; 399 400 static int btf_resolve(struct btf_verifier_env *env, 401 const struct btf_type *t, u32 type_id); 402 403 static bool btf_type_is_modifier(const struct btf_type *t) 404 { 405 /* Some of them is not strictly a C modifier 406 * but they are grouped into the same bucket 407 * for BTF concern: 408 * A type (t) that refers to another 409 * type through t->type AND its size cannot 410 * be determined without following the t->type. 411 * 412 * ptr does not fall into this bucket 413 * because its size is always sizeof(void *). 414 */ 415 switch (BTF_INFO_KIND(t->info)) { 416 case BTF_KIND_TYPEDEF: 417 case BTF_KIND_VOLATILE: 418 case BTF_KIND_CONST: 419 case BTF_KIND_RESTRICT: 420 return true; 421 } 422 423 return false; 424 } 425 426 bool btf_type_is_void(const struct btf_type *t) 427 { 428 return t == &btf_void; 429 } 430 431 static bool btf_type_is_fwd(const struct btf_type *t) 432 { 433 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 434 } 435 436 static bool btf_type_nosize(const struct btf_type *t) 437 { 438 return btf_type_is_void(t) || btf_type_is_fwd(t) || 439 btf_type_is_func(t) || btf_type_is_func_proto(t); 440 } 441 442 static bool btf_type_nosize_or_null(const struct btf_type *t) 443 { 444 return !t || btf_type_nosize(t); 445 } 446 447 static bool __btf_type_is_struct(const struct btf_type *t) 448 { 449 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; 450 } 451 452 static bool btf_type_is_array(const struct btf_type *t) 453 { 454 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 455 } 456 457 static bool btf_type_is_datasec(const struct btf_type *t) 458 { 459 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 460 } 461 462 u32 btf_nr_types(const struct btf *btf) 463 { 464 u32 total = 0; 465 466 while (btf) { 467 total += btf->nr_types; 468 btf = btf->base_btf; 469 } 470 471 return total; 472 } 473 474 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 475 { 476 const struct btf_type *t; 477 const char *tname; 478 u32 i, total; 479 480 total = btf_nr_types(btf); 481 for (i = 1; i < total; i++) { 482 t = btf_type_by_id(btf, i); 483 if (BTF_INFO_KIND(t->info) != kind) 484 continue; 485 486 tname = btf_name_by_offset(btf, t->name_off); 487 if (!strcmp(tname, name)) 488 return i; 489 } 490 491 return -ENOENT; 492 } 493 494 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 495 u32 id, u32 *res_id) 496 { 497 const struct btf_type *t = btf_type_by_id(btf, id); 498 499 while (btf_type_is_modifier(t)) { 500 id = t->type; 501 t = btf_type_by_id(btf, t->type); 502 } 503 504 if (res_id) 505 *res_id = id; 506 507 return t; 508 } 509 510 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 511 u32 id, u32 *res_id) 512 { 513 const struct btf_type *t; 514 515 t = btf_type_skip_modifiers(btf, id, NULL); 516 if (!btf_type_is_ptr(t)) 517 return NULL; 518 519 return btf_type_skip_modifiers(btf, t->type, res_id); 520 } 521 522 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 523 u32 id, u32 *res_id) 524 { 525 const struct btf_type *ptype; 526 527 ptype = btf_type_resolve_ptr(btf, id, res_id); 528 if (ptype && btf_type_is_func_proto(ptype)) 529 return ptype; 530 531 return NULL; 532 } 533 534 /* Types that act only as a source, not sink or intermediate 535 * type when resolving. 536 */ 537 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 538 { 539 return btf_type_is_var(t) || 540 btf_type_is_datasec(t); 541 } 542 543 /* What types need to be resolved? 544 * 545 * btf_type_is_modifier() is an obvious one. 546 * 547 * btf_type_is_struct() because its member refers to 548 * another type (through member->type). 549 * 550 * btf_type_is_var() because the variable refers to 551 * another type. btf_type_is_datasec() holds multiple 552 * btf_type_is_var() types that need resolving. 553 * 554 * btf_type_is_array() because its element (array->type) 555 * refers to another type. Array can be thought of a 556 * special case of struct while array just has the same 557 * member-type repeated by array->nelems of times. 558 */ 559 static bool btf_type_needs_resolve(const struct btf_type *t) 560 { 561 return btf_type_is_modifier(t) || 562 btf_type_is_ptr(t) || 563 btf_type_is_struct(t) || 564 btf_type_is_array(t) || 565 btf_type_is_var(t) || 566 btf_type_is_datasec(t); 567 } 568 569 /* t->size can be used */ 570 static bool btf_type_has_size(const struct btf_type *t) 571 { 572 switch (BTF_INFO_KIND(t->info)) { 573 case BTF_KIND_INT: 574 case BTF_KIND_STRUCT: 575 case BTF_KIND_UNION: 576 case BTF_KIND_ENUM: 577 case BTF_KIND_DATASEC: 578 case BTF_KIND_FLOAT: 579 return true; 580 } 581 582 return false; 583 } 584 585 static const char *btf_int_encoding_str(u8 encoding) 586 { 587 if (encoding == 0) 588 return "(none)"; 589 else if (encoding == BTF_INT_SIGNED) 590 return "SIGNED"; 591 else if (encoding == BTF_INT_CHAR) 592 return "CHAR"; 593 else if (encoding == BTF_INT_BOOL) 594 return "BOOL"; 595 else 596 return "UNKN"; 597 } 598 599 static u32 btf_type_int(const struct btf_type *t) 600 { 601 return *(u32 *)(t + 1); 602 } 603 604 static const struct btf_array *btf_type_array(const struct btf_type *t) 605 { 606 return (const struct btf_array *)(t + 1); 607 } 608 609 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 610 { 611 return (const struct btf_enum *)(t + 1); 612 } 613 614 static const struct btf_var *btf_type_var(const struct btf_type *t) 615 { 616 return (const struct btf_var *)(t + 1); 617 } 618 619 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 620 { 621 return kind_ops[BTF_INFO_KIND(t->info)]; 622 } 623 624 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 625 { 626 if (!BTF_STR_OFFSET_VALID(offset)) 627 return false; 628 629 while (offset < btf->start_str_off) 630 btf = btf->base_btf; 631 632 offset -= btf->start_str_off; 633 return offset < btf->hdr.str_len; 634 } 635 636 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 637 { 638 if ((first ? !isalpha(c) : 639 !isalnum(c)) && 640 c != '_' && 641 ((c == '.' && !dot_ok) || 642 c != '.')) 643 return false; 644 return true; 645 } 646 647 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 648 { 649 while (offset < btf->start_str_off) 650 btf = btf->base_btf; 651 652 offset -= btf->start_str_off; 653 if (offset < btf->hdr.str_len) 654 return &btf->strings[offset]; 655 656 return NULL; 657 } 658 659 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 660 { 661 /* offset must be valid */ 662 const char *src = btf_str_by_offset(btf, offset); 663 const char *src_limit; 664 665 if (!__btf_name_char_ok(*src, true, dot_ok)) 666 return false; 667 668 /* set a limit on identifier length */ 669 src_limit = src + KSYM_NAME_LEN; 670 src++; 671 while (*src && src < src_limit) { 672 if (!__btf_name_char_ok(*src, false, dot_ok)) 673 return false; 674 src++; 675 } 676 677 return !*src; 678 } 679 680 /* Only C-style identifier is permitted. This can be relaxed if 681 * necessary. 682 */ 683 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 684 { 685 return __btf_name_valid(btf, offset, false); 686 } 687 688 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 689 { 690 return __btf_name_valid(btf, offset, true); 691 } 692 693 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 694 { 695 const char *name; 696 697 if (!offset) 698 return "(anon)"; 699 700 name = btf_str_by_offset(btf, offset); 701 return name ?: "(invalid-name-offset)"; 702 } 703 704 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 705 { 706 return btf_str_by_offset(btf, offset); 707 } 708 709 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 710 { 711 while (type_id < btf->start_id) 712 btf = btf->base_btf; 713 714 type_id -= btf->start_id; 715 if (type_id >= btf->nr_types) 716 return NULL; 717 return btf->types[type_id]; 718 } 719 720 /* 721 * Regular int is not a bit field and it must be either 722 * u8/u16/u32/u64 or __int128. 723 */ 724 static bool btf_type_int_is_regular(const struct btf_type *t) 725 { 726 u8 nr_bits, nr_bytes; 727 u32 int_data; 728 729 int_data = btf_type_int(t); 730 nr_bits = BTF_INT_BITS(int_data); 731 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 732 if (BITS_PER_BYTE_MASKED(nr_bits) || 733 BTF_INT_OFFSET(int_data) || 734 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 735 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 736 nr_bytes != (2 * sizeof(u64)))) { 737 return false; 738 } 739 740 return true; 741 } 742 743 /* 744 * Check that given struct member is a regular int with expected 745 * offset and size. 746 */ 747 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 748 const struct btf_member *m, 749 u32 expected_offset, u32 expected_size) 750 { 751 const struct btf_type *t; 752 u32 id, int_data; 753 u8 nr_bits; 754 755 id = m->type; 756 t = btf_type_id_size(btf, &id, NULL); 757 if (!t || !btf_type_is_int(t)) 758 return false; 759 760 int_data = btf_type_int(t); 761 nr_bits = BTF_INT_BITS(int_data); 762 if (btf_type_kflag(s)) { 763 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 764 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 765 766 /* if kflag set, int should be a regular int and 767 * bit offset should be at byte boundary. 768 */ 769 return !bitfield_size && 770 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 771 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 772 } 773 774 if (BTF_INT_OFFSET(int_data) || 775 BITS_PER_BYTE_MASKED(m->offset) || 776 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 777 BITS_PER_BYTE_MASKED(nr_bits) || 778 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 779 return false; 780 781 return true; 782 } 783 784 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 785 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 786 u32 id) 787 { 788 const struct btf_type *t = btf_type_by_id(btf, id); 789 790 while (btf_type_is_modifier(t) && 791 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 792 t = btf_type_by_id(btf, t->type); 793 } 794 795 return t; 796 } 797 798 #define BTF_SHOW_MAX_ITER 10 799 800 #define BTF_KIND_BIT(kind) (1ULL << kind) 801 802 /* 803 * Populate show->state.name with type name information. 804 * Format of type name is 805 * 806 * [.member_name = ] (type_name) 807 */ 808 static const char *btf_show_name(struct btf_show *show) 809 { 810 /* BTF_MAX_ITER array suffixes "[]" */ 811 const char *array_suffixes = "[][][][][][][][][][]"; 812 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 813 /* BTF_MAX_ITER pointer suffixes "*" */ 814 const char *ptr_suffixes = "**********"; 815 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 816 const char *name = NULL, *prefix = "", *parens = ""; 817 const struct btf_member *m = show->state.member; 818 const struct btf_type *t = show->state.type; 819 const struct btf_array *array; 820 u32 id = show->state.type_id; 821 const char *member = NULL; 822 bool show_member = false; 823 u64 kinds = 0; 824 int i; 825 826 show->state.name[0] = '\0'; 827 828 /* 829 * Don't show type name if we're showing an array member; 830 * in that case we show the array type so don't need to repeat 831 * ourselves for each member. 832 */ 833 if (show->state.array_member) 834 return ""; 835 836 /* Retrieve member name, if any. */ 837 if (m) { 838 member = btf_name_by_offset(show->btf, m->name_off); 839 show_member = strlen(member) > 0; 840 id = m->type; 841 } 842 843 /* 844 * Start with type_id, as we have resolved the struct btf_type * 845 * via btf_modifier_show() past the parent typedef to the child 846 * struct, int etc it is defined as. In such cases, the type_id 847 * still represents the starting type while the struct btf_type * 848 * in our show->state points at the resolved type of the typedef. 849 */ 850 t = btf_type_by_id(show->btf, id); 851 if (!t) 852 return ""; 853 854 /* 855 * The goal here is to build up the right number of pointer and 856 * array suffixes while ensuring the type name for a typedef 857 * is represented. Along the way we accumulate a list of 858 * BTF kinds we have encountered, since these will inform later 859 * display; for example, pointer types will not require an 860 * opening "{" for struct, we will just display the pointer value. 861 * 862 * We also want to accumulate the right number of pointer or array 863 * indices in the format string while iterating until we get to 864 * the typedef/pointee/array member target type. 865 * 866 * We start by pointing at the end of pointer and array suffix 867 * strings; as we accumulate pointers and arrays we move the pointer 868 * or array string backwards so it will show the expected number of 869 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 870 * and/or arrays and typedefs are supported as a precaution. 871 * 872 * We also want to get typedef name while proceeding to resolve 873 * type it points to so that we can add parentheses if it is a 874 * "typedef struct" etc. 875 */ 876 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 877 878 switch (BTF_INFO_KIND(t->info)) { 879 case BTF_KIND_TYPEDEF: 880 if (!name) 881 name = btf_name_by_offset(show->btf, 882 t->name_off); 883 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 884 id = t->type; 885 break; 886 case BTF_KIND_ARRAY: 887 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 888 parens = "["; 889 if (!t) 890 return ""; 891 array = btf_type_array(t); 892 if (array_suffix > array_suffixes) 893 array_suffix -= 2; 894 id = array->type; 895 break; 896 case BTF_KIND_PTR: 897 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 898 if (ptr_suffix > ptr_suffixes) 899 ptr_suffix -= 1; 900 id = t->type; 901 break; 902 default: 903 id = 0; 904 break; 905 } 906 if (!id) 907 break; 908 t = btf_type_skip_qualifiers(show->btf, id); 909 } 910 /* We may not be able to represent this type; bail to be safe */ 911 if (i == BTF_SHOW_MAX_ITER) 912 return ""; 913 914 if (!name) 915 name = btf_name_by_offset(show->btf, t->name_off); 916 917 switch (BTF_INFO_KIND(t->info)) { 918 case BTF_KIND_STRUCT: 919 case BTF_KIND_UNION: 920 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 921 "struct" : "union"; 922 /* if it's an array of struct/union, parens is already set */ 923 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 924 parens = "{"; 925 break; 926 case BTF_KIND_ENUM: 927 prefix = "enum"; 928 break; 929 default: 930 break; 931 } 932 933 /* pointer does not require parens */ 934 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 935 parens = ""; 936 /* typedef does not require struct/union/enum prefix */ 937 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 938 prefix = ""; 939 940 if (!name) 941 name = ""; 942 943 /* Even if we don't want type name info, we want parentheses etc */ 944 if (show->flags & BTF_SHOW_NONAME) 945 snprintf(show->state.name, sizeof(show->state.name), "%s", 946 parens); 947 else 948 snprintf(show->state.name, sizeof(show->state.name), 949 "%s%s%s(%s%s%s%s%s%s)%s", 950 /* first 3 strings comprise ".member = " */ 951 show_member ? "." : "", 952 show_member ? member : "", 953 show_member ? " = " : "", 954 /* ...next is our prefix (struct, enum, etc) */ 955 prefix, 956 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 957 /* ...this is the type name itself */ 958 name, 959 /* ...suffixed by the appropriate '*', '[]' suffixes */ 960 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 961 array_suffix, parens); 962 963 return show->state.name; 964 } 965 966 static const char *__btf_show_indent(struct btf_show *show) 967 { 968 const char *indents = " "; 969 const char *indent = &indents[strlen(indents)]; 970 971 if ((indent - show->state.depth) >= indents) 972 return indent - show->state.depth; 973 return indents; 974 } 975 976 static const char *btf_show_indent(struct btf_show *show) 977 { 978 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 979 } 980 981 static const char *btf_show_newline(struct btf_show *show) 982 { 983 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 984 } 985 986 static const char *btf_show_delim(struct btf_show *show) 987 { 988 if (show->state.depth == 0) 989 return ""; 990 991 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 992 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 993 return "|"; 994 995 return ","; 996 } 997 998 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 999 { 1000 va_list args; 1001 1002 if (!show->state.depth_check) { 1003 va_start(args, fmt); 1004 show->showfn(show, fmt, args); 1005 va_end(args); 1006 } 1007 } 1008 1009 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1010 * format specifiers to the format specifier passed in; these do the work of 1011 * adding indentation, delimiters etc while the caller simply has to specify 1012 * the type value(s) in the format specifier + value(s). 1013 */ 1014 #define btf_show_type_value(show, fmt, value) \ 1015 do { \ 1016 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \ 1017 show->state.depth == 0) { \ 1018 btf_show(show, "%s%s" fmt "%s%s", \ 1019 btf_show_indent(show), \ 1020 btf_show_name(show), \ 1021 value, btf_show_delim(show), \ 1022 btf_show_newline(show)); \ 1023 if (show->state.depth > show->state.depth_to_show) \ 1024 show->state.depth_to_show = show->state.depth; \ 1025 } \ 1026 } while (0) 1027 1028 #define btf_show_type_values(show, fmt, ...) \ 1029 do { \ 1030 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1031 btf_show_name(show), \ 1032 __VA_ARGS__, btf_show_delim(show), \ 1033 btf_show_newline(show)); \ 1034 if (show->state.depth > show->state.depth_to_show) \ 1035 show->state.depth_to_show = show->state.depth; \ 1036 } while (0) 1037 1038 /* How much is left to copy to safe buffer after @data? */ 1039 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1040 { 1041 return show->obj.head + show->obj.size - data; 1042 } 1043 1044 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1045 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1046 { 1047 return data >= show->obj.data && 1048 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1049 } 1050 1051 /* 1052 * If object pointed to by @data of @size falls within our safe buffer, return 1053 * the equivalent pointer to the same safe data. Assumes 1054 * copy_from_kernel_nofault() has already happened and our safe buffer is 1055 * populated. 1056 */ 1057 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1058 { 1059 if (btf_show_obj_is_safe(show, data, size)) 1060 return show->obj.safe + (data - show->obj.data); 1061 return NULL; 1062 } 1063 1064 /* 1065 * Return a safe-to-access version of data pointed to by @data. 1066 * We do this by copying the relevant amount of information 1067 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1068 * 1069 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1070 * safe copy is needed. 1071 * 1072 * Otherwise we need to determine if we have the required amount 1073 * of data (determined by the @data pointer and the size of the 1074 * largest base type we can encounter (represented by 1075 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1076 * that we will be able to print some of the current object, 1077 * and if more is needed a copy will be triggered. 1078 * Some objects such as structs will not fit into the buffer; 1079 * in such cases additional copies when we iterate over their 1080 * members may be needed. 1081 * 1082 * btf_show_obj_safe() is used to return a safe buffer for 1083 * btf_show_start_type(); this ensures that as we recurse into 1084 * nested types we always have safe data for the given type. 1085 * This approach is somewhat wasteful; it's possible for example 1086 * that when iterating over a large union we'll end up copying the 1087 * same data repeatedly, but the goal is safety not performance. 1088 * We use stack data as opposed to per-CPU buffers because the 1089 * iteration over a type can take some time, and preemption handling 1090 * would greatly complicate use of the safe buffer. 1091 */ 1092 static void *btf_show_obj_safe(struct btf_show *show, 1093 const struct btf_type *t, 1094 void *data) 1095 { 1096 const struct btf_type *rt; 1097 int size_left, size; 1098 void *safe = NULL; 1099 1100 if (show->flags & BTF_SHOW_UNSAFE) 1101 return data; 1102 1103 rt = btf_resolve_size(show->btf, t, &size); 1104 if (IS_ERR(rt)) { 1105 show->state.status = PTR_ERR(rt); 1106 return NULL; 1107 } 1108 1109 /* 1110 * Is this toplevel object? If so, set total object size and 1111 * initialize pointers. Otherwise check if we still fall within 1112 * our safe object data. 1113 */ 1114 if (show->state.depth == 0) { 1115 show->obj.size = size; 1116 show->obj.head = data; 1117 } else { 1118 /* 1119 * If the size of the current object is > our remaining 1120 * safe buffer we _may_ need to do a new copy. However 1121 * consider the case of a nested struct; it's size pushes 1122 * us over the safe buffer limit, but showing any individual 1123 * struct members does not. In such cases, we don't need 1124 * to initiate a fresh copy yet; however we definitely need 1125 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1126 * in our buffer, regardless of the current object size. 1127 * The logic here is that as we resolve types we will 1128 * hit a base type at some point, and we need to be sure 1129 * the next chunk of data is safely available to display 1130 * that type info safely. We cannot rely on the size of 1131 * the current object here because it may be much larger 1132 * than our current buffer (e.g. task_struct is 8k). 1133 * All we want to do here is ensure that we can print the 1134 * next basic type, which we can if either 1135 * - the current type size is within the safe buffer; or 1136 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1137 * the safe buffer. 1138 */ 1139 safe = __btf_show_obj_safe(show, data, 1140 min(size, 1141 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1142 } 1143 1144 /* 1145 * We need a new copy to our safe object, either because we haven't 1146 * yet copied and are initializing safe data, or because the data 1147 * we want falls outside the boundaries of the safe object. 1148 */ 1149 if (!safe) { 1150 size_left = btf_show_obj_size_left(show, data); 1151 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1152 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1153 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1154 data, size_left); 1155 if (!show->state.status) { 1156 show->obj.data = data; 1157 safe = show->obj.safe; 1158 } 1159 } 1160 1161 return safe; 1162 } 1163 1164 /* 1165 * Set the type we are starting to show and return a safe data pointer 1166 * to be used for showing the associated data. 1167 */ 1168 static void *btf_show_start_type(struct btf_show *show, 1169 const struct btf_type *t, 1170 u32 type_id, void *data) 1171 { 1172 show->state.type = t; 1173 show->state.type_id = type_id; 1174 show->state.name[0] = '\0'; 1175 1176 return btf_show_obj_safe(show, t, data); 1177 } 1178 1179 static void btf_show_end_type(struct btf_show *show) 1180 { 1181 show->state.type = NULL; 1182 show->state.type_id = 0; 1183 show->state.name[0] = '\0'; 1184 } 1185 1186 static void *btf_show_start_aggr_type(struct btf_show *show, 1187 const struct btf_type *t, 1188 u32 type_id, void *data) 1189 { 1190 void *safe_data = btf_show_start_type(show, t, type_id, data); 1191 1192 if (!safe_data) 1193 return safe_data; 1194 1195 btf_show(show, "%s%s%s", btf_show_indent(show), 1196 btf_show_name(show), 1197 btf_show_newline(show)); 1198 show->state.depth++; 1199 return safe_data; 1200 } 1201 1202 static void btf_show_end_aggr_type(struct btf_show *show, 1203 const char *suffix) 1204 { 1205 show->state.depth--; 1206 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1207 btf_show_delim(show), btf_show_newline(show)); 1208 btf_show_end_type(show); 1209 } 1210 1211 static void btf_show_start_member(struct btf_show *show, 1212 const struct btf_member *m) 1213 { 1214 show->state.member = m; 1215 } 1216 1217 static void btf_show_start_array_member(struct btf_show *show) 1218 { 1219 show->state.array_member = 1; 1220 btf_show_start_member(show, NULL); 1221 } 1222 1223 static void btf_show_end_member(struct btf_show *show) 1224 { 1225 show->state.member = NULL; 1226 } 1227 1228 static void btf_show_end_array_member(struct btf_show *show) 1229 { 1230 show->state.array_member = 0; 1231 btf_show_end_member(show); 1232 } 1233 1234 static void *btf_show_start_array_type(struct btf_show *show, 1235 const struct btf_type *t, 1236 u32 type_id, 1237 u16 array_encoding, 1238 void *data) 1239 { 1240 show->state.array_encoding = array_encoding; 1241 show->state.array_terminated = 0; 1242 return btf_show_start_aggr_type(show, t, type_id, data); 1243 } 1244 1245 static void btf_show_end_array_type(struct btf_show *show) 1246 { 1247 show->state.array_encoding = 0; 1248 show->state.array_terminated = 0; 1249 btf_show_end_aggr_type(show, "]"); 1250 } 1251 1252 static void *btf_show_start_struct_type(struct btf_show *show, 1253 const struct btf_type *t, 1254 u32 type_id, 1255 void *data) 1256 { 1257 return btf_show_start_aggr_type(show, t, type_id, data); 1258 } 1259 1260 static void btf_show_end_struct_type(struct btf_show *show) 1261 { 1262 btf_show_end_aggr_type(show, "}"); 1263 } 1264 1265 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1266 const char *fmt, ...) 1267 { 1268 va_list args; 1269 1270 va_start(args, fmt); 1271 bpf_verifier_vlog(log, fmt, args); 1272 va_end(args); 1273 } 1274 1275 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1276 const char *fmt, ...) 1277 { 1278 struct bpf_verifier_log *log = &env->log; 1279 va_list args; 1280 1281 if (!bpf_verifier_log_needed(log)) 1282 return; 1283 1284 va_start(args, fmt); 1285 bpf_verifier_vlog(log, fmt, args); 1286 va_end(args); 1287 } 1288 1289 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1290 const struct btf_type *t, 1291 bool log_details, 1292 const char *fmt, ...) 1293 { 1294 struct bpf_verifier_log *log = &env->log; 1295 u8 kind = BTF_INFO_KIND(t->info); 1296 struct btf *btf = env->btf; 1297 va_list args; 1298 1299 if (!bpf_verifier_log_needed(log)) 1300 return; 1301 1302 /* btf verifier prints all types it is processing via 1303 * btf_verifier_log_type(..., fmt = NULL). 1304 * Skip those prints for in-kernel BTF verification. 1305 */ 1306 if (log->level == BPF_LOG_KERNEL && !fmt) 1307 return; 1308 1309 __btf_verifier_log(log, "[%u] %s %s%s", 1310 env->log_type_id, 1311 btf_kind_str[kind], 1312 __btf_name_by_offset(btf, t->name_off), 1313 log_details ? " " : ""); 1314 1315 if (log_details) 1316 btf_type_ops(t)->log_details(env, t); 1317 1318 if (fmt && *fmt) { 1319 __btf_verifier_log(log, " "); 1320 va_start(args, fmt); 1321 bpf_verifier_vlog(log, fmt, args); 1322 va_end(args); 1323 } 1324 1325 __btf_verifier_log(log, "\n"); 1326 } 1327 1328 #define btf_verifier_log_type(env, t, ...) \ 1329 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1330 #define btf_verifier_log_basic(env, t, ...) \ 1331 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1332 1333 __printf(4, 5) 1334 static void btf_verifier_log_member(struct btf_verifier_env *env, 1335 const struct btf_type *struct_type, 1336 const struct btf_member *member, 1337 const char *fmt, ...) 1338 { 1339 struct bpf_verifier_log *log = &env->log; 1340 struct btf *btf = env->btf; 1341 va_list args; 1342 1343 if (!bpf_verifier_log_needed(log)) 1344 return; 1345 1346 if (log->level == BPF_LOG_KERNEL && !fmt) 1347 return; 1348 /* The CHECK_META phase already did a btf dump. 1349 * 1350 * If member is logged again, it must hit an error in 1351 * parsing this member. It is useful to print out which 1352 * struct this member belongs to. 1353 */ 1354 if (env->phase != CHECK_META) 1355 btf_verifier_log_type(env, struct_type, NULL); 1356 1357 if (btf_type_kflag(struct_type)) 1358 __btf_verifier_log(log, 1359 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1360 __btf_name_by_offset(btf, member->name_off), 1361 member->type, 1362 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1363 BTF_MEMBER_BIT_OFFSET(member->offset)); 1364 else 1365 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1366 __btf_name_by_offset(btf, member->name_off), 1367 member->type, member->offset); 1368 1369 if (fmt && *fmt) { 1370 __btf_verifier_log(log, " "); 1371 va_start(args, fmt); 1372 bpf_verifier_vlog(log, fmt, args); 1373 va_end(args); 1374 } 1375 1376 __btf_verifier_log(log, "\n"); 1377 } 1378 1379 __printf(4, 5) 1380 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1381 const struct btf_type *datasec_type, 1382 const struct btf_var_secinfo *vsi, 1383 const char *fmt, ...) 1384 { 1385 struct bpf_verifier_log *log = &env->log; 1386 va_list args; 1387 1388 if (!bpf_verifier_log_needed(log)) 1389 return; 1390 if (log->level == BPF_LOG_KERNEL && !fmt) 1391 return; 1392 if (env->phase != CHECK_META) 1393 btf_verifier_log_type(env, datasec_type, NULL); 1394 1395 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1396 vsi->type, vsi->offset, vsi->size); 1397 if (fmt && *fmt) { 1398 __btf_verifier_log(log, " "); 1399 va_start(args, fmt); 1400 bpf_verifier_vlog(log, fmt, args); 1401 va_end(args); 1402 } 1403 1404 __btf_verifier_log(log, "\n"); 1405 } 1406 1407 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1408 u32 btf_data_size) 1409 { 1410 struct bpf_verifier_log *log = &env->log; 1411 const struct btf *btf = env->btf; 1412 const struct btf_header *hdr; 1413 1414 if (!bpf_verifier_log_needed(log)) 1415 return; 1416 1417 if (log->level == BPF_LOG_KERNEL) 1418 return; 1419 hdr = &btf->hdr; 1420 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1421 __btf_verifier_log(log, "version: %u\n", hdr->version); 1422 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1423 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1424 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1425 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1426 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1427 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1428 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1429 } 1430 1431 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1432 { 1433 struct btf *btf = env->btf; 1434 1435 if (btf->types_size == btf->nr_types) { 1436 /* Expand 'types' array */ 1437 1438 struct btf_type **new_types; 1439 u32 expand_by, new_size; 1440 1441 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1442 btf_verifier_log(env, "Exceeded max num of types"); 1443 return -E2BIG; 1444 } 1445 1446 expand_by = max_t(u32, btf->types_size >> 2, 16); 1447 new_size = min_t(u32, BTF_MAX_TYPE, 1448 btf->types_size + expand_by); 1449 1450 new_types = kvcalloc(new_size, sizeof(*new_types), 1451 GFP_KERNEL | __GFP_NOWARN); 1452 if (!new_types) 1453 return -ENOMEM; 1454 1455 if (btf->nr_types == 0) { 1456 if (!btf->base_btf) { 1457 /* lazily init VOID type */ 1458 new_types[0] = &btf_void; 1459 btf->nr_types++; 1460 } 1461 } else { 1462 memcpy(new_types, btf->types, 1463 sizeof(*btf->types) * btf->nr_types); 1464 } 1465 1466 kvfree(btf->types); 1467 btf->types = new_types; 1468 btf->types_size = new_size; 1469 } 1470 1471 btf->types[btf->nr_types++] = t; 1472 1473 return 0; 1474 } 1475 1476 static int btf_alloc_id(struct btf *btf) 1477 { 1478 int id; 1479 1480 idr_preload(GFP_KERNEL); 1481 spin_lock_bh(&btf_idr_lock); 1482 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1483 if (id > 0) 1484 btf->id = id; 1485 spin_unlock_bh(&btf_idr_lock); 1486 idr_preload_end(); 1487 1488 if (WARN_ON_ONCE(!id)) 1489 return -ENOSPC; 1490 1491 return id > 0 ? 0 : id; 1492 } 1493 1494 static void btf_free_id(struct btf *btf) 1495 { 1496 unsigned long flags; 1497 1498 /* 1499 * In map-in-map, calling map_delete_elem() on outer 1500 * map will call bpf_map_put on the inner map. 1501 * It will then eventually call btf_free_id() 1502 * on the inner map. Some of the map_delete_elem() 1503 * implementation may have irq disabled, so 1504 * we need to use the _irqsave() version instead 1505 * of the _bh() version. 1506 */ 1507 spin_lock_irqsave(&btf_idr_lock, flags); 1508 idr_remove(&btf_idr, btf->id); 1509 spin_unlock_irqrestore(&btf_idr_lock, flags); 1510 } 1511 1512 static void btf_free(struct btf *btf) 1513 { 1514 kvfree(btf->types); 1515 kvfree(btf->resolved_sizes); 1516 kvfree(btf->resolved_ids); 1517 kvfree(btf->data); 1518 kfree(btf); 1519 } 1520 1521 static void btf_free_rcu(struct rcu_head *rcu) 1522 { 1523 struct btf *btf = container_of(rcu, struct btf, rcu); 1524 1525 btf_free(btf); 1526 } 1527 1528 void btf_get(struct btf *btf) 1529 { 1530 refcount_inc(&btf->refcnt); 1531 } 1532 1533 void btf_put(struct btf *btf) 1534 { 1535 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1536 btf_free_id(btf); 1537 call_rcu(&btf->rcu, btf_free_rcu); 1538 } 1539 } 1540 1541 static int env_resolve_init(struct btf_verifier_env *env) 1542 { 1543 struct btf *btf = env->btf; 1544 u32 nr_types = btf->nr_types; 1545 u32 *resolved_sizes = NULL; 1546 u32 *resolved_ids = NULL; 1547 u8 *visit_states = NULL; 1548 1549 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1550 GFP_KERNEL | __GFP_NOWARN); 1551 if (!resolved_sizes) 1552 goto nomem; 1553 1554 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1555 GFP_KERNEL | __GFP_NOWARN); 1556 if (!resolved_ids) 1557 goto nomem; 1558 1559 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1560 GFP_KERNEL | __GFP_NOWARN); 1561 if (!visit_states) 1562 goto nomem; 1563 1564 btf->resolved_sizes = resolved_sizes; 1565 btf->resolved_ids = resolved_ids; 1566 env->visit_states = visit_states; 1567 1568 return 0; 1569 1570 nomem: 1571 kvfree(resolved_sizes); 1572 kvfree(resolved_ids); 1573 kvfree(visit_states); 1574 return -ENOMEM; 1575 } 1576 1577 static void btf_verifier_env_free(struct btf_verifier_env *env) 1578 { 1579 kvfree(env->visit_states); 1580 kfree(env); 1581 } 1582 1583 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1584 const struct btf_type *next_type) 1585 { 1586 switch (env->resolve_mode) { 1587 case RESOLVE_TBD: 1588 /* int, enum or void is a sink */ 1589 return !btf_type_needs_resolve(next_type); 1590 case RESOLVE_PTR: 1591 /* int, enum, void, struct, array, func or func_proto is a sink 1592 * for ptr 1593 */ 1594 return !btf_type_is_modifier(next_type) && 1595 !btf_type_is_ptr(next_type); 1596 case RESOLVE_STRUCT_OR_ARRAY: 1597 /* int, enum, void, ptr, func or func_proto is a sink 1598 * for struct and array 1599 */ 1600 return !btf_type_is_modifier(next_type) && 1601 !btf_type_is_array(next_type) && 1602 !btf_type_is_struct(next_type); 1603 default: 1604 BUG(); 1605 } 1606 } 1607 1608 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1609 u32 type_id) 1610 { 1611 /* base BTF types should be resolved by now */ 1612 if (type_id < env->btf->start_id) 1613 return true; 1614 1615 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1616 } 1617 1618 static int env_stack_push(struct btf_verifier_env *env, 1619 const struct btf_type *t, u32 type_id) 1620 { 1621 const struct btf *btf = env->btf; 1622 struct resolve_vertex *v; 1623 1624 if (env->top_stack == MAX_RESOLVE_DEPTH) 1625 return -E2BIG; 1626 1627 if (type_id < btf->start_id 1628 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1629 return -EEXIST; 1630 1631 env->visit_states[type_id - btf->start_id] = VISITED; 1632 1633 v = &env->stack[env->top_stack++]; 1634 v->t = t; 1635 v->type_id = type_id; 1636 v->next_member = 0; 1637 1638 if (env->resolve_mode == RESOLVE_TBD) { 1639 if (btf_type_is_ptr(t)) 1640 env->resolve_mode = RESOLVE_PTR; 1641 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1642 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1643 } 1644 1645 return 0; 1646 } 1647 1648 static void env_stack_set_next_member(struct btf_verifier_env *env, 1649 u16 next_member) 1650 { 1651 env->stack[env->top_stack - 1].next_member = next_member; 1652 } 1653 1654 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1655 u32 resolved_type_id, 1656 u32 resolved_size) 1657 { 1658 u32 type_id = env->stack[--(env->top_stack)].type_id; 1659 struct btf *btf = env->btf; 1660 1661 type_id -= btf->start_id; /* adjust to local type id */ 1662 btf->resolved_sizes[type_id] = resolved_size; 1663 btf->resolved_ids[type_id] = resolved_type_id; 1664 env->visit_states[type_id] = RESOLVED; 1665 } 1666 1667 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1668 { 1669 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1670 } 1671 1672 /* Resolve the size of a passed-in "type" 1673 * 1674 * type: is an array (e.g. u32 array[x][y]) 1675 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1676 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1677 * corresponds to the return type. 1678 * *elem_type: u32 1679 * *elem_id: id of u32 1680 * *total_nelems: (x * y). Hence, individual elem size is 1681 * (*type_size / *total_nelems) 1682 * *type_id: id of type if it's changed within the function, 0 if not 1683 * 1684 * type: is not an array (e.g. const struct X) 1685 * return type: type "struct X" 1686 * *type_size: sizeof(struct X) 1687 * *elem_type: same as return type ("struct X") 1688 * *elem_id: 0 1689 * *total_nelems: 1 1690 * *type_id: id of type if it's changed within the function, 0 if not 1691 */ 1692 static const struct btf_type * 1693 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1694 u32 *type_size, const struct btf_type **elem_type, 1695 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1696 { 1697 const struct btf_type *array_type = NULL; 1698 const struct btf_array *array = NULL; 1699 u32 i, size, nelems = 1, id = 0; 1700 1701 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1702 switch (BTF_INFO_KIND(type->info)) { 1703 /* type->size can be used */ 1704 case BTF_KIND_INT: 1705 case BTF_KIND_STRUCT: 1706 case BTF_KIND_UNION: 1707 case BTF_KIND_ENUM: 1708 case BTF_KIND_FLOAT: 1709 size = type->size; 1710 goto resolved; 1711 1712 case BTF_KIND_PTR: 1713 size = sizeof(void *); 1714 goto resolved; 1715 1716 /* Modifiers */ 1717 case BTF_KIND_TYPEDEF: 1718 case BTF_KIND_VOLATILE: 1719 case BTF_KIND_CONST: 1720 case BTF_KIND_RESTRICT: 1721 id = type->type; 1722 type = btf_type_by_id(btf, type->type); 1723 break; 1724 1725 case BTF_KIND_ARRAY: 1726 if (!array_type) 1727 array_type = type; 1728 array = btf_type_array(type); 1729 if (nelems && array->nelems > U32_MAX / nelems) 1730 return ERR_PTR(-EINVAL); 1731 nelems *= array->nelems; 1732 type = btf_type_by_id(btf, array->type); 1733 break; 1734 1735 /* type without size */ 1736 default: 1737 return ERR_PTR(-EINVAL); 1738 } 1739 } 1740 1741 return ERR_PTR(-EINVAL); 1742 1743 resolved: 1744 if (nelems && size > U32_MAX / nelems) 1745 return ERR_PTR(-EINVAL); 1746 1747 *type_size = nelems * size; 1748 if (total_nelems) 1749 *total_nelems = nelems; 1750 if (elem_type) 1751 *elem_type = type; 1752 if (elem_id) 1753 *elem_id = array ? array->type : 0; 1754 if (type_id && id) 1755 *type_id = id; 1756 1757 return array_type ? : type; 1758 } 1759 1760 const struct btf_type * 1761 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1762 u32 *type_size) 1763 { 1764 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1765 } 1766 1767 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1768 { 1769 while (type_id < btf->start_id) 1770 btf = btf->base_btf; 1771 1772 return btf->resolved_ids[type_id - btf->start_id]; 1773 } 1774 1775 /* The input param "type_id" must point to a needs_resolve type */ 1776 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1777 u32 *type_id) 1778 { 1779 *type_id = btf_resolved_type_id(btf, *type_id); 1780 return btf_type_by_id(btf, *type_id); 1781 } 1782 1783 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1784 { 1785 while (type_id < btf->start_id) 1786 btf = btf->base_btf; 1787 1788 return btf->resolved_sizes[type_id - btf->start_id]; 1789 } 1790 1791 const struct btf_type *btf_type_id_size(const struct btf *btf, 1792 u32 *type_id, u32 *ret_size) 1793 { 1794 const struct btf_type *size_type; 1795 u32 size_type_id = *type_id; 1796 u32 size = 0; 1797 1798 size_type = btf_type_by_id(btf, size_type_id); 1799 if (btf_type_nosize_or_null(size_type)) 1800 return NULL; 1801 1802 if (btf_type_has_size(size_type)) { 1803 size = size_type->size; 1804 } else if (btf_type_is_array(size_type)) { 1805 size = btf_resolved_type_size(btf, size_type_id); 1806 } else if (btf_type_is_ptr(size_type)) { 1807 size = sizeof(void *); 1808 } else { 1809 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1810 !btf_type_is_var(size_type))) 1811 return NULL; 1812 1813 size_type_id = btf_resolved_type_id(btf, size_type_id); 1814 size_type = btf_type_by_id(btf, size_type_id); 1815 if (btf_type_nosize_or_null(size_type)) 1816 return NULL; 1817 else if (btf_type_has_size(size_type)) 1818 size = size_type->size; 1819 else if (btf_type_is_array(size_type)) 1820 size = btf_resolved_type_size(btf, size_type_id); 1821 else if (btf_type_is_ptr(size_type)) 1822 size = sizeof(void *); 1823 else 1824 return NULL; 1825 } 1826 1827 *type_id = size_type_id; 1828 if (ret_size) 1829 *ret_size = size; 1830 1831 return size_type; 1832 } 1833 1834 static int btf_df_check_member(struct btf_verifier_env *env, 1835 const struct btf_type *struct_type, 1836 const struct btf_member *member, 1837 const struct btf_type *member_type) 1838 { 1839 btf_verifier_log_basic(env, struct_type, 1840 "Unsupported check_member"); 1841 return -EINVAL; 1842 } 1843 1844 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1845 const struct btf_type *struct_type, 1846 const struct btf_member *member, 1847 const struct btf_type *member_type) 1848 { 1849 btf_verifier_log_basic(env, struct_type, 1850 "Unsupported check_kflag_member"); 1851 return -EINVAL; 1852 } 1853 1854 /* Used for ptr, array struct/union and float type members. 1855 * int, enum and modifier types have their specific callback functions. 1856 */ 1857 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 1858 const struct btf_type *struct_type, 1859 const struct btf_member *member, 1860 const struct btf_type *member_type) 1861 { 1862 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 1863 btf_verifier_log_member(env, struct_type, member, 1864 "Invalid member bitfield_size"); 1865 return -EINVAL; 1866 } 1867 1868 /* bitfield size is 0, so member->offset represents bit offset only. 1869 * It is safe to call non kflag check_member variants. 1870 */ 1871 return btf_type_ops(member_type)->check_member(env, struct_type, 1872 member, 1873 member_type); 1874 } 1875 1876 static int btf_df_resolve(struct btf_verifier_env *env, 1877 const struct resolve_vertex *v) 1878 { 1879 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 1880 return -EINVAL; 1881 } 1882 1883 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 1884 u32 type_id, void *data, u8 bits_offsets, 1885 struct btf_show *show) 1886 { 1887 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 1888 } 1889 1890 static int btf_int_check_member(struct btf_verifier_env *env, 1891 const struct btf_type *struct_type, 1892 const struct btf_member *member, 1893 const struct btf_type *member_type) 1894 { 1895 u32 int_data = btf_type_int(member_type); 1896 u32 struct_bits_off = member->offset; 1897 u32 struct_size = struct_type->size; 1898 u32 nr_copy_bits; 1899 u32 bytes_offset; 1900 1901 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 1902 btf_verifier_log_member(env, struct_type, member, 1903 "bits_offset exceeds U32_MAX"); 1904 return -EINVAL; 1905 } 1906 1907 struct_bits_off += BTF_INT_OFFSET(int_data); 1908 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1909 nr_copy_bits = BTF_INT_BITS(int_data) + 1910 BITS_PER_BYTE_MASKED(struct_bits_off); 1911 1912 if (nr_copy_bits > BITS_PER_U128) { 1913 btf_verifier_log_member(env, struct_type, member, 1914 "nr_copy_bits exceeds 128"); 1915 return -EINVAL; 1916 } 1917 1918 if (struct_size < bytes_offset || 1919 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1920 btf_verifier_log_member(env, struct_type, member, 1921 "Member exceeds struct_size"); 1922 return -EINVAL; 1923 } 1924 1925 return 0; 1926 } 1927 1928 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 1929 const struct btf_type *struct_type, 1930 const struct btf_member *member, 1931 const struct btf_type *member_type) 1932 { 1933 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 1934 u32 int_data = btf_type_int(member_type); 1935 u32 struct_size = struct_type->size; 1936 u32 nr_copy_bits; 1937 1938 /* a regular int type is required for the kflag int member */ 1939 if (!btf_type_int_is_regular(member_type)) { 1940 btf_verifier_log_member(env, struct_type, member, 1941 "Invalid member base type"); 1942 return -EINVAL; 1943 } 1944 1945 /* check sanity of bitfield size */ 1946 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 1947 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 1948 nr_int_data_bits = BTF_INT_BITS(int_data); 1949 if (!nr_bits) { 1950 /* Not a bitfield member, member offset must be at byte 1951 * boundary. 1952 */ 1953 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1954 btf_verifier_log_member(env, struct_type, member, 1955 "Invalid member offset"); 1956 return -EINVAL; 1957 } 1958 1959 nr_bits = nr_int_data_bits; 1960 } else if (nr_bits > nr_int_data_bits) { 1961 btf_verifier_log_member(env, struct_type, member, 1962 "Invalid member bitfield_size"); 1963 return -EINVAL; 1964 } 1965 1966 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1967 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 1968 if (nr_copy_bits > BITS_PER_U128) { 1969 btf_verifier_log_member(env, struct_type, member, 1970 "nr_copy_bits exceeds 128"); 1971 return -EINVAL; 1972 } 1973 1974 if (struct_size < bytes_offset || 1975 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1976 btf_verifier_log_member(env, struct_type, member, 1977 "Member exceeds struct_size"); 1978 return -EINVAL; 1979 } 1980 1981 return 0; 1982 } 1983 1984 static s32 btf_int_check_meta(struct btf_verifier_env *env, 1985 const struct btf_type *t, 1986 u32 meta_left) 1987 { 1988 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 1989 u16 encoding; 1990 1991 if (meta_left < meta_needed) { 1992 btf_verifier_log_basic(env, t, 1993 "meta_left:%u meta_needed:%u", 1994 meta_left, meta_needed); 1995 return -EINVAL; 1996 } 1997 1998 if (btf_type_vlen(t)) { 1999 btf_verifier_log_type(env, t, "vlen != 0"); 2000 return -EINVAL; 2001 } 2002 2003 if (btf_type_kflag(t)) { 2004 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2005 return -EINVAL; 2006 } 2007 2008 int_data = btf_type_int(t); 2009 if (int_data & ~BTF_INT_MASK) { 2010 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2011 int_data); 2012 return -EINVAL; 2013 } 2014 2015 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2016 2017 if (nr_bits > BITS_PER_U128) { 2018 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2019 BITS_PER_U128); 2020 return -EINVAL; 2021 } 2022 2023 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2024 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2025 return -EINVAL; 2026 } 2027 2028 /* 2029 * Only one of the encoding bits is allowed and it 2030 * should be sufficient for the pretty print purpose (i.e. decoding). 2031 * Multiple bits can be allowed later if it is found 2032 * to be insufficient. 2033 */ 2034 encoding = BTF_INT_ENCODING(int_data); 2035 if (encoding && 2036 encoding != BTF_INT_SIGNED && 2037 encoding != BTF_INT_CHAR && 2038 encoding != BTF_INT_BOOL) { 2039 btf_verifier_log_type(env, t, "Unsupported encoding"); 2040 return -ENOTSUPP; 2041 } 2042 2043 btf_verifier_log_type(env, t, NULL); 2044 2045 return meta_needed; 2046 } 2047 2048 static void btf_int_log(struct btf_verifier_env *env, 2049 const struct btf_type *t) 2050 { 2051 int int_data = btf_type_int(t); 2052 2053 btf_verifier_log(env, 2054 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2055 t->size, BTF_INT_OFFSET(int_data), 2056 BTF_INT_BITS(int_data), 2057 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2058 } 2059 2060 static void btf_int128_print(struct btf_show *show, void *data) 2061 { 2062 /* data points to a __int128 number. 2063 * Suppose 2064 * int128_num = *(__int128 *)data; 2065 * The below formulas shows what upper_num and lower_num represents: 2066 * upper_num = int128_num >> 64; 2067 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2068 */ 2069 u64 upper_num, lower_num; 2070 2071 #ifdef __BIG_ENDIAN_BITFIELD 2072 upper_num = *(u64 *)data; 2073 lower_num = *(u64 *)(data + 8); 2074 #else 2075 upper_num = *(u64 *)(data + 8); 2076 lower_num = *(u64 *)data; 2077 #endif 2078 if (upper_num == 0) 2079 btf_show_type_value(show, "0x%llx", lower_num); 2080 else 2081 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2082 lower_num); 2083 } 2084 2085 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2086 u16 right_shift_bits) 2087 { 2088 u64 upper_num, lower_num; 2089 2090 #ifdef __BIG_ENDIAN_BITFIELD 2091 upper_num = print_num[0]; 2092 lower_num = print_num[1]; 2093 #else 2094 upper_num = print_num[1]; 2095 lower_num = print_num[0]; 2096 #endif 2097 2098 /* shake out un-needed bits by shift/or operations */ 2099 if (left_shift_bits >= 64) { 2100 upper_num = lower_num << (left_shift_bits - 64); 2101 lower_num = 0; 2102 } else { 2103 upper_num = (upper_num << left_shift_bits) | 2104 (lower_num >> (64 - left_shift_bits)); 2105 lower_num = lower_num << left_shift_bits; 2106 } 2107 2108 if (right_shift_bits >= 64) { 2109 lower_num = upper_num >> (right_shift_bits - 64); 2110 upper_num = 0; 2111 } else { 2112 lower_num = (lower_num >> right_shift_bits) | 2113 (upper_num << (64 - right_shift_bits)); 2114 upper_num = upper_num >> right_shift_bits; 2115 } 2116 2117 #ifdef __BIG_ENDIAN_BITFIELD 2118 print_num[0] = upper_num; 2119 print_num[1] = lower_num; 2120 #else 2121 print_num[0] = lower_num; 2122 print_num[1] = upper_num; 2123 #endif 2124 } 2125 2126 static void btf_bitfield_show(void *data, u8 bits_offset, 2127 u8 nr_bits, struct btf_show *show) 2128 { 2129 u16 left_shift_bits, right_shift_bits; 2130 u8 nr_copy_bytes; 2131 u8 nr_copy_bits; 2132 u64 print_num[2] = {}; 2133 2134 nr_copy_bits = nr_bits + bits_offset; 2135 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2136 2137 memcpy(print_num, data, nr_copy_bytes); 2138 2139 #ifdef __BIG_ENDIAN_BITFIELD 2140 left_shift_bits = bits_offset; 2141 #else 2142 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2143 #endif 2144 right_shift_bits = BITS_PER_U128 - nr_bits; 2145 2146 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2147 btf_int128_print(show, print_num); 2148 } 2149 2150 2151 static void btf_int_bits_show(const struct btf *btf, 2152 const struct btf_type *t, 2153 void *data, u8 bits_offset, 2154 struct btf_show *show) 2155 { 2156 u32 int_data = btf_type_int(t); 2157 u8 nr_bits = BTF_INT_BITS(int_data); 2158 u8 total_bits_offset; 2159 2160 /* 2161 * bits_offset is at most 7. 2162 * BTF_INT_OFFSET() cannot exceed 128 bits. 2163 */ 2164 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2165 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2166 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2167 btf_bitfield_show(data, bits_offset, nr_bits, show); 2168 } 2169 2170 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2171 u32 type_id, void *data, u8 bits_offset, 2172 struct btf_show *show) 2173 { 2174 u32 int_data = btf_type_int(t); 2175 u8 encoding = BTF_INT_ENCODING(int_data); 2176 bool sign = encoding & BTF_INT_SIGNED; 2177 u8 nr_bits = BTF_INT_BITS(int_data); 2178 void *safe_data; 2179 2180 safe_data = btf_show_start_type(show, t, type_id, data); 2181 if (!safe_data) 2182 return; 2183 2184 if (bits_offset || BTF_INT_OFFSET(int_data) || 2185 BITS_PER_BYTE_MASKED(nr_bits)) { 2186 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2187 goto out; 2188 } 2189 2190 switch (nr_bits) { 2191 case 128: 2192 btf_int128_print(show, safe_data); 2193 break; 2194 case 64: 2195 if (sign) 2196 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2197 else 2198 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2199 break; 2200 case 32: 2201 if (sign) 2202 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2203 else 2204 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2205 break; 2206 case 16: 2207 if (sign) 2208 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2209 else 2210 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2211 break; 2212 case 8: 2213 if (show->state.array_encoding == BTF_INT_CHAR) { 2214 /* check for null terminator */ 2215 if (show->state.array_terminated) 2216 break; 2217 if (*(char *)data == '\0') { 2218 show->state.array_terminated = 1; 2219 break; 2220 } 2221 if (isprint(*(char *)data)) { 2222 btf_show_type_value(show, "'%c'", 2223 *(char *)safe_data); 2224 break; 2225 } 2226 } 2227 if (sign) 2228 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2229 else 2230 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2231 break; 2232 default: 2233 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2234 break; 2235 } 2236 out: 2237 btf_show_end_type(show); 2238 } 2239 2240 static const struct btf_kind_operations int_ops = { 2241 .check_meta = btf_int_check_meta, 2242 .resolve = btf_df_resolve, 2243 .check_member = btf_int_check_member, 2244 .check_kflag_member = btf_int_check_kflag_member, 2245 .log_details = btf_int_log, 2246 .show = btf_int_show, 2247 }; 2248 2249 static int btf_modifier_check_member(struct btf_verifier_env *env, 2250 const struct btf_type *struct_type, 2251 const struct btf_member *member, 2252 const struct btf_type *member_type) 2253 { 2254 const struct btf_type *resolved_type; 2255 u32 resolved_type_id = member->type; 2256 struct btf_member resolved_member; 2257 struct btf *btf = env->btf; 2258 2259 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2260 if (!resolved_type) { 2261 btf_verifier_log_member(env, struct_type, member, 2262 "Invalid member"); 2263 return -EINVAL; 2264 } 2265 2266 resolved_member = *member; 2267 resolved_member.type = resolved_type_id; 2268 2269 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2270 &resolved_member, 2271 resolved_type); 2272 } 2273 2274 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2275 const struct btf_type *struct_type, 2276 const struct btf_member *member, 2277 const struct btf_type *member_type) 2278 { 2279 const struct btf_type *resolved_type; 2280 u32 resolved_type_id = member->type; 2281 struct btf_member resolved_member; 2282 struct btf *btf = env->btf; 2283 2284 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2285 if (!resolved_type) { 2286 btf_verifier_log_member(env, struct_type, member, 2287 "Invalid member"); 2288 return -EINVAL; 2289 } 2290 2291 resolved_member = *member; 2292 resolved_member.type = resolved_type_id; 2293 2294 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2295 &resolved_member, 2296 resolved_type); 2297 } 2298 2299 static int btf_ptr_check_member(struct btf_verifier_env *env, 2300 const struct btf_type *struct_type, 2301 const struct btf_member *member, 2302 const struct btf_type *member_type) 2303 { 2304 u32 struct_size, struct_bits_off, bytes_offset; 2305 2306 struct_size = struct_type->size; 2307 struct_bits_off = member->offset; 2308 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2309 2310 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2311 btf_verifier_log_member(env, struct_type, member, 2312 "Member is not byte aligned"); 2313 return -EINVAL; 2314 } 2315 2316 if (struct_size - bytes_offset < sizeof(void *)) { 2317 btf_verifier_log_member(env, struct_type, member, 2318 "Member exceeds struct_size"); 2319 return -EINVAL; 2320 } 2321 2322 return 0; 2323 } 2324 2325 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2326 const struct btf_type *t, 2327 u32 meta_left) 2328 { 2329 if (btf_type_vlen(t)) { 2330 btf_verifier_log_type(env, t, "vlen != 0"); 2331 return -EINVAL; 2332 } 2333 2334 if (btf_type_kflag(t)) { 2335 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2336 return -EINVAL; 2337 } 2338 2339 if (!BTF_TYPE_ID_VALID(t->type)) { 2340 btf_verifier_log_type(env, t, "Invalid type_id"); 2341 return -EINVAL; 2342 } 2343 2344 /* typedef type must have a valid name, and other ref types, 2345 * volatile, const, restrict, should have a null name. 2346 */ 2347 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2348 if (!t->name_off || 2349 !btf_name_valid_identifier(env->btf, t->name_off)) { 2350 btf_verifier_log_type(env, t, "Invalid name"); 2351 return -EINVAL; 2352 } 2353 } else { 2354 if (t->name_off) { 2355 btf_verifier_log_type(env, t, "Invalid name"); 2356 return -EINVAL; 2357 } 2358 } 2359 2360 btf_verifier_log_type(env, t, NULL); 2361 2362 return 0; 2363 } 2364 2365 static int btf_modifier_resolve(struct btf_verifier_env *env, 2366 const struct resolve_vertex *v) 2367 { 2368 const struct btf_type *t = v->t; 2369 const struct btf_type *next_type; 2370 u32 next_type_id = t->type; 2371 struct btf *btf = env->btf; 2372 2373 next_type = btf_type_by_id(btf, next_type_id); 2374 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2375 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2376 return -EINVAL; 2377 } 2378 2379 if (!env_type_is_resolve_sink(env, next_type) && 2380 !env_type_is_resolved(env, next_type_id)) 2381 return env_stack_push(env, next_type, next_type_id); 2382 2383 /* Figure out the resolved next_type_id with size. 2384 * They will be stored in the current modifier's 2385 * resolved_ids and resolved_sizes such that it can 2386 * save us a few type-following when we use it later (e.g. in 2387 * pretty print). 2388 */ 2389 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2390 if (env_type_is_resolved(env, next_type_id)) 2391 next_type = btf_type_id_resolve(btf, &next_type_id); 2392 2393 /* "typedef void new_void", "const void"...etc */ 2394 if (!btf_type_is_void(next_type) && 2395 !btf_type_is_fwd(next_type) && 2396 !btf_type_is_func_proto(next_type)) { 2397 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2398 return -EINVAL; 2399 } 2400 } 2401 2402 env_stack_pop_resolved(env, next_type_id, 0); 2403 2404 return 0; 2405 } 2406 2407 static int btf_var_resolve(struct btf_verifier_env *env, 2408 const struct resolve_vertex *v) 2409 { 2410 const struct btf_type *next_type; 2411 const struct btf_type *t = v->t; 2412 u32 next_type_id = t->type; 2413 struct btf *btf = env->btf; 2414 2415 next_type = btf_type_by_id(btf, next_type_id); 2416 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2417 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2418 return -EINVAL; 2419 } 2420 2421 if (!env_type_is_resolve_sink(env, next_type) && 2422 !env_type_is_resolved(env, next_type_id)) 2423 return env_stack_push(env, next_type, next_type_id); 2424 2425 if (btf_type_is_modifier(next_type)) { 2426 const struct btf_type *resolved_type; 2427 u32 resolved_type_id; 2428 2429 resolved_type_id = next_type_id; 2430 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2431 2432 if (btf_type_is_ptr(resolved_type) && 2433 !env_type_is_resolve_sink(env, resolved_type) && 2434 !env_type_is_resolved(env, resolved_type_id)) 2435 return env_stack_push(env, resolved_type, 2436 resolved_type_id); 2437 } 2438 2439 /* We must resolve to something concrete at this point, no 2440 * forward types or similar that would resolve to size of 2441 * zero is allowed. 2442 */ 2443 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2444 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2445 return -EINVAL; 2446 } 2447 2448 env_stack_pop_resolved(env, next_type_id, 0); 2449 2450 return 0; 2451 } 2452 2453 static int btf_ptr_resolve(struct btf_verifier_env *env, 2454 const struct resolve_vertex *v) 2455 { 2456 const struct btf_type *next_type; 2457 const struct btf_type *t = v->t; 2458 u32 next_type_id = t->type; 2459 struct btf *btf = env->btf; 2460 2461 next_type = btf_type_by_id(btf, next_type_id); 2462 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2463 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2464 return -EINVAL; 2465 } 2466 2467 if (!env_type_is_resolve_sink(env, next_type) && 2468 !env_type_is_resolved(env, next_type_id)) 2469 return env_stack_push(env, next_type, next_type_id); 2470 2471 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2472 * the modifier may have stopped resolving when it was resolved 2473 * to a ptr (last-resolved-ptr). 2474 * 2475 * We now need to continue from the last-resolved-ptr to 2476 * ensure the last-resolved-ptr will not referring back to 2477 * the currenct ptr (t). 2478 */ 2479 if (btf_type_is_modifier(next_type)) { 2480 const struct btf_type *resolved_type; 2481 u32 resolved_type_id; 2482 2483 resolved_type_id = next_type_id; 2484 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2485 2486 if (btf_type_is_ptr(resolved_type) && 2487 !env_type_is_resolve_sink(env, resolved_type) && 2488 !env_type_is_resolved(env, resolved_type_id)) 2489 return env_stack_push(env, resolved_type, 2490 resolved_type_id); 2491 } 2492 2493 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2494 if (env_type_is_resolved(env, next_type_id)) 2495 next_type = btf_type_id_resolve(btf, &next_type_id); 2496 2497 if (!btf_type_is_void(next_type) && 2498 !btf_type_is_fwd(next_type) && 2499 !btf_type_is_func_proto(next_type)) { 2500 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2501 return -EINVAL; 2502 } 2503 } 2504 2505 env_stack_pop_resolved(env, next_type_id, 0); 2506 2507 return 0; 2508 } 2509 2510 static void btf_modifier_show(const struct btf *btf, 2511 const struct btf_type *t, 2512 u32 type_id, void *data, 2513 u8 bits_offset, struct btf_show *show) 2514 { 2515 if (btf->resolved_ids) 2516 t = btf_type_id_resolve(btf, &type_id); 2517 else 2518 t = btf_type_skip_modifiers(btf, type_id, NULL); 2519 2520 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2521 } 2522 2523 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2524 u32 type_id, void *data, u8 bits_offset, 2525 struct btf_show *show) 2526 { 2527 t = btf_type_id_resolve(btf, &type_id); 2528 2529 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2530 } 2531 2532 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2533 u32 type_id, void *data, u8 bits_offset, 2534 struct btf_show *show) 2535 { 2536 void *safe_data; 2537 2538 safe_data = btf_show_start_type(show, t, type_id, data); 2539 if (!safe_data) 2540 return; 2541 2542 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2543 if (show->flags & BTF_SHOW_PTR_RAW) 2544 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2545 else 2546 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2547 btf_show_end_type(show); 2548 } 2549 2550 static void btf_ref_type_log(struct btf_verifier_env *env, 2551 const struct btf_type *t) 2552 { 2553 btf_verifier_log(env, "type_id=%u", t->type); 2554 } 2555 2556 static struct btf_kind_operations modifier_ops = { 2557 .check_meta = btf_ref_type_check_meta, 2558 .resolve = btf_modifier_resolve, 2559 .check_member = btf_modifier_check_member, 2560 .check_kflag_member = btf_modifier_check_kflag_member, 2561 .log_details = btf_ref_type_log, 2562 .show = btf_modifier_show, 2563 }; 2564 2565 static struct btf_kind_operations ptr_ops = { 2566 .check_meta = btf_ref_type_check_meta, 2567 .resolve = btf_ptr_resolve, 2568 .check_member = btf_ptr_check_member, 2569 .check_kflag_member = btf_generic_check_kflag_member, 2570 .log_details = btf_ref_type_log, 2571 .show = btf_ptr_show, 2572 }; 2573 2574 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2575 const struct btf_type *t, 2576 u32 meta_left) 2577 { 2578 if (btf_type_vlen(t)) { 2579 btf_verifier_log_type(env, t, "vlen != 0"); 2580 return -EINVAL; 2581 } 2582 2583 if (t->type) { 2584 btf_verifier_log_type(env, t, "type != 0"); 2585 return -EINVAL; 2586 } 2587 2588 /* fwd type must have a valid name */ 2589 if (!t->name_off || 2590 !btf_name_valid_identifier(env->btf, t->name_off)) { 2591 btf_verifier_log_type(env, t, "Invalid name"); 2592 return -EINVAL; 2593 } 2594 2595 btf_verifier_log_type(env, t, NULL); 2596 2597 return 0; 2598 } 2599 2600 static void btf_fwd_type_log(struct btf_verifier_env *env, 2601 const struct btf_type *t) 2602 { 2603 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2604 } 2605 2606 static struct btf_kind_operations fwd_ops = { 2607 .check_meta = btf_fwd_check_meta, 2608 .resolve = btf_df_resolve, 2609 .check_member = btf_df_check_member, 2610 .check_kflag_member = btf_df_check_kflag_member, 2611 .log_details = btf_fwd_type_log, 2612 .show = btf_df_show, 2613 }; 2614 2615 static int btf_array_check_member(struct btf_verifier_env *env, 2616 const struct btf_type *struct_type, 2617 const struct btf_member *member, 2618 const struct btf_type *member_type) 2619 { 2620 u32 struct_bits_off = member->offset; 2621 u32 struct_size, bytes_offset; 2622 u32 array_type_id, array_size; 2623 struct btf *btf = env->btf; 2624 2625 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2626 btf_verifier_log_member(env, struct_type, member, 2627 "Member is not byte aligned"); 2628 return -EINVAL; 2629 } 2630 2631 array_type_id = member->type; 2632 btf_type_id_size(btf, &array_type_id, &array_size); 2633 struct_size = struct_type->size; 2634 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2635 if (struct_size - bytes_offset < array_size) { 2636 btf_verifier_log_member(env, struct_type, member, 2637 "Member exceeds struct_size"); 2638 return -EINVAL; 2639 } 2640 2641 return 0; 2642 } 2643 2644 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2645 const struct btf_type *t, 2646 u32 meta_left) 2647 { 2648 const struct btf_array *array = btf_type_array(t); 2649 u32 meta_needed = sizeof(*array); 2650 2651 if (meta_left < meta_needed) { 2652 btf_verifier_log_basic(env, t, 2653 "meta_left:%u meta_needed:%u", 2654 meta_left, meta_needed); 2655 return -EINVAL; 2656 } 2657 2658 /* array type should not have a name */ 2659 if (t->name_off) { 2660 btf_verifier_log_type(env, t, "Invalid name"); 2661 return -EINVAL; 2662 } 2663 2664 if (btf_type_vlen(t)) { 2665 btf_verifier_log_type(env, t, "vlen != 0"); 2666 return -EINVAL; 2667 } 2668 2669 if (btf_type_kflag(t)) { 2670 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2671 return -EINVAL; 2672 } 2673 2674 if (t->size) { 2675 btf_verifier_log_type(env, t, "size != 0"); 2676 return -EINVAL; 2677 } 2678 2679 /* Array elem type and index type cannot be in type void, 2680 * so !array->type and !array->index_type are not allowed. 2681 */ 2682 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2683 btf_verifier_log_type(env, t, "Invalid elem"); 2684 return -EINVAL; 2685 } 2686 2687 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2688 btf_verifier_log_type(env, t, "Invalid index"); 2689 return -EINVAL; 2690 } 2691 2692 btf_verifier_log_type(env, t, NULL); 2693 2694 return meta_needed; 2695 } 2696 2697 static int btf_array_resolve(struct btf_verifier_env *env, 2698 const struct resolve_vertex *v) 2699 { 2700 const struct btf_array *array = btf_type_array(v->t); 2701 const struct btf_type *elem_type, *index_type; 2702 u32 elem_type_id, index_type_id; 2703 struct btf *btf = env->btf; 2704 u32 elem_size; 2705 2706 /* Check array->index_type */ 2707 index_type_id = array->index_type; 2708 index_type = btf_type_by_id(btf, index_type_id); 2709 if (btf_type_nosize_or_null(index_type) || 2710 btf_type_is_resolve_source_only(index_type)) { 2711 btf_verifier_log_type(env, v->t, "Invalid index"); 2712 return -EINVAL; 2713 } 2714 2715 if (!env_type_is_resolve_sink(env, index_type) && 2716 !env_type_is_resolved(env, index_type_id)) 2717 return env_stack_push(env, index_type, index_type_id); 2718 2719 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2720 if (!index_type || !btf_type_is_int(index_type) || 2721 !btf_type_int_is_regular(index_type)) { 2722 btf_verifier_log_type(env, v->t, "Invalid index"); 2723 return -EINVAL; 2724 } 2725 2726 /* Check array->type */ 2727 elem_type_id = array->type; 2728 elem_type = btf_type_by_id(btf, elem_type_id); 2729 if (btf_type_nosize_or_null(elem_type) || 2730 btf_type_is_resolve_source_only(elem_type)) { 2731 btf_verifier_log_type(env, v->t, 2732 "Invalid elem"); 2733 return -EINVAL; 2734 } 2735 2736 if (!env_type_is_resolve_sink(env, elem_type) && 2737 !env_type_is_resolved(env, elem_type_id)) 2738 return env_stack_push(env, elem_type, elem_type_id); 2739 2740 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2741 if (!elem_type) { 2742 btf_verifier_log_type(env, v->t, "Invalid elem"); 2743 return -EINVAL; 2744 } 2745 2746 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2747 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2748 return -EINVAL; 2749 } 2750 2751 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2752 btf_verifier_log_type(env, v->t, 2753 "Array size overflows U32_MAX"); 2754 return -EINVAL; 2755 } 2756 2757 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2758 2759 return 0; 2760 } 2761 2762 static void btf_array_log(struct btf_verifier_env *env, 2763 const struct btf_type *t) 2764 { 2765 const struct btf_array *array = btf_type_array(t); 2766 2767 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2768 array->type, array->index_type, array->nelems); 2769 } 2770 2771 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2772 u32 type_id, void *data, u8 bits_offset, 2773 struct btf_show *show) 2774 { 2775 const struct btf_array *array = btf_type_array(t); 2776 const struct btf_kind_operations *elem_ops; 2777 const struct btf_type *elem_type; 2778 u32 i, elem_size = 0, elem_type_id; 2779 u16 encoding = 0; 2780 2781 elem_type_id = array->type; 2782 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2783 if (elem_type && btf_type_has_size(elem_type)) 2784 elem_size = elem_type->size; 2785 2786 if (elem_type && btf_type_is_int(elem_type)) { 2787 u32 int_type = btf_type_int(elem_type); 2788 2789 encoding = BTF_INT_ENCODING(int_type); 2790 2791 /* 2792 * BTF_INT_CHAR encoding never seems to be set for 2793 * char arrays, so if size is 1 and element is 2794 * printable as a char, we'll do that. 2795 */ 2796 if (elem_size == 1) 2797 encoding = BTF_INT_CHAR; 2798 } 2799 2800 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2801 return; 2802 2803 if (!elem_type) 2804 goto out; 2805 elem_ops = btf_type_ops(elem_type); 2806 2807 for (i = 0; i < array->nelems; i++) { 2808 2809 btf_show_start_array_member(show); 2810 2811 elem_ops->show(btf, elem_type, elem_type_id, data, 2812 bits_offset, show); 2813 data += elem_size; 2814 2815 btf_show_end_array_member(show); 2816 2817 if (show->state.array_terminated) 2818 break; 2819 } 2820 out: 2821 btf_show_end_array_type(show); 2822 } 2823 2824 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 2825 u32 type_id, void *data, u8 bits_offset, 2826 struct btf_show *show) 2827 { 2828 const struct btf_member *m = show->state.member; 2829 2830 /* 2831 * First check if any members would be shown (are non-zero). 2832 * See comments above "struct btf_show" definition for more 2833 * details on how this works at a high-level. 2834 */ 2835 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 2836 if (!show->state.depth_check) { 2837 show->state.depth_check = show->state.depth + 1; 2838 show->state.depth_to_show = 0; 2839 } 2840 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2841 show->state.member = m; 2842 2843 if (show->state.depth_check != show->state.depth + 1) 2844 return; 2845 show->state.depth_check = 0; 2846 2847 if (show->state.depth_to_show <= show->state.depth) 2848 return; 2849 /* 2850 * Reaching here indicates we have recursed and found 2851 * non-zero array member(s). 2852 */ 2853 } 2854 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2855 } 2856 2857 static struct btf_kind_operations array_ops = { 2858 .check_meta = btf_array_check_meta, 2859 .resolve = btf_array_resolve, 2860 .check_member = btf_array_check_member, 2861 .check_kflag_member = btf_generic_check_kflag_member, 2862 .log_details = btf_array_log, 2863 .show = btf_array_show, 2864 }; 2865 2866 static int btf_struct_check_member(struct btf_verifier_env *env, 2867 const struct btf_type *struct_type, 2868 const struct btf_member *member, 2869 const struct btf_type *member_type) 2870 { 2871 u32 struct_bits_off = member->offset; 2872 u32 struct_size, bytes_offset; 2873 2874 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2875 btf_verifier_log_member(env, struct_type, member, 2876 "Member is not byte aligned"); 2877 return -EINVAL; 2878 } 2879 2880 struct_size = struct_type->size; 2881 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2882 if (struct_size - bytes_offset < member_type->size) { 2883 btf_verifier_log_member(env, struct_type, member, 2884 "Member exceeds struct_size"); 2885 return -EINVAL; 2886 } 2887 2888 return 0; 2889 } 2890 2891 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 2892 const struct btf_type *t, 2893 u32 meta_left) 2894 { 2895 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 2896 const struct btf_member *member; 2897 u32 meta_needed, last_offset; 2898 struct btf *btf = env->btf; 2899 u32 struct_size = t->size; 2900 u32 offset; 2901 u16 i; 2902 2903 meta_needed = btf_type_vlen(t) * sizeof(*member); 2904 if (meta_left < meta_needed) { 2905 btf_verifier_log_basic(env, t, 2906 "meta_left:%u meta_needed:%u", 2907 meta_left, meta_needed); 2908 return -EINVAL; 2909 } 2910 2911 /* struct type either no name or a valid one */ 2912 if (t->name_off && 2913 !btf_name_valid_identifier(env->btf, t->name_off)) { 2914 btf_verifier_log_type(env, t, "Invalid name"); 2915 return -EINVAL; 2916 } 2917 2918 btf_verifier_log_type(env, t, NULL); 2919 2920 last_offset = 0; 2921 for_each_member(i, t, member) { 2922 if (!btf_name_offset_valid(btf, member->name_off)) { 2923 btf_verifier_log_member(env, t, member, 2924 "Invalid member name_offset:%u", 2925 member->name_off); 2926 return -EINVAL; 2927 } 2928 2929 /* struct member either no name or a valid one */ 2930 if (member->name_off && 2931 !btf_name_valid_identifier(btf, member->name_off)) { 2932 btf_verifier_log_member(env, t, member, "Invalid name"); 2933 return -EINVAL; 2934 } 2935 /* A member cannot be in type void */ 2936 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 2937 btf_verifier_log_member(env, t, member, 2938 "Invalid type_id"); 2939 return -EINVAL; 2940 } 2941 2942 offset = btf_member_bit_offset(t, member); 2943 if (is_union && offset) { 2944 btf_verifier_log_member(env, t, member, 2945 "Invalid member bits_offset"); 2946 return -EINVAL; 2947 } 2948 2949 /* 2950 * ">" instead of ">=" because the last member could be 2951 * "char a[0];" 2952 */ 2953 if (last_offset > offset) { 2954 btf_verifier_log_member(env, t, member, 2955 "Invalid member bits_offset"); 2956 return -EINVAL; 2957 } 2958 2959 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 2960 btf_verifier_log_member(env, t, member, 2961 "Member bits_offset exceeds its struct size"); 2962 return -EINVAL; 2963 } 2964 2965 btf_verifier_log_member(env, t, member, NULL); 2966 last_offset = offset; 2967 } 2968 2969 return meta_needed; 2970 } 2971 2972 static int btf_struct_resolve(struct btf_verifier_env *env, 2973 const struct resolve_vertex *v) 2974 { 2975 const struct btf_member *member; 2976 int err; 2977 u16 i; 2978 2979 /* Before continue resolving the next_member, 2980 * ensure the last member is indeed resolved to a 2981 * type with size info. 2982 */ 2983 if (v->next_member) { 2984 const struct btf_type *last_member_type; 2985 const struct btf_member *last_member; 2986 u16 last_member_type_id; 2987 2988 last_member = btf_type_member(v->t) + v->next_member - 1; 2989 last_member_type_id = last_member->type; 2990 if (WARN_ON_ONCE(!env_type_is_resolved(env, 2991 last_member_type_id))) 2992 return -EINVAL; 2993 2994 last_member_type = btf_type_by_id(env->btf, 2995 last_member_type_id); 2996 if (btf_type_kflag(v->t)) 2997 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 2998 last_member, 2999 last_member_type); 3000 else 3001 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3002 last_member, 3003 last_member_type); 3004 if (err) 3005 return err; 3006 } 3007 3008 for_each_member_from(i, v->next_member, v->t, member) { 3009 u32 member_type_id = member->type; 3010 const struct btf_type *member_type = btf_type_by_id(env->btf, 3011 member_type_id); 3012 3013 if (btf_type_nosize_or_null(member_type) || 3014 btf_type_is_resolve_source_only(member_type)) { 3015 btf_verifier_log_member(env, v->t, member, 3016 "Invalid member"); 3017 return -EINVAL; 3018 } 3019 3020 if (!env_type_is_resolve_sink(env, member_type) && 3021 !env_type_is_resolved(env, member_type_id)) { 3022 env_stack_set_next_member(env, i + 1); 3023 return env_stack_push(env, member_type, member_type_id); 3024 } 3025 3026 if (btf_type_kflag(v->t)) 3027 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3028 member, 3029 member_type); 3030 else 3031 err = btf_type_ops(member_type)->check_member(env, v->t, 3032 member, 3033 member_type); 3034 if (err) 3035 return err; 3036 } 3037 3038 env_stack_pop_resolved(env, 0, 0); 3039 3040 return 0; 3041 } 3042 3043 static void btf_struct_log(struct btf_verifier_env *env, 3044 const struct btf_type *t) 3045 { 3046 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3047 } 3048 3049 /* find 'struct bpf_spin_lock' in map value. 3050 * return >= 0 offset if found 3051 * and < 0 in case of error 3052 */ 3053 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) 3054 { 3055 const struct btf_member *member; 3056 u32 i, off = -ENOENT; 3057 3058 if (!__btf_type_is_struct(t)) 3059 return -EINVAL; 3060 3061 for_each_member(i, t, member) { 3062 const struct btf_type *member_type = btf_type_by_id(btf, 3063 member->type); 3064 if (!__btf_type_is_struct(member_type)) 3065 continue; 3066 if (member_type->size != sizeof(struct bpf_spin_lock)) 3067 continue; 3068 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), 3069 "bpf_spin_lock")) 3070 continue; 3071 if (off != -ENOENT) 3072 /* only one 'struct bpf_spin_lock' is allowed */ 3073 return -E2BIG; 3074 off = btf_member_bit_offset(t, member); 3075 if (off % 8) 3076 /* valid C code cannot generate such BTF */ 3077 return -EINVAL; 3078 off /= 8; 3079 if (off % __alignof__(struct bpf_spin_lock)) 3080 /* valid struct bpf_spin_lock will be 4 byte aligned */ 3081 return -EINVAL; 3082 } 3083 return off; 3084 } 3085 3086 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3087 u32 type_id, void *data, u8 bits_offset, 3088 struct btf_show *show) 3089 { 3090 const struct btf_member *member; 3091 void *safe_data; 3092 u32 i; 3093 3094 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3095 if (!safe_data) 3096 return; 3097 3098 for_each_member(i, t, member) { 3099 const struct btf_type *member_type = btf_type_by_id(btf, 3100 member->type); 3101 const struct btf_kind_operations *ops; 3102 u32 member_offset, bitfield_size; 3103 u32 bytes_offset; 3104 u8 bits8_offset; 3105 3106 btf_show_start_member(show, member); 3107 3108 member_offset = btf_member_bit_offset(t, member); 3109 bitfield_size = btf_member_bitfield_size(t, member); 3110 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3111 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3112 if (bitfield_size) { 3113 safe_data = btf_show_start_type(show, member_type, 3114 member->type, 3115 data + bytes_offset); 3116 if (safe_data) 3117 btf_bitfield_show(safe_data, 3118 bits8_offset, 3119 bitfield_size, show); 3120 btf_show_end_type(show); 3121 } else { 3122 ops = btf_type_ops(member_type); 3123 ops->show(btf, member_type, member->type, 3124 data + bytes_offset, bits8_offset, show); 3125 } 3126 3127 btf_show_end_member(show); 3128 } 3129 3130 btf_show_end_struct_type(show); 3131 } 3132 3133 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3134 u32 type_id, void *data, u8 bits_offset, 3135 struct btf_show *show) 3136 { 3137 const struct btf_member *m = show->state.member; 3138 3139 /* 3140 * First check if any members would be shown (are non-zero). 3141 * See comments above "struct btf_show" definition for more 3142 * details on how this works at a high-level. 3143 */ 3144 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3145 if (!show->state.depth_check) { 3146 show->state.depth_check = show->state.depth + 1; 3147 show->state.depth_to_show = 0; 3148 } 3149 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3150 /* Restore saved member data here */ 3151 show->state.member = m; 3152 if (show->state.depth_check != show->state.depth + 1) 3153 return; 3154 show->state.depth_check = 0; 3155 3156 if (show->state.depth_to_show <= show->state.depth) 3157 return; 3158 /* 3159 * Reaching here indicates we have recursed and found 3160 * non-zero child values. 3161 */ 3162 } 3163 3164 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3165 } 3166 3167 static struct btf_kind_operations struct_ops = { 3168 .check_meta = btf_struct_check_meta, 3169 .resolve = btf_struct_resolve, 3170 .check_member = btf_struct_check_member, 3171 .check_kflag_member = btf_generic_check_kflag_member, 3172 .log_details = btf_struct_log, 3173 .show = btf_struct_show, 3174 }; 3175 3176 static int btf_enum_check_member(struct btf_verifier_env *env, 3177 const struct btf_type *struct_type, 3178 const struct btf_member *member, 3179 const struct btf_type *member_type) 3180 { 3181 u32 struct_bits_off = member->offset; 3182 u32 struct_size, bytes_offset; 3183 3184 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3185 btf_verifier_log_member(env, struct_type, member, 3186 "Member is not byte aligned"); 3187 return -EINVAL; 3188 } 3189 3190 struct_size = struct_type->size; 3191 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3192 if (struct_size - bytes_offset < member_type->size) { 3193 btf_verifier_log_member(env, struct_type, member, 3194 "Member exceeds struct_size"); 3195 return -EINVAL; 3196 } 3197 3198 return 0; 3199 } 3200 3201 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 3202 const struct btf_type *struct_type, 3203 const struct btf_member *member, 3204 const struct btf_type *member_type) 3205 { 3206 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 3207 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 3208 3209 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 3210 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 3211 if (!nr_bits) { 3212 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3213 btf_verifier_log_member(env, struct_type, member, 3214 "Member is not byte aligned"); 3215 return -EINVAL; 3216 } 3217 3218 nr_bits = int_bitsize; 3219 } else if (nr_bits > int_bitsize) { 3220 btf_verifier_log_member(env, struct_type, member, 3221 "Invalid member bitfield_size"); 3222 return -EINVAL; 3223 } 3224 3225 struct_size = struct_type->size; 3226 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 3227 if (struct_size < bytes_end) { 3228 btf_verifier_log_member(env, struct_type, member, 3229 "Member exceeds struct_size"); 3230 return -EINVAL; 3231 } 3232 3233 return 0; 3234 } 3235 3236 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 3237 const struct btf_type *t, 3238 u32 meta_left) 3239 { 3240 const struct btf_enum *enums = btf_type_enum(t); 3241 struct btf *btf = env->btf; 3242 u16 i, nr_enums; 3243 u32 meta_needed; 3244 3245 nr_enums = btf_type_vlen(t); 3246 meta_needed = nr_enums * sizeof(*enums); 3247 3248 if (meta_left < meta_needed) { 3249 btf_verifier_log_basic(env, t, 3250 "meta_left:%u meta_needed:%u", 3251 meta_left, meta_needed); 3252 return -EINVAL; 3253 } 3254 3255 if (btf_type_kflag(t)) { 3256 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3257 return -EINVAL; 3258 } 3259 3260 if (t->size > 8 || !is_power_of_2(t->size)) { 3261 btf_verifier_log_type(env, t, "Unexpected size"); 3262 return -EINVAL; 3263 } 3264 3265 /* enum type either no name or a valid one */ 3266 if (t->name_off && 3267 !btf_name_valid_identifier(env->btf, t->name_off)) { 3268 btf_verifier_log_type(env, t, "Invalid name"); 3269 return -EINVAL; 3270 } 3271 3272 btf_verifier_log_type(env, t, NULL); 3273 3274 for (i = 0; i < nr_enums; i++) { 3275 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 3276 btf_verifier_log(env, "\tInvalid name_offset:%u", 3277 enums[i].name_off); 3278 return -EINVAL; 3279 } 3280 3281 /* enum member must have a valid name */ 3282 if (!enums[i].name_off || 3283 !btf_name_valid_identifier(btf, enums[i].name_off)) { 3284 btf_verifier_log_type(env, t, "Invalid name"); 3285 return -EINVAL; 3286 } 3287 3288 if (env->log.level == BPF_LOG_KERNEL) 3289 continue; 3290 btf_verifier_log(env, "\t%s val=%d\n", 3291 __btf_name_by_offset(btf, enums[i].name_off), 3292 enums[i].val); 3293 } 3294 3295 return meta_needed; 3296 } 3297 3298 static void btf_enum_log(struct btf_verifier_env *env, 3299 const struct btf_type *t) 3300 { 3301 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3302 } 3303 3304 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 3305 u32 type_id, void *data, u8 bits_offset, 3306 struct btf_show *show) 3307 { 3308 const struct btf_enum *enums = btf_type_enum(t); 3309 u32 i, nr_enums = btf_type_vlen(t); 3310 void *safe_data; 3311 int v; 3312 3313 safe_data = btf_show_start_type(show, t, type_id, data); 3314 if (!safe_data) 3315 return; 3316 3317 v = *(int *)safe_data; 3318 3319 for (i = 0; i < nr_enums; i++) { 3320 if (v != enums[i].val) 3321 continue; 3322 3323 btf_show_type_value(show, "%s", 3324 __btf_name_by_offset(btf, 3325 enums[i].name_off)); 3326 3327 btf_show_end_type(show); 3328 return; 3329 } 3330 3331 btf_show_type_value(show, "%d", v); 3332 btf_show_end_type(show); 3333 } 3334 3335 static struct btf_kind_operations enum_ops = { 3336 .check_meta = btf_enum_check_meta, 3337 .resolve = btf_df_resolve, 3338 .check_member = btf_enum_check_member, 3339 .check_kflag_member = btf_enum_check_kflag_member, 3340 .log_details = btf_enum_log, 3341 .show = btf_enum_show, 3342 }; 3343 3344 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 3345 const struct btf_type *t, 3346 u32 meta_left) 3347 { 3348 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 3349 3350 if (meta_left < meta_needed) { 3351 btf_verifier_log_basic(env, t, 3352 "meta_left:%u meta_needed:%u", 3353 meta_left, meta_needed); 3354 return -EINVAL; 3355 } 3356 3357 if (t->name_off) { 3358 btf_verifier_log_type(env, t, "Invalid name"); 3359 return -EINVAL; 3360 } 3361 3362 if (btf_type_kflag(t)) { 3363 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3364 return -EINVAL; 3365 } 3366 3367 btf_verifier_log_type(env, t, NULL); 3368 3369 return meta_needed; 3370 } 3371 3372 static void btf_func_proto_log(struct btf_verifier_env *env, 3373 const struct btf_type *t) 3374 { 3375 const struct btf_param *args = (const struct btf_param *)(t + 1); 3376 u16 nr_args = btf_type_vlen(t), i; 3377 3378 btf_verifier_log(env, "return=%u args=(", t->type); 3379 if (!nr_args) { 3380 btf_verifier_log(env, "void"); 3381 goto done; 3382 } 3383 3384 if (nr_args == 1 && !args[0].type) { 3385 /* Only one vararg */ 3386 btf_verifier_log(env, "vararg"); 3387 goto done; 3388 } 3389 3390 btf_verifier_log(env, "%u %s", args[0].type, 3391 __btf_name_by_offset(env->btf, 3392 args[0].name_off)); 3393 for (i = 1; i < nr_args - 1; i++) 3394 btf_verifier_log(env, ", %u %s", args[i].type, 3395 __btf_name_by_offset(env->btf, 3396 args[i].name_off)); 3397 3398 if (nr_args > 1) { 3399 const struct btf_param *last_arg = &args[nr_args - 1]; 3400 3401 if (last_arg->type) 3402 btf_verifier_log(env, ", %u %s", last_arg->type, 3403 __btf_name_by_offset(env->btf, 3404 last_arg->name_off)); 3405 else 3406 btf_verifier_log(env, ", vararg"); 3407 } 3408 3409 done: 3410 btf_verifier_log(env, ")"); 3411 } 3412 3413 static struct btf_kind_operations func_proto_ops = { 3414 .check_meta = btf_func_proto_check_meta, 3415 .resolve = btf_df_resolve, 3416 /* 3417 * BTF_KIND_FUNC_PROTO cannot be directly referred by 3418 * a struct's member. 3419 * 3420 * It should be a function pointer instead. 3421 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 3422 * 3423 * Hence, there is no btf_func_check_member(). 3424 */ 3425 .check_member = btf_df_check_member, 3426 .check_kflag_member = btf_df_check_kflag_member, 3427 .log_details = btf_func_proto_log, 3428 .show = btf_df_show, 3429 }; 3430 3431 static s32 btf_func_check_meta(struct btf_verifier_env *env, 3432 const struct btf_type *t, 3433 u32 meta_left) 3434 { 3435 if (!t->name_off || 3436 !btf_name_valid_identifier(env->btf, t->name_off)) { 3437 btf_verifier_log_type(env, t, "Invalid name"); 3438 return -EINVAL; 3439 } 3440 3441 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 3442 btf_verifier_log_type(env, t, "Invalid func linkage"); 3443 return -EINVAL; 3444 } 3445 3446 if (btf_type_kflag(t)) { 3447 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3448 return -EINVAL; 3449 } 3450 3451 btf_verifier_log_type(env, t, NULL); 3452 3453 return 0; 3454 } 3455 3456 static struct btf_kind_operations func_ops = { 3457 .check_meta = btf_func_check_meta, 3458 .resolve = btf_df_resolve, 3459 .check_member = btf_df_check_member, 3460 .check_kflag_member = btf_df_check_kflag_member, 3461 .log_details = btf_ref_type_log, 3462 .show = btf_df_show, 3463 }; 3464 3465 static s32 btf_var_check_meta(struct btf_verifier_env *env, 3466 const struct btf_type *t, 3467 u32 meta_left) 3468 { 3469 const struct btf_var *var; 3470 u32 meta_needed = sizeof(*var); 3471 3472 if (meta_left < meta_needed) { 3473 btf_verifier_log_basic(env, t, 3474 "meta_left:%u meta_needed:%u", 3475 meta_left, meta_needed); 3476 return -EINVAL; 3477 } 3478 3479 if (btf_type_vlen(t)) { 3480 btf_verifier_log_type(env, t, "vlen != 0"); 3481 return -EINVAL; 3482 } 3483 3484 if (btf_type_kflag(t)) { 3485 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3486 return -EINVAL; 3487 } 3488 3489 if (!t->name_off || 3490 !__btf_name_valid(env->btf, t->name_off, true)) { 3491 btf_verifier_log_type(env, t, "Invalid name"); 3492 return -EINVAL; 3493 } 3494 3495 /* A var cannot be in type void */ 3496 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 3497 btf_verifier_log_type(env, t, "Invalid type_id"); 3498 return -EINVAL; 3499 } 3500 3501 var = btf_type_var(t); 3502 if (var->linkage != BTF_VAR_STATIC && 3503 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 3504 btf_verifier_log_type(env, t, "Linkage not supported"); 3505 return -EINVAL; 3506 } 3507 3508 btf_verifier_log_type(env, t, NULL); 3509 3510 return meta_needed; 3511 } 3512 3513 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 3514 { 3515 const struct btf_var *var = btf_type_var(t); 3516 3517 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 3518 } 3519 3520 static const struct btf_kind_operations var_ops = { 3521 .check_meta = btf_var_check_meta, 3522 .resolve = btf_var_resolve, 3523 .check_member = btf_df_check_member, 3524 .check_kflag_member = btf_df_check_kflag_member, 3525 .log_details = btf_var_log, 3526 .show = btf_var_show, 3527 }; 3528 3529 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 3530 const struct btf_type *t, 3531 u32 meta_left) 3532 { 3533 const struct btf_var_secinfo *vsi; 3534 u64 last_vsi_end_off = 0, sum = 0; 3535 u32 i, meta_needed; 3536 3537 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 3538 if (meta_left < meta_needed) { 3539 btf_verifier_log_basic(env, t, 3540 "meta_left:%u meta_needed:%u", 3541 meta_left, meta_needed); 3542 return -EINVAL; 3543 } 3544 3545 if (!t->size) { 3546 btf_verifier_log_type(env, t, "size == 0"); 3547 return -EINVAL; 3548 } 3549 3550 if (btf_type_kflag(t)) { 3551 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3552 return -EINVAL; 3553 } 3554 3555 if (!t->name_off || 3556 !btf_name_valid_section(env->btf, t->name_off)) { 3557 btf_verifier_log_type(env, t, "Invalid name"); 3558 return -EINVAL; 3559 } 3560 3561 btf_verifier_log_type(env, t, NULL); 3562 3563 for_each_vsi(i, t, vsi) { 3564 /* A var cannot be in type void */ 3565 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 3566 btf_verifier_log_vsi(env, t, vsi, 3567 "Invalid type_id"); 3568 return -EINVAL; 3569 } 3570 3571 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 3572 btf_verifier_log_vsi(env, t, vsi, 3573 "Invalid offset"); 3574 return -EINVAL; 3575 } 3576 3577 if (!vsi->size || vsi->size > t->size) { 3578 btf_verifier_log_vsi(env, t, vsi, 3579 "Invalid size"); 3580 return -EINVAL; 3581 } 3582 3583 last_vsi_end_off = vsi->offset + vsi->size; 3584 if (last_vsi_end_off > t->size) { 3585 btf_verifier_log_vsi(env, t, vsi, 3586 "Invalid offset+size"); 3587 return -EINVAL; 3588 } 3589 3590 btf_verifier_log_vsi(env, t, vsi, NULL); 3591 sum += vsi->size; 3592 } 3593 3594 if (t->size < sum) { 3595 btf_verifier_log_type(env, t, "Invalid btf_info size"); 3596 return -EINVAL; 3597 } 3598 3599 return meta_needed; 3600 } 3601 3602 static int btf_datasec_resolve(struct btf_verifier_env *env, 3603 const struct resolve_vertex *v) 3604 { 3605 const struct btf_var_secinfo *vsi; 3606 struct btf *btf = env->btf; 3607 u16 i; 3608 3609 for_each_vsi_from(i, v->next_member, v->t, vsi) { 3610 u32 var_type_id = vsi->type, type_id, type_size = 0; 3611 const struct btf_type *var_type = btf_type_by_id(env->btf, 3612 var_type_id); 3613 if (!var_type || !btf_type_is_var(var_type)) { 3614 btf_verifier_log_vsi(env, v->t, vsi, 3615 "Not a VAR kind member"); 3616 return -EINVAL; 3617 } 3618 3619 if (!env_type_is_resolve_sink(env, var_type) && 3620 !env_type_is_resolved(env, var_type_id)) { 3621 env_stack_set_next_member(env, i + 1); 3622 return env_stack_push(env, var_type, var_type_id); 3623 } 3624 3625 type_id = var_type->type; 3626 if (!btf_type_id_size(btf, &type_id, &type_size)) { 3627 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 3628 return -EINVAL; 3629 } 3630 3631 if (vsi->size < type_size) { 3632 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 3633 return -EINVAL; 3634 } 3635 } 3636 3637 env_stack_pop_resolved(env, 0, 0); 3638 return 0; 3639 } 3640 3641 static void btf_datasec_log(struct btf_verifier_env *env, 3642 const struct btf_type *t) 3643 { 3644 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3645 } 3646 3647 static void btf_datasec_show(const struct btf *btf, 3648 const struct btf_type *t, u32 type_id, 3649 void *data, u8 bits_offset, 3650 struct btf_show *show) 3651 { 3652 const struct btf_var_secinfo *vsi; 3653 const struct btf_type *var; 3654 u32 i; 3655 3656 if (!btf_show_start_type(show, t, type_id, data)) 3657 return; 3658 3659 btf_show_type_value(show, "section (\"%s\") = {", 3660 __btf_name_by_offset(btf, t->name_off)); 3661 for_each_vsi(i, t, vsi) { 3662 var = btf_type_by_id(btf, vsi->type); 3663 if (i) 3664 btf_show(show, ","); 3665 btf_type_ops(var)->show(btf, var, vsi->type, 3666 data + vsi->offset, bits_offset, show); 3667 } 3668 btf_show_end_type(show); 3669 } 3670 3671 static const struct btf_kind_operations datasec_ops = { 3672 .check_meta = btf_datasec_check_meta, 3673 .resolve = btf_datasec_resolve, 3674 .check_member = btf_df_check_member, 3675 .check_kflag_member = btf_df_check_kflag_member, 3676 .log_details = btf_datasec_log, 3677 .show = btf_datasec_show, 3678 }; 3679 3680 static s32 btf_float_check_meta(struct btf_verifier_env *env, 3681 const struct btf_type *t, 3682 u32 meta_left) 3683 { 3684 if (btf_type_vlen(t)) { 3685 btf_verifier_log_type(env, t, "vlen != 0"); 3686 return -EINVAL; 3687 } 3688 3689 if (btf_type_kflag(t)) { 3690 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3691 return -EINVAL; 3692 } 3693 3694 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 3695 t->size != 16) { 3696 btf_verifier_log_type(env, t, "Invalid type_size"); 3697 return -EINVAL; 3698 } 3699 3700 btf_verifier_log_type(env, t, NULL); 3701 3702 return 0; 3703 } 3704 3705 static int btf_float_check_member(struct btf_verifier_env *env, 3706 const struct btf_type *struct_type, 3707 const struct btf_member *member, 3708 const struct btf_type *member_type) 3709 { 3710 u64 start_offset_bytes; 3711 u64 end_offset_bytes; 3712 u64 misalign_bits; 3713 u64 align_bytes; 3714 u64 align_bits; 3715 3716 /* Different architectures have different alignment requirements, so 3717 * here we check only for the reasonable minimum. This way we ensure 3718 * that types after CO-RE can pass the kernel BTF verifier. 3719 */ 3720 align_bytes = min_t(u64, sizeof(void *), member_type->size); 3721 align_bits = align_bytes * BITS_PER_BYTE; 3722 div64_u64_rem(member->offset, align_bits, &misalign_bits); 3723 if (misalign_bits) { 3724 btf_verifier_log_member(env, struct_type, member, 3725 "Member is not properly aligned"); 3726 return -EINVAL; 3727 } 3728 3729 start_offset_bytes = member->offset / BITS_PER_BYTE; 3730 end_offset_bytes = start_offset_bytes + member_type->size; 3731 if (end_offset_bytes > struct_type->size) { 3732 btf_verifier_log_member(env, struct_type, member, 3733 "Member exceeds struct_size"); 3734 return -EINVAL; 3735 } 3736 3737 return 0; 3738 } 3739 3740 static void btf_float_log(struct btf_verifier_env *env, 3741 const struct btf_type *t) 3742 { 3743 btf_verifier_log(env, "size=%u", t->size); 3744 } 3745 3746 static const struct btf_kind_operations float_ops = { 3747 .check_meta = btf_float_check_meta, 3748 .resolve = btf_df_resolve, 3749 .check_member = btf_float_check_member, 3750 .check_kflag_member = btf_generic_check_kflag_member, 3751 .log_details = btf_float_log, 3752 .show = btf_df_show, 3753 }; 3754 3755 static int btf_func_proto_check(struct btf_verifier_env *env, 3756 const struct btf_type *t) 3757 { 3758 const struct btf_type *ret_type; 3759 const struct btf_param *args; 3760 const struct btf *btf; 3761 u16 nr_args, i; 3762 int err; 3763 3764 btf = env->btf; 3765 args = (const struct btf_param *)(t + 1); 3766 nr_args = btf_type_vlen(t); 3767 3768 /* Check func return type which could be "void" (t->type == 0) */ 3769 if (t->type) { 3770 u32 ret_type_id = t->type; 3771 3772 ret_type = btf_type_by_id(btf, ret_type_id); 3773 if (!ret_type) { 3774 btf_verifier_log_type(env, t, "Invalid return type"); 3775 return -EINVAL; 3776 } 3777 3778 if (btf_type_needs_resolve(ret_type) && 3779 !env_type_is_resolved(env, ret_type_id)) { 3780 err = btf_resolve(env, ret_type, ret_type_id); 3781 if (err) 3782 return err; 3783 } 3784 3785 /* Ensure the return type is a type that has a size */ 3786 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 3787 btf_verifier_log_type(env, t, "Invalid return type"); 3788 return -EINVAL; 3789 } 3790 } 3791 3792 if (!nr_args) 3793 return 0; 3794 3795 /* Last func arg type_id could be 0 if it is a vararg */ 3796 if (!args[nr_args - 1].type) { 3797 if (args[nr_args - 1].name_off) { 3798 btf_verifier_log_type(env, t, "Invalid arg#%u", 3799 nr_args); 3800 return -EINVAL; 3801 } 3802 nr_args--; 3803 } 3804 3805 err = 0; 3806 for (i = 0; i < nr_args; i++) { 3807 const struct btf_type *arg_type; 3808 u32 arg_type_id; 3809 3810 arg_type_id = args[i].type; 3811 arg_type = btf_type_by_id(btf, arg_type_id); 3812 if (!arg_type) { 3813 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3814 err = -EINVAL; 3815 break; 3816 } 3817 3818 if (args[i].name_off && 3819 (!btf_name_offset_valid(btf, args[i].name_off) || 3820 !btf_name_valid_identifier(btf, args[i].name_off))) { 3821 btf_verifier_log_type(env, t, 3822 "Invalid arg#%u", i + 1); 3823 err = -EINVAL; 3824 break; 3825 } 3826 3827 if (btf_type_needs_resolve(arg_type) && 3828 !env_type_is_resolved(env, arg_type_id)) { 3829 err = btf_resolve(env, arg_type, arg_type_id); 3830 if (err) 3831 break; 3832 } 3833 3834 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 3835 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3836 err = -EINVAL; 3837 break; 3838 } 3839 } 3840 3841 return err; 3842 } 3843 3844 static int btf_func_check(struct btf_verifier_env *env, 3845 const struct btf_type *t) 3846 { 3847 const struct btf_type *proto_type; 3848 const struct btf_param *args; 3849 const struct btf *btf; 3850 u16 nr_args, i; 3851 3852 btf = env->btf; 3853 proto_type = btf_type_by_id(btf, t->type); 3854 3855 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 3856 btf_verifier_log_type(env, t, "Invalid type_id"); 3857 return -EINVAL; 3858 } 3859 3860 args = (const struct btf_param *)(proto_type + 1); 3861 nr_args = btf_type_vlen(proto_type); 3862 for (i = 0; i < nr_args; i++) { 3863 if (!args[i].name_off && args[i].type) { 3864 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3865 return -EINVAL; 3866 } 3867 } 3868 3869 return 0; 3870 } 3871 3872 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 3873 [BTF_KIND_INT] = &int_ops, 3874 [BTF_KIND_PTR] = &ptr_ops, 3875 [BTF_KIND_ARRAY] = &array_ops, 3876 [BTF_KIND_STRUCT] = &struct_ops, 3877 [BTF_KIND_UNION] = &struct_ops, 3878 [BTF_KIND_ENUM] = &enum_ops, 3879 [BTF_KIND_FWD] = &fwd_ops, 3880 [BTF_KIND_TYPEDEF] = &modifier_ops, 3881 [BTF_KIND_VOLATILE] = &modifier_ops, 3882 [BTF_KIND_CONST] = &modifier_ops, 3883 [BTF_KIND_RESTRICT] = &modifier_ops, 3884 [BTF_KIND_FUNC] = &func_ops, 3885 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 3886 [BTF_KIND_VAR] = &var_ops, 3887 [BTF_KIND_DATASEC] = &datasec_ops, 3888 [BTF_KIND_FLOAT] = &float_ops, 3889 }; 3890 3891 static s32 btf_check_meta(struct btf_verifier_env *env, 3892 const struct btf_type *t, 3893 u32 meta_left) 3894 { 3895 u32 saved_meta_left = meta_left; 3896 s32 var_meta_size; 3897 3898 if (meta_left < sizeof(*t)) { 3899 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 3900 env->log_type_id, meta_left, sizeof(*t)); 3901 return -EINVAL; 3902 } 3903 meta_left -= sizeof(*t); 3904 3905 if (t->info & ~BTF_INFO_MASK) { 3906 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 3907 env->log_type_id, t->info); 3908 return -EINVAL; 3909 } 3910 3911 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 3912 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 3913 btf_verifier_log(env, "[%u] Invalid kind:%u", 3914 env->log_type_id, BTF_INFO_KIND(t->info)); 3915 return -EINVAL; 3916 } 3917 3918 if (!btf_name_offset_valid(env->btf, t->name_off)) { 3919 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 3920 env->log_type_id, t->name_off); 3921 return -EINVAL; 3922 } 3923 3924 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 3925 if (var_meta_size < 0) 3926 return var_meta_size; 3927 3928 meta_left -= var_meta_size; 3929 3930 return saved_meta_left - meta_left; 3931 } 3932 3933 static int btf_check_all_metas(struct btf_verifier_env *env) 3934 { 3935 struct btf *btf = env->btf; 3936 struct btf_header *hdr; 3937 void *cur, *end; 3938 3939 hdr = &btf->hdr; 3940 cur = btf->nohdr_data + hdr->type_off; 3941 end = cur + hdr->type_len; 3942 3943 env->log_type_id = btf->base_btf ? btf->start_id : 1; 3944 while (cur < end) { 3945 struct btf_type *t = cur; 3946 s32 meta_size; 3947 3948 meta_size = btf_check_meta(env, t, end - cur); 3949 if (meta_size < 0) 3950 return meta_size; 3951 3952 btf_add_type(env, t); 3953 cur += meta_size; 3954 env->log_type_id++; 3955 } 3956 3957 return 0; 3958 } 3959 3960 static bool btf_resolve_valid(struct btf_verifier_env *env, 3961 const struct btf_type *t, 3962 u32 type_id) 3963 { 3964 struct btf *btf = env->btf; 3965 3966 if (!env_type_is_resolved(env, type_id)) 3967 return false; 3968 3969 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 3970 return !btf_resolved_type_id(btf, type_id) && 3971 !btf_resolved_type_size(btf, type_id); 3972 3973 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 3974 btf_type_is_var(t)) { 3975 t = btf_type_id_resolve(btf, &type_id); 3976 return t && 3977 !btf_type_is_modifier(t) && 3978 !btf_type_is_var(t) && 3979 !btf_type_is_datasec(t); 3980 } 3981 3982 if (btf_type_is_array(t)) { 3983 const struct btf_array *array = btf_type_array(t); 3984 const struct btf_type *elem_type; 3985 u32 elem_type_id = array->type; 3986 u32 elem_size; 3987 3988 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 3989 return elem_type && !btf_type_is_modifier(elem_type) && 3990 (array->nelems * elem_size == 3991 btf_resolved_type_size(btf, type_id)); 3992 } 3993 3994 return false; 3995 } 3996 3997 static int btf_resolve(struct btf_verifier_env *env, 3998 const struct btf_type *t, u32 type_id) 3999 { 4000 u32 save_log_type_id = env->log_type_id; 4001 const struct resolve_vertex *v; 4002 int err = 0; 4003 4004 env->resolve_mode = RESOLVE_TBD; 4005 env_stack_push(env, t, type_id); 4006 while (!err && (v = env_stack_peak(env))) { 4007 env->log_type_id = v->type_id; 4008 err = btf_type_ops(v->t)->resolve(env, v); 4009 } 4010 4011 env->log_type_id = type_id; 4012 if (err == -E2BIG) { 4013 btf_verifier_log_type(env, t, 4014 "Exceeded max resolving depth:%u", 4015 MAX_RESOLVE_DEPTH); 4016 } else if (err == -EEXIST) { 4017 btf_verifier_log_type(env, t, "Loop detected"); 4018 } 4019 4020 /* Final sanity check */ 4021 if (!err && !btf_resolve_valid(env, t, type_id)) { 4022 btf_verifier_log_type(env, t, "Invalid resolve state"); 4023 err = -EINVAL; 4024 } 4025 4026 env->log_type_id = save_log_type_id; 4027 return err; 4028 } 4029 4030 static int btf_check_all_types(struct btf_verifier_env *env) 4031 { 4032 struct btf *btf = env->btf; 4033 const struct btf_type *t; 4034 u32 type_id, i; 4035 int err; 4036 4037 err = env_resolve_init(env); 4038 if (err) 4039 return err; 4040 4041 env->phase++; 4042 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 4043 type_id = btf->start_id + i; 4044 t = btf_type_by_id(btf, type_id); 4045 4046 env->log_type_id = type_id; 4047 if (btf_type_needs_resolve(t) && 4048 !env_type_is_resolved(env, type_id)) { 4049 err = btf_resolve(env, t, type_id); 4050 if (err) 4051 return err; 4052 } 4053 4054 if (btf_type_is_func_proto(t)) { 4055 err = btf_func_proto_check(env, t); 4056 if (err) 4057 return err; 4058 } 4059 4060 if (btf_type_is_func(t)) { 4061 err = btf_func_check(env, t); 4062 if (err) 4063 return err; 4064 } 4065 } 4066 4067 return 0; 4068 } 4069 4070 static int btf_parse_type_sec(struct btf_verifier_env *env) 4071 { 4072 const struct btf_header *hdr = &env->btf->hdr; 4073 int err; 4074 4075 /* Type section must align to 4 bytes */ 4076 if (hdr->type_off & (sizeof(u32) - 1)) { 4077 btf_verifier_log(env, "Unaligned type_off"); 4078 return -EINVAL; 4079 } 4080 4081 if (!env->btf->base_btf && !hdr->type_len) { 4082 btf_verifier_log(env, "No type found"); 4083 return -EINVAL; 4084 } 4085 4086 err = btf_check_all_metas(env); 4087 if (err) 4088 return err; 4089 4090 return btf_check_all_types(env); 4091 } 4092 4093 static int btf_parse_str_sec(struct btf_verifier_env *env) 4094 { 4095 const struct btf_header *hdr; 4096 struct btf *btf = env->btf; 4097 const char *start, *end; 4098 4099 hdr = &btf->hdr; 4100 start = btf->nohdr_data + hdr->str_off; 4101 end = start + hdr->str_len; 4102 4103 if (end != btf->data + btf->data_size) { 4104 btf_verifier_log(env, "String section is not at the end"); 4105 return -EINVAL; 4106 } 4107 4108 btf->strings = start; 4109 4110 if (btf->base_btf && !hdr->str_len) 4111 return 0; 4112 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 4113 btf_verifier_log(env, "Invalid string section"); 4114 return -EINVAL; 4115 } 4116 if (!btf->base_btf && start[0]) { 4117 btf_verifier_log(env, "Invalid string section"); 4118 return -EINVAL; 4119 } 4120 4121 return 0; 4122 } 4123 4124 static const size_t btf_sec_info_offset[] = { 4125 offsetof(struct btf_header, type_off), 4126 offsetof(struct btf_header, str_off), 4127 }; 4128 4129 static int btf_sec_info_cmp(const void *a, const void *b) 4130 { 4131 const struct btf_sec_info *x = a; 4132 const struct btf_sec_info *y = b; 4133 4134 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 4135 } 4136 4137 static int btf_check_sec_info(struct btf_verifier_env *env, 4138 u32 btf_data_size) 4139 { 4140 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 4141 u32 total, expected_total, i; 4142 const struct btf_header *hdr; 4143 const struct btf *btf; 4144 4145 btf = env->btf; 4146 hdr = &btf->hdr; 4147 4148 /* Populate the secs from hdr */ 4149 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 4150 secs[i] = *(struct btf_sec_info *)((void *)hdr + 4151 btf_sec_info_offset[i]); 4152 4153 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 4154 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 4155 4156 /* Check for gaps and overlap among sections */ 4157 total = 0; 4158 expected_total = btf_data_size - hdr->hdr_len; 4159 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 4160 if (expected_total < secs[i].off) { 4161 btf_verifier_log(env, "Invalid section offset"); 4162 return -EINVAL; 4163 } 4164 if (total < secs[i].off) { 4165 /* gap */ 4166 btf_verifier_log(env, "Unsupported section found"); 4167 return -EINVAL; 4168 } 4169 if (total > secs[i].off) { 4170 btf_verifier_log(env, "Section overlap found"); 4171 return -EINVAL; 4172 } 4173 if (expected_total - total < secs[i].len) { 4174 btf_verifier_log(env, 4175 "Total section length too long"); 4176 return -EINVAL; 4177 } 4178 total += secs[i].len; 4179 } 4180 4181 /* There is data other than hdr and known sections */ 4182 if (expected_total != total) { 4183 btf_verifier_log(env, "Unsupported section found"); 4184 return -EINVAL; 4185 } 4186 4187 return 0; 4188 } 4189 4190 static int btf_parse_hdr(struct btf_verifier_env *env) 4191 { 4192 u32 hdr_len, hdr_copy, btf_data_size; 4193 const struct btf_header *hdr; 4194 struct btf *btf; 4195 int err; 4196 4197 btf = env->btf; 4198 btf_data_size = btf->data_size; 4199 4200 if (btf_data_size < 4201 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { 4202 btf_verifier_log(env, "hdr_len not found"); 4203 return -EINVAL; 4204 } 4205 4206 hdr = btf->data; 4207 hdr_len = hdr->hdr_len; 4208 if (btf_data_size < hdr_len) { 4209 btf_verifier_log(env, "btf_header not found"); 4210 return -EINVAL; 4211 } 4212 4213 /* Ensure the unsupported header fields are zero */ 4214 if (hdr_len > sizeof(btf->hdr)) { 4215 u8 *expected_zero = btf->data + sizeof(btf->hdr); 4216 u8 *end = btf->data + hdr_len; 4217 4218 for (; expected_zero < end; expected_zero++) { 4219 if (*expected_zero) { 4220 btf_verifier_log(env, "Unsupported btf_header"); 4221 return -E2BIG; 4222 } 4223 } 4224 } 4225 4226 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 4227 memcpy(&btf->hdr, btf->data, hdr_copy); 4228 4229 hdr = &btf->hdr; 4230 4231 btf_verifier_log_hdr(env, btf_data_size); 4232 4233 if (hdr->magic != BTF_MAGIC) { 4234 btf_verifier_log(env, "Invalid magic"); 4235 return -EINVAL; 4236 } 4237 4238 if (hdr->version != BTF_VERSION) { 4239 btf_verifier_log(env, "Unsupported version"); 4240 return -ENOTSUPP; 4241 } 4242 4243 if (hdr->flags) { 4244 btf_verifier_log(env, "Unsupported flags"); 4245 return -ENOTSUPP; 4246 } 4247 4248 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 4249 btf_verifier_log(env, "No data"); 4250 return -EINVAL; 4251 } 4252 4253 err = btf_check_sec_info(env, btf_data_size); 4254 if (err) 4255 return err; 4256 4257 return 0; 4258 } 4259 4260 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size, 4261 u32 log_level, char __user *log_ubuf, u32 log_size) 4262 { 4263 struct btf_verifier_env *env = NULL; 4264 struct bpf_verifier_log *log; 4265 struct btf *btf = NULL; 4266 u8 *data; 4267 int err; 4268 4269 if (btf_data_size > BTF_MAX_SIZE) 4270 return ERR_PTR(-E2BIG); 4271 4272 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4273 if (!env) 4274 return ERR_PTR(-ENOMEM); 4275 4276 log = &env->log; 4277 if (log_level || log_ubuf || log_size) { 4278 /* user requested verbose verifier output 4279 * and supplied buffer to store the verification trace 4280 */ 4281 log->level = log_level; 4282 log->ubuf = log_ubuf; 4283 log->len_total = log_size; 4284 4285 /* log attributes have to be sane */ 4286 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 4287 !log->level || !log->ubuf) { 4288 err = -EINVAL; 4289 goto errout; 4290 } 4291 } 4292 4293 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4294 if (!btf) { 4295 err = -ENOMEM; 4296 goto errout; 4297 } 4298 env->btf = btf; 4299 4300 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 4301 if (!data) { 4302 err = -ENOMEM; 4303 goto errout; 4304 } 4305 4306 btf->data = data; 4307 btf->data_size = btf_data_size; 4308 4309 if (copy_from_bpfptr(data, btf_data, btf_data_size)) { 4310 err = -EFAULT; 4311 goto errout; 4312 } 4313 4314 err = btf_parse_hdr(env); 4315 if (err) 4316 goto errout; 4317 4318 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4319 4320 err = btf_parse_str_sec(env); 4321 if (err) 4322 goto errout; 4323 4324 err = btf_parse_type_sec(env); 4325 if (err) 4326 goto errout; 4327 4328 if (log->level && bpf_verifier_log_full(log)) { 4329 err = -ENOSPC; 4330 goto errout; 4331 } 4332 4333 btf_verifier_env_free(env); 4334 refcount_set(&btf->refcnt, 1); 4335 return btf; 4336 4337 errout: 4338 btf_verifier_env_free(env); 4339 if (btf) 4340 btf_free(btf); 4341 return ERR_PTR(err); 4342 } 4343 4344 extern char __weak __start_BTF[]; 4345 extern char __weak __stop_BTF[]; 4346 extern struct btf *btf_vmlinux; 4347 4348 #define BPF_MAP_TYPE(_id, _ops) 4349 #define BPF_LINK_TYPE(_id, _name) 4350 static union { 4351 struct bpf_ctx_convert { 4352 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4353 prog_ctx_type _id##_prog; \ 4354 kern_ctx_type _id##_kern; 4355 #include <linux/bpf_types.h> 4356 #undef BPF_PROG_TYPE 4357 } *__t; 4358 /* 't' is written once under lock. Read many times. */ 4359 const struct btf_type *t; 4360 } bpf_ctx_convert; 4361 enum { 4362 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4363 __ctx_convert##_id, 4364 #include <linux/bpf_types.h> 4365 #undef BPF_PROG_TYPE 4366 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 4367 }; 4368 static u8 bpf_ctx_convert_map[] = { 4369 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4370 [_id] = __ctx_convert##_id, 4371 #include <linux/bpf_types.h> 4372 #undef BPF_PROG_TYPE 4373 0, /* avoid empty array */ 4374 }; 4375 #undef BPF_MAP_TYPE 4376 #undef BPF_LINK_TYPE 4377 4378 static const struct btf_member * 4379 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 4380 const struct btf_type *t, enum bpf_prog_type prog_type, 4381 int arg) 4382 { 4383 const struct btf_type *conv_struct; 4384 const struct btf_type *ctx_struct; 4385 const struct btf_member *ctx_type; 4386 const char *tname, *ctx_tname; 4387 4388 conv_struct = bpf_ctx_convert.t; 4389 if (!conv_struct) { 4390 bpf_log(log, "btf_vmlinux is malformed\n"); 4391 return NULL; 4392 } 4393 t = btf_type_by_id(btf, t->type); 4394 while (btf_type_is_modifier(t)) 4395 t = btf_type_by_id(btf, t->type); 4396 if (!btf_type_is_struct(t)) { 4397 /* Only pointer to struct is supported for now. 4398 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 4399 * is not supported yet. 4400 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 4401 */ 4402 return NULL; 4403 } 4404 tname = btf_name_by_offset(btf, t->name_off); 4405 if (!tname) { 4406 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 4407 return NULL; 4408 } 4409 /* prog_type is valid bpf program type. No need for bounds check. */ 4410 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 4411 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 4412 * Like 'struct __sk_buff' 4413 */ 4414 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 4415 if (!ctx_struct) 4416 /* should not happen */ 4417 return NULL; 4418 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 4419 if (!ctx_tname) { 4420 /* should not happen */ 4421 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 4422 return NULL; 4423 } 4424 /* only compare that prog's ctx type name is the same as 4425 * kernel expects. No need to compare field by field. 4426 * It's ok for bpf prog to do: 4427 * struct __sk_buff {}; 4428 * int socket_filter_bpf_prog(struct __sk_buff *skb) 4429 * { // no fields of skb are ever used } 4430 */ 4431 if (strcmp(ctx_tname, tname)) 4432 return NULL; 4433 return ctx_type; 4434 } 4435 4436 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = { 4437 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) 4438 #define BPF_LINK_TYPE(_id, _name) 4439 #define BPF_MAP_TYPE(_id, _ops) \ 4440 [_id] = &_ops, 4441 #include <linux/bpf_types.h> 4442 #undef BPF_PROG_TYPE 4443 #undef BPF_LINK_TYPE 4444 #undef BPF_MAP_TYPE 4445 }; 4446 4447 static int btf_vmlinux_map_ids_init(const struct btf *btf, 4448 struct bpf_verifier_log *log) 4449 { 4450 const struct bpf_map_ops *ops; 4451 int i, btf_id; 4452 4453 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) { 4454 ops = btf_vmlinux_map_ops[i]; 4455 if (!ops || (!ops->map_btf_name && !ops->map_btf_id)) 4456 continue; 4457 if (!ops->map_btf_name || !ops->map_btf_id) { 4458 bpf_log(log, "map type %d is misconfigured\n", i); 4459 return -EINVAL; 4460 } 4461 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name, 4462 BTF_KIND_STRUCT); 4463 if (btf_id < 0) 4464 return btf_id; 4465 *ops->map_btf_id = btf_id; 4466 } 4467 4468 return 0; 4469 } 4470 4471 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 4472 struct btf *btf, 4473 const struct btf_type *t, 4474 enum bpf_prog_type prog_type, 4475 int arg) 4476 { 4477 const struct btf_member *prog_ctx_type, *kern_ctx_type; 4478 4479 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 4480 if (!prog_ctx_type) 4481 return -ENOENT; 4482 kern_ctx_type = prog_ctx_type + 1; 4483 return kern_ctx_type->type; 4484 } 4485 4486 BTF_ID_LIST(bpf_ctx_convert_btf_id) 4487 BTF_ID(struct, bpf_ctx_convert) 4488 4489 struct btf *btf_parse_vmlinux(void) 4490 { 4491 struct btf_verifier_env *env = NULL; 4492 struct bpf_verifier_log *log; 4493 struct btf *btf = NULL; 4494 int err; 4495 4496 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4497 if (!env) 4498 return ERR_PTR(-ENOMEM); 4499 4500 log = &env->log; 4501 log->level = BPF_LOG_KERNEL; 4502 4503 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4504 if (!btf) { 4505 err = -ENOMEM; 4506 goto errout; 4507 } 4508 env->btf = btf; 4509 4510 btf->data = __start_BTF; 4511 btf->data_size = __stop_BTF - __start_BTF; 4512 btf->kernel_btf = true; 4513 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 4514 4515 err = btf_parse_hdr(env); 4516 if (err) 4517 goto errout; 4518 4519 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4520 4521 err = btf_parse_str_sec(env); 4522 if (err) 4523 goto errout; 4524 4525 err = btf_check_all_metas(env); 4526 if (err) 4527 goto errout; 4528 4529 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 4530 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 4531 4532 /* find bpf map structs for map_ptr access checking */ 4533 err = btf_vmlinux_map_ids_init(btf, log); 4534 if (err < 0) 4535 goto errout; 4536 4537 bpf_struct_ops_init(btf, log); 4538 4539 refcount_set(&btf->refcnt, 1); 4540 4541 err = btf_alloc_id(btf); 4542 if (err) 4543 goto errout; 4544 4545 btf_verifier_env_free(env); 4546 return btf; 4547 4548 errout: 4549 btf_verifier_env_free(env); 4550 if (btf) { 4551 kvfree(btf->types); 4552 kfree(btf); 4553 } 4554 return ERR_PTR(err); 4555 } 4556 4557 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 4558 4559 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 4560 { 4561 struct btf_verifier_env *env = NULL; 4562 struct bpf_verifier_log *log; 4563 struct btf *btf = NULL, *base_btf; 4564 int err; 4565 4566 base_btf = bpf_get_btf_vmlinux(); 4567 if (IS_ERR(base_btf)) 4568 return base_btf; 4569 if (!base_btf) 4570 return ERR_PTR(-EINVAL); 4571 4572 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4573 if (!env) 4574 return ERR_PTR(-ENOMEM); 4575 4576 log = &env->log; 4577 log->level = BPF_LOG_KERNEL; 4578 4579 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4580 if (!btf) { 4581 err = -ENOMEM; 4582 goto errout; 4583 } 4584 env->btf = btf; 4585 4586 btf->base_btf = base_btf; 4587 btf->start_id = base_btf->nr_types; 4588 btf->start_str_off = base_btf->hdr.str_len; 4589 btf->kernel_btf = true; 4590 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 4591 4592 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 4593 if (!btf->data) { 4594 err = -ENOMEM; 4595 goto errout; 4596 } 4597 memcpy(btf->data, data, data_size); 4598 btf->data_size = data_size; 4599 4600 err = btf_parse_hdr(env); 4601 if (err) 4602 goto errout; 4603 4604 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4605 4606 err = btf_parse_str_sec(env); 4607 if (err) 4608 goto errout; 4609 4610 err = btf_check_all_metas(env); 4611 if (err) 4612 goto errout; 4613 4614 btf_verifier_env_free(env); 4615 refcount_set(&btf->refcnt, 1); 4616 return btf; 4617 4618 errout: 4619 btf_verifier_env_free(env); 4620 if (btf) { 4621 kvfree(btf->data); 4622 kvfree(btf->types); 4623 kfree(btf); 4624 } 4625 return ERR_PTR(err); 4626 } 4627 4628 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 4629 4630 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 4631 { 4632 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 4633 4634 if (tgt_prog) 4635 return tgt_prog->aux->btf; 4636 else 4637 return prog->aux->attach_btf; 4638 } 4639 4640 static bool is_string_ptr(struct btf *btf, const struct btf_type *t) 4641 { 4642 /* t comes in already as a pointer */ 4643 t = btf_type_by_id(btf, t->type); 4644 4645 /* allow const */ 4646 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) 4647 t = btf_type_by_id(btf, t->type); 4648 4649 /* char, signed char, unsigned char */ 4650 return btf_type_is_int(t) && t->size == 1; 4651 } 4652 4653 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 4654 const struct bpf_prog *prog, 4655 struct bpf_insn_access_aux *info) 4656 { 4657 const struct btf_type *t = prog->aux->attach_func_proto; 4658 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 4659 struct btf *btf = bpf_prog_get_target_btf(prog); 4660 const char *tname = prog->aux->attach_func_name; 4661 struct bpf_verifier_log *log = info->log; 4662 const struct btf_param *args; 4663 u32 nr_args, arg; 4664 int i, ret; 4665 4666 if (off % 8) { 4667 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 4668 tname, off); 4669 return false; 4670 } 4671 arg = off / 8; 4672 args = (const struct btf_param *)(t + 1); 4673 /* if (t == NULL) Fall back to default BPF prog with 4674 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 4675 */ 4676 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 4677 if (prog->aux->attach_btf_trace) { 4678 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 4679 args++; 4680 nr_args--; 4681 } 4682 4683 if (arg > nr_args) { 4684 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 4685 tname, arg + 1); 4686 return false; 4687 } 4688 4689 if (arg == nr_args) { 4690 switch (prog->expected_attach_type) { 4691 case BPF_LSM_MAC: 4692 case BPF_TRACE_FEXIT: 4693 /* When LSM programs are attached to void LSM hooks 4694 * they use FEXIT trampolines and when attached to 4695 * int LSM hooks, they use MODIFY_RETURN trampolines. 4696 * 4697 * While the LSM programs are BPF_MODIFY_RETURN-like 4698 * the check: 4699 * 4700 * if (ret_type != 'int') 4701 * return -EINVAL; 4702 * 4703 * is _not_ done here. This is still safe as LSM hooks 4704 * have only void and int return types. 4705 */ 4706 if (!t) 4707 return true; 4708 t = btf_type_by_id(btf, t->type); 4709 break; 4710 case BPF_MODIFY_RETURN: 4711 /* For now the BPF_MODIFY_RETURN can only be attached to 4712 * functions that return an int. 4713 */ 4714 if (!t) 4715 return false; 4716 4717 t = btf_type_skip_modifiers(btf, t->type, NULL); 4718 if (!btf_type_is_small_int(t)) { 4719 bpf_log(log, 4720 "ret type %s not allowed for fmod_ret\n", 4721 btf_kind_str[BTF_INFO_KIND(t->info)]); 4722 return false; 4723 } 4724 break; 4725 default: 4726 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 4727 tname, arg + 1); 4728 return false; 4729 } 4730 } else { 4731 if (!t) 4732 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 4733 return true; 4734 t = btf_type_by_id(btf, args[arg].type); 4735 } 4736 4737 /* skip modifiers */ 4738 while (btf_type_is_modifier(t)) 4739 t = btf_type_by_id(btf, t->type); 4740 if (btf_type_is_small_int(t) || btf_type_is_enum(t)) 4741 /* accessing a scalar */ 4742 return true; 4743 if (!btf_type_is_ptr(t)) { 4744 bpf_log(log, 4745 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 4746 tname, arg, 4747 __btf_name_by_offset(btf, t->name_off), 4748 btf_kind_str[BTF_INFO_KIND(t->info)]); 4749 return false; 4750 } 4751 4752 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 4753 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 4754 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 4755 4756 if (ctx_arg_info->offset == off && 4757 (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL || 4758 ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) { 4759 info->reg_type = ctx_arg_info->reg_type; 4760 return true; 4761 } 4762 } 4763 4764 if (t->type == 0) 4765 /* This is a pointer to void. 4766 * It is the same as scalar from the verifier safety pov. 4767 * No further pointer walking is allowed. 4768 */ 4769 return true; 4770 4771 if (is_string_ptr(btf, t)) 4772 return true; 4773 4774 /* this is a pointer to another type */ 4775 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 4776 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 4777 4778 if (ctx_arg_info->offset == off) { 4779 info->reg_type = ctx_arg_info->reg_type; 4780 info->btf = btf_vmlinux; 4781 info->btf_id = ctx_arg_info->btf_id; 4782 return true; 4783 } 4784 } 4785 4786 info->reg_type = PTR_TO_BTF_ID; 4787 if (tgt_prog) { 4788 enum bpf_prog_type tgt_type; 4789 4790 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 4791 tgt_type = tgt_prog->aux->saved_dst_prog_type; 4792 else 4793 tgt_type = tgt_prog->type; 4794 4795 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 4796 if (ret > 0) { 4797 info->btf = btf_vmlinux; 4798 info->btf_id = ret; 4799 return true; 4800 } else { 4801 return false; 4802 } 4803 } 4804 4805 info->btf = btf; 4806 info->btf_id = t->type; 4807 t = btf_type_by_id(btf, t->type); 4808 /* skip modifiers */ 4809 while (btf_type_is_modifier(t)) { 4810 info->btf_id = t->type; 4811 t = btf_type_by_id(btf, t->type); 4812 } 4813 if (!btf_type_is_struct(t)) { 4814 bpf_log(log, 4815 "func '%s' arg%d type %s is not a struct\n", 4816 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]); 4817 return false; 4818 } 4819 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 4820 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)], 4821 __btf_name_by_offset(btf, t->name_off)); 4822 return true; 4823 } 4824 4825 enum bpf_struct_walk_result { 4826 /* < 0 error */ 4827 WALK_SCALAR = 0, 4828 WALK_PTR, 4829 WALK_STRUCT, 4830 }; 4831 4832 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 4833 const struct btf_type *t, int off, int size, 4834 u32 *next_btf_id) 4835 { 4836 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 4837 const struct btf_type *mtype, *elem_type = NULL; 4838 const struct btf_member *member; 4839 const char *tname, *mname; 4840 u32 vlen, elem_id, mid; 4841 4842 again: 4843 tname = __btf_name_by_offset(btf, t->name_off); 4844 if (!btf_type_is_struct(t)) { 4845 bpf_log(log, "Type '%s' is not a struct\n", tname); 4846 return -EINVAL; 4847 } 4848 4849 vlen = btf_type_vlen(t); 4850 if (off + size > t->size) { 4851 /* If the last element is a variable size array, we may 4852 * need to relax the rule. 4853 */ 4854 struct btf_array *array_elem; 4855 4856 if (vlen == 0) 4857 goto error; 4858 4859 member = btf_type_member(t) + vlen - 1; 4860 mtype = btf_type_skip_modifiers(btf, member->type, 4861 NULL); 4862 if (!btf_type_is_array(mtype)) 4863 goto error; 4864 4865 array_elem = (struct btf_array *)(mtype + 1); 4866 if (array_elem->nelems != 0) 4867 goto error; 4868 4869 moff = btf_member_bit_offset(t, member) / 8; 4870 if (off < moff) 4871 goto error; 4872 4873 /* Only allow structure for now, can be relaxed for 4874 * other types later. 4875 */ 4876 t = btf_type_skip_modifiers(btf, array_elem->type, 4877 NULL); 4878 if (!btf_type_is_struct(t)) 4879 goto error; 4880 4881 off = (off - moff) % t->size; 4882 goto again; 4883 4884 error: 4885 bpf_log(log, "access beyond struct %s at off %u size %u\n", 4886 tname, off, size); 4887 return -EACCES; 4888 } 4889 4890 for_each_member(i, t, member) { 4891 /* offset of the field in bytes */ 4892 moff = btf_member_bit_offset(t, member) / 8; 4893 if (off + size <= moff) 4894 /* won't find anything, field is already too far */ 4895 break; 4896 4897 if (btf_member_bitfield_size(t, member)) { 4898 u32 end_bit = btf_member_bit_offset(t, member) + 4899 btf_member_bitfield_size(t, member); 4900 4901 /* off <= moff instead of off == moff because clang 4902 * does not generate a BTF member for anonymous 4903 * bitfield like the ":16" here: 4904 * struct { 4905 * int :16; 4906 * int x:8; 4907 * }; 4908 */ 4909 if (off <= moff && 4910 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 4911 return WALK_SCALAR; 4912 4913 /* off may be accessing a following member 4914 * 4915 * or 4916 * 4917 * Doing partial access at either end of this 4918 * bitfield. Continue on this case also to 4919 * treat it as not accessing this bitfield 4920 * and eventually error out as field not 4921 * found to keep it simple. 4922 * It could be relaxed if there was a legit 4923 * partial access case later. 4924 */ 4925 continue; 4926 } 4927 4928 /* In case of "off" is pointing to holes of a struct */ 4929 if (off < moff) 4930 break; 4931 4932 /* type of the field */ 4933 mid = member->type; 4934 mtype = btf_type_by_id(btf, member->type); 4935 mname = __btf_name_by_offset(btf, member->name_off); 4936 4937 mtype = __btf_resolve_size(btf, mtype, &msize, 4938 &elem_type, &elem_id, &total_nelems, 4939 &mid); 4940 if (IS_ERR(mtype)) { 4941 bpf_log(log, "field %s doesn't have size\n", mname); 4942 return -EFAULT; 4943 } 4944 4945 mtrue_end = moff + msize; 4946 if (off >= mtrue_end) 4947 /* no overlap with member, keep iterating */ 4948 continue; 4949 4950 if (btf_type_is_array(mtype)) { 4951 u32 elem_idx; 4952 4953 /* __btf_resolve_size() above helps to 4954 * linearize a multi-dimensional array. 4955 * 4956 * The logic here is treating an array 4957 * in a struct as the following way: 4958 * 4959 * struct outer { 4960 * struct inner array[2][2]; 4961 * }; 4962 * 4963 * looks like: 4964 * 4965 * struct outer { 4966 * struct inner array_elem0; 4967 * struct inner array_elem1; 4968 * struct inner array_elem2; 4969 * struct inner array_elem3; 4970 * }; 4971 * 4972 * When accessing outer->array[1][0], it moves 4973 * moff to "array_elem2", set mtype to 4974 * "struct inner", and msize also becomes 4975 * sizeof(struct inner). Then most of the 4976 * remaining logic will fall through without 4977 * caring the current member is an array or 4978 * not. 4979 * 4980 * Unlike mtype/msize/moff, mtrue_end does not 4981 * change. The naming difference ("_true") tells 4982 * that it is not always corresponding to 4983 * the current mtype/msize/moff. 4984 * It is the true end of the current 4985 * member (i.e. array in this case). That 4986 * will allow an int array to be accessed like 4987 * a scratch space, 4988 * i.e. allow access beyond the size of 4989 * the array's element as long as it is 4990 * within the mtrue_end boundary. 4991 */ 4992 4993 /* skip empty array */ 4994 if (moff == mtrue_end) 4995 continue; 4996 4997 msize /= total_nelems; 4998 elem_idx = (off - moff) / msize; 4999 moff += elem_idx * msize; 5000 mtype = elem_type; 5001 mid = elem_id; 5002 } 5003 5004 /* the 'off' we're looking for is either equal to start 5005 * of this field or inside of this struct 5006 */ 5007 if (btf_type_is_struct(mtype)) { 5008 /* our field must be inside that union or struct */ 5009 t = mtype; 5010 5011 /* return if the offset matches the member offset */ 5012 if (off == moff) { 5013 *next_btf_id = mid; 5014 return WALK_STRUCT; 5015 } 5016 5017 /* adjust offset we're looking for */ 5018 off -= moff; 5019 goto again; 5020 } 5021 5022 if (btf_type_is_ptr(mtype)) { 5023 const struct btf_type *stype; 5024 u32 id; 5025 5026 if (msize != size || off != moff) { 5027 bpf_log(log, 5028 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 5029 mname, moff, tname, off, size); 5030 return -EACCES; 5031 } 5032 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 5033 if (btf_type_is_struct(stype)) { 5034 *next_btf_id = id; 5035 return WALK_PTR; 5036 } 5037 } 5038 5039 /* Allow more flexible access within an int as long as 5040 * it is within mtrue_end. 5041 * Since mtrue_end could be the end of an array, 5042 * that also allows using an array of int as a scratch 5043 * space. e.g. skb->cb[]. 5044 */ 5045 if (off + size > mtrue_end) { 5046 bpf_log(log, 5047 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 5048 mname, mtrue_end, tname, off, size); 5049 return -EACCES; 5050 } 5051 5052 return WALK_SCALAR; 5053 } 5054 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 5055 return -EINVAL; 5056 } 5057 5058 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, 5059 const struct btf_type *t, int off, int size, 5060 enum bpf_access_type atype __maybe_unused, 5061 u32 *next_btf_id) 5062 { 5063 int err; 5064 u32 id; 5065 5066 do { 5067 err = btf_struct_walk(log, btf, t, off, size, &id); 5068 5069 switch (err) { 5070 case WALK_PTR: 5071 /* If we found the pointer or scalar on t+off, 5072 * we're done. 5073 */ 5074 *next_btf_id = id; 5075 return PTR_TO_BTF_ID; 5076 case WALK_SCALAR: 5077 return SCALAR_VALUE; 5078 case WALK_STRUCT: 5079 /* We found nested struct, so continue the search 5080 * by diving in it. At this point the offset is 5081 * aligned with the new type, so set it to 0. 5082 */ 5083 t = btf_type_by_id(btf, id); 5084 off = 0; 5085 break; 5086 default: 5087 /* It's either error or unknown return value.. 5088 * scream and leave. 5089 */ 5090 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 5091 return -EINVAL; 5092 return err; 5093 } 5094 } while (t); 5095 5096 return -EINVAL; 5097 } 5098 5099 /* Check that two BTF types, each specified as an BTF object + id, are exactly 5100 * the same. Trivial ID check is not enough due to module BTFs, because we can 5101 * end up with two different module BTFs, but IDs point to the common type in 5102 * vmlinux BTF. 5103 */ 5104 static bool btf_types_are_same(const struct btf *btf1, u32 id1, 5105 const struct btf *btf2, u32 id2) 5106 { 5107 if (id1 != id2) 5108 return false; 5109 if (btf1 == btf2) 5110 return true; 5111 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 5112 } 5113 5114 bool btf_struct_ids_match(struct bpf_verifier_log *log, 5115 const struct btf *btf, u32 id, int off, 5116 const struct btf *need_btf, u32 need_type_id) 5117 { 5118 const struct btf_type *type; 5119 int err; 5120 5121 /* Are we already done? */ 5122 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 5123 return true; 5124 5125 again: 5126 type = btf_type_by_id(btf, id); 5127 if (!type) 5128 return false; 5129 err = btf_struct_walk(log, btf, type, off, 1, &id); 5130 if (err != WALK_STRUCT) 5131 return false; 5132 5133 /* We found nested struct object. If it matches 5134 * the requested ID, we're done. Otherwise let's 5135 * continue the search with offset 0 in the new 5136 * type. 5137 */ 5138 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 5139 off = 0; 5140 goto again; 5141 } 5142 5143 return true; 5144 } 5145 5146 static int __get_type_size(struct btf *btf, u32 btf_id, 5147 const struct btf_type **bad_type) 5148 { 5149 const struct btf_type *t; 5150 5151 if (!btf_id) 5152 /* void */ 5153 return 0; 5154 t = btf_type_by_id(btf, btf_id); 5155 while (t && btf_type_is_modifier(t)) 5156 t = btf_type_by_id(btf, t->type); 5157 if (!t) { 5158 *bad_type = btf_type_by_id(btf, 0); 5159 return -EINVAL; 5160 } 5161 if (btf_type_is_ptr(t)) 5162 /* kernel size of pointer. Not BPF's size of pointer*/ 5163 return sizeof(void *); 5164 if (btf_type_is_int(t) || btf_type_is_enum(t)) 5165 return t->size; 5166 *bad_type = t; 5167 return -EINVAL; 5168 } 5169 5170 int btf_distill_func_proto(struct bpf_verifier_log *log, 5171 struct btf *btf, 5172 const struct btf_type *func, 5173 const char *tname, 5174 struct btf_func_model *m) 5175 { 5176 const struct btf_param *args; 5177 const struct btf_type *t; 5178 u32 i, nargs; 5179 int ret; 5180 5181 if (!func) { 5182 /* BTF function prototype doesn't match the verifier types. 5183 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 5184 */ 5185 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 5186 m->arg_size[i] = 8; 5187 m->ret_size = 8; 5188 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 5189 return 0; 5190 } 5191 args = (const struct btf_param *)(func + 1); 5192 nargs = btf_type_vlen(func); 5193 if (nargs >= MAX_BPF_FUNC_ARGS) { 5194 bpf_log(log, 5195 "The function %s has %d arguments. Too many.\n", 5196 tname, nargs); 5197 return -EINVAL; 5198 } 5199 ret = __get_type_size(btf, func->type, &t); 5200 if (ret < 0) { 5201 bpf_log(log, 5202 "The function %s return type %s is unsupported.\n", 5203 tname, btf_kind_str[BTF_INFO_KIND(t->info)]); 5204 return -EINVAL; 5205 } 5206 m->ret_size = ret; 5207 5208 for (i = 0; i < nargs; i++) { 5209 if (i == nargs - 1 && args[i].type == 0) { 5210 bpf_log(log, 5211 "The function %s with variable args is unsupported.\n", 5212 tname); 5213 return -EINVAL; 5214 } 5215 ret = __get_type_size(btf, args[i].type, &t); 5216 if (ret < 0) { 5217 bpf_log(log, 5218 "The function %s arg%d type %s is unsupported.\n", 5219 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]); 5220 return -EINVAL; 5221 } 5222 if (ret == 0) { 5223 bpf_log(log, 5224 "The function %s has malformed void argument.\n", 5225 tname); 5226 return -EINVAL; 5227 } 5228 m->arg_size[i] = ret; 5229 } 5230 m->nr_args = nargs; 5231 return 0; 5232 } 5233 5234 /* Compare BTFs of two functions assuming only scalars and pointers to context. 5235 * t1 points to BTF_KIND_FUNC in btf1 5236 * t2 points to BTF_KIND_FUNC in btf2 5237 * Returns: 5238 * EINVAL - function prototype mismatch 5239 * EFAULT - verifier bug 5240 * 0 - 99% match. The last 1% is validated by the verifier. 5241 */ 5242 static int btf_check_func_type_match(struct bpf_verifier_log *log, 5243 struct btf *btf1, const struct btf_type *t1, 5244 struct btf *btf2, const struct btf_type *t2) 5245 { 5246 const struct btf_param *args1, *args2; 5247 const char *fn1, *fn2, *s1, *s2; 5248 u32 nargs1, nargs2, i; 5249 5250 fn1 = btf_name_by_offset(btf1, t1->name_off); 5251 fn2 = btf_name_by_offset(btf2, t2->name_off); 5252 5253 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 5254 bpf_log(log, "%s() is not a global function\n", fn1); 5255 return -EINVAL; 5256 } 5257 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 5258 bpf_log(log, "%s() is not a global function\n", fn2); 5259 return -EINVAL; 5260 } 5261 5262 t1 = btf_type_by_id(btf1, t1->type); 5263 if (!t1 || !btf_type_is_func_proto(t1)) 5264 return -EFAULT; 5265 t2 = btf_type_by_id(btf2, t2->type); 5266 if (!t2 || !btf_type_is_func_proto(t2)) 5267 return -EFAULT; 5268 5269 args1 = (const struct btf_param *)(t1 + 1); 5270 nargs1 = btf_type_vlen(t1); 5271 args2 = (const struct btf_param *)(t2 + 1); 5272 nargs2 = btf_type_vlen(t2); 5273 5274 if (nargs1 != nargs2) { 5275 bpf_log(log, "%s() has %d args while %s() has %d args\n", 5276 fn1, nargs1, fn2, nargs2); 5277 return -EINVAL; 5278 } 5279 5280 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5281 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5282 if (t1->info != t2->info) { 5283 bpf_log(log, 5284 "Return type %s of %s() doesn't match type %s of %s()\n", 5285 btf_type_str(t1), fn1, 5286 btf_type_str(t2), fn2); 5287 return -EINVAL; 5288 } 5289 5290 for (i = 0; i < nargs1; i++) { 5291 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 5292 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 5293 5294 if (t1->info != t2->info) { 5295 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 5296 i, fn1, btf_type_str(t1), 5297 fn2, btf_type_str(t2)); 5298 return -EINVAL; 5299 } 5300 if (btf_type_has_size(t1) && t1->size != t2->size) { 5301 bpf_log(log, 5302 "arg%d in %s() has size %d while %s() has %d\n", 5303 i, fn1, t1->size, 5304 fn2, t2->size); 5305 return -EINVAL; 5306 } 5307 5308 /* global functions are validated with scalars and pointers 5309 * to context only. And only global functions can be replaced. 5310 * Hence type check only those types. 5311 */ 5312 if (btf_type_is_int(t1) || btf_type_is_enum(t1)) 5313 continue; 5314 if (!btf_type_is_ptr(t1)) { 5315 bpf_log(log, 5316 "arg%d in %s() has unrecognized type\n", 5317 i, fn1); 5318 return -EINVAL; 5319 } 5320 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5321 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5322 if (!btf_type_is_struct(t1)) { 5323 bpf_log(log, 5324 "arg%d in %s() is not a pointer to context\n", 5325 i, fn1); 5326 return -EINVAL; 5327 } 5328 if (!btf_type_is_struct(t2)) { 5329 bpf_log(log, 5330 "arg%d in %s() is not a pointer to context\n", 5331 i, fn2); 5332 return -EINVAL; 5333 } 5334 /* This is an optional check to make program writing easier. 5335 * Compare names of structs and report an error to the user. 5336 * btf_prepare_func_args() already checked that t2 struct 5337 * is a context type. btf_prepare_func_args() will check 5338 * later that t1 struct is a context type as well. 5339 */ 5340 s1 = btf_name_by_offset(btf1, t1->name_off); 5341 s2 = btf_name_by_offset(btf2, t2->name_off); 5342 if (strcmp(s1, s2)) { 5343 bpf_log(log, 5344 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 5345 i, fn1, s1, fn2, s2); 5346 return -EINVAL; 5347 } 5348 } 5349 return 0; 5350 } 5351 5352 /* Compare BTFs of given program with BTF of target program */ 5353 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 5354 struct btf *btf2, const struct btf_type *t2) 5355 { 5356 struct btf *btf1 = prog->aux->btf; 5357 const struct btf_type *t1; 5358 u32 btf_id = 0; 5359 5360 if (!prog->aux->func_info) { 5361 bpf_log(log, "Program extension requires BTF\n"); 5362 return -EINVAL; 5363 } 5364 5365 btf_id = prog->aux->func_info[0].type_id; 5366 if (!btf_id) 5367 return -EFAULT; 5368 5369 t1 = btf_type_by_id(btf1, btf_id); 5370 if (!t1 || !btf_type_is_func(t1)) 5371 return -EFAULT; 5372 5373 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 5374 } 5375 5376 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5377 #ifdef CONFIG_NET 5378 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5379 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5380 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5381 #endif 5382 }; 5383 5384 static int btf_check_func_arg_match(struct bpf_verifier_env *env, 5385 const struct btf *btf, u32 func_id, 5386 struct bpf_reg_state *regs, 5387 bool ptr_to_mem_ok) 5388 { 5389 struct bpf_verifier_log *log = &env->log; 5390 const char *func_name, *ref_tname; 5391 const struct btf_type *t, *ref_t; 5392 const struct btf_param *args; 5393 u32 i, nargs, ref_id; 5394 5395 t = btf_type_by_id(btf, func_id); 5396 if (!t || !btf_type_is_func(t)) { 5397 /* These checks were already done by the verifier while loading 5398 * struct bpf_func_info or in add_kfunc_call(). 5399 */ 5400 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", 5401 func_id); 5402 return -EFAULT; 5403 } 5404 func_name = btf_name_by_offset(btf, t->name_off); 5405 5406 t = btf_type_by_id(btf, t->type); 5407 if (!t || !btf_type_is_func_proto(t)) { 5408 bpf_log(log, "Invalid BTF of func %s\n", func_name); 5409 return -EFAULT; 5410 } 5411 args = (const struct btf_param *)(t + 1); 5412 nargs = btf_type_vlen(t); 5413 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 5414 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, 5415 MAX_BPF_FUNC_REG_ARGS); 5416 return -EINVAL; 5417 } 5418 5419 /* check that BTF function arguments match actual types that the 5420 * verifier sees. 5421 */ 5422 for (i = 0; i < nargs; i++) { 5423 u32 regno = i + 1; 5424 struct bpf_reg_state *reg = ®s[regno]; 5425 5426 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 5427 if (btf_type_is_scalar(t)) { 5428 if (reg->type == SCALAR_VALUE) 5429 continue; 5430 bpf_log(log, "R%d is not a scalar\n", regno); 5431 return -EINVAL; 5432 } 5433 5434 if (!btf_type_is_ptr(t)) { 5435 bpf_log(log, "Unrecognized arg#%d type %s\n", 5436 i, btf_type_str(t)); 5437 return -EINVAL; 5438 } 5439 5440 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 5441 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 5442 if (btf_is_kernel(btf)) { 5443 const struct btf_type *reg_ref_t; 5444 const struct btf *reg_btf; 5445 const char *reg_ref_tname; 5446 u32 reg_ref_id; 5447 5448 if (!btf_type_is_struct(ref_t)) { 5449 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n", 5450 func_name, i, btf_type_str(ref_t), 5451 ref_tname); 5452 return -EINVAL; 5453 } 5454 5455 if (reg->type == PTR_TO_BTF_ID) { 5456 reg_btf = reg->btf; 5457 reg_ref_id = reg->btf_id; 5458 } else if (reg2btf_ids[reg->type]) { 5459 reg_btf = btf_vmlinux; 5460 reg_ref_id = *reg2btf_ids[reg->type]; 5461 } else { 5462 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d is not a pointer to btf_id\n", 5463 func_name, i, 5464 btf_type_str(ref_t), ref_tname, regno); 5465 return -EINVAL; 5466 } 5467 5468 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, 5469 ®_ref_id); 5470 reg_ref_tname = btf_name_by_offset(reg_btf, 5471 reg_ref_t->name_off); 5472 if (!btf_struct_ids_match(log, reg_btf, reg_ref_id, 5473 reg->off, btf, ref_id)) { 5474 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 5475 func_name, i, 5476 btf_type_str(ref_t), ref_tname, 5477 regno, btf_type_str(reg_ref_t), 5478 reg_ref_tname); 5479 return -EINVAL; 5480 } 5481 } else if (btf_get_prog_ctx_type(log, btf, t, 5482 env->prog->type, i)) { 5483 /* If function expects ctx type in BTF check that caller 5484 * is passing PTR_TO_CTX. 5485 */ 5486 if (reg->type != PTR_TO_CTX) { 5487 bpf_log(log, 5488 "arg#%d expected pointer to ctx, but got %s\n", 5489 i, btf_type_str(t)); 5490 return -EINVAL; 5491 } 5492 if (check_ctx_reg(env, reg, regno)) 5493 return -EINVAL; 5494 } else if (ptr_to_mem_ok) { 5495 const struct btf_type *resolve_ret; 5496 u32 type_size; 5497 5498 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 5499 if (IS_ERR(resolve_ret)) { 5500 bpf_log(log, 5501 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 5502 i, btf_type_str(ref_t), ref_tname, 5503 PTR_ERR(resolve_ret)); 5504 return -EINVAL; 5505 } 5506 5507 if (check_mem_reg(env, reg, regno, type_size)) 5508 return -EINVAL; 5509 } else { 5510 return -EINVAL; 5511 } 5512 } 5513 5514 return 0; 5515 } 5516 5517 /* Compare BTF of a function with given bpf_reg_state. 5518 * Returns: 5519 * EFAULT - there is a verifier bug. Abort verification. 5520 * EINVAL - there is a type mismatch or BTF is not available. 5521 * 0 - BTF matches with what bpf_reg_state expects. 5522 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 5523 */ 5524 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 5525 struct bpf_reg_state *regs) 5526 { 5527 struct bpf_prog *prog = env->prog; 5528 struct btf *btf = prog->aux->btf; 5529 bool is_global; 5530 u32 btf_id; 5531 int err; 5532 5533 if (!prog->aux->func_info) 5534 return -EINVAL; 5535 5536 btf_id = prog->aux->func_info[subprog].type_id; 5537 if (!btf_id) 5538 return -EFAULT; 5539 5540 if (prog->aux->func_info_aux[subprog].unreliable) 5541 return -EINVAL; 5542 5543 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5544 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global); 5545 5546 /* Compiler optimizations can remove arguments from static functions 5547 * or mismatched type can be passed into a global function. 5548 * In such cases mark the function as unreliable from BTF point of view. 5549 */ 5550 if (err) 5551 prog->aux->func_info_aux[subprog].unreliable = true; 5552 return err; 5553 } 5554 5555 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env, 5556 const struct btf *btf, u32 func_id, 5557 struct bpf_reg_state *regs) 5558 { 5559 return btf_check_func_arg_match(env, btf, func_id, regs, false); 5560 } 5561 5562 /* Convert BTF of a function into bpf_reg_state if possible 5563 * Returns: 5564 * EFAULT - there is a verifier bug. Abort verification. 5565 * EINVAL - cannot convert BTF. 5566 * 0 - Successfully converted BTF into bpf_reg_state 5567 * (either PTR_TO_CTX or SCALAR_VALUE). 5568 */ 5569 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 5570 struct bpf_reg_state *regs) 5571 { 5572 struct bpf_verifier_log *log = &env->log; 5573 struct bpf_prog *prog = env->prog; 5574 enum bpf_prog_type prog_type = prog->type; 5575 struct btf *btf = prog->aux->btf; 5576 const struct btf_param *args; 5577 const struct btf_type *t, *ref_t; 5578 u32 i, nargs, btf_id; 5579 const char *tname; 5580 5581 if (!prog->aux->func_info || 5582 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 5583 bpf_log(log, "Verifier bug\n"); 5584 return -EFAULT; 5585 } 5586 5587 btf_id = prog->aux->func_info[subprog].type_id; 5588 if (!btf_id) { 5589 bpf_log(log, "Global functions need valid BTF\n"); 5590 return -EFAULT; 5591 } 5592 5593 t = btf_type_by_id(btf, btf_id); 5594 if (!t || !btf_type_is_func(t)) { 5595 /* These checks were already done by the verifier while loading 5596 * struct bpf_func_info 5597 */ 5598 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 5599 subprog); 5600 return -EFAULT; 5601 } 5602 tname = btf_name_by_offset(btf, t->name_off); 5603 5604 if (log->level & BPF_LOG_LEVEL) 5605 bpf_log(log, "Validating %s() func#%d...\n", 5606 tname, subprog); 5607 5608 if (prog->aux->func_info_aux[subprog].unreliable) { 5609 bpf_log(log, "Verifier bug in function %s()\n", tname); 5610 return -EFAULT; 5611 } 5612 if (prog_type == BPF_PROG_TYPE_EXT) 5613 prog_type = prog->aux->dst_prog->type; 5614 5615 t = btf_type_by_id(btf, t->type); 5616 if (!t || !btf_type_is_func_proto(t)) { 5617 bpf_log(log, "Invalid type of function %s()\n", tname); 5618 return -EFAULT; 5619 } 5620 args = (const struct btf_param *)(t + 1); 5621 nargs = btf_type_vlen(t); 5622 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 5623 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 5624 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 5625 return -EINVAL; 5626 } 5627 /* check that function returns int */ 5628 t = btf_type_by_id(btf, t->type); 5629 while (btf_type_is_modifier(t)) 5630 t = btf_type_by_id(btf, t->type); 5631 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) { 5632 bpf_log(log, 5633 "Global function %s() doesn't return scalar. Only those are supported.\n", 5634 tname); 5635 return -EINVAL; 5636 } 5637 /* Convert BTF function arguments into verifier types. 5638 * Only PTR_TO_CTX and SCALAR are supported atm. 5639 */ 5640 for (i = 0; i < nargs; i++) { 5641 struct bpf_reg_state *reg = ®s[i + 1]; 5642 5643 t = btf_type_by_id(btf, args[i].type); 5644 while (btf_type_is_modifier(t)) 5645 t = btf_type_by_id(btf, t->type); 5646 if (btf_type_is_int(t) || btf_type_is_enum(t)) { 5647 reg->type = SCALAR_VALUE; 5648 continue; 5649 } 5650 if (btf_type_is_ptr(t)) { 5651 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 5652 reg->type = PTR_TO_CTX; 5653 continue; 5654 } 5655 5656 t = btf_type_skip_modifiers(btf, t->type, NULL); 5657 5658 ref_t = btf_resolve_size(btf, t, ®->mem_size); 5659 if (IS_ERR(ref_t)) { 5660 bpf_log(log, 5661 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 5662 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 5663 PTR_ERR(ref_t)); 5664 return -EINVAL; 5665 } 5666 5667 reg->type = PTR_TO_MEM_OR_NULL; 5668 reg->id = ++env->id_gen; 5669 5670 continue; 5671 } 5672 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 5673 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname); 5674 return -EINVAL; 5675 } 5676 return 0; 5677 } 5678 5679 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 5680 struct btf_show *show) 5681 { 5682 const struct btf_type *t = btf_type_by_id(btf, type_id); 5683 5684 show->btf = btf; 5685 memset(&show->state, 0, sizeof(show->state)); 5686 memset(&show->obj, 0, sizeof(show->obj)); 5687 5688 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 5689 } 5690 5691 static void btf_seq_show(struct btf_show *show, const char *fmt, 5692 va_list args) 5693 { 5694 seq_vprintf((struct seq_file *)show->target, fmt, args); 5695 } 5696 5697 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 5698 void *obj, struct seq_file *m, u64 flags) 5699 { 5700 struct btf_show sseq; 5701 5702 sseq.target = m; 5703 sseq.showfn = btf_seq_show; 5704 sseq.flags = flags; 5705 5706 btf_type_show(btf, type_id, obj, &sseq); 5707 5708 return sseq.state.status; 5709 } 5710 5711 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 5712 struct seq_file *m) 5713 { 5714 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 5715 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 5716 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 5717 } 5718 5719 struct btf_show_snprintf { 5720 struct btf_show show; 5721 int len_left; /* space left in string */ 5722 int len; /* length we would have written */ 5723 }; 5724 5725 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 5726 va_list args) 5727 { 5728 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 5729 int len; 5730 5731 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 5732 5733 if (len < 0) { 5734 ssnprintf->len_left = 0; 5735 ssnprintf->len = len; 5736 } else if (len > ssnprintf->len_left) { 5737 /* no space, drive on to get length we would have written */ 5738 ssnprintf->len_left = 0; 5739 ssnprintf->len += len; 5740 } else { 5741 ssnprintf->len_left -= len; 5742 ssnprintf->len += len; 5743 show->target += len; 5744 } 5745 } 5746 5747 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 5748 char *buf, int len, u64 flags) 5749 { 5750 struct btf_show_snprintf ssnprintf; 5751 5752 ssnprintf.show.target = buf; 5753 ssnprintf.show.flags = flags; 5754 ssnprintf.show.showfn = btf_snprintf_show; 5755 ssnprintf.len_left = len; 5756 ssnprintf.len = 0; 5757 5758 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 5759 5760 /* If we encontered an error, return it. */ 5761 if (ssnprintf.show.state.status) 5762 return ssnprintf.show.state.status; 5763 5764 /* Otherwise return length we would have written */ 5765 return ssnprintf.len; 5766 } 5767 5768 #ifdef CONFIG_PROC_FS 5769 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 5770 { 5771 const struct btf *btf = filp->private_data; 5772 5773 seq_printf(m, "btf_id:\t%u\n", btf->id); 5774 } 5775 #endif 5776 5777 static int btf_release(struct inode *inode, struct file *filp) 5778 { 5779 btf_put(filp->private_data); 5780 return 0; 5781 } 5782 5783 const struct file_operations btf_fops = { 5784 #ifdef CONFIG_PROC_FS 5785 .show_fdinfo = bpf_btf_show_fdinfo, 5786 #endif 5787 .release = btf_release, 5788 }; 5789 5790 static int __btf_new_fd(struct btf *btf) 5791 { 5792 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 5793 } 5794 5795 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr) 5796 { 5797 struct btf *btf; 5798 int ret; 5799 5800 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel), 5801 attr->btf_size, attr->btf_log_level, 5802 u64_to_user_ptr(attr->btf_log_buf), 5803 attr->btf_log_size); 5804 if (IS_ERR(btf)) 5805 return PTR_ERR(btf); 5806 5807 ret = btf_alloc_id(btf); 5808 if (ret) { 5809 btf_free(btf); 5810 return ret; 5811 } 5812 5813 /* 5814 * The BTF ID is published to the userspace. 5815 * All BTF free must go through call_rcu() from 5816 * now on (i.e. free by calling btf_put()). 5817 */ 5818 5819 ret = __btf_new_fd(btf); 5820 if (ret < 0) 5821 btf_put(btf); 5822 5823 return ret; 5824 } 5825 5826 struct btf *btf_get_by_fd(int fd) 5827 { 5828 struct btf *btf; 5829 struct fd f; 5830 5831 f = fdget(fd); 5832 5833 if (!f.file) 5834 return ERR_PTR(-EBADF); 5835 5836 if (f.file->f_op != &btf_fops) { 5837 fdput(f); 5838 return ERR_PTR(-EINVAL); 5839 } 5840 5841 btf = f.file->private_data; 5842 refcount_inc(&btf->refcnt); 5843 fdput(f); 5844 5845 return btf; 5846 } 5847 5848 int btf_get_info_by_fd(const struct btf *btf, 5849 const union bpf_attr *attr, 5850 union bpf_attr __user *uattr) 5851 { 5852 struct bpf_btf_info __user *uinfo; 5853 struct bpf_btf_info info; 5854 u32 info_copy, btf_copy; 5855 void __user *ubtf; 5856 char __user *uname; 5857 u32 uinfo_len, uname_len, name_len; 5858 int ret = 0; 5859 5860 uinfo = u64_to_user_ptr(attr->info.info); 5861 uinfo_len = attr->info.info_len; 5862 5863 info_copy = min_t(u32, uinfo_len, sizeof(info)); 5864 memset(&info, 0, sizeof(info)); 5865 if (copy_from_user(&info, uinfo, info_copy)) 5866 return -EFAULT; 5867 5868 info.id = btf->id; 5869 ubtf = u64_to_user_ptr(info.btf); 5870 btf_copy = min_t(u32, btf->data_size, info.btf_size); 5871 if (copy_to_user(ubtf, btf->data, btf_copy)) 5872 return -EFAULT; 5873 info.btf_size = btf->data_size; 5874 5875 info.kernel_btf = btf->kernel_btf; 5876 5877 uname = u64_to_user_ptr(info.name); 5878 uname_len = info.name_len; 5879 if (!uname ^ !uname_len) 5880 return -EINVAL; 5881 5882 name_len = strlen(btf->name); 5883 info.name_len = name_len; 5884 5885 if (uname) { 5886 if (uname_len >= name_len + 1) { 5887 if (copy_to_user(uname, btf->name, name_len + 1)) 5888 return -EFAULT; 5889 } else { 5890 char zero = '\0'; 5891 5892 if (copy_to_user(uname, btf->name, uname_len - 1)) 5893 return -EFAULT; 5894 if (put_user(zero, uname + uname_len - 1)) 5895 return -EFAULT; 5896 /* let user-space know about too short buffer */ 5897 ret = -ENOSPC; 5898 } 5899 } 5900 5901 if (copy_to_user(uinfo, &info, info_copy) || 5902 put_user(info_copy, &uattr->info.info_len)) 5903 return -EFAULT; 5904 5905 return ret; 5906 } 5907 5908 int btf_get_fd_by_id(u32 id) 5909 { 5910 struct btf *btf; 5911 int fd; 5912 5913 rcu_read_lock(); 5914 btf = idr_find(&btf_idr, id); 5915 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 5916 btf = ERR_PTR(-ENOENT); 5917 rcu_read_unlock(); 5918 5919 if (IS_ERR(btf)) 5920 return PTR_ERR(btf); 5921 5922 fd = __btf_new_fd(btf); 5923 if (fd < 0) 5924 btf_put(btf); 5925 5926 return fd; 5927 } 5928 5929 u32 btf_obj_id(const struct btf *btf) 5930 { 5931 return btf->id; 5932 } 5933 5934 bool btf_is_kernel(const struct btf *btf) 5935 { 5936 return btf->kernel_btf; 5937 } 5938 5939 bool btf_is_module(const struct btf *btf) 5940 { 5941 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 5942 } 5943 5944 static int btf_id_cmp_func(const void *a, const void *b) 5945 { 5946 const int *pa = a, *pb = b; 5947 5948 return *pa - *pb; 5949 } 5950 5951 bool btf_id_set_contains(const struct btf_id_set *set, u32 id) 5952 { 5953 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL; 5954 } 5955 5956 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 5957 struct btf_module { 5958 struct list_head list; 5959 struct module *module; 5960 struct btf *btf; 5961 struct bin_attribute *sysfs_attr; 5962 }; 5963 5964 static LIST_HEAD(btf_modules); 5965 static DEFINE_MUTEX(btf_module_mutex); 5966 5967 static ssize_t 5968 btf_module_read(struct file *file, struct kobject *kobj, 5969 struct bin_attribute *bin_attr, 5970 char *buf, loff_t off, size_t len) 5971 { 5972 const struct btf *btf = bin_attr->private; 5973 5974 memcpy(buf, btf->data + off, len); 5975 return len; 5976 } 5977 5978 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 5979 void *module) 5980 { 5981 struct btf_module *btf_mod, *tmp; 5982 struct module *mod = module; 5983 struct btf *btf; 5984 int err = 0; 5985 5986 if (mod->btf_data_size == 0 || 5987 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 5988 goto out; 5989 5990 switch (op) { 5991 case MODULE_STATE_COMING: 5992 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 5993 if (!btf_mod) { 5994 err = -ENOMEM; 5995 goto out; 5996 } 5997 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 5998 if (IS_ERR(btf)) { 5999 pr_warn("failed to validate module [%s] BTF: %ld\n", 6000 mod->name, PTR_ERR(btf)); 6001 kfree(btf_mod); 6002 err = PTR_ERR(btf); 6003 goto out; 6004 } 6005 err = btf_alloc_id(btf); 6006 if (err) { 6007 btf_free(btf); 6008 kfree(btf_mod); 6009 goto out; 6010 } 6011 6012 mutex_lock(&btf_module_mutex); 6013 btf_mod->module = module; 6014 btf_mod->btf = btf; 6015 list_add(&btf_mod->list, &btf_modules); 6016 mutex_unlock(&btf_module_mutex); 6017 6018 if (IS_ENABLED(CONFIG_SYSFS)) { 6019 struct bin_attribute *attr; 6020 6021 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 6022 if (!attr) 6023 goto out; 6024 6025 sysfs_bin_attr_init(attr); 6026 attr->attr.name = btf->name; 6027 attr->attr.mode = 0444; 6028 attr->size = btf->data_size; 6029 attr->private = btf; 6030 attr->read = btf_module_read; 6031 6032 err = sysfs_create_bin_file(btf_kobj, attr); 6033 if (err) { 6034 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 6035 mod->name, err); 6036 kfree(attr); 6037 err = 0; 6038 goto out; 6039 } 6040 6041 btf_mod->sysfs_attr = attr; 6042 } 6043 6044 break; 6045 case MODULE_STATE_GOING: 6046 mutex_lock(&btf_module_mutex); 6047 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6048 if (btf_mod->module != module) 6049 continue; 6050 6051 list_del(&btf_mod->list); 6052 if (btf_mod->sysfs_attr) 6053 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 6054 btf_put(btf_mod->btf); 6055 kfree(btf_mod->sysfs_attr); 6056 kfree(btf_mod); 6057 break; 6058 } 6059 mutex_unlock(&btf_module_mutex); 6060 break; 6061 } 6062 out: 6063 return notifier_from_errno(err); 6064 } 6065 6066 static struct notifier_block btf_module_nb = { 6067 .notifier_call = btf_module_notify, 6068 }; 6069 6070 static int __init btf_module_init(void) 6071 { 6072 register_module_notifier(&btf_module_nb); 6073 return 0; 6074 } 6075 6076 fs_initcall(btf_module_init); 6077 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6078 6079 struct module *btf_try_get_module(const struct btf *btf) 6080 { 6081 struct module *res = NULL; 6082 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6083 struct btf_module *btf_mod, *tmp; 6084 6085 mutex_lock(&btf_module_mutex); 6086 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6087 if (btf_mod->btf != btf) 6088 continue; 6089 6090 if (try_module_get(btf_mod->module)) 6091 res = btf_mod->module; 6092 6093 break; 6094 } 6095 mutex_unlock(&btf_module_mutex); 6096 #endif 6097 6098 return res; 6099 } 6100 6101 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 6102 { 6103 struct btf *btf; 6104 long ret; 6105 6106 if (flags) 6107 return -EINVAL; 6108 6109 if (name_sz <= 1 || name[name_sz - 1]) 6110 return -EINVAL; 6111 6112 btf = bpf_get_btf_vmlinux(); 6113 if (IS_ERR(btf)) 6114 return PTR_ERR(btf); 6115 6116 ret = btf_find_by_name_kind(btf, name, kind); 6117 /* ret is never zero, since btf_find_by_name_kind returns 6118 * positive btf_id or negative error. 6119 */ 6120 if (ret < 0) { 6121 struct btf *mod_btf; 6122 int id; 6123 6124 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 6125 spin_lock_bh(&btf_idr_lock); 6126 idr_for_each_entry(&btf_idr, mod_btf, id) { 6127 if (!btf_is_module(mod_btf)) 6128 continue; 6129 /* linear search could be slow hence unlock/lock 6130 * the IDR to avoiding holding it for too long 6131 */ 6132 btf_get(mod_btf); 6133 spin_unlock_bh(&btf_idr_lock); 6134 ret = btf_find_by_name_kind(mod_btf, name, kind); 6135 if (ret > 0) { 6136 int btf_obj_fd; 6137 6138 btf_obj_fd = __btf_new_fd(mod_btf); 6139 if (btf_obj_fd < 0) { 6140 btf_put(mod_btf); 6141 return btf_obj_fd; 6142 } 6143 return ret | (((u64)btf_obj_fd) << 32); 6144 } 6145 spin_lock_bh(&btf_idr_lock); 6146 btf_put(mod_btf); 6147 } 6148 spin_unlock_bh(&btf_idr_lock); 6149 } 6150 return ret; 6151 } 6152 6153 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 6154 .func = bpf_btf_find_by_name_kind, 6155 .gpl_only = false, 6156 .ret_type = RET_INTEGER, 6157 .arg1_type = ARG_PTR_TO_MEM, 6158 .arg2_type = ARG_CONST_SIZE, 6159 .arg3_type = ARG_ANYTHING, 6160 .arg4_type = ARG_ANYTHING, 6161 }; 6162