xref: /openbmc/linux/kernel/bpf/btf.c (revision d4a96be65423296e42091b0b79973b8d446e7798)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/kobject.h>
26 #include <linux/sysfs.h>
27 #include <net/sock.h>
28 
29 /* BTF (BPF Type Format) is the meta data format which describes
30  * the data types of BPF program/map.  Hence, it basically focus
31  * on the C programming language which the modern BPF is primary
32  * using.
33  *
34  * ELF Section:
35  * ~~~~~~~~~~~
36  * The BTF data is stored under the ".BTF" ELF section
37  *
38  * struct btf_type:
39  * ~~~~~~~~~~~~~~~
40  * Each 'struct btf_type' object describes a C data type.
41  * Depending on the type it is describing, a 'struct btf_type'
42  * object may be followed by more data.  F.e.
43  * To describe an array, 'struct btf_type' is followed by
44  * 'struct btf_array'.
45  *
46  * 'struct btf_type' and any extra data following it are
47  * 4 bytes aligned.
48  *
49  * Type section:
50  * ~~~~~~~~~~~~~
51  * The BTF type section contains a list of 'struct btf_type' objects.
52  * Each one describes a C type.  Recall from the above section
53  * that a 'struct btf_type' object could be immediately followed by extra
54  * data in order to desribe some particular C types.
55  *
56  * type_id:
57  * ~~~~~~~
58  * Each btf_type object is identified by a type_id.  The type_id
59  * is implicitly implied by the location of the btf_type object in
60  * the BTF type section.  The first one has type_id 1.  The second
61  * one has type_id 2...etc.  Hence, an earlier btf_type has
62  * a smaller type_id.
63  *
64  * A btf_type object may refer to another btf_type object by using
65  * type_id (i.e. the "type" in the "struct btf_type").
66  *
67  * NOTE that we cannot assume any reference-order.
68  * A btf_type object can refer to an earlier btf_type object
69  * but it can also refer to a later btf_type object.
70  *
71  * For example, to describe "const void *".  A btf_type
72  * object describing "const" may refer to another btf_type
73  * object describing "void *".  This type-reference is done
74  * by specifying type_id:
75  *
76  * [1] CONST (anon) type_id=2
77  * [2] PTR (anon) type_id=0
78  *
79  * The above is the btf_verifier debug log:
80  *   - Each line started with "[?]" is a btf_type object
81  *   - [?] is the type_id of the btf_type object.
82  *   - CONST/PTR is the BTF_KIND_XXX
83  *   - "(anon)" is the name of the type.  It just
84  *     happens that CONST and PTR has no name.
85  *   - type_id=XXX is the 'u32 type' in btf_type
86  *
87  * NOTE: "void" has type_id 0
88  *
89  * String section:
90  * ~~~~~~~~~~~~~~
91  * The BTF string section contains the names used by the type section.
92  * Each string is referred by an "offset" from the beginning of the
93  * string section.
94  *
95  * Each string is '\0' terminated.
96  *
97  * The first character in the string section must be '\0'
98  * which is used to mean 'anonymous'. Some btf_type may not
99  * have a name.
100  */
101 
102 /* BTF verification:
103  *
104  * To verify BTF data, two passes are needed.
105  *
106  * Pass #1
107  * ~~~~~~~
108  * The first pass is to collect all btf_type objects to
109  * an array: "btf->types".
110  *
111  * Depending on the C type that a btf_type is describing,
112  * a btf_type may be followed by extra data.  We don't know
113  * how many btf_type is there, and more importantly we don't
114  * know where each btf_type is located in the type section.
115  *
116  * Without knowing the location of each type_id, most verifications
117  * cannot be done.  e.g. an earlier btf_type may refer to a later
118  * btf_type (recall the "const void *" above), so we cannot
119  * check this type-reference in the first pass.
120  *
121  * In the first pass, it still does some verifications (e.g.
122  * checking the name is a valid offset to the string section).
123  *
124  * Pass #2
125  * ~~~~~~~
126  * The main focus is to resolve a btf_type that is referring
127  * to another type.
128  *
129  * We have to ensure the referring type:
130  * 1) does exist in the BTF (i.e. in btf->types[])
131  * 2) does not cause a loop:
132  *	struct A {
133  *		struct B b;
134  *	};
135  *
136  *	struct B {
137  *		struct A a;
138  *	};
139  *
140  * btf_type_needs_resolve() decides if a btf_type needs
141  * to be resolved.
142  *
143  * The needs_resolve type implements the "resolve()" ops which
144  * essentially does a DFS and detects backedge.
145  *
146  * During resolve (or DFS), different C types have different
147  * "RESOLVED" conditions.
148  *
149  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
150  * members because a member is always referring to another
151  * type.  A struct's member can be treated as "RESOLVED" if
152  * it is referring to a BTF_KIND_PTR.  Otherwise, the
153  * following valid C struct would be rejected:
154  *
155  *	struct A {
156  *		int m;
157  *		struct A *a;
158  *	};
159  *
160  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
161  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
162  * detect a pointer loop, e.g.:
163  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
164  *                        ^                                         |
165  *                        +-----------------------------------------+
166  *
167  */
168 
169 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
170 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
171 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
172 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
173 #define BITS_ROUNDUP_BYTES(bits) \
174 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
175 
176 #define BTF_INFO_MASK 0x9f00ffff
177 #define BTF_INT_MASK 0x0fffffff
178 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
179 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
180 
181 /* 16MB for 64k structs and each has 16 members and
182  * a few MB spaces for the string section.
183  * The hard limit is S32_MAX.
184  */
185 #define BTF_MAX_SIZE (16 * 1024 * 1024)
186 
187 #define for_each_member_from(i, from, struct_type, member)		\
188 	for (i = from, member = btf_type_member(struct_type) + from;	\
189 	     i < btf_type_vlen(struct_type);				\
190 	     i++, member++)
191 
192 #define for_each_vsi_from(i, from, struct_type, member)				\
193 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
194 	     i < btf_type_vlen(struct_type);					\
195 	     i++, member++)
196 
197 DEFINE_IDR(btf_idr);
198 DEFINE_SPINLOCK(btf_idr_lock);
199 
200 struct btf {
201 	void *data;
202 	struct btf_type **types;
203 	u32 *resolved_ids;
204 	u32 *resolved_sizes;
205 	const char *strings;
206 	void *nohdr_data;
207 	struct btf_header hdr;
208 	u32 nr_types; /* includes VOID for base BTF */
209 	u32 types_size;
210 	u32 data_size;
211 	refcount_t refcnt;
212 	u32 id;
213 	struct rcu_head rcu;
214 
215 	/* split BTF support */
216 	struct btf *base_btf;
217 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
218 	u32 start_str_off; /* first string offset (0 for base BTF) */
219 	char name[MODULE_NAME_LEN];
220 	bool kernel_btf;
221 };
222 
223 enum verifier_phase {
224 	CHECK_META,
225 	CHECK_TYPE,
226 };
227 
228 struct resolve_vertex {
229 	const struct btf_type *t;
230 	u32 type_id;
231 	u16 next_member;
232 };
233 
234 enum visit_state {
235 	NOT_VISITED,
236 	VISITED,
237 	RESOLVED,
238 };
239 
240 enum resolve_mode {
241 	RESOLVE_TBD,	/* To Be Determined */
242 	RESOLVE_PTR,	/* Resolving for Pointer */
243 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
244 					 * or array
245 					 */
246 };
247 
248 #define MAX_RESOLVE_DEPTH 32
249 
250 struct btf_sec_info {
251 	u32 off;
252 	u32 len;
253 };
254 
255 struct btf_verifier_env {
256 	struct btf *btf;
257 	u8 *visit_states;
258 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
259 	struct bpf_verifier_log log;
260 	u32 log_type_id;
261 	u32 top_stack;
262 	enum verifier_phase phase;
263 	enum resolve_mode resolve_mode;
264 };
265 
266 static const char * const btf_kind_str[NR_BTF_KINDS] = {
267 	[BTF_KIND_UNKN]		= "UNKNOWN",
268 	[BTF_KIND_INT]		= "INT",
269 	[BTF_KIND_PTR]		= "PTR",
270 	[BTF_KIND_ARRAY]	= "ARRAY",
271 	[BTF_KIND_STRUCT]	= "STRUCT",
272 	[BTF_KIND_UNION]	= "UNION",
273 	[BTF_KIND_ENUM]		= "ENUM",
274 	[BTF_KIND_FWD]		= "FWD",
275 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
276 	[BTF_KIND_VOLATILE]	= "VOLATILE",
277 	[BTF_KIND_CONST]	= "CONST",
278 	[BTF_KIND_RESTRICT]	= "RESTRICT",
279 	[BTF_KIND_FUNC]		= "FUNC",
280 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
281 	[BTF_KIND_VAR]		= "VAR",
282 	[BTF_KIND_DATASEC]	= "DATASEC",
283 	[BTF_KIND_FLOAT]	= "FLOAT",
284 };
285 
286 static const char *btf_type_str(const struct btf_type *t)
287 {
288 	return btf_kind_str[BTF_INFO_KIND(t->info)];
289 }
290 
291 /* Chunk size we use in safe copy of data to be shown. */
292 #define BTF_SHOW_OBJ_SAFE_SIZE		32
293 
294 /*
295  * This is the maximum size of a base type value (equivalent to a
296  * 128-bit int); if we are at the end of our safe buffer and have
297  * less than 16 bytes space we can't be assured of being able
298  * to copy the next type safely, so in such cases we will initiate
299  * a new copy.
300  */
301 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
302 
303 /* Type name size */
304 #define BTF_SHOW_NAME_SIZE		80
305 
306 /*
307  * Common data to all BTF show operations. Private show functions can add
308  * their own data to a structure containing a struct btf_show and consult it
309  * in the show callback.  See btf_type_show() below.
310  *
311  * One challenge with showing nested data is we want to skip 0-valued
312  * data, but in order to figure out whether a nested object is all zeros
313  * we need to walk through it.  As a result, we need to make two passes
314  * when handling structs, unions and arrays; the first path simply looks
315  * for nonzero data, while the second actually does the display.  The first
316  * pass is signalled by show->state.depth_check being set, and if we
317  * encounter a non-zero value we set show->state.depth_to_show to
318  * the depth at which we encountered it.  When we have completed the
319  * first pass, we will know if anything needs to be displayed if
320  * depth_to_show > depth.  See btf_[struct,array]_show() for the
321  * implementation of this.
322  *
323  * Another problem is we want to ensure the data for display is safe to
324  * access.  To support this, the anonymous "struct {} obj" tracks the data
325  * object and our safe copy of it.  We copy portions of the data needed
326  * to the object "copy" buffer, but because its size is limited to
327  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
328  * traverse larger objects for display.
329  *
330  * The various data type show functions all start with a call to
331  * btf_show_start_type() which returns a pointer to the safe copy
332  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
333  * raw data itself).  btf_show_obj_safe() is responsible for
334  * using copy_from_kernel_nofault() to update the safe data if necessary
335  * as we traverse the object's data.  skbuff-like semantics are
336  * used:
337  *
338  * - obj.head points to the start of the toplevel object for display
339  * - obj.size is the size of the toplevel object
340  * - obj.data points to the current point in the original data at
341  *   which our safe data starts.  obj.data will advance as we copy
342  *   portions of the data.
343  *
344  * In most cases a single copy will suffice, but larger data structures
345  * such as "struct task_struct" will require many copies.  The logic in
346  * btf_show_obj_safe() handles the logic that determines if a new
347  * copy_from_kernel_nofault() is needed.
348  */
349 struct btf_show {
350 	u64 flags;
351 	void *target;	/* target of show operation (seq file, buffer) */
352 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
353 	const struct btf *btf;
354 	/* below are used during iteration */
355 	struct {
356 		u8 depth;
357 		u8 depth_to_show;
358 		u8 depth_check;
359 		u8 array_member:1,
360 		   array_terminated:1;
361 		u16 array_encoding;
362 		u32 type_id;
363 		int status;			/* non-zero for error */
364 		const struct btf_type *type;
365 		const struct btf_member *member;
366 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
367 	} state;
368 	struct {
369 		u32 size;
370 		void *head;
371 		void *data;
372 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
373 	} obj;
374 };
375 
376 struct btf_kind_operations {
377 	s32 (*check_meta)(struct btf_verifier_env *env,
378 			  const struct btf_type *t,
379 			  u32 meta_left);
380 	int (*resolve)(struct btf_verifier_env *env,
381 		       const struct resolve_vertex *v);
382 	int (*check_member)(struct btf_verifier_env *env,
383 			    const struct btf_type *struct_type,
384 			    const struct btf_member *member,
385 			    const struct btf_type *member_type);
386 	int (*check_kflag_member)(struct btf_verifier_env *env,
387 				  const struct btf_type *struct_type,
388 				  const struct btf_member *member,
389 				  const struct btf_type *member_type);
390 	void (*log_details)(struct btf_verifier_env *env,
391 			    const struct btf_type *t);
392 	void (*show)(const struct btf *btf, const struct btf_type *t,
393 			 u32 type_id, void *data, u8 bits_offsets,
394 			 struct btf_show *show);
395 };
396 
397 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
398 static struct btf_type btf_void;
399 
400 static int btf_resolve(struct btf_verifier_env *env,
401 		       const struct btf_type *t, u32 type_id);
402 
403 static bool btf_type_is_modifier(const struct btf_type *t)
404 {
405 	/* Some of them is not strictly a C modifier
406 	 * but they are grouped into the same bucket
407 	 * for BTF concern:
408 	 *   A type (t) that refers to another
409 	 *   type through t->type AND its size cannot
410 	 *   be determined without following the t->type.
411 	 *
412 	 * ptr does not fall into this bucket
413 	 * because its size is always sizeof(void *).
414 	 */
415 	switch (BTF_INFO_KIND(t->info)) {
416 	case BTF_KIND_TYPEDEF:
417 	case BTF_KIND_VOLATILE:
418 	case BTF_KIND_CONST:
419 	case BTF_KIND_RESTRICT:
420 		return true;
421 	}
422 
423 	return false;
424 }
425 
426 bool btf_type_is_void(const struct btf_type *t)
427 {
428 	return t == &btf_void;
429 }
430 
431 static bool btf_type_is_fwd(const struct btf_type *t)
432 {
433 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
434 }
435 
436 static bool btf_type_nosize(const struct btf_type *t)
437 {
438 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
439 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
440 }
441 
442 static bool btf_type_nosize_or_null(const struct btf_type *t)
443 {
444 	return !t || btf_type_nosize(t);
445 }
446 
447 static bool __btf_type_is_struct(const struct btf_type *t)
448 {
449 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
450 }
451 
452 static bool btf_type_is_array(const struct btf_type *t)
453 {
454 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
455 }
456 
457 static bool btf_type_is_datasec(const struct btf_type *t)
458 {
459 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
460 }
461 
462 u32 btf_nr_types(const struct btf *btf)
463 {
464 	u32 total = 0;
465 
466 	while (btf) {
467 		total += btf->nr_types;
468 		btf = btf->base_btf;
469 	}
470 
471 	return total;
472 }
473 
474 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
475 {
476 	const struct btf_type *t;
477 	const char *tname;
478 	u32 i, total;
479 
480 	total = btf_nr_types(btf);
481 	for (i = 1; i < total; i++) {
482 		t = btf_type_by_id(btf, i);
483 		if (BTF_INFO_KIND(t->info) != kind)
484 			continue;
485 
486 		tname = btf_name_by_offset(btf, t->name_off);
487 		if (!strcmp(tname, name))
488 			return i;
489 	}
490 
491 	return -ENOENT;
492 }
493 
494 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
495 					       u32 id, u32 *res_id)
496 {
497 	const struct btf_type *t = btf_type_by_id(btf, id);
498 
499 	while (btf_type_is_modifier(t)) {
500 		id = t->type;
501 		t = btf_type_by_id(btf, t->type);
502 	}
503 
504 	if (res_id)
505 		*res_id = id;
506 
507 	return t;
508 }
509 
510 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
511 					    u32 id, u32 *res_id)
512 {
513 	const struct btf_type *t;
514 
515 	t = btf_type_skip_modifiers(btf, id, NULL);
516 	if (!btf_type_is_ptr(t))
517 		return NULL;
518 
519 	return btf_type_skip_modifiers(btf, t->type, res_id);
520 }
521 
522 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
523 						 u32 id, u32 *res_id)
524 {
525 	const struct btf_type *ptype;
526 
527 	ptype = btf_type_resolve_ptr(btf, id, res_id);
528 	if (ptype && btf_type_is_func_proto(ptype))
529 		return ptype;
530 
531 	return NULL;
532 }
533 
534 /* Types that act only as a source, not sink or intermediate
535  * type when resolving.
536  */
537 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
538 {
539 	return btf_type_is_var(t) ||
540 	       btf_type_is_datasec(t);
541 }
542 
543 /* What types need to be resolved?
544  *
545  * btf_type_is_modifier() is an obvious one.
546  *
547  * btf_type_is_struct() because its member refers to
548  * another type (through member->type).
549  *
550  * btf_type_is_var() because the variable refers to
551  * another type. btf_type_is_datasec() holds multiple
552  * btf_type_is_var() types that need resolving.
553  *
554  * btf_type_is_array() because its element (array->type)
555  * refers to another type.  Array can be thought of a
556  * special case of struct while array just has the same
557  * member-type repeated by array->nelems of times.
558  */
559 static bool btf_type_needs_resolve(const struct btf_type *t)
560 {
561 	return btf_type_is_modifier(t) ||
562 	       btf_type_is_ptr(t) ||
563 	       btf_type_is_struct(t) ||
564 	       btf_type_is_array(t) ||
565 	       btf_type_is_var(t) ||
566 	       btf_type_is_datasec(t);
567 }
568 
569 /* t->size can be used */
570 static bool btf_type_has_size(const struct btf_type *t)
571 {
572 	switch (BTF_INFO_KIND(t->info)) {
573 	case BTF_KIND_INT:
574 	case BTF_KIND_STRUCT:
575 	case BTF_KIND_UNION:
576 	case BTF_KIND_ENUM:
577 	case BTF_KIND_DATASEC:
578 	case BTF_KIND_FLOAT:
579 		return true;
580 	}
581 
582 	return false;
583 }
584 
585 static const char *btf_int_encoding_str(u8 encoding)
586 {
587 	if (encoding == 0)
588 		return "(none)";
589 	else if (encoding == BTF_INT_SIGNED)
590 		return "SIGNED";
591 	else if (encoding == BTF_INT_CHAR)
592 		return "CHAR";
593 	else if (encoding == BTF_INT_BOOL)
594 		return "BOOL";
595 	else
596 		return "UNKN";
597 }
598 
599 static u32 btf_type_int(const struct btf_type *t)
600 {
601 	return *(u32 *)(t + 1);
602 }
603 
604 static const struct btf_array *btf_type_array(const struct btf_type *t)
605 {
606 	return (const struct btf_array *)(t + 1);
607 }
608 
609 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
610 {
611 	return (const struct btf_enum *)(t + 1);
612 }
613 
614 static const struct btf_var *btf_type_var(const struct btf_type *t)
615 {
616 	return (const struct btf_var *)(t + 1);
617 }
618 
619 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
620 {
621 	return kind_ops[BTF_INFO_KIND(t->info)];
622 }
623 
624 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
625 {
626 	if (!BTF_STR_OFFSET_VALID(offset))
627 		return false;
628 
629 	while (offset < btf->start_str_off)
630 		btf = btf->base_btf;
631 
632 	offset -= btf->start_str_off;
633 	return offset < btf->hdr.str_len;
634 }
635 
636 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
637 {
638 	if ((first ? !isalpha(c) :
639 		     !isalnum(c)) &&
640 	    c != '_' &&
641 	    ((c == '.' && !dot_ok) ||
642 	      c != '.'))
643 		return false;
644 	return true;
645 }
646 
647 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
648 {
649 	while (offset < btf->start_str_off)
650 		btf = btf->base_btf;
651 
652 	offset -= btf->start_str_off;
653 	if (offset < btf->hdr.str_len)
654 		return &btf->strings[offset];
655 
656 	return NULL;
657 }
658 
659 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
660 {
661 	/* offset must be valid */
662 	const char *src = btf_str_by_offset(btf, offset);
663 	const char *src_limit;
664 
665 	if (!__btf_name_char_ok(*src, true, dot_ok))
666 		return false;
667 
668 	/* set a limit on identifier length */
669 	src_limit = src + KSYM_NAME_LEN;
670 	src++;
671 	while (*src && src < src_limit) {
672 		if (!__btf_name_char_ok(*src, false, dot_ok))
673 			return false;
674 		src++;
675 	}
676 
677 	return !*src;
678 }
679 
680 /* Only C-style identifier is permitted. This can be relaxed if
681  * necessary.
682  */
683 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
684 {
685 	return __btf_name_valid(btf, offset, false);
686 }
687 
688 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
689 {
690 	return __btf_name_valid(btf, offset, true);
691 }
692 
693 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
694 {
695 	const char *name;
696 
697 	if (!offset)
698 		return "(anon)";
699 
700 	name = btf_str_by_offset(btf, offset);
701 	return name ?: "(invalid-name-offset)";
702 }
703 
704 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
705 {
706 	return btf_str_by_offset(btf, offset);
707 }
708 
709 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
710 {
711 	while (type_id < btf->start_id)
712 		btf = btf->base_btf;
713 
714 	type_id -= btf->start_id;
715 	if (type_id >= btf->nr_types)
716 		return NULL;
717 	return btf->types[type_id];
718 }
719 
720 /*
721  * Regular int is not a bit field and it must be either
722  * u8/u16/u32/u64 or __int128.
723  */
724 static bool btf_type_int_is_regular(const struct btf_type *t)
725 {
726 	u8 nr_bits, nr_bytes;
727 	u32 int_data;
728 
729 	int_data = btf_type_int(t);
730 	nr_bits = BTF_INT_BITS(int_data);
731 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
732 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
733 	    BTF_INT_OFFSET(int_data) ||
734 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
735 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
736 	     nr_bytes != (2 * sizeof(u64)))) {
737 		return false;
738 	}
739 
740 	return true;
741 }
742 
743 /*
744  * Check that given struct member is a regular int with expected
745  * offset and size.
746  */
747 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
748 			   const struct btf_member *m,
749 			   u32 expected_offset, u32 expected_size)
750 {
751 	const struct btf_type *t;
752 	u32 id, int_data;
753 	u8 nr_bits;
754 
755 	id = m->type;
756 	t = btf_type_id_size(btf, &id, NULL);
757 	if (!t || !btf_type_is_int(t))
758 		return false;
759 
760 	int_data = btf_type_int(t);
761 	nr_bits = BTF_INT_BITS(int_data);
762 	if (btf_type_kflag(s)) {
763 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
764 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
765 
766 		/* if kflag set, int should be a regular int and
767 		 * bit offset should be at byte boundary.
768 		 */
769 		return !bitfield_size &&
770 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
771 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
772 	}
773 
774 	if (BTF_INT_OFFSET(int_data) ||
775 	    BITS_PER_BYTE_MASKED(m->offset) ||
776 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
777 	    BITS_PER_BYTE_MASKED(nr_bits) ||
778 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
779 		return false;
780 
781 	return true;
782 }
783 
784 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
785 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
786 						       u32 id)
787 {
788 	const struct btf_type *t = btf_type_by_id(btf, id);
789 
790 	while (btf_type_is_modifier(t) &&
791 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
792 		id = t->type;
793 		t = btf_type_by_id(btf, t->type);
794 	}
795 
796 	return t;
797 }
798 
799 #define BTF_SHOW_MAX_ITER	10
800 
801 #define BTF_KIND_BIT(kind)	(1ULL << kind)
802 
803 /*
804  * Populate show->state.name with type name information.
805  * Format of type name is
806  *
807  * [.member_name = ] (type_name)
808  */
809 static const char *btf_show_name(struct btf_show *show)
810 {
811 	/* BTF_MAX_ITER array suffixes "[]" */
812 	const char *array_suffixes = "[][][][][][][][][][]";
813 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
814 	/* BTF_MAX_ITER pointer suffixes "*" */
815 	const char *ptr_suffixes = "**********";
816 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
817 	const char *name = NULL, *prefix = "", *parens = "";
818 	const struct btf_member *m = show->state.member;
819 	const struct btf_type *t = show->state.type;
820 	const struct btf_array *array;
821 	u32 id = show->state.type_id;
822 	const char *member = NULL;
823 	bool show_member = false;
824 	u64 kinds = 0;
825 	int i;
826 
827 	show->state.name[0] = '\0';
828 
829 	/*
830 	 * Don't show type name if we're showing an array member;
831 	 * in that case we show the array type so don't need to repeat
832 	 * ourselves for each member.
833 	 */
834 	if (show->state.array_member)
835 		return "";
836 
837 	/* Retrieve member name, if any. */
838 	if (m) {
839 		member = btf_name_by_offset(show->btf, m->name_off);
840 		show_member = strlen(member) > 0;
841 		id = m->type;
842 	}
843 
844 	/*
845 	 * Start with type_id, as we have resolved the struct btf_type *
846 	 * via btf_modifier_show() past the parent typedef to the child
847 	 * struct, int etc it is defined as.  In such cases, the type_id
848 	 * still represents the starting type while the struct btf_type *
849 	 * in our show->state points at the resolved type of the typedef.
850 	 */
851 	t = btf_type_by_id(show->btf, id);
852 	if (!t)
853 		return "";
854 
855 	/*
856 	 * The goal here is to build up the right number of pointer and
857 	 * array suffixes while ensuring the type name for a typedef
858 	 * is represented.  Along the way we accumulate a list of
859 	 * BTF kinds we have encountered, since these will inform later
860 	 * display; for example, pointer types will not require an
861 	 * opening "{" for struct, we will just display the pointer value.
862 	 *
863 	 * We also want to accumulate the right number of pointer or array
864 	 * indices in the format string while iterating until we get to
865 	 * the typedef/pointee/array member target type.
866 	 *
867 	 * We start by pointing at the end of pointer and array suffix
868 	 * strings; as we accumulate pointers and arrays we move the pointer
869 	 * or array string backwards so it will show the expected number of
870 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
871 	 * and/or arrays and typedefs are supported as a precaution.
872 	 *
873 	 * We also want to get typedef name while proceeding to resolve
874 	 * type it points to so that we can add parentheses if it is a
875 	 * "typedef struct" etc.
876 	 */
877 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
878 
879 		switch (BTF_INFO_KIND(t->info)) {
880 		case BTF_KIND_TYPEDEF:
881 			if (!name)
882 				name = btf_name_by_offset(show->btf,
883 							       t->name_off);
884 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
885 			id = t->type;
886 			break;
887 		case BTF_KIND_ARRAY:
888 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
889 			parens = "[";
890 			if (!t)
891 				return "";
892 			array = btf_type_array(t);
893 			if (array_suffix > array_suffixes)
894 				array_suffix -= 2;
895 			id = array->type;
896 			break;
897 		case BTF_KIND_PTR:
898 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
899 			if (ptr_suffix > ptr_suffixes)
900 				ptr_suffix -= 1;
901 			id = t->type;
902 			break;
903 		default:
904 			id = 0;
905 			break;
906 		}
907 		if (!id)
908 			break;
909 		t = btf_type_skip_qualifiers(show->btf, id);
910 	}
911 	/* We may not be able to represent this type; bail to be safe */
912 	if (i == BTF_SHOW_MAX_ITER)
913 		return "";
914 
915 	if (!name)
916 		name = btf_name_by_offset(show->btf, t->name_off);
917 
918 	switch (BTF_INFO_KIND(t->info)) {
919 	case BTF_KIND_STRUCT:
920 	case BTF_KIND_UNION:
921 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
922 			 "struct" : "union";
923 		/* if it's an array of struct/union, parens is already set */
924 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
925 			parens = "{";
926 		break;
927 	case BTF_KIND_ENUM:
928 		prefix = "enum";
929 		break;
930 	default:
931 		break;
932 	}
933 
934 	/* pointer does not require parens */
935 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
936 		parens = "";
937 	/* typedef does not require struct/union/enum prefix */
938 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
939 		prefix = "";
940 
941 	if (!name)
942 		name = "";
943 
944 	/* Even if we don't want type name info, we want parentheses etc */
945 	if (show->flags & BTF_SHOW_NONAME)
946 		snprintf(show->state.name, sizeof(show->state.name), "%s",
947 			 parens);
948 	else
949 		snprintf(show->state.name, sizeof(show->state.name),
950 			 "%s%s%s(%s%s%s%s%s%s)%s",
951 			 /* first 3 strings comprise ".member = " */
952 			 show_member ? "." : "",
953 			 show_member ? member : "",
954 			 show_member ? " = " : "",
955 			 /* ...next is our prefix (struct, enum, etc) */
956 			 prefix,
957 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
958 			 /* ...this is the type name itself */
959 			 name,
960 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
961 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
962 			 array_suffix, parens);
963 
964 	return show->state.name;
965 }
966 
967 static const char *__btf_show_indent(struct btf_show *show)
968 {
969 	const char *indents = "                                ";
970 	const char *indent = &indents[strlen(indents)];
971 
972 	if ((indent - show->state.depth) >= indents)
973 		return indent - show->state.depth;
974 	return indents;
975 }
976 
977 static const char *btf_show_indent(struct btf_show *show)
978 {
979 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
980 }
981 
982 static const char *btf_show_newline(struct btf_show *show)
983 {
984 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
985 }
986 
987 static const char *btf_show_delim(struct btf_show *show)
988 {
989 	if (show->state.depth == 0)
990 		return "";
991 
992 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
993 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
994 		return "|";
995 
996 	return ",";
997 }
998 
999 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1000 {
1001 	va_list args;
1002 
1003 	if (!show->state.depth_check) {
1004 		va_start(args, fmt);
1005 		show->showfn(show, fmt, args);
1006 		va_end(args);
1007 	}
1008 }
1009 
1010 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1011  * format specifiers to the format specifier passed in; these do the work of
1012  * adding indentation, delimiters etc while the caller simply has to specify
1013  * the type value(s) in the format specifier + value(s).
1014  */
1015 #define btf_show_type_value(show, fmt, value)				       \
1016 	do {								       \
1017 		if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||	       \
1018 		    show->state.depth == 0) {				       \
1019 			btf_show(show, "%s%s" fmt "%s%s",		       \
1020 				 btf_show_indent(show),			       \
1021 				 btf_show_name(show),			       \
1022 				 value, btf_show_delim(show),		       \
1023 				 btf_show_newline(show));		       \
1024 			if (show->state.depth > show->state.depth_to_show)     \
1025 				show->state.depth_to_show = show->state.depth; \
1026 		}							       \
1027 	} while (0)
1028 
1029 #define btf_show_type_values(show, fmt, ...)				       \
1030 	do {								       \
1031 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1032 			 btf_show_name(show),				       \
1033 			 __VA_ARGS__, btf_show_delim(show),		       \
1034 			 btf_show_newline(show));			       \
1035 		if (show->state.depth > show->state.depth_to_show)	       \
1036 			show->state.depth_to_show = show->state.depth;	       \
1037 	} while (0)
1038 
1039 /* How much is left to copy to safe buffer after @data? */
1040 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1041 {
1042 	return show->obj.head + show->obj.size - data;
1043 }
1044 
1045 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1046 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1047 {
1048 	return data >= show->obj.data &&
1049 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1050 }
1051 
1052 /*
1053  * If object pointed to by @data of @size falls within our safe buffer, return
1054  * the equivalent pointer to the same safe data.  Assumes
1055  * copy_from_kernel_nofault() has already happened and our safe buffer is
1056  * populated.
1057  */
1058 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1059 {
1060 	if (btf_show_obj_is_safe(show, data, size))
1061 		return show->obj.safe + (data - show->obj.data);
1062 	return NULL;
1063 }
1064 
1065 /*
1066  * Return a safe-to-access version of data pointed to by @data.
1067  * We do this by copying the relevant amount of information
1068  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1069  *
1070  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1071  * safe copy is needed.
1072  *
1073  * Otherwise we need to determine if we have the required amount
1074  * of data (determined by the @data pointer and the size of the
1075  * largest base type we can encounter (represented by
1076  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1077  * that we will be able to print some of the current object,
1078  * and if more is needed a copy will be triggered.
1079  * Some objects such as structs will not fit into the buffer;
1080  * in such cases additional copies when we iterate over their
1081  * members may be needed.
1082  *
1083  * btf_show_obj_safe() is used to return a safe buffer for
1084  * btf_show_start_type(); this ensures that as we recurse into
1085  * nested types we always have safe data for the given type.
1086  * This approach is somewhat wasteful; it's possible for example
1087  * that when iterating over a large union we'll end up copying the
1088  * same data repeatedly, but the goal is safety not performance.
1089  * We use stack data as opposed to per-CPU buffers because the
1090  * iteration over a type can take some time, and preemption handling
1091  * would greatly complicate use of the safe buffer.
1092  */
1093 static void *btf_show_obj_safe(struct btf_show *show,
1094 			       const struct btf_type *t,
1095 			       void *data)
1096 {
1097 	const struct btf_type *rt;
1098 	int size_left, size;
1099 	void *safe = NULL;
1100 
1101 	if (show->flags & BTF_SHOW_UNSAFE)
1102 		return data;
1103 
1104 	rt = btf_resolve_size(show->btf, t, &size);
1105 	if (IS_ERR(rt)) {
1106 		show->state.status = PTR_ERR(rt);
1107 		return NULL;
1108 	}
1109 
1110 	/*
1111 	 * Is this toplevel object? If so, set total object size and
1112 	 * initialize pointers.  Otherwise check if we still fall within
1113 	 * our safe object data.
1114 	 */
1115 	if (show->state.depth == 0) {
1116 		show->obj.size = size;
1117 		show->obj.head = data;
1118 	} else {
1119 		/*
1120 		 * If the size of the current object is > our remaining
1121 		 * safe buffer we _may_ need to do a new copy.  However
1122 		 * consider the case of a nested struct; it's size pushes
1123 		 * us over the safe buffer limit, but showing any individual
1124 		 * struct members does not.  In such cases, we don't need
1125 		 * to initiate a fresh copy yet; however we definitely need
1126 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1127 		 * in our buffer, regardless of the current object size.
1128 		 * The logic here is that as we resolve types we will
1129 		 * hit a base type at some point, and we need to be sure
1130 		 * the next chunk of data is safely available to display
1131 		 * that type info safely.  We cannot rely on the size of
1132 		 * the current object here because it may be much larger
1133 		 * than our current buffer (e.g. task_struct is 8k).
1134 		 * All we want to do here is ensure that we can print the
1135 		 * next basic type, which we can if either
1136 		 * - the current type size is within the safe buffer; or
1137 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1138 		 *   the safe buffer.
1139 		 */
1140 		safe = __btf_show_obj_safe(show, data,
1141 					   min(size,
1142 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1143 	}
1144 
1145 	/*
1146 	 * We need a new copy to our safe object, either because we haven't
1147 	 * yet copied and are intializing safe data, or because the data
1148 	 * we want falls outside the boundaries of the safe object.
1149 	 */
1150 	if (!safe) {
1151 		size_left = btf_show_obj_size_left(show, data);
1152 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1153 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1154 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1155 							      data, size_left);
1156 		if (!show->state.status) {
1157 			show->obj.data = data;
1158 			safe = show->obj.safe;
1159 		}
1160 	}
1161 
1162 	return safe;
1163 }
1164 
1165 /*
1166  * Set the type we are starting to show and return a safe data pointer
1167  * to be used for showing the associated data.
1168  */
1169 static void *btf_show_start_type(struct btf_show *show,
1170 				 const struct btf_type *t,
1171 				 u32 type_id, void *data)
1172 {
1173 	show->state.type = t;
1174 	show->state.type_id = type_id;
1175 	show->state.name[0] = '\0';
1176 
1177 	return btf_show_obj_safe(show, t, data);
1178 }
1179 
1180 static void btf_show_end_type(struct btf_show *show)
1181 {
1182 	show->state.type = NULL;
1183 	show->state.type_id = 0;
1184 	show->state.name[0] = '\0';
1185 }
1186 
1187 static void *btf_show_start_aggr_type(struct btf_show *show,
1188 				      const struct btf_type *t,
1189 				      u32 type_id, void *data)
1190 {
1191 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1192 
1193 	if (!safe_data)
1194 		return safe_data;
1195 
1196 	btf_show(show, "%s%s%s", btf_show_indent(show),
1197 		 btf_show_name(show),
1198 		 btf_show_newline(show));
1199 	show->state.depth++;
1200 	return safe_data;
1201 }
1202 
1203 static void btf_show_end_aggr_type(struct btf_show *show,
1204 				   const char *suffix)
1205 {
1206 	show->state.depth--;
1207 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1208 		 btf_show_delim(show), btf_show_newline(show));
1209 	btf_show_end_type(show);
1210 }
1211 
1212 static void btf_show_start_member(struct btf_show *show,
1213 				  const struct btf_member *m)
1214 {
1215 	show->state.member = m;
1216 }
1217 
1218 static void btf_show_start_array_member(struct btf_show *show)
1219 {
1220 	show->state.array_member = 1;
1221 	btf_show_start_member(show, NULL);
1222 }
1223 
1224 static void btf_show_end_member(struct btf_show *show)
1225 {
1226 	show->state.member = NULL;
1227 }
1228 
1229 static void btf_show_end_array_member(struct btf_show *show)
1230 {
1231 	show->state.array_member = 0;
1232 	btf_show_end_member(show);
1233 }
1234 
1235 static void *btf_show_start_array_type(struct btf_show *show,
1236 				       const struct btf_type *t,
1237 				       u32 type_id,
1238 				       u16 array_encoding,
1239 				       void *data)
1240 {
1241 	show->state.array_encoding = array_encoding;
1242 	show->state.array_terminated = 0;
1243 	return btf_show_start_aggr_type(show, t, type_id, data);
1244 }
1245 
1246 static void btf_show_end_array_type(struct btf_show *show)
1247 {
1248 	show->state.array_encoding = 0;
1249 	show->state.array_terminated = 0;
1250 	btf_show_end_aggr_type(show, "]");
1251 }
1252 
1253 static void *btf_show_start_struct_type(struct btf_show *show,
1254 					const struct btf_type *t,
1255 					u32 type_id,
1256 					void *data)
1257 {
1258 	return btf_show_start_aggr_type(show, t, type_id, data);
1259 }
1260 
1261 static void btf_show_end_struct_type(struct btf_show *show)
1262 {
1263 	btf_show_end_aggr_type(show, "}");
1264 }
1265 
1266 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1267 					      const char *fmt, ...)
1268 {
1269 	va_list args;
1270 
1271 	va_start(args, fmt);
1272 	bpf_verifier_vlog(log, fmt, args);
1273 	va_end(args);
1274 }
1275 
1276 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1277 					    const char *fmt, ...)
1278 {
1279 	struct bpf_verifier_log *log = &env->log;
1280 	va_list args;
1281 
1282 	if (!bpf_verifier_log_needed(log))
1283 		return;
1284 
1285 	va_start(args, fmt);
1286 	bpf_verifier_vlog(log, fmt, args);
1287 	va_end(args);
1288 }
1289 
1290 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1291 						   const struct btf_type *t,
1292 						   bool log_details,
1293 						   const char *fmt, ...)
1294 {
1295 	struct bpf_verifier_log *log = &env->log;
1296 	u8 kind = BTF_INFO_KIND(t->info);
1297 	struct btf *btf = env->btf;
1298 	va_list args;
1299 
1300 	if (!bpf_verifier_log_needed(log))
1301 		return;
1302 
1303 	/* btf verifier prints all types it is processing via
1304 	 * btf_verifier_log_type(..., fmt = NULL).
1305 	 * Skip those prints for in-kernel BTF verification.
1306 	 */
1307 	if (log->level == BPF_LOG_KERNEL && !fmt)
1308 		return;
1309 
1310 	__btf_verifier_log(log, "[%u] %s %s%s",
1311 			   env->log_type_id,
1312 			   btf_kind_str[kind],
1313 			   __btf_name_by_offset(btf, t->name_off),
1314 			   log_details ? " " : "");
1315 
1316 	if (log_details)
1317 		btf_type_ops(t)->log_details(env, t);
1318 
1319 	if (fmt && *fmt) {
1320 		__btf_verifier_log(log, " ");
1321 		va_start(args, fmt);
1322 		bpf_verifier_vlog(log, fmt, args);
1323 		va_end(args);
1324 	}
1325 
1326 	__btf_verifier_log(log, "\n");
1327 }
1328 
1329 #define btf_verifier_log_type(env, t, ...) \
1330 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1331 #define btf_verifier_log_basic(env, t, ...) \
1332 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1333 
1334 __printf(4, 5)
1335 static void btf_verifier_log_member(struct btf_verifier_env *env,
1336 				    const struct btf_type *struct_type,
1337 				    const struct btf_member *member,
1338 				    const char *fmt, ...)
1339 {
1340 	struct bpf_verifier_log *log = &env->log;
1341 	struct btf *btf = env->btf;
1342 	va_list args;
1343 
1344 	if (!bpf_verifier_log_needed(log))
1345 		return;
1346 
1347 	if (log->level == BPF_LOG_KERNEL && !fmt)
1348 		return;
1349 	/* The CHECK_META phase already did a btf dump.
1350 	 *
1351 	 * If member is logged again, it must hit an error in
1352 	 * parsing this member.  It is useful to print out which
1353 	 * struct this member belongs to.
1354 	 */
1355 	if (env->phase != CHECK_META)
1356 		btf_verifier_log_type(env, struct_type, NULL);
1357 
1358 	if (btf_type_kflag(struct_type))
1359 		__btf_verifier_log(log,
1360 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1361 				   __btf_name_by_offset(btf, member->name_off),
1362 				   member->type,
1363 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1364 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1365 	else
1366 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1367 				   __btf_name_by_offset(btf, member->name_off),
1368 				   member->type, member->offset);
1369 
1370 	if (fmt && *fmt) {
1371 		__btf_verifier_log(log, " ");
1372 		va_start(args, fmt);
1373 		bpf_verifier_vlog(log, fmt, args);
1374 		va_end(args);
1375 	}
1376 
1377 	__btf_verifier_log(log, "\n");
1378 }
1379 
1380 __printf(4, 5)
1381 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1382 				 const struct btf_type *datasec_type,
1383 				 const struct btf_var_secinfo *vsi,
1384 				 const char *fmt, ...)
1385 {
1386 	struct bpf_verifier_log *log = &env->log;
1387 	va_list args;
1388 
1389 	if (!bpf_verifier_log_needed(log))
1390 		return;
1391 	if (log->level == BPF_LOG_KERNEL && !fmt)
1392 		return;
1393 	if (env->phase != CHECK_META)
1394 		btf_verifier_log_type(env, datasec_type, NULL);
1395 
1396 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1397 			   vsi->type, vsi->offset, vsi->size);
1398 	if (fmt && *fmt) {
1399 		__btf_verifier_log(log, " ");
1400 		va_start(args, fmt);
1401 		bpf_verifier_vlog(log, fmt, args);
1402 		va_end(args);
1403 	}
1404 
1405 	__btf_verifier_log(log, "\n");
1406 }
1407 
1408 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1409 				 u32 btf_data_size)
1410 {
1411 	struct bpf_verifier_log *log = &env->log;
1412 	const struct btf *btf = env->btf;
1413 	const struct btf_header *hdr;
1414 
1415 	if (!bpf_verifier_log_needed(log))
1416 		return;
1417 
1418 	if (log->level == BPF_LOG_KERNEL)
1419 		return;
1420 	hdr = &btf->hdr;
1421 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1422 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1423 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1424 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1425 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1426 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1427 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1428 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1429 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1430 }
1431 
1432 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1433 {
1434 	struct btf *btf = env->btf;
1435 
1436 	if (btf->types_size == btf->nr_types) {
1437 		/* Expand 'types' array */
1438 
1439 		struct btf_type **new_types;
1440 		u32 expand_by, new_size;
1441 
1442 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1443 			btf_verifier_log(env, "Exceeded max num of types");
1444 			return -E2BIG;
1445 		}
1446 
1447 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1448 		new_size = min_t(u32, BTF_MAX_TYPE,
1449 				 btf->types_size + expand_by);
1450 
1451 		new_types = kvcalloc(new_size, sizeof(*new_types),
1452 				     GFP_KERNEL | __GFP_NOWARN);
1453 		if (!new_types)
1454 			return -ENOMEM;
1455 
1456 		if (btf->nr_types == 0) {
1457 			if (!btf->base_btf) {
1458 				/* lazily init VOID type */
1459 				new_types[0] = &btf_void;
1460 				btf->nr_types++;
1461 			}
1462 		} else {
1463 			memcpy(new_types, btf->types,
1464 			       sizeof(*btf->types) * btf->nr_types);
1465 		}
1466 
1467 		kvfree(btf->types);
1468 		btf->types = new_types;
1469 		btf->types_size = new_size;
1470 	}
1471 
1472 	btf->types[btf->nr_types++] = t;
1473 
1474 	return 0;
1475 }
1476 
1477 static int btf_alloc_id(struct btf *btf)
1478 {
1479 	int id;
1480 
1481 	idr_preload(GFP_KERNEL);
1482 	spin_lock_bh(&btf_idr_lock);
1483 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1484 	if (id > 0)
1485 		btf->id = id;
1486 	spin_unlock_bh(&btf_idr_lock);
1487 	idr_preload_end();
1488 
1489 	if (WARN_ON_ONCE(!id))
1490 		return -ENOSPC;
1491 
1492 	return id > 0 ? 0 : id;
1493 }
1494 
1495 static void btf_free_id(struct btf *btf)
1496 {
1497 	unsigned long flags;
1498 
1499 	/*
1500 	 * In map-in-map, calling map_delete_elem() on outer
1501 	 * map will call bpf_map_put on the inner map.
1502 	 * It will then eventually call btf_free_id()
1503 	 * on the inner map.  Some of the map_delete_elem()
1504 	 * implementation may have irq disabled, so
1505 	 * we need to use the _irqsave() version instead
1506 	 * of the _bh() version.
1507 	 */
1508 	spin_lock_irqsave(&btf_idr_lock, flags);
1509 	idr_remove(&btf_idr, btf->id);
1510 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1511 }
1512 
1513 static void btf_free(struct btf *btf)
1514 {
1515 	kvfree(btf->types);
1516 	kvfree(btf->resolved_sizes);
1517 	kvfree(btf->resolved_ids);
1518 	kvfree(btf->data);
1519 	kfree(btf);
1520 }
1521 
1522 static void btf_free_rcu(struct rcu_head *rcu)
1523 {
1524 	struct btf *btf = container_of(rcu, struct btf, rcu);
1525 
1526 	btf_free(btf);
1527 }
1528 
1529 void btf_get(struct btf *btf)
1530 {
1531 	refcount_inc(&btf->refcnt);
1532 }
1533 
1534 void btf_put(struct btf *btf)
1535 {
1536 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1537 		btf_free_id(btf);
1538 		call_rcu(&btf->rcu, btf_free_rcu);
1539 	}
1540 }
1541 
1542 static int env_resolve_init(struct btf_verifier_env *env)
1543 {
1544 	struct btf *btf = env->btf;
1545 	u32 nr_types = btf->nr_types;
1546 	u32 *resolved_sizes = NULL;
1547 	u32 *resolved_ids = NULL;
1548 	u8 *visit_states = NULL;
1549 
1550 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1551 				  GFP_KERNEL | __GFP_NOWARN);
1552 	if (!resolved_sizes)
1553 		goto nomem;
1554 
1555 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1556 				GFP_KERNEL | __GFP_NOWARN);
1557 	if (!resolved_ids)
1558 		goto nomem;
1559 
1560 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1561 				GFP_KERNEL | __GFP_NOWARN);
1562 	if (!visit_states)
1563 		goto nomem;
1564 
1565 	btf->resolved_sizes = resolved_sizes;
1566 	btf->resolved_ids = resolved_ids;
1567 	env->visit_states = visit_states;
1568 
1569 	return 0;
1570 
1571 nomem:
1572 	kvfree(resolved_sizes);
1573 	kvfree(resolved_ids);
1574 	kvfree(visit_states);
1575 	return -ENOMEM;
1576 }
1577 
1578 static void btf_verifier_env_free(struct btf_verifier_env *env)
1579 {
1580 	kvfree(env->visit_states);
1581 	kfree(env);
1582 }
1583 
1584 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1585 				     const struct btf_type *next_type)
1586 {
1587 	switch (env->resolve_mode) {
1588 	case RESOLVE_TBD:
1589 		/* int, enum or void is a sink */
1590 		return !btf_type_needs_resolve(next_type);
1591 	case RESOLVE_PTR:
1592 		/* int, enum, void, struct, array, func or func_proto is a sink
1593 		 * for ptr
1594 		 */
1595 		return !btf_type_is_modifier(next_type) &&
1596 			!btf_type_is_ptr(next_type);
1597 	case RESOLVE_STRUCT_OR_ARRAY:
1598 		/* int, enum, void, ptr, func or func_proto is a sink
1599 		 * for struct and array
1600 		 */
1601 		return !btf_type_is_modifier(next_type) &&
1602 			!btf_type_is_array(next_type) &&
1603 			!btf_type_is_struct(next_type);
1604 	default:
1605 		BUG();
1606 	}
1607 }
1608 
1609 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1610 				 u32 type_id)
1611 {
1612 	/* base BTF types should be resolved by now */
1613 	if (type_id < env->btf->start_id)
1614 		return true;
1615 
1616 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1617 }
1618 
1619 static int env_stack_push(struct btf_verifier_env *env,
1620 			  const struct btf_type *t, u32 type_id)
1621 {
1622 	const struct btf *btf = env->btf;
1623 	struct resolve_vertex *v;
1624 
1625 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1626 		return -E2BIG;
1627 
1628 	if (type_id < btf->start_id
1629 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1630 		return -EEXIST;
1631 
1632 	env->visit_states[type_id - btf->start_id] = VISITED;
1633 
1634 	v = &env->stack[env->top_stack++];
1635 	v->t = t;
1636 	v->type_id = type_id;
1637 	v->next_member = 0;
1638 
1639 	if (env->resolve_mode == RESOLVE_TBD) {
1640 		if (btf_type_is_ptr(t))
1641 			env->resolve_mode = RESOLVE_PTR;
1642 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1643 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1644 	}
1645 
1646 	return 0;
1647 }
1648 
1649 static void env_stack_set_next_member(struct btf_verifier_env *env,
1650 				      u16 next_member)
1651 {
1652 	env->stack[env->top_stack - 1].next_member = next_member;
1653 }
1654 
1655 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1656 				   u32 resolved_type_id,
1657 				   u32 resolved_size)
1658 {
1659 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1660 	struct btf *btf = env->btf;
1661 
1662 	type_id -= btf->start_id; /* adjust to local type id */
1663 	btf->resolved_sizes[type_id] = resolved_size;
1664 	btf->resolved_ids[type_id] = resolved_type_id;
1665 	env->visit_states[type_id] = RESOLVED;
1666 }
1667 
1668 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1669 {
1670 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1671 }
1672 
1673 /* Resolve the size of a passed-in "type"
1674  *
1675  * type: is an array (e.g. u32 array[x][y])
1676  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1677  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1678  *             corresponds to the return type.
1679  * *elem_type: u32
1680  * *elem_id: id of u32
1681  * *total_nelems: (x * y).  Hence, individual elem size is
1682  *                (*type_size / *total_nelems)
1683  * *type_id: id of type if it's changed within the function, 0 if not
1684  *
1685  * type: is not an array (e.g. const struct X)
1686  * return type: type "struct X"
1687  * *type_size: sizeof(struct X)
1688  * *elem_type: same as return type ("struct X")
1689  * *elem_id: 0
1690  * *total_nelems: 1
1691  * *type_id: id of type if it's changed within the function, 0 if not
1692  */
1693 static const struct btf_type *
1694 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1695 		   u32 *type_size, const struct btf_type **elem_type,
1696 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1697 {
1698 	const struct btf_type *array_type = NULL;
1699 	const struct btf_array *array = NULL;
1700 	u32 i, size, nelems = 1, id = 0;
1701 
1702 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1703 		switch (BTF_INFO_KIND(type->info)) {
1704 		/* type->size can be used */
1705 		case BTF_KIND_INT:
1706 		case BTF_KIND_STRUCT:
1707 		case BTF_KIND_UNION:
1708 		case BTF_KIND_ENUM:
1709 		case BTF_KIND_FLOAT:
1710 			size = type->size;
1711 			goto resolved;
1712 
1713 		case BTF_KIND_PTR:
1714 			size = sizeof(void *);
1715 			goto resolved;
1716 
1717 		/* Modifiers */
1718 		case BTF_KIND_TYPEDEF:
1719 		case BTF_KIND_VOLATILE:
1720 		case BTF_KIND_CONST:
1721 		case BTF_KIND_RESTRICT:
1722 			id = type->type;
1723 			type = btf_type_by_id(btf, type->type);
1724 			break;
1725 
1726 		case BTF_KIND_ARRAY:
1727 			if (!array_type)
1728 				array_type = type;
1729 			array = btf_type_array(type);
1730 			if (nelems && array->nelems > U32_MAX / nelems)
1731 				return ERR_PTR(-EINVAL);
1732 			nelems *= array->nelems;
1733 			type = btf_type_by_id(btf, array->type);
1734 			break;
1735 
1736 		/* type without size */
1737 		default:
1738 			return ERR_PTR(-EINVAL);
1739 		}
1740 	}
1741 
1742 	return ERR_PTR(-EINVAL);
1743 
1744 resolved:
1745 	if (nelems && size > U32_MAX / nelems)
1746 		return ERR_PTR(-EINVAL);
1747 
1748 	*type_size = nelems * size;
1749 	if (total_nelems)
1750 		*total_nelems = nelems;
1751 	if (elem_type)
1752 		*elem_type = type;
1753 	if (elem_id)
1754 		*elem_id = array ? array->type : 0;
1755 	if (type_id && id)
1756 		*type_id = id;
1757 
1758 	return array_type ? : type;
1759 }
1760 
1761 const struct btf_type *
1762 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1763 		 u32 *type_size)
1764 {
1765 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1766 }
1767 
1768 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1769 {
1770 	while (type_id < btf->start_id)
1771 		btf = btf->base_btf;
1772 
1773 	return btf->resolved_ids[type_id - btf->start_id];
1774 }
1775 
1776 /* The input param "type_id" must point to a needs_resolve type */
1777 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1778 						  u32 *type_id)
1779 {
1780 	*type_id = btf_resolved_type_id(btf, *type_id);
1781 	return btf_type_by_id(btf, *type_id);
1782 }
1783 
1784 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1785 {
1786 	while (type_id < btf->start_id)
1787 		btf = btf->base_btf;
1788 
1789 	return btf->resolved_sizes[type_id - btf->start_id];
1790 }
1791 
1792 const struct btf_type *btf_type_id_size(const struct btf *btf,
1793 					u32 *type_id, u32 *ret_size)
1794 {
1795 	const struct btf_type *size_type;
1796 	u32 size_type_id = *type_id;
1797 	u32 size = 0;
1798 
1799 	size_type = btf_type_by_id(btf, size_type_id);
1800 	if (btf_type_nosize_or_null(size_type))
1801 		return NULL;
1802 
1803 	if (btf_type_has_size(size_type)) {
1804 		size = size_type->size;
1805 	} else if (btf_type_is_array(size_type)) {
1806 		size = btf_resolved_type_size(btf, size_type_id);
1807 	} else if (btf_type_is_ptr(size_type)) {
1808 		size = sizeof(void *);
1809 	} else {
1810 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1811 				 !btf_type_is_var(size_type)))
1812 			return NULL;
1813 
1814 		size_type_id = btf_resolved_type_id(btf, size_type_id);
1815 		size_type = btf_type_by_id(btf, size_type_id);
1816 		if (btf_type_nosize_or_null(size_type))
1817 			return NULL;
1818 		else if (btf_type_has_size(size_type))
1819 			size = size_type->size;
1820 		else if (btf_type_is_array(size_type))
1821 			size = btf_resolved_type_size(btf, size_type_id);
1822 		else if (btf_type_is_ptr(size_type))
1823 			size = sizeof(void *);
1824 		else
1825 			return NULL;
1826 	}
1827 
1828 	*type_id = size_type_id;
1829 	if (ret_size)
1830 		*ret_size = size;
1831 
1832 	return size_type;
1833 }
1834 
1835 static int btf_df_check_member(struct btf_verifier_env *env,
1836 			       const struct btf_type *struct_type,
1837 			       const struct btf_member *member,
1838 			       const struct btf_type *member_type)
1839 {
1840 	btf_verifier_log_basic(env, struct_type,
1841 			       "Unsupported check_member");
1842 	return -EINVAL;
1843 }
1844 
1845 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1846 				     const struct btf_type *struct_type,
1847 				     const struct btf_member *member,
1848 				     const struct btf_type *member_type)
1849 {
1850 	btf_verifier_log_basic(env, struct_type,
1851 			       "Unsupported check_kflag_member");
1852 	return -EINVAL;
1853 }
1854 
1855 /* Used for ptr, array struct/union and float type members.
1856  * int, enum and modifier types have their specific callback functions.
1857  */
1858 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1859 					  const struct btf_type *struct_type,
1860 					  const struct btf_member *member,
1861 					  const struct btf_type *member_type)
1862 {
1863 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1864 		btf_verifier_log_member(env, struct_type, member,
1865 					"Invalid member bitfield_size");
1866 		return -EINVAL;
1867 	}
1868 
1869 	/* bitfield size is 0, so member->offset represents bit offset only.
1870 	 * It is safe to call non kflag check_member variants.
1871 	 */
1872 	return btf_type_ops(member_type)->check_member(env, struct_type,
1873 						       member,
1874 						       member_type);
1875 }
1876 
1877 static int btf_df_resolve(struct btf_verifier_env *env,
1878 			  const struct resolve_vertex *v)
1879 {
1880 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1881 	return -EINVAL;
1882 }
1883 
1884 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1885 			u32 type_id, void *data, u8 bits_offsets,
1886 			struct btf_show *show)
1887 {
1888 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1889 }
1890 
1891 static int btf_int_check_member(struct btf_verifier_env *env,
1892 				const struct btf_type *struct_type,
1893 				const struct btf_member *member,
1894 				const struct btf_type *member_type)
1895 {
1896 	u32 int_data = btf_type_int(member_type);
1897 	u32 struct_bits_off = member->offset;
1898 	u32 struct_size = struct_type->size;
1899 	u32 nr_copy_bits;
1900 	u32 bytes_offset;
1901 
1902 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1903 		btf_verifier_log_member(env, struct_type, member,
1904 					"bits_offset exceeds U32_MAX");
1905 		return -EINVAL;
1906 	}
1907 
1908 	struct_bits_off += BTF_INT_OFFSET(int_data);
1909 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1910 	nr_copy_bits = BTF_INT_BITS(int_data) +
1911 		BITS_PER_BYTE_MASKED(struct_bits_off);
1912 
1913 	if (nr_copy_bits > BITS_PER_U128) {
1914 		btf_verifier_log_member(env, struct_type, member,
1915 					"nr_copy_bits exceeds 128");
1916 		return -EINVAL;
1917 	}
1918 
1919 	if (struct_size < bytes_offset ||
1920 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1921 		btf_verifier_log_member(env, struct_type, member,
1922 					"Member exceeds struct_size");
1923 		return -EINVAL;
1924 	}
1925 
1926 	return 0;
1927 }
1928 
1929 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1930 				      const struct btf_type *struct_type,
1931 				      const struct btf_member *member,
1932 				      const struct btf_type *member_type)
1933 {
1934 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1935 	u32 int_data = btf_type_int(member_type);
1936 	u32 struct_size = struct_type->size;
1937 	u32 nr_copy_bits;
1938 
1939 	/* a regular int type is required for the kflag int member */
1940 	if (!btf_type_int_is_regular(member_type)) {
1941 		btf_verifier_log_member(env, struct_type, member,
1942 					"Invalid member base type");
1943 		return -EINVAL;
1944 	}
1945 
1946 	/* check sanity of bitfield size */
1947 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1948 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1949 	nr_int_data_bits = BTF_INT_BITS(int_data);
1950 	if (!nr_bits) {
1951 		/* Not a bitfield member, member offset must be at byte
1952 		 * boundary.
1953 		 */
1954 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1955 			btf_verifier_log_member(env, struct_type, member,
1956 						"Invalid member offset");
1957 			return -EINVAL;
1958 		}
1959 
1960 		nr_bits = nr_int_data_bits;
1961 	} else if (nr_bits > nr_int_data_bits) {
1962 		btf_verifier_log_member(env, struct_type, member,
1963 					"Invalid member bitfield_size");
1964 		return -EINVAL;
1965 	}
1966 
1967 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1968 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1969 	if (nr_copy_bits > BITS_PER_U128) {
1970 		btf_verifier_log_member(env, struct_type, member,
1971 					"nr_copy_bits exceeds 128");
1972 		return -EINVAL;
1973 	}
1974 
1975 	if (struct_size < bytes_offset ||
1976 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1977 		btf_verifier_log_member(env, struct_type, member,
1978 					"Member exceeds struct_size");
1979 		return -EINVAL;
1980 	}
1981 
1982 	return 0;
1983 }
1984 
1985 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1986 			      const struct btf_type *t,
1987 			      u32 meta_left)
1988 {
1989 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1990 	u16 encoding;
1991 
1992 	if (meta_left < meta_needed) {
1993 		btf_verifier_log_basic(env, t,
1994 				       "meta_left:%u meta_needed:%u",
1995 				       meta_left, meta_needed);
1996 		return -EINVAL;
1997 	}
1998 
1999 	if (btf_type_vlen(t)) {
2000 		btf_verifier_log_type(env, t, "vlen != 0");
2001 		return -EINVAL;
2002 	}
2003 
2004 	if (btf_type_kflag(t)) {
2005 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2006 		return -EINVAL;
2007 	}
2008 
2009 	int_data = btf_type_int(t);
2010 	if (int_data & ~BTF_INT_MASK) {
2011 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2012 				       int_data);
2013 		return -EINVAL;
2014 	}
2015 
2016 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2017 
2018 	if (nr_bits > BITS_PER_U128) {
2019 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2020 				      BITS_PER_U128);
2021 		return -EINVAL;
2022 	}
2023 
2024 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2025 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2026 		return -EINVAL;
2027 	}
2028 
2029 	/*
2030 	 * Only one of the encoding bits is allowed and it
2031 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2032 	 * Multiple bits can be allowed later if it is found
2033 	 * to be insufficient.
2034 	 */
2035 	encoding = BTF_INT_ENCODING(int_data);
2036 	if (encoding &&
2037 	    encoding != BTF_INT_SIGNED &&
2038 	    encoding != BTF_INT_CHAR &&
2039 	    encoding != BTF_INT_BOOL) {
2040 		btf_verifier_log_type(env, t, "Unsupported encoding");
2041 		return -ENOTSUPP;
2042 	}
2043 
2044 	btf_verifier_log_type(env, t, NULL);
2045 
2046 	return meta_needed;
2047 }
2048 
2049 static void btf_int_log(struct btf_verifier_env *env,
2050 			const struct btf_type *t)
2051 {
2052 	int int_data = btf_type_int(t);
2053 
2054 	btf_verifier_log(env,
2055 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2056 			 t->size, BTF_INT_OFFSET(int_data),
2057 			 BTF_INT_BITS(int_data),
2058 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2059 }
2060 
2061 static void btf_int128_print(struct btf_show *show, void *data)
2062 {
2063 	/* data points to a __int128 number.
2064 	 * Suppose
2065 	 *     int128_num = *(__int128 *)data;
2066 	 * The below formulas shows what upper_num and lower_num represents:
2067 	 *     upper_num = int128_num >> 64;
2068 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2069 	 */
2070 	u64 upper_num, lower_num;
2071 
2072 #ifdef __BIG_ENDIAN_BITFIELD
2073 	upper_num = *(u64 *)data;
2074 	lower_num = *(u64 *)(data + 8);
2075 #else
2076 	upper_num = *(u64 *)(data + 8);
2077 	lower_num = *(u64 *)data;
2078 #endif
2079 	if (upper_num == 0)
2080 		btf_show_type_value(show, "0x%llx", lower_num);
2081 	else
2082 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2083 				     lower_num);
2084 }
2085 
2086 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2087 			     u16 right_shift_bits)
2088 {
2089 	u64 upper_num, lower_num;
2090 
2091 #ifdef __BIG_ENDIAN_BITFIELD
2092 	upper_num = print_num[0];
2093 	lower_num = print_num[1];
2094 #else
2095 	upper_num = print_num[1];
2096 	lower_num = print_num[0];
2097 #endif
2098 
2099 	/* shake out un-needed bits by shift/or operations */
2100 	if (left_shift_bits >= 64) {
2101 		upper_num = lower_num << (left_shift_bits - 64);
2102 		lower_num = 0;
2103 	} else {
2104 		upper_num = (upper_num << left_shift_bits) |
2105 			    (lower_num >> (64 - left_shift_bits));
2106 		lower_num = lower_num << left_shift_bits;
2107 	}
2108 
2109 	if (right_shift_bits >= 64) {
2110 		lower_num = upper_num >> (right_shift_bits - 64);
2111 		upper_num = 0;
2112 	} else {
2113 		lower_num = (lower_num >> right_shift_bits) |
2114 			    (upper_num << (64 - right_shift_bits));
2115 		upper_num = upper_num >> right_shift_bits;
2116 	}
2117 
2118 #ifdef __BIG_ENDIAN_BITFIELD
2119 	print_num[0] = upper_num;
2120 	print_num[1] = lower_num;
2121 #else
2122 	print_num[0] = lower_num;
2123 	print_num[1] = upper_num;
2124 #endif
2125 }
2126 
2127 static void btf_bitfield_show(void *data, u8 bits_offset,
2128 			      u8 nr_bits, struct btf_show *show)
2129 {
2130 	u16 left_shift_bits, right_shift_bits;
2131 	u8 nr_copy_bytes;
2132 	u8 nr_copy_bits;
2133 	u64 print_num[2] = {};
2134 
2135 	nr_copy_bits = nr_bits + bits_offset;
2136 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2137 
2138 	memcpy(print_num, data, nr_copy_bytes);
2139 
2140 #ifdef __BIG_ENDIAN_BITFIELD
2141 	left_shift_bits = bits_offset;
2142 #else
2143 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2144 #endif
2145 	right_shift_bits = BITS_PER_U128 - nr_bits;
2146 
2147 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2148 	btf_int128_print(show, print_num);
2149 }
2150 
2151 
2152 static void btf_int_bits_show(const struct btf *btf,
2153 			      const struct btf_type *t,
2154 			      void *data, u8 bits_offset,
2155 			      struct btf_show *show)
2156 {
2157 	u32 int_data = btf_type_int(t);
2158 	u8 nr_bits = BTF_INT_BITS(int_data);
2159 	u8 total_bits_offset;
2160 
2161 	/*
2162 	 * bits_offset is at most 7.
2163 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2164 	 */
2165 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2166 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2167 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2168 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2169 }
2170 
2171 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2172 			 u32 type_id, void *data, u8 bits_offset,
2173 			 struct btf_show *show)
2174 {
2175 	u32 int_data = btf_type_int(t);
2176 	u8 encoding = BTF_INT_ENCODING(int_data);
2177 	bool sign = encoding & BTF_INT_SIGNED;
2178 	u8 nr_bits = BTF_INT_BITS(int_data);
2179 	void *safe_data;
2180 
2181 	safe_data = btf_show_start_type(show, t, type_id, data);
2182 	if (!safe_data)
2183 		return;
2184 
2185 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2186 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2187 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2188 		goto out;
2189 	}
2190 
2191 	switch (nr_bits) {
2192 	case 128:
2193 		btf_int128_print(show, safe_data);
2194 		break;
2195 	case 64:
2196 		if (sign)
2197 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2198 		else
2199 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2200 		break;
2201 	case 32:
2202 		if (sign)
2203 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2204 		else
2205 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2206 		break;
2207 	case 16:
2208 		if (sign)
2209 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2210 		else
2211 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2212 		break;
2213 	case 8:
2214 		if (show->state.array_encoding == BTF_INT_CHAR) {
2215 			/* check for null terminator */
2216 			if (show->state.array_terminated)
2217 				break;
2218 			if (*(char *)data == '\0') {
2219 				show->state.array_terminated = 1;
2220 				break;
2221 			}
2222 			if (isprint(*(char *)data)) {
2223 				btf_show_type_value(show, "'%c'",
2224 						    *(char *)safe_data);
2225 				break;
2226 			}
2227 		}
2228 		if (sign)
2229 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2230 		else
2231 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2232 		break;
2233 	default:
2234 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2235 		break;
2236 	}
2237 out:
2238 	btf_show_end_type(show);
2239 }
2240 
2241 static const struct btf_kind_operations int_ops = {
2242 	.check_meta = btf_int_check_meta,
2243 	.resolve = btf_df_resolve,
2244 	.check_member = btf_int_check_member,
2245 	.check_kflag_member = btf_int_check_kflag_member,
2246 	.log_details = btf_int_log,
2247 	.show = btf_int_show,
2248 };
2249 
2250 static int btf_modifier_check_member(struct btf_verifier_env *env,
2251 				     const struct btf_type *struct_type,
2252 				     const struct btf_member *member,
2253 				     const struct btf_type *member_type)
2254 {
2255 	const struct btf_type *resolved_type;
2256 	u32 resolved_type_id = member->type;
2257 	struct btf_member resolved_member;
2258 	struct btf *btf = env->btf;
2259 
2260 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2261 	if (!resolved_type) {
2262 		btf_verifier_log_member(env, struct_type, member,
2263 					"Invalid member");
2264 		return -EINVAL;
2265 	}
2266 
2267 	resolved_member = *member;
2268 	resolved_member.type = resolved_type_id;
2269 
2270 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2271 							 &resolved_member,
2272 							 resolved_type);
2273 }
2274 
2275 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2276 					   const struct btf_type *struct_type,
2277 					   const struct btf_member *member,
2278 					   const struct btf_type *member_type)
2279 {
2280 	const struct btf_type *resolved_type;
2281 	u32 resolved_type_id = member->type;
2282 	struct btf_member resolved_member;
2283 	struct btf *btf = env->btf;
2284 
2285 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2286 	if (!resolved_type) {
2287 		btf_verifier_log_member(env, struct_type, member,
2288 					"Invalid member");
2289 		return -EINVAL;
2290 	}
2291 
2292 	resolved_member = *member;
2293 	resolved_member.type = resolved_type_id;
2294 
2295 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2296 							       &resolved_member,
2297 							       resolved_type);
2298 }
2299 
2300 static int btf_ptr_check_member(struct btf_verifier_env *env,
2301 				const struct btf_type *struct_type,
2302 				const struct btf_member *member,
2303 				const struct btf_type *member_type)
2304 {
2305 	u32 struct_size, struct_bits_off, bytes_offset;
2306 
2307 	struct_size = struct_type->size;
2308 	struct_bits_off = member->offset;
2309 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2310 
2311 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2312 		btf_verifier_log_member(env, struct_type, member,
2313 					"Member is not byte aligned");
2314 		return -EINVAL;
2315 	}
2316 
2317 	if (struct_size - bytes_offset < sizeof(void *)) {
2318 		btf_verifier_log_member(env, struct_type, member,
2319 					"Member exceeds struct_size");
2320 		return -EINVAL;
2321 	}
2322 
2323 	return 0;
2324 }
2325 
2326 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2327 				   const struct btf_type *t,
2328 				   u32 meta_left)
2329 {
2330 	if (btf_type_vlen(t)) {
2331 		btf_verifier_log_type(env, t, "vlen != 0");
2332 		return -EINVAL;
2333 	}
2334 
2335 	if (btf_type_kflag(t)) {
2336 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2337 		return -EINVAL;
2338 	}
2339 
2340 	if (!BTF_TYPE_ID_VALID(t->type)) {
2341 		btf_verifier_log_type(env, t, "Invalid type_id");
2342 		return -EINVAL;
2343 	}
2344 
2345 	/* typedef type must have a valid name, and other ref types,
2346 	 * volatile, const, restrict, should have a null name.
2347 	 */
2348 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2349 		if (!t->name_off ||
2350 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2351 			btf_verifier_log_type(env, t, "Invalid name");
2352 			return -EINVAL;
2353 		}
2354 	} else {
2355 		if (t->name_off) {
2356 			btf_verifier_log_type(env, t, "Invalid name");
2357 			return -EINVAL;
2358 		}
2359 	}
2360 
2361 	btf_verifier_log_type(env, t, NULL);
2362 
2363 	return 0;
2364 }
2365 
2366 static int btf_modifier_resolve(struct btf_verifier_env *env,
2367 				const struct resolve_vertex *v)
2368 {
2369 	const struct btf_type *t = v->t;
2370 	const struct btf_type *next_type;
2371 	u32 next_type_id = t->type;
2372 	struct btf *btf = env->btf;
2373 
2374 	next_type = btf_type_by_id(btf, next_type_id);
2375 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2376 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2377 		return -EINVAL;
2378 	}
2379 
2380 	if (!env_type_is_resolve_sink(env, next_type) &&
2381 	    !env_type_is_resolved(env, next_type_id))
2382 		return env_stack_push(env, next_type, next_type_id);
2383 
2384 	/* Figure out the resolved next_type_id with size.
2385 	 * They will be stored in the current modifier's
2386 	 * resolved_ids and resolved_sizes such that it can
2387 	 * save us a few type-following when we use it later (e.g. in
2388 	 * pretty print).
2389 	 */
2390 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2391 		if (env_type_is_resolved(env, next_type_id))
2392 			next_type = btf_type_id_resolve(btf, &next_type_id);
2393 
2394 		/* "typedef void new_void", "const void"...etc */
2395 		if (!btf_type_is_void(next_type) &&
2396 		    !btf_type_is_fwd(next_type) &&
2397 		    !btf_type_is_func_proto(next_type)) {
2398 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2399 			return -EINVAL;
2400 		}
2401 	}
2402 
2403 	env_stack_pop_resolved(env, next_type_id, 0);
2404 
2405 	return 0;
2406 }
2407 
2408 static int btf_var_resolve(struct btf_verifier_env *env,
2409 			   const struct resolve_vertex *v)
2410 {
2411 	const struct btf_type *next_type;
2412 	const struct btf_type *t = v->t;
2413 	u32 next_type_id = t->type;
2414 	struct btf *btf = env->btf;
2415 
2416 	next_type = btf_type_by_id(btf, next_type_id);
2417 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2418 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2419 		return -EINVAL;
2420 	}
2421 
2422 	if (!env_type_is_resolve_sink(env, next_type) &&
2423 	    !env_type_is_resolved(env, next_type_id))
2424 		return env_stack_push(env, next_type, next_type_id);
2425 
2426 	if (btf_type_is_modifier(next_type)) {
2427 		const struct btf_type *resolved_type;
2428 		u32 resolved_type_id;
2429 
2430 		resolved_type_id = next_type_id;
2431 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2432 
2433 		if (btf_type_is_ptr(resolved_type) &&
2434 		    !env_type_is_resolve_sink(env, resolved_type) &&
2435 		    !env_type_is_resolved(env, resolved_type_id))
2436 			return env_stack_push(env, resolved_type,
2437 					      resolved_type_id);
2438 	}
2439 
2440 	/* We must resolve to something concrete at this point, no
2441 	 * forward types or similar that would resolve to size of
2442 	 * zero is allowed.
2443 	 */
2444 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2445 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2446 		return -EINVAL;
2447 	}
2448 
2449 	env_stack_pop_resolved(env, next_type_id, 0);
2450 
2451 	return 0;
2452 }
2453 
2454 static int btf_ptr_resolve(struct btf_verifier_env *env,
2455 			   const struct resolve_vertex *v)
2456 {
2457 	const struct btf_type *next_type;
2458 	const struct btf_type *t = v->t;
2459 	u32 next_type_id = t->type;
2460 	struct btf *btf = env->btf;
2461 
2462 	next_type = btf_type_by_id(btf, next_type_id);
2463 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2464 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2465 		return -EINVAL;
2466 	}
2467 
2468 	if (!env_type_is_resolve_sink(env, next_type) &&
2469 	    !env_type_is_resolved(env, next_type_id))
2470 		return env_stack_push(env, next_type, next_type_id);
2471 
2472 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2473 	 * the modifier may have stopped resolving when it was resolved
2474 	 * to a ptr (last-resolved-ptr).
2475 	 *
2476 	 * We now need to continue from the last-resolved-ptr to
2477 	 * ensure the last-resolved-ptr will not referring back to
2478 	 * the currenct ptr (t).
2479 	 */
2480 	if (btf_type_is_modifier(next_type)) {
2481 		const struct btf_type *resolved_type;
2482 		u32 resolved_type_id;
2483 
2484 		resolved_type_id = next_type_id;
2485 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2486 
2487 		if (btf_type_is_ptr(resolved_type) &&
2488 		    !env_type_is_resolve_sink(env, resolved_type) &&
2489 		    !env_type_is_resolved(env, resolved_type_id))
2490 			return env_stack_push(env, resolved_type,
2491 					      resolved_type_id);
2492 	}
2493 
2494 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2495 		if (env_type_is_resolved(env, next_type_id))
2496 			next_type = btf_type_id_resolve(btf, &next_type_id);
2497 
2498 		if (!btf_type_is_void(next_type) &&
2499 		    !btf_type_is_fwd(next_type) &&
2500 		    !btf_type_is_func_proto(next_type)) {
2501 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2502 			return -EINVAL;
2503 		}
2504 	}
2505 
2506 	env_stack_pop_resolved(env, next_type_id, 0);
2507 
2508 	return 0;
2509 }
2510 
2511 static void btf_modifier_show(const struct btf *btf,
2512 			      const struct btf_type *t,
2513 			      u32 type_id, void *data,
2514 			      u8 bits_offset, struct btf_show *show)
2515 {
2516 	if (btf->resolved_ids)
2517 		t = btf_type_id_resolve(btf, &type_id);
2518 	else
2519 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2520 
2521 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2522 }
2523 
2524 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2525 			 u32 type_id, void *data, u8 bits_offset,
2526 			 struct btf_show *show)
2527 {
2528 	t = btf_type_id_resolve(btf, &type_id);
2529 
2530 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2531 }
2532 
2533 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2534 			 u32 type_id, void *data, u8 bits_offset,
2535 			 struct btf_show *show)
2536 {
2537 	void *safe_data;
2538 
2539 	safe_data = btf_show_start_type(show, t, type_id, data);
2540 	if (!safe_data)
2541 		return;
2542 
2543 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2544 	if (show->flags & BTF_SHOW_PTR_RAW)
2545 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2546 	else
2547 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2548 	btf_show_end_type(show);
2549 }
2550 
2551 static void btf_ref_type_log(struct btf_verifier_env *env,
2552 			     const struct btf_type *t)
2553 {
2554 	btf_verifier_log(env, "type_id=%u", t->type);
2555 }
2556 
2557 static struct btf_kind_operations modifier_ops = {
2558 	.check_meta = btf_ref_type_check_meta,
2559 	.resolve = btf_modifier_resolve,
2560 	.check_member = btf_modifier_check_member,
2561 	.check_kflag_member = btf_modifier_check_kflag_member,
2562 	.log_details = btf_ref_type_log,
2563 	.show = btf_modifier_show,
2564 };
2565 
2566 static struct btf_kind_operations ptr_ops = {
2567 	.check_meta = btf_ref_type_check_meta,
2568 	.resolve = btf_ptr_resolve,
2569 	.check_member = btf_ptr_check_member,
2570 	.check_kflag_member = btf_generic_check_kflag_member,
2571 	.log_details = btf_ref_type_log,
2572 	.show = btf_ptr_show,
2573 };
2574 
2575 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2576 			      const struct btf_type *t,
2577 			      u32 meta_left)
2578 {
2579 	if (btf_type_vlen(t)) {
2580 		btf_verifier_log_type(env, t, "vlen != 0");
2581 		return -EINVAL;
2582 	}
2583 
2584 	if (t->type) {
2585 		btf_verifier_log_type(env, t, "type != 0");
2586 		return -EINVAL;
2587 	}
2588 
2589 	/* fwd type must have a valid name */
2590 	if (!t->name_off ||
2591 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2592 		btf_verifier_log_type(env, t, "Invalid name");
2593 		return -EINVAL;
2594 	}
2595 
2596 	btf_verifier_log_type(env, t, NULL);
2597 
2598 	return 0;
2599 }
2600 
2601 static void btf_fwd_type_log(struct btf_verifier_env *env,
2602 			     const struct btf_type *t)
2603 {
2604 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2605 }
2606 
2607 static struct btf_kind_operations fwd_ops = {
2608 	.check_meta = btf_fwd_check_meta,
2609 	.resolve = btf_df_resolve,
2610 	.check_member = btf_df_check_member,
2611 	.check_kflag_member = btf_df_check_kflag_member,
2612 	.log_details = btf_fwd_type_log,
2613 	.show = btf_df_show,
2614 };
2615 
2616 static int btf_array_check_member(struct btf_verifier_env *env,
2617 				  const struct btf_type *struct_type,
2618 				  const struct btf_member *member,
2619 				  const struct btf_type *member_type)
2620 {
2621 	u32 struct_bits_off = member->offset;
2622 	u32 struct_size, bytes_offset;
2623 	u32 array_type_id, array_size;
2624 	struct btf *btf = env->btf;
2625 
2626 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2627 		btf_verifier_log_member(env, struct_type, member,
2628 					"Member is not byte aligned");
2629 		return -EINVAL;
2630 	}
2631 
2632 	array_type_id = member->type;
2633 	btf_type_id_size(btf, &array_type_id, &array_size);
2634 	struct_size = struct_type->size;
2635 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2636 	if (struct_size - bytes_offset < array_size) {
2637 		btf_verifier_log_member(env, struct_type, member,
2638 					"Member exceeds struct_size");
2639 		return -EINVAL;
2640 	}
2641 
2642 	return 0;
2643 }
2644 
2645 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2646 				const struct btf_type *t,
2647 				u32 meta_left)
2648 {
2649 	const struct btf_array *array = btf_type_array(t);
2650 	u32 meta_needed = sizeof(*array);
2651 
2652 	if (meta_left < meta_needed) {
2653 		btf_verifier_log_basic(env, t,
2654 				       "meta_left:%u meta_needed:%u",
2655 				       meta_left, meta_needed);
2656 		return -EINVAL;
2657 	}
2658 
2659 	/* array type should not have a name */
2660 	if (t->name_off) {
2661 		btf_verifier_log_type(env, t, "Invalid name");
2662 		return -EINVAL;
2663 	}
2664 
2665 	if (btf_type_vlen(t)) {
2666 		btf_verifier_log_type(env, t, "vlen != 0");
2667 		return -EINVAL;
2668 	}
2669 
2670 	if (btf_type_kflag(t)) {
2671 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2672 		return -EINVAL;
2673 	}
2674 
2675 	if (t->size) {
2676 		btf_verifier_log_type(env, t, "size != 0");
2677 		return -EINVAL;
2678 	}
2679 
2680 	/* Array elem type and index type cannot be in type void,
2681 	 * so !array->type and !array->index_type are not allowed.
2682 	 */
2683 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2684 		btf_verifier_log_type(env, t, "Invalid elem");
2685 		return -EINVAL;
2686 	}
2687 
2688 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2689 		btf_verifier_log_type(env, t, "Invalid index");
2690 		return -EINVAL;
2691 	}
2692 
2693 	btf_verifier_log_type(env, t, NULL);
2694 
2695 	return meta_needed;
2696 }
2697 
2698 static int btf_array_resolve(struct btf_verifier_env *env,
2699 			     const struct resolve_vertex *v)
2700 {
2701 	const struct btf_array *array = btf_type_array(v->t);
2702 	const struct btf_type *elem_type, *index_type;
2703 	u32 elem_type_id, index_type_id;
2704 	struct btf *btf = env->btf;
2705 	u32 elem_size;
2706 
2707 	/* Check array->index_type */
2708 	index_type_id = array->index_type;
2709 	index_type = btf_type_by_id(btf, index_type_id);
2710 	if (btf_type_nosize_or_null(index_type) ||
2711 	    btf_type_is_resolve_source_only(index_type)) {
2712 		btf_verifier_log_type(env, v->t, "Invalid index");
2713 		return -EINVAL;
2714 	}
2715 
2716 	if (!env_type_is_resolve_sink(env, index_type) &&
2717 	    !env_type_is_resolved(env, index_type_id))
2718 		return env_stack_push(env, index_type, index_type_id);
2719 
2720 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2721 	if (!index_type || !btf_type_is_int(index_type) ||
2722 	    !btf_type_int_is_regular(index_type)) {
2723 		btf_verifier_log_type(env, v->t, "Invalid index");
2724 		return -EINVAL;
2725 	}
2726 
2727 	/* Check array->type */
2728 	elem_type_id = array->type;
2729 	elem_type = btf_type_by_id(btf, elem_type_id);
2730 	if (btf_type_nosize_or_null(elem_type) ||
2731 	    btf_type_is_resolve_source_only(elem_type)) {
2732 		btf_verifier_log_type(env, v->t,
2733 				      "Invalid elem");
2734 		return -EINVAL;
2735 	}
2736 
2737 	if (!env_type_is_resolve_sink(env, elem_type) &&
2738 	    !env_type_is_resolved(env, elem_type_id))
2739 		return env_stack_push(env, elem_type, elem_type_id);
2740 
2741 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2742 	if (!elem_type) {
2743 		btf_verifier_log_type(env, v->t, "Invalid elem");
2744 		return -EINVAL;
2745 	}
2746 
2747 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2748 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2749 		return -EINVAL;
2750 	}
2751 
2752 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2753 		btf_verifier_log_type(env, v->t,
2754 				      "Array size overflows U32_MAX");
2755 		return -EINVAL;
2756 	}
2757 
2758 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2759 
2760 	return 0;
2761 }
2762 
2763 static void btf_array_log(struct btf_verifier_env *env,
2764 			  const struct btf_type *t)
2765 {
2766 	const struct btf_array *array = btf_type_array(t);
2767 
2768 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2769 			 array->type, array->index_type, array->nelems);
2770 }
2771 
2772 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2773 			     u32 type_id, void *data, u8 bits_offset,
2774 			     struct btf_show *show)
2775 {
2776 	const struct btf_array *array = btf_type_array(t);
2777 	const struct btf_kind_operations *elem_ops;
2778 	const struct btf_type *elem_type;
2779 	u32 i, elem_size = 0, elem_type_id;
2780 	u16 encoding = 0;
2781 
2782 	elem_type_id = array->type;
2783 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2784 	if (elem_type && btf_type_has_size(elem_type))
2785 		elem_size = elem_type->size;
2786 
2787 	if (elem_type && btf_type_is_int(elem_type)) {
2788 		u32 int_type = btf_type_int(elem_type);
2789 
2790 		encoding = BTF_INT_ENCODING(int_type);
2791 
2792 		/*
2793 		 * BTF_INT_CHAR encoding never seems to be set for
2794 		 * char arrays, so if size is 1 and element is
2795 		 * printable as a char, we'll do that.
2796 		 */
2797 		if (elem_size == 1)
2798 			encoding = BTF_INT_CHAR;
2799 	}
2800 
2801 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2802 		return;
2803 
2804 	if (!elem_type)
2805 		goto out;
2806 	elem_ops = btf_type_ops(elem_type);
2807 
2808 	for (i = 0; i < array->nelems; i++) {
2809 
2810 		btf_show_start_array_member(show);
2811 
2812 		elem_ops->show(btf, elem_type, elem_type_id, data,
2813 			       bits_offset, show);
2814 		data += elem_size;
2815 
2816 		btf_show_end_array_member(show);
2817 
2818 		if (show->state.array_terminated)
2819 			break;
2820 	}
2821 out:
2822 	btf_show_end_array_type(show);
2823 }
2824 
2825 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2826 			   u32 type_id, void *data, u8 bits_offset,
2827 			   struct btf_show *show)
2828 {
2829 	const struct btf_member *m = show->state.member;
2830 
2831 	/*
2832 	 * First check if any members would be shown (are non-zero).
2833 	 * See comments above "struct btf_show" definition for more
2834 	 * details on how this works at a high-level.
2835 	 */
2836 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2837 		if (!show->state.depth_check) {
2838 			show->state.depth_check = show->state.depth + 1;
2839 			show->state.depth_to_show = 0;
2840 		}
2841 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
2842 		show->state.member = m;
2843 
2844 		if (show->state.depth_check != show->state.depth + 1)
2845 			return;
2846 		show->state.depth_check = 0;
2847 
2848 		if (show->state.depth_to_show <= show->state.depth)
2849 			return;
2850 		/*
2851 		 * Reaching here indicates we have recursed and found
2852 		 * non-zero array member(s).
2853 		 */
2854 	}
2855 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
2856 }
2857 
2858 static struct btf_kind_operations array_ops = {
2859 	.check_meta = btf_array_check_meta,
2860 	.resolve = btf_array_resolve,
2861 	.check_member = btf_array_check_member,
2862 	.check_kflag_member = btf_generic_check_kflag_member,
2863 	.log_details = btf_array_log,
2864 	.show = btf_array_show,
2865 };
2866 
2867 static int btf_struct_check_member(struct btf_verifier_env *env,
2868 				   const struct btf_type *struct_type,
2869 				   const struct btf_member *member,
2870 				   const struct btf_type *member_type)
2871 {
2872 	u32 struct_bits_off = member->offset;
2873 	u32 struct_size, bytes_offset;
2874 
2875 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2876 		btf_verifier_log_member(env, struct_type, member,
2877 					"Member is not byte aligned");
2878 		return -EINVAL;
2879 	}
2880 
2881 	struct_size = struct_type->size;
2882 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2883 	if (struct_size - bytes_offset < member_type->size) {
2884 		btf_verifier_log_member(env, struct_type, member,
2885 					"Member exceeds struct_size");
2886 		return -EINVAL;
2887 	}
2888 
2889 	return 0;
2890 }
2891 
2892 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2893 				 const struct btf_type *t,
2894 				 u32 meta_left)
2895 {
2896 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2897 	const struct btf_member *member;
2898 	u32 meta_needed, last_offset;
2899 	struct btf *btf = env->btf;
2900 	u32 struct_size = t->size;
2901 	u32 offset;
2902 	u16 i;
2903 
2904 	meta_needed = btf_type_vlen(t) * sizeof(*member);
2905 	if (meta_left < meta_needed) {
2906 		btf_verifier_log_basic(env, t,
2907 				       "meta_left:%u meta_needed:%u",
2908 				       meta_left, meta_needed);
2909 		return -EINVAL;
2910 	}
2911 
2912 	/* struct type either no name or a valid one */
2913 	if (t->name_off &&
2914 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2915 		btf_verifier_log_type(env, t, "Invalid name");
2916 		return -EINVAL;
2917 	}
2918 
2919 	btf_verifier_log_type(env, t, NULL);
2920 
2921 	last_offset = 0;
2922 	for_each_member(i, t, member) {
2923 		if (!btf_name_offset_valid(btf, member->name_off)) {
2924 			btf_verifier_log_member(env, t, member,
2925 						"Invalid member name_offset:%u",
2926 						member->name_off);
2927 			return -EINVAL;
2928 		}
2929 
2930 		/* struct member either no name or a valid one */
2931 		if (member->name_off &&
2932 		    !btf_name_valid_identifier(btf, member->name_off)) {
2933 			btf_verifier_log_member(env, t, member, "Invalid name");
2934 			return -EINVAL;
2935 		}
2936 		/* A member cannot be in type void */
2937 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2938 			btf_verifier_log_member(env, t, member,
2939 						"Invalid type_id");
2940 			return -EINVAL;
2941 		}
2942 
2943 		offset = btf_member_bit_offset(t, member);
2944 		if (is_union && offset) {
2945 			btf_verifier_log_member(env, t, member,
2946 						"Invalid member bits_offset");
2947 			return -EINVAL;
2948 		}
2949 
2950 		/*
2951 		 * ">" instead of ">=" because the last member could be
2952 		 * "char a[0];"
2953 		 */
2954 		if (last_offset > offset) {
2955 			btf_verifier_log_member(env, t, member,
2956 						"Invalid member bits_offset");
2957 			return -EINVAL;
2958 		}
2959 
2960 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2961 			btf_verifier_log_member(env, t, member,
2962 						"Member bits_offset exceeds its struct size");
2963 			return -EINVAL;
2964 		}
2965 
2966 		btf_verifier_log_member(env, t, member, NULL);
2967 		last_offset = offset;
2968 	}
2969 
2970 	return meta_needed;
2971 }
2972 
2973 static int btf_struct_resolve(struct btf_verifier_env *env,
2974 			      const struct resolve_vertex *v)
2975 {
2976 	const struct btf_member *member;
2977 	int err;
2978 	u16 i;
2979 
2980 	/* Before continue resolving the next_member,
2981 	 * ensure the last member is indeed resolved to a
2982 	 * type with size info.
2983 	 */
2984 	if (v->next_member) {
2985 		const struct btf_type *last_member_type;
2986 		const struct btf_member *last_member;
2987 		u16 last_member_type_id;
2988 
2989 		last_member = btf_type_member(v->t) + v->next_member - 1;
2990 		last_member_type_id = last_member->type;
2991 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
2992 						       last_member_type_id)))
2993 			return -EINVAL;
2994 
2995 		last_member_type = btf_type_by_id(env->btf,
2996 						  last_member_type_id);
2997 		if (btf_type_kflag(v->t))
2998 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2999 								last_member,
3000 								last_member_type);
3001 		else
3002 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3003 								last_member,
3004 								last_member_type);
3005 		if (err)
3006 			return err;
3007 	}
3008 
3009 	for_each_member_from(i, v->next_member, v->t, member) {
3010 		u32 member_type_id = member->type;
3011 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3012 								member_type_id);
3013 
3014 		if (btf_type_nosize_or_null(member_type) ||
3015 		    btf_type_is_resolve_source_only(member_type)) {
3016 			btf_verifier_log_member(env, v->t, member,
3017 						"Invalid member");
3018 			return -EINVAL;
3019 		}
3020 
3021 		if (!env_type_is_resolve_sink(env, member_type) &&
3022 		    !env_type_is_resolved(env, member_type_id)) {
3023 			env_stack_set_next_member(env, i + 1);
3024 			return env_stack_push(env, member_type, member_type_id);
3025 		}
3026 
3027 		if (btf_type_kflag(v->t))
3028 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3029 									    member,
3030 									    member_type);
3031 		else
3032 			err = btf_type_ops(member_type)->check_member(env, v->t,
3033 								      member,
3034 								      member_type);
3035 		if (err)
3036 			return err;
3037 	}
3038 
3039 	env_stack_pop_resolved(env, 0, 0);
3040 
3041 	return 0;
3042 }
3043 
3044 static void btf_struct_log(struct btf_verifier_env *env,
3045 			   const struct btf_type *t)
3046 {
3047 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3048 }
3049 
3050 /* find 'struct bpf_spin_lock' in map value.
3051  * return >= 0 offset if found
3052  * and < 0 in case of error
3053  */
3054 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3055 {
3056 	const struct btf_member *member;
3057 	u32 i, off = -ENOENT;
3058 
3059 	if (!__btf_type_is_struct(t))
3060 		return -EINVAL;
3061 
3062 	for_each_member(i, t, member) {
3063 		const struct btf_type *member_type = btf_type_by_id(btf,
3064 								    member->type);
3065 		if (!__btf_type_is_struct(member_type))
3066 			continue;
3067 		if (member_type->size != sizeof(struct bpf_spin_lock))
3068 			continue;
3069 		if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
3070 			   "bpf_spin_lock"))
3071 			continue;
3072 		if (off != -ENOENT)
3073 			/* only one 'struct bpf_spin_lock' is allowed */
3074 			return -E2BIG;
3075 		off = btf_member_bit_offset(t, member);
3076 		if (off % 8)
3077 			/* valid C code cannot generate such BTF */
3078 			return -EINVAL;
3079 		off /= 8;
3080 		if (off % __alignof__(struct bpf_spin_lock))
3081 			/* valid struct bpf_spin_lock will be 4 byte aligned */
3082 			return -EINVAL;
3083 	}
3084 	return off;
3085 }
3086 
3087 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3088 			      u32 type_id, void *data, u8 bits_offset,
3089 			      struct btf_show *show)
3090 {
3091 	const struct btf_member *member;
3092 	void *safe_data;
3093 	u32 i;
3094 
3095 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3096 	if (!safe_data)
3097 		return;
3098 
3099 	for_each_member(i, t, member) {
3100 		const struct btf_type *member_type = btf_type_by_id(btf,
3101 								member->type);
3102 		const struct btf_kind_operations *ops;
3103 		u32 member_offset, bitfield_size;
3104 		u32 bytes_offset;
3105 		u8 bits8_offset;
3106 
3107 		btf_show_start_member(show, member);
3108 
3109 		member_offset = btf_member_bit_offset(t, member);
3110 		bitfield_size = btf_member_bitfield_size(t, member);
3111 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3112 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3113 		if (bitfield_size) {
3114 			safe_data = btf_show_start_type(show, member_type,
3115 							member->type,
3116 							data + bytes_offset);
3117 			if (safe_data)
3118 				btf_bitfield_show(safe_data,
3119 						  bits8_offset,
3120 						  bitfield_size, show);
3121 			btf_show_end_type(show);
3122 		} else {
3123 			ops = btf_type_ops(member_type);
3124 			ops->show(btf, member_type, member->type,
3125 				  data + bytes_offset, bits8_offset, show);
3126 		}
3127 
3128 		btf_show_end_member(show);
3129 	}
3130 
3131 	btf_show_end_struct_type(show);
3132 }
3133 
3134 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3135 			    u32 type_id, void *data, u8 bits_offset,
3136 			    struct btf_show *show)
3137 {
3138 	const struct btf_member *m = show->state.member;
3139 
3140 	/*
3141 	 * First check if any members would be shown (are non-zero).
3142 	 * See comments above "struct btf_show" definition for more
3143 	 * details on how this works at a high-level.
3144 	 */
3145 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3146 		if (!show->state.depth_check) {
3147 			show->state.depth_check = show->state.depth + 1;
3148 			show->state.depth_to_show = 0;
3149 		}
3150 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3151 		/* Restore saved member data here */
3152 		show->state.member = m;
3153 		if (show->state.depth_check != show->state.depth + 1)
3154 			return;
3155 		show->state.depth_check = 0;
3156 
3157 		if (show->state.depth_to_show <= show->state.depth)
3158 			return;
3159 		/*
3160 		 * Reaching here indicates we have recursed and found
3161 		 * non-zero child values.
3162 		 */
3163 	}
3164 
3165 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3166 }
3167 
3168 static struct btf_kind_operations struct_ops = {
3169 	.check_meta = btf_struct_check_meta,
3170 	.resolve = btf_struct_resolve,
3171 	.check_member = btf_struct_check_member,
3172 	.check_kflag_member = btf_generic_check_kflag_member,
3173 	.log_details = btf_struct_log,
3174 	.show = btf_struct_show,
3175 };
3176 
3177 static int btf_enum_check_member(struct btf_verifier_env *env,
3178 				 const struct btf_type *struct_type,
3179 				 const struct btf_member *member,
3180 				 const struct btf_type *member_type)
3181 {
3182 	u32 struct_bits_off = member->offset;
3183 	u32 struct_size, bytes_offset;
3184 
3185 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3186 		btf_verifier_log_member(env, struct_type, member,
3187 					"Member is not byte aligned");
3188 		return -EINVAL;
3189 	}
3190 
3191 	struct_size = struct_type->size;
3192 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3193 	if (struct_size - bytes_offset < member_type->size) {
3194 		btf_verifier_log_member(env, struct_type, member,
3195 					"Member exceeds struct_size");
3196 		return -EINVAL;
3197 	}
3198 
3199 	return 0;
3200 }
3201 
3202 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3203 				       const struct btf_type *struct_type,
3204 				       const struct btf_member *member,
3205 				       const struct btf_type *member_type)
3206 {
3207 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3208 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3209 
3210 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3211 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3212 	if (!nr_bits) {
3213 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3214 			btf_verifier_log_member(env, struct_type, member,
3215 						"Member is not byte aligned");
3216 			return -EINVAL;
3217 		}
3218 
3219 		nr_bits = int_bitsize;
3220 	} else if (nr_bits > int_bitsize) {
3221 		btf_verifier_log_member(env, struct_type, member,
3222 					"Invalid member bitfield_size");
3223 		return -EINVAL;
3224 	}
3225 
3226 	struct_size = struct_type->size;
3227 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3228 	if (struct_size < bytes_end) {
3229 		btf_verifier_log_member(env, struct_type, member,
3230 					"Member exceeds struct_size");
3231 		return -EINVAL;
3232 	}
3233 
3234 	return 0;
3235 }
3236 
3237 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3238 			       const struct btf_type *t,
3239 			       u32 meta_left)
3240 {
3241 	const struct btf_enum *enums = btf_type_enum(t);
3242 	struct btf *btf = env->btf;
3243 	u16 i, nr_enums;
3244 	u32 meta_needed;
3245 
3246 	nr_enums = btf_type_vlen(t);
3247 	meta_needed = nr_enums * sizeof(*enums);
3248 
3249 	if (meta_left < meta_needed) {
3250 		btf_verifier_log_basic(env, t,
3251 				       "meta_left:%u meta_needed:%u",
3252 				       meta_left, meta_needed);
3253 		return -EINVAL;
3254 	}
3255 
3256 	if (btf_type_kflag(t)) {
3257 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3258 		return -EINVAL;
3259 	}
3260 
3261 	if (t->size > 8 || !is_power_of_2(t->size)) {
3262 		btf_verifier_log_type(env, t, "Unexpected size");
3263 		return -EINVAL;
3264 	}
3265 
3266 	/* enum type either no name or a valid one */
3267 	if (t->name_off &&
3268 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3269 		btf_verifier_log_type(env, t, "Invalid name");
3270 		return -EINVAL;
3271 	}
3272 
3273 	btf_verifier_log_type(env, t, NULL);
3274 
3275 	for (i = 0; i < nr_enums; i++) {
3276 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3277 			btf_verifier_log(env, "\tInvalid name_offset:%u",
3278 					 enums[i].name_off);
3279 			return -EINVAL;
3280 		}
3281 
3282 		/* enum member must have a valid name */
3283 		if (!enums[i].name_off ||
3284 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3285 			btf_verifier_log_type(env, t, "Invalid name");
3286 			return -EINVAL;
3287 		}
3288 
3289 		if (env->log.level == BPF_LOG_KERNEL)
3290 			continue;
3291 		btf_verifier_log(env, "\t%s val=%d\n",
3292 				 __btf_name_by_offset(btf, enums[i].name_off),
3293 				 enums[i].val);
3294 	}
3295 
3296 	return meta_needed;
3297 }
3298 
3299 static void btf_enum_log(struct btf_verifier_env *env,
3300 			 const struct btf_type *t)
3301 {
3302 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3303 }
3304 
3305 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3306 			  u32 type_id, void *data, u8 bits_offset,
3307 			  struct btf_show *show)
3308 {
3309 	const struct btf_enum *enums = btf_type_enum(t);
3310 	u32 i, nr_enums = btf_type_vlen(t);
3311 	void *safe_data;
3312 	int v;
3313 
3314 	safe_data = btf_show_start_type(show, t, type_id, data);
3315 	if (!safe_data)
3316 		return;
3317 
3318 	v = *(int *)safe_data;
3319 
3320 	for (i = 0; i < nr_enums; i++) {
3321 		if (v != enums[i].val)
3322 			continue;
3323 
3324 		btf_show_type_value(show, "%s",
3325 				    __btf_name_by_offset(btf,
3326 							 enums[i].name_off));
3327 
3328 		btf_show_end_type(show);
3329 		return;
3330 	}
3331 
3332 	btf_show_type_value(show, "%d", v);
3333 	btf_show_end_type(show);
3334 }
3335 
3336 static struct btf_kind_operations enum_ops = {
3337 	.check_meta = btf_enum_check_meta,
3338 	.resolve = btf_df_resolve,
3339 	.check_member = btf_enum_check_member,
3340 	.check_kflag_member = btf_enum_check_kflag_member,
3341 	.log_details = btf_enum_log,
3342 	.show = btf_enum_show,
3343 };
3344 
3345 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3346 				     const struct btf_type *t,
3347 				     u32 meta_left)
3348 {
3349 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3350 
3351 	if (meta_left < meta_needed) {
3352 		btf_verifier_log_basic(env, t,
3353 				       "meta_left:%u meta_needed:%u",
3354 				       meta_left, meta_needed);
3355 		return -EINVAL;
3356 	}
3357 
3358 	if (t->name_off) {
3359 		btf_verifier_log_type(env, t, "Invalid name");
3360 		return -EINVAL;
3361 	}
3362 
3363 	if (btf_type_kflag(t)) {
3364 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3365 		return -EINVAL;
3366 	}
3367 
3368 	btf_verifier_log_type(env, t, NULL);
3369 
3370 	return meta_needed;
3371 }
3372 
3373 static void btf_func_proto_log(struct btf_verifier_env *env,
3374 			       const struct btf_type *t)
3375 {
3376 	const struct btf_param *args = (const struct btf_param *)(t + 1);
3377 	u16 nr_args = btf_type_vlen(t), i;
3378 
3379 	btf_verifier_log(env, "return=%u args=(", t->type);
3380 	if (!nr_args) {
3381 		btf_verifier_log(env, "void");
3382 		goto done;
3383 	}
3384 
3385 	if (nr_args == 1 && !args[0].type) {
3386 		/* Only one vararg */
3387 		btf_verifier_log(env, "vararg");
3388 		goto done;
3389 	}
3390 
3391 	btf_verifier_log(env, "%u %s", args[0].type,
3392 			 __btf_name_by_offset(env->btf,
3393 					      args[0].name_off));
3394 	for (i = 1; i < nr_args - 1; i++)
3395 		btf_verifier_log(env, ", %u %s", args[i].type,
3396 				 __btf_name_by_offset(env->btf,
3397 						      args[i].name_off));
3398 
3399 	if (nr_args > 1) {
3400 		const struct btf_param *last_arg = &args[nr_args - 1];
3401 
3402 		if (last_arg->type)
3403 			btf_verifier_log(env, ", %u %s", last_arg->type,
3404 					 __btf_name_by_offset(env->btf,
3405 							      last_arg->name_off));
3406 		else
3407 			btf_verifier_log(env, ", vararg");
3408 	}
3409 
3410 done:
3411 	btf_verifier_log(env, ")");
3412 }
3413 
3414 static struct btf_kind_operations func_proto_ops = {
3415 	.check_meta = btf_func_proto_check_meta,
3416 	.resolve = btf_df_resolve,
3417 	/*
3418 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3419 	 * a struct's member.
3420 	 *
3421 	 * It should be a funciton pointer instead.
3422 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3423 	 *
3424 	 * Hence, there is no btf_func_check_member().
3425 	 */
3426 	.check_member = btf_df_check_member,
3427 	.check_kflag_member = btf_df_check_kflag_member,
3428 	.log_details = btf_func_proto_log,
3429 	.show = btf_df_show,
3430 };
3431 
3432 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3433 			       const struct btf_type *t,
3434 			       u32 meta_left)
3435 {
3436 	if (!t->name_off ||
3437 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3438 		btf_verifier_log_type(env, t, "Invalid name");
3439 		return -EINVAL;
3440 	}
3441 
3442 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3443 		btf_verifier_log_type(env, t, "Invalid func linkage");
3444 		return -EINVAL;
3445 	}
3446 
3447 	if (btf_type_kflag(t)) {
3448 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3449 		return -EINVAL;
3450 	}
3451 
3452 	btf_verifier_log_type(env, t, NULL);
3453 
3454 	return 0;
3455 }
3456 
3457 static struct btf_kind_operations func_ops = {
3458 	.check_meta = btf_func_check_meta,
3459 	.resolve = btf_df_resolve,
3460 	.check_member = btf_df_check_member,
3461 	.check_kflag_member = btf_df_check_kflag_member,
3462 	.log_details = btf_ref_type_log,
3463 	.show = btf_df_show,
3464 };
3465 
3466 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3467 			      const struct btf_type *t,
3468 			      u32 meta_left)
3469 {
3470 	const struct btf_var *var;
3471 	u32 meta_needed = sizeof(*var);
3472 
3473 	if (meta_left < meta_needed) {
3474 		btf_verifier_log_basic(env, t,
3475 				       "meta_left:%u meta_needed:%u",
3476 				       meta_left, meta_needed);
3477 		return -EINVAL;
3478 	}
3479 
3480 	if (btf_type_vlen(t)) {
3481 		btf_verifier_log_type(env, t, "vlen != 0");
3482 		return -EINVAL;
3483 	}
3484 
3485 	if (btf_type_kflag(t)) {
3486 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3487 		return -EINVAL;
3488 	}
3489 
3490 	if (!t->name_off ||
3491 	    !__btf_name_valid(env->btf, t->name_off, true)) {
3492 		btf_verifier_log_type(env, t, "Invalid name");
3493 		return -EINVAL;
3494 	}
3495 
3496 	/* A var cannot be in type void */
3497 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3498 		btf_verifier_log_type(env, t, "Invalid type_id");
3499 		return -EINVAL;
3500 	}
3501 
3502 	var = btf_type_var(t);
3503 	if (var->linkage != BTF_VAR_STATIC &&
3504 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3505 		btf_verifier_log_type(env, t, "Linkage not supported");
3506 		return -EINVAL;
3507 	}
3508 
3509 	btf_verifier_log_type(env, t, NULL);
3510 
3511 	return meta_needed;
3512 }
3513 
3514 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3515 {
3516 	const struct btf_var *var = btf_type_var(t);
3517 
3518 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3519 }
3520 
3521 static const struct btf_kind_operations var_ops = {
3522 	.check_meta		= btf_var_check_meta,
3523 	.resolve		= btf_var_resolve,
3524 	.check_member		= btf_df_check_member,
3525 	.check_kflag_member	= btf_df_check_kflag_member,
3526 	.log_details		= btf_var_log,
3527 	.show			= btf_var_show,
3528 };
3529 
3530 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3531 				  const struct btf_type *t,
3532 				  u32 meta_left)
3533 {
3534 	const struct btf_var_secinfo *vsi;
3535 	u64 last_vsi_end_off = 0, sum = 0;
3536 	u32 i, meta_needed;
3537 
3538 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3539 	if (meta_left < meta_needed) {
3540 		btf_verifier_log_basic(env, t,
3541 				       "meta_left:%u meta_needed:%u",
3542 				       meta_left, meta_needed);
3543 		return -EINVAL;
3544 	}
3545 
3546 	if (!t->size) {
3547 		btf_verifier_log_type(env, t, "size == 0");
3548 		return -EINVAL;
3549 	}
3550 
3551 	if (btf_type_kflag(t)) {
3552 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3553 		return -EINVAL;
3554 	}
3555 
3556 	if (!t->name_off ||
3557 	    !btf_name_valid_section(env->btf, t->name_off)) {
3558 		btf_verifier_log_type(env, t, "Invalid name");
3559 		return -EINVAL;
3560 	}
3561 
3562 	btf_verifier_log_type(env, t, NULL);
3563 
3564 	for_each_vsi(i, t, vsi) {
3565 		/* A var cannot be in type void */
3566 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3567 			btf_verifier_log_vsi(env, t, vsi,
3568 					     "Invalid type_id");
3569 			return -EINVAL;
3570 		}
3571 
3572 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3573 			btf_verifier_log_vsi(env, t, vsi,
3574 					     "Invalid offset");
3575 			return -EINVAL;
3576 		}
3577 
3578 		if (!vsi->size || vsi->size > t->size) {
3579 			btf_verifier_log_vsi(env, t, vsi,
3580 					     "Invalid size");
3581 			return -EINVAL;
3582 		}
3583 
3584 		last_vsi_end_off = vsi->offset + vsi->size;
3585 		if (last_vsi_end_off > t->size) {
3586 			btf_verifier_log_vsi(env, t, vsi,
3587 					     "Invalid offset+size");
3588 			return -EINVAL;
3589 		}
3590 
3591 		btf_verifier_log_vsi(env, t, vsi, NULL);
3592 		sum += vsi->size;
3593 	}
3594 
3595 	if (t->size < sum) {
3596 		btf_verifier_log_type(env, t, "Invalid btf_info size");
3597 		return -EINVAL;
3598 	}
3599 
3600 	return meta_needed;
3601 }
3602 
3603 static int btf_datasec_resolve(struct btf_verifier_env *env,
3604 			       const struct resolve_vertex *v)
3605 {
3606 	const struct btf_var_secinfo *vsi;
3607 	struct btf *btf = env->btf;
3608 	u16 i;
3609 
3610 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
3611 		u32 var_type_id = vsi->type, type_id, type_size = 0;
3612 		const struct btf_type *var_type = btf_type_by_id(env->btf,
3613 								 var_type_id);
3614 		if (!var_type || !btf_type_is_var(var_type)) {
3615 			btf_verifier_log_vsi(env, v->t, vsi,
3616 					     "Not a VAR kind member");
3617 			return -EINVAL;
3618 		}
3619 
3620 		if (!env_type_is_resolve_sink(env, var_type) &&
3621 		    !env_type_is_resolved(env, var_type_id)) {
3622 			env_stack_set_next_member(env, i + 1);
3623 			return env_stack_push(env, var_type, var_type_id);
3624 		}
3625 
3626 		type_id = var_type->type;
3627 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
3628 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3629 			return -EINVAL;
3630 		}
3631 
3632 		if (vsi->size < type_size) {
3633 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3634 			return -EINVAL;
3635 		}
3636 	}
3637 
3638 	env_stack_pop_resolved(env, 0, 0);
3639 	return 0;
3640 }
3641 
3642 static void btf_datasec_log(struct btf_verifier_env *env,
3643 			    const struct btf_type *t)
3644 {
3645 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3646 }
3647 
3648 static void btf_datasec_show(const struct btf *btf,
3649 			     const struct btf_type *t, u32 type_id,
3650 			     void *data, u8 bits_offset,
3651 			     struct btf_show *show)
3652 {
3653 	const struct btf_var_secinfo *vsi;
3654 	const struct btf_type *var;
3655 	u32 i;
3656 
3657 	if (!btf_show_start_type(show, t, type_id, data))
3658 		return;
3659 
3660 	btf_show_type_value(show, "section (\"%s\") = {",
3661 			    __btf_name_by_offset(btf, t->name_off));
3662 	for_each_vsi(i, t, vsi) {
3663 		var = btf_type_by_id(btf, vsi->type);
3664 		if (i)
3665 			btf_show(show, ",");
3666 		btf_type_ops(var)->show(btf, var, vsi->type,
3667 					data + vsi->offset, bits_offset, show);
3668 	}
3669 	btf_show_end_type(show);
3670 }
3671 
3672 static const struct btf_kind_operations datasec_ops = {
3673 	.check_meta		= btf_datasec_check_meta,
3674 	.resolve		= btf_datasec_resolve,
3675 	.check_member		= btf_df_check_member,
3676 	.check_kflag_member	= btf_df_check_kflag_member,
3677 	.log_details		= btf_datasec_log,
3678 	.show			= btf_datasec_show,
3679 };
3680 
3681 static s32 btf_float_check_meta(struct btf_verifier_env *env,
3682 				const struct btf_type *t,
3683 				u32 meta_left)
3684 {
3685 	if (btf_type_vlen(t)) {
3686 		btf_verifier_log_type(env, t, "vlen != 0");
3687 		return -EINVAL;
3688 	}
3689 
3690 	if (btf_type_kflag(t)) {
3691 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3692 		return -EINVAL;
3693 	}
3694 
3695 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
3696 	    t->size != 16) {
3697 		btf_verifier_log_type(env, t, "Invalid type_size");
3698 		return -EINVAL;
3699 	}
3700 
3701 	btf_verifier_log_type(env, t, NULL);
3702 
3703 	return 0;
3704 }
3705 
3706 static int btf_float_check_member(struct btf_verifier_env *env,
3707 				  const struct btf_type *struct_type,
3708 				  const struct btf_member *member,
3709 				  const struct btf_type *member_type)
3710 {
3711 	u64 start_offset_bytes;
3712 	u64 end_offset_bytes;
3713 	u64 misalign_bits;
3714 	u64 align_bytes;
3715 	u64 align_bits;
3716 
3717 	/* Different architectures have different alignment requirements, so
3718 	 * here we check only for the reasonable minimum. This way we ensure
3719 	 * that types after CO-RE can pass the kernel BTF verifier.
3720 	 */
3721 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
3722 	align_bits = align_bytes * BITS_PER_BYTE;
3723 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
3724 	if (misalign_bits) {
3725 		btf_verifier_log_member(env, struct_type, member,
3726 					"Member is not properly aligned");
3727 		return -EINVAL;
3728 	}
3729 
3730 	start_offset_bytes = member->offset / BITS_PER_BYTE;
3731 	end_offset_bytes = start_offset_bytes + member_type->size;
3732 	if (end_offset_bytes > struct_type->size) {
3733 		btf_verifier_log_member(env, struct_type, member,
3734 					"Member exceeds struct_size");
3735 		return -EINVAL;
3736 	}
3737 
3738 	return 0;
3739 }
3740 
3741 static void btf_float_log(struct btf_verifier_env *env,
3742 			  const struct btf_type *t)
3743 {
3744 	btf_verifier_log(env, "size=%u", t->size);
3745 }
3746 
3747 static const struct btf_kind_operations float_ops = {
3748 	.check_meta = btf_float_check_meta,
3749 	.resolve = btf_df_resolve,
3750 	.check_member = btf_float_check_member,
3751 	.check_kflag_member = btf_generic_check_kflag_member,
3752 	.log_details = btf_float_log,
3753 	.show = btf_df_show,
3754 };
3755 
3756 static int btf_func_proto_check(struct btf_verifier_env *env,
3757 				const struct btf_type *t)
3758 {
3759 	const struct btf_type *ret_type;
3760 	const struct btf_param *args;
3761 	const struct btf *btf;
3762 	u16 nr_args, i;
3763 	int err;
3764 
3765 	btf = env->btf;
3766 	args = (const struct btf_param *)(t + 1);
3767 	nr_args = btf_type_vlen(t);
3768 
3769 	/* Check func return type which could be "void" (t->type == 0) */
3770 	if (t->type) {
3771 		u32 ret_type_id = t->type;
3772 
3773 		ret_type = btf_type_by_id(btf, ret_type_id);
3774 		if (!ret_type) {
3775 			btf_verifier_log_type(env, t, "Invalid return type");
3776 			return -EINVAL;
3777 		}
3778 
3779 		if (btf_type_needs_resolve(ret_type) &&
3780 		    !env_type_is_resolved(env, ret_type_id)) {
3781 			err = btf_resolve(env, ret_type, ret_type_id);
3782 			if (err)
3783 				return err;
3784 		}
3785 
3786 		/* Ensure the return type is a type that has a size */
3787 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3788 			btf_verifier_log_type(env, t, "Invalid return type");
3789 			return -EINVAL;
3790 		}
3791 	}
3792 
3793 	if (!nr_args)
3794 		return 0;
3795 
3796 	/* Last func arg type_id could be 0 if it is a vararg */
3797 	if (!args[nr_args - 1].type) {
3798 		if (args[nr_args - 1].name_off) {
3799 			btf_verifier_log_type(env, t, "Invalid arg#%u",
3800 					      nr_args);
3801 			return -EINVAL;
3802 		}
3803 		nr_args--;
3804 	}
3805 
3806 	err = 0;
3807 	for (i = 0; i < nr_args; i++) {
3808 		const struct btf_type *arg_type;
3809 		u32 arg_type_id;
3810 
3811 		arg_type_id = args[i].type;
3812 		arg_type = btf_type_by_id(btf, arg_type_id);
3813 		if (!arg_type) {
3814 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3815 			err = -EINVAL;
3816 			break;
3817 		}
3818 
3819 		if (args[i].name_off &&
3820 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
3821 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
3822 			btf_verifier_log_type(env, t,
3823 					      "Invalid arg#%u", i + 1);
3824 			err = -EINVAL;
3825 			break;
3826 		}
3827 
3828 		if (btf_type_needs_resolve(arg_type) &&
3829 		    !env_type_is_resolved(env, arg_type_id)) {
3830 			err = btf_resolve(env, arg_type, arg_type_id);
3831 			if (err)
3832 				break;
3833 		}
3834 
3835 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3836 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3837 			err = -EINVAL;
3838 			break;
3839 		}
3840 	}
3841 
3842 	return err;
3843 }
3844 
3845 static int btf_func_check(struct btf_verifier_env *env,
3846 			  const struct btf_type *t)
3847 {
3848 	const struct btf_type *proto_type;
3849 	const struct btf_param *args;
3850 	const struct btf *btf;
3851 	u16 nr_args, i;
3852 
3853 	btf = env->btf;
3854 	proto_type = btf_type_by_id(btf, t->type);
3855 
3856 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3857 		btf_verifier_log_type(env, t, "Invalid type_id");
3858 		return -EINVAL;
3859 	}
3860 
3861 	args = (const struct btf_param *)(proto_type + 1);
3862 	nr_args = btf_type_vlen(proto_type);
3863 	for (i = 0; i < nr_args; i++) {
3864 		if (!args[i].name_off && args[i].type) {
3865 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3866 			return -EINVAL;
3867 		}
3868 	}
3869 
3870 	return 0;
3871 }
3872 
3873 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3874 	[BTF_KIND_INT] = &int_ops,
3875 	[BTF_KIND_PTR] = &ptr_ops,
3876 	[BTF_KIND_ARRAY] = &array_ops,
3877 	[BTF_KIND_STRUCT] = &struct_ops,
3878 	[BTF_KIND_UNION] = &struct_ops,
3879 	[BTF_KIND_ENUM] = &enum_ops,
3880 	[BTF_KIND_FWD] = &fwd_ops,
3881 	[BTF_KIND_TYPEDEF] = &modifier_ops,
3882 	[BTF_KIND_VOLATILE] = &modifier_ops,
3883 	[BTF_KIND_CONST] = &modifier_ops,
3884 	[BTF_KIND_RESTRICT] = &modifier_ops,
3885 	[BTF_KIND_FUNC] = &func_ops,
3886 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3887 	[BTF_KIND_VAR] = &var_ops,
3888 	[BTF_KIND_DATASEC] = &datasec_ops,
3889 	[BTF_KIND_FLOAT] = &float_ops,
3890 };
3891 
3892 static s32 btf_check_meta(struct btf_verifier_env *env,
3893 			  const struct btf_type *t,
3894 			  u32 meta_left)
3895 {
3896 	u32 saved_meta_left = meta_left;
3897 	s32 var_meta_size;
3898 
3899 	if (meta_left < sizeof(*t)) {
3900 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3901 				 env->log_type_id, meta_left, sizeof(*t));
3902 		return -EINVAL;
3903 	}
3904 	meta_left -= sizeof(*t);
3905 
3906 	if (t->info & ~BTF_INFO_MASK) {
3907 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3908 				 env->log_type_id, t->info);
3909 		return -EINVAL;
3910 	}
3911 
3912 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3913 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3914 		btf_verifier_log(env, "[%u] Invalid kind:%u",
3915 				 env->log_type_id, BTF_INFO_KIND(t->info));
3916 		return -EINVAL;
3917 	}
3918 
3919 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
3920 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3921 				 env->log_type_id, t->name_off);
3922 		return -EINVAL;
3923 	}
3924 
3925 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3926 	if (var_meta_size < 0)
3927 		return var_meta_size;
3928 
3929 	meta_left -= var_meta_size;
3930 
3931 	return saved_meta_left - meta_left;
3932 }
3933 
3934 static int btf_check_all_metas(struct btf_verifier_env *env)
3935 {
3936 	struct btf *btf = env->btf;
3937 	struct btf_header *hdr;
3938 	void *cur, *end;
3939 
3940 	hdr = &btf->hdr;
3941 	cur = btf->nohdr_data + hdr->type_off;
3942 	end = cur + hdr->type_len;
3943 
3944 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
3945 	while (cur < end) {
3946 		struct btf_type *t = cur;
3947 		s32 meta_size;
3948 
3949 		meta_size = btf_check_meta(env, t, end - cur);
3950 		if (meta_size < 0)
3951 			return meta_size;
3952 
3953 		btf_add_type(env, t);
3954 		cur += meta_size;
3955 		env->log_type_id++;
3956 	}
3957 
3958 	return 0;
3959 }
3960 
3961 static bool btf_resolve_valid(struct btf_verifier_env *env,
3962 			      const struct btf_type *t,
3963 			      u32 type_id)
3964 {
3965 	struct btf *btf = env->btf;
3966 
3967 	if (!env_type_is_resolved(env, type_id))
3968 		return false;
3969 
3970 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3971 		return !btf_resolved_type_id(btf, type_id) &&
3972 		       !btf_resolved_type_size(btf, type_id);
3973 
3974 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3975 	    btf_type_is_var(t)) {
3976 		t = btf_type_id_resolve(btf, &type_id);
3977 		return t &&
3978 		       !btf_type_is_modifier(t) &&
3979 		       !btf_type_is_var(t) &&
3980 		       !btf_type_is_datasec(t);
3981 	}
3982 
3983 	if (btf_type_is_array(t)) {
3984 		const struct btf_array *array = btf_type_array(t);
3985 		const struct btf_type *elem_type;
3986 		u32 elem_type_id = array->type;
3987 		u32 elem_size;
3988 
3989 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3990 		return elem_type && !btf_type_is_modifier(elem_type) &&
3991 			(array->nelems * elem_size ==
3992 			 btf_resolved_type_size(btf, type_id));
3993 	}
3994 
3995 	return false;
3996 }
3997 
3998 static int btf_resolve(struct btf_verifier_env *env,
3999 		       const struct btf_type *t, u32 type_id)
4000 {
4001 	u32 save_log_type_id = env->log_type_id;
4002 	const struct resolve_vertex *v;
4003 	int err = 0;
4004 
4005 	env->resolve_mode = RESOLVE_TBD;
4006 	env_stack_push(env, t, type_id);
4007 	while (!err && (v = env_stack_peak(env))) {
4008 		env->log_type_id = v->type_id;
4009 		err = btf_type_ops(v->t)->resolve(env, v);
4010 	}
4011 
4012 	env->log_type_id = type_id;
4013 	if (err == -E2BIG) {
4014 		btf_verifier_log_type(env, t,
4015 				      "Exceeded max resolving depth:%u",
4016 				      MAX_RESOLVE_DEPTH);
4017 	} else if (err == -EEXIST) {
4018 		btf_verifier_log_type(env, t, "Loop detected");
4019 	}
4020 
4021 	/* Final sanity check */
4022 	if (!err && !btf_resolve_valid(env, t, type_id)) {
4023 		btf_verifier_log_type(env, t, "Invalid resolve state");
4024 		err = -EINVAL;
4025 	}
4026 
4027 	env->log_type_id = save_log_type_id;
4028 	return err;
4029 }
4030 
4031 static int btf_check_all_types(struct btf_verifier_env *env)
4032 {
4033 	struct btf *btf = env->btf;
4034 	const struct btf_type *t;
4035 	u32 type_id, i;
4036 	int err;
4037 
4038 	err = env_resolve_init(env);
4039 	if (err)
4040 		return err;
4041 
4042 	env->phase++;
4043 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4044 		type_id = btf->start_id + i;
4045 		t = btf_type_by_id(btf, type_id);
4046 
4047 		env->log_type_id = type_id;
4048 		if (btf_type_needs_resolve(t) &&
4049 		    !env_type_is_resolved(env, type_id)) {
4050 			err = btf_resolve(env, t, type_id);
4051 			if (err)
4052 				return err;
4053 		}
4054 
4055 		if (btf_type_is_func_proto(t)) {
4056 			err = btf_func_proto_check(env, t);
4057 			if (err)
4058 				return err;
4059 		}
4060 
4061 		if (btf_type_is_func(t)) {
4062 			err = btf_func_check(env, t);
4063 			if (err)
4064 				return err;
4065 		}
4066 	}
4067 
4068 	return 0;
4069 }
4070 
4071 static int btf_parse_type_sec(struct btf_verifier_env *env)
4072 {
4073 	const struct btf_header *hdr = &env->btf->hdr;
4074 	int err;
4075 
4076 	/* Type section must align to 4 bytes */
4077 	if (hdr->type_off & (sizeof(u32) - 1)) {
4078 		btf_verifier_log(env, "Unaligned type_off");
4079 		return -EINVAL;
4080 	}
4081 
4082 	if (!env->btf->base_btf && !hdr->type_len) {
4083 		btf_verifier_log(env, "No type found");
4084 		return -EINVAL;
4085 	}
4086 
4087 	err = btf_check_all_metas(env);
4088 	if (err)
4089 		return err;
4090 
4091 	return btf_check_all_types(env);
4092 }
4093 
4094 static int btf_parse_str_sec(struct btf_verifier_env *env)
4095 {
4096 	const struct btf_header *hdr;
4097 	struct btf *btf = env->btf;
4098 	const char *start, *end;
4099 
4100 	hdr = &btf->hdr;
4101 	start = btf->nohdr_data + hdr->str_off;
4102 	end = start + hdr->str_len;
4103 
4104 	if (end != btf->data + btf->data_size) {
4105 		btf_verifier_log(env, "String section is not at the end");
4106 		return -EINVAL;
4107 	}
4108 
4109 	btf->strings = start;
4110 
4111 	if (btf->base_btf && !hdr->str_len)
4112 		return 0;
4113 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4114 		btf_verifier_log(env, "Invalid string section");
4115 		return -EINVAL;
4116 	}
4117 	if (!btf->base_btf && start[0]) {
4118 		btf_verifier_log(env, "Invalid string section");
4119 		return -EINVAL;
4120 	}
4121 
4122 	return 0;
4123 }
4124 
4125 static const size_t btf_sec_info_offset[] = {
4126 	offsetof(struct btf_header, type_off),
4127 	offsetof(struct btf_header, str_off),
4128 };
4129 
4130 static int btf_sec_info_cmp(const void *a, const void *b)
4131 {
4132 	const struct btf_sec_info *x = a;
4133 	const struct btf_sec_info *y = b;
4134 
4135 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4136 }
4137 
4138 static int btf_check_sec_info(struct btf_verifier_env *env,
4139 			      u32 btf_data_size)
4140 {
4141 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4142 	u32 total, expected_total, i;
4143 	const struct btf_header *hdr;
4144 	const struct btf *btf;
4145 
4146 	btf = env->btf;
4147 	hdr = &btf->hdr;
4148 
4149 	/* Populate the secs from hdr */
4150 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4151 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
4152 						   btf_sec_info_offset[i]);
4153 
4154 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4155 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4156 
4157 	/* Check for gaps and overlap among sections */
4158 	total = 0;
4159 	expected_total = btf_data_size - hdr->hdr_len;
4160 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4161 		if (expected_total < secs[i].off) {
4162 			btf_verifier_log(env, "Invalid section offset");
4163 			return -EINVAL;
4164 		}
4165 		if (total < secs[i].off) {
4166 			/* gap */
4167 			btf_verifier_log(env, "Unsupported section found");
4168 			return -EINVAL;
4169 		}
4170 		if (total > secs[i].off) {
4171 			btf_verifier_log(env, "Section overlap found");
4172 			return -EINVAL;
4173 		}
4174 		if (expected_total - total < secs[i].len) {
4175 			btf_verifier_log(env,
4176 					 "Total section length too long");
4177 			return -EINVAL;
4178 		}
4179 		total += secs[i].len;
4180 	}
4181 
4182 	/* There is data other than hdr and known sections */
4183 	if (expected_total != total) {
4184 		btf_verifier_log(env, "Unsupported section found");
4185 		return -EINVAL;
4186 	}
4187 
4188 	return 0;
4189 }
4190 
4191 static int btf_parse_hdr(struct btf_verifier_env *env)
4192 {
4193 	u32 hdr_len, hdr_copy, btf_data_size;
4194 	const struct btf_header *hdr;
4195 	struct btf *btf;
4196 	int err;
4197 
4198 	btf = env->btf;
4199 	btf_data_size = btf->data_size;
4200 
4201 	if (btf_data_size <
4202 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4203 		btf_verifier_log(env, "hdr_len not found");
4204 		return -EINVAL;
4205 	}
4206 
4207 	hdr = btf->data;
4208 	hdr_len = hdr->hdr_len;
4209 	if (btf_data_size < hdr_len) {
4210 		btf_verifier_log(env, "btf_header not found");
4211 		return -EINVAL;
4212 	}
4213 
4214 	/* Ensure the unsupported header fields are zero */
4215 	if (hdr_len > sizeof(btf->hdr)) {
4216 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
4217 		u8 *end = btf->data + hdr_len;
4218 
4219 		for (; expected_zero < end; expected_zero++) {
4220 			if (*expected_zero) {
4221 				btf_verifier_log(env, "Unsupported btf_header");
4222 				return -E2BIG;
4223 			}
4224 		}
4225 	}
4226 
4227 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4228 	memcpy(&btf->hdr, btf->data, hdr_copy);
4229 
4230 	hdr = &btf->hdr;
4231 
4232 	btf_verifier_log_hdr(env, btf_data_size);
4233 
4234 	if (hdr->magic != BTF_MAGIC) {
4235 		btf_verifier_log(env, "Invalid magic");
4236 		return -EINVAL;
4237 	}
4238 
4239 	if (hdr->version != BTF_VERSION) {
4240 		btf_verifier_log(env, "Unsupported version");
4241 		return -ENOTSUPP;
4242 	}
4243 
4244 	if (hdr->flags) {
4245 		btf_verifier_log(env, "Unsupported flags");
4246 		return -ENOTSUPP;
4247 	}
4248 
4249 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4250 		btf_verifier_log(env, "No data");
4251 		return -EINVAL;
4252 	}
4253 
4254 	err = btf_check_sec_info(env, btf_data_size);
4255 	if (err)
4256 		return err;
4257 
4258 	return 0;
4259 }
4260 
4261 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
4262 			     u32 log_level, char __user *log_ubuf, u32 log_size)
4263 {
4264 	struct btf_verifier_env *env = NULL;
4265 	struct bpf_verifier_log *log;
4266 	struct btf *btf = NULL;
4267 	u8 *data;
4268 	int err;
4269 
4270 	if (btf_data_size > BTF_MAX_SIZE)
4271 		return ERR_PTR(-E2BIG);
4272 
4273 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4274 	if (!env)
4275 		return ERR_PTR(-ENOMEM);
4276 
4277 	log = &env->log;
4278 	if (log_level || log_ubuf || log_size) {
4279 		/* user requested verbose verifier output
4280 		 * and supplied buffer to store the verification trace
4281 		 */
4282 		log->level = log_level;
4283 		log->ubuf = log_ubuf;
4284 		log->len_total = log_size;
4285 
4286 		/* log attributes have to be sane */
4287 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4288 		    !log->level || !log->ubuf) {
4289 			err = -EINVAL;
4290 			goto errout;
4291 		}
4292 	}
4293 
4294 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4295 	if (!btf) {
4296 		err = -ENOMEM;
4297 		goto errout;
4298 	}
4299 	env->btf = btf;
4300 
4301 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4302 	if (!data) {
4303 		err = -ENOMEM;
4304 		goto errout;
4305 	}
4306 
4307 	btf->data = data;
4308 	btf->data_size = btf_data_size;
4309 
4310 	if (copy_from_user(data, btf_data, btf_data_size)) {
4311 		err = -EFAULT;
4312 		goto errout;
4313 	}
4314 
4315 	err = btf_parse_hdr(env);
4316 	if (err)
4317 		goto errout;
4318 
4319 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4320 
4321 	err = btf_parse_str_sec(env);
4322 	if (err)
4323 		goto errout;
4324 
4325 	err = btf_parse_type_sec(env);
4326 	if (err)
4327 		goto errout;
4328 
4329 	if (log->level && bpf_verifier_log_full(log)) {
4330 		err = -ENOSPC;
4331 		goto errout;
4332 	}
4333 
4334 	btf_verifier_env_free(env);
4335 	refcount_set(&btf->refcnt, 1);
4336 	return btf;
4337 
4338 errout:
4339 	btf_verifier_env_free(env);
4340 	if (btf)
4341 		btf_free(btf);
4342 	return ERR_PTR(err);
4343 }
4344 
4345 extern char __weak __start_BTF[];
4346 extern char __weak __stop_BTF[];
4347 extern struct btf *btf_vmlinux;
4348 
4349 #define BPF_MAP_TYPE(_id, _ops)
4350 #define BPF_LINK_TYPE(_id, _name)
4351 static union {
4352 	struct bpf_ctx_convert {
4353 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4354 	prog_ctx_type _id##_prog; \
4355 	kern_ctx_type _id##_kern;
4356 #include <linux/bpf_types.h>
4357 #undef BPF_PROG_TYPE
4358 	} *__t;
4359 	/* 't' is written once under lock. Read many times. */
4360 	const struct btf_type *t;
4361 } bpf_ctx_convert;
4362 enum {
4363 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4364 	__ctx_convert##_id,
4365 #include <linux/bpf_types.h>
4366 #undef BPF_PROG_TYPE
4367 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
4368 };
4369 static u8 bpf_ctx_convert_map[] = {
4370 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4371 	[_id] = __ctx_convert##_id,
4372 #include <linux/bpf_types.h>
4373 #undef BPF_PROG_TYPE
4374 	0, /* avoid empty array */
4375 };
4376 #undef BPF_MAP_TYPE
4377 #undef BPF_LINK_TYPE
4378 
4379 static const struct btf_member *
4380 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
4381 		      const struct btf_type *t, enum bpf_prog_type prog_type,
4382 		      int arg)
4383 {
4384 	const struct btf_type *conv_struct;
4385 	const struct btf_type *ctx_struct;
4386 	const struct btf_member *ctx_type;
4387 	const char *tname, *ctx_tname;
4388 
4389 	conv_struct = bpf_ctx_convert.t;
4390 	if (!conv_struct) {
4391 		bpf_log(log, "btf_vmlinux is malformed\n");
4392 		return NULL;
4393 	}
4394 	t = btf_type_by_id(btf, t->type);
4395 	while (btf_type_is_modifier(t))
4396 		t = btf_type_by_id(btf, t->type);
4397 	if (!btf_type_is_struct(t)) {
4398 		/* Only pointer to struct is supported for now.
4399 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4400 		 * is not supported yet.
4401 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4402 		 */
4403 		return NULL;
4404 	}
4405 	tname = btf_name_by_offset(btf, t->name_off);
4406 	if (!tname) {
4407 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4408 		return NULL;
4409 	}
4410 	/* prog_type is valid bpf program type. No need for bounds check. */
4411 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4412 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4413 	 * Like 'struct __sk_buff'
4414 	 */
4415 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4416 	if (!ctx_struct)
4417 		/* should not happen */
4418 		return NULL;
4419 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4420 	if (!ctx_tname) {
4421 		/* should not happen */
4422 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4423 		return NULL;
4424 	}
4425 	/* only compare that prog's ctx type name is the same as
4426 	 * kernel expects. No need to compare field by field.
4427 	 * It's ok for bpf prog to do:
4428 	 * struct __sk_buff {};
4429 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4430 	 * { // no fields of skb are ever used }
4431 	 */
4432 	if (strcmp(ctx_tname, tname))
4433 		return NULL;
4434 	return ctx_type;
4435 }
4436 
4437 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4438 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4439 #define BPF_LINK_TYPE(_id, _name)
4440 #define BPF_MAP_TYPE(_id, _ops) \
4441 	[_id] = &_ops,
4442 #include <linux/bpf_types.h>
4443 #undef BPF_PROG_TYPE
4444 #undef BPF_LINK_TYPE
4445 #undef BPF_MAP_TYPE
4446 };
4447 
4448 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4449 				    struct bpf_verifier_log *log)
4450 {
4451 	const struct bpf_map_ops *ops;
4452 	int i, btf_id;
4453 
4454 	for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4455 		ops = btf_vmlinux_map_ops[i];
4456 		if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4457 			continue;
4458 		if (!ops->map_btf_name || !ops->map_btf_id) {
4459 			bpf_log(log, "map type %d is misconfigured\n", i);
4460 			return -EINVAL;
4461 		}
4462 		btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4463 					       BTF_KIND_STRUCT);
4464 		if (btf_id < 0)
4465 			return btf_id;
4466 		*ops->map_btf_id = btf_id;
4467 	}
4468 
4469 	return 0;
4470 }
4471 
4472 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4473 				     struct btf *btf,
4474 				     const struct btf_type *t,
4475 				     enum bpf_prog_type prog_type,
4476 				     int arg)
4477 {
4478 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
4479 
4480 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4481 	if (!prog_ctx_type)
4482 		return -ENOENT;
4483 	kern_ctx_type = prog_ctx_type + 1;
4484 	return kern_ctx_type->type;
4485 }
4486 
4487 BTF_ID_LIST(bpf_ctx_convert_btf_id)
4488 BTF_ID(struct, bpf_ctx_convert)
4489 
4490 struct btf *btf_parse_vmlinux(void)
4491 {
4492 	struct btf_verifier_env *env = NULL;
4493 	struct bpf_verifier_log *log;
4494 	struct btf *btf = NULL;
4495 	int err;
4496 
4497 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4498 	if (!env)
4499 		return ERR_PTR(-ENOMEM);
4500 
4501 	log = &env->log;
4502 	log->level = BPF_LOG_KERNEL;
4503 
4504 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4505 	if (!btf) {
4506 		err = -ENOMEM;
4507 		goto errout;
4508 	}
4509 	env->btf = btf;
4510 
4511 	btf->data = __start_BTF;
4512 	btf->data_size = __stop_BTF - __start_BTF;
4513 	btf->kernel_btf = true;
4514 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
4515 
4516 	err = btf_parse_hdr(env);
4517 	if (err)
4518 		goto errout;
4519 
4520 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4521 
4522 	err = btf_parse_str_sec(env);
4523 	if (err)
4524 		goto errout;
4525 
4526 	err = btf_check_all_metas(env);
4527 	if (err)
4528 		goto errout;
4529 
4530 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
4531 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4532 
4533 	/* find bpf map structs for map_ptr access checking */
4534 	err = btf_vmlinux_map_ids_init(btf, log);
4535 	if (err < 0)
4536 		goto errout;
4537 
4538 	bpf_struct_ops_init(btf, log);
4539 
4540 	refcount_set(&btf->refcnt, 1);
4541 
4542 	err = btf_alloc_id(btf);
4543 	if (err)
4544 		goto errout;
4545 
4546 	btf_verifier_env_free(env);
4547 	return btf;
4548 
4549 errout:
4550 	btf_verifier_env_free(env);
4551 	if (btf) {
4552 		kvfree(btf->types);
4553 		kfree(btf);
4554 	}
4555 	return ERR_PTR(err);
4556 }
4557 
4558 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4559 
4560 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4561 {
4562 	struct btf_verifier_env *env = NULL;
4563 	struct bpf_verifier_log *log;
4564 	struct btf *btf = NULL, *base_btf;
4565 	int err;
4566 
4567 	base_btf = bpf_get_btf_vmlinux();
4568 	if (IS_ERR(base_btf))
4569 		return base_btf;
4570 	if (!base_btf)
4571 		return ERR_PTR(-EINVAL);
4572 
4573 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4574 	if (!env)
4575 		return ERR_PTR(-ENOMEM);
4576 
4577 	log = &env->log;
4578 	log->level = BPF_LOG_KERNEL;
4579 
4580 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4581 	if (!btf) {
4582 		err = -ENOMEM;
4583 		goto errout;
4584 	}
4585 	env->btf = btf;
4586 
4587 	btf->base_btf = base_btf;
4588 	btf->start_id = base_btf->nr_types;
4589 	btf->start_str_off = base_btf->hdr.str_len;
4590 	btf->kernel_btf = true;
4591 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4592 
4593 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4594 	if (!btf->data) {
4595 		err = -ENOMEM;
4596 		goto errout;
4597 	}
4598 	memcpy(btf->data, data, data_size);
4599 	btf->data_size = data_size;
4600 
4601 	err = btf_parse_hdr(env);
4602 	if (err)
4603 		goto errout;
4604 
4605 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4606 
4607 	err = btf_parse_str_sec(env);
4608 	if (err)
4609 		goto errout;
4610 
4611 	err = btf_check_all_metas(env);
4612 	if (err)
4613 		goto errout;
4614 
4615 	btf_verifier_env_free(env);
4616 	refcount_set(&btf->refcnt, 1);
4617 	return btf;
4618 
4619 errout:
4620 	btf_verifier_env_free(env);
4621 	if (btf) {
4622 		kvfree(btf->data);
4623 		kvfree(btf->types);
4624 		kfree(btf);
4625 	}
4626 	return ERR_PTR(err);
4627 }
4628 
4629 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4630 
4631 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4632 {
4633 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4634 
4635 	if (tgt_prog)
4636 		return tgt_prog->aux->btf;
4637 	else
4638 		return prog->aux->attach_btf;
4639 }
4640 
4641 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4642 {
4643 	/* t comes in already as a pointer */
4644 	t = btf_type_by_id(btf, t->type);
4645 
4646 	/* allow const */
4647 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4648 		t = btf_type_by_id(btf, t->type);
4649 
4650 	/* char, signed char, unsigned char */
4651 	return btf_type_is_int(t) && t->size == 1;
4652 }
4653 
4654 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4655 		    const struct bpf_prog *prog,
4656 		    struct bpf_insn_access_aux *info)
4657 {
4658 	const struct btf_type *t = prog->aux->attach_func_proto;
4659 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4660 	struct btf *btf = bpf_prog_get_target_btf(prog);
4661 	const char *tname = prog->aux->attach_func_name;
4662 	struct bpf_verifier_log *log = info->log;
4663 	const struct btf_param *args;
4664 	u32 nr_args, arg;
4665 	int i, ret;
4666 
4667 	if (off % 8) {
4668 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4669 			tname, off);
4670 		return false;
4671 	}
4672 	arg = off / 8;
4673 	args = (const struct btf_param *)(t + 1);
4674 	/* if (t == NULL) Fall back to default BPF prog with
4675 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
4676 	 */
4677 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
4678 	if (prog->aux->attach_btf_trace) {
4679 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
4680 		args++;
4681 		nr_args--;
4682 	}
4683 
4684 	if (arg > nr_args) {
4685 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4686 			tname, arg + 1);
4687 		return false;
4688 	}
4689 
4690 	if (arg == nr_args) {
4691 		switch (prog->expected_attach_type) {
4692 		case BPF_LSM_MAC:
4693 		case BPF_TRACE_FEXIT:
4694 			/* When LSM programs are attached to void LSM hooks
4695 			 * they use FEXIT trampolines and when attached to
4696 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
4697 			 *
4698 			 * While the LSM programs are BPF_MODIFY_RETURN-like
4699 			 * the check:
4700 			 *
4701 			 *	if (ret_type != 'int')
4702 			 *		return -EINVAL;
4703 			 *
4704 			 * is _not_ done here. This is still safe as LSM hooks
4705 			 * have only void and int return types.
4706 			 */
4707 			if (!t)
4708 				return true;
4709 			t = btf_type_by_id(btf, t->type);
4710 			break;
4711 		case BPF_MODIFY_RETURN:
4712 			/* For now the BPF_MODIFY_RETURN can only be attached to
4713 			 * functions that return an int.
4714 			 */
4715 			if (!t)
4716 				return false;
4717 
4718 			t = btf_type_skip_modifiers(btf, t->type, NULL);
4719 			if (!btf_type_is_small_int(t)) {
4720 				bpf_log(log,
4721 					"ret type %s not allowed for fmod_ret\n",
4722 					btf_kind_str[BTF_INFO_KIND(t->info)]);
4723 				return false;
4724 			}
4725 			break;
4726 		default:
4727 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4728 				tname, arg + 1);
4729 			return false;
4730 		}
4731 	} else {
4732 		if (!t)
4733 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
4734 			return true;
4735 		t = btf_type_by_id(btf, args[arg].type);
4736 	}
4737 
4738 	/* skip modifiers */
4739 	while (btf_type_is_modifier(t))
4740 		t = btf_type_by_id(btf, t->type);
4741 	if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4742 		/* accessing a scalar */
4743 		return true;
4744 	if (!btf_type_is_ptr(t)) {
4745 		bpf_log(log,
4746 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4747 			tname, arg,
4748 			__btf_name_by_offset(btf, t->name_off),
4749 			btf_kind_str[BTF_INFO_KIND(t->info)]);
4750 		return false;
4751 	}
4752 
4753 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4754 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4755 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4756 
4757 		if (ctx_arg_info->offset == off &&
4758 		    (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4759 		     ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4760 			info->reg_type = ctx_arg_info->reg_type;
4761 			return true;
4762 		}
4763 	}
4764 
4765 	if (t->type == 0)
4766 		/* This is a pointer to void.
4767 		 * It is the same as scalar from the verifier safety pov.
4768 		 * No further pointer walking is allowed.
4769 		 */
4770 		return true;
4771 
4772 	if (is_string_ptr(btf, t))
4773 		return true;
4774 
4775 	/* this is a pointer to another type */
4776 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4777 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4778 
4779 		if (ctx_arg_info->offset == off) {
4780 			info->reg_type = ctx_arg_info->reg_type;
4781 			info->btf = btf_vmlinux;
4782 			info->btf_id = ctx_arg_info->btf_id;
4783 			return true;
4784 		}
4785 	}
4786 
4787 	info->reg_type = PTR_TO_BTF_ID;
4788 	if (tgt_prog) {
4789 		enum bpf_prog_type tgt_type;
4790 
4791 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4792 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
4793 		else
4794 			tgt_type = tgt_prog->type;
4795 
4796 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4797 		if (ret > 0) {
4798 			info->btf = btf_vmlinux;
4799 			info->btf_id = ret;
4800 			return true;
4801 		} else {
4802 			return false;
4803 		}
4804 	}
4805 
4806 	info->btf = btf;
4807 	info->btf_id = t->type;
4808 	t = btf_type_by_id(btf, t->type);
4809 	/* skip modifiers */
4810 	while (btf_type_is_modifier(t)) {
4811 		info->btf_id = t->type;
4812 		t = btf_type_by_id(btf, t->type);
4813 	}
4814 	if (!btf_type_is_struct(t)) {
4815 		bpf_log(log,
4816 			"func '%s' arg%d type %s is not a struct\n",
4817 			tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4818 		return false;
4819 	}
4820 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
4821 		tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
4822 		__btf_name_by_offset(btf, t->name_off));
4823 	return true;
4824 }
4825 
4826 enum bpf_struct_walk_result {
4827 	/* < 0 error */
4828 	WALK_SCALAR = 0,
4829 	WALK_PTR,
4830 	WALK_STRUCT,
4831 };
4832 
4833 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
4834 			   const struct btf_type *t, int off, int size,
4835 			   u32 *next_btf_id)
4836 {
4837 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4838 	const struct btf_type *mtype, *elem_type = NULL;
4839 	const struct btf_member *member;
4840 	const char *tname, *mname;
4841 	u32 vlen, elem_id, mid;
4842 
4843 again:
4844 	tname = __btf_name_by_offset(btf, t->name_off);
4845 	if (!btf_type_is_struct(t)) {
4846 		bpf_log(log, "Type '%s' is not a struct\n", tname);
4847 		return -EINVAL;
4848 	}
4849 
4850 	vlen = btf_type_vlen(t);
4851 	if (off + size > t->size) {
4852 		/* If the last element is a variable size array, we may
4853 		 * need to relax the rule.
4854 		 */
4855 		struct btf_array *array_elem;
4856 
4857 		if (vlen == 0)
4858 			goto error;
4859 
4860 		member = btf_type_member(t) + vlen - 1;
4861 		mtype = btf_type_skip_modifiers(btf, member->type,
4862 						NULL);
4863 		if (!btf_type_is_array(mtype))
4864 			goto error;
4865 
4866 		array_elem = (struct btf_array *)(mtype + 1);
4867 		if (array_elem->nelems != 0)
4868 			goto error;
4869 
4870 		moff = btf_member_bit_offset(t, member) / 8;
4871 		if (off < moff)
4872 			goto error;
4873 
4874 		/* Only allow structure for now, can be relaxed for
4875 		 * other types later.
4876 		 */
4877 		t = btf_type_skip_modifiers(btf, array_elem->type,
4878 					    NULL);
4879 		if (!btf_type_is_struct(t))
4880 			goto error;
4881 
4882 		off = (off - moff) % t->size;
4883 		goto again;
4884 
4885 error:
4886 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
4887 			tname, off, size);
4888 		return -EACCES;
4889 	}
4890 
4891 	for_each_member(i, t, member) {
4892 		/* offset of the field in bytes */
4893 		moff = btf_member_bit_offset(t, member) / 8;
4894 		if (off + size <= moff)
4895 			/* won't find anything, field is already too far */
4896 			break;
4897 
4898 		if (btf_member_bitfield_size(t, member)) {
4899 			u32 end_bit = btf_member_bit_offset(t, member) +
4900 				btf_member_bitfield_size(t, member);
4901 
4902 			/* off <= moff instead of off == moff because clang
4903 			 * does not generate a BTF member for anonymous
4904 			 * bitfield like the ":16" here:
4905 			 * struct {
4906 			 *	int :16;
4907 			 *	int x:8;
4908 			 * };
4909 			 */
4910 			if (off <= moff &&
4911 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
4912 				return WALK_SCALAR;
4913 
4914 			/* off may be accessing a following member
4915 			 *
4916 			 * or
4917 			 *
4918 			 * Doing partial access at either end of this
4919 			 * bitfield.  Continue on this case also to
4920 			 * treat it as not accessing this bitfield
4921 			 * and eventually error out as field not
4922 			 * found to keep it simple.
4923 			 * It could be relaxed if there was a legit
4924 			 * partial access case later.
4925 			 */
4926 			continue;
4927 		}
4928 
4929 		/* In case of "off" is pointing to holes of a struct */
4930 		if (off < moff)
4931 			break;
4932 
4933 		/* type of the field */
4934 		mid = member->type;
4935 		mtype = btf_type_by_id(btf, member->type);
4936 		mname = __btf_name_by_offset(btf, member->name_off);
4937 
4938 		mtype = __btf_resolve_size(btf, mtype, &msize,
4939 					   &elem_type, &elem_id, &total_nelems,
4940 					   &mid);
4941 		if (IS_ERR(mtype)) {
4942 			bpf_log(log, "field %s doesn't have size\n", mname);
4943 			return -EFAULT;
4944 		}
4945 
4946 		mtrue_end = moff + msize;
4947 		if (off >= mtrue_end)
4948 			/* no overlap with member, keep iterating */
4949 			continue;
4950 
4951 		if (btf_type_is_array(mtype)) {
4952 			u32 elem_idx;
4953 
4954 			/* __btf_resolve_size() above helps to
4955 			 * linearize a multi-dimensional array.
4956 			 *
4957 			 * The logic here is treating an array
4958 			 * in a struct as the following way:
4959 			 *
4960 			 * struct outer {
4961 			 *	struct inner array[2][2];
4962 			 * };
4963 			 *
4964 			 * looks like:
4965 			 *
4966 			 * struct outer {
4967 			 *	struct inner array_elem0;
4968 			 *	struct inner array_elem1;
4969 			 *	struct inner array_elem2;
4970 			 *	struct inner array_elem3;
4971 			 * };
4972 			 *
4973 			 * When accessing outer->array[1][0], it moves
4974 			 * moff to "array_elem2", set mtype to
4975 			 * "struct inner", and msize also becomes
4976 			 * sizeof(struct inner).  Then most of the
4977 			 * remaining logic will fall through without
4978 			 * caring the current member is an array or
4979 			 * not.
4980 			 *
4981 			 * Unlike mtype/msize/moff, mtrue_end does not
4982 			 * change.  The naming difference ("_true") tells
4983 			 * that it is not always corresponding to
4984 			 * the current mtype/msize/moff.
4985 			 * It is the true end of the current
4986 			 * member (i.e. array in this case).  That
4987 			 * will allow an int array to be accessed like
4988 			 * a scratch space,
4989 			 * i.e. allow access beyond the size of
4990 			 *      the array's element as long as it is
4991 			 *      within the mtrue_end boundary.
4992 			 */
4993 
4994 			/* skip empty array */
4995 			if (moff == mtrue_end)
4996 				continue;
4997 
4998 			msize /= total_nelems;
4999 			elem_idx = (off - moff) / msize;
5000 			moff += elem_idx * msize;
5001 			mtype = elem_type;
5002 			mid = elem_id;
5003 		}
5004 
5005 		/* the 'off' we're looking for is either equal to start
5006 		 * of this field or inside of this struct
5007 		 */
5008 		if (btf_type_is_struct(mtype)) {
5009 			/* our field must be inside that union or struct */
5010 			t = mtype;
5011 
5012 			/* return if the offset matches the member offset */
5013 			if (off == moff) {
5014 				*next_btf_id = mid;
5015 				return WALK_STRUCT;
5016 			}
5017 
5018 			/* adjust offset we're looking for */
5019 			off -= moff;
5020 			goto again;
5021 		}
5022 
5023 		if (btf_type_is_ptr(mtype)) {
5024 			const struct btf_type *stype;
5025 			u32 id;
5026 
5027 			if (msize != size || off != moff) {
5028 				bpf_log(log,
5029 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5030 					mname, moff, tname, off, size);
5031 				return -EACCES;
5032 			}
5033 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
5034 			if (btf_type_is_struct(stype)) {
5035 				*next_btf_id = id;
5036 				return WALK_PTR;
5037 			}
5038 		}
5039 
5040 		/* Allow more flexible access within an int as long as
5041 		 * it is within mtrue_end.
5042 		 * Since mtrue_end could be the end of an array,
5043 		 * that also allows using an array of int as a scratch
5044 		 * space. e.g. skb->cb[].
5045 		 */
5046 		if (off + size > mtrue_end) {
5047 			bpf_log(log,
5048 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5049 				mname, mtrue_end, tname, off, size);
5050 			return -EACCES;
5051 		}
5052 
5053 		return WALK_SCALAR;
5054 	}
5055 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5056 	return -EINVAL;
5057 }
5058 
5059 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
5060 		      const struct btf_type *t, int off, int size,
5061 		      enum bpf_access_type atype __maybe_unused,
5062 		      u32 *next_btf_id)
5063 {
5064 	int err;
5065 	u32 id;
5066 
5067 	do {
5068 		err = btf_struct_walk(log, btf, t, off, size, &id);
5069 
5070 		switch (err) {
5071 		case WALK_PTR:
5072 			/* If we found the pointer or scalar on t+off,
5073 			 * we're done.
5074 			 */
5075 			*next_btf_id = id;
5076 			return PTR_TO_BTF_ID;
5077 		case WALK_SCALAR:
5078 			return SCALAR_VALUE;
5079 		case WALK_STRUCT:
5080 			/* We found nested struct, so continue the search
5081 			 * by diving in it. At this point the offset is
5082 			 * aligned with the new type, so set it to 0.
5083 			 */
5084 			t = btf_type_by_id(btf, id);
5085 			off = 0;
5086 			break;
5087 		default:
5088 			/* It's either error or unknown return value..
5089 			 * scream and leave.
5090 			 */
5091 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5092 				return -EINVAL;
5093 			return err;
5094 		}
5095 	} while (t);
5096 
5097 	return -EINVAL;
5098 }
5099 
5100 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5101  * the same. Trivial ID check is not enough due to module BTFs, because we can
5102  * end up with two different module BTFs, but IDs point to the common type in
5103  * vmlinux BTF.
5104  */
5105 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5106 			       const struct btf *btf2, u32 id2)
5107 {
5108 	if (id1 != id2)
5109 		return false;
5110 	if (btf1 == btf2)
5111 		return true;
5112 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5113 }
5114 
5115 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5116 			  const struct btf *btf, u32 id, int off,
5117 			  const struct btf *need_btf, u32 need_type_id)
5118 {
5119 	const struct btf_type *type;
5120 	int err;
5121 
5122 	/* Are we already done? */
5123 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5124 		return true;
5125 
5126 again:
5127 	type = btf_type_by_id(btf, id);
5128 	if (!type)
5129 		return false;
5130 	err = btf_struct_walk(log, btf, type, off, 1, &id);
5131 	if (err != WALK_STRUCT)
5132 		return false;
5133 
5134 	/* We found nested struct object. If it matches
5135 	 * the requested ID, we're done. Otherwise let's
5136 	 * continue the search with offset 0 in the new
5137 	 * type.
5138 	 */
5139 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5140 		off = 0;
5141 		goto again;
5142 	}
5143 
5144 	return true;
5145 }
5146 
5147 static int __get_type_size(struct btf *btf, u32 btf_id,
5148 			   const struct btf_type **bad_type)
5149 {
5150 	const struct btf_type *t;
5151 
5152 	if (!btf_id)
5153 		/* void */
5154 		return 0;
5155 	t = btf_type_by_id(btf, btf_id);
5156 	while (t && btf_type_is_modifier(t))
5157 		t = btf_type_by_id(btf, t->type);
5158 	if (!t) {
5159 		*bad_type = btf_type_by_id(btf, 0);
5160 		return -EINVAL;
5161 	}
5162 	if (btf_type_is_ptr(t))
5163 		/* kernel size of pointer. Not BPF's size of pointer*/
5164 		return sizeof(void *);
5165 	if (btf_type_is_int(t) || btf_type_is_enum(t))
5166 		return t->size;
5167 	*bad_type = t;
5168 	return -EINVAL;
5169 }
5170 
5171 int btf_distill_func_proto(struct bpf_verifier_log *log,
5172 			   struct btf *btf,
5173 			   const struct btf_type *func,
5174 			   const char *tname,
5175 			   struct btf_func_model *m)
5176 {
5177 	const struct btf_param *args;
5178 	const struct btf_type *t;
5179 	u32 i, nargs;
5180 	int ret;
5181 
5182 	if (!func) {
5183 		/* BTF function prototype doesn't match the verifier types.
5184 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5185 		 */
5186 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
5187 			m->arg_size[i] = 8;
5188 		m->ret_size = 8;
5189 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5190 		return 0;
5191 	}
5192 	args = (const struct btf_param *)(func + 1);
5193 	nargs = btf_type_vlen(func);
5194 	if (nargs >= MAX_BPF_FUNC_ARGS) {
5195 		bpf_log(log,
5196 			"The function %s has %d arguments. Too many.\n",
5197 			tname, nargs);
5198 		return -EINVAL;
5199 	}
5200 	ret = __get_type_size(btf, func->type, &t);
5201 	if (ret < 0) {
5202 		bpf_log(log,
5203 			"The function %s return type %s is unsupported.\n",
5204 			tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5205 		return -EINVAL;
5206 	}
5207 	m->ret_size = ret;
5208 
5209 	for (i = 0; i < nargs; i++) {
5210 		ret = __get_type_size(btf, args[i].type, &t);
5211 		if (ret < 0) {
5212 			bpf_log(log,
5213 				"The function %s arg%d type %s is unsupported.\n",
5214 				tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5215 			return -EINVAL;
5216 		}
5217 		m->arg_size[i] = ret;
5218 	}
5219 	m->nr_args = nargs;
5220 	return 0;
5221 }
5222 
5223 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5224  * t1 points to BTF_KIND_FUNC in btf1
5225  * t2 points to BTF_KIND_FUNC in btf2
5226  * Returns:
5227  * EINVAL - function prototype mismatch
5228  * EFAULT - verifier bug
5229  * 0 - 99% match. The last 1% is validated by the verifier.
5230  */
5231 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5232 				     struct btf *btf1, const struct btf_type *t1,
5233 				     struct btf *btf2, const struct btf_type *t2)
5234 {
5235 	const struct btf_param *args1, *args2;
5236 	const char *fn1, *fn2, *s1, *s2;
5237 	u32 nargs1, nargs2, i;
5238 
5239 	fn1 = btf_name_by_offset(btf1, t1->name_off);
5240 	fn2 = btf_name_by_offset(btf2, t2->name_off);
5241 
5242 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5243 		bpf_log(log, "%s() is not a global function\n", fn1);
5244 		return -EINVAL;
5245 	}
5246 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5247 		bpf_log(log, "%s() is not a global function\n", fn2);
5248 		return -EINVAL;
5249 	}
5250 
5251 	t1 = btf_type_by_id(btf1, t1->type);
5252 	if (!t1 || !btf_type_is_func_proto(t1))
5253 		return -EFAULT;
5254 	t2 = btf_type_by_id(btf2, t2->type);
5255 	if (!t2 || !btf_type_is_func_proto(t2))
5256 		return -EFAULT;
5257 
5258 	args1 = (const struct btf_param *)(t1 + 1);
5259 	nargs1 = btf_type_vlen(t1);
5260 	args2 = (const struct btf_param *)(t2 + 1);
5261 	nargs2 = btf_type_vlen(t2);
5262 
5263 	if (nargs1 != nargs2) {
5264 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
5265 			fn1, nargs1, fn2, nargs2);
5266 		return -EINVAL;
5267 	}
5268 
5269 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5270 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5271 	if (t1->info != t2->info) {
5272 		bpf_log(log,
5273 			"Return type %s of %s() doesn't match type %s of %s()\n",
5274 			btf_type_str(t1), fn1,
5275 			btf_type_str(t2), fn2);
5276 		return -EINVAL;
5277 	}
5278 
5279 	for (i = 0; i < nargs1; i++) {
5280 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5281 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5282 
5283 		if (t1->info != t2->info) {
5284 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5285 				i, fn1, btf_type_str(t1),
5286 				fn2, btf_type_str(t2));
5287 			return -EINVAL;
5288 		}
5289 		if (btf_type_has_size(t1) && t1->size != t2->size) {
5290 			bpf_log(log,
5291 				"arg%d in %s() has size %d while %s() has %d\n",
5292 				i, fn1, t1->size,
5293 				fn2, t2->size);
5294 			return -EINVAL;
5295 		}
5296 
5297 		/* global functions are validated with scalars and pointers
5298 		 * to context only. And only global functions can be replaced.
5299 		 * Hence type check only those types.
5300 		 */
5301 		if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5302 			continue;
5303 		if (!btf_type_is_ptr(t1)) {
5304 			bpf_log(log,
5305 				"arg%d in %s() has unrecognized type\n",
5306 				i, fn1);
5307 			return -EINVAL;
5308 		}
5309 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5310 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5311 		if (!btf_type_is_struct(t1)) {
5312 			bpf_log(log,
5313 				"arg%d in %s() is not a pointer to context\n",
5314 				i, fn1);
5315 			return -EINVAL;
5316 		}
5317 		if (!btf_type_is_struct(t2)) {
5318 			bpf_log(log,
5319 				"arg%d in %s() is not a pointer to context\n",
5320 				i, fn2);
5321 			return -EINVAL;
5322 		}
5323 		/* This is an optional check to make program writing easier.
5324 		 * Compare names of structs and report an error to the user.
5325 		 * btf_prepare_func_args() already checked that t2 struct
5326 		 * is a context type. btf_prepare_func_args() will check
5327 		 * later that t1 struct is a context type as well.
5328 		 */
5329 		s1 = btf_name_by_offset(btf1, t1->name_off);
5330 		s2 = btf_name_by_offset(btf2, t2->name_off);
5331 		if (strcmp(s1, s2)) {
5332 			bpf_log(log,
5333 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5334 				i, fn1, s1, fn2, s2);
5335 			return -EINVAL;
5336 		}
5337 	}
5338 	return 0;
5339 }
5340 
5341 /* Compare BTFs of given program with BTF of target program */
5342 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5343 			 struct btf *btf2, const struct btf_type *t2)
5344 {
5345 	struct btf *btf1 = prog->aux->btf;
5346 	const struct btf_type *t1;
5347 	u32 btf_id = 0;
5348 
5349 	if (!prog->aux->func_info) {
5350 		bpf_log(log, "Program extension requires BTF\n");
5351 		return -EINVAL;
5352 	}
5353 
5354 	btf_id = prog->aux->func_info[0].type_id;
5355 	if (!btf_id)
5356 		return -EFAULT;
5357 
5358 	t1 = btf_type_by_id(btf1, btf_id);
5359 	if (!t1 || !btf_type_is_func(t1))
5360 		return -EFAULT;
5361 
5362 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5363 }
5364 
5365 /* Compare BTF of a function with given bpf_reg_state.
5366  * Returns:
5367  * EFAULT - there is a verifier bug. Abort verification.
5368  * EINVAL - there is a type mismatch or BTF is not available.
5369  * 0 - BTF matches with what bpf_reg_state expects.
5370  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5371  */
5372 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
5373 			     struct bpf_reg_state *regs)
5374 {
5375 	struct bpf_verifier_log *log = &env->log;
5376 	struct bpf_prog *prog = env->prog;
5377 	struct btf *btf = prog->aux->btf;
5378 	const struct btf_param *args;
5379 	const struct btf_type *t, *ref_t;
5380 	u32 i, nargs, btf_id, type_size;
5381 	const char *tname;
5382 	bool is_global;
5383 
5384 	if (!prog->aux->func_info)
5385 		return -EINVAL;
5386 
5387 	btf_id = prog->aux->func_info[subprog].type_id;
5388 	if (!btf_id)
5389 		return -EFAULT;
5390 
5391 	if (prog->aux->func_info_aux[subprog].unreliable)
5392 		return -EINVAL;
5393 
5394 	t = btf_type_by_id(btf, btf_id);
5395 	if (!t || !btf_type_is_func(t)) {
5396 		/* These checks were already done by the verifier while loading
5397 		 * struct bpf_func_info
5398 		 */
5399 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5400 			subprog);
5401 		return -EFAULT;
5402 	}
5403 	tname = btf_name_by_offset(btf, t->name_off);
5404 
5405 	t = btf_type_by_id(btf, t->type);
5406 	if (!t || !btf_type_is_func_proto(t)) {
5407 		bpf_log(log, "Invalid BTF of func %s\n", tname);
5408 		return -EFAULT;
5409 	}
5410 	args = (const struct btf_param *)(t + 1);
5411 	nargs = btf_type_vlen(t);
5412 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5413 		bpf_log(log, "Function %s has %d > %d args\n", tname, nargs,
5414 			MAX_BPF_FUNC_REG_ARGS);
5415 		goto out;
5416 	}
5417 
5418 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5419 	/* check that BTF function arguments match actual types that the
5420 	 * verifier sees.
5421 	 */
5422 	for (i = 0; i < nargs; i++) {
5423 		struct bpf_reg_state *reg = &regs[i + 1];
5424 
5425 		t = btf_type_by_id(btf, args[i].type);
5426 		while (btf_type_is_modifier(t))
5427 			t = btf_type_by_id(btf, t->type);
5428 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5429 			if (reg->type == SCALAR_VALUE)
5430 				continue;
5431 			bpf_log(log, "R%d is not a scalar\n", i + 1);
5432 			goto out;
5433 		}
5434 		if (btf_type_is_ptr(t)) {
5435 			/* If function expects ctx type in BTF check that caller
5436 			 * is passing PTR_TO_CTX.
5437 			 */
5438 			if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
5439 				if (reg->type != PTR_TO_CTX) {
5440 					bpf_log(log,
5441 						"arg#%d expected pointer to ctx, but got %s\n",
5442 						i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5443 					goto out;
5444 				}
5445 				if (check_ctx_reg(env, reg, i + 1))
5446 					goto out;
5447 				continue;
5448 			}
5449 
5450 			if (!is_global)
5451 				goto out;
5452 
5453 			t = btf_type_skip_modifiers(btf, t->type, NULL);
5454 
5455 			ref_t = btf_resolve_size(btf, t, &type_size);
5456 			if (IS_ERR(ref_t)) {
5457 				bpf_log(log,
5458 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5459 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
5460 					PTR_ERR(ref_t));
5461 				goto out;
5462 			}
5463 
5464 			if (check_mem_reg(env, reg, i + 1, type_size))
5465 				goto out;
5466 
5467 			continue;
5468 		}
5469 		bpf_log(log, "Unrecognized arg#%d type %s\n",
5470 			i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5471 		goto out;
5472 	}
5473 	return 0;
5474 out:
5475 	/* Compiler optimizations can remove arguments from static functions
5476 	 * or mismatched type can be passed into a global function.
5477 	 * In such cases mark the function as unreliable from BTF point of view.
5478 	 */
5479 	prog->aux->func_info_aux[subprog].unreliable = true;
5480 	return -EINVAL;
5481 }
5482 
5483 /* Convert BTF of a function into bpf_reg_state if possible
5484  * Returns:
5485  * EFAULT - there is a verifier bug. Abort verification.
5486  * EINVAL - cannot convert BTF.
5487  * 0 - Successfully converted BTF into bpf_reg_state
5488  * (either PTR_TO_CTX or SCALAR_VALUE).
5489  */
5490 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5491 			  struct bpf_reg_state *regs)
5492 {
5493 	struct bpf_verifier_log *log = &env->log;
5494 	struct bpf_prog *prog = env->prog;
5495 	enum bpf_prog_type prog_type = prog->type;
5496 	struct btf *btf = prog->aux->btf;
5497 	const struct btf_param *args;
5498 	const struct btf_type *t, *ref_t;
5499 	u32 i, nargs, btf_id;
5500 	const char *tname;
5501 
5502 	if (!prog->aux->func_info ||
5503 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5504 		bpf_log(log, "Verifier bug\n");
5505 		return -EFAULT;
5506 	}
5507 
5508 	btf_id = prog->aux->func_info[subprog].type_id;
5509 	if (!btf_id) {
5510 		bpf_log(log, "Global functions need valid BTF\n");
5511 		return -EFAULT;
5512 	}
5513 
5514 	t = btf_type_by_id(btf, btf_id);
5515 	if (!t || !btf_type_is_func(t)) {
5516 		/* These checks were already done by the verifier while loading
5517 		 * struct bpf_func_info
5518 		 */
5519 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5520 			subprog);
5521 		return -EFAULT;
5522 	}
5523 	tname = btf_name_by_offset(btf, t->name_off);
5524 
5525 	if (log->level & BPF_LOG_LEVEL)
5526 		bpf_log(log, "Validating %s() func#%d...\n",
5527 			tname, subprog);
5528 
5529 	if (prog->aux->func_info_aux[subprog].unreliable) {
5530 		bpf_log(log, "Verifier bug in function %s()\n", tname);
5531 		return -EFAULT;
5532 	}
5533 	if (prog_type == BPF_PROG_TYPE_EXT)
5534 		prog_type = prog->aux->dst_prog->type;
5535 
5536 	t = btf_type_by_id(btf, t->type);
5537 	if (!t || !btf_type_is_func_proto(t)) {
5538 		bpf_log(log, "Invalid type of function %s()\n", tname);
5539 		return -EFAULT;
5540 	}
5541 	args = (const struct btf_param *)(t + 1);
5542 	nargs = btf_type_vlen(t);
5543 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5544 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
5545 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
5546 		return -EINVAL;
5547 	}
5548 	/* check that function returns int */
5549 	t = btf_type_by_id(btf, t->type);
5550 	while (btf_type_is_modifier(t))
5551 		t = btf_type_by_id(btf, t->type);
5552 	if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5553 		bpf_log(log,
5554 			"Global function %s() doesn't return scalar. Only those are supported.\n",
5555 			tname);
5556 		return -EINVAL;
5557 	}
5558 	/* Convert BTF function arguments into verifier types.
5559 	 * Only PTR_TO_CTX and SCALAR are supported atm.
5560 	 */
5561 	for (i = 0; i < nargs; i++) {
5562 		struct bpf_reg_state *reg = &regs[i + 1];
5563 
5564 		t = btf_type_by_id(btf, args[i].type);
5565 		while (btf_type_is_modifier(t))
5566 			t = btf_type_by_id(btf, t->type);
5567 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5568 			reg->type = SCALAR_VALUE;
5569 			continue;
5570 		}
5571 		if (btf_type_is_ptr(t)) {
5572 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5573 				reg->type = PTR_TO_CTX;
5574 				continue;
5575 			}
5576 
5577 			t = btf_type_skip_modifiers(btf, t->type, NULL);
5578 
5579 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
5580 			if (IS_ERR(ref_t)) {
5581 				bpf_log(log,
5582 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5583 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
5584 					PTR_ERR(ref_t));
5585 				return -EINVAL;
5586 			}
5587 
5588 			reg->type = PTR_TO_MEM_OR_NULL;
5589 			reg->id = ++env->id_gen;
5590 
5591 			continue;
5592 		}
5593 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5594 			i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5595 		return -EINVAL;
5596 	}
5597 	return 0;
5598 }
5599 
5600 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5601 			  struct btf_show *show)
5602 {
5603 	const struct btf_type *t = btf_type_by_id(btf, type_id);
5604 
5605 	show->btf = btf;
5606 	memset(&show->state, 0, sizeof(show->state));
5607 	memset(&show->obj, 0, sizeof(show->obj));
5608 
5609 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5610 }
5611 
5612 static void btf_seq_show(struct btf_show *show, const char *fmt,
5613 			 va_list args)
5614 {
5615 	seq_vprintf((struct seq_file *)show->target, fmt, args);
5616 }
5617 
5618 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5619 			    void *obj, struct seq_file *m, u64 flags)
5620 {
5621 	struct btf_show sseq;
5622 
5623 	sseq.target = m;
5624 	sseq.showfn = btf_seq_show;
5625 	sseq.flags = flags;
5626 
5627 	btf_type_show(btf, type_id, obj, &sseq);
5628 
5629 	return sseq.state.status;
5630 }
5631 
5632 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5633 		       struct seq_file *m)
5634 {
5635 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
5636 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5637 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5638 }
5639 
5640 struct btf_show_snprintf {
5641 	struct btf_show show;
5642 	int len_left;		/* space left in string */
5643 	int len;		/* length we would have written */
5644 };
5645 
5646 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5647 			      va_list args)
5648 {
5649 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5650 	int len;
5651 
5652 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5653 
5654 	if (len < 0) {
5655 		ssnprintf->len_left = 0;
5656 		ssnprintf->len = len;
5657 	} else if (len > ssnprintf->len_left) {
5658 		/* no space, drive on to get length we would have written */
5659 		ssnprintf->len_left = 0;
5660 		ssnprintf->len += len;
5661 	} else {
5662 		ssnprintf->len_left -= len;
5663 		ssnprintf->len += len;
5664 		show->target += len;
5665 	}
5666 }
5667 
5668 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5669 			   char *buf, int len, u64 flags)
5670 {
5671 	struct btf_show_snprintf ssnprintf;
5672 
5673 	ssnprintf.show.target = buf;
5674 	ssnprintf.show.flags = flags;
5675 	ssnprintf.show.showfn = btf_snprintf_show;
5676 	ssnprintf.len_left = len;
5677 	ssnprintf.len = 0;
5678 
5679 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5680 
5681 	/* If we encontered an error, return it. */
5682 	if (ssnprintf.show.state.status)
5683 		return ssnprintf.show.state.status;
5684 
5685 	/* Otherwise return length we would have written */
5686 	return ssnprintf.len;
5687 }
5688 
5689 #ifdef CONFIG_PROC_FS
5690 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5691 {
5692 	const struct btf *btf = filp->private_data;
5693 
5694 	seq_printf(m, "btf_id:\t%u\n", btf->id);
5695 }
5696 #endif
5697 
5698 static int btf_release(struct inode *inode, struct file *filp)
5699 {
5700 	btf_put(filp->private_data);
5701 	return 0;
5702 }
5703 
5704 const struct file_operations btf_fops = {
5705 #ifdef CONFIG_PROC_FS
5706 	.show_fdinfo	= bpf_btf_show_fdinfo,
5707 #endif
5708 	.release	= btf_release,
5709 };
5710 
5711 static int __btf_new_fd(struct btf *btf)
5712 {
5713 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5714 }
5715 
5716 int btf_new_fd(const union bpf_attr *attr)
5717 {
5718 	struct btf *btf;
5719 	int ret;
5720 
5721 	btf = btf_parse(u64_to_user_ptr(attr->btf),
5722 			attr->btf_size, attr->btf_log_level,
5723 			u64_to_user_ptr(attr->btf_log_buf),
5724 			attr->btf_log_size);
5725 	if (IS_ERR(btf))
5726 		return PTR_ERR(btf);
5727 
5728 	ret = btf_alloc_id(btf);
5729 	if (ret) {
5730 		btf_free(btf);
5731 		return ret;
5732 	}
5733 
5734 	/*
5735 	 * The BTF ID is published to the userspace.
5736 	 * All BTF free must go through call_rcu() from
5737 	 * now on (i.e. free by calling btf_put()).
5738 	 */
5739 
5740 	ret = __btf_new_fd(btf);
5741 	if (ret < 0)
5742 		btf_put(btf);
5743 
5744 	return ret;
5745 }
5746 
5747 struct btf *btf_get_by_fd(int fd)
5748 {
5749 	struct btf *btf;
5750 	struct fd f;
5751 
5752 	f = fdget(fd);
5753 
5754 	if (!f.file)
5755 		return ERR_PTR(-EBADF);
5756 
5757 	if (f.file->f_op != &btf_fops) {
5758 		fdput(f);
5759 		return ERR_PTR(-EINVAL);
5760 	}
5761 
5762 	btf = f.file->private_data;
5763 	refcount_inc(&btf->refcnt);
5764 	fdput(f);
5765 
5766 	return btf;
5767 }
5768 
5769 int btf_get_info_by_fd(const struct btf *btf,
5770 		       const union bpf_attr *attr,
5771 		       union bpf_attr __user *uattr)
5772 {
5773 	struct bpf_btf_info __user *uinfo;
5774 	struct bpf_btf_info info;
5775 	u32 info_copy, btf_copy;
5776 	void __user *ubtf;
5777 	char __user *uname;
5778 	u32 uinfo_len, uname_len, name_len;
5779 	int ret = 0;
5780 
5781 	uinfo = u64_to_user_ptr(attr->info.info);
5782 	uinfo_len = attr->info.info_len;
5783 
5784 	info_copy = min_t(u32, uinfo_len, sizeof(info));
5785 	memset(&info, 0, sizeof(info));
5786 	if (copy_from_user(&info, uinfo, info_copy))
5787 		return -EFAULT;
5788 
5789 	info.id = btf->id;
5790 	ubtf = u64_to_user_ptr(info.btf);
5791 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
5792 	if (copy_to_user(ubtf, btf->data, btf_copy))
5793 		return -EFAULT;
5794 	info.btf_size = btf->data_size;
5795 
5796 	info.kernel_btf = btf->kernel_btf;
5797 
5798 	uname = u64_to_user_ptr(info.name);
5799 	uname_len = info.name_len;
5800 	if (!uname ^ !uname_len)
5801 		return -EINVAL;
5802 
5803 	name_len = strlen(btf->name);
5804 	info.name_len = name_len;
5805 
5806 	if (uname) {
5807 		if (uname_len >= name_len + 1) {
5808 			if (copy_to_user(uname, btf->name, name_len + 1))
5809 				return -EFAULT;
5810 		} else {
5811 			char zero = '\0';
5812 
5813 			if (copy_to_user(uname, btf->name, uname_len - 1))
5814 				return -EFAULT;
5815 			if (put_user(zero, uname + uname_len - 1))
5816 				return -EFAULT;
5817 			/* let user-space know about too short buffer */
5818 			ret = -ENOSPC;
5819 		}
5820 	}
5821 
5822 	if (copy_to_user(uinfo, &info, info_copy) ||
5823 	    put_user(info_copy, &uattr->info.info_len))
5824 		return -EFAULT;
5825 
5826 	return ret;
5827 }
5828 
5829 int btf_get_fd_by_id(u32 id)
5830 {
5831 	struct btf *btf;
5832 	int fd;
5833 
5834 	rcu_read_lock();
5835 	btf = idr_find(&btf_idr, id);
5836 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5837 		btf = ERR_PTR(-ENOENT);
5838 	rcu_read_unlock();
5839 
5840 	if (IS_ERR(btf))
5841 		return PTR_ERR(btf);
5842 
5843 	fd = __btf_new_fd(btf);
5844 	if (fd < 0)
5845 		btf_put(btf);
5846 
5847 	return fd;
5848 }
5849 
5850 u32 btf_obj_id(const struct btf *btf)
5851 {
5852 	return btf->id;
5853 }
5854 
5855 bool btf_is_kernel(const struct btf *btf)
5856 {
5857 	return btf->kernel_btf;
5858 }
5859 
5860 bool btf_is_module(const struct btf *btf)
5861 {
5862 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
5863 }
5864 
5865 static int btf_id_cmp_func(const void *a, const void *b)
5866 {
5867 	const int *pa = a, *pb = b;
5868 
5869 	return *pa - *pb;
5870 }
5871 
5872 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
5873 {
5874 	return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
5875 }
5876 
5877 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5878 struct btf_module {
5879 	struct list_head list;
5880 	struct module *module;
5881 	struct btf *btf;
5882 	struct bin_attribute *sysfs_attr;
5883 };
5884 
5885 static LIST_HEAD(btf_modules);
5886 static DEFINE_MUTEX(btf_module_mutex);
5887 
5888 static ssize_t
5889 btf_module_read(struct file *file, struct kobject *kobj,
5890 		struct bin_attribute *bin_attr,
5891 		char *buf, loff_t off, size_t len)
5892 {
5893 	const struct btf *btf = bin_attr->private;
5894 
5895 	memcpy(buf, btf->data + off, len);
5896 	return len;
5897 }
5898 
5899 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
5900 			     void *module)
5901 {
5902 	struct btf_module *btf_mod, *tmp;
5903 	struct module *mod = module;
5904 	struct btf *btf;
5905 	int err = 0;
5906 
5907 	if (mod->btf_data_size == 0 ||
5908 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
5909 		goto out;
5910 
5911 	switch (op) {
5912 	case MODULE_STATE_COMING:
5913 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
5914 		if (!btf_mod) {
5915 			err = -ENOMEM;
5916 			goto out;
5917 		}
5918 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
5919 		if (IS_ERR(btf)) {
5920 			pr_warn("failed to validate module [%s] BTF: %ld\n",
5921 				mod->name, PTR_ERR(btf));
5922 			kfree(btf_mod);
5923 			err = PTR_ERR(btf);
5924 			goto out;
5925 		}
5926 		err = btf_alloc_id(btf);
5927 		if (err) {
5928 			btf_free(btf);
5929 			kfree(btf_mod);
5930 			goto out;
5931 		}
5932 
5933 		mutex_lock(&btf_module_mutex);
5934 		btf_mod->module = module;
5935 		btf_mod->btf = btf;
5936 		list_add(&btf_mod->list, &btf_modules);
5937 		mutex_unlock(&btf_module_mutex);
5938 
5939 		if (IS_ENABLED(CONFIG_SYSFS)) {
5940 			struct bin_attribute *attr;
5941 
5942 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
5943 			if (!attr)
5944 				goto out;
5945 
5946 			sysfs_bin_attr_init(attr);
5947 			attr->attr.name = btf->name;
5948 			attr->attr.mode = 0444;
5949 			attr->size = btf->data_size;
5950 			attr->private = btf;
5951 			attr->read = btf_module_read;
5952 
5953 			err = sysfs_create_bin_file(btf_kobj, attr);
5954 			if (err) {
5955 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
5956 					mod->name, err);
5957 				kfree(attr);
5958 				err = 0;
5959 				goto out;
5960 			}
5961 
5962 			btf_mod->sysfs_attr = attr;
5963 		}
5964 
5965 		break;
5966 	case MODULE_STATE_GOING:
5967 		mutex_lock(&btf_module_mutex);
5968 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
5969 			if (btf_mod->module != module)
5970 				continue;
5971 
5972 			list_del(&btf_mod->list);
5973 			if (btf_mod->sysfs_attr)
5974 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
5975 			btf_put(btf_mod->btf);
5976 			kfree(btf_mod->sysfs_attr);
5977 			kfree(btf_mod);
5978 			break;
5979 		}
5980 		mutex_unlock(&btf_module_mutex);
5981 		break;
5982 	}
5983 out:
5984 	return notifier_from_errno(err);
5985 }
5986 
5987 static struct notifier_block btf_module_nb = {
5988 	.notifier_call = btf_module_notify,
5989 };
5990 
5991 static int __init btf_module_init(void)
5992 {
5993 	register_module_notifier(&btf_module_nb);
5994 	return 0;
5995 }
5996 
5997 fs_initcall(btf_module_init);
5998 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5999 
6000 struct module *btf_try_get_module(const struct btf *btf)
6001 {
6002 	struct module *res = NULL;
6003 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6004 	struct btf_module *btf_mod, *tmp;
6005 
6006 	mutex_lock(&btf_module_mutex);
6007 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6008 		if (btf_mod->btf != btf)
6009 			continue;
6010 
6011 		if (try_module_get(btf_mod->module))
6012 			res = btf_mod->module;
6013 
6014 		break;
6015 	}
6016 	mutex_unlock(&btf_module_mutex);
6017 #endif
6018 
6019 	return res;
6020 }
6021