1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/skmsg.h> 23 #include <linux/perf_event.h> 24 #include <linux/bsearch.h> 25 #include <linux/kobject.h> 26 #include <linux/sysfs.h> 27 #include <net/sock.h> 28 29 /* BTF (BPF Type Format) is the meta data format which describes 30 * the data types of BPF program/map. Hence, it basically focus 31 * on the C programming language which the modern BPF is primary 32 * using. 33 * 34 * ELF Section: 35 * ~~~~~~~~~~~ 36 * The BTF data is stored under the ".BTF" ELF section 37 * 38 * struct btf_type: 39 * ~~~~~~~~~~~~~~~ 40 * Each 'struct btf_type' object describes a C data type. 41 * Depending on the type it is describing, a 'struct btf_type' 42 * object may be followed by more data. F.e. 43 * To describe an array, 'struct btf_type' is followed by 44 * 'struct btf_array'. 45 * 46 * 'struct btf_type' and any extra data following it are 47 * 4 bytes aligned. 48 * 49 * Type section: 50 * ~~~~~~~~~~~~~ 51 * The BTF type section contains a list of 'struct btf_type' objects. 52 * Each one describes a C type. Recall from the above section 53 * that a 'struct btf_type' object could be immediately followed by extra 54 * data in order to desribe some particular C types. 55 * 56 * type_id: 57 * ~~~~~~~ 58 * Each btf_type object is identified by a type_id. The type_id 59 * is implicitly implied by the location of the btf_type object in 60 * the BTF type section. The first one has type_id 1. The second 61 * one has type_id 2...etc. Hence, an earlier btf_type has 62 * a smaller type_id. 63 * 64 * A btf_type object may refer to another btf_type object by using 65 * type_id (i.e. the "type" in the "struct btf_type"). 66 * 67 * NOTE that we cannot assume any reference-order. 68 * A btf_type object can refer to an earlier btf_type object 69 * but it can also refer to a later btf_type object. 70 * 71 * For example, to describe "const void *". A btf_type 72 * object describing "const" may refer to another btf_type 73 * object describing "void *". This type-reference is done 74 * by specifying type_id: 75 * 76 * [1] CONST (anon) type_id=2 77 * [2] PTR (anon) type_id=0 78 * 79 * The above is the btf_verifier debug log: 80 * - Each line started with "[?]" is a btf_type object 81 * - [?] is the type_id of the btf_type object. 82 * - CONST/PTR is the BTF_KIND_XXX 83 * - "(anon)" is the name of the type. It just 84 * happens that CONST and PTR has no name. 85 * - type_id=XXX is the 'u32 type' in btf_type 86 * 87 * NOTE: "void" has type_id 0 88 * 89 * String section: 90 * ~~~~~~~~~~~~~~ 91 * The BTF string section contains the names used by the type section. 92 * Each string is referred by an "offset" from the beginning of the 93 * string section. 94 * 95 * Each string is '\0' terminated. 96 * 97 * The first character in the string section must be '\0' 98 * which is used to mean 'anonymous'. Some btf_type may not 99 * have a name. 100 */ 101 102 /* BTF verification: 103 * 104 * To verify BTF data, two passes are needed. 105 * 106 * Pass #1 107 * ~~~~~~~ 108 * The first pass is to collect all btf_type objects to 109 * an array: "btf->types". 110 * 111 * Depending on the C type that a btf_type is describing, 112 * a btf_type may be followed by extra data. We don't know 113 * how many btf_type is there, and more importantly we don't 114 * know where each btf_type is located in the type section. 115 * 116 * Without knowing the location of each type_id, most verifications 117 * cannot be done. e.g. an earlier btf_type may refer to a later 118 * btf_type (recall the "const void *" above), so we cannot 119 * check this type-reference in the first pass. 120 * 121 * In the first pass, it still does some verifications (e.g. 122 * checking the name is a valid offset to the string section). 123 * 124 * Pass #2 125 * ~~~~~~~ 126 * The main focus is to resolve a btf_type that is referring 127 * to another type. 128 * 129 * We have to ensure the referring type: 130 * 1) does exist in the BTF (i.e. in btf->types[]) 131 * 2) does not cause a loop: 132 * struct A { 133 * struct B b; 134 * }; 135 * 136 * struct B { 137 * struct A a; 138 * }; 139 * 140 * btf_type_needs_resolve() decides if a btf_type needs 141 * to be resolved. 142 * 143 * The needs_resolve type implements the "resolve()" ops which 144 * essentially does a DFS and detects backedge. 145 * 146 * During resolve (or DFS), different C types have different 147 * "RESOLVED" conditions. 148 * 149 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 150 * members because a member is always referring to another 151 * type. A struct's member can be treated as "RESOLVED" if 152 * it is referring to a BTF_KIND_PTR. Otherwise, the 153 * following valid C struct would be rejected: 154 * 155 * struct A { 156 * int m; 157 * struct A *a; 158 * }; 159 * 160 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 161 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 162 * detect a pointer loop, e.g.: 163 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 164 * ^ | 165 * +-----------------------------------------+ 166 * 167 */ 168 169 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 170 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 171 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 172 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 173 #define BITS_ROUNDUP_BYTES(bits) \ 174 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 175 176 #define BTF_INFO_MASK 0x9f00ffff 177 #define BTF_INT_MASK 0x0fffffff 178 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 179 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 180 181 /* 16MB for 64k structs and each has 16 members and 182 * a few MB spaces for the string section. 183 * The hard limit is S32_MAX. 184 */ 185 #define BTF_MAX_SIZE (16 * 1024 * 1024) 186 187 #define for_each_member_from(i, from, struct_type, member) \ 188 for (i = from, member = btf_type_member(struct_type) + from; \ 189 i < btf_type_vlen(struct_type); \ 190 i++, member++) 191 192 #define for_each_vsi_from(i, from, struct_type, member) \ 193 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 194 i < btf_type_vlen(struct_type); \ 195 i++, member++) 196 197 DEFINE_IDR(btf_idr); 198 DEFINE_SPINLOCK(btf_idr_lock); 199 200 struct btf { 201 void *data; 202 struct btf_type **types; 203 u32 *resolved_ids; 204 u32 *resolved_sizes; 205 const char *strings; 206 void *nohdr_data; 207 struct btf_header hdr; 208 u32 nr_types; /* includes VOID for base BTF */ 209 u32 types_size; 210 u32 data_size; 211 refcount_t refcnt; 212 u32 id; 213 struct rcu_head rcu; 214 215 /* split BTF support */ 216 struct btf *base_btf; 217 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 218 u32 start_str_off; /* first string offset (0 for base BTF) */ 219 char name[MODULE_NAME_LEN]; 220 bool kernel_btf; 221 }; 222 223 enum verifier_phase { 224 CHECK_META, 225 CHECK_TYPE, 226 }; 227 228 struct resolve_vertex { 229 const struct btf_type *t; 230 u32 type_id; 231 u16 next_member; 232 }; 233 234 enum visit_state { 235 NOT_VISITED, 236 VISITED, 237 RESOLVED, 238 }; 239 240 enum resolve_mode { 241 RESOLVE_TBD, /* To Be Determined */ 242 RESOLVE_PTR, /* Resolving for Pointer */ 243 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 244 * or array 245 */ 246 }; 247 248 #define MAX_RESOLVE_DEPTH 32 249 250 struct btf_sec_info { 251 u32 off; 252 u32 len; 253 }; 254 255 struct btf_verifier_env { 256 struct btf *btf; 257 u8 *visit_states; 258 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 259 struct bpf_verifier_log log; 260 u32 log_type_id; 261 u32 top_stack; 262 enum verifier_phase phase; 263 enum resolve_mode resolve_mode; 264 }; 265 266 static const char * const btf_kind_str[NR_BTF_KINDS] = { 267 [BTF_KIND_UNKN] = "UNKNOWN", 268 [BTF_KIND_INT] = "INT", 269 [BTF_KIND_PTR] = "PTR", 270 [BTF_KIND_ARRAY] = "ARRAY", 271 [BTF_KIND_STRUCT] = "STRUCT", 272 [BTF_KIND_UNION] = "UNION", 273 [BTF_KIND_ENUM] = "ENUM", 274 [BTF_KIND_FWD] = "FWD", 275 [BTF_KIND_TYPEDEF] = "TYPEDEF", 276 [BTF_KIND_VOLATILE] = "VOLATILE", 277 [BTF_KIND_CONST] = "CONST", 278 [BTF_KIND_RESTRICT] = "RESTRICT", 279 [BTF_KIND_FUNC] = "FUNC", 280 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 281 [BTF_KIND_VAR] = "VAR", 282 [BTF_KIND_DATASEC] = "DATASEC", 283 [BTF_KIND_FLOAT] = "FLOAT", 284 }; 285 286 static const char *btf_type_str(const struct btf_type *t) 287 { 288 return btf_kind_str[BTF_INFO_KIND(t->info)]; 289 } 290 291 /* Chunk size we use in safe copy of data to be shown. */ 292 #define BTF_SHOW_OBJ_SAFE_SIZE 32 293 294 /* 295 * This is the maximum size of a base type value (equivalent to a 296 * 128-bit int); if we are at the end of our safe buffer and have 297 * less than 16 bytes space we can't be assured of being able 298 * to copy the next type safely, so in such cases we will initiate 299 * a new copy. 300 */ 301 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 302 303 /* Type name size */ 304 #define BTF_SHOW_NAME_SIZE 80 305 306 /* 307 * Common data to all BTF show operations. Private show functions can add 308 * their own data to a structure containing a struct btf_show and consult it 309 * in the show callback. See btf_type_show() below. 310 * 311 * One challenge with showing nested data is we want to skip 0-valued 312 * data, but in order to figure out whether a nested object is all zeros 313 * we need to walk through it. As a result, we need to make two passes 314 * when handling structs, unions and arrays; the first path simply looks 315 * for nonzero data, while the second actually does the display. The first 316 * pass is signalled by show->state.depth_check being set, and if we 317 * encounter a non-zero value we set show->state.depth_to_show to 318 * the depth at which we encountered it. When we have completed the 319 * first pass, we will know if anything needs to be displayed if 320 * depth_to_show > depth. See btf_[struct,array]_show() for the 321 * implementation of this. 322 * 323 * Another problem is we want to ensure the data for display is safe to 324 * access. To support this, the anonymous "struct {} obj" tracks the data 325 * object and our safe copy of it. We copy portions of the data needed 326 * to the object "copy" buffer, but because its size is limited to 327 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 328 * traverse larger objects for display. 329 * 330 * The various data type show functions all start with a call to 331 * btf_show_start_type() which returns a pointer to the safe copy 332 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 333 * raw data itself). btf_show_obj_safe() is responsible for 334 * using copy_from_kernel_nofault() to update the safe data if necessary 335 * as we traverse the object's data. skbuff-like semantics are 336 * used: 337 * 338 * - obj.head points to the start of the toplevel object for display 339 * - obj.size is the size of the toplevel object 340 * - obj.data points to the current point in the original data at 341 * which our safe data starts. obj.data will advance as we copy 342 * portions of the data. 343 * 344 * In most cases a single copy will suffice, but larger data structures 345 * such as "struct task_struct" will require many copies. The logic in 346 * btf_show_obj_safe() handles the logic that determines if a new 347 * copy_from_kernel_nofault() is needed. 348 */ 349 struct btf_show { 350 u64 flags; 351 void *target; /* target of show operation (seq file, buffer) */ 352 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 353 const struct btf *btf; 354 /* below are used during iteration */ 355 struct { 356 u8 depth; 357 u8 depth_to_show; 358 u8 depth_check; 359 u8 array_member:1, 360 array_terminated:1; 361 u16 array_encoding; 362 u32 type_id; 363 int status; /* non-zero for error */ 364 const struct btf_type *type; 365 const struct btf_member *member; 366 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 367 } state; 368 struct { 369 u32 size; 370 void *head; 371 void *data; 372 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 373 } obj; 374 }; 375 376 struct btf_kind_operations { 377 s32 (*check_meta)(struct btf_verifier_env *env, 378 const struct btf_type *t, 379 u32 meta_left); 380 int (*resolve)(struct btf_verifier_env *env, 381 const struct resolve_vertex *v); 382 int (*check_member)(struct btf_verifier_env *env, 383 const struct btf_type *struct_type, 384 const struct btf_member *member, 385 const struct btf_type *member_type); 386 int (*check_kflag_member)(struct btf_verifier_env *env, 387 const struct btf_type *struct_type, 388 const struct btf_member *member, 389 const struct btf_type *member_type); 390 void (*log_details)(struct btf_verifier_env *env, 391 const struct btf_type *t); 392 void (*show)(const struct btf *btf, const struct btf_type *t, 393 u32 type_id, void *data, u8 bits_offsets, 394 struct btf_show *show); 395 }; 396 397 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 398 static struct btf_type btf_void; 399 400 static int btf_resolve(struct btf_verifier_env *env, 401 const struct btf_type *t, u32 type_id); 402 403 static bool btf_type_is_modifier(const struct btf_type *t) 404 { 405 /* Some of them is not strictly a C modifier 406 * but they are grouped into the same bucket 407 * for BTF concern: 408 * A type (t) that refers to another 409 * type through t->type AND its size cannot 410 * be determined without following the t->type. 411 * 412 * ptr does not fall into this bucket 413 * because its size is always sizeof(void *). 414 */ 415 switch (BTF_INFO_KIND(t->info)) { 416 case BTF_KIND_TYPEDEF: 417 case BTF_KIND_VOLATILE: 418 case BTF_KIND_CONST: 419 case BTF_KIND_RESTRICT: 420 return true; 421 } 422 423 return false; 424 } 425 426 bool btf_type_is_void(const struct btf_type *t) 427 { 428 return t == &btf_void; 429 } 430 431 static bool btf_type_is_fwd(const struct btf_type *t) 432 { 433 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 434 } 435 436 static bool btf_type_nosize(const struct btf_type *t) 437 { 438 return btf_type_is_void(t) || btf_type_is_fwd(t) || 439 btf_type_is_func(t) || btf_type_is_func_proto(t); 440 } 441 442 static bool btf_type_nosize_or_null(const struct btf_type *t) 443 { 444 return !t || btf_type_nosize(t); 445 } 446 447 static bool __btf_type_is_struct(const struct btf_type *t) 448 { 449 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; 450 } 451 452 static bool btf_type_is_array(const struct btf_type *t) 453 { 454 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 455 } 456 457 static bool btf_type_is_datasec(const struct btf_type *t) 458 { 459 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 460 } 461 462 u32 btf_nr_types(const struct btf *btf) 463 { 464 u32 total = 0; 465 466 while (btf) { 467 total += btf->nr_types; 468 btf = btf->base_btf; 469 } 470 471 return total; 472 } 473 474 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 475 { 476 const struct btf_type *t; 477 const char *tname; 478 u32 i, total; 479 480 total = btf_nr_types(btf); 481 for (i = 1; i < total; i++) { 482 t = btf_type_by_id(btf, i); 483 if (BTF_INFO_KIND(t->info) != kind) 484 continue; 485 486 tname = btf_name_by_offset(btf, t->name_off); 487 if (!strcmp(tname, name)) 488 return i; 489 } 490 491 return -ENOENT; 492 } 493 494 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 495 u32 id, u32 *res_id) 496 { 497 const struct btf_type *t = btf_type_by_id(btf, id); 498 499 while (btf_type_is_modifier(t)) { 500 id = t->type; 501 t = btf_type_by_id(btf, t->type); 502 } 503 504 if (res_id) 505 *res_id = id; 506 507 return t; 508 } 509 510 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 511 u32 id, u32 *res_id) 512 { 513 const struct btf_type *t; 514 515 t = btf_type_skip_modifiers(btf, id, NULL); 516 if (!btf_type_is_ptr(t)) 517 return NULL; 518 519 return btf_type_skip_modifiers(btf, t->type, res_id); 520 } 521 522 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 523 u32 id, u32 *res_id) 524 { 525 const struct btf_type *ptype; 526 527 ptype = btf_type_resolve_ptr(btf, id, res_id); 528 if (ptype && btf_type_is_func_proto(ptype)) 529 return ptype; 530 531 return NULL; 532 } 533 534 /* Types that act only as a source, not sink or intermediate 535 * type when resolving. 536 */ 537 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 538 { 539 return btf_type_is_var(t) || 540 btf_type_is_datasec(t); 541 } 542 543 /* What types need to be resolved? 544 * 545 * btf_type_is_modifier() is an obvious one. 546 * 547 * btf_type_is_struct() because its member refers to 548 * another type (through member->type). 549 * 550 * btf_type_is_var() because the variable refers to 551 * another type. btf_type_is_datasec() holds multiple 552 * btf_type_is_var() types that need resolving. 553 * 554 * btf_type_is_array() because its element (array->type) 555 * refers to another type. Array can be thought of a 556 * special case of struct while array just has the same 557 * member-type repeated by array->nelems of times. 558 */ 559 static bool btf_type_needs_resolve(const struct btf_type *t) 560 { 561 return btf_type_is_modifier(t) || 562 btf_type_is_ptr(t) || 563 btf_type_is_struct(t) || 564 btf_type_is_array(t) || 565 btf_type_is_var(t) || 566 btf_type_is_datasec(t); 567 } 568 569 /* t->size can be used */ 570 static bool btf_type_has_size(const struct btf_type *t) 571 { 572 switch (BTF_INFO_KIND(t->info)) { 573 case BTF_KIND_INT: 574 case BTF_KIND_STRUCT: 575 case BTF_KIND_UNION: 576 case BTF_KIND_ENUM: 577 case BTF_KIND_DATASEC: 578 case BTF_KIND_FLOAT: 579 return true; 580 } 581 582 return false; 583 } 584 585 static const char *btf_int_encoding_str(u8 encoding) 586 { 587 if (encoding == 0) 588 return "(none)"; 589 else if (encoding == BTF_INT_SIGNED) 590 return "SIGNED"; 591 else if (encoding == BTF_INT_CHAR) 592 return "CHAR"; 593 else if (encoding == BTF_INT_BOOL) 594 return "BOOL"; 595 else 596 return "UNKN"; 597 } 598 599 static u32 btf_type_int(const struct btf_type *t) 600 { 601 return *(u32 *)(t + 1); 602 } 603 604 static const struct btf_array *btf_type_array(const struct btf_type *t) 605 { 606 return (const struct btf_array *)(t + 1); 607 } 608 609 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 610 { 611 return (const struct btf_enum *)(t + 1); 612 } 613 614 static const struct btf_var *btf_type_var(const struct btf_type *t) 615 { 616 return (const struct btf_var *)(t + 1); 617 } 618 619 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 620 { 621 return kind_ops[BTF_INFO_KIND(t->info)]; 622 } 623 624 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 625 { 626 if (!BTF_STR_OFFSET_VALID(offset)) 627 return false; 628 629 while (offset < btf->start_str_off) 630 btf = btf->base_btf; 631 632 offset -= btf->start_str_off; 633 return offset < btf->hdr.str_len; 634 } 635 636 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 637 { 638 if ((first ? !isalpha(c) : 639 !isalnum(c)) && 640 c != '_' && 641 ((c == '.' && !dot_ok) || 642 c != '.')) 643 return false; 644 return true; 645 } 646 647 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 648 { 649 while (offset < btf->start_str_off) 650 btf = btf->base_btf; 651 652 offset -= btf->start_str_off; 653 if (offset < btf->hdr.str_len) 654 return &btf->strings[offset]; 655 656 return NULL; 657 } 658 659 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 660 { 661 /* offset must be valid */ 662 const char *src = btf_str_by_offset(btf, offset); 663 const char *src_limit; 664 665 if (!__btf_name_char_ok(*src, true, dot_ok)) 666 return false; 667 668 /* set a limit on identifier length */ 669 src_limit = src + KSYM_NAME_LEN; 670 src++; 671 while (*src && src < src_limit) { 672 if (!__btf_name_char_ok(*src, false, dot_ok)) 673 return false; 674 src++; 675 } 676 677 return !*src; 678 } 679 680 /* Only C-style identifier is permitted. This can be relaxed if 681 * necessary. 682 */ 683 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 684 { 685 return __btf_name_valid(btf, offset, false); 686 } 687 688 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 689 { 690 return __btf_name_valid(btf, offset, true); 691 } 692 693 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 694 { 695 const char *name; 696 697 if (!offset) 698 return "(anon)"; 699 700 name = btf_str_by_offset(btf, offset); 701 return name ?: "(invalid-name-offset)"; 702 } 703 704 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 705 { 706 return btf_str_by_offset(btf, offset); 707 } 708 709 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 710 { 711 while (type_id < btf->start_id) 712 btf = btf->base_btf; 713 714 type_id -= btf->start_id; 715 if (type_id >= btf->nr_types) 716 return NULL; 717 return btf->types[type_id]; 718 } 719 720 /* 721 * Regular int is not a bit field and it must be either 722 * u8/u16/u32/u64 or __int128. 723 */ 724 static bool btf_type_int_is_regular(const struct btf_type *t) 725 { 726 u8 nr_bits, nr_bytes; 727 u32 int_data; 728 729 int_data = btf_type_int(t); 730 nr_bits = BTF_INT_BITS(int_data); 731 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 732 if (BITS_PER_BYTE_MASKED(nr_bits) || 733 BTF_INT_OFFSET(int_data) || 734 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 735 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 736 nr_bytes != (2 * sizeof(u64)))) { 737 return false; 738 } 739 740 return true; 741 } 742 743 /* 744 * Check that given struct member is a regular int with expected 745 * offset and size. 746 */ 747 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 748 const struct btf_member *m, 749 u32 expected_offset, u32 expected_size) 750 { 751 const struct btf_type *t; 752 u32 id, int_data; 753 u8 nr_bits; 754 755 id = m->type; 756 t = btf_type_id_size(btf, &id, NULL); 757 if (!t || !btf_type_is_int(t)) 758 return false; 759 760 int_data = btf_type_int(t); 761 nr_bits = BTF_INT_BITS(int_data); 762 if (btf_type_kflag(s)) { 763 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 764 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 765 766 /* if kflag set, int should be a regular int and 767 * bit offset should be at byte boundary. 768 */ 769 return !bitfield_size && 770 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 771 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 772 } 773 774 if (BTF_INT_OFFSET(int_data) || 775 BITS_PER_BYTE_MASKED(m->offset) || 776 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 777 BITS_PER_BYTE_MASKED(nr_bits) || 778 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 779 return false; 780 781 return true; 782 } 783 784 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 785 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 786 u32 id) 787 { 788 const struct btf_type *t = btf_type_by_id(btf, id); 789 790 while (btf_type_is_modifier(t) && 791 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 792 id = t->type; 793 t = btf_type_by_id(btf, t->type); 794 } 795 796 return t; 797 } 798 799 #define BTF_SHOW_MAX_ITER 10 800 801 #define BTF_KIND_BIT(kind) (1ULL << kind) 802 803 /* 804 * Populate show->state.name with type name information. 805 * Format of type name is 806 * 807 * [.member_name = ] (type_name) 808 */ 809 static const char *btf_show_name(struct btf_show *show) 810 { 811 /* BTF_MAX_ITER array suffixes "[]" */ 812 const char *array_suffixes = "[][][][][][][][][][]"; 813 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 814 /* BTF_MAX_ITER pointer suffixes "*" */ 815 const char *ptr_suffixes = "**********"; 816 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 817 const char *name = NULL, *prefix = "", *parens = ""; 818 const struct btf_member *m = show->state.member; 819 const struct btf_type *t = show->state.type; 820 const struct btf_array *array; 821 u32 id = show->state.type_id; 822 const char *member = NULL; 823 bool show_member = false; 824 u64 kinds = 0; 825 int i; 826 827 show->state.name[0] = '\0'; 828 829 /* 830 * Don't show type name if we're showing an array member; 831 * in that case we show the array type so don't need to repeat 832 * ourselves for each member. 833 */ 834 if (show->state.array_member) 835 return ""; 836 837 /* Retrieve member name, if any. */ 838 if (m) { 839 member = btf_name_by_offset(show->btf, m->name_off); 840 show_member = strlen(member) > 0; 841 id = m->type; 842 } 843 844 /* 845 * Start with type_id, as we have resolved the struct btf_type * 846 * via btf_modifier_show() past the parent typedef to the child 847 * struct, int etc it is defined as. In such cases, the type_id 848 * still represents the starting type while the struct btf_type * 849 * in our show->state points at the resolved type of the typedef. 850 */ 851 t = btf_type_by_id(show->btf, id); 852 if (!t) 853 return ""; 854 855 /* 856 * The goal here is to build up the right number of pointer and 857 * array suffixes while ensuring the type name for a typedef 858 * is represented. Along the way we accumulate a list of 859 * BTF kinds we have encountered, since these will inform later 860 * display; for example, pointer types will not require an 861 * opening "{" for struct, we will just display the pointer value. 862 * 863 * We also want to accumulate the right number of pointer or array 864 * indices in the format string while iterating until we get to 865 * the typedef/pointee/array member target type. 866 * 867 * We start by pointing at the end of pointer and array suffix 868 * strings; as we accumulate pointers and arrays we move the pointer 869 * or array string backwards so it will show the expected number of 870 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 871 * and/or arrays and typedefs are supported as a precaution. 872 * 873 * We also want to get typedef name while proceeding to resolve 874 * type it points to so that we can add parentheses if it is a 875 * "typedef struct" etc. 876 */ 877 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 878 879 switch (BTF_INFO_KIND(t->info)) { 880 case BTF_KIND_TYPEDEF: 881 if (!name) 882 name = btf_name_by_offset(show->btf, 883 t->name_off); 884 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 885 id = t->type; 886 break; 887 case BTF_KIND_ARRAY: 888 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 889 parens = "["; 890 if (!t) 891 return ""; 892 array = btf_type_array(t); 893 if (array_suffix > array_suffixes) 894 array_suffix -= 2; 895 id = array->type; 896 break; 897 case BTF_KIND_PTR: 898 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 899 if (ptr_suffix > ptr_suffixes) 900 ptr_suffix -= 1; 901 id = t->type; 902 break; 903 default: 904 id = 0; 905 break; 906 } 907 if (!id) 908 break; 909 t = btf_type_skip_qualifiers(show->btf, id); 910 } 911 /* We may not be able to represent this type; bail to be safe */ 912 if (i == BTF_SHOW_MAX_ITER) 913 return ""; 914 915 if (!name) 916 name = btf_name_by_offset(show->btf, t->name_off); 917 918 switch (BTF_INFO_KIND(t->info)) { 919 case BTF_KIND_STRUCT: 920 case BTF_KIND_UNION: 921 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 922 "struct" : "union"; 923 /* if it's an array of struct/union, parens is already set */ 924 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 925 parens = "{"; 926 break; 927 case BTF_KIND_ENUM: 928 prefix = "enum"; 929 break; 930 default: 931 break; 932 } 933 934 /* pointer does not require parens */ 935 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 936 parens = ""; 937 /* typedef does not require struct/union/enum prefix */ 938 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 939 prefix = ""; 940 941 if (!name) 942 name = ""; 943 944 /* Even if we don't want type name info, we want parentheses etc */ 945 if (show->flags & BTF_SHOW_NONAME) 946 snprintf(show->state.name, sizeof(show->state.name), "%s", 947 parens); 948 else 949 snprintf(show->state.name, sizeof(show->state.name), 950 "%s%s%s(%s%s%s%s%s%s)%s", 951 /* first 3 strings comprise ".member = " */ 952 show_member ? "." : "", 953 show_member ? member : "", 954 show_member ? " = " : "", 955 /* ...next is our prefix (struct, enum, etc) */ 956 prefix, 957 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 958 /* ...this is the type name itself */ 959 name, 960 /* ...suffixed by the appropriate '*', '[]' suffixes */ 961 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 962 array_suffix, parens); 963 964 return show->state.name; 965 } 966 967 static const char *__btf_show_indent(struct btf_show *show) 968 { 969 const char *indents = " "; 970 const char *indent = &indents[strlen(indents)]; 971 972 if ((indent - show->state.depth) >= indents) 973 return indent - show->state.depth; 974 return indents; 975 } 976 977 static const char *btf_show_indent(struct btf_show *show) 978 { 979 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 980 } 981 982 static const char *btf_show_newline(struct btf_show *show) 983 { 984 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 985 } 986 987 static const char *btf_show_delim(struct btf_show *show) 988 { 989 if (show->state.depth == 0) 990 return ""; 991 992 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 993 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 994 return "|"; 995 996 return ","; 997 } 998 999 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1000 { 1001 va_list args; 1002 1003 if (!show->state.depth_check) { 1004 va_start(args, fmt); 1005 show->showfn(show, fmt, args); 1006 va_end(args); 1007 } 1008 } 1009 1010 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1011 * format specifiers to the format specifier passed in; these do the work of 1012 * adding indentation, delimiters etc while the caller simply has to specify 1013 * the type value(s) in the format specifier + value(s). 1014 */ 1015 #define btf_show_type_value(show, fmt, value) \ 1016 do { \ 1017 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \ 1018 show->state.depth == 0) { \ 1019 btf_show(show, "%s%s" fmt "%s%s", \ 1020 btf_show_indent(show), \ 1021 btf_show_name(show), \ 1022 value, btf_show_delim(show), \ 1023 btf_show_newline(show)); \ 1024 if (show->state.depth > show->state.depth_to_show) \ 1025 show->state.depth_to_show = show->state.depth; \ 1026 } \ 1027 } while (0) 1028 1029 #define btf_show_type_values(show, fmt, ...) \ 1030 do { \ 1031 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1032 btf_show_name(show), \ 1033 __VA_ARGS__, btf_show_delim(show), \ 1034 btf_show_newline(show)); \ 1035 if (show->state.depth > show->state.depth_to_show) \ 1036 show->state.depth_to_show = show->state.depth; \ 1037 } while (0) 1038 1039 /* How much is left to copy to safe buffer after @data? */ 1040 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1041 { 1042 return show->obj.head + show->obj.size - data; 1043 } 1044 1045 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1046 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1047 { 1048 return data >= show->obj.data && 1049 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1050 } 1051 1052 /* 1053 * If object pointed to by @data of @size falls within our safe buffer, return 1054 * the equivalent pointer to the same safe data. Assumes 1055 * copy_from_kernel_nofault() has already happened and our safe buffer is 1056 * populated. 1057 */ 1058 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1059 { 1060 if (btf_show_obj_is_safe(show, data, size)) 1061 return show->obj.safe + (data - show->obj.data); 1062 return NULL; 1063 } 1064 1065 /* 1066 * Return a safe-to-access version of data pointed to by @data. 1067 * We do this by copying the relevant amount of information 1068 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1069 * 1070 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1071 * safe copy is needed. 1072 * 1073 * Otherwise we need to determine if we have the required amount 1074 * of data (determined by the @data pointer and the size of the 1075 * largest base type we can encounter (represented by 1076 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1077 * that we will be able to print some of the current object, 1078 * and if more is needed a copy will be triggered. 1079 * Some objects such as structs will not fit into the buffer; 1080 * in such cases additional copies when we iterate over their 1081 * members may be needed. 1082 * 1083 * btf_show_obj_safe() is used to return a safe buffer for 1084 * btf_show_start_type(); this ensures that as we recurse into 1085 * nested types we always have safe data for the given type. 1086 * This approach is somewhat wasteful; it's possible for example 1087 * that when iterating over a large union we'll end up copying the 1088 * same data repeatedly, but the goal is safety not performance. 1089 * We use stack data as opposed to per-CPU buffers because the 1090 * iteration over a type can take some time, and preemption handling 1091 * would greatly complicate use of the safe buffer. 1092 */ 1093 static void *btf_show_obj_safe(struct btf_show *show, 1094 const struct btf_type *t, 1095 void *data) 1096 { 1097 const struct btf_type *rt; 1098 int size_left, size; 1099 void *safe = NULL; 1100 1101 if (show->flags & BTF_SHOW_UNSAFE) 1102 return data; 1103 1104 rt = btf_resolve_size(show->btf, t, &size); 1105 if (IS_ERR(rt)) { 1106 show->state.status = PTR_ERR(rt); 1107 return NULL; 1108 } 1109 1110 /* 1111 * Is this toplevel object? If so, set total object size and 1112 * initialize pointers. Otherwise check if we still fall within 1113 * our safe object data. 1114 */ 1115 if (show->state.depth == 0) { 1116 show->obj.size = size; 1117 show->obj.head = data; 1118 } else { 1119 /* 1120 * If the size of the current object is > our remaining 1121 * safe buffer we _may_ need to do a new copy. However 1122 * consider the case of a nested struct; it's size pushes 1123 * us over the safe buffer limit, but showing any individual 1124 * struct members does not. In such cases, we don't need 1125 * to initiate a fresh copy yet; however we definitely need 1126 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1127 * in our buffer, regardless of the current object size. 1128 * The logic here is that as we resolve types we will 1129 * hit a base type at some point, and we need to be sure 1130 * the next chunk of data is safely available to display 1131 * that type info safely. We cannot rely on the size of 1132 * the current object here because it may be much larger 1133 * than our current buffer (e.g. task_struct is 8k). 1134 * All we want to do here is ensure that we can print the 1135 * next basic type, which we can if either 1136 * - the current type size is within the safe buffer; or 1137 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1138 * the safe buffer. 1139 */ 1140 safe = __btf_show_obj_safe(show, data, 1141 min(size, 1142 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1143 } 1144 1145 /* 1146 * We need a new copy to our safe object, either because we haven't 1147 * yet copied and are intializing safe data, or because the data 1148 * we want falls outside the boundaries of the safe object. 1149 */ 1150 if (!safe) { 1151 size_left = btf_show_obj_size_left(show, data); 1152 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1153 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1154 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1155 data, size_left); 1156 if (!show->state.status) { 1157 show->obj.data = data; 1158 safe = show->obj.safe; 1159 } 1160 } 1161 1162 return safe; 1163 } 1164 1165 /* 1166 * Set the type we are starting to show and return a safe data pointer 1167 * to be used for showing the associated data. 1168 */ 1169 static void *btf_show_start_type(struct btf_show *show, 1170 const struct btf_type *t, 1171 u32 type_id, void *data) 1172 { 1173 show->state.type = t; 1174 show->state.type_id = type_id; 1175 show->state.name[0] = '\0'; 1176 1177 return btf_show_obj_safe(show, t, data); 1178 } 1179 1180 static void btf_show_end_type(struct btf_show *show) 1181 { 1182 show->state.type = NULL; 1183 show->state.type_id = 0; 1184 show->state.name[0] = '\0'; 1185 } 1186 1187 static void *btf_show_start_aggr_type(struct btf_show *show, 1188 const struct btf_type *t, 1189 u32 type_id, void *data) 1190 { 1191 void *safe_data = btf_show_start_type(show, t, type_id, data); 1192 1193 if (!safe_data) 1194 return safe_data; 1195 1196 btf_show(show, "%s%s%s", btf_show_indent(show), 1197 btf_show_name(show), 1198 btf_show_newline(show)); 1199 show->state.depth++; 1200 return safe_data; 1201 } 1202 1203 static void btf_show_end_aggr_type(struct btf_show *show, 1204 const char *suffix) 1205 { 1206 show->state.depth--; 1207 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1208 btf_show_delim(show), btf_show_newline(show)); 1209 btf_show_end_type(show); 1210 } 1211 1212 static void btf_show_start_member(struct btf_show *show, 1213 const struct btf_member *m) 1214 { 1215 show->state.member = m; 1216 } 1217 1218 static void btf_show_start_array_member(struct btf_show *show) 1219 { 1220 show->state.array_member = 1; 1221 btf_show_start_member(show, NULL); 1222 } 1223 1224 static void btf_show_end_member(struct btf_show *show) 1225 { 1226 show->state.member = NULL; 1227 } 1228 1229 static void btf_show_end_array_member(struct btf_show *show) 1230 { 1231 show->state.array_member = 0; 1232 btf_show_end_member(show); 1233 } 1234 1235 static void *btf_show_start_array_type(struct btf_show *show, 1236 const struct btf_type *t, 1237 u32 type_id, 1238 u16 array_encoding, 1239 void *data) 1240 { 1241 show->state.array_encoding = array_encoding; 1242 show->state.array_terminated = 0; 1243 return btf_show_start_aggr_type(show, t, type_id, data); 1244 } 1245 1246 static void btf_show_end_array_type(struct btf_show *show) 1247 { 1248 show->state.array_encoding = 0; 1249 show->state.array_terminated = 0; 1250 btf_show_end_aggr_type(show, "]"); 1251 } 1252 1253 static void *btf_show_start_struct_type(struct btf_show *show, 1254 const struct btf_type *t, 1255 u32 type_id, 1256 void *data) 1257 { 1258 return btf_show_start_aggr_type(show, t, type_id, data); 1259 } 1260 1261 static void btf_show_end_struct_type(struct btf_show *show) 1262 { 1263 btf_show_end_aggr_type(show, "}"); 1264 } 1265 1266 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1267 const char *fmt, ...) 1268 { 1269 va_list args; 1270 1271 va_start(args, fmt); 1272 bpf_verifier_vlog(log, fmt, args); 1273 va_end(args); 1274 } 1275 1276 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1277 const char *fmt, ...) 1278 { 1279 struct bpf_verifier_log *log = &env->log; 1280 va_list args; 1281 1282 if (!bpf_verifier_log_needed(log)) 1283 return; 1284 1285 va_start(args, fmt); 1286 bpf_verifier_vlog(log, fmt, args); 1287 va_end(args); 1288 } 1289 1290 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1291 const struct btf_type *t, 1292 bool log_details, 1293 const char *fmt, ...) 1294 { 1295 struct bpf_verifier_log *log = &env->log; 1296 u8 kind = BTF_INFO_KIND(t->info); 1297 struct btf *btf = env->btf; 1298 va_list args; 1299 1300 if (!bpf_verifier_log_needed(log)) 1301 return; 1302 1303 /* btf verifier prints all types it is processing via 1304 * btf_verifier_log_type(..., fmt = NULL). 1305 * Skip those prints for in-kernel BTF verification. 1306 */ 1307 if (log->level == BPF_LOG_KERNEL && !fmt) 1308 return; 1309 1310 __btf_verifier_log(log, "[%u] %s %s%s", 1311 env->log_type_id, 1312 btf_kind_str[kind], 1313 __btf_name_by_offset(btf, t->name_off), 1314 log_details ? " " : ""); 1315 1316 if (log_details) 1317 btf_type_ops(t)->log_details(env, t); 1318 1319 if (fmt && *fmt) { 1320 __btf_verifier_log(log, " "); 1321 va_start(args, fmt); 1322 bpf_verifier_vlog(log, fmt, args); 1323 va_end(args); 1324 } 1325 1326 __btf_verifier_log(log, "\n"); 1327 } 1328 1329 #define btf_verifier_log_type(env, t, ...) \ 1330 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1331 #define btf_verifier_log_basic(env, t, ...) \ 1332 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1333 1334 __printf(4, 5) 1335 static void btf_verifier_log_member(struct btf_verifier_env *env, 1336 const struct btf_type *struct_type, 1337 const struct btf_member *member, 1338 const char *fmt, ...) 1339 { 1340 struct bpf_verifier_log *log = &env->log; 1341 struct btf *btf = env->btf; 1342 va_list args; 1343 1344 if (!bpf_verifier_log_needed(log)) 1345 return; 1346 1347 if (log->level == BPF_LOG_KERNEL && !fmt) 1348 return; 1349 /* The CHECK_META phase already did a btf dump. 1350 * 1351 * If member is logged again, it must hit an error in 1352 * parsing this member. It is useful to print out which 1353 * struct this member belongs to. 1354 */ 1355 if (env->phase != CHECK_META) 1356 btf_verifier_log_type(env, struct_type, NULL); 1357 1358 if (btf_type_kflag(struct_type)) 1359 __btf_verifier_log(log, 1360 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1361 __btf_name_by_offset(btf, member->name_off), 1362 member->type, 1363 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1364 BTF_MEMBER_BIT_OFFSET(member->offset)); 1365 else 1366 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1367 __btf_name_by_offset(btf, member->name_off), 1368 member->type, member->offset); 1369 1370 if (fmt && *fmt) { 1371 __btf_verifier_log(log, " "); 1372 va_start(args, fmt); 1373 bpf_verifier_vlog(log, fmt, args); 1374 va_end(args); 1375 } 1376 1377 __btf_verifier_log(log, "\n"); 1378 } 1379 1380 __printf(4, 5) 1381 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1382 const struct btf_type *datasec_type, 1383 const struct btf_var_secinfo *vsi, 1384 const char *fmt, ...) 1385 { 1386 struct bpf_verifier_log *log = &env->log; 1387 va_list args; 1388 1389 if (!bpf_verifier_log_needed(log)) 1390 return; 1391 if (log->level == BPF_LOG_KERNEL && !fmt) 1392 return; 1393 if (env->phase != CHECK_META) 1394 btf_verifier_log_type(env, datasec_type, NULL); 1395 1396 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1397 vsi->type, vsi->offset, vsi->size); 1398 if (fmt && *fmt) { 1399 __btf_verifier_log(log, " "); 1400 va_start(args, fmt); 1401 bpf_verifier_vlog(log, fmt, args); 1402 va_end(args); 1403 } 1404 1405 __btf_verifier_log(log, "\n"); 1406 } 1407 1408 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1409 u32 btf_data_size) 1410 { 1411 struct bpf_verifier_log *log = &env->log; 1412 const struct btf *btf = env->btf; 1413 const struct btf_header *hdr; 1414 1415 if (!bpf_verifier_log_needed(log)) 1416 return; 1417 1418 if (log->level == BPF_LOG_KERNEL) 1419 return; 1420 hdr = &btf->hdr; 1421 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1422 __btf_verifier_log(log, "version: %u\n", hdr->version); 1423 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1424 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1425 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1426 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1427 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1428 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1429 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1430 } 1431 1432 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1433 { 1434 struct btf *btf = env->btf; 1435 1436 if (btf->types_size == btf->nr_types) { 1437 /* Expand 'types' array */ 1438 1439 struct btf_type **new_types; 1440 u32 expand_by, new_size; 1441 1442 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1443 btf_verifier_log(env, "Exceeded max num of types"); 1444 return -E2BIG; 1445 } 1446 1447 expand_by = max_t(u32, btf->types_size >> 2, 16); 1448 new_size = min_t(u32, BTF_MAX_TYPE, 1449 btf->types_size + expand_by); 1450 1451 new_types = kvcalloc(new_size, sizeof(*new_types), 1452 GFP_KERNEL | __GFP_NOWARN); 1453 if (!new_types) 1454 return -ENOMEM; 1455 1456 if (btf->nr_types == 0) { 1457 if (!btf->base_btf) { 1458 /* lazily init VOID type */ 1459 new_types[0] = &btf_void; 1460 btf->nr_types++; 1461 } 1462 } else { 1463 memcpy(new_types, btf->types, 1464 sizeof(*btf->types) * btf->nr_types); 1465 } 1466 1467 kvfree(btf->types); 1468 btf->types = new_types; 1469 btf->types_size = new_size; 1470 } 1471 1472 btf->types[btf->nr_types++] = t; 1473 1474 return 0; 1475 } 1476 1477 static int btf_alloc_id(struct btf *btf) 1478 { 1479 int id; 1480 1481 idr_preload(GFP_KERNEL); 1482 spin_lock_bh(&btf_idr_lock); 1483 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1484 if (id > 0) 1485 btf->id = id; 1486 spin_unlock_bh(&btf_idr_lock); 1487 idr_preload_end(); 1488 1489 if (WARN_ON_ONCE(!id)) 1490 return -ENOSPC; 1491 1492 return id > 0 ? 0 : id; 1493 } 1494 1495 static void btf_free_id(struct btf *btf) 1496 { 1497 unsigned long flags; 1498 1499 /* 1500 * In map-in-map, calling map_delete_elem() on outer 1501 * map will call bpf_map_put on the inner map. 1502 * It will then eventually call btf_free_id() 1503 * on the inner map. Some of the map_delete_elem() 1504 * implementation may have irq disabled, so 1505 * we need to use the _irqsave() version instead 1506 * of the _bh() version. 1507 */ 1508 spin_lock_irqsave(&btf_idr_lock, flags); 1509 idr_remove(&btf_idr, btf->id); 1510 spin_unlock_irqrestore(&btf_idr_lock, flags); 1511 } 1512 1513 static void btf_free(struct btf *btf) 1514 { 1515 kvfree(btf->types); 1516 kvfree(btf->resolved_sizes); 1517 kvfree(btf->resolved_ids); 1518 kvfree(btf->data); 1519 kfree(btf); 1520 } 1521 1522 static void btf_free_rcu(struct rcu_head *rcu) 1523 { 1524 struct btf *btf = container_of(rcu, struct btf, rcu); 1525 1526 btf_free(btf); 1527 } 1528 1529 void btf_get(struct btf *btf) 1530 { 1531 refcount_inc(&btf->refcnt); 1532 } 1533 1534 void btf_put(struct btf *btf) 1535 { 1536 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1537 btf_free_id(btf); 1538 call_rcu(&btf->rcu, btf_free_rcu); 1539 } 1540 } 1541 1542 static int env_resolve_init(struct btf_verifier_env *env) 1543 { 1544 struct btf *btf = env->btf; 1545 u32 nr_types = btf->nr_types; 1546 u32 *resolved_sizes = NULL; 1547 u32 *resolved_ids = NULL; 1548 u8 *visit_states = NULL; 1549 1550 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1551 GFP_KERNEL | __GFP_NOWARN); 1552 if (!resolved_sizes) 1553 goto nomem; 1554 1555 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1556 GFP_KERNEL | __GFP_NOWARN); 1557 if (!resolved_ids) 1558 goto nomem; 1559 1560 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1561 GFP_KERNEL | __GFP_NOWARN); 1562 if (!visit_states) 1563 goto nomem; 1564 1565 btf->resolved_sizes = resolved_sizes; 1566 btf->resolved_ids = resolved_ids; 1567 env->visit_states = visit_states; 1568 1569 return 0; 1570 1571 nomem: 1572 kvfree(resolved_sizes); 1573 kvfree(resolved_ids); 1574 kvfree(visit_states); 1575 return -ENOMEM; 1576 } 1577 1578 static void btf_verifier_env_free(struct btf_verifier_env *env) 1579 { 1580 kvfree(env->visit_states); 1581 kfree(env); 1582 } 1583 1584 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1585 const struct btf_type *next_type) 1586 { 1587 switch (env->resolve_mode) { 1588 case RESOLVE_TBD: 1589 /* int, enum or void is a sink */ 1590 return !btf_type_needs_resolve(next_type); 1591 case RESOLVE_PTR: 1592 /* int, enum, void, struct, array, func or func_proto is a sink 1593 * for ptr 1594 */ 1595 return !btf_type_is_modifier(next_type) && 1596 !btf_type_is_ptr(next_type); 1597 case RESOLVE_STRUCT_OR_ARRAY: 1598 /* int, enum, void, ptr, func or func_proto is a sink 1599 * for struct and array 1600 */ 1601 return !btf_type_is_modifier(next_type) && 1602 !btf_type_is_array(next_type) && 1603 !btf_type_is_struct(next_type); 1604 default: 1605 BUG(); 1606 } 1607 } 1608 1609 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1610 u32 type_id) 1611 { 1612 /* base BTF types should be resolved by now */ 1613 if (type_id < env->btf->start_id) 1614 return true; 1615 1616 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1617 } 1618 1619 static int env_stack_push(struct btf_verifier_env *env, 1620 const struct btf_type *t, u32 type_id) 1621 { 1622 const struct btf *btf = env->btf; 1623 struct resolve_vertex *v; 1624 1625 if (env->top_stack == MAX_RESOLVE_DEPTH) 1626 return -E2BIG; 1627 1628 if (type_id < btf->start_id 1629 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1630 return -EEXIST; 1631 1632 env->visit_states[type_id - btf->start_id] = VISITED; 1633 1634 v = &env->stack[env->top_stack++]; 1635 v->t = t; 1636 v->type_id = type_id; 1637 v->next_member = 0; 1638 1639 if (env->resolve_mode == RESOLVE_TBD) { 1640 if (btf_type_is_ptr(t)) 1641 env->resolve_mode = RESOLVE_PTR; 1642 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1643 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1644 } 1645 1646 return 0; 1647 } 1648 1649 static void env_stack_set_next_member(struct btf_verifier_env *env, 1650 u16 next_member) 1651 { 1652 env->stack[env->top_stack - 1].next_member = next_member; 1653 } 1654 1655 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1656 u32 resolved_type_id, 1657 u32 resolved_size) 1658 { 1659 u32 type_id = env->stack[--(env->top_stack)].type_id; 1660 struct btf *btf = env->btf; 1661 1662 type_id -= btf->start_id; /* adjust to local type id */ 1663 btf->resolved_sizes[type_id] = resolved_size; 1664 btf->resolved_ids[type_id] = resolved_type_id; 1665 env->visit_states[type_id] = RESOLVED; 1666 } 1667 1668 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1669 { 1670 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1671 } 1672 1673 /* Resolve the size of a passed-in "type" 1674 * 1675 * type: is an array (e.g. u32 array[x][y]) 1676 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1677 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1678 * corresponds to the return type. 1679 * *elem_type: u32 1680 * *elem_id: id of u32 1681 * *total_nelems: (x * y). Hence, individual elem size is 1682 * (*type_size / *total_nelems) 1683 * *type_id: id of type if it's changed within the function, 0 if not 1684 * 1685 * type: is not an array (e.g. const struct X) 1686 * return type: type "struct X" 1687 * *type_size: sizeof(struct X) 1688 * *elem_type: same as return type ("struct X") 1689 * *elem_id: 0 1690 * *total_nelems: 1 1691 * *type_id: id of type if it's changed within the function, 0 if not 1692 */ 1693 static const struct btf_type * 1694 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1695 u32 *type_size, const struct btf_type **elem_type, 1696 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1697 { 1698 const struct btf_type *array_type = NULL; 1699 const struct btf_array *array = NULL; 1700 u32 i, size, nelems = 1, id = 0; 1701 1702 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1703 switch (BTF_INFO_KIND(type->info)) { 1704 /* type->size can be used */ 1705 case BTF_KIND_INT: 1706 case BTF_KIND_STRUCT: 1707 case BTF_KIND_UNION: 1708 case BTF_KIND_ENUM: 1709 case BTF_KIND_FLOAT: 1710 size = type->size; 1711 goto resolved; 1712 1713 case BTF_KIND_PTR: 1714 size = sizeof(void *); 1715 goto resolved; 1716 1717 /* Modifiers */ 1718 case BTF_KIND_TYPEDEF: 1719 case BTF_KIND_VOLATILE: 1720 case BTF_KIND_CONST: 1721 case BTF_KIND_RESTRICT: 1722 id = type->type; 1723 type = btf_type_by_id(btf, type->type); 1724 break; 1725 1726 case BTF_KIND_ARRAY: 1727 if (!array_type) 1728 array_type = type; 1729 array = btf_type_array(type); 1730 if (nelems && array->nelems > U32_MAX / nelems) 1731 return ERR_PTR(-EINVAL); 1732 nelems *= array->nelems; 1733 type = btf_type_by_id(btf, array->type); 1734 break; 1735 1736 /* type without size */ 1737 default: 1738 return ERR_PTR(-EINVAL); 1739 } 1740 } 1741 1742 return ERR_PTR(-EINVAL); 1743 1744 resolved: 1745 if (nelems && size > U32_MAX / nelems) 1746 return ERR_PTR(-EINVAL); 1747 1748 *type_size = nelems * size; 1749 if (total_nelems) 1750 *total_nelems = nelems; 1751 if (elem_type) 1752 *elem_type = type; 1753 if (elem_id) 1754 *elem_id = array ? array->type : 0; 1755 if (type_id && id) 1756 *type_id = id; 1757 1758 return array_type ? : type; 1759 } 1760 1761 const struct btf_type * 1762 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1763 u32 *type_size) 1764 { 1765 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1766 } 1767 1768 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1769 { 1770 while (type_id < btf->start_id) 1771 btf = btf->base_btf; 1772 1773 return btf->resolved_ids[type_id - btf->start_id]; 1774 } 1775 1776 /* The input param "type_id" must point to a needs_resolve type */ 1777 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1778 u32 *type_id) 1779 { 1780 *type_id = btf_resolved_type_id(btf, *type_id); 1781 return btf_type_by_id(btf, *type_id); 1782 } 1783 1784 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1785 { 1786 while (type_id < btf->start_id) 1787 btf = btf->base_btf; 1788 1789 return btf->resolved_sizes[type_id - btf->start_id]; 1790 } 1791 1792 const struct btf_type *btf_type_id_size(const struct btf *btf, 1793 u32 *type_id, u32 *ret_size) 1794 { 1795 const struct btf_type *size_type; 1796 u32 size_type_id = *type_id; 1797 u32 size = 0; 1798 1799 size_type = btf_type_by_id(btf, size_type_id); 1800 if (btf_type_nosize_or_null(size_type)) 1801 return NULL; 1802 1803 if (btf_type_has_size(size_type)) { 1804 size = size_type->size; 1805 } else if (btf_type_is_array(size_type)) { 1806 size = btf_resolved_type_size(btf, size_type_id); 1807 } else if (btf_type_is_ptr(size_type)) { 1808 size = sizeof(void *); 1809 } else { 1810 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1811 !btf_type_is_var(size_type))) 1812 return NULL; 1813 1814 size_type_id = btf_resolved_type_id(btf, size_type_id); 1815 size_type = btf_type_by_id(btf, size_type_id); 1816 if (btf_type_nosize_or_null(size_type)) 1817 return NULL; 1818 else if (btf_type_has_size(size_type)) 1819 size = size_type->size; 1820 else if (btf_type_is_array(size_type)) 1821 size = btf_resolved_type_size(btf, size_type_id); 1822 else if (btf_type_is_ptr(size_type)) 1823 size = sizeof(void *); 1824 else 1825 return NULL; 1826 } 1827 1828 *type_id = size_type_id; 1829 if (ret_size) 1830 *ret_size = size; 1831 1832 return size_type; 1833 } 1834 1835 static int btf_df_check_member(struct btf_verifier_env *env, 1836 const struct btf_type *struct_type, 1837 const struct btf_member *member, 1838 const struct btf_type *member_type) 1839 { 1840 btf_verifier_log_basic(env, struct_type, 1841 "Unsupported check_member"); 1842 return -EINVAL; 1843 } 1844 1845 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1846 const struct btf_type *struct_type, 1847 const struct btf_member *member, 1848 const struct btf_type *member_type) 1849 { 1850 btf_verifier_log_basic(env, struct_type, 1851 "Unsupported check_kflag_member"); 1852 return -EINVAL; 1853 } 1854 1855 /* Used for ptr, array struct/union and float type members. 1856 * int, enum and modifier types have their specific callback functions. 1857 */ 1858 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 1859 const struct btf_type *struct_type, 1860 const struct btf_member *member, 1861 const struct btf_type *member_type) 1862 { 1863 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 1864 btf_verifier_log_member(env, struct_type, member, 1865 "Invalid member bitfield_size"); 1866 return -EINVAL; 1867 } 1868 1869 /* bitfield size is 0, so member->offset represents bit offset only. 1870 * It is safe to call non kflag check_member variants. 1871 */ 1872 return btf_type_ops(member_type)->check_member(env, struct_type, 1873 member, 1874 member_type); 1875 } 1876 1877 static int btf_df_resolve(struct btf_verifier_env *env, 1878 const struct resolve_vertex *v) 1879 { 1880 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 1881 return -EINVAL; 1882 } 1883 1884 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 1885 u32 type_id, void *data, u8 bits_offsets, 1886 struct btf_show *show) 1887 { 1888 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 1889 } 1890 1891 static int btf_int_check_member(struct btf_verifier_env *env, 1892 const struct btf_type *struct_type, 1893 const struct btf_member *member, 1894 const struct btf_type *member_type) 1895 { 1896 u32 int_data = btf_type_int(member_type); 1897 u32 struct_bits_off = member->offset; 1898 u32 struct_size = struct_type->size; 1899 u32 nr_copy_bits; 1900 u32 bytes_offset; 1901 1902 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 1903 btf_verifier_log_member(env, struct_type, member, 1904 "bits_offset exceeds U32_MAX"); 1905 return -EINVAL; 1906 } 1907 1908 struct_bits_off += BTF_INT_OFFSET(int_data); 1909 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1910 nr_copy_bits = BTF_INT_BITS(int_data) + 1911 BITS_PER_BYTE_MASKED(struct_bits_off); 1912 1913 if (nr_copy_bits > BITS_PER_U128) { 1914 btf_verifier_log_member(env, struct_type, member, 1915 "nr_copy_bits exceeds 128"); 1916 return -EINVAL; 1917 } 1918 1919 if (struct_size < bytes_offset || 1920 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1921 btf_verifier_log_member(env, struct_type, member, 1922 "Member exceeds struct_size"); 1923 return -EINVAL; 1924 } 1925 1926 return 0; 1927 } 1928 1929 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 1930 const struct btf_type *struct_type, 1931 const struct btf_member *member, 1932 const struct btf_type *member_type) 1933 { 1934 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 1935 u32 int_data = btf_type_int(member_type); 1936 u32 struct_size = struct_type->size; 1937 u32 nr_copy_bits; 1938 1939 /* a regular int type is required for the kflag int member */ 1940 if (!btf_type_int_is_regular(member_type)) { 1941 btf_verifier_log_member(env, struct_type, member, 1942 "Invalid member base type"); 1943 return -EINVAL; 1944 } 1945 1946 /* check sanity of bitfield size */ 1947 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 1948 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 1949 nr_int_data_bits = BTF_INT_BITS(int_data); 1950 if (!nr_bits) { 1951 /* Not a bitfield member, member offset must be at byte 1952 * boundary. 1953 */ 1954 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1955 btf_verifier_log_member(env, struct_type, member, 1956 "Invalid member offset"); 1957 return -EINVAL; 1958 } 1959 1960 nr_bits = nr_int_data_bits; 1961 } else if (nr_bits > nr_int_data_bits) { 1962 btf_verifier_log_member(env, struct_type, member, 1963 "Invalid member bitfield_size"); 1964 return -EINVAL; 1965 } 1966 1967 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1968 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 1969 if (nr_copy_bits > BITS_PER_U128) { 1970 btf_verifier_log_member(env, struct_type, member, 1971 "nr_copy_bits exceeds 128"); 1972 return -EINVAL; 1973 } 1974 1975 if (struct_size < bytes_offset || 1976 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1977 btf_verifier_log_member(env, struct_type, member, 1978 "Member exceeds struct_size"); 1979 return -EINVAL; 1980 } 1981 1982 return 0; 1983 } 1984 1985 static s32 btf_int_check_meta(struct btf_verifier_env *env, 1986 const struct btf_type *t, 1987 u32 meta_left) 1988 { 1989 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 1990 u16 encoding; 1991 1992 if (meta_left < meta_needed) { 1993 btf_verifier_log_basic(env, t, 1994 "meta_left:%u meta_needed:%u", 1995 meta_left, meta_needed); 1996 return -EINVAL; 1997 } 1998 1999 if (btf_type_vlen(t)) { 2000 btf_verifier_log_type(env, t, "vlen != 0"); 2001 return -EINVAL; 2002 } 2003 2004 if (btf_type_kflag(t)) { 2005 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2006 return -EINVAL; 2007 } 2008 2009 int_data = btf_type_int(t); 2010 if (int_data & ~BTF_INT_MASK) { 2011 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2012 int_data); 2013 return -EINVAL; 2014 } 2015 2016 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2017 2018 if (nr_bits > BITS_PER_U128) { 2019 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2020 BITS_PER_U128); 2021 return -EINVAL; 2022 } 2023 2024 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2025 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2026 return -EINVAL; 2027 } 2028 2029 /* 2030 * Only one of the encoding bits is allowed and it 2031 * should be sufficient for the pretty print purpose (i.e. decoding). 2032 * Multiple bits can be allowed later if it is found 2033 * to be insufficient. 2034 */ 2035 encoding = BTF_INT_ENCODING(int_data); 2036 if (encoding && 2037 encoding != BTF_INT_SIGNED && 2038 encoding != BTF_INT_CHAR && 2039 encoding != BTF_INT_BOOL) { 2040 btf_verifier_log_type(env, t, "Unsupported encoding"); 2041 return -ENOTSUPP; 2042 } 2043 2044 btf_verifier_log_type(env, t, NULL); 2045 2046 return meta_needed; 2047 } 2048 2049 static void btf_int_log(struct btf_verifier_env *env, 2050 const struct btf_type *t) 2051 { 2052 int int_data = btf_type_int(t); 2053 2054 btf_verifier_log(env, 2055 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2056 t->size, BTF_INT_OFFSET(int_data), 2057 BTF_INT_BITS(int_data), 2058 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2059 } 2060 2061 static void btf_int128_print(struct btf_show *show, void *data) 2062 { 2063 /* data points to a __int128 number. 2064 * Suppose 2065 * int128_num = *(__int128 *)data; 2066 * The below formulas shows what upper_num and lower_num represents: 2067 * upper_num = int128_num >> 64; 2068 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2069 */ 2070 u64 upper_num, lower_num; 2071 2072 #ifdef __BIG_ENDIAN_BITFIELD 2073 upper_num = *(u64 *)data; 2074 lower_num = *(u64 *)(data + 8); 2075 #else 2076 upper_num = *(u64 *)(data + 8); 2077 lower_num = *(u64 *)data; 2078 #endif 2079 if (upper_num == 0) 2080 btf_show_type_value(show, "0x%llx", lower_num); 2081 else 2082 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2083 lower_num); 2084 } 2085 2086 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2087 u16 right_shift_bits) 2088 { 2089 u64 upper_num, lower_num; 2090 2091 #ifdef __BIG_ENDIAN_BITFIELD 2092 upper_num = print_num[0]; 2093 lower_num = print_num[1]; 2094 #else 2095 upper_num = print_num[1]; 2096 lower_num = print_num[0]; 2097 #endif 2098 2099 /* shake out un-needed bits by shift/or operations */ 2100 if (left_shift_bits >= 64) { 2101 upper_num = lower_num << (left_shift_bits - 64); 2102 lower_num = 0; 2103 } else { 2104 upper_num = (upper_num << left_shift_bits) | 2105 (lower_num >> (64 - left_shift_bits)); 2106 lower_num = lower_num << left_shift_bits; 2107 } 2108 2109 if (right_shift_bits >= 64) { 2110 lower_num = upper_num >> (right_shift_bits - 64); 2111 upper_num = 0; 2112 } else { 2113 lower_num = (lower_num >> right_shift_bits) | 2114 (upper_num << (64 - right_shift_bits)); 2115 upper_num = upper_num >> right_shift_bits; 2116 } 2117 2118 #ifdef __BIG_ENDIAN_BITFIELD 2119 print_num[0] = upper_num; 2120 print_num[1] = lower_num; 2121 #else 2122 print_num[0] = lower_num; 2123 print_num[1] = upper_num; 2124 #endif 2125 } 2126 2127 static void btf_bitfield_show(void *data, u8 bits_offset, 2128 u8 nr_bits, struct btf_show *show) 2129 { 2130 u16 left_shift_bits, right_shift_bits; 2131 u8 nr_copy_bytes; 2132 u8 nr_copy_bits; 2133 u64 print_num[2] = {}; 2134 2135 nr_copy_bits = nr_bits + bits_offset; 2136 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2137 2138 memcpy(print_num, data, nr_copy_bytes); 2139 2140 #ifdef __BIG_ENDIAN_BITFIELD 2141 left_shift_bits = bits_offset; 2142 #else 2143 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2144 #endif 2145 right_shift_bits = BITS_PER_U128 - nr_bits; 2146 2147 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2148 btf_int128_print(show, print_num); 2149 } 2150 2151 2152 static void btf_int_bits_show(const struct btf *btf, 2153 const struct btf_type *t, 2154 void *data, u8 bits_offset, 2155 struct btf_show *show) 2156 { 2157 u32 int_data = btf_type_int(t); 2158 u8 nr_bits = BTF_INT_BITS(int_data); 2159 u8 total_bits_offset; 2160 2161 /* 2162 * bits_offset is at most 7. 2163 * BTF_INT_OFFSET() cannot exceed 128 bits. 2164 */ 2165 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2166 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2167 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2168 btf_bitfield_show(data, bits_offset, nr_bits, show); 2169 } 2170 2171 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2172 u32 type_id, void *data, u8 bits_offset, 2173 struct btf_show *show) 2174 { 2175 u32 int_data = btf_type_int(t); 2176 u8 encoding = BTF_INT_ENCODING(int_data); 2177 bool sign = encoding & BTF_INT_SIGNED; 2178 u8 nr_bits = BTF_INT_BITS(int_data); 2179 void *safe_data; 2180 2181 safe_data = btf_show_start_type(show, t, type_id, data); 2182 if (!safe_data) 2183 return; 2184 2185 if (bits_offset || BTF_INT_OFFSET(int_data) || 2186 BITS_PER_BYTE_MASKED(nr_bits)) { 2187 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2188 goto out; 2189 } 2190 2191 switch (nr_bits) { 2192 case 128: 2193 btf_int128_print(show, safe_data); 2194 break; 2195 case 64: 2196 if (sign) 2197 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2198 else 2199 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2200 break; 2201 case 32: 2202 if (sign) 2203 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2204 else 2205 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2206 break; 2207 case 16: 2208 if (sign) 2209 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2210 else 2211 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2212 break; 2213 case 8: 2214 if (show->state.array_encoding == BTF_INT_CHAR) { 2215 /* check for null terminator */ 2216 if (show->state.array_terminated) 2217 break; 2218 if (*(char *)data == '\0') { 2219 show->state.array_terminated = 1; 2220 break; 2221 } 2222 if (isprint(*(char *)data)) { 2223 btf_show_type_value(show, "'%c'", 2224 *(char *)safe_data); 2225 break; 2226 } 2227 } 2228 if (sign) 2229 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2230 else 2231 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2232 break; 2233 default: 2234 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2235 break; 2236 } 2237 out: 2238 btf_show_end_type(show); 2239 } 2240 2241 static const struct btf_kind_operations int_ops = { 2242 .check_meta = btf_int_check_meta, 2243 .resolve = btf_df_resolve, 2244 .check_member = btf_int_check_member, 2245 .check_kflag_member = btf_int_check_kflag_member, 2246 .log_details = btf_int_log, 2247 .show = btf_int_show, 2248 }; 2249 2250 static int btf_modifier_check_member(struct btf_verifier_env *env, 2251 const struct btf_type *struct_type, 2252 const struct btf_member *member, 2253 const struct btf_type *member_type) 2254 { 2255 const struct btf_type *resolved_type; 2256 u32 resolved_type_id = member->type; 2257 struct btf_member resolved_member; 2258 struct btf *btf = env->btf; 2259 2260 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2261 if (!resolved_type) { 2262 btf_verifier_log_member(env, struct_type, member, 2263 "Invalid member"); 2264 return -EINVAL; 2265 } 2266 2267 resolved_member = *member; 2268 resolved_member.type = resolved_type_id; 2269 2270 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2271 &resolved_member, 2272 resolved_type); 2273 } 2274 2275 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2276 const struct btf_type *struct_type, 2277 const struct btf_member *member, 2278 const struct btf_type *member_type) 2279 { 2280 const struct btf_type *resolved_type; 2281 u32 resolved_type_id = member->type; 2282 struct btf_member resolved_member; 2283 struct btf *btf = env->btf; 2284 2285 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2286 if (!resolved_type) { 2287 btf_verifier_log_member(env, struct_type, member, 2288 "Invalid member"); 2289 return -EINVAL; 2290 } 2291 2292 resolved_member = *member; 2293 resolved_member.type = resolved_type_id; 2294 2295 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2296 &resolved_member, 2297 resolved_type); 2298 } 2299 2300 static int btf_ptr_check_member(struct btf_verifier_env *env, 2301 const struct btf_type *struct_type, 2302 const struct btf_member *member, 2303 const struct btf_type *member_type) 2304 { 2305 u32 struct_size, struct_bits_off, bytes_offset; 2306 2307 struct_size = struct_type->size; 2308 struct_bits_off = member->offset; 2309 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2310 2311 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2312 btf_verifier_log_member(env, struct_type, member, 2313 "Member is not byte aligned"); 2314 return -EINVAL; 2315 } 2316 2317 if (struct_size - bytes_offset < sizeof(void *)) { 2318 btf_verifier_log_member(env, struct_type, member, 2319 "Member exceeds struct_size"); 2320 return -EINVAL; 2321 } 2322 2323 return 0; 2324 } 2325 2326 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2327 const struct btf_type *t, 2328 u32 meta_left) 2329 { 2330 if (btf_type_vlen(t)) { 2331 btf_verifier_log_type(env, t, "vlen != 0"); 2332 return -EINVAL; 2333 } 2334 2335 if (btf_type_kflag(t)) { 2336 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2337 return -EINVAL; 2338 } 2339 2340 if (!BTF_TYPE_ID_VALID(t->type)) { 2341 btf_verifier_log_type(env, t, "Invalid type_id"); 2342 return -EINVAL; 2343 } 2344 2345 /* typedef type must have a valid name, and other ref types, 2346 * volatile, const, restrict, should have a null name. 2347 */ 2348 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2349 if (!t->name_off || 2350 !btf_name_valid_identifier(env->btf, t->name_off)) { 2351 btf_verifier_log_type(env, t, "Invalid name"); 2352 return -EINVAL; 2353 } 2354 } else { 2355 if (t->name_off) { 2356 btf_verifier_log_type(env, t, "Invalid name"); 2357 return -EINVAL; 2358 } 2359 } 2360 2361 btf_verifier_log_type(env, t, NULL); 2362 2363 return 0; 2364 } 2365 2366 static int btf_modifier_resolve(struct btf_verifier_env *env, 2367 const struct resolve_vertex *v) 2368 { 2369 const struct btf_type *t = v->t; 2370 const struct btf_type *next_type; 2371 u32 next_type_id = t->type; 2372 struct btf *btf = env->btf; 2373 2374 next_type = btf_type_by_id(btf, next_type_id); 2375 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2376 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2377 return -EINVAL; 2378 } 2379 2380 if (!env_type_is_resolve_sink(env, next_type) && 2381 !env_type_is_resolved(env, next_type_id)) 2382 return env_stack_push(env, next_type, next_type_id); 2383 2384 /* Figure out the resolved next_type_id with size. 2385 * They will be stored in the current modifier's 2386 * resolved_ids and resolved_sizes such that it can 2387 * save us a few type-following when we use it later (e.g. in 2388 * pretty print). 2389 */ 2390 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2391 if (env_type_is_resolved(env, next_type_id)) 2392 next_type = btf_type_id_resolve(btf, &next_type_id); 2393 2394 /* "typedef void new_void", "const void"...etc */ 2395 if (!btf_type_is_void(next_type) && 2396 !btf_type_is_fwd(next_type) && 2397 !btf_type_is_func_proto(next_type)) { 2398 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2399 return -EINVAL; 2400 } 2401 } 2402 2403 env_stack_pop_resolved(env, next_type_id, 0); 2404 2405 return 0; 2406 } 2407 2408 static int btf_var_resolve(struct btf_verifier_env *env, 2409 const struct resolve_vertex *v) 2410 { 2411 const struct btf_type *next_type; 2412 const struct btf_type *t = v->t; 2413 u32 next_type_id = t->type; 2414 struct btf *btf = env->btf; 2415 2416 next_type = btf_type_by_id(btf, next_type_id); 2417 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2418 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2419 return -EINVAL; 2420 } 2421 2422 if (!env_type_is_resolve_sink(env, next_type) && 2423 !env_type_is_resolved(env, next_type_id)) 2424 return env_stack_push(env, next_type, next_type_id); 2425 2426 if (btf_type_is_modifier(next_type)) { 2427 const struct btf_type *resolved_type; 2428 u32 resolved_type_id; 2429 2430 resolved_type_id = next_type_id; 2431 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2432 2433 if (btf_type_is_ptr(resolved_type) && 2434 !env_type_is_resolve_sink(env, resolved_type) && 2435 !env_type_is_resolved(env, resolved_type_id)) 2436 return env_stack_push(env, resolved_type, 2437 resolved_type_id); 2438 } 2439 2440 /* We must resolve to something concrete at this point, no 2441 * forward types or similar that would resolve to size of 2442 * zero is allowed. 2443 */ 2444 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2445 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2446 return -EINVAL; 2447 } 2448 2449 env_stack_pop_resolved(env, next_type_id, 0); 2450 2451 return 0; 2452 } 2453 2454 static int btf_ptr_resolve(struct btf_verifier_env *env, 2455 const struct resolve_vertex *v) 2456 { 2457 const struct btf_type *next_type; 2458 const struct btf_type *t = v->t; 2459 u32 next_type_id = t->type; 2460 struct btf *btf = env->btf; 2461 2462 next_type = btf_type_by_id(btf, next_type_id); 2463 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2464 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2465 return -EINVAL; 2466 } 2467 2468 if (!env_type_is_resolve_sink(env, next_type) && 2469 !env_type_is_resolved(env, next_type_id)) 2470 return env_stack_push(env, next_type, next_type_id); 2471 2472 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2473 * the modifier may have stopped resolving when it was resolved 2474 * to a ptr (last-resolved-ptr). 2475 * 2476 * We now need to continue from the last-resolved-ptr to 2477 * ensure the last-resolved-ptr will not referring back to 2478 * the currenct ptr (t). 2479 */ 2480 if (btf_type_is_modifier(next_type)) { 2481 const struct btf_type *resolved_type; 2482 u32 resolved_type_id; 2483 2484 resolved_type_id = next_type_id; 2485 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2486 2487 if (btf_type_is_ptr(resolved_type) && 2488 !env_type_is_resolve_sink(env, resolved_type) && 2489 !env_type_is_resolved(env, resolved_type_id)) 2490 return env_stack_push(env, resolved_type, 2491 resolved_type_id); 2492 } 2493 2494 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2495 if (env_type_is_resolved(env, next_type_id)) 2496 next_type = btf_type_id_resolve(btf, &next_type_id); 2497 2498 if (!btf_type_is_void(next_type) && 2499 !btf_type_is_fwd(next_type) && 2500 !btf_type_is_func_proto(next_type)) { 2501 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2502 return -EINVAL; 2503 } 2504 } 2505 2506 env_stack_pop_resolved(env, next_type_id, 0); 2507 2508 return 0; 2509 } 2510 2511 static void btf_modifier_show(const struct btf *btf, 2512 const struct btf_type *t, 2513 u32 type_id, void *data, 2514 u8 bits_offset, struct btf_show *show) 2515 { 2516 if (btf->resolved_ids) 2517 t = btf_type_id_resolve(btf, &type_id); 2518 else 2519 t = btf_type_skip_modifiers(btf, type_id, NULL); 2520 2521 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2522 } 2523 2524 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2525 u32 type_id, void *data, u8 bits_offset, 2526 struct btf_show *show) 2527 { 2528 t = btf_type_id_resolve(btf, &type_id); 2529 2530 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2531 } 2532 2533 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2534 u32 type_id, void *data, u8 bits_offset, 2535 struct btf_show *show) 2536 { 2537 void *safe_data; 2538 2539 safe_data = btf_show_start_type(show, t, type_id, data); 2540 if (!safe_data) 2541 return; 2542 2543 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2544 if (show->flags & BTF_SHOW_PTR_RAW) 2545 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2546 else 2547 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2548 btf_show_end_type(show); 2549 } 2550 2551 static void btf_ref_type_log(struct btf_verifier_env *env, 2552 const struct btf_type *t) 2553 { 2554 btf_verifier_log(env, "type_id=%u", t->type); 2555 } 2556 2557 static struct btf_kind_operations modifier_ops = { 2558 .check_meta = btf_ref_type_check_meta, 2559 .resolve = btf_modifier_resolve, 2560 .check_member = btf_modifier_check_member, 2561 .check_kflag_member = btf_modifier_check_kflag_member, 2562 .log_details = btf_ref_type_log, 2563 .show = btf_modifier_show, 2564 }; 2565 2566 static struct btf_kind_operations ptr_ops = { 2567 .check_meta = btf_ref_type_check_meta, 2568 .resolve = btf_ptr_resolve, 2569 .check_member = btf_ptr_check_member, 2570 .check_kflag_member = btf_generic_check_kflag_member, 2571 .log_details = btf_ref_type_log, 2572 .show = btf_ptr_show, 2573 }; 2574 2575 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2576 const struct btf_type *t, 2577 u32 meta_left) 2578 { 2579 if (btf_type_vlen(t)) { 2580 btf_verifier_log_type(env, t, "vlen != 0"); 2581 return -EINVAL; 2582 } 2583 2584 if (t->type) { 2585 btf_verifier_log_type(env, t, "type != 0"); 2586 return -EINVAL; 2587 } 2588 2589 /* fwd type must have a valid name */ 2590 if (!t->name_off || 2591 !btf_name_valid_identifier(env->btf, t->name_off)) { 2592 btf_verifier_log_type(env, t, "Invalid name"); 2593 return -EINVAL; 2594 } 2595 2596 btf_verifier_log_type(env, t, NULL); 2597 2598 return 0; 2599 } 2600 2601 static void btf_fwd_type_log(struct btf_verifier_env *env, 2602 const struct btf_type *t) 2603 { 2604 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2605 } 2606 2607 static struct btf_kind_operations fwd_ops = { 2608 .check_meta = btf_fwd_check_meta, 2609 .resolve = btf_df_resolve, 2610 .check_member = btf_df_check_member, 2611 .check_kflag_member = btf_df_check_kflag_member, 2612 .log_details = btf_fwd_type_log, 2613 .show = btf_df_show, 2614 }; 2615 2616 static int btf_array_check_member(struct btf_verifier_env *env, 2617 const struct btf_type *struct_type, 2618 const struct btf_member *member, 2619 const struct btf_type *member_type) 2620 { 2621 u32 struct_bits_off = member->offset; 2622 u32 struct_size, bytes_offset; 2623 u32 array_type_id, array_size; 2624 struct btf *btf = env->btf; 2625 2626 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2627 btf_verifier_log_member(env, struct_type, member, 2628 "Member is not byte aligned"); 2629 return -EINVAL; 2630 } 2631 2632 array_type_id = member->type; 2633 btf_type_id_size(btf, &array_type_id, &array_size); 2634 struct_size = struct_type->size; 2635 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2636 if (struct_size - bytes_offset < array_size) { 2637 btf_verifier_log_member(env, struct_type, member, 2638 "Member exceeds struct_size"); 2639 return -EINVAL; 2640 } 2641 2642 return 0; 2643 } 2644 2645 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2646 const struct btf_type *t, 2647 u32 meta_left) 2648 { 2649 const struct btf_array *array = btf_type_array(t); 2650 u32 meta_needed = sizeof(*array); 2651 2652 if (meta_left < meta_needed) { 2653 btf_verifier_log_basic(env, t, 2654 "meta_left:%u meta_needed:%u", 2655 meta_left, meta_needed); 2656 return -EINVAL; 2657 } 2658 2659 /* array type should not have a name */ 2660 if (t->name_off) { 2661 btf_verifier_log_type(env, t, "Invalid name"); 2662 return -EINVAL; 2663 } 2664 2665 if (btf_type_vlen(t)) { 2666 btf_verifier_log_type(env, t, "vlen != 0"); 2667 return -EINVAL; 2668 } 2669 2670 if (btf_type_kflag(t)) { 2671 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2672 return -EINVAL; 2673 } 2674 2675 if (t->size) { 2676 btf_verifier_log_type(env, t, "size != 0"); 2677 return -EINVAL; 2678 } 2679 2680 /* Array elem type and index type cannot be in type void, 2681 * so !array->type and !array->index_type are not allowed. 2682 */ 2683 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2684 btf_verifier_log_type(env, t, "Invalid elem"); 2685 return -EINVAL; 2686 } 2687 2688 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2689 btf_verifier_log_type(env, t, "Invalid index"); 2690 return -EINVAL; 2691 } 2692 2693 btf_verifier_log_type(env, t, NULL); 2694 2695 return meta_needed; 2696 } 2697 2698 static int btf_array_resolve(struct btf_verifier_env *env, 2699 const struct resolve_vertex *v) 2700 { 2701 const struct btf_array *array = btf_type_array(v->t); 2702 const struct btf_type *elem_type, *index_type; 2703 u32 elem_type_id, index_type_id; 2704 struct btf *btf = env->btf; 2705 u32 elem_size; 2706 2707 /* Check array->index_type */ 2708 index_type_id = array->index_type; 2709 index_type = btf_type_by_id(btf, index_type_id); 2710 if (btf_type_nosize_or_null(index_type) || 2711 btf_type_is_resolve_source_only(index_type)) { 2712 btf_verifier_log_type(env, v->t, "Invalid index"); 2713 return -EINVAL; 2714 } 2715 2716 if (!env_type_is_resolve_sink(env, index_type) && 2717 !env_type_is_resolved(env, index_type_id)) 2718 return env_stack_push(env, index_type, index_type_id); 2719 2720 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2721 if (!index_type || !btf_type_is_int(index_type) || 2722 !btf_type_int_is_regular(index_type)) { 2723 btf_verifier_log_type(env, v->t, "Invalid index"); 2724 return -EINVAL; 2725 } 2726 2727 /* Check array->type */ 2728 elem_type_id = array->type; 2729 elem_type = btf_type_by_id(btf, elem_type_id); 2730 if (btf_type_nosize_or_null(elem_type) || 2731 btf_type_is_resolve_source_only(elem_type)) { 2732 btf_verifier_log_type(env, v->t, 2733 "Invalid elem"); 2734 return -EINVAL; 2735 } 2736 2737 if (!env_type_is_resolve_sink(env, elem_type) && 2738 !env_type_is_resolved(env, elem_type_id)) 2739 return env_stack_push(env, elem_type, elem_type_id); 2740 2741 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2742 if (!elem_type) { 2743 btf_verifier_log_type(env, v->t, "Invalid elem"); 2744 return -EINVAL; 2745 } 2746 2747 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2748 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2749 return -EINVAL; 2750 } 2751 2752 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2753 btf_verifier_log_type(env, v->t, 2754 "Array size overflows U32_MAX"); 2755 return -EINVAL; 2756 } 2757 2758 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2759 2760 return 0; 2761 } 2762 2763 static void btf_array_log(struct btf_verifier_env *env, 2764 const struct btf_type *t) 2765 { 2766 const struct btf_array *array = btf_type_array(t); 2767 2768 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2769 array->type, array->index_type, array->nelems); 2770 } 2771 2772 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2773 u32 type_id, void *data, u8 bits_offset, 2774 struct btf_show *show) 2775 { 2776 const struct btf_array *array = btf_type_array(t); 2777 const struct btf_kind_operations *elem_ops; 2778 const struct btf_type *elem_type; 2779 u32 i, elem_size = 0, elem_type_id; 2780 u16 encoding = 0; 2781 2782 elem_type_id = array->type; 2783 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2784 if (elem_type && btf_type_has_size(elem_type)) 2785 elem_size = elem_type->size; 2786 2787 if (elem_type && btf_type_is_int(elem_type)) { 2788 u32 int_type = btf_type_int(elem_type); 2789 2790 encoding = BTF_INT_ENCODING(int_type); 2791 2792 /* 2793 * BTF_INT_CHAR encoding never seems to be set for 2794 * char arrays, so if size is 1 and element is 2795 * printable as a char, we'll do that. 2796 */ 2797 if (elem_size == 1) 2798 encoding = BTF_INT_CHAR; 2799 } 2800 2801 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2802 return; 2803 2804 if (!elem_type) 2805 goto out; 2806 elem_ops = btf_type_ops(elem_type); 2807 2808 for (i = 0; i < array->nelems; i++) { 2809 2810 btf_show_start_array_member(show); 2811 2812 elem_ops->show(btf, elem_type, elem_type_id, data, 2813 bits_offset, show); 2814 data += elem_size; 2815 2816 btf_show_end_array_member(show); 2817 2818 if (show->state.array_terminated) 2819 break; 2820 } 2821 out: 2822 btf_show_end_array_type(show); 2823 } 2824 2825 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 2826 u32 type_id, void *data, u8 bits_offset, 2827 struct btf_show *show) 2828 { 2829 const struct btf_member *m = show->state.member; 2830 2831 /* 2832 * First check if any members would be shown (are non-zero). 2833 * See comments above "struct btf_show" definition for more 2834 * details on how this works at a high-level. 2835 */ 2836 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 2837 if (!show->state.depth_check) { 2838 show->state.depth_check = show->state.depth + 1; 2839 show->state.depth_to_show = 0; 2840 } 2841 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2842 show->state.member = m; 2843 2844 if (show->state.depth_check != show->state.depth + 1) 2845 return; 2846 show->state.depth_check = 0; 2847 2848 if (show->state.depth_to_show <= show->state.depth) 2849 return; 2850 /* 2851 * Reaching here indicates we have recursed and found 2852 * non-zero array member(s). 2853 */ 2854 } 2855 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2856 } 2857 2858 static struct btf_kind_operations array_ops = { 2859 .check_meta = btf_array_check_meta, 2860 .resolve = btf_array_resolve, 2861 .check_member = btf_array_check_member, 2862 .check_kflag_member = btf_generic_check_kflag_member, 2863 .log_details = btf_array_log, 2864 .show = btf_array_show, 2865 }; 2866 2867 static int btf_struct_check_member(struct btf_verifier_env *env, 2868 const struct btf_type *struct_type, 2869 const struct btf_member *member, 2870 const struct btf_type *member_type) 2871 { 2872 u32 struct_bits_off = member->offset; 2873 u32 struct_size, bytes_offset; 2874 2875 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2876 btf_verifier_log_member(env, struct_type, member, 2877 "Member is not byte aligned"); 2878 return -EINVAL; 2879 } 2880 2881 struct_size = struct_type->size; 2882 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2883 if (struct_size - bytes_offset < member_type->size) { 2884 btf_verifier_log_member(env, struct_type, member, 2885 "Member exceeds struct_size"); 2886 return -EINVAL; 2887 } 2888 2889 return 0; 2890 } 2891 2892 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 2893 const struct btf_type *t, 2894 u32 meta_left) 2895 { 2896 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 2897 const struct btf_member *member; 2898 u32 meta_needed, last_offset; 2899 struct btf *btf = env->btf; 2900 u32 struct_size = t->size; 2901 u32 offset; 2902 u16 i; 2903 2904 meta_needed = btf_type_vlen(t) * sizeof(*member); 2905 if (meta_left < meta_needed) { 2906 btf_verifier_log_basic(env, t, 2907 "meta_left:%u meta_needed:%u", 2908 meta_left, meta_needed); 2909 return -EINVAL; 2910 } 2911 2912 /* struct type either no name or a valid one */ 2913 if (t->name_off && 2914 !btf_name_valid_identifier(env->btf, t->name_off)) { 2915 btf_verifier_log_type(env, t, "Invalid name"); 2916 return -EINVAL; 2917 } 2918 2919 btf_verifier_log_type(env, t, NULL); 2920 2921 last_offset = 0; 2922 for_each_member(i, t, member) { 2923 if (!btf_name_offset_valid(btf, member->name_off)) { 2924 btf_verifier_log_member(env, t, member, 2925 "Invalid member name_offset:%u", 2926 member->name_off); 2927 return -EINVAL; 2928 } 2929 2930 /* struct member either no name or a valid one */ 2931 if (member->name_off && 2932 !btf_name_valid_identifier(btf, member->name_off)) { 2933 btf_verifier_log_member(env, t, member, "Invalid name"); 2934 return -EINVAL; 2935 } 2936 /* A member cannot be in type void */ 2937 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 2938 btf_verifier_log_member(env, t, member, 2939 "Invalid type_id"); 2940 return -EINVAL; 2941 } 2942 2943 offset = btf_member_bit_offset(t, member); 2944 if (is_union && offset) { 2945 btf_verifier_log_member(env, t, member, 2946 "Invalid member bits_offset"); 2947 return -EINVAL; 2948 } 2949 2950 /* 2951 * ">" instead of ">=" because the last member could be 2952 * "char a[0];" 2953 */ 2954 if (last_offset > offset) { 2955 btf_verifier_log_member(env, t, member, 2956 "Invalid member bits_offset"); 2957 return -EINVAL; 2958 } 2959 2960 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 2961 btf_verifier_log_member(env, t, member, 2962 "Member bits_offset exceeds its struct size"); 2963 return -EINVAL; 2964 } 2965 2966 btf_verifier_log_member(env, t, member, NULL); 2967 last_offset = offset; 2968 } 2969 2970 return meta_needed; 2971 } 2972 2973 static int btf_struct_resolve(struct btf_verifier_env *env, 2974 const struct resolve_vertex *v) 2975 { 2976 const struct btf_member *member; 2977 int err; 2978 u16 i; 2979 2980 /* Before continue resolving the next_member, 2981 * ensure the last member is indeed resolved to a 2982 * type with size info. 2983 */ 2984 if (v->next_member) { 2985 const struct btf_type *last_member_type; 2986 const struct btf_member *last_member; 2987 u16 last_member_type_id; 2988 2989 last_member = btf_type_member(v->t) + v->next_member - 1; 2990 last_member_type_id = last_member->type; 2991 if (WARN_ON_ONCE(!env_type_is_resolved(env, 2992 last_member_type_id))) 2993 return -EINVAL; 2994 2995 last_member_type = btf_type_by_id(env->btf, 2996 last_member_type_id); 2997 if (btf_type_kflag(v->t)) 2998 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 2999 last_member, 3000 last_member_type); 3001 else 3002 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3003 last_member, 3004 last_member_type); 3005 if (err) 3006 return err; 3007 } 3008 3009 for_each_member_from(i, v->next_member, v->t, member) { 3010 u32 member_type_id = member->type; 3011 const struct btf_type *member_type = btf_type_by_id(env->btf, 3012 member_type_id); 3013 3014 if (btf_type_nosize_or_null(member_type) || 3015 btf_type_is_resolve_source_only(member_type)) { 3016 btf_verifier_log_member(env, v->t, member, 3017 "Invalid member"); 3018 return -EINVAL; 3019 } 3020 3021 if (!env_type_is_resolve_sink(env, member_type) && 3022 !env_type_is_resolved(env, member_type_id)) { 3023 env_stack_set_next_member(env, i + 1); 3024 return env_stack_push(env, member_type, member_type_id); 3025 } 3026 3027 if (btf_type_kflag(v->t)) 3028 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3029 member, 3030 member_type); 3031 else 3032 err = btf_type_ops(member_type)->check_member(env, v->t, 3033 member, 3034 member_type); 3035 if (err) 3036 return err; 3037 } 3038 3039 env_stack_pop_resolved(env, 0, 0); 3040 3041 return 0; 3042 } 3043 3044 static void btf_struct_log(struct btf_verifier_env *env, 3045 const struct btf_type *t) 3046 { 3047 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3048 } 3049 3050 /* find 'struct bpf_spin_lock' in map value. 3051 * return >= 0 offset if found 3052 * and < 0 in case of error 3053 */ 3054 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) 3055 { 3056 const struct btf_member *member; 3057 u32 i, off = -ENOENT; 3058 3059 if (!__btf_type_is_struct(t)) 3060 return -EINVAL; 3061 3062 for_each_member(i, t, member) { 3063 const struct btf_type *member_type = btf_type_by_id(btf, 3064 member->type); 3065 if (!__btf_type_is_struct(member_type)) 3066 continue; 3067 if (member_type->size != sizeof(struct bpf_spin_lock)) 3068 continue; 3069 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), 3070 "bpf_spin_lock")) 3071 continue; 3072 if (off != -ENOENT) 3073 /* only one 'struct bpf_spin_lock' is allowed */ 3074 return -E2BIG; 3075 off = btf_member_bit_offset(t, member); 3076 if (off % 8) 3077 /* valid C code cannot generate such BTF */ 3078 return -EINVAL; 3079 off /= 8; 3080 if (off % __alignof__(struct bpf_spin_lock)) 3081 /* valid struct bpf_spin_lock will be 4 byte aligned */ 3082 return -EINVAL; 3083 } 3084 return off; 3085 } 3086 3087 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3088 u32 type_id, void *data, u8 bits_offset, 3089 struct btf_show *show) 3090 { 3091 const struct btf_member *member; 3092 void *safe_data; 3093 u32 i; 3094 3095 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3096 if (!safe_data) 3097 return; 3098 3099 for_each_member(i, t, member) { 3100 const struct btf_type *member_type = btf_type_by_id(btf, 3101 member->type); 3102 const struct btf_kind_operations *ops; 3103 u32 member_offset, bitfield_size; 3104 u32 bytes_offset; 3105 u8 bits8_offset; 3106 3107 btf_show_start_member(show, member); 3108 3109 member_offset = btf_member_bit_offset(t, member); 3110 bitfield_size = btf_member_bitfield_size(t, member); 3111 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3112 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3113 if (bitfield_size) { 3114 safe_data = btf_show_start_type(show, member_type, 3115 member->type, 3116 data + bytes_offset); 3117 if (safe_data) 3118 btf_bitfield_show(safe_data, 3119 bits8_offset, 3120 bitfield_size, show); 3121 btf_show_end_type(show); 3122 } else { 3123 ops = btf_type_ops(member_type); 3124 ops->show(btf, member_type, member->type, 3125 data + bytes_offset, bits8_offset, show); 3126 } 3127 3128 btf_show_end_member(show); 3129 } 3130 3131 btf_show_end_struct_type(show); 3132 } 3133 3134 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3135 u32 type_id, void *data, u8 bits_offset, 3136 struct btf_show *show) 3137 { 3138 const struct btf_member *m = show->state.member; 3139 3140 /* 3141 * First check if any members would be shown (are non-zero). 3142 * See comments above "struct btf_show" definition for more 3143 * details on how this works at a high-level. 3144 */ 3145 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3146 if (!show->state.depth_check) { 3147 show->state.depth_check = show->state.depth + 1; 3148 show->state.depth_to_show = 0; 3149 } 3150 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3151 /* Restore saved member data here */ 3152 show->state.member = m; 3153 if (show->state.depth_check != show->state.depth + 1) 3154 return; 3155 show->state.depth_check = 0; 3156 3157 if (show->state.depth_to_show <= show->state.depth) 3158 return; 3159 /* 3160 * Reaching here indicates we have recursed and found 3161 * non-zero child values. 3162 */ 3163 } 3164 3165 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3166 } 3167 3168 static struct btf_kind_operations struct_ops = { 3169 .check_meta = btf_struct_check_meta, 3170 .resolve = btf_struct_resolve, 3171 .check_member = btf_struct_check_member, 3172 .check_kflag_member = btf_generic_check_kflag_member, 3173 .log_details = btf_struct_log, 3174 .show = btf_struct_show, 3175 }; 3176 3177 static int btf_enum_check_member(struct btf_verifier_env *env, 3178 const struct btf_type *struct_type, 3179 const struct btf_member *member, 3180 const struct btf_type *member_type) 3181 { 3182 u32 struct_bits_off = member->offset; 3183 u32 struct_size, bytes_offset; 3184 3185 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3186 btf_verifier_log_member(env, struct_type, member, 3187 "Member is not byte aligned"); 3188 return -EINVAL; 3189 } 3190 3191 struct_size = struct_type->size; 3192 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3193 if (struct_size - bytes_offset < member_type->size) { 3194 btf_verifier_log_member(env, struct_type, member, 3195 "Member exceeds struct_size"); 3196 return -EINVAL; 3197 } 3198 3199 return 0; 3200 } 3201 3202 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 3203 const struct btf_type *struct_type, 3204 const struct btf_member *member, 3205 const struct btf_type *member_type) 3206 { 3207 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 3208 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 3209 3210 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 3211 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 3212 if (!nr_bits) { 3213 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3214 btf_verifier_log_member(env, struct_type, member, 3215 "Member is not byte aligned"); 3216 return -EINVAL; 3217 } 3218 3219 nr_bits = int_bitsize; 3220 } else if (nr_bits > int_bitsize) { 3221 btf_verifier_log_member(env, struct_type, member, 3222 "Invalid member bitfield_size"); 3223 return -EINVAL; 3224 } 3225 3226 struct_size = struct_type->size; 3227 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 3228 if (struct_size < bytes_end) { 3229 btf_verifier_log_member(env, struct_type, member, 3230 "Member exceeds struct_size"); 3231 return -EINVAL; 3232 } 3233 3234 return 0; 3235 } 3236 3237 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 3238 const struct btf_type *t, 3239 u32 meta_left) 3240 { 3241 const struct btf_enum *enums = btf_type_enum(t); 3242 struct btf *btf = env->btf; 3243 u16 i, nr_enums; 3244 u32 meta_needed; 3245 3246 nr_enums = btf_type_vlen(t); 3247 meta_needed = nr_enums * sizeof(*enums); 3248 3249 if (meta_left < meta_needed) { 3250 btf_verifier_log_basic(env, t, 3251 "meta_left:%u meta_needed:%u", 3252 meta_left, meta_needed); 3253 return -EINVAL; 3254 } 3255 3256 if (btf_type_kflag(t)) { 3257 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3258 return -EINVAL; 3259 } 3260 3261 if (t->size > 8 || !is_power_of_2(t->size)) { 3262 btf_verifier_log_type(env, t, "Unexpected size"); 3263 return -EINVAL; 3264 } 3265 3266 /* enum type either no name or a valid one */ 3267 if (t->name_off && 3268 !btf_name_valid_identifier(env->btf, t->name_off)) { 3269 btf_verifier_log_type(env, t, "Invalid name"); 3270 return -EINVAL; 3271 } 3272 3273 btf_verifier_log_type(env, t, NULL); 3274 3275 for (i = 0; i < nr_enums; i++) { 3276 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 3277 btf_verifier_log(env, "\tInvalid name_offset:%u", 3278 enums[i].name_off); 3279 return -EINVAL; 3280 } 3281 3282 /* enum member must have a valid name */ 3283 if (!enums[i].name_off || 3284 !btf_name_valid_identifier(btf, enums[i].name_off)) { 3285 btf_verifier_log_type(env, t, "Invalid name"); 3286 return -EINVAL; 3287 } 3288 3289 if (env->log.level == BPF_LOG_KERNEL) 3290 continue; 3291 btf_verifier_log(env, "\t%s val=%d\n", 3292 __btf_name_by_offset(btf, enums[i].name_off), 3293 enums[i].val); 3294 } 3295 3296 return meta_needed; 3297 } 3298 3299 static void btf_enum_log(struct btf_verifier_env *env, 3300 const struct btf_type *t) 3301 { 3302 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3303 } 3304 3305 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 3306 u32 type_id, void *data, u8 bits_offset, 3307 struct btf_show *show) 3308 { 3309 const struct btf_enum *enums = btf_type_enum(t); 3310 u32 i, nr_enums = btf_type_vlen(t); 3311 void *safe_data; 3312 int v; 3313 3314 safe_data = btf_show_start_type(show, t, type_id, data); 3315 if (!safe_data) 3316 return; 3317 3318 v = *(int *)safe_data; 3319 3320 for (i = 0; i < nr_enums; i++) { 3321 if (v != enums[i].val) 3322 continue; 3323 3324 btf_show_type_value(show, "%s", 3325 __btf_name_by_offset(btf, 3326 enums[i].name_off)); 3327 3328 btf_show_end_type(show); 3329 return; 3330 } 3331 3332 btf_show_type_value(show, "%d", v); 3333 btf_show_end_type(show); 3334 } 3335 3336 static struct btf_kind_operations enum_ops = { 3337 .check_meta = btf_enum_check_meta, 3338 .resolve = btf_df_resolve, 3339 .check_member = btf_enum_check_member, 3340 .check_kflag_member = btf_enum_check_kflag_member, 3341 .log_details = btf_enum_log, 3342 .show = btf_enum_show, 3343 }; 3344 3345 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 3346 const struct btf_type *t, 3347 u32 meta_left) 3348 { 3349 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 3350 3351 if (meta_left < meta_needed) { 3352 btf_verifier_log_basic(env, t, 3353 "meta_left:%u meta_needed:%u", 3354 meta_left, meta_needed); 3355 return -EINVAL; 3356 } 3357 3358 if (t->name_off) { 3359 btf_verifier_log_type(env, t, "Invalid name"); 3360 return -EINVAL; 3361 } 3362 3363 if (btf_type_kflag(t)) { 3364 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3365 return -EINVAL; 3366 } 3367 3368 btf_verifier_log_type(env, t, NULL); 3369 3370 return meta_needed; 3371 } 3372 3373 static void btf_func_proto_log(struct btf_verifier_env *env, 3374 const struct btf_type *t) 3375 { 3376 const struct btf_param *args = (const struct btf_param *)(t + 1); 3377 u16 nr_args = btf_type_vlen(t), i; 3378 3379 btf_verifier_log(env, "return=%u args=(", t->type); 3380 if (!nr_args) { 3381 btf_verifier_log(env, "void"); 3382 goto done; 3383 } 3384 3385 if (nr_args == 1 && !args[0].type) { 3386 /* Only one vararg */ 3387 btf_verifier_log(env, "vararg"); 3388 goto done; 3389 } 3390 3391 btf_verifier_log(env, "%u %s", args[0].type, 3392 __btf_name_by_offset(env->btf, 3393 args[0].name_off)); 3394 for (i = 1; i < nr_args - 1; i++) 3395 btf_verifier_log(env, ", %u %s", args[i].type, 3396 __btf_name_by_offset(env->btf, 3397 args[i].name_off)); 3398 3399 if (nr_args > 1) { 3400 const struct btf_param *last_arg = &args[nr_args - 1]; 3401 3402 if (last_arg->type) 3403 btf_verifier_log(env, ", %u %s", last_arg->type, 3404 __btf_name_by_offset(env->btf, 3405 last_arg->name_off)); 3406 else 3407 btf_verifier_log(env, ", vararg"); 3408 } 3409 3410 done: 3411 btf_verifier_log(env, ")"); 3412 } 3413 3414 static struct btf_kind_operations func_proto_ops = { 3415 .check_meta = btf_func_proto_check_meta, 3416 .resolve = btf_df_resolve, 3417 /* 3418 * BTF_KIND_FUNC_PROTO cannot be directly referred by 3419 * a struct's member. 3420 * 3421 * It should be a funciton pointer instead. 3422 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 3423 * 3424 * Hence, there is no btf_func_check_member(). 3425 */ 3426 .check_member = btf_df_check_member, 3427 .check_kflag_member = btf_df_check_kflag_member, 3428 .log_details = btf_func_proto_log, 3429 .show = btf_df_show, 3430 }; 3431 3432 static s32 btf_func_check_meta(struct btf_verifier_env *env, 3433 const struct btf_type *t, 3434 u32 meta_left) 3435 { 3436 if (!t->name_off || 3437 !btf_name_valid_identifier(env->btf, t->name_off)) { 3438 btf_verifier_log_type(env, t, "Invalid name"); 3439 return -EINVAL; 3440 } 3441 3442 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 3443 btf_verifier_log_type(env, t, "Invalid func linkage"); 3444 return -EINVAL; 3445 } 3446 3447 if (btf_type_kflag(t)) { 3448 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3449 return -EINVAL; 3450 } 3451 3452 btf_verifier_log_type(env, t, NULL); 3453 3454 return 0; 3455 } 3456 3457 static struct btf_kind_operations func_ops = { 3458 .check_meta = btf_func_check_meta, 3459 .resolve = btf_df_resolve, 3460 .check_member = btf_df_check_member, 3461 .check_kflag_member = btf_df_check_kflag_member, 3462 .log_details = btf_ref_type_log, 3463 .show = btf_df_show, 3464 }; 3465 3466 static s32 btf_var_check_meta(struct btf_verifier_env *env, 3467 const struct btf_type *t, 3468 u32 meta_left) 3469 { 3470 const struct btf_var *var; 3471 u32 meta_needed = sizeof(*var); 3472 3473 if (meta_left < meta_needed) { 3474 btf_verifier_log_basic(env, t, 3475 "meta_left:%u meta_needed:%u", 3476 meta_left, meta_needed); 3477 return -EINVAL; 3478 } 3479 3480 if (btf_type_vlen(t)) { 3481 btf_verifier_log_type(env, t, "vlen != 0"); 3482 return -EINVAL; 3483 } 3484 3485 if (btf_type_kflag(t)) { 3486 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3487 return -EINVAL; 3488 } 3489 3490 if (!t->name_off || 3491 !__btf_name_valid(env->btf, t->name_off, true)) { 3492 btf_verifier_log_type(env, t, "Invalid name"); 3493 return -EINVAL; 3494 } 3495 3496 /* A var cannot be in type void */ 3497 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 3498 btf_verifier_log_type(env, t, "Invalid type_id"); 3499 return -EINVAL; 3500 } 3501 3502 var = btf_type_var(t); 3503 if (var->linkage != BTF_VAR_STATIC && 3504 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 3505 btf_verifier_log_type(env, t, "Linkage not supported"); 3506 return -EINVAL; 3507 } 3508 3509 btf_verifier_log_type(env, t, NULL); 3510 3511 return meta_needed; 3512 } 3513 3514 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 3515 { 3516 const struct btf_var *var = btf_type_var(t); 3517 3518 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 3519 } 3520 3521 static const struct btf_kind_operations var_ops = { 3522 .check_meta = btf_var_check_meta, 3523 .resolve = btf_var_resolve, 3524 .check_member = btf_df_check_member, 3525 .check_kflag_member = btf_df_check_kflag_member, 3526 .log_details = btf_var_log, 3527 .show = btf_var_show, 3528 }; 3529 3530 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 3531 const struct btf_type *t, 3532 u32 meta_left) 3533 { 3534 const struct btf_var_secinfo *vsi; 3535 u64 last_vsi_end_off = 0, sum = 0; 3536 u32 i, meta_needed; 3537 3538 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 3539 if (meta_left < meta_needed) { 3540 btf_verifier_log_basic(env, t, 3541 "meta_left:%u meta_needed:%u", 3542 meta_left, meta_needed); 3543 return -EINVAL; 3544 } 3545 3546 if (!t->size) { 3547 btf_verifier_log_type(env, t, "size == 0"); 3548 return -EINVAL; 3549 } 3550 3551 if (btf_type_kflag(t)) { 3552 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3553 return -EINVAL; 3554 } 3555 3556 if (!t->name_off || 3557 !btf_name_valid_section(env->btf, t->name_off)) { 3558 btf_verifier_log_type(env, t, "Invalid name"); 3559 return -EINVAL; 3560 } 3561 3562 btf_verifier_log_type(env, t, NULL); 3563 3564 for_each_vsi(i, t, vsi) { 3565 /* A var cannot be in type void */ 3566 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 3567 btf_verifier_log_vsi(env, t, vsi, 3568 "Invalid type_id"); 3569 return -EINVAL; 3570 } 3571 3572 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 3573 btf_verifier_log_vsi(env, t, vsi, 3574 "Invalid offset"); 3575 return -EINVAL; 3576 } 3577 3578 if (!vsi->size || vsi->size > t->size) { 3579 btf_verifier_log_vsi(env, t, vsi, 3580 "Invalid size"); 3581 return -EINVAL; 3582 } 3583 3584 last_vsi_end_off = vsi->offset + vsi->size; 3585 if (last_vsi_end_off > t->size) { 3586 btf_verifier_log_vsi(env, t, vsi, 3587 "Invalid offset+size"); 3588 return -EINVAL; 3589 } 3590 3591 btf_verifier_log_vsi(env, t, vsi, NULL); 3592 sum += vsi->size; 3593 } 3594 3595 if (t->size < sum) { 3596 btf_verifier_log_type(env, t, "Invalid btf_info size"); 3597 return -EINVAL; 3598 } 3599 3600 return meta_needed; 3601 } 3602 3603 static int btf_datasec_resolve(struct btf_verifier_env *env, 3604 const struct resolve_vertex *v) 3605 { 3606 const struct btf_var_secinfo *vsi; 3607 struct btf *btf = env->btf; 3608 u16 i; 3609 3610 for_each_vsi_from(i, v->next_member, v->t, vsi) { 3611 u32 var_type_id = vsi->type, type_id, type_size = 0; 3612 const struct btf_type *var_type = btf_type_by_id(env->btf, 3613 var_type_id); 3614 if (!var_type || !btf_type_is_var(var_type)) { 3615 btf_verifier_log_vsi(env, v->t, vsi, 3616 "Not a VAR kind member"); 3617 return -EINVAL; 3618 } 3619 3620 if (!env_type_is_resolve_sink(env, var_type) && 3621 !env_type_is_resolved(env, var_type_id)) { 3622 env_stack_set_next_member(env, i + 1); 3623 return env_stack_push(env, var_type, var_type_id); 3624 } 3625 3626 type_id = var_type->type; 3627 if (!btf_type_id_size(btf, &type_id, &type_size)) { 3628 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 3629 return -EINVAL; 3630 } 3631 3632 if (vsi->size < type_size) { 3633 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 3634 return -EINVAL; 3635 } 3636 } 3637 3638 env_stack_pop_resolved(env, 0, 0); 3639 return 0; 3640 } 3641 3642 static void btf_datasec_log(struct btf_verifier_env *env, 3643 const struct btf_type *t) 3644 { 3645 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3646 } 3647 3648 static void btf_datasec_show(const struct btf *btf, 3649 const struct btf_type *t, u32 type_id, 3650 void *data, u8 bits_offset, 3651 struct btf_show *show) 3652 { 3653 const struct btf_var_secinfo *vsi; 3654 const struct btf_type *var; 3655 u32 i; 3656 3657 if (!btf_show_start_type(show, t, type_id, data)) 3658 return; 3659 3660 btf_show_type_value(show, "section (\"%s\") = {", 3661 __btf_name_by_offset(btf, t->name_off)); 3662 for_each_vsi(i, t, vsi) { 3663 var = btf_type_by_id(btf, vsi->type); 3664 if (i) 3665 btf_show(show, ","); 3666 btf_type_ops(var)->show(btf, var, vsi->type, 3667 data + vsi->offset, bits_offset, show); 3668 } 3669 btf_show_end_type(show); 3670 } 3671 3672 static const struct btf_kind_operations datasec_ops = { 3673 .check_meta = btf_datasec_check_meta, 3674 .resolve = btf_datasec_resolve, 3675 .check_member = btf_df_check_member, 3676 .check_kflag_member = btf_df_check_kflag_member, 3677 .log_details = btf_datasec_log, 3678 .show = btf_datasec_show, 3679 }; 3680 3681 static s32 btf_float_check_meta(struct btf_verifier_env *env, 3682 const struct btf_type *t, 3683 u32 meta_left) 3684 { 3685 if (btf_type_vlen(t)) { 3686 btf_verifier_log_type(env, t, "vlen != 0"); 3687 return -EINVAL; 3688 } 3689 3690 if (btf_type_kflag(t)) { 3691 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3692 return -EINVAL; 3693 } 3694 3695 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 3696 t->size != 16) { 3697 btf_verifier_log_type(env, t, "Invalid type_size"); 3698 return -EINVAL; 3699 } 3700 3701 btf_verifier_log_type(env, t, NULL); 3702 3703 return 0; 3704 } 3705 3706 static int btf_float_check_member(struct btf_verifier_env *env, 3707 const struct btf_type *struct_type, 3708 const struct btf_member *member, 3709 const struct btf_type *member_type) 3710 { 3711 u64 start_offset_bytes; 3712 u64 end_offset_bytes; 3713 u64 misalign_bits; 3714 u64 align_bytes; 3715 u64 align_bits; 3716 3717 /* Different architectures have different alignment requirements, so 3718 * here we check only for the reasonable minimum. This way we ensure 3719 * that types after CO-RE can pass the kernel BTF verifier. 3720 */ 3721 align_bytes = min_t(u64, sizeof(void *), member_type->size); 3722 align_bits = align_bytes * BITS_PER_BYTE; 3723 div64_u64_rem(member->offset, align_bits, &misalign_bits); 3724 if (misalign_bits) { 3725 btf_verifier_log_member(env, struct_type, member, 3726 "Member is not properly aligned"); 3727 return -EINVAL; 3728 } 3729 3730 start_offset_bytes = member->offset / BITS_PER_BYTE; 3731 end_offset_bytes = start_offset_bytes + member_type->size; 3732 if (end_offset_bytes > struct_type->size) { 3733 btf_verifier_log_member(env, struct_type, member, 3734 "Member exceeds struct_size"); 3735 return -EINVAL; 3736 } 3737 3738 return 0; 3739 } 3740 3741 static void btf_float_log(struct btf_verifier_env *env, 3742 const struct btf_type *t) 3743 { 3744 btf_verifier_log(env, "size=%u", t->size); 3745 } 3746 3747 static const struct btf_kind_operations float_ops = { 3748 .check_meta = btf_float_check_meta, 3749 .resolve = btf_df_resolve, 3750 .check_member = btf_float_check_member, 3751 .check_kflag_member = btf_generic_check_kflag_member, 3752 .log_details = btf_float_log, 3753 .show = btf_df_show, 3754 }; 3755 3756 static int btf_func_proto_check(struct btf_verifier_env *env, 3757 const struct btf_type *t) 3758 { 3759 const struct btf_type *ret_type; 3760 const struct btf_param *args; 3761 const struct btf *btf; 3762 u16 nr_args, i; 3763 int err; 3764 3765 btf = env->btf; 3766 args = (const struct btf_param *)(t + 1); 3767 nr_args = btf_type_vlen(t); 3768 3769 /* Check func return type which could be "void" (t->type == 0) */ 3770 if (t->type) { 3771 u32 ret_type_id = t->type; 3772 3773 ret_type = btf_type_by_id(btf, ret_type_id); 3774 if (!ret_type) { 3775 btf_verifier_log_type(env, t, "Invalid return type"); 3776 return -EINVAL; 3777 } 3778 3779 if (btf_type_needs_resolve(ret_type) && 3780 !env_type_is_resolved(env, ret_type_id)) { 3781 err = btf_resolve(env, ret_type, ret_type_id); 3782 if (err) 3783 return err; 3784 } 3785 3786 /* Ensure the return type is a type that has a size */ 3787 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 3788 btf_verifier_log_type(env, t, "Invalid return type"); 3789 return -EINVAL; 3790 } 3791 } 3792 3793 if (!nr_args) 3794 return 0; 3795 3796 /* Last func arg type_id could be 0 if it is a vararg */ 3797 if (!args[nr_args - 1].type) { 3798 if (args[nr_args - 1].name_off) { 3799 btf_verifier_log_type(env, t, "Invalid arg#%u", 3800 nr_args); 3801 return -EINVAL; 3802 } 3803 nr_args--; 3804 } 3805 3806 err = 0; 3807 for (i = 0; i < nr_args; i++) { 3808 const struct btf_type *arg_type; 3809 u32 arg_type_id; 3810 3811 arg_type_id = args[i].type; 3812 arg_type = btf_type_by_id(btf, arg_type_id); 3813 if (!arg_type) { 3814 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3815 err = -EINVAL; 3816 break; 3817 } 3818 3819 if (args[i].name_off && 3820 (!btf_name_offset_valid(btf, args[i].name_off) || 3821 !btf_name_valid_identifier(btf, args[i].name_off))) { 3822 btf_verifier_log_type(env, t, 3823 "Invalid arg#%u", i + 1); 3824 err = -EINVAL; 3825 break; 3826 } 3827 3828 if (btf_type_needs_resolve(arg_type) && 3829 !env_type_is_resolved(env, arg_type_id)) { 3830 err = btf_resolve(env, arg_type, arg_type_id); 3831 if (err) 3832 break; 3833 } 3834 3835 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 3836 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3837 err = -EINVAL; 3838 break; 3839 } 3840 } 3841 3842 return err; 3843 } 3844 3845 static int btf_func_check(struct btf_verifier_env *env, 3846 const struct btf_type *t) 3847 { 3848 const struct btf_type *proto_type; 3849 const struct btf_param *args; 3850 const struct btf *btf; 3851 u16 nr_args, i; 3852 3853 btf = env->btf; 3854 proto_type = btf_type_by_id(btf, t->type); 3855 3856 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 3857 btf_verifier_log_type(env, t, "Invalid type_id"); 3858 return -EINVAL; 3859 } 3860 3861 args = (const struct btf_param *)(proto_type + 1); 3862 nr_args = btf_type_vlen(proto_type); 3863 for (i = 0; i < nr_args; i++) { 3864 if (!args[i].name_off && args[i].type) { 3865 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3866 return -EINVAL; 3867 } 3868 } 3869 3870 return 0; 3871 } 3872 3873 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 3874 [BTF_KIND_INT] = &int_ops, 3875 [BTF_KIND_PTR] = &ptr_ops, 3876 [BTF_KIND_ARRAY] = &array_ops, 3877 [BTF_KIND_STRUCT] = &struct_ops, 3878 [BTF_KIND_UNION] = &struct_ops, 3879 [BTF_KIND_ENUM] = &enum_ops, 3880 [BTF_KIND_FWD] = &fwd_ops, 3881 [BTF_KIND_TYPEDEF] = &modifier_ops, 3882 [BTF_KIND_VOLATILE] = &modifier_ops, 3883 [BTF_KIND_CONST] = &modifier_ops, 3884 [BTF_KIND_RESTRICT] = &modifier_ops, 3885 [BTF_KIND_FUNC] = &func_ops, 3886 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 3887 [BTF_KIND_VAR] = &var_ops, 3888 [BTF_KIND_DATASEC] = &datasec_ops, 3889 [BTF_KIND_FLOAT] = &float_ops, 3890 }; 3891 3892 static s32 btf_check_meta(struct btf_verifier_env *env, 3893 const struct btf_type *t, 3894 u32 meta_left) 3895 { 3896 u32 saved_meta_left = meta_left; 3897 s32 var_meta_size; 3898 3899 if (meta_left < sizeof(*t)) { 3900 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 3901 env->log_type_id, meta_left, sizeof(*t)); 3902 return -EINVAL; 3903 } 3904 meta_left -= sizeof(*t); 3905 3906 if (t->info & ~BTF_INFO_MASK) { 3907 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 3908 env->log_type_id, t->info); 3909 return -EINVAL; 3910 } 3911 3912 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 3913 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 3914 btf_verifier_log(env, "[%u] Invalid kind:%u", 3915 env->log_type_id, BTF_INFO_KIND(t->info)); 3916 return -EINVAL; 3917 } 3918 3919 if (!btf_name_offset_valid(env->btf, t->name_off)) { 3920 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 3921 env->log_type_id, t->name_off); 3922 return -EINVAL; 3923 } 3924 3925 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 3926 if (var_meta_size < 0) 3927 return var_meta_size; 3928 3929 meta_left -= var_meta_size; 3930 3931 return saved_meta_left - meta_left; 3932 } 3933 3934 static int btf_check_all_metas(struct btf_verifier_env *env) 3935 { 3936 struct btf *btf = env->btf; 3937 struct btf_header *hdr; 3938 void *cur, *end; 3939 3940 hdr = &btf->hdr; 3941 cur = btf->nohdr_data + hdr->type_off; 3942 end = cur + hdr->type_len; 3943 3944 env->log_type_id = btf->base_btf ? btf->start_id : 1; 3945 while (cur < end) { 3946 struct btf_type *t = cur; 3947 s32 meta_size; 3948 3949 meta_size = btf_check_meta(env, t, end - cur); 3950 if (meta_size < 0) 3951 return meta_size; 3952 3953 btf_add_type(env, t); 3954 cur += meta_size; 3955 env->log_type_id++; 3956 } 3957 3958 return 0; 3959 } 3960 3961 static bool btf_resolve_valid(struct btf_verifier_env *env, 3962 const struct btf_type *t, 3963 u32 type_id) 3964 { 3965 struct btf *btf = env->btf; 3966 3967 if (!env_type_is_resolved(env, type_id)) 3968 return false; 3969 3970 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 3971 return !btf_resolved_type_id(btf, type_id) && 3972 !btf_resolved_type_size(btf, type_id); 3973 3974 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 3975 btf_type_is_var(t)) { 3976 t = btf_type_id_resolve(btf, &type_id); 3977 return t && 3978 !btf_type_is_modifier(t) && 3979 !btf_type_is_var(t) && 3980 !btf_type_is_datasec(t); 3981 } 3982 3983 if (btf_type_is_array(t)) { 3984 const struct btf_array *array = btf_type_array(t); 3985 const struct btf_type *elem_type; 3986 u32 elem_type_id = array->type; 3987 u32 elem_size; 3988 3989 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 3990 return elem_type && !btf_type_is_modifier(elem_type) && 3991 (array->nelems * elem_size == 3992 btf_resolved_type_size(btf, type_id)); 3993 } 3994 3995 return false; 3996 } 3997 3998 static int btf_resolve(struct btf_verifier_env *env, 3999 const struct btf_type *t, u32 type_id) 4000 { 4001 u32 save_log_type_id = env->log_type_id; 4002 const struct resolve_vertex *v; 4003 int err = 0; 4004 4005 env->resolve_mode = RESOLVE_TBD; 4006 env_stack_push(env, t, type_id); 4007 while (!err && (v = env_stack_peak(env))) { 4008 env->log_type_id = v->type_id; 4009 err = btf_type_ops(v->t)->resolve(env, v); 4010 } 4011 4012 env->log_type_id = type_id; 4013 if (err == -E2BIG) { 4014 btf_verifier_log_type(env, t, 4015 "Exceeded max resolving depth:%u", 4016 MAX_RESOLVE_DEPTH); 4017 } else if (err == -EEXIST) { 4018 btf_verifier_log_type(env, t, "Loop detected"); 4019 } 4020 4021 /* Final sanity check */ 4022 if (!err && !btf_resolve_valid(env, t, type_id)) { 4023 btf_verifier_log_type(env, t, "Invalid resolve state"); 4024 err = -EINVAL; 4025 } 4026 4027 env->log_type_id = save_log_type_id; 4028 return err; 4029 } 4030 4031 static int btf_check_all_types(struct btf_verifier_env *env) 4032 { 4033 struct btf *btf = env->btf; 4034 const struct btf_type *t; 4035 u32 type_id, i; 4036 int err; 4037 4038 err = env_resolve_init(env); 4039 if (err) 4040 return err; 4041 4042 env->phase++; 4043 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 4044 type_id = btf->start_id + i; 4045 t = btf_type_by_id(btf, type_id); 4046 4047 env->log_type_id = type_id; 4048 if (btf_type_needs_resolve(t) && 4049 !env_type_is_resolved(env, type_id)) { 4050 err = btf_resolve(env, t, type_id); 4051 if (err) 4052 return err; 4053 } 4054 4055 if (btf_type_is_func_proto(t)) { 4056 err = btf_func_proto_check(env, t); 4057 if (err) 4058 return err; 4059 } 4060 4061 if (btf_type_is_func(t)) { 4062 err = btf_func_check(env, t); 4063 if (err) 4064 return err; 4065 } 4066 } 4067 4068 return 0; 4069 } 4070 4071 static int btf_parse_type_sec(struct btf_verifier_env *env) 4072 { 4073 const struct btf_header *hdr = &env->btf->hdr; 4074 int err; 4075 4076 /* Type section must align to 4 bytes */ 4077 if (hdr->type_off & (sizeof(u32) - 1)) { 4078 btf_verifier_log(env, "Unaligned type_off"); 4079 return -EINVAL; 4080 } 4081 4082 if (!env->btf->base_btf && !hdr->type_len) { 4083 btf_verifier_log(env, "No type found"); 4084 return -EINVAL; 4085 } 4086 4087 err = btf_check_all_metas(env); 4088 if (err) 4089 return err; 4090 4091 return btf_check_all_types(env); 4092 } 4093 4094 static int btf_parse_str_sec(struct btf_verifier_env *env) 4095 { 4096 const struct btf_header *hdr; 4097 struct btf *btf = env->btf; 4098 const char *start, *end; 4099 4100 hdr = &btf->hdr; 4101 start = btf->nohdr_data + hdr->str_off; 4102 end = start + hdr->str_len; 4103 4104 if (end != btf->data + btf->data_size) { 4105 btf_verifier_log(env, "String section is not at the end"); 4106 return -EINVAL; 4107 } 4108 4109 btf->strings = start; 4110 4111 if (btf->base_btf && !hdr->str_len) 4112 return 0; 4113 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 4114 btf_verifier_log(env, "Invalid string section"); 4115 return -EINVAL; 4116 } 4117 if (!btf->base_btf && start[0]) { 4118 btf_verifier_log(env, "Invalid string section"); 4119 return -EINVAL; 4120 } 4121 4122 return 0; 4123 } 4124 4125 static const size_t btf_sec_info_offset[] = { 4126 offsetof(struct btf_header, type_off), 4127 offsetof(struct btf_header, str_off), 4128 }; 4129 4130 static int btf_sec_info_cmp(const void *a, const void *b) 4131 { 4132 const struct btf_sec_info *x = a; 4133 const struct btf_sec_info *y = b; 4134 4135 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 4136 } 4137 4138 static int btf_check_sec_info(struct btf_verifier_env *env, 4139 u32 btf_data_size) 4140 { 4141 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 4142 u32 total, expected_total, i; 4143 const struct btf_header *hdr; 4144 const struct btf *btf; 4145 4146 btf = env->btf; 4147 hdr = &btf->hdr; 4148 4149 /* Populate the secs from hdr */ 4150 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 4151 secs[i] = *(struct btf_sec_info *)((void *)hdr + 4152 btf_sec_info_offset[i]); 4153 4154 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 4155 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 4156 4157 /* Check for gaps and overlap among sections */ 4158 total = 0; 4159 expected_total = btf_data_size - hdr->hdr_len; 4160 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 4161 if (expected_total < secs[i].off) { 4162 btf_verifier_log(env, "Invalid section offset"); 4163 return -EINVAL; 4164 } 4165 if (total < secs[i].off) { 4166 /* gap */ 4167 btf_verifier_log(env, "Unsupported section found"); 4168 return -EINVAL; 4169 } 4170 if (total > secs[i].off) { 4171 btf_verifier_log(env, "Section overlap found"); 4172 return -EINVAL; 4173 } 4174 if (expected_total - total < secs[i].len) { 4175 btf_verifier_log(env, 4176 "Total section length too long"); 4177 return -EINVAL; 4178 } 4179 total += secs[i].len; 4180 } 4181 4182 /* There is data other than hdr and known sections */ 4183 if (expected_total != total) { 4184 btf_verifier_log(env, "Unsupported section found"); 4185 return -EINVAL; 4186 } 4187 4188 return 0; 4189 } 4190 4191 static int btf_parse_hdr(struct btf_verifier_env *env) 4192 { 4193 u32 hdr_len, hdr_copy, btf_data_size; 4194 const struct btf_header *hdr; 4195 struct btf *btf; 4196 int err; 4197 4198 btf = env->btf; 4199 btf_data_size = btf->data_size; 4200 4201 if (btf_data_size < 4202 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { 4203 btf_verifier_log(env, "hdr_len not found"); 4204 return -EINVAL; 4205 } 4206 4207 hdr = btf->data; 4208 hdr_len = hdr->hdr_len; 4209 if (btf_data_size < hdr_len) { 4210 btf_verifier_log(env, "btf_header not found"); 4211 return -EINVAL; 4212 } 4213 4214 /* Ensure the unsupported header fields are zero */ 4215 if (hdr_len > sizeof(btf->hdr)) { 4216 u8 *expected_zero = btf->data + sizeof(btf->hdr); 4217 u8 *end = btf->data + hdr_len; 4218 4219 for (; expected_zero < end; expected_zero++) { 4220 if (*expected_zero) { 4221 btf_verifier_log(env, "Unsupported btf_header"); 4222 return -E2BIG; 4223 } 4224 } 4225 } 4226 4227 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 4228 memcpy(&btf->hdr, btf->data, hdr_copy); 4229 4230 hdr = &btf->hdr; 4231 4232 btf_verifier_log_hdr(env, btf_data_size); 4233 4234 if (hdr->magic != BTF_MAGIC) { 4235 btf_verifier_log(env, "Invalid magic"); 4236 return -EINVAL; 4237 } 4238 4239 if (hdr->version != BTF_VERSION) { 4240 btf_verifier_log(env, "Unsupported version"); 4241 return -ENOTSUPP; 4242 } 4243 4244 if (hdr->flags) { 4245 btf_verifier_log(env, "Unsupported flags"); 4246 return -ENOTSUPP; 4247 } 4248 4249 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 4250 btf_verifier_log(env, "No data"); 4251 return -EINVAL; 4252 } 4253 4254 err = btf_check_sec_info(env, btf_data_size); 4255 if (err) 4256 return err; 4257 4258 return 0; 4259 } 4260 4261 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, 4262 u32 log_level, char __user *log_ubuf, u32 log_size) 4263 { 4264 struct btf_verifier_env *env = NULL; 4265 struct bpf_verifier_log *log; 4266 struct btf *btf = NULL; 4267 u8 *data; 4268 int err; 4269 4270 if (btf_data_size > BTF_MAX_SIZE) 4271 return ERR_PTR(-E2BIG); 4272 4273 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4274 if (!env) 4275 return ERR_PTR(-ENOMEM); 4276 4277 log = &env->log; 4278 if (log_level || log_ubuf || log_size) { 4279 /* user requested verbose verifier output 4280 * and supplied buffer to store the verification trace 4281 */ 4282 log->level = log_level; 4283 log->ubuf = log_ubuf; 4284 log->len_total = log_size; 4285 4286 /* log attributes have to be sane */ 4287 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 4288 !log->level || !log->ubuf) { 4289 err = -EINVAL; 4290 goto errout; 4291 } 4292 } 4293 4294 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4295 if (!btf) { 4296 err = -ENOMEM; 4297 goto errout; 4298 } 4299 env->btf = btf; 4300 4301 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 4302 if (!data) { 4303 err = -ENOMEM; 4304 goto errout; 4305 } 4306 4307 btf->data = data; 4308 btf->data_size = btf_data_size; 4309 4310 if (copy_from_user(data, btf_data, btf_data_size)) { 4311 err = -EFAULT; 4312 goto errout; 4313 } 4314 4315 err = btf_parse_hdr(env); 4316 if (err) 4317 goto errout; 4318 4319 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4320 4321 err = btf_parse_str_sec(env); 4322 if (err) 4323 goto errout; 4324 4325 err = btf_parse_type_sec(env); 4326 if (err) 4327 goto errout; 4328 4329 if (log->level && bpf_verifier_log_full(log)) { 4330 err = -ENOSPC; 4331 goto errout; 4332 } 4333 4334 btf_verifier_env_free(env); 4335 refcount_set(&btf->refcnt, 1); 4336 return btf; 4337 4338 errout: 4339 btf_verifier_env_free(env); 4340 if (btf) 4341 btf_free(btf); 4342 return ERR_PTR(err); 4343 } 4344 4345 extern char __weak __start_BTF[]; 4346 extern char __weak __stop_BTF[]; 4347 extern struct btf *btf_vmlinux; 4348 4349 #define BPF_MAP_TYPE(_id, _ops) 4350 #define BPF_LINK_TYPE(_id, _name) 4351 static union { 4352 struct bpf_ctx_convert { 4353 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4354 prog_ctx_type _id##_prog; \ 4355 kern_ctx_type _id##_kern; 4356 #include <linux/bpf_types.h> 4357 #undef BPF_PROG_TYPE 4358 } *__t; 4359 /* 't' is written once under lock. Read many times. */ 4360 const struct btf_type *t; 4361 } bpf_ctx_convert; 4362 enum { 4363 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4364 __ctx_convert##_id, 4365 #include <linux/bpf_types.h> 4366 #undef BPF_PROG_TYPE 4367 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 4368 }; 4369 static u8 bpf_ctx_convert_map[] = { 4370 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4371 [_id] = __ctx_convert##_id, 4372 #include <linux/bpf_types.h> 4373 #undef BPF_PROG_TYPE 4374 0, /* avoid empty array */ 4375 }; 4376 #undef BPF_MAP_TYPE 4377 #undef BPF_LINK_TYPE 4378 4379 static const struct btf_member * 4380 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf, 4381 const struct btf_type *t, enum bpf_prog_type prog_type, 4382 int arg) 4383 { 4384 const struct btf_type *conv_struct; 4385 const struct btf_type *ctx_struct; 4386 const struct btf_member *ctx_type; 4387 const char *tname, *ctx_tname; 4388 4389 conv_struct = bpf_ctx_convert.t; 4390 if (!conv_struct) { 4391 bpf_log(log, "btf_vmlinux is malformed\n"); 4392 return NULL; 4393 } 4394 t = btf_type_by_id(btf, t->type); 4395 while (btf_type_is_modifier(t)) 4396 t = btf_type_by_id(btf, t->type); 4397 if (!btf_type_is_struct(t)) { 4398 /* Only pointer to struct is supported for now. 4399 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 4400 * is not supported yet. 4401 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 4402 */ 4403 return NULL; 4404 } 4405 tname = btf_name_by_offset(btf, t->name_off); 4406 if (!tname) { 4407 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 4408 return NULL; 4409 } 4410 /* prog_type is valid bpf program type. No need for bounds check. */ 4411 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 4412 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 4413 * Like 'struct __sk_buff' 4414 */ 4415 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 4416 if (!ctx_struct) 4417 /* should not happen */ 4418 return NULL; 4419 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 4420 if (!ctx_tname) { 4421 /* should not happen */ 4422 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 4423 return NULL; 4424 } 4425 /* only compare that prog's ctx type name is the same as 4426 * kernel expects. No need to compare field by field. 4427 * It's ok for bpf prog to do: 4428 * struct __sk_buff {}; 4429 * int socket_filter_bpf_prog(struct __sk_buff *skb) 4430 * { // no fields of skb are ever used } 4431 */ 4432 if (strcmp(ctx_tname, tname)) 4433 return NULL; 4434 return ctx_type; 4435 } 4436 4437 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = { 4438 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) 4439 #define BPF_LINK_TYPE(_id, _name) 4440 #define BPF_MAP_TYPE(_id, _ops) \ 4441 [_id] = &_ops, 4442 #include <linux/bpf_types.h> 4443 #undef BPF_PROG_TYPE 4444 #undef BPF_LINK_TYPE 4445 #undef BPF_MAP_TYPE 4446 }; 4447 4448 static int btf_vmlinux_map_ids_init(const struct btf *btf, 4449 struct bpf_verifier_log *log) 4450 { 4451 const struct bpf_map_ops *ops; 4452 int i, btf_id; 4453 4454 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) { 4455 ops = btf_vmlinux_map_ops[i]; 4456 if (!ops || (!ops->map_btf_name && !ops->map_btf_id)) 4457 continue; 4458 if (!ops->map_btf_name || !ops->map_btf_id) { 4459 bpf_log(log, "map type %d is misconfigured\n", i); 4460 return -EINVAL; 4461 } 4462 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name, 4463 BTF_KIND_STRUCT); 4464 if (btf_id < 0) 4465 return btf_id; 4466 *ops->map_btf_id = btf_id; 4467 } 4468 4469 return 0; 4470 } 4471 4472 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 4473 struct btf *btf, 4474 const struct btf_type *t, 4475 enum bpf_prog_type prog_type, 4476 int arg) 4477 { 4478 const struct btf_member *prog_ctx_type, *kern_ctx_type; 4479 4480 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 4481 if (!prog_ctx_type) 4482 return -ENOENT; 4483 kern_ctx_type = prog_ctx_type + 1; 4484 return kern_ctx_type->type; 4485 } 4486 4487 BTF_ID_LIST(bpf_ctx_convert_btf_id) 4488 BTF_ID(struct, bpf_ctx_convert) 4489 4490 struct btf *btf_parse_vmlinux(void) 4491 { 4492 struct btf_verifier_env *env = NULL; 4493 struct bpf_verifier_log *log; 4494 struct btf *btf = NULL; 4495 int err; 4496 4497 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4498 if (!env) 4499 return ERR_PTR(-ENOMEM); 4500 4501 log = &env->log; 4502 log->level = BPF_LOG_KERNEL; 4503 4504 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4505 if (!btf) { 4506 err = -ENOMEM; 4507 goto errout; 4508 } 4509 env->btf = btf; 4510 4511 btf->data = __start_BTF; 4512 btf->data_size = __stop_BTF - __start_BTF; 4513 btf->kernel_btf = true; 4514 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 4515 4516 err = btf_parse_hdr(env); 4517 if (err) 4518 goto errout; 4519 4520 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4521 4522 err = btf_parse_str_sec(env); 4523 if (err) 4524 goto errout; 4525 4526 err = btf_check_all_metas(env); 4527 if (err) 4528 goto errout; 4529 4530 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 4531 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 4532 4533 /* find bpf map structs for map_ptr access checking */ 4534 err = btf_vmlinux_map_ids_init(btf, log); 4535 if (err < 0) 4536 goto errout; 4537 4538 bpf_struct_ops_init(btf, log); 4539 4540 refcount_set(&btf->refcnt, 1); 4541 4542 err = btf_alloc_id(btf); 4543 if (err) 4544 goto errout; 4545 4546 btf_verifier_env_free(env); 4547 return btf; 4548 4549 errout: 4550 btf_verifier_env_free(env); 4551 if (btf) { 4552 kvfree(btf->types); 4553 kfree(btf); 4554 } 4555 return ERR_PTR(err); 4556 } 4557 4558 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 4559 4560 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 4561 { 4562 struct btf_verifier_env *env = NULL; 4563 struct bpf_verifier_log *log; 4564 struct btf *btf = NULL, *base_btf; 4565 int err; 4566 4567 base_btf = bpf_get_btf_vmlinux(); 4568 if (IS_ERR(base_btf)) 4569 return base_btf; 4570 if (!base_btf) 4571 return ERR_PTR(-EINVAL); 4572 4573 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4574 if (!env) 4575 return ERR_PTR(-ENOMEM); 4576 4577 log = &env->log; 4578 log->level = BPF_LOG_KERNEL; 4579 4580 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4581 if (!btf) { 4582 err = -ENOMEM; 4583 goto errout; 4584 } 4585 env->btf = btf; 4586 4587 btf->base_btf = base_btf; 4588 btf->start_id = base_btf->nr_types; 4589 btf->start_str_off = base_btf->hdr.str_len; 4590 btf->kernel_btf = true; 4591 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 4592 4593 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 4594 if (!btf->data) { 4595 err = -ENOMEM; 4596 goto errout; 4597 } 4598 memcpy(btf->data, data, data_size); 4599 btf->data_size = data_size; 4600 4601 err = btf_parse_hdr(env); 4602 if (err) 4603 goto errout; 4604 4605 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4606 4607 err = btf_parse_str_sec(env); 4608 if (err) 4609 goto errout; 4610 4611 err = btf_check_all_metas(env); 4612 if (err) 4613 goto errout; 4614 4615 btf_verifier_env_free(env); 4616 refcount_set(&btf->refcnt, 1); 4617 return btf; 4618 4619 errout: 4620 btf_verifier_env_free(env); 4621 if (btf) { 4622 kvfree(btf->data); 4623 kvfree(btf->types); 4624 kfree(btf); 4625 } 4626 return ERR_PTR(err); 4627 } 4628 4629 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 4630 4631 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 4632 { 4633 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 4634 4635 if (tgt_prog) 4636 return tgt_prog->aux->btf; 4637 else 4638 return prog->aux->attach_btf; 4639 } 4640 4641 static bool is_string_ptr(struct btf *btf, const struct btf_type *t) 4642 { 4643 /* t comes in already as a pointer */ 4644 t = btf_type_by_id(btf, t->type); 4645 4646 /* allow const */ 4647 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) 4648 t = btf_type_by_id(btf, t->type); 4649 4650 /* char, signed char, unsigned char */ 4651 return btf_type_is_int(t) && t->size == 1; 4652 } 4653 4654 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 4655 const struct bpf_prog *prog, 4656 struct bpf_insn_access_aux *info) 4657 { 4658 const struct btf_type *t = prog->aux->attach_func_proto; 4659 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 4660 struct btf *btf = bpf_prog_get_target_btf(prog); 4661 const char *tname = prog->aux->attach_func_name; 4662 struct bpf_verifier_log *log = info->log; 4663 const struct btf_param *args; 4664 u32 nr_args, arg; 4665 int i, ret; 4666 4667 if (off % 8) { 4668 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 4669 tname, off); 4670 return false; 4671 } 4672 arg = off / 8; 4673 args = (const struct btf_param *)(t + 1); 4674 /* if (t == NULL) Fall back to default BPF prog with 4675 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 4676 */ 4677 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 4678 if (prog->aux->attach_btf_trace) { 4679 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 4680 args++; 4681 nr_args--; 4682 } 4683 4684 if (arg > nr_args) { 4685 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 4686 tname, arg + 1); 4687 return false; 4688 } 4689 4690 if (arg == nr_args) { 4691 switch (prog->expected_attach_type) { 4692 case BPF_LSM_MAC: 4693 case BPF_TRACE_FEXIT: 4694 /* When LSM programs are attached to void LSM hooks 4695 * they use FEXIT trampolines and when attached to 4696 * int LSM hooks, they use MODIFY_RETURN trampolines. 4697 * 4698 * While the LSM programs are BPF_MODIFY_RETURN-like 4699 * the check: 4700 * 4701 * if (ret_type != 'int') 4702 * return -EINVAL; 4703 * 4704 * is _not_ done here. This is still safe as LSM hooks 4705 * have only void and int return types. 4706 */ 4707 if (!t) 4708 return true; 4709 t = btf_type_by_id(btf, t->type); 4710 break; 4711 case BPF_MODIFY_RETURN: 4712 /* For now the BPF_MODIFY_RETURN can only be attached to 4713 * functions that return an int. 4714 */ 4715 if (!t) 4716 return false; 4717 4718 t = btf_type_skip_modifiers(btf, t->type, NULL); 4719 if (!btf_type_is_small_int(t)) { 4720 bpf_log(log, 4721 "ret type %s not allowed for fmod_ret\n", 4722 btf_kind_str[BTF_INFO_KIND(t->info)]); 4723 return false; 4724 } 4725 break; 4726 default: 4727 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 4728 tname, arg + 1); 4729 return false; 4730 } 4731 } else { 4732 if (!t) 4733 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 4734 return true; 4735 t = btf_type_by_id(btf, args[arg].type); 4736 } 4737 4738 /* skip modifiers */ 4739 while (btf_type_is_modifier(t)) 4740 t = btf_type_by_id(btf, t->type); 4741 if (btf_type_is_small_int(t) || btf_type_is_enum(t)) 4742 /* accessing a scalar */ 4743 return true; 4744 if (!btf_type_is_ptr(t)) { 4745 bpf_log(log, 4746 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 4747 tname, arg, 4748 __btf_name_by_offset(btf, t->name_off), 4749 btf_kind_str[BTF_INFO_KIND(t->info)]); 4750 return false; 4751 } 4752 4753 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 4754 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 4755 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 4756 4757 if (ctx_arg_info->offset == off && 4758 (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL || 4759 ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) { 4760 info->reg_type = ctx_arg_info->reg_type; 4761 return true; 4762 } 4763 } 4764 4765 if (t->type == 0) 4766 /* This is a pointer to void. 4767 * It is the same as scalar from the verifier safety pov. 4768 * No further pointer walking is allowed. 4769 */ 4770 return true; 4771 4772 if (is_string_ptr(btf, t)) 4773 return true; 4774 4775 /* this is a pointer to another type */ 4776 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 4777 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 4778 4779 if (ctx_arg_info->offset == off) { 4780 info->reg_type = ctx_arg_info->reg_type; 4781 info->btf = btf_vmlinux; 4782 info->btf_id = ctx_arg_info->btf_id; 4783 return true; 4784 } 4785 } 4786 4787 info->reg_type = PTR_TO_BTF_ID; 4788 if (tgt_prog) { 4789 enum bpf_prog_type tgt_type; 4790 4791 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 4792 tgt_type = tgt_prog->aux->saved_dst_prog_type; 4793 else 4794 tgt_type = tgt_prog->type; 4795 4796 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 4797 if (ret > 0) { 4798 info->btf = btf_vmlinux; 4799 info->btf_id = ret; 4800 return true; 4801 } else { 4802 return false; 4803 } 4804 } 4805 4806 info->btf = btf; 4807 info->btf_id = t->type; 4808 t = btf_type_by_id(btf, t->type); 4809 /* skip modifiers */ 4810 while (btf_type_is_modifier(t)) { 4811 info->btf_id = t->type; 4812 t = btf_type_by_id(btf, t->type); 4813 } 4814 if (!btf_type_is_struct(t)) { 4815 bpf_log(log, 4816 "func '%s' arg%d type %s is not a struct\n", 4817 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]); 4818 return false; 4819 } 4820 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 4821 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)], 4822 __btf_name_by_offset(btf, t->name_off)); 4823 return true; 4824 } 4825 4826 enum bpf_struct_walk_result { 4827 /* < 0 error */ 4828 WALK_SCALAR = 0, 4829 WALK_PTR, 4830 WALK_STRUCT, 4831 }; 4832 4833 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 4834 const struct btf_type *t, int off, int size, 4835 u32 *next_btf_id) 4836 { 4837 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 4838 const struct btf_type *mtype, *elem_type = NULL; 4839 const struct btf_member *member; 4840 const char *tname, *mname; 4841 u32 vlen, elem_id, mid; 4842 4843 again: 4844 tname = __btf_name_by_offset(btf, t->name_off); 4845 if (!btf_type_is_struct(t)) { 4846 bpf_log(log, "Type '%s' is not a struct\n", tname); 4847 return -EINVAL; 4848 } 4849 4850 vlen = btf_type_vlen(t); 4851 if (off + size > t->size) { 4852 /* If the last element is a variable size array, we may 4853 * need to relax the rule. 4854 */ 4855 struct btf_array *array_elem; 4856 4857 if (vlen == 0) 4858 goto error; 4859 4860 member = btf_type_member(t) + vlen - 1; 4861 mtype = btf_type_skip_modifiers(btf, member->type, 4862 NULL); 4863 if (!btf_type_is_array(mtype)) 4864 goto error; 4865 4866 array_elem = (struct btf_array *)(mtype + 1); 4867 if (array_elem->nelems != 0) 4868 goto error; 4869 4870 moff = btf_member_bit_offset(t, member) / 8; 4871 if (off < moff) 4872 goto error; 4873 4874 /* Only allow structure for now, can be relaxed for 4875 * other types later. 4876 */ 4877 t = btf_type_skip_modifiers(btf, array_elem->type, 4878 NULL); 4879 if (!btf_type_is_struct(t)) 4880 goto error; 4881 4882 off = (off - moff) % t->size; 4883 goto again; 4884 4885 error: 4886 bpf_log(log, "access beyond struct %s at off %u size %u\n", 4887 tname, off, size); 4888 return -EACCES; 4889 } 4890 4891 for_each_member(i, t, member) { 4892 /* offset of the field in bytes */ 4893 moff = btf_member_bit_offset(t, member) / 8; 4894 if (off + size <= moff) 4895 /* won't find anything, field is already too far */ 4896 break; 4897 4898 if (btf_member_bitfield_size(t, member)) { 4899 u32 end_bit = btf_member_bit_offset(t, member) + 4900 btf_member_bitfield_size(t, member); 4901 4902 /* off <= moff instead of off == moff because clang 4903 * does not generate a BTF member for anonymous 4904 * bitfield like the ":16" here: 4905 * struct { 4906 * int :16; 4907 * int x:8; 4908 * }; 4909 */ 4910 if (off <= moff && 4911 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 4912 return WALK_SCALAR; 4913 4914 /* off may be accessing a following member 4915 * 4916 * or 4917 * 4918 * Doing partial access at either end of this 4919 * bitfield. Continue on this case also to 4920 * treat it as not accessing this bitfield 4921 * and eventually error out as field not 4922 * found to keep it simple. 4923 * It could be relaxed if there was a legit 4924 * partial access case later. 4925 */ 4926 continue; 4927 } 4928 4929 /* In case of "off" is pointing to holes of a struct */ 4930 if (off < moff) 4931 break; 4932 4933 /* type of the field */ 4934 mid = member->type; 4935 mtype = btf_type_by_id(btf, member->type); 4936 mname = __btf_name_by_offset(btf, member->name_off); 4937 4938 mtype = __btf_resolve_size(btf, mtype, &msize, 4939 &elem_type, &elem_id, &total_nelems, 4940 &mid); 4941 if (IS_ERR(mtype)) { 4942 bpf_log(log, "field %s doesn't have size\n", mname); 4943 return -EFAULT; 4944 } 4945 4946 mtrue_end = moff + msize; 4947 if (off >= mtrue_end) 4948 /* no overlap with member, keep iterating */ 4949 continue; 4950 4951 if (btf_type_is_array(mtype)) { 4952 u32 elem_idx; 4953 4954 /* __btf_resolve_size() above helps to 4955 * linearize a multi-dimensional array. 4956 * 4957 * The logic here is treating an array 4958 * in a struct as the following way: 4959 * 4960 * struct outer { 4961 * struct inner array[2][2]; 4962 * }; 4963 * 4964 * looks like: 4965 * 4966 * struct outer { 4967 * struct inner array_elem0; 4968 * struct inner array_elem1; 4969 * struct inner array_elem2; 4970 * struct inner array_elem3; 4971 * }; 4972 * 4973 * When accessing outer->array[1][0], it moves 4974 * moff to "array_elem2", set mtype to 4975 * "struct inner", and msize also becomes 4976 * sizeof(struct inner). Then most of the 4977 * remaining logic will fall through without 4978 * caring the current member is an array or 4979 * not. 4980 * 4981 * Unlike mtype/msize/moff, mtrue_end does not 4982 * change. The naming difference ("_true") tells 4983 * that it is not always corresponding to 4984 * the current mtype/msize/moff. 4985 * It is the true end of the current 4986 * member (i.e. array in this case). That 4987 * will allow an int array to be accessed like 4988 * a scratch space, 4989 * i.e. allow access beyond the size of 4990 * the array's element as long as it is 4991 * within the mtrue_end boundary. 4992 */ 4993 4994 /* skip empty array */ 4995 if (moff == mtrue_end) 4996 continue; 4997 4998 msize /= total_nelems; 4999 elem_idx = (off - moff) / msize; 5000 moff += elem_idx * msize; 5001 mtype = elem_type; 5002 mid = elem_id; 5003 } 5004 5005 /* the 'off' we're looking for is either equal to start 5006 * of this field or inside of this struct 5007 */ 5008 if (btf_type_is_struct(mtype)) { 5009 /* our field must be inside that union or struct */ 5010 t = mtype; 5011 5012 /* return if the offset matches the member offset */ 5013 if (off == moff) { 5014 *next_btf_id = mid; 5015 return WALK_STRUCT; 5016 } 5017 5018 /* adjust offset we're looking for */ 5019 off -= moff; 5020 goto again; 5021 } 5022 5023 if (btf_type_is_ptr(mtype)) { 5024 const struct btf_type *stype; 5025 u32 id; 5026 5027 if (msize != size || off != moff) { 5028 bpf_log(log, 5029 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 5030 mname, moff, tname, off, size); 5031 return -EACCES; 5032 } 5033 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 5034 if (btf_type_is_struct(stype)) { 5035 *next_btf_id = id; 5036 return WALK_PTR; 5037 } 5038 } 5039 5040 /* Allow more flexible access within an int as long as 5041 * it is within mtrue_end. 5042 * Since mtrue_end could be the end of an array, 5043 * that also allows using an array of int as a scratch 5044 * space. e.g. skb->cb[]. 5045 */ 5046 if (off + size > mtrue_end) { 5047 bpf_log(log, 5048 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 5049 mname, mtrue_end, tname, off, size); 5050 return -EACCES; 5051 } 5052 5053 return WALK_SCALAR; 5054 } 5055 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 5056 return -EINVAL; 5057 } 5058 5059 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, 5060 const struct btf_type *t, int off, int size, 5061 enum bpf_access_type atype __maybe_unused, 5062 u32 *next_btf_id) 5063 { 5064 int err; 5065 u32 id; 5066 5067 do { 5068 err = btf_struct_walk(log, btf, t, off, size, &id); 5069 5070 switch (err) { 5071 case WALK_PTR: 5072 /* If we found the pointer or scalar on t+off, 5073 * we're done. 5074 */ 5075 *next_btf_id = id; 5076 return PTR_TO_BTF_ID; 5077 case WALK_SCALAR: 5078 return SCALAR_VALUE; 5079 case WALK_STRUCT: 5080 /* We found nested struct, so continue the search 5081 * by diving in it. At this point the offset is 5082 * aligned with the new type, so set it to 0. 5083 */ 5084 t = btf_type_by_id(btf, id); 5085 off = 0; 5086 break; 5087 default: 5088 /* It's either error or unknown return value.. 5089 * scream and leave. 5090 */ 5091 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 5092 return -EINVAL; 5093 return err; 5094 } 5095 } while (t); 5096 5097 return -EINVAL; 5098 } 5099 5100 /* Check that two BTF types, each specified as an BTF object + id, are exactly 5101 * the same. Trivial ID check is not enough due to module BTFs, because we can 5102 * end up with two different module BTFs, but IDs point to the common type in 5103 * vmlinux BTF. 5104 */ 5105 static bool btf_types_are_same(const struct btf *btf1, u32 id1, 5106 const struct btf *btf2, u32 id2) 5107 { 5108 if (id1 != id2) 5109 return false; 5110 if (btf1 == btf2) 5111 return true; 5112 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 5113 } 5114 5115 bool btf_struct_ids_match(struct bpf_verifier_log *log, 5116 const struct btf *btf, u32 id, int off, 5117 const struct btf *need_btf, u32 need_type_id) 5118 { 5119 const struct btf_type *type; 5120 int err; 5121 5122 /* Are we already done? */ 5123 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 5124 return true; 5125 5126 again: 5127 type = btf_type_by_id(btf, id); 5128 if (!type) 5129 return false; 5130 err = btf_struct_walk(log, btf, type, off, 1, &id); 5131 if (err != WALK_STRUCT) 5132 return false; 5133 5134 /* We found nested struct object. If it matches 5135 * the requested ID, we're done. Otherwise let's 5136 * continue the search with offset 0 in the new 5137 * type. 5138 */ 5139 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 5140 off = 0; 5141 goto again; 5142 } 5143 5144 return true; 5145 } 5146 5147 static int __get_type_size(struct btf *btf, u32 btf_id, 5148 const struct btf_type **bad_type) 5149 { 5150 const struct btf_type *t; 5151 5152 if (!btf_id) 5153 /* void */ 5154 return 0; 5155 t = btf_type_by_id(btf, btf_id); 5156 while (t && btf_type_is_modifier(t)) 5157 t = btf_type_by_id(btf, t->type); 5158 if (!t) { 5159 *bad_type = btf_type_by_id(btf, 0); 5160 return -EINVAL; 5161 } 5162 if (btf_type_is_ptr(t)) 5163 /* kernel size of pointer. Not BPF's size of pointer*/ 5164 return sizeof(void *); 5165 if (btf_type_is_int(t) || btf_type_is_enum(t)) 5166 return t->size; 5167 *bad_type = t; 5168 return -EINVAL; 5169 } 5170 5171 int btf_distill_func_proto(struct bpf_verifier_log *log, 5172 struct btf *btf, 5173 const struct btf_type *func, 5174 const char *tname, 5175 struct btf_func_model *m) 5176 { 5177 const struct btf_param *args; 5178 const struct btf_type *t; 5179 u32 i, nargs; 5180 int ret; 5181 5182 if (!func) { 5183 /* BTF function prototype doesn't match the verifier types. 5184 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 5185 */ 5186 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 5187 m->arg_size[i] = 8; 5188 m->ret_size = 8; 5189 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 5190 return 0; 5191 } 5192 args = (const struct btf_param *)(func + 1); 5193 nargs = btf_type_vlen(func); 5194 if (nargs >= MAX_BPF_FUNC_ARGS) { 5195 bpf_log(log, 5196 "The function %s has %d arguments. Too many.\n", 5197 tname, nargs); 5198 return -EINVAL; 5199 } 5200 ret = __get_type_size(btf, func->type, &t); 5201 if (ret < 0) { 5202 bpf_log(log, 5203 "The function %s return type %s is unsupported.\n", 5204 tname, btf_kind_str[BTF_INFO_KIND(t->info)]); 5205 return -EINVAL; 5206 } 5207 m->ret_size = ret; 5208 5209 for (i = 0; i < nargs; i++) { 5210 ret = __get_type_size(btf, args[i].type, &t); 5211 if (ret < 0) { 5212 bpf_log(log, 5213 "The function %s arg%d type %s is unsupported.\n", 5214 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]); 5215 return -EINVAL; 5216 } 5217 m->arg_size[i] = ret; 5218 } 5219 m->nr_args = nargs; 5220 return 0; 5221 } 5222 5223 /* Compare BTFs of two functions assuming only scalars and pointers to context. 5224 * t1 points to BTF_KIND_FUNC in btf1 5225 * t2 points to BTF_KIND_FUNC in btf2 5226 * Returns: 5227 * EINVAL - function prototype mismatch 5228 * EFAULT - verifier bug 5229 * 0 - 99% match. The last 1% is validated by the verifier. 5230 */ 5231 static int btf_check_func_type_match(struct bpf_verifier_log *log, 5232 struct btf *btf1, const struct btf_type *t1, 5233 struct btf *btf2, const struct btf_type *t2) 5234 { 5235 const struct btf_param *args1, *args2; 5236 const char *fn1, *fn2, *s1, *s2; 5237 u32 nargs1, nargs2, i; 5238 5239 fn1 = btf_name_by_offset(btf1, t1->name_off); 5240 fn2 = btf_name_by_offset(btf2, t2->name_off); 5241 5242 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 5243 bpf_log(log, "%s() is not a global function\n", fn1); 5244 return -EINVAL; 5245 } 5246 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 5247 bpf_log(log, "%s() is not a global function\n", fn2); 5248 return -EINVAL; 5249 } 5250 5251 t1 = btf_type_by_id(btf1, t1->type); 5252 if (!t1 || !btf_type_is_func_proto(t1)) 5253 return -EFAULT; 5254 t2 = btf_type_by_id(btf2, t2->type); 5255 if (!t2 || !btf_type_is_func_proto(t2)) 5256 return -EFAULT; 5257 5258 args1 = (const struct btf_param *)(t1 + 1); 5259 nargs1 = btf_type_vlen(t1); 5260 args2 = (const struct btf_param *)(t2 + 1); 5261 nargs2 = btf_type_vlen(t2); 5262 5263 if (nargs1 != nargs2) { 5264 bpf_log(log, "%s() has %d args while %s() has %d args\n", 5265 fn1, nargs1, fn2, nargs2); 5266 return -EINVAL; 5267 } 5268 5269 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5270 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5271 if (t1->info != t2->info) { 5272 bpf_log(log, 5273 "Return type %s of %s() doesn't match type %s of %s()\n", 5274 btf_type_str(t1), fn1, 5275 btf_type_str(t2), fn2); 5276 return -EINVAL; 5277 } 5278 5279 for (i = 0; i < nargs1; i++) { 5280 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 5281 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 5282 5283 if (t1->info != t2->info) { 5284 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 5285 i, fn1, btf_type_str(t1), 5286 fn2, btf_type_str(t2)); 5287 return -EINVAL; 5288 } 5289 if (btf_type_has_size(t1) && t1->size != t2->size) { 5290 bpf_log(log, 5291 "arg%d in %s() has size %d while %s() has %d\n", 5292 i, fn1, t1->size, 5293 fn2, t2->size); 5294 return -EINVAL; 5295 } 5296 5297 /* global functions are validated with scalars and pointers 5298 * to context only. And only global functions can be replaced. 5299 * Hence type check only those types. 5300 */ 5301 if (btf_type_is_int(t1) || btf_type_is_enum(t1)) 5302 continue; 5303 if (!btf_type_is_ptr(t1)) { 5304 bpf_log(log, 5305 "arg%d in %s() has unrecognized type\n", 5306 i, fn1); 5307 return -EINVAL; 5308 } 5309 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5310 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5311 if (!btf_type_is_struct(t1)) { 5312 bpf_log(log, 5313 "arg%d in %s() is not a pointer to context\n", 5314 i, fn1); 5315 return -EINVAL; 5316 } 5317 if (!btf_type_is_struct(t2)) { 5318 bpf_log(log, 5319 "arg%d in %s() is not a pointer to context\n", 5320 i, fn2); 5321 return -EINVAL; 5322 } 5323 /* This is an optional check to make program writing easier. 5324 * Compare names of structs and report an error to the user. 5325 * btf_prepare_func_args() already checked that t2 struct 5326 * is a context type. btf_prepare_func_args() will check 5327 * later that t1 struct is a context type as well. 5328 */ 5329 s1 = btf_name_by_offset(btf1, t1->name_off); 5330 s2 = btf_name_by_offset(btf2, t2->name_off); 5331 if (strcmp(s1, s2)) { 5332 bpf_log(log, 5333 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 5334 i, fn1, s1, fn2, s2); 5335 return -EINVAL; 5336 } 5337 } 5338 return 0; 5339 } 5340 5341 /* Compare BTFs of given program with BTF of target program */ 5342 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 5343 struct btf *btf2, const struct btf_type *t2) 5344 { 5345 struct btf *btf1 = prog->aux->btf; 5346 const struct btf_type *t1; 5347 u32 btf_id = 0; 5348 5349 if (!prog->aux->func_info) { 5350 bpf_log(log, "Program extension requires BTF\n"); 5351 return -EINVAL; 5352 } 5353 5354 btf_id = prog->aux->func_info[0].type_id; 5355 if (!btf_id) 5356 return -EFAULT; 5357 5358 t1 = btf_type_by_id(btf1, btf_id); 5359 if (!t1 || !btf_type_is_func(t1)) 5360 return -EFAULT; 5361 5362 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 5363 } 5364 5365 /* Compare BTF of a function with given bpf_reg_state. 5366 * Returns: 5367 * EFAULT - there is a verifier bug. Abort verification. 5368 * EINVAL - there is a type mismatch or BTF is not available. 5369 * 0 - BTF matches with what bpf_reg_state expects. 5370 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 5371 */ 5372 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 5373 struct bpf_reg_state *regs) 5374 { 5375 struct bpf_verifier_log *log = &env->log; 5376 struct bpf_prog *prog = env->prog; 5377 struct btf *btf = prog->aux->btf; 5378 const struct btf_param *args; 5379 const struct btf_type *t, *ref_t; 5380 u32 i, nargs, btf_id, type_size; 5381 const char *tname; 5382 bool is_global; 5383 5384 if (!prog->aux->func_info) 5385 return -EINVAL; 5386 5387 btf_id = prog->aux->func_info[subprog].type_id; 5388 if (!btf_id) 5389 return -EFAULT; 5390 5391 if (prog->aux->func_info_aux[subprog].unreliable) 5392 return -EINVAL; 5393 5394 t = btf_type_by_id(btf, btf_id); 5395 if (!t || !btf_type_is_func(t)) { 5396 /* These checks were already done by the verifier while loading 5397 * struct bpf_func_info 5398 */ 5399 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 5400 subprog); 5401 return -EFAULT; 5402 } 5403 tname = btf_name_by_offset(btf, t->name_off); 5404 5405 t = btf_type_by_id(btf, t->type); 5406 if (!t || !btf_type_is_func_proto(t)) { 5407 bpf_log(log, "Invalid BTF of func %s\n", tname); 5408 return -EFAULT; 5409 } 5410 args = (const struct btf_param *)(t + 1); 5411 nargs = btf_type_vlen(t); 5412 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 5413 bpf_log(log, "Function %s has %d > %d args\n", tname, nargs, 5414 MAX_BPF_FUNC_REG_ARGS); 5415 goto out; 5416 } 5417 5418 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5419 /* check that BTF function arguments match actual types that the 5420 * verifier sees. 5421 */ 5422 for (i = 0; i < nargs; i++) { 5423 struct bpf_reg_state *reg = ®s[i + 1]; 5424 5425 t = btf_type_by_id(btf, args[i].type); 5426 while (btf_type_is_modifier(t)) 5427 t = btf_type_by_id(btf, t->type); 5428 if (btf_type_is_int(t) || btf_type_is_enum(t)) { 5429 if (reg->type == SCALAR_VALUE) 5430 continue; 5431 bpf_log(log, "R%d is not a scalar\n", i + 1); 5432 goto out; 5433 } 5434 if (btf_type_is_ptr(t)) { 5435 /* If function expects ctx type in BTF check that caller 5436 * is passing PTR_TO_CTX. 5437 */ 5438 if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) { 5439 if (reg->type != PTR_TO_CTX) { 5440 bpf_log(log, 5441 "arg#%d expected pointer to ctx, but got %s\n", 5442 i, btf_kind_str[BTF_INFO_KIND(t->info)]); 5443 goto out; 5444 } 5445 if (check_ctx_reg(env, reg, i + 1)) 5446 goto out; 5447 continue; 5448 } 5449 5450 if (!is_global) 5451 goto out; 5452 5453 t = btf_type_skip_modifiers(btf, t->type, NULL); 5454 5455 ref_t = btf_resolve_size(btf, t, &type_size); 5456 if (IS_ERR(ref_t)) { 5457 bpf_log(log, 5458 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 5459 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 5460 PTR_ERR(ref_t)); 5461 goto out; 5462 } 5463 5464 if (check_mem_reg(env, reg, i + 1, type_size)) 5465 goto out; 5466 5467 continue; 5468 } 5469 bpf_log(log, "Unrecognized arg#%d type %s\n", 5470 i, btf_kind_str[BTF_INFO_KIND(t->info)]); 5471 goto out; 5472 } 5473 return 0; 5474 out: 5475 /* Compiler optimizations can remove arguments from static functions 5476 * or mismatched type can be passed into a global function. 5477 * In such cases mark the function as unreliable from BTF point of view. 5478 */ 5479 prog->aux->func_info_aux[subprog].unreliable = true; 5480 return -EINVAL; 5481 } 5482 5483 /* Convert BTF of a function into bpf_reg_state if possible 5484 * Returns: 5485 * EFAULT - there is a verifier bug. Abort verification. 5486 * EINVAL - cannot convert BTF. 5487 * 0 - Successfully converted BTF into bpf_reg_state 5488 * (either PTR_TO_CTX or SCALAR_VALUE). 5489 */ 5490 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 5491 struct bpf_reg_state *regs) 5492 { 5493 struct bpf_verifier_log *log = &env->log; 5494 struct bpf_prog *prog = env->prog; 5495 enum bpf_prog_type prog_type = prog->type; 5496 struct btf *btf = prog->aux->btf; 5497 const struct btf_param *args; 5498 const struct btf_type *t, *ref_t; 5499 u32 i, nargs, btf_id; 5500 const char *tname; 5501 5502 if (!prog->aux->func_info || 5503 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 5504 bpf_log(log, "Verifier bug\n"); 5505 return -EFAULT; 5506 } 5507 5508 btf_id = prog->aux->func_info[subprog].type_id; 5509 if (!btf_id) { 5510 bpf_log(log, "Global functions need valid BTF\n"); 5511 return -EFAULT; 5512 } 5513 5514 t = btf_type_by_id(btf, btf_id); 5515 if (!t || !btf_type_is_func(t)) { 5516 /* These checks were already done by the verifier while loading 5517 * struct bpf_func_info 5518 */ 5519 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 5520 subprog); 5521 return -EFAULT; 5522 } 5523 tname = btf_name_by_offset(btf, t->name_off); 5524 5525 if (log->level & BPF_LOG_LEVEL) 5526 bpf_log(log, "Validating %s() func#%d...\n", 5527 tname, subprog); 5528 5529 if (prog->aux->func_info_aux[subprog].unreliable) { 5530 bpf_log(log, "Verifier bug in function %s()\n", tname); 5531 return -EFAULT; 5532 } 5533 if (prog_type == BPF_PROG_TYPE_EXT) 5534 prog_type = prog->aux->dst_prog->type; 5535 5536 t = btf_type_by_id(btf, t->type); 5537 if (!t || !btf_type_is_func_proto(t)) { 5538 bpf_log(log, "Invalid type of function %s()\n", tname); 5539 return -EFAULT; 5540 } 5541 args = (const struct btf_param *)(t + 1); 5542 nargs = btf_type_vlen(t); 5543 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 5544 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 5545 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 5546 return -EINVAL; 5547 } 5548 /* check that function returns int */ 5549 t = btf_type_by_id(btf, t->type); 5550 while (btf_type_is_modifier(t)) 5551 t = btf_type_by_id(btf, t->type); 5552 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) { 5553 bpf_log(log, 5554 "Global function %s() doesn't return scalar. Only those are supported.\n", 5555 tname); 5556 return -EINVAL; 5557 } 5558 /* Convert BTF function arguments into verifier types. 5559 * Only PTR_TO_CTX and SCALAR are supported atm. 5560 */ 5561 for (i = 0; i < nargs; i++) { 5562 struct bpf_reg_state *reg = ®s[i + 1]; 5563 5564 t = btf_type_by_id(btf, args[i].type); 5565 while (btf_type_is_modifier(t)) 5566 t = btf_type_by_id(btf, t->type); 5567 if (btf_type_is_int(t) || btf_type_is_enum(t)) { 5568 reg->type = SCALAR_VALUE; 5569 continue; 5570 } 5571 if (btf_type_is_ptr(t)) { 5572 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 5573 reg->type = PTR_TO_CTX; 5574 continue; 5575 } 5576 5577 t = btf_type_skip_modifiers(btf, t->type, NULL); 5578 5579 ref_t = btf_resolve_size(btf, t, ®->mem_size); 5580 if (IS_ERR(ref_t)) { 5581 bpf_log(log, 5582 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 5583 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 5584 PTR_ERR(ref_t)); 5585 return -EINVAL; 5586 } 5587 5588 reg->type = PTR_TO_MEM_OR_NULL; 5589 reg->id = ++env->id_gen; 5590 5591 continue; 5592 } 5593 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 5594 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname); 5595 return -EINVAL; 5596 } 5597 return 0; 5598 } 5599 5600 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 5601 struct btf_show *show) 5602 { 5603 const struct btf_type *t = btf_type_by_id(btf, type_id); 5604 5605 show->btf = btf; 5606 memset(&show->state, 0, sizeof(show->state)); 5607 memset(&show->obj, 0, sizeof(show->obj)); 5608 5609 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 5610 } 5611 5612 static void btf_seq_show(struct btf_show *show, const char *fmt, 5613 va_list args) 5614 { 5615 seq_vprintf((struct seq_file *)show->target, fmt, args); 5616 } 5617 5618 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 5619 void *obj, struct seq_file *m, u64 flags) 5620 { 5621 struct btf_show sseq; 5622 5623 sseq.target = m; 5624 sseq.showfn = btf_seq_show; 5625 sseq.flags = flags; 5626 5627 btf_type_show(btf, type_id, obj, &sseq); 5628 5629 return sseq.state.status; 5630 } 5631 5632 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 5633 struct seq_file *m) 5634 { 5635 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 5636 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 5637 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 5638 } 5639 5640 struct btf_show_snprintf { 5641 struct btf_show show; 5642 int len_left; /* space left in string */ 5643 int len; /* length we would have written */ 5644 }; 5645 5646 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 5647 va_list args) 5648 { 5649 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 5650 int len; 5651 5652 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 5653 5654 if (len < 0) { 5655 ssnprintf->len_left = 0; 5656 ssnprintf->len = len; 5657 } else if (len > ssnprintf->len_left) { 5658 /* no space, drive on to get length we would have written */ 5659 ssnprintf->len_left = 0; 5660 ssnprintf->len += len; 5661 } else { 5662 ssnprintf->len_left -= len; 5663 ssnprintf->len += len; 5664 show->target += len; 5665 } 5666 } 5667 5668 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 5669 char *buf, int len, u64 flags) 5670 { 5671 struct btf_show_snprintf ssnprintf; 5672 5673 ssnprintf.show.target = buf; 5674 ssnprintf.show.flags = flags; 5675 ssnprintf.show.showfn = btf_snprintf_show; 5676 ssnprintf.len_left = len; 5677 ssnprintf.len = 0; 5678 5679 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 5680 5681 /* If we encontered an error, return it. */ 5682 if (ssnprintf.show.state.status) 5683 return ssnprintf.show.state.status; 5684 5685 /* Otherwise return length we would have written */ 5686 return ssnprintf.len; 5687 } 5688 5689 #ifdef CONFIG_PROC_FS 5690 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 5691 { 5692 const struct btf *btf = filp->private_data; 5693 5694 seq_printf(m, "btf_id:\t%u\n", btf->id); 5695 } 5696 #endif 5697 5698 static int btf_release(struct inode *inode, struct file *filp) 5699 { 5700 btf_put(filp->private_data); 5701 return 0; 5702 } 5703 5704 const struct file_operations btf_fops = { 5705 #ifdef CONFIG_PROC_FS 5706 .show_fdinfo = bpf_btf_show_fdinfo, 5707 #endif 5708 .release = btf_release, 5709 }; 5710 5711 static int __btf_new_fd(struct btf *btf) 5712 { 5713 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 5714 } 5715 5716 int btf_new_fd(const union bpf_attr *attr) 5717 { 5718 struct btf *btf; 5719 int ret; 5720 5721 btf = btf_parse(u64_to_user_ptr(attr->btf), 5722 attr->btf_size, attr->btf_log_level, 5723 u64_to_user_ptr(attr->btf_log_buf), 5724 attr->btf_log_size); 5725 if (IS_ERR(btf)) 5726 return PTR_ERR(btf); 5727 5728 ret = btf_alloc_id(btf); 5729 if (ret) { 5730 btf_free(btf); 5731 return ret; 5732 } 5733 5734 /* 5735 * The BTF ID is published to the userspace. 5736 * All BTF free must go through call_rcu() from 5737 * now on (i.e. free by calling btf_put()). 5738 */ 5739 5740 ret = __btf_new_fd(btf); 5741 if (ret < 0) 5742 btf_put(btf); 5743 5744 return ret; 5745 } 5746 5747 struct btf *btf_get_by_fd(int fd) 5748 { 5749 struct btf *btf; 5750 struct fd f; 5751 5752 f = fdget(fd); 5753 5754 if (!f.file) 5755 return ERR_PTR(-EBADF); 5756 5757 if (f.file->f_op != &btf_fops) { 5758 fdput(f); 5759 return ERR_PTR(-EINVAL); 5760 } 5761 5762 btf = f.file->private_data; 5763 refcount_inc(&btf->refcnt); 5764 fdput(f); 5765 5766 return btf; 5767 } 5768 5769 int btf_get_info_by_fd(const struct btf *btf, 5770 const union bpf_attr *attr, 5771 union bpf_attr __user *uattr) 5772 { 5773 struct bpf_btf_info __user *uinfo; 5774 struct bpf_btf_info info; 5775 u32 info_copy, btf_copy; 5776 void __user *ubtf; 5777 char __user *uname; 5778 u32 uinfo_len, uname_len, name_len; 5779 int ret = 0; 5780 5781 uinfo = u64_to_user_ptr(attr->info.info); 5782 uinfo_len = attr->info.info_len; 5783 5784 info_copy = min_t(u32, uinfo_len, sizeof(info)); 5785 memset(&info, 0, sizeof(info)); 5786 if (copy_from_user(&info, uinfo, info_copy)) 5787 return -EFAULT; 5788 5789 info.id = btf->id; 5790 ubtf = u64_to_user_ptr(info.btf); 5791 btf_copy = min_t(u32, btf->data_size, info.btf_size); 5792 if (copy_to_user(ubtf, btf->data, btf_copy)) 5793 return -EFAULT; 5794 info.btf_size = btf->data_size; 5795 5796 info.kernel_btf = btf->kernel_btf; 5797 5798 uname = u64_to_user_ptr(info.name); 5799 uname_len = info.name_len; 5800 if (!uname ^ !uname_len) 5801 return -EINVAL; 5802 5803 name_len = strlen(btf->name); 5804 info.name_len = name_len; 5805 5806 if (uname) { 5807 if (uname_len >= name_len + 1) { 5808 if (copy_to_user(uname, btf->name, name_len + 1)) 5809 return -EFAULT; 5810 } else { 5811 char zero = '\0'; 5812 5813 if (copy_to_user(uname, btf->name, uname_len - 1)) 5814 return -EFAULT; 5815 if (put_user(zero, uname + uname_len - 1)) 5816 return -EFAULT; 5817 /* let user-space know about too short buffer */ 5818 ret = -ENOSPC; 5819 } 5820 } 5821 5822 if (copy_to_user(uinfo, &info, info_copy) || 5823 put_user(info_copy, &uattr->info.info_len)) 5824 return -EFAULT; 5825 5826 return ret; 5827 } 5828 5829 int btf_get_fd_by_id(u32 id) 5830 { 5831 struct btf *btf; 5832 int fd; 5833 5834 rcu_read_lock(); 5835 btf = idr_find(&btf_idr, id); 5836 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 5837 btf = ERR_PTR(-ENOENT); 5838 rcu_read_unlock(); 5839 5840 if (IS_ERR(btf)) 5841 return PTR_ERR(btf); 5842 5843 fd = __btf_new_fd(btf); 5844 if (fd < 0) 5845 btf_put(btf); 5846 5847 return fd; 5848 } 5849 5850 u32 btf_obj_id(const struct btf *btf) 5851 { 5852 return btf->id; 5853 } 5854 5855 bool btf_is_kernel(const struct btf *btf) 5856 { 5857 return btf->kernel_btf; 5858 } 5859 5860 bool btf_is_module(const struct btf *btf) 5861 { 5862 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 5863 } 5864 5865 static int btf_id_cmp_func(const void *a, const void *b) 5866 { 5867 const int *pa = a, *pb = b; 5868 5869 return *pa - *pb; 5870 } 5871 5872 bool btf_id_set_contains(const struct btf_id_set *set, u32 id) 5873 { 5874 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL; 5875 } 5876 5877 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 5878 struct btf_module { 5879 struct list_head list; 5880 struct module *module; 5881 struct btf *btf; 5882 struct bin_attribute *sysfs_attr; 5883 }; 5884 5885 static LIST_HEAD(btf_modules); 5886 static DEFINE_MUTEX(btf_module_mutex); 5887 5888 static ssize_t 5889 btf_module_read(struct file *file, struct kobject *kobj, 5890 struct bin_attribute *bin_attr, 5891 char *buf, loff_t off, size_t len) 5892 { 5893 const struct btf *btf = bin_attr->private; 5894 5895 memcpy(buf, btf->data + off, len); 5896 return len; 5897 } 5898 5899 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 5900 void *module) 5901 { 5902 struct btf_module *btf_mod, *tmp; 5903 struct module *mod = module; 5904 struct btf *btf; 5905 int err = 0; 5906 5907 if (mod->btf_data_size == 0 || 5908 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 5909 goto out; 5910 5911 switch (op) { 5912 case MODULE_STATE_COMING: 5913 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 5914 if (!btf_mod) { 5915 err = -ENOMEM; 5916 goto out; 5917 } 5918 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 5919 if (IS_ERR(btf)) { 5920 pr_warn("failed to validate module [%s] BTF: %ld\n", 5921 mod->name, PTR_ERR(btf)); 5922 kfree(btf_mod); 5923 err = PTR_ERR(btf); 5924 goto out; 5925 } 5926 err = btf_alloc_id(btf); 5927 if (err) { 5928 btf_free(btf); 5929 kfree(btf_mod); 5930 goto out; 5931 } 5932 5933 mutex_lock(&btf_module_mutex); 5934 btf_mod->module = module; 5935 btf_mod->btf = btf; 5936 list_add(&btf_mod->list, &btf_modules); 5937 mutex_unlock(&btf_module_mutex); 5938 5939 if (IS_ENABLED(CONFIG_SYSFS)) { 5940 struct bin_attribute *attr; 5941 5942 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 5943 if (!attr) 5944 goto out; 5945 5946 sysfs_bin_attr_init(attr); 5947 attr->attr.name = btf->name; 5948 attr->attr.mode = 0444; 5949 attr->size = btf->data_size; 5950 attr->private = btf; 5951 attr->read = btf_module_read; 5952 5953 err = sysfs_create_bin_file(btf_kobj, attr); 5954 if (err) { 5955 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 5956 mod->name, err); 5957 kfree(attr); 5958 err = 0; 5959 goto out; 5960 } 5961 5962 btf_mod->sysfs_attr = attr; 5963 } 5964 5965 break; 5966 case MODULE_STATE_GOING: 5967 mutex_lock(&btf_module_mutex); 5968 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 5969 if (btf_mod->module != module) 5970 continue; 5971 5972 list_del(&btf_mod->list); 5973 if (btf_mod->sysfs_attr) 5974 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 5975 btf_put(btf_mod->btf); 5976 kfree(btf_mod->sysfs_attr); 5977 kfree(btf_mod); 5978 break; 5979 } 5980 mutex_unlock(&btf_module_mutex); 5981 break; 5982 } 5983 out: 5984 return notifier_from_errno(err); 5985 } 5986 5987 static struct notifier_block btf_module_nb = { 5988 .notifier_call = btf_module_notify, 5989 }; 5990 5991 static int __init btf_module_init(void) 5992 { 5993 register_module_notifier(&btf_module_nb); 5994 return 0; 5995 } 5996 5997 fs_initcall(btf_module_init); 5998 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 5999 6000 struct module *btf_try_get_module(const struct btf *btf) 6001 { 6002 struct module *res = NULL; 6003 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6004 struct btf_module *btf_mod, *tmp; 6005 6006 mutex_lock(&btf_module_mutex); 6007 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6008 if (btf_mod->btf != btf) 6009 continue; 6010 6011 if (try_module_get(btf_mod->module)) 6012 res = btf_mod->module; 6013 6014 break; 6015 } 6016 mutex_unlock(&btf_module_mutex); 6017 #endif 6018 6019 return res; 6020 } 6021