xref: /openbmc/linux/kernel/bpf/btf.c (revision d0e22329)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/slab.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/uaccess.h>
14 #include <linux/kernel.h>
15 #include <linux/idr.h>
16 #include <linux/sort.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/btf.h>
19 
20 /* BTF (BPF Type Format) is the meta data format which describes
21  * the data types of BPF program/map.  Hence, it basically focus
22  * on the C programming language which the modern BPF is primary
23  * using.
24  *
25  * ELF Section:
26  * ~~~~~~~~~~~
27  * The BTF data is stored under the ".BTF" ELF section
28  *
29  * struct btf_type:
30  * ~~~~~~~~~~~~~~~
31  * Each 'struct btf_type' object describes a C data type.
32  * Depending on the type it is describing, a 'struct btf_type'
33  * object may be followed by more data.  F.e.
34  * To describe an array, 'struct btf_type' is followed by
35  * 'struct btf_array'.
36  *
37  * 'struct btf_type' and any extra data following it are
38  * 4 bytes aligned.
39  *
40  * Type section:
41  * ~~~~~~~~~~~~~
42  * The BTF type section contains a list of 'struct btf_type' objects.
43  * Each one describes a C type.  Recall from the above section
44  * that a 'struct btf_type' object could be immediately followed by extra
45  * data in order to desribe some particular C types.
46  *
47  * type_id:
48  * ~~~~~~~
49  * Each btf_type object is identified by a type_id.  The type_id
50  * is implicitly implied by the location of the btf_type object in
51  * the BTF type section.  The first one has type_id 1.  The second
52  * one has type_id 2...etc.  Hence, an earlier btf_type has
53  * a smaller type_id.
54  *
55  * A btf_type object may refer to another btf_type object by using
56  * type_id (i.e. the "type" in the "struct btf_type").
57  *
58  * NOTE that we cannot assume any reference-order.
59  * A btf_type object can refer to an earlier btf_type object
60  * but it can also refer to a later btf_type object.
61  *
62  * For example, to describe "const void *".  A btf_type
63  * object describing "const" may refer to another btf_type
64  * object describing "void *".  This type-reference is done
65  * by specifying type_id:
66  *
67  * [1] CONST (anon) type_id=2
68  * [2] PTR (anon) type_id=0
69  *
70  * The above is the btf_verifier debug log:
71  *   - Each line started with "[?]" is a btf_type object
72  *   - [?] is the type_id of the btf_type object.
73  *   - CONST/PTR is the BTF_KIND_XXX
74  *   - "(anon)" is the name of the type.  It just
75  *     happens that CONST and PTR has no name.
76  *   - type_id=XXX is the 'u32 type' in btf_type
77  *
78  * NOTE: "void" has type_id 0
79  *
80  * String section:
81  * ~~~~~~~~~~~~~~
82  * The BTF string section contains the names used by the type section.
83  * Each string is referred by an "offset" from the beginning of the
84  * string section.
85  *
86  * Each string is '\0' terminated.
87  *
88  * The first character in the string section must be '\0'
89  * which is used to mean 'anonymous'. Some btf_type may not
90  * have a name.
91  */
92 
93 /* BTF verification:
94  *
95  * To verify BTF data, two passes are needed.
96  *
97  * Pass #1
98  * ~~~~~~~
99  * The first pass is to collect all btf_type objects to
100  * an array: "btf->types".
101  *
102  * Depending on the C type that a btf_type is describing,
103  * a btf_type may be followed by extra data.  We don't know
104  * how many btf_type is there, and more importantly we don't
105  * know where each btf_type is located in the type section.
106  *
107  * Without knowing the location of each type_id, most verifications
108  * cannot be done.  e.g. an earlier btf_type may refer to a later
109  * btf_type (recall the "const void *" above), so we cannot
110  * check this type-reference in the first pass.
111  *
112  * In the first pass, it still does some verifications (e.g.
113  * checking the name is a valid offset to the string section).
114  *
115  * Pass #2
116  * ~~~~~~~
117  * The main focus is to resolve a btf_type that is referring
118  * to another type.
119  *
120  * We have to ensure the referring type:
121  * 1) does exist in the BTF (i.e. in btf->types[])
122  * 2) does not cause a loop:
123  *	struct A {
124  *		struct B b;
125  *	};
126  *
127  *	struct B {
128  *		struct A a;
129  *	};
130  *
131  * btf_type_needs_resolve() decides if a btf_type needs
132  * to be resolved.
133  *
134  * The needs_resolve type implements the "resolve()" ops which
135  * essentially does a DFS and detects backedge.
136  *
137  * During resolve (or DFS), different C types have different
138  * "RESOLVED" conditions.
139  *
140  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
141  * members because a member is always referring to another
142  * type.  A struct's member can be treated as "RESOLVED" if
143  * it is referring to a BTF_KIND_PTR.  Otherwise, the
144  * following valid C struct would be rejected:
145  *
146  *	struct A {
147  *		int m;
148  *		struct A *a;
149  *	};
150  *
151  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
152  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
153  * detect a pointer loop, e.g.:
154  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
155  *                        ^                                         |
156  *                        +-----------------------------------------+
157  *
158  */
159 
160 #define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE)
161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
164 #define BITS_ROUNDUP_BYTES(bits) \
165 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
166 
167 #define BTF_INFO_MASK 0x8f00ffff
168 #define BTF_INT_MASK 0x0fffffff
169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
171 
172 /* 16MB for 64k structs and each has 16 members and
173  * a few MB spaces for the string section.
174  * The hard limit is S32_MAX.
175  */
176 #define BTF_MAX_SIZE (16 * 1024 * 1024)
177 
178 #define for_each_member(i, struct_type, member)			\
179 	for (i = 0, member = btf_type_member(struct_type);	\
180 	     i < btf_type_vlen(struct_type);			\
181 	     i++, member++)
182 
183 #define for_each_member_from(i, from, struct_type, member)		\
184 	for (i = from, member = btf_type_member(struct_type) + from;	\
185 	     i < btf_type_vlen(struct_type);				\
186 	     i++, member++)
187 
188 static DEFINE_IDR(btf_idr);
189 static DEFINE_SPINLOCK(btf_idr_lock);
190 
191 struct btf {
192 	void *data;
193 	struct btf_type **types;
194 	u32 *resolved_ids;
195 	u32 *resolved_sizes;
196 	const char *strings;
197 	void *nohdr_data;
198 	struct btf_header hdr;
199 	u32 nr_types;
200 	u32 types_size;
201 	u32 data_size;
202 	refcount_t refcnt;
203 	u32 id;
204 	struct rcu_head rcu;
205 };
206 
207 enum verifier_phase {
208 	CHECK_META,
209 	CHECK_TYPE,
210 };
211 
212 struct resolve_vertex {
213 	const struct btf_type *t;
214 	u32 type_id;
215 	u16 next_member;
216 };
217 
218 enum visit_state {
219 	NOT_VISITED,
220 	VISITED,
221 	RESOLVED,
222 };
223 
224 enum resolve_mode {
225 	RESOLVE_TBD,	/* To Be Determined */
226 	RESOLVE_PTR,	/* Resolving for Pointer */
227 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
228 					 * or array
229 					 */
230 };
231 
232 #define MAX_RESOLVE_DEPTH 32
233 
234 struct btf_sec_info {
235 	u32 off;
236 	u32 len;
237 };
238 
239 struct btf_verifier_env {
240 	struct btf *btf;
241 	u8 *visit_states;
242 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
243 	struct bpf_verifier_log log;
244 	u32 log_type_id;
245 	u32 top_stack;
246 	enum verifier_phase phase;
247 	enum resolve_mode resolve_mode;
248 };
249 
250 static const char * const btf_kind_str[NR_BTF_KINDS] = {
251 	[BTF_KIND_UNKN]		= "UNKNOWN",
252 	[BTF_KIND_INT]		= "INT",
253 	[BTF_KIND_PTR]		= "PTR",
254 	[BTF_KIND_ARRAY]	= "ARRAY",
255 	[BTF_KIND_STRUCT]	= "STRUCT",
256 	[BTF_KIND_UNION]	= "UNION",
257 	[BTF_KIND_ENUM]		= "ENUM",
258 	[BTF_KIND_FWD]		= "FWD",
259 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
260 	[BTF_KIND_VOLATILE]	= "VOLATILE",
261 	[BTF_KIND_CONST]	= "CONST",
262 	[BTF_KIND_RESTRICT]	= "RESTRICT",
263 	[BTF_KIND_FUNC]		= "FUNC",
264 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
265 };
266 
267 struct btf_kind_operations {
268 	s32 (*check_meta)(struct btf_verifier_env *env,
269 			  const struct btf_type *t,
270 			  u32 meta_left);
271 	int (*resolve)(struct btf_verifier_env *env,
272 		       const struct resolve_vertex *v);
273 	int (*check_member)(struct btf_verifier_env *env,
274 			    const struct btf_type *struct_type,
275 			    const struct btf_member *member,
276 			    const struct btf_type *member_type);
277 	int (*check_kflag_member)(struct btf_verifier_env *env,
278 				  const struct btf_type *struct_type,
279 				  const struct btf_member *member,
280 				  const struct btf_type *member_type);
281 	void (*log_details)(struct btf_verifier_env *env,
282 			    const struct btf_type *t);
283 	void (*seq_show)(const struct btf *btf, const struct btf_type *t,
284 			 u32 type_id, void *data, u8 bits_offsets,
285 			 struct seq_file *m);
286 };
287 
288 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
289 static struct btf_type btf_void;
290 
291 static int btf_resolve(struct btf_verifier_env *env,
292 		       const struct btf_type *t, u32 type_id);
293 
294 static bool btf_type_is_modifier(const struct btf_type *t)
295 {
296 	/* Some of them is not strictly a C modifier
297 	 * but they are grouped into the same bucket
298 	 * for BTF concern:
299 	 *   A type (t) that refers to another
300 	 *   type through t->type AND its size cannot
301 	 *   be determined without following the t->type.
302 	 *
303 	 * ptr does not fall into this bucket
304 	 * because its size is always sizeof(void *).
305 	 */
306 	switch (BTF_INFO_KIND(t->info)) {
307 	case BTF_KIND_TYPEDEF:
308 	case BTF_KIND_VOLATILE:
309 	case BTF_KIND_CONST:
310 	case BTF_KIND_RESTRICT:
311 		return true;
312 	}
313 
314 	return false;
315 }
316 
317 static bool btf_type_is_void(const struct btf_type *t)
318 {
319 	return t == &btf_void;
320 }
321 
322 static bool btf_type_is_fwd(const struct btf_type *t)
323 {
324 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
325 }
326 
327 static bool btf_type_is_func(const struct btf_type *t)
328 {
329 	return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC;
330 }
331 
332 static bool btf_type_is_func_proto(const struct btf_type *t)
333 {
334 	return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO;
335 }
336 
337 static bool btf_type_nosize(const struct btf_type *t)
338 {
339 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
340 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
341 }
342 
343 static bool btf_type_nosize_or_null(const struct btf_type *t)
344 {
345 	return !t || btf_type_nosize(t);
346 }
347 
348 /* union is only a special case of struct:
349  * all its offsetof(member) == 0
350  */
351 static bool btf_type_is_struct(const struct btf_type *t)
352 {
353 	u8 kind = BTF_INFO_KIND(t->info);
354 
355 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
356 }
357 
358 static bool btf_type_is_array(const struct btf_type *t)
359 {
360 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
361 }
362 
363 static bool btf_type_is_ptr(const struct btf_type *t)
364 {
365 	return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
366 }
367 
368 static bool btf_type_is_int(const struct btf_type *t)
369 {
370 	return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
371 }
372 
373 /* What types need to be resolved?
374  *
375  * btf_type_is_modifier() is an obvious one.
376  *
377  * btf_type_is_struct() because its member refers to
378  * another type (through member->type).
379 
380  * btf_type_is_array() because its element (array->type)
381  * refers to another type.  Array can be thought of a
382  * special case of struct while array just has the same
383  * member-type repeated by array->nelems of times.
384  */
385 static bool btf_type_needs_resolve(const struct btf_type *t)
386 {
387 	return btf_type_is_modifier(t) ||
388 		btf_type_is_ptr(t) ||
389 		btf_type_is_struct(t) ||
390 		btf_type_is_array(t);
391 }
392 
393 /* t->size can be used */
394 static bool btf_type_has_size(const struct btf_type *t)
395 {
396 	switch (BTF_INFO_KIND(t->info)) {
397 	case BTF_KIND_INT:
398 	case BTF_KIND_STRUCT:
399 	case BTF_KIND_UNION:
400 	case BTF_KIND_ENUM:
401 		return true;
402 	}
403 
404 	return false;
405 }
406 
407 static const char *btf_int_encoding_str(u8 encoding)
408 {
409 	if (encoding == 0)
410 		return "(none)";
411 	else if (encoding == BTF_INT_SIGNED)
412 		return "SIGNED";
413 	else if (encoding == BTF_INT_CHAR)
414 		return "CHAR";
415 	else if (encoding == BTF_INT_BOOL)
416 		return "BOOL";
417 	else
418 		return "UNKN";
419 }
420 
421 static u16 btf_type_vlen(const struct btf_type *t)
422 {
423 	return BTF_INFO_VLEN(t->info);
424 }
425 
426 static bool btf_type_kflag(const struct btf_type *t)
427 {
428 	return BTF_INFO_KFLAG(t->info);
429 }
430 
431 static u32 btf_member_bit_offset(const struct btf_type *struct_type,
432 			     const struct btf_member *member)
433 {
434 	return btf_type_kflag(struct_type) ? BTF_MEMBER_BIT_OFFSET(member->offset)
435 					   : member->offset;
436 }
437 
438 static u32 btf_member_bitfield_size(const struct btf_type *struct_type,
439 				    const struct btf_member *member)
440 {
441 	return btf_type_kflag(struct_type) ? BTF_MEMBER_BITFIELD_SIZE(member->offset)
442 					   : 0;
443 }
444 
445 static u32 btf_type_int(const struct btf_type *t)
446 {
447 	return *(u32 *)(t + 1);
448 }
449 
450 static const struct btf_array *btf_type_array(const struct btf_type *t)
451 {
452 	return (const struct btf_array *)(t + 1);
453 }
454 
455 static const struct btf_member *btf_type_member(const struct btf_type *t)
456 {
457 	return (const struct btf_member *)(t + 1);
458 }
459 
460 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
461 {
462 	return (const struct btf_enum *)(t + 1);
463 }
464 
465 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
466 {
467 	return kind_ops[BTF_INFO_KIND(t->info)];
468 }
469 
470 bool btf_name_offset_valid(const struct btf *btf, u32 offset)
471 {
472 	return BTF_STR_OFFSET_VALID(offset) &&
473 		offset < btf->hdr.str_len;
474 }
475 
476 /* Only C-style identifier is permitted. This can be relaxed if
477  * necessary.
478  */
479 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
480 {
481 	/* offset must be valid */
482 	const char *src = &btf->strings[offset];
483 	const char *src_limit;
484 
485 	if (!isalpha(*src) && *src != '_')
486 		return false;
487 
488 	/* set a limit on identifier length */
489 	src_limit = src + KSYM_NAME_LEN;
490 	src++;
491 	while (*src && src < src_limit) {
492 		if (!isalnum(*src) && *src != '_')
493 			return false;
494 		src++;
495 	}
496 
497 	return !*src;
498 }
499 
500 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
501 {
502 	if (!offset)
503 		return "(anon)";
504 	else if (offset < btf->hdr.str_len)
505 		return &btf->strings[offset];
506 	else
507 		return "(invalid-name-offset)";
508 }
509 
510 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
511 {
512 	if (offset < btf->hdr.str_len)
513 		return &btf->strings[offset];
514 
515 	return NULL;
516 }
517 
518 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
519 {
520 	if (type_id > btf->nr_types)
521 		return NULL;
522 
523 	return btf->types[type_id];
524 }
525 
526 /*
527  * Regular int is not a bit field and it must be either
528  * u8/u16/u32/u64.
529  */
530 static bool btf_type_int_is_regular(const struct btf_type *t)
531 {
532 	u8 nr_bits, nr_bytes;
533 	u32 int_data;
534 
535 	int_data = btf_type_int(t);
536 	nr_bits = BTF_INT_BITS(int_data);
537 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
538 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
539 	    BTF_INT_OFFSET(int_data) ||
540 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
541 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) {
542 		return false;
543 	}
544 
545 	return true;
546 }
547 
548 /*
549  * Check that given struct member is a regular int with expected
550  * offset and size.
551  */
552 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
553 			   const struct btf_member *m,
554 			   u32 expected_offset, u32 expected_size)
555 {
556 	const struct btf_type *t;
557 	u32 id, int_data;
558 	u8 nr_bits;
559 
560 	id = m->type;
561 	t = btf_type_id_size(btf, &id, NULL);
562 	if (!t || !btf_type_is_int(t))
563 		return false;
564 
565 	int_data = btf_type_int(t);
566 	nr_bits = BTF_INT_BITS(int_data);
567 	if (btf_type_kflag(s)) {
568 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
569 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
570 
571 		/* if kflag set, int should be a regular int and
572 		 * bit offset should be at byte boundary.
573 		 */
574 		return !bitfield_size &&
575 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
576 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
577 	}
578 
579 	if (BTF_INT_OFFSET(int_data) ||
580 	    BITS_PER_BYTE_MASKED(m->offset) ||
581 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
582 	    BITS_PER_BYTE_MASKED(nr_bits) ||
583 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
584 		return false;
585 
586 	return true;
587 }
588 
589 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
590 					      const char *fmt, ...)
591 {
592 	va_list args;
593 
594 	va_start(args, fmt);
595 	bpf_verifier_vlog(log, fmt, args);
596 	va_end(args);
597 }
598 
599 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
600 					    const char *fmt, ...)
601 {
602 	struct bpf_verifier_log *log = &env->log;
603 	va_list args;
604 
605 	if (!bpf_verifier_log_needed(log))
606 		return;
607 
608 	va_start(args, fmt);
609 	bpf_verifier_vlog(log, fmt, args);
610 	va_end(args);
611 }
612 
613 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
614 						   const struct btf_type *t,
615 						   bool log_details,
616 						   const char *fmt, ...)
617 {
618 	struct bpf_verifier_log *log = &env->log;
619 	u8 kind = BTF_INFO_KIND(t->info);
620 	struct btf *btf = env->btf;
621 	va_list args;
622 
623 	if (!bpf_verifier_log_needed(log))
624 		return;
625 
626 	__btf_verifier_log(log, "[%u] %s %s%s",
627 			   env->log_type_id,
628 			   btf_kind_str[kind],
629 			   __btf_name_by_offset(btf, t->name_off),
630 			   log_details ? " " : "");
631 
632 	if (log_details)
633 		btf_type_ops(t)->log_details(env, t);
634 
635 	if (fmt && *fmt) {
636 		__btf_verifier_log(log, " ");
637 		va_start(args, fmt);
638 		bpf_verifier_vlog(log, fmt, args);
639 		va_end(args);
640 	}
641 
642 	__btf_verifier_log(log, "\n");
643 }
644 
645 #define btf_verifier_log_type(env, t, ...) \
646 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
647 #define btf_verifier_log_basic(env, t, ...) \
648 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
649 
650 __printf(4, 5)
651 static void btf_verifier_log_member(struct btf_verifier_env *env,
652 				    const struct btf_type *struct_type,
653 				    const struct btf_member *member,
654 				    const char *fmt, ...)
655 {
656 	struct bpf_verifier_log *log = &env->log;
657 	struct btf *btf = env->btf;
658 	va_list args;
659 
660 	if (!bpf_verifier_log_needed(log))
661 		return;
662 
663 	/* The CHECK_META phase already did a btf dump.
664 	 *
665 	 * If member is logged again, it must hit an error in
666 	 * parsing this member.  It is useful to print out which
667 	 * struct this member belongs to.
668 	 */
669 	if (env->phase != CHECK_META)
670 		btf_verifier_log_type(env, struct_type, NULL);
671 
672 	if (btf_type_kflag(struct_type))
673 		__btf_verifier_log(log,
674 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
675 				   __btf_name_by_offset(btf, member->name_off),
676 				   member->type,
677 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
678 				   BTF_MEMBER_BIT_OFFSET(member->offset));
679 	else
680 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
681 				   __btf_name_by_offset(btf, member->name_off),
682 				   member->type, member->offset);
683 
684 	if (fmt && *fmt) {
685 		__btf_verifier_log(log, " ");
686 		va_start(args, fmt);
687 		bpf_verifier_vlog(log, fmt, args);
688 		va_end(args);
689 	}
690 
691 	__btf_verifier_log(log, "\n");
692 }
693 
694 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
695 				 u32 btf_data_size)
696 {
697 	struct bpf_verifier_log *log = &env->log;
698 	const struct btf *btf = env->btf;
699 	const struct btf_header *hdr;
700 
701 	if (!bpf_verifier_log_needed(log))
702 		return;
703 
704 	hdr = &btf->hdr;
705 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
706 	__btf_verifier_log(log, "version: %u\n", hdr->version);
707 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
708 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
709 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
710 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
711 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
712 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
713 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
714 }
715 
716 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
717 {
718 	struct btf *btf = env->btf;
719 
720 	/* < 2 because +1 for btf_void which is always in btf->types[0].
721 	 * btf_void is not accounted in btf->nr_types because btf_void
722 	 * does not come from the BTF file.
723 	 */
724 	if (btf->types_size - btf->nr_types < 2) {
725 		/* Expand 'types' array */
726 
727 		struct btf_type **new_types;
728 		u32 expand_by, new_size;
729 
730 		if (btf->types_size == BTF_MAX_TYPE) {
731 			btf_verifier_log(env, "Exceeded max num of types");
732 			return -E2BIG;
733 		}
734 
735 		expand_by = max_t(u32, btf->types_size >> 2, 16);
736 		new_size = min_t(u32, BTF_MAX_TYPE,
737 				 btf->types_size + expand_by);
738 
739 		new_types = kvcalloc(new_size, sizeof(*new_types),
740 				     GFP_KERNEL | __GFP_NOWARN);
741 		if (!new_types)
742 			return -ENOMEM;
743 
744 		if (btf->nr_types == 0)
745 			new_types[0] = &btf_void;
746 		else
747 			memcpy(new_types, btf->types,
748 			       sizeof(*btf->types) * (btf->nr_types + 1));
749 
750 		kvfree(btf->types);
751 		btf->types = new_types;
752 		btf->types_size = new_size;
753 	}
754 
755 	btf->types[++(btf->nr_types)] = t;
756 
757 	return 0;
758 }
759 
760 static int btf_alloc_id(struct btf *btf)
761 {
762 	int id;
763 
764 	idr_preload(GFP_KERNEL);
765 	spin_lock_bh(&btf_idr_lock);
766 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
767 	if (id > 0)
768 		btf->id = id;
769 	spin_unlock_bh(&btf_idr_lock);
770 	idr_preload_end();
771 
772 	if (WARN_ON_ONCE(!id))
773 		return -ENOSPC;
774 
775 	return id > 0 ? 0 : id;
776 }
777 
778 static void btf_free_id(struct btf *btf)
779 {
780 	unsigned long flags;
781 
782 	/*
783 	 * In map-in-map, calling map_delete_elem() on outer
784 	 * map will call bpf_map_put on the inner map.
785 	 * It will then eventually call btf_free_id()
786 	 * on the inner map.  Some of the map_delete_elem()
787 	 * implementation may have irq disabled, so
788 	 * we need to use the _irqsave() version instead
789 	 * of the _bh() version.
790 	 */
791 	spin_lock_irqsave(&btf_idr_lock, flags);
792 	idr_remove(&btf_idr, btf->id);
793 	spin_unlock_irqrestore(&btf_idr_lock, flags);
794 }
795 
796 static void btf_free(struct btf *btf)
797 {
798 	kvfree(btf->types);
799 	kvfree(btf->resolved_sizes);
800 	kvfree(btf->resolved_ids);
801 	kvfree(btf->data);
802 	kfree(btf);
803 }
804 
805 static void btf_free_rcu(struct rcu_head *rcu)
806 {
807 	struct btf *btf = container_of(rcu, struct btf, rcu);
808 
809 	btf_free(btf);
810 }
811 
812 void btf_put(struct btf *btf)
813 {
814 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
815 		btf_free_id(btf);
816 		call_rcu(&btf->rcu, btf_free_rcu);
817 	}
818 }
819 
820 static int env_resolve_init(struct btf_verifier_env *env)
821 {
822 	struct btf *btf = env->btf;
823 	u32 nr_types = btf->nr_types;
824 	u32 *resolved_sizes = NULL;
825 	u32 *resolved_ids = NULL;
826 	u8 *visit_states = NULL;
827 
828 	/* +1 for btf_void */
829 	resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
830 				  GFP_KERNEL | __GFP_NOWARN);
831 	if (!resolved_sizes)
832 		goto nomem;
833 
834 	resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
835 				GFP_KERNEL | __GFP_NOWARN);
836 	if (!resolved_ids)
837 		goto nomem;
838 
839 	visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
840 				GFP_KERNEL | __GFP_NOWARN);
841 	if (!visit_states)
842 		goto nomem;
843 
844 	btf->resolved_sizes = resolved_sizes;
845 	btf->resolved_ids = resolved_ids;
846 	env->visit_states = visit_states;
847 
848 	return 0;
849 
850 nomem:
851 	kvfree(resolved_sizes);
852 	kvfree(resolved_ids);
853 	kvfree(visit_states);
854 	return -ENOMEM;
855 }
856 
857 static void btf_verifier_env_free(struct btf_verifier_env *env)
858 {
859 	kvfree(env->visit_states);
860 	kfree(env);
861 }
862 
863 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
864 				     const struct btf_type *next_type)
865 {
866 	switch (env->resolve_mode) {
867 	case RESOLVE_TBD:
868 		/* int, enum or void is a sink */
869 		return !btf_type_needs_resolve(next_type);
870 	case RESOLVE_PTR:
871 		/* int, enum, void, struct, array, func or func_proto is a sink
872 		 * for ptr
873 		 */
874 		return !btf_type_is_modifier(next_type) &&
875 			!btf_type_is_ptr(next_type);
876 	case RESOLVE_STRUCT_OR_ARRAY:
877 		/* int, enum, void, ptr, func or func_proto is a sink
878 		 * for struct and array
879 		 */
880 		return !btf_type_is_modifier(next_type) &&
881 			!btf_type_is_array(next_type) &&
882 			!btf_type_is_struct(next_type);
883 	default:
884 		BUG();
885 	}
886 }
887 
888 static bool env_type_is_resolved(const struct btf_verifier_env *env,
889 				 u32 type_id)
890 {
891 	return env->visit_states[type_id] == RESOLVED;
892 }
893 
894 static int env_stack_push(struct btf_verifier_env *env,
895 			  const struct btf_type *t, u32 type_id)
896 {
897 	struct resolve_vertex *v;
898 
899 	if (env->top_stack == MAX_RESOLVE_DEPTH)
900 		return -E2BIG;
901 
902 	if (env->visit_states[type_id] != NOT_VISITED)
903 		return -EEXIST;
904 
905 	env->visit_states[type_id] = VISITED;
906 
907 	v = &env->stack[env->top_stack++];
908 	v->t = t;
909 	v->type_id = type_id;
910 	v->next_member = 0;
911 
912 	if (env->resolve_mode == RESOLVE_TBD) {
913 		if (btf_type_is_ptr(t))
914 			env->resolve_mode = RESOLVE_PTR;
915 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
916 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
917 	}
918 
919 	return 0;
920 }
921 
922 static void env_stack_set_next_member(struct btf_verifier_env *env,
923 				      u16 next_member)
924 {
925 	env->stack[env->top_stack - 1].next_member = next_member;
926 }
927 
928 static void env_stack_pop_resolved(struct btf_verifier_env *env,
929 				   u32 resolved_type_id,
930 				   u32 resolved_size)
931 {
932 	u32 type_id = env->stack[--(env->top_stack)].type_id;
933 	struct btf *btf = env->btf;
934 
935 	btf->resolved_sizes[type_id] = resolved_size;
936 	btf->resolved_ids[type_id] = resolved_type_id;
937 	env->visit_states[type_id] = RESOLVED;
938 }
939 
940 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
941 {
942 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
943 }
944 
945 /* The input param "type_id" must point to a needs_resolve type */
946 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
947 						  u32 *type_id)
948 {
949 	*type_id = btf->resolved_ids[*type_id];
950 	return btf_type_by_id(btf, *type_id);
951 }
952 
953 const struct btf_type *btf_type_id_size(const struct btf *btf,
954 					u32 *type_id, u32 *ret_size)
955 {
956 	const struct btf_type *size_type;
957 	u32 size_type_id = *type_id;
958 	u32 size = 0;
959 
960 	size_type = btf_type_by_id(btf, size_type_id);
961 	if (btf_type_nosize_or_null(size_type))
962 		return NULL;
963 
964 	if (btf_type_has_size(size_type)) {
965 		size = size_type->size;
966 	} else if (btf_type_is_array(size_type)) {
967 		size = btf->resolved_sizes[size_type_id];
968 	} else if (btf_type_is_ptr(size_type)) {
969 		size = sizeof(void *);
970 	} else {
971 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type)))
972 			return NULL;
973 
974 		size = btf->resolved_sizes[size_type_id];
975 		size_type_id = btf->resolved_ids[size_type_id];
976 		size_type = btf_type_by_id(btf, size_type_id);
977 		if (btf_type_nosize_or_null(size_type))
978 			return NULL;
979 	}
980 
981 	*type_id = size_type_id;
982 	if (ret_size)
983 		*ret_size = size;
984 
985 	return size_type;
986 }
987 
988 static int btf_df_check_member(struct btf_verifier_env *env,
989 			       const struct btf_type *struct_type,
990 			       const struct btf_member *member,
991 			       const struct btf_type *member_type)
992 {
993 	btf_verifier_log_basic(env, struct_type,
994 			       "Unsupported check_member");
995 	return -EINVAL;
996 }
997 
998 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
999 				     const struct btf_type *struct_type,
1000 				     const struct btf_member *member,
1001 				     const struct btf_type *member_type)
1002 {
1003 	btf_verifier_log_basic(env, struct_type,
1004 			       "Unsupported check_kflag_member");
1005 	return -EINVAL;
1006 }
1007 
1008 /* Used for ptr, array and struct/union type members.
1009  * int, enum and modifier types have their specific callback functions.
1010  */
1011 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1012 					  const struct btf_type *struct_type,
1013 					  const struct btf_member *member,
1014 					  const struct btf_type *member_type)
1015 {
1016 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1017 		btf_verifier_log_member(env, struct_type, member,
1018 					"Invalid member bitfield_size");
1019 		return -EINVAL;
1020 	}
1021 
1022 	/* bitfield size is 0, so member->offset represents bit offset only.
1023 	 * It is safe to call non kflag check_member variants.
1024 	 */
1025 	return btf_type_ops(member_type)->check_member(env, struct_type,
1026 						       member,
1027 						       member_type);
1028 }
1029 
1030 static int btf_df_resolve(struct btf_verifier_env *env,
1031 			  const struct resolve_vertex *v)
1032 {
1033 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1034 	return -EINVAL;
1035 }
1036 
1037 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1038 			    u32 type_id, void *data, u8 bits_offsets,
1039 			    struct seq_file *m)
1040 {
1041 	seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1042 }
1043 
1044 static int btf_int_check_member(struct btf_verifier_env *env,
1045 				const struct btf_type *struct_type,
1046 				const struct btf_member *member,
1047 				const struct btf_type *member_type)
1048 {
1049 	u32 int_data = btf_type_int(member_type);
1050 	u32 struct_bits_off = member->offset;
1051 	u32 struct_size = struct_type->size;
1052 	u32 nr_copy_bits;
1053 	u32 bytes_offset;
1054 
1055 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1056 		btf_verifier_log_member(env, struct_type, member,
1057 					"bits_offset exceeds U32_MAX");
1058 		return -EINVAL;
1059 	}
1060 
1061 	struct_bits_off += BTF_INT_OFFSET(int_data);
1062 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1063 	nr_copy_bits = BTF_INT_BITS(int_data) +
1064 		BITS_PER_BYTE_MASKED(struct_bits_off);
1065 
1066 	if (nr_copy_bits > BITS_PER_U64) {
1067 		btf_verifier_log_member(env, struct_type, member,
1068 					"nr_copy_bits exceeds 64");
1069 		return -EINVAL;
1070 	}
1071 
1072 	if (struct_size < bytes_offset ||
1073 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1074 		btf_verifier_log_member(env, struct_type, member,
1075 					"Member exceeds struct_size");
1076 		return -EINVAL;
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1083 				      const struct btf_type *struct_type,
1084 				      const struct btf_member *member,
1085 				      const struct btf_type *member_type)
1086 {
1087 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1088 	u32 int_data = btf_type_int(member_type);
1089 	u32 struct_size = struct_type->size;
1090 	u32 nr_copy_bits;
1091 
1092 	/* a regular int type is required for the kflag int member */
1093 	if (!btf_type_int_is_regular(member_type)) {
1094 		btf_verifier_log_member(env, struct_type, member,
1095 					"Invalid member base type");
1096 		return -EINVAL;
1097 	}
1098 
1099 	/* check sanity of bitfield size */
1100 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1101 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1102 	nr_int_data_bits = BTF_INT_BITS(int_data);
1103 	if (!nr_bits) {
1104 		/* Not a bitfield member, member offset must be at byte
1105 		 * boundary.
1106 		 */
1107 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1108 			btf_verifier_log_member(env, struct_type, member,
1109 						"Invalid member offset");
1110 			return -EINVAL;
1111 		}
1112 
1113 		nr_bits = nr_int_data_bits;
1114 	} else if (nr_bits > nr_int_data_bits) {
1115 		btf_verifier_log_member(env, struct_type, member,
1116 					"Invalid member bitfield_size");
1117 		return -EINVAL;
1118 	}
1119 
1120 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1121 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1122 	if (nr_copy_bits > BITS_PER_U64) {
1123 		btf_verifier_log_member(env, struct_type, member,
1124 					"nr_copy_bits exceeds 64");
1125 		return -EINVAL;
1126 	}
1127 
1128 	if (struct_size < bytes_offset ||
1129 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1130 		btf_verifier_log_member(env, struct_type, member,
1131 					"Member exceeds struct_size");
1132 		return -EINVAL;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1139 			      const struct btf_type *t,
1140 			      u32 meta_left)
1141 {
1142 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1143 	u16 encoding;
1144 
1145 	if (meta_left < meta_needed) {
1146 		btf_verifier_log_basic(env, t,
1147 				       "meta_left:%u meta_needed:%u",
1148 				       meta_left, meta_needed);
1149 		return -EINVAL;
1150 	}
1151 
1152 	if (btf_type_vlen(t)) {
1153 		btf_verifier_log_type(env, t, "vlen != 0");
1154 		return -EINVAL;
1155 	}
1156 
1157 	if (btf_type_kflag(t)) {
1158 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1159 		return -EINVAL;
1160 	}
1161 
1162 	int_data = btf_type_int(t);
1163 	if (int_data & ~BTF_INT_MASK) {
1164 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1165 				       int_data);
1166 		return -EINVAL;
1167 	}
1168 
1169 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1170 
1171 	if (nr_bits > BITS_PER_U64) {
1172 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1173 				      BITS_PER_U64);
1174 		return -EINVAL;
1175 	}
1176 
1177 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1178 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1179 		return -EINVAL;
1180 	}
1181 
1182 	/*
1183 	 * Only one of the encoding bits is allowed and it
1184 	 * should be sufficient for the pretty print purpose (i.e. decoding).
1185 	 * Multiple bits can be allowed later if it is found
1186 	 * to be insufficient.
1187 	 */
1188 	encoding = BTF_INT_ENCODING(int_data);
1189 	if (encoding &&
1190 	    encoding != BTF_INT_SIGNED &&
1191 	    encoding != BTF_INT_CHAR &&
1192 	    encoding != BTF_INT_BOOL) {
1193 		btf_verifier_log_type(env, t, "Unsupported encoding");
1194 		return -ENOTSUPP;
1195 	}
1196 
1197 	btf_verifier_log_type(env, t, NULL);
1198 
1199 	return meta_needed;
1200 }
1201 
1202 static void btf_int_log(struct btf_verifier_env *env,
1203 			const struct btf_type *t)
1204 {
1205 	int int_data = btf_type_int(t);
1206 
1207 	btf_verifier_log(env,
1208 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1209 			 t->size, BTF_INT_OFFSET(int_data),
1210 			 BTF_INT_BITS(int_data),
1211 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1212 }
1213 
1214 static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1215 				  u8 nr_bits, struct seq_file *m)
1216 {
1217 	u16 left_shift_bits, right_shift_bits;
1218 	u8 nr_copy_bytes;
1219 	u8 nr_copy_bits;
1220 	u64 print_num;
1221 
1222 	data += BITS_ROUNDDOWN_BYTES(bits_offset);
1223 	bits_offset = BITS_PER_BYTE_MASKED(bits_offset);
1224 	nr_copy_bits = nr_bits + bits_offset;
1225 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1226 
1227 	print_num = 0;
1228 	memcpy(&print_num, data, nr_copy_bytes);
1229 
1230 #ifdef __BIG_ENDIAN_BITFIELD
1231 	left_shift_bits = bits_offset;
1232 #else
1233 	left_shift_bits = BITS_PER_U64 - nr_copy_bits;
1234 #endif
1235 	right_shift_bits = BITS_PER_U64 - nr_bits;
1236 
1237 	print_num <<= left_shift_bits;
1238 	print_num >>= right_shift_bits;
1239 
1240 	seq_printf(m, "0x%llx", print_num);
1241 }
1242 
1243 
1244 static void btf_int_bits_seq_show(const struct btf *btf,
1245 				  const struct btf_type *t,
1246 				  void *data, u8 bits_offset,
1247 				  struct seq_file *m)
1248 {
1249 	u32 int_data = btf_type_int(t);
1250 	u8 nr_bits = BTF_INT_BITS(int_data);
1251 	u8 total_bits_offset;
1252 
1253 	/*
1254 	 * bits_offset is at most 7.
1255 	 * BTF_INT_OFFSET() cannot exceed 64 bits.
1256 	 */
1257 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1258 	btf_bitfield_seq_show(data, total_bits_offset, nr_bits, m);
1259 }
1260 
1261 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1262 			     u32 type_id, void *data, u8 bits_offset,
1263 			     struct seq_file *m)
1264 {
1265 	u32 int_data = btf_type_int(t);
1266 	u8 encoding = BTF_INT_ENCODING(int_data);
1267 	bool sign = encoding & BTF_INT_SIGNED;
1268 	u8 nr_bits = BTF_INT_BITS(int_data);
1269 
1270 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
1271 	    BITS_PER_BYTE_MASKED(nr_bits)) {
1272 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1273 		return;
1274 	}
1275 
1276 	switch (nr_bits) {
1277 	case 64:
1278 		if (sign)
1279 			seq_printf(m, "%lld", *(s64 *)data);
1280 		else
1281 			seq_printf(m, "%llu", *(u64 *)data);
1282 		break;
1283 	case 32:
1284 		if (sign)
1285 			seq_printf(m, "%d", *(s32 *)data);
1286 		else
1287 			seq_printf(m, "%u", *(u32 *)data);
1288 		break;
1289 	case 16:
1290 		if (sign)
1291 			seq_printf(m, "%d", *(s16 *)data);
1292 		else
1293 			seq_printf(m, "%u", *(u16 *)data);
1294 		break;
1295 	case 8:
1296 		if (sign)
1297 			seq_printf(m, "%d", *(s8 *)data);
1298 		else
1299 			seq_printf(m, "%u", *(u8 *)data);
1300 		break;
1301 	default:
1302 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1303 	}
1304 }
1305 
1306 static const struct btf_kind_operations int_ops = {
1307 	.check_meta = btf_int_check_meta,
1308 	.resolve = btf_df_resolve,
1309 	.check_member = btf_int_check_member,
1310 	.check_kflag_member = btf_int_check_kflag_member,
1311 	.log_details = btf_int_log,
1312 	.seq_show = btf_int_seq_show,
1313 };
1314 
1315 static int btf_modifier_check_member(struct btf_verifier_env *env,
1316 				     const struct btf_type *struct_type,
1317 				     const struct btf_member *member,
1318 				     const struct btf_type *member_type)
1319 {
1320 	const struct btf_type *resolved_type;
1321 	u32 resolved_type_id = member->type;
1322 	struct btf_member resolved_member;
1323 	struct btf *btf = env->btf;
1324 
1325 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1326 	if (!resolved_type) {
1327 		btf_verifier_log_member(env, struct_type, member,
1328 					"Invalid member");
1329 		return -EINVAL;
1330 	}
1331 
1332 	resolved_member = *member;
1333 	resolved_member.type = resolved_type_id;
1334 
1335 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
1336 							 &resolved_member,
1337 							 resolved_type);
1338 }
1339 
1340 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1341 					   const struct btf_type *struct_type,
1342 					   const struct btf_member *member,
1343 					   const struct btf_type *member_type)
1344 {
1345 	const struct btf_type *resolved_type;
1346 	u32 resolved_type_id = member->type;
1347 	struct btf_member resolved_member;
1348 	struct btf *btf = env->btf;
1349 
1350 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1351 	if (!resolved_type) {
1352 		btf_verifier_log_member(env, struct_type, member,
1353 					"Invalid member");
1354 		return -EINVAL;
1355 	}
1356 
1357 	resolved_member = *member;
1358 	resolved_member.type = resolved_type_id;
1359 
1360 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1361 							       &resolved_member,
1362 							       resolved_type);
1363 }
1364 
1365 static int btf_ptr_check_member(struct btf_verifier_env *env,
1366 				const struct btf_type *struct_type,
1367 				const struct btf_member *member,
1368 				const struct btf_type *member_type)
1369 {
1370 	u32 struct_size, struct_bits_off, bytes_offset;
1371 
1372 	struct_size = struct_type->size;
1373 	struct_bits_off = member->offset;
1374 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1375 
1376 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1377 		btf_verifier_log_member(env, struct_type, member,
1378 					"Member is not byte aligned");
1379 		return -EINVAL;
1380 	}
1381 
1382 	if (struct_size - bytes_offset < sizeof(void *)) {
1383 		btf_verifier_log_member(env, struct_type, member,
1384 					"Member exceeds struct_size");
1385 		return -EINVAL;
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1392 				   const struct btf_type *t,
1393 				   u32 meta_left)
1394 {
1395 	if (btf_type_vlen(t)) {
1396 		btf_verifier_log_type(env, t, "vlen != 0");
1397 		return -EINVAL;
1398 	}
1399 
1400 	if (btf_type_kflag(t)) {
1401 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1402 		return -EINVAL;
1403 	}
1404 
1405 	if (!BTF_TYPE_ID_VALID(t->type)) {
1406 		btf_verifier_log_type(env, t, "Invalid type_id");
1407 		return -EINVAL;
1408 	}
1409 
1410 	/* typedef type must have a valid name, and other ref types,
1411 	 * volatile, const, restrict, should have a null name.
1412 	 */
1413 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1414 		if (!t->name_off ||
1415 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
1416 			btf_verifier_log_type(env, t, "Invalid name");
1417 			return -EINVAL;
1418 		}
1419 	} else {
1420 		if (t->name_off) {
1421 			btf_verifier_log_type(env, t, "Invalid name");
1422 			return -EINVAL;
1423 		}
1424 	}
1425 
1426 	btf_verifier_log_type(env, t, NULL);
1427 
1428 	return 0;
1429 }
1430 
1431 static int btf_modifier_resolve(struct btf_verifier_env *env,
1432 				const struct resolve_vertex *v)
1433 {
1434 	const struct btf_type *t = v->t;
1435 	const struct btf_type *next_type;
1436 	u32 next_type_id = t->type;
1437 	struct btf *btf = env->btf;
1438 	u32 next_type_size = 0;
1439 
1440 	next_type = btf_type_by_id(btf, next_type_id);
1441 	if (!next_type) {
1442 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1443 		return -EINVAL;
1444 	}
1445 
1446 	if (!env_type_is_resolve_sink(env, next_type) &&
1447 	    !env_type_is_resolved(env, next_type_id))
1448 		return env_stack_push(env, next_type, next_type_id);
1449 
1450 	/* Figure out the resolved next_type_id with size.
1451 	 * They will be stored in the current modifier's
1452 	 * resolved_ids and resolved_sizes such that it can
1453 	 * save us a few type-following when we use it later (e.g. in
1454 	 * pretty print).
1455 	 */
1456 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) {
1457 		if (env_type_is_resolved(env, next_type_id))
1458 			next_type = btf_type_id_resolve(btf, &next_type_id);
1459 
1460 		/* "typedef void new_void", "const void"...etc */
1461 		if (!btf_type_is_void(next_type) &&
1462 		    !btf_type_is_fwd(next_type)) {
1463 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1464 			return -EINVAL;
1465 		}
1466 	}
1467 
1468 	env_stack_pop_resolved(env, next_type_id, next_type_size);
1469 
1470 	return 0;
1471 }
1472 
1473 static int btf_ptr_resolve(struct btf_verifier_env *env,
1474 			   const struct resolve_vertex *v)
1475 {
1476 	const struct btf_type *next_type;
1477 	const struct btf_type *t = v->t;
1478 	u32 next_type_id = t->type;
1479 	struct btf *btf = env->btf;
1480 
1481 	next_type = btf_type_by_id(btf, next_type_id);
1482 	if (!next_type) {
1483 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1484 		return -EINVAL;
1485 	}
1486 
1487 	if (!env_type_is_resolve_sink(env, next_type) &&
1488 	    !env_type_is_resolved(env, next_type_id))
1489 		return env_stack_push(env, next_type, next_type_id);
1490 
1491 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1492 	 * the modifier may have stopped resolving when it was resolved
1493 	 * to a ptr (last-resolved-ptr).
1494 	 *
1495 	 * We now need to continue from the last-resolved-ptr to
1496 	 * ensure the last-resolved-ptr will not referring back to
1497 	 * the currenct ptr (t).
1498 	 */
1499 	if (btf_type_is_modifier(next_type)) {
1500 		const struct btf_type *resolved_type;
1501 		u32 resolved_type_id;
1502 
1503 		resolved_type_id = next_type_id;
1504 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1505 
1506 		if (btf_type_is_ptr(resolved_type) &&
1507 		    !env_type_is_resolve_sink(env, resolved_type) &&
1508 		    !env_type_is_resolved(env, resolved_type_id))
1509 			return env_stack_push(env, resolved_type,
1510 					      resolved_type_id);
1511 	}
1512 
1513 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1514 		if (env_type_is_resolved(env, next_type_id))
1515 			next_type = btf_type_id_resolve(btf, &next_type_id);
1516 
1517 		if (!btf_type_is_void(next_type) &&
1518 		    !btf_type_is_fwd(next_type) &&
1519 		    !btf_type_is_func_proto(next_type)) {
1520 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1521 			return -EINVAL;
1522 		}
1523 	}
1524 
1525 	env_stack_pop_resolved(env, next_type_id, 0);
1526 
1527 	return 0;
1528 }
1529 
1530 static void btf_modifier_seq_show(const struct btf *btf,
1531 				  const struct btf_type *t,
1532 				  u32 type_id, void *data,
1533 				  u8 bits_offset, struct seq_file *m)
1534 {
1535 	t = btf_type_id_resolve(btf, &type_id);
1536 
1537 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1538 }
1539 
1540 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1541 			     u32 type_id, void *data, u8 bits_offset,
1542 			     struct seq_file *m)
1543 {
1544 	/* It is a hashed value */
1545 	seq_printf(m, "%p", *(void **)data);
1546 }
1547 
1548 static void btf_ref_type_log(struct btf_verifier_env *env,
1549 			     const struct btf_type *t)
1550 {
1551 	btf_verifier_log(env, "type_id=%u", t->type);
1552 }
1553 
1554 static struct btf_kind_operations modifier_ops = {
1555 	.check_meta = btf_ref_type_check_meta,
1556 	.resolve = btf_modifier_resolve,
1557 	.check_member = btf_modifier_check_member,
1558 	.check_kflag_member = btf_modifier_check_kflag_member,
1559 	.log_details = btf_ref_type_log,
1560 	.seq_show = btf_modifier_seq_show,
1561 };
1562 
1563 static struct btf_kind_operations ptr_ops = {
1564 	.check_meta = btf_ref_type_check_meta,
1565 	.resolve = btf_ptr_resolve,
1566 	.check_member = btf_ptr_check_member,
1567 	.check_kflag_member = btf_generic_check_kflag_member,
1568 	.log_details = btf_ref_type_log,
1569 	.seq_show = btf_ptr_seq_show,
1570 };
1571 
1572 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1573 			      const struct btf_type *t,
1574 			      u32 meta_left)
1575 {
1576 	if (btf_type_vlen(t)) {
1577 		btf_verifier_log_type(env, t, "vlen != 0");
1578 		return -EINVAL;
1579 	}
1580 
1581 	if (t->type) {
1582 		btf_verifier_log_type(env, t, "type != 0");
1583 		return -EINVAL;
1584 	}
1585 
1586 	/* fwd type must have a valid name */
1587 	if (!t->name_off ||
1588 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1589 		btf_verifier_log_type(env, t, "Invalid name");
1590 		return -EINVAL;
1591 	}
1592 
1593 	btf_verifier_log_type(env, t, NULL);
1594 
1595 	return 0;
1596 }
1597 
1598 static void btf_fwd_type_log(struct btf_verifier_env *env,
1599 			     const struct btf_type *t)
1600 {
1601 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1602 }
1603 
1604 static struct btf_kind_operations fwd_ops = {
1605 	.check_meta = btf_fwd_check_meta,
1606 	.resolve = btf_df_resolve,
1607 	.check_member = btf_df_check_member,
1608 	.check_kflag_member = btf_df_check_kflag_member,
1609 	.log_details = btf_fwd_type_log,
1610 	.seq_show = btf_df_seq_show,
1611 };
1612 
1613 static int btf_array_check_member(struct btf_verifier_env *env,
1614 				  const struct btf_type *struct_type,
1615 				  const struct btf_member *member,
1616 				  const struct btf_type *member_type)
1617 {
1618 	u32 struct_bits_off = member->offset;
1619 	u32 struct_size, bytes_offset;
1620 	u32 array_type_id, array_size;
1621 	struct btf *btf = env->btf;
1622 
1623 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1624 		btf_verifier_log_member(env, struct_type, member,
1625 					"Member is not byte aligned");
1626 		return -EINVAL;
1627 	}
1628 
1629 	array_type_id = member->type;
1630 	btf_type_id_size(btf, &array_type_id, &array_size);
1631 	struct_size = struct_type->size;
1632 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1633 	if (struct_size - bytes_offset < array_size) {
1634 		btf_verifier_log_member(env, struct_type, member,
1635 					"Member exceeds struct_size");
1636 		return -EINVAL;
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1643 				const struct btf_type *t,
1644 				u32 meta_left)
1645 {
1646 	const struct btf_array *array = btf_type_array(t);
1647 	u32 meta_needed = sizeof(*array);
1648 
1649 	if (meta_left < meta_needed) {
1650 		btf_verifier_log_basic(env, t,
1651 				       "meta_left:%u meta_needed:%u",
1652 				       meta_left, meta_needed);
1653 		return -EINVAL;
1654 	}
1655 
1656 	/* array type should not have a name */
1657 	if (t->name_off) {
1658 		btf_verifier_log_type(env, t, "Invalid name");
1659 		return -EINVAL;
1660 	}
1661 
1662 	if (btf_type_vlen(t)) {
1663 		btf_verifier_log_type(env, t, "vlen != 0");
1664 		return -EINVAL;
1665 	}
1666 
1667 	if (btf_type_kflag(t)) {
1668 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1669 		return -EINVAL;
1670 	}
1671 
1672 	if (t->size) {
1673 		btf_verifier_log_type(env, t, "size != 0");
1674 		return -EINVAL;
1675 	}
1676 
1677 	/* Array elem type and index type cannot be in type void,
1678 	 * so !array->type and !array->index_type are not allowed.
1679 	 */
1680 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1681 		btf_verifier_log_type(env, t, "Invalid elem");
1682 		return -EINVAL;
1683 	}
1684 
1685 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1686 		btf_verifier_log_type(env, t, "Invalid index");
1687 		return -EINVAL;
1688 	}
1689 
1690 	btf_verifier_log_type(env, t, NULL);
1691 
1692 	return meta_needed;
1693 }
1694 
1695 static int btf_array_resolve(struct btf_verifier_env *env,
1696 			     const struct resolve_vertex *v)
1697 {
1698 	const struct btf_array *array = btf_type_array(v->t);
1699 	const struct btf_type *elem_type, *index_type;
1700 	u32 elem_type_id, index_type_id;
1701 	struct btf *btf = env->btf;
1702 	u32 elem_size;
1703 
1704 	/* Check array->index_type */
1705 	index_type_id = array->index_type;
1706 	index_type = btf_type_by_id(btf, index_type_id);
1707 	if (btf_type_nosize_or_null(index_type)) {
1708 		btf_verifier_log_type(env, v->t, "Invalid index");
1709 		return -EINVAL;
1710 	}
1711 
1712 	if (!env_type_is_resolve_sink(env, index_type) &&
1713 	    !env_type_is_resolved(env, index_type_id))
1714 		return env_stack_push(env, index_type, index_type_id);
1715 
1716 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
1717 	if (!index_type || !btf_type_is_int(index_type) ||
1718 	    !btf_type_int_is_regular(index_type)) {
1719 		btf_verifier_log_type(env, v->t, "Invalid index");
1720 		return -EINVAL;
1721 	}
1722 
1723 	/* Check array->type */
1724 	elem_type_id = array->type;
1725 	elem_type = btf_type_by_id(btf, elem_type_id);
1726 	if (btf_type_nosize_or_null(elem_type)) {
1727 		btf_verifier_log_type(env, v->t,
1728 				      "Invalid elem");
1729 		return -EINVAL;
1730 	}
1731 
1732 	if (!env_type_is_resolve_sink(env, elem_type) &&
1733 	    !env_type_is_resolved(env, elem_type_id))
1734 		return env_stack_push(env, elem_type, elem_type_id);
1735 
1736 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1737 	if (!elem_type) {
1738 		btf_verifier_log_type(env, v->t, "Invalid elem");
1739 		return -EINVAL;
1740 	}
1741 
1742 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
1743 		btf_verifier_log_type(env, v->t, "Invalid array of int");
1744 		return -EINVAL;
1745 	}
1746 
1747 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
1748 		btf_verifier_log_type(env, v->t,
1749 				      "Array size overflows U32_MAX");
1750 		return -EINVAL;
1751 	}
1752 
1753 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1754 
1755 	return 0;
1756 }
1757 
1758 static void btf_array_log(struct btf_verifier_env *env,
1759 			  const struct btf_type *t)
1760 {
1761 	const struct btf_array *array = btf_type_array(t);
1762 
1763 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1764 			 array->type, array->index_type, array->nelems);
1765 }
1766 
1767 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1768 			       u32 type_id, void *data, u8 bits_offset,
1769 			       struct seq_file *m)
1770 {
1771 	const struct btf_array *array = btf_type_array(t);
1772 	const struct btf_kind_operations *elem_ops;
1773 	const struct btf_type *elem_type;
1774 	u32 i, elem_size, elem_type_id;
1775 
1776 	elem_type_id = array->type;
1777 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1778 	elem_ops = btf_type_ops(elem_type);
1779 	seq_puts(m, "[");
1780 	for (i = 0; i < array->nelems; i++) {
1781 		if (i)
1782 			seq_puts(m, ",");
1783 
1784 		elem_ops->seq_show(btf, elem_type, elem_type_id, data,
1785 				   bits_offset, m);
1786 		data += elem_size;
1787 	}
1788 	seq_puts(m, "]");
1789 }
1790 
1791 static struct btf_kind_operations array_ops = {
1792 	.check_meta = btf_array_check_meta,
1793 	.resolve = btf_array_resolve,
1794 	.check_member = btf_array_check_member,
1795 	.check_kflag_member = btf_generic_check_kflag_member,
1796 	.log_details = btf_array_log,
1797 	.seq_show = btf_array_seq_show,
1798 };
1799 
1800 static int btf_struct_check_member(struct btf_verifier_env *env,
1801 				   const struct btf_type *struct_type,
1802 				   const struct btf_member *member,
1803 				   const struct btf_type *member_type)
1804 {
1805 	u32 struct_bits_off = member->offset;
1806 	u32 struct_size, bytes_offset;
1807 
1808 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1809 		btf_verifier_log_member(env, struct_type, member,
1810 					"Member is not byte aligned");
1811 		return -EINVAL;
1812 	}
1813 
1814 	struct_size = struct_type->size;
1815 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1816 	if (struct_size - bytes_offset < member_type->size) {
1817 		btf_verifier_log_member(env, struct_type, member,
1818 					"Member exceeds struct_size");
1819 		return -EINVAL;
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
1826 				 const struct btf_type *t,
1827 				 u32 meta_left)
1828 {
1829 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
1830 	const struct btf_member *member;
1831 	u32 meta_needed, last_offset;
1832 	struct btf *btf = env->btf;
1833 	u32 struct_size = t->size;
1834 	u32 offset;
1835 	u16 i;
1836 
1837 	meta_needed = btf_type_vlen(t) * sizeof(*member);
1838 	if (meta_left < meta_needed) {
1839 		btf_verifier_log_basic(env, t,
1840 				       "meta_left:%u meta_needed:%u",
1841 				       meta_left, meta_needed);
1842 		return -EINVAL;
1843 	}
1844 
1845 	/* struct type either no name or a valid one */
1846 	if (t->name_off &&
1847 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1848 		btf_verifier_log_type(env, t, "Invalid name");
1849 		return -EINVAL;
1850 	}
1851 
1852 	btf_verifier_log_type(env, t, NULL);
1853 
1854 	last_offset = 0;
1855 	for_each_member(i, t, member) {
1856 		if (!btf_name_offset_valid(btf, member->name_off)) {
1857 			btf_verifier_log_member(env, t, member,
1858 						"Invalid member name_offset:%u",
1859 						member->name_off);
1860 			return -EINVAL;
1861 		}
1862 
1863 		/* struct member either no name or a valid one */
1864 		if (member->name_off &&
1865 		    !btf_name_valid_identifier(btf, member->name_off)) {
1866 			btf_verifier_log_member(env, t, member, "Invalid name");
1867 			return -EINVAL;
1868 		}
1869 		/* A member cannot be in type void */
1870 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
1871 			btf_verifier_log_member(env, t, member,
1872 						"Invalid type_id");
1873 			return -EINVAL;
1874 		}
1875 
1876 		offset = btf_member_bit_offset(t, member);
1877 		if (is_union && offset) {
1878 			btf_verifier_log_member(env, t, member,
1879 						"Invalid member bits_offset");
1880 			return -EINVAL;
1881 		}
1882 
1883 		/*
1884 		 * ">" instead of ">=" because the last member could be
1885 		 * "char a[0];"
1886 		 */
1887 		if (last_offset > offset) {
1888 			btf_verifier_log_member(env, t, member,
1889 						"Invalid member bits_offset");
1890 			return -EINVAL;
1891 		}
1892 
1893 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
1894 			btf_verifier_log_member(env, t, member,
1895 						"Member bits_offset exceeds its struct size");
1896 			return -EINVAL;
1897 		}
1898 
1899 		btf_verifier_log_member(env, t, member, NULL);
1900 		last_offset = offset;
1901 	}
1902 
1903 	return meta_needed;
1904 }
1905 
1906 static int btf_struct_resolve(struct btf_verifier_env *env,
1907 			      const struct resolve_vertex *v)
1908 {
1909 	const struct btf_member *member;
1910 	int err;
1911 	u16 i;
1912 
1913 	/* Before continue resolving the next_member,
1914 	 * ensure the last member is indeed resolved to a
1915 	 * type with size info.
1916 	 */
1917 	if (v->next_member) {
1918 		const struct btf_type *last_member_type;
1919 		const struct btf_member *last_member;
1920 		u16 last_member_type_id;
1921 
1922 		last_member = btf_type_member(v->t) + v->next_member - 1;
1923 		last_member_type_id = last_member->type;
1924 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
1925 						       last_member_type_id)))
1926 			return -EINVAL;
1927 
1928 		last_member_type = btf_type_by_id(env->btf,
1929 						  last_member_type_id);
1930 		if (btf_type_kflag(v->t))
1931 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
1932 								last_member,
1933 								last_member_type);
1934 		else
1935 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
1936 								last_member,
1937 								last_member_type);
1938 		if (err)
1939 			return err;
1940 	}
1941 
1942 	for_each_member_from(i, v->next_member, v->t, member) {
1943 		u32 member_type_id = member->type;
1944 		const struct btf_type *member_type = btf_type_by_id(env->btf,
1945 								member_type_id);
1946 
1947 		if (btf_type_nosize_or_null(member_type)) {
1948 			btf_verifier_log_member(env, v->t, member,
1949 						"Invalid member");
1950 			return -EINVAL;
1951 		}
1952 
1953 		if (!env_type_is_resolve_sink(env, member_type) &&
1954 		    !env_type_is_resolved(env, member_type_id)) {
1955 			env_stack_set_next_member(env, i + 1);
1956 			return env_stack_push(env, member_type, member_type_id);
1957 		}
1958 
1959 		if (btf_type_kflag(v->t))
1960 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
1961 									    member,
1962 									    member_type);
1963 		else
1964 			err = btf_type_ops(member_type)->check_member(env, v->t,
1965 								      member,
1966 								      member_type);
1967 		if (err)
1968 			return err;
1969 	}
1970 
1971 	env_stack_pop_resolved(env, 0, 0);
1972 
1973 	return 0;
1974 }
1975 
1976 static void btf_struct_log(struct btf_verifier_env *env,
1977 			   const struct btf_type *t)
1978 {
1979 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1980 }
1981 
1982 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
1983 				u32 type_id, void *data, u8 bits_offset,
1984 				struct seq_file *m)
1985 {
1986 	const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
1987 	const struct btf_member *member;
1988 	u32 i;
1989 
1990 	seq_puts(m, "{");
1991 	for_each_member(i, t, member) {
1992 		const struct btf_type *member_type = btf_type_by_id(btf,
1993 								member->type);
1994 		const struct btf_kind_operations *ops;
1995 		u32 member_offset, bitfield_size;
1996 		u32 bytes_offset;
1997 		u8 bits8_offset;
1998 
1999 		if (i)
2000 			seq_puts(m, seq);
2001 
2002 		member_offset = btf_member_bit_offset(t, member);
2003 		bitfield_size = btf_member_bitfield_size(t, member);
2004 		if (bitfield_size) {
2005 			btf_bitfield_seq_show(data, member_offset,
2006 					      bitfield_size, m);
2007 		} else {
2008 			bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2009 			bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2010 			ops = btf_type_ops(member_type);
2011 			ops->seq_show(btf, member_type, member->type,
2012 				      data + bytes_offset, bits8_offset, m);
2013 		}
2014 	}
2015 	seq_puts(m, "}");
2016 }
2017 
2018 static struct btf_kind_operations struct_ops = {
2019 	.check_meta = btf_struct_check_meta,
2020 	.resolve = btf_struct_resolve,
2021 	.check_member = btf_struct_check_member,
2022 	.check_kflag_member = btf_generic_check_kflag_member,
2023 	.log_details = btf_struct_log,
2024 	.seq_show = btf_struct_seq_show,
2025 };
2026 
2027 static int btf_enum_check_member(struct btf_verifier_env *env,
2028 				 const struct btf_type *struct_type,
2029 				 const struct btf_member *member,
2030 				 const struct btf_type *member_type)
2031 {
2032 	u32 struct_bits_off = member->offset;
2033 	u32 struct_size, bytes_offset;
2034 
2035 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2036 		btf_verifier_log_member(env, struct_type, member,
2037 					"Member is not byte aligned");
2038 		return -EINVAL;
2039 	}
2040 
2041 	struct_size = struct_type->size;
2042 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2043 	if (struct_size - bytes_offset < sizeof(int)) {
2044 		btf_verifier_log_member(env, struct_type, member,
2045 					"Member exceeds struct_size");
2046 		return -EINVAL;
2047 	}
2048 
2049 	return 0;
2050 }
2051 
2052 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2053 				       const struct btf_type *struct_type,
2054 				       const struct btf_member *member,
2055 				       const struct btf_type *member_type)
2056 {
2057 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2058 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2059 
2060 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2061 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2062 	if (!nr_bits) {
2063 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2064 			btf_verifier_log_member(env, struct_type, member,
2065 						"Member is not byte aligned");
2066 				return -EINVAL;
2067 		}
2068 
2069 		nr_bits = int_bitsize;
2070 	} else if (nr_bits > int_bitsize) {
2071 		btf_verifier_log_member(env, struct_type, member,
2072 					"Invalid member bitfield_size");
2073 		return -EINVAL;
2074 	}
2075 
2076 	struct_size = struct_type->size;
2077 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2078 	if (struct_size < bytes_end) {
2079 		btf_verifier_log_member(env, struct_type, member,
2080 					"Member exceeds struct_size");
2081 		return -EINVAL;
2082 	}
2083 
2084 	return 0;
2085 }
2086 
2087 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2088 			       const struct btf_type *t,
2089 			       u32 meta_left)
2090 {
2091 	const struct btf_enum *enums = btf_type_enum(t);
2092 	struct btf *btf = env->btf;
2093 	u16 i, nr_enums;
2094 	u32 meta_needed;
2095 
2096 	nr_enums = btf_type_vlen(t);
2097 	meta_needed = nr_enums * sizeof(*enums);
2098 
2099 	if (meta_left < meta_needed) {
2100 		btf_verifier_log_basic(env, t,
2101 				       "meta_left:%u meta_needed:%u",
2102 				       meta_left, meta_needed);
2103 		return -EINVAL;
2104 	}
2105 
2106 	if (btf_type_kflag(t)) {
2107 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2108 		return -EINVAL;
2109 	}
2110 
2111 	if (t->size != sizeof(int)) {
2112 		btf_verifier_log_type(env, t, "Expected size:%zu",
2113 				      sizeof(int));
2114 		return -EINVAL;
2115 	}
2116 
2117 	/* enum type either no name or a valid one */
2118 	if (t->name_off &&
2119 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2120 		btf_verifier_log_type(env, t, "Invalid name");
2121 		return -EINVAL;
2122 	}
2123 
2124 	btf_verifier_log_type(env, t, NULL);
2125 
2126 	for (i = 0; i < nr_enums; i++) {
2127 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2128 			btf_verifier_log(env, "\tInvalid name_offset:%u",
2129 					 enums[i].name_off);
2130 			return -EINVAL;
2131 		}
2132 
2133 		/* enum member must have a valid name */
2134 		if (!enums[i].name_off ||
2135 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
2136 			btf_verifier_log_type(env, t, "Invalid name");
2137 			return -EINVAL;
2138 		}
2139 
2140 
2141 		btf_verifier_log(env, "\t%s val=%d\n",
2142 				 __btf_name_by_offset(btf, enums[i].name_off),
2143 				 enums[i].val);
2144 	}
2145 
2146 	return meta_needed;
2147 }
2148 
2149 static void btf_enum_log(struct btf_verifier_env *env,
2150 			 const struct btf_type *t)
2151 {
2152 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2153 }
2154 
2155 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2156 			      u32 type_id, void *data, u8 bits_offset,
2157 			      struct seq_file *m)
2158 {
2159 	const struct btf_enum *enums = btf_type_enum(t);
2160 	u32 i, nr_enums = btf_type_vlen(t);
2161 	int v = *(int *)data;
2162 
2163 	for (i = 0; i < nr_enums; i++) {
2164 		if (v == enums[i].val) {
2165 			seq_printf(m, "%s",
2166 				   __btf_name_by_offset(btf,
2167 							enums[i].name_off));
2168 			return;
2169 		}
2170 	}
2171 
2172 	seq_printf(m, "%d", v);
2173 }
2174 
2175 static struct btf_kind_operations enum_ops = {
2176 	.check_meta = btf_enum_check_meta,
2177 	.resolve = btf_df_resolve,
2178 	.check_member = btf_enum_check_member,
2179 	.check_kflag_member = btf_enum_check_kflag_member,
2180 	.log_details = btf_enum_log,
2181 	.seq_show = btf_enum_seq_show,
2182 };
2183 
2184 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2185 				     const struct btf_type *t,
2186 				     u32 meta_left)
2187 {
2188 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2189 
2190 	if (meta_left < meta_needed) {
2191 		btf_verifier_log_basic(env, t,
2192 				       "meta_left:%u meta_needed:%u",
2193 				       meta_left, meta_needed);
2194 		return -EINVAL;
2195 	}
2196 
2197 	if (t->name_off) {
2198 		btf_verifier_log_type(env, t, "Invalid name");
2199 		return -EINVAL;
2200 	}
2201 
2202 	if (btf_type_kflag(t)) {
2203 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2204 		return -EINVAL;
2205 	}
2206 
2207 	btf_verifier_log_type(env, t, NULL);
2208 
2209 	return meta_needed;
2210 }
2211 
2212 static void btf_func_proto_log(struct btf_verifier_env *env,
2213 			       const struct btf_type *t)
2214 {
2215 	const struct btf_param *args = (const struct btf_param *)(t + 1);
2216 	u16 nr_args = btf_type_vlen(t), i;
2217 
2218 	btf_verifier_log(env, "return=%u args=(", t->type);
2219 	if (!nr_args) {
2220 		btf_verifier_log(env, "void");
2221 		goto done;
2222 	}
2223 
2224 	if (nr_args == 1 && !args[0].type) {
2225 		/* Only one vararg */
2226 		btf_verifier_log(env, "vararg");
2227 		goto done;
2228 	}
2229 
2230 	btf_verifier_log(env, "%u %s", args[0].type,
2231 			 __btf_name_by_offset(env->btf,
2232 					      args[0].name_off));
2233 	for (i = 1; i < nr_args - 1; i++)
2234 		btf_verifier_log(env, ", %u %s", args[i].type,
2235 				 __btf_name_by_offset(env->btf,
2236 						      args[i].name_off));
2237 
2238 	if (nr_args > 1) {
2239 		const struct btf_param *last_arg = &args[nr_args - 1];
2240 
2241 		if (last_arg->type)
2242 			btf_verifier_log(env, ", %u %s", last_arg->type,
2243 					 __btf_name_by_offset(env->btf,
2244 							      last_arg->name_off));
2245 		else
2246 			btf_verifier_log(env, ", vararg");
2247 	}
2248 
2249 done:
2250 	btf_verifier_log(env, ")");
2251 }
2252 
2253 static struct btf_kind_operations func_proto_ops = {
2254 	.check_meta = btf_func_proto_check_meta,
2255 	.resolve = btf_df_resolve,
2256 	/*
2257 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
2258 	 * a struct's member.
2259 	 *
2260 	 * It should be a funciton pointer instead.
2261 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2262 	 *
2263 	 * Hence, there is no btf_func_check_member().
2264 	 */
2265 	.check_member = btf_df_check_member,
2266 	.check_kflag_member = btf_df_check_kflag_member,
2267 	.log_details = btf_func_proto_log,
2268 	.seq_show = btf_df_seq_show,
2269 };
2270 
2271 static s32 btf_func_check_meta(struct btf_verifier_env *env,
2272 			       const struct btf_type *t,
2273 			       u32 meta_left)
2274 {
2275 	if (!t->name_off ||
2276 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2277 		btf_verifier_log_type(env, t, "Invalid name");
2278 		return -EINVAL;
2279 	}
2280 
2281 	if (btf_type_vlen(t)) {
2282 		btf_verifier_log_type(env, t, "vlen != 0");
2283 		return -EINVAL;
2284 	}
2285 
2286 	if (btf_type_kflag(t)) {
2287 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2288 		return -EINVAL;
2289 	}
2290 
2291 	btf_verifier_log_type(env, t, NULL);
2292 
2293 	return 0;
2294 }
2295 
2296 static struct btf_kind_operations func_ops = {
2297 	.check_meta = btf_func_check_meta,
2298 	.resolve = btf_df_resolve,
2299 	.check_member = btf_df_check_member,
2300 	.check_kflag_member = btf_df_check_kflag_member,
2301 	.log_details = btf_ref_type_log,
2302 	.seq_show = btf_df_seq_show,
2303 };
2304 
2305 static int btf_func_proto_check(struct btf_verifier_env *env,
2306 				const struct btf_type *t)
2307 {
2308 	const struct btf_type *ret_type;
2309 	const struct btf_param *args;
2310 	const struct btf *btf;
2311 	u16 nr_args, i;
2312 	int err;
2313 
2314 	btf = env->btf;
2315 	args = (const struct btf_param *)(t + 1);
2316 	nr_args = btf_type_vlen(t);
2317 
2318 	/* Check func return type which could be "void" (t->type == 0) */
2319 	if (t->type) {
2320 		u32 ret_type_id = t->type;
2321 
2322 		ret_type = btf_type_by_id(btf, ret_type_id);
2323 		if (!ret_type) {
2324 			btf_verifier_log_type(env, t, "Invalid return type");
2325 			return -EINVAL;
2326 		}
2327 
2328 		if (btf_type_needs_resolve(ret_type) &&
2329 		    !env_type_is_resolved(env, ret_type_id)) {
2330 			err = btf_resolve(env, ret_type, ret_type_id);
2331 			if (err)
2332 				return err;
2333 		}
2334 
2335 		/* Ensure the return type is a type that has a size */
2336 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2337 			btf_verifier_log_type(env, t, "Invalid return type");
2338 			return -EINVAL;
2339 		}
2340 	}
2341 
2342 	if (!nr_args)
2343 		return 0;
2344 
2345 	/* Last func arg type_id could be 0 if it is a vararg */
2346 	if (!args[nr_args - 1].type) {
2347 		if (args[nr_args - 1].name_off) {
2348 			btf_verifier_log_type(env, t, "Invalid arg#%u",
2349 					      nr_args);
2350 			return -EINVAL;
2351 		}
2352 		nr_args--;
2353 	}
2354 
2355 	err = 0;
2356 	for (i = 0; i < nr_args; i++) {
2357 		const struct btf_type *arg_type;
2358 		u32 arg_type_id;
2359 
2360 		arg_type_id = args[i].type;
2361 		arg_type = btf_type_by_id(btf, arg_type_id);
2362 		if (!arg_type) {
2363 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2364 			err = -EINVAL;
2365 			break;
2366 		}
2367 
2368 		if (args[i].name_off &&
2369 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
2370 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
2371 			btf_verifier_log_type(env, t,
2372 					      "Invalid arg#%u", i + 1);
2373 			err = -EINVAL;
2374 			break;
2375 		}
2376 
2377 		if (btf_type_needs_resolve(arg_type) &&
2378 		    !env_type_is_resolved(env, arg_type_id)) {
2379 			err = btf_resolve(env, arg_type, arg_type_id);
2380 			if (err)
2381 				break;
2382 		}
2383 
2384 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2385 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2386 			err = -EINVAL;
2387 			break;
2388 		}
2389 	}
2390 
2391 	return err;
2392 }
2393 
2394 static int btf_func_check(struct btf_verifier_env *env,
2395 			  const struct btf_type *t)
2396 {
2397 	const struct btf_type *proto_type;
2398 	const struct btf_param *args;
2399 	const struct btf *btf;
2400 	u16 nr_args, i;
2401 
2402 	btf = env->btf;
2403 	proto_type = btf_type_by_id(btf, t->type);
2404 
2405 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
2406 		btf_verifier_log_type(env, t, "Invalid type_id");
2407 		return -EINVAL;
2408 	}
2409 
2410 	args = (const struct btf_param *)(proto_type + 1);
2411 	nr_args = btf_type_vlen(proto_type);
2412 	for (i = 0; i < nr_args; i++) {
2413 		if (!args[i].name_off && args[i].type) {
2414 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2415 			return -EINVAL;
2416 		}
2417 	}
2418 
2419 	return 0;
2420 }
2421 
2422 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
2423 	[BTF_KIND_INT] = &int_ops,
2424 	[BTF_KIND_PTR] = &ptr_ops,
2425 	[BTF_KIND_ARRAY] = &array_ops,
2426 	[BTF_KIND_STRUCT] = &struct_ops,
2427 	[BTF_KIND_UNION] = &struct_ops,
2428 	[BTF_KIND_ENUM] = &enum_ops,
2429 	[BTF_KIND_FWD] = &fwd_ops,
2430 	[BTF_KIND_TYPEDEF] = &modifier_ops,
2431 	[BTF_KIND_VOLATILE] = &modifier_ops,
2432 	[BTF_KIND_CONST] = &modifier_ops,
2433 	[BTF_KIND_RESTRICT] = &modifier_ops,
2434 	[BTF_KIND_FUNC] = &func_ops,
2435 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
2436 };
2437 
2438 static s32 btf_check_meta(struct btf_verifier_env *env,
2439 			  const struct btf_type *t,
2440 			  u32 meta_left)
2441 {
2442 	u32 saved_meta_left = meta_left;
2443 	s32 var_meta_size;
2444 
2445 	if (meta_left < sizeof(*t)) {
2446 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
2447 				 env->log_type_id, meta_left, sizeof(*t));
2448 		return -EINVAL;
2449 	}
2450 	meta_left -= sizeof(*t);
2451 
2452 	if (t->info & ~BTF_INFO_MASK) {
2453 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
2454 				 env->log_type_id, t->info);
2455 		return -EINVAL;
2456 	}
2457 
2458 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
2459 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
2460 		btf_verifier_log(env, "[%u] Invalid kind:%u",
2461 				 env->log_type_id, BTF_INFO_KIND(t->info));
2462 		return -EINVAL;
2463 	}
2464 
2465 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
2466 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
2467 				 env->log_type_id, t->name_off);
2468 		return -EINVAL;
2469 	}
2470 
2471 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
2472 	if (var_meta_size < 0)
2473 		return var_meta_size;
2474 
2475 	meta_left -= var_meta_size;
2476 
2477 	return saved_meta_left - meta_left;
2478 }
2479 
2480 static int btf_check_all_metas(struct btf_verifier_env *env)
2481 {
2482 	struct btf *btf = env->btf;
2483 	struct btf_header *hdr;
2484 	void *cur, *end;
2485 
2486 	hdr = &btf->hdr;
2487 	cur = btf->nohdr_data + hdr->type_off;
2488 	end = cur + hdr->type_len;
2489 
2490 	env->log_type_id = 1;
2491 	while (cur < end) {
2492 		struct btf_type *t = cur;
2493 		s32 meta_size;
2494 
2495 		meta_size = btf_check_meta(env, t, end - cur);
2496 		if (meta_size < 0)
2497 			return meta_size;
2498 
2499 		btf_add_type(env, t);
2500 		cur += meta_size;
2501 		env->log_type_id++;
2502 	}
2503 
2504 	return 0;
2505 }
2506 
2507 static bool btf_resolve_valid(struct btf_verifier_env *env,
2508 			      const struct btf_type *t,
2509 			      u32 type_id)
2510 {
2511 	struct btf *btf = env->btf;
2512 
2513 	if (!env_type_is_resolved(env, type_id))
2514 		return false;
2515 
2516 	if (btf_type_is_struct(t))
2517 		return !btf->resolved_ids[type_id] &&
2518 			!btf->resolved_sizes[type_id];
2519 
2520 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) {
2521 		t = btf_type_id_resolve(btf, &type_id);
2522 		return t && !btf_type_is_modifier(t);
2523 	}
2524 
2525 	if (btf_type_is_array(t)) {
2526 		const struct btf_array *array = btf_type_array(t);
2527 		const struct btf_type *elem_type;
2528 		u32 elem_type_id = array->type;
2529 		u32 elem_size;
2530 
2531 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2532 		return elem_type && !btf_type_is_modifier(elem_type) &&
2533 			(array->nelems * elem_size ==
2534 			 btf->resolved_sizes[type_id]);
2535 	}
2536 
2537 	return false;
2538 }
2539 
2540 static int btf_resolve(struct btf_verifier_env *env,
2541 		       const struct btf_type *t, u32 type_id)
2542 {
2543 	u32 save_log_type_id = env->log_type_id;
2544 	const struct resolve_vertex *v;
2545 	int err = 0;
2546 
2547 	env->resolve_mode = RESOLVE_TBD;
2548 	env_stack_push(env, t, type_id);
2549 	while (!err && (v = env_stack_peak(env))) {
2550 		env->log_type_id = v->type_id;
2551 		err = btf_type_ops(v->t)->resolve(env, v);
2552 	}
2553 
2554 	env->log_type_id = type_id;
2555 	if (err == -E2BIG) {
2556 		btf_verifier_log_type(env, t,
2557 				      "Exceeded max resolving depth:%u",
2558 				      MAX_RESOLVE_DEPTH);
2559 	} else if (err == -EEXIST) {
2560 		btf_verifier_log_type(env, t, "Loop detected");
2561 	}
2562 
2563 	/* Final sanity check */
2564 	if (!err && !btf_resolve_valid(env, t, type_id)) {
2565 		btf_verifier_log_type(env, t, "Invalid resolve state");
2566 		err = -EINVAL;
2567 	}
2568 
2569 	env->log_type_id = save_log_type_id;
2570 	return err;
2571 }
2572 
2573 static int btf_check_all_types(struct btf_verifier_env *env)
2574 {
2575 	struct btf *btf = env->btf;
2576 	u32 type_id;
2577 	int err;
2578 
2579 	err = env_resolve_init(env);
2580 	if (err)
2581 		return err;
2582 
2583 	env->phase++;
2584 	for (type_id = 1; type_id <= btf->nr_types; type_id++) {
2585 		const struct btf_type *t = btf_type_by_id(btf, type_id);
2586 
2587 		env->log_type_id = type_id;
2588 		if (btf_type_needs_resolve(t) &&
2589 		    !env_type_is_resolved(env, type_id)) {
2590 			err = btf_resolve(env, t, type_id);
2591 			if (err)
2592 				return err;
2593 		}
2594 
2595 		if (btf_type_is_func_proto(t)) {
2596 			err = btf_func_proto_check(env, t);
2597 			if (err)
2598 				return err;
2599 		}
2600 
2601 		if (btf_type_is_func(t)) {
2602 			err = btf_func_check(env, t);
2603 			if (err)
2604 				return err;
2605 		}
2606 	}
2607 
2608 	return 0;
2609 }
2610 
2611 static int btf_parse_type_sec(struct btf_verifier_env *env)
2612 {
2613 	const struct btf_header *hdr = &env->btf->hdr;
2614 	int err;
2615 
2616 	/* Type section must align to 4 bytes */
2617 	if (hdr->type_off & (sizeof(u32) - 1)) {
2618 		btf_verifier_log(env, "Unaligned type_off");
2619 		return -EINVAL;
2620 	}
2621 
2622 	if (!hdr->type_len) {
2623 		btf_verifier_log(env, "No type found");
2624 		return -EINVAL;
2625 	}
2626 
2627 	err = btf_check_all_metas(env);
2628 	if (err)
2629 		return err;
2630 
2631 	return btf_check_all_types(env);
2632 }
2633 
2634 static int btf_parse_str_sec(struct btf_verifier_env *env)
2635 {
2636 	const struct btf_header *hdr;
2637 	struct btf *btf = env->btf;
2638 	const char *start, *end;
2639 
2640 	hdr = &btf->hdr;
2641 	start = btf->nohdr_data + hdr->str_off;
2642 	end = start + hdr->str_len;
2643 
2644 	if (end != btf->data + btf->data_size) {
2645 		btf_verifier_log(env, "String section is not at the end");
2646 		return -EINVAL;
2647 	}
2648 
2649 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
2650 	    start[0] || end[-1]) {
2651 		btf_verifier_log(env, "Invalid string section");
2652 		return -EINVAL;
2653 	}
2654 
2655 	btf->strings = start;
2656 
2657 	return 0;
2658 }
2659 
2660 static const size_t btf_sec_info_offset[] = {
2661 	offsetof(struct btf_header, type_off),
2662 	offsetof(struct btf_header, str_off),
2663 };
2664 
2665 static int btf_sec_info_cmp(const void *a, const void *b)
2666 {
2667 	const struct btf_sec_info *x = a;
2668 	const struct btf_sec_info *y = b;
2669 
2670 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
2671 }
2672 
2673 static int btf_check_sec_info(struct btf_verifier_env *env,
2674 			      u32 btf_data_size)
2675 {
2676 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
2677 	u32 total, expected_total, i;
2678 	const struct btf_header *hdr;
2679 	const struct btf *btf;
2680 
2681 	btf = env->btf;
2682 	hdr = &btf->hdr;
2683 
2684 	/* Populate the secs from hdr */
2685 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
2686 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
2687 						   btf_sec_info_offset[i]);
2688 
2689 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
2690 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
2691 
2692 	/* Check for gaps and overlap among sections */
2693 	total = 0;
2694 	expected_total = btf_data_size - hdr->hdr_len;
2695 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
2696 		if (expected_total < secs[i].off) {
2697 			btf_verifier_log(env, "Invalid section offset");
2698 			return -EINVAL;
2699 		}
2700 		if (total < secs[i].off) {
2701 			/* gap */
2702 			btf_verifier_log(env, "Unsupported section found");
2703 			return -EINVAL;
2704 		}
2705 		if (total > secs[i].off) {
2706 			btf_verifier_log(env, "Section overlap found");
2707 			return -EINVAL;
2708 		}
2709 		if (expected_total - total < secs[i].len) {
2710 			btf_verifier_log(env,
2711 					 "Total section length too long");
2712 			return -EINVAL;
2713 		}
2714 		total += secs[i].len;
2715 	}
2716 
2717 	/* There is data other than hdr and known sections */
2718 	if (expected_total != total) {
2719 		btf_verifier_log(env, "Unsupported section found");
2720 		return -EINVAL;
2721 	}
2722 
2723 	return 0;
2724 }
2725 
2726 static int btf_parse_hdr(struct btf_verifier_env *env)
2727 {
2728 	u32 hdr_len, hdr_copy, btf_data_size;
2729 	const struct btf_header *hdr;
2730 	struct btf *btf;
2731 	int err;
2732 
2733 	btf = env->btf;
2734 	btf_data_size = btf->data_size;
2735 
2736 	if (btf_data_size <
2737 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
2738 		btf_verifier_log(env, "hdr_len not found");
2739 		return -EINVAL;
2740 	}
2741 
2742 	hdr = btf->data;
2743 	hdr_len = hdr->hdr_len;
2744 	if (btf_data_size < hdr_len) {
2745 		btf_verifier_log(env, "btf_header not found");
2746 		return -EINVAL;
2747 	}
2748 
2749 	/* Ensure the unsupported header fields are zero */
2750 	if (hdr_len > sizeof(btf->hdr)) {
2751 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
2752 		u8 *end = btf->data + hdr_len;
2753 
2754 		for (; expected_zero < end; expected_zero++) {
2755 			if (*expected_zero) {
2756 				btf_verifier_log(env, "Unsupported btf_header");
2757 				return -E2BIG;
2758 			}
2759 		}
2760 	}
2761 
2762 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
2763 	memcpy(&btf->hdr, btf->data, hdr_copy);
2764 
2765 	hdr = &btf->hdr;
2766 
2767 	btf_verifier_log_hdr(env, btf_data_size);
2768 
2769 	if (hdr->magic != BTF_MAGIC) {
2770 		btf_verifier_log(env, "Invalid magic");
2771 		return -EINVAL;
2772 	}
2773 
2774 	if (hdr->version != BTF_VERSION) {
2775 		btf_verifier_log(env, "Unsupported version");
2776 		return -ENOTSUPP;
2777 	}
2778 
2779 	if (hdr->flags) {
2780 		btf_verifier_log(env, "Unsupported flags");
2781 		return -ENOTSUPP;
2782 	}
2783 
2784 	if (btf_data_size == hdr->hdr_len) {
2785 		btf_verifier_log(env, "No data");
2786 		return -EINVAL;
2787 	}
2788 
2789 	err = btf_check_sec_info(env, btf_data_size);
2790 	if (err)
2791 		return err;
2792 
2793 	return 0;
2794 }
2795 
2796 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
2797 			     u32 log_level, char __user *log_ubuf, u32 log_size)
2798 {
2799 	struct btf_verifier_env *env = NULL;
2800 	struct bpf_verifier_log *log;
2801 	struct btf *btf = NULL;
2802 	u8 *data;
2803 	int err;
2804 
2805 	if (btf_data_size > BTF_MAX_SIZE)
2806 		return ERR_PTR(-E2BIG);
2807 
2808 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
2809 	if (!env)
2810 		return ERR_PTR(-ENOMEM);
2811 
2812 	log = &env->log;
2813 	if (log_level || log_ubuf || log_size) {
2814 		/* user requested verbose verifier output
2815 		 * and supplied buffer to store the verification trace
2816 		 */
2817 		log->level = log_level;
2818 		log->ubuf = log_ubuf;
2819 		log->len_total = log_size;
2820 
2821 		/* log attributes have to be sane */
2822 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
2823 		    !log->level || !log->ubuf) {
2824 			err = -EINVAL;
2825 			goto errout;
2826 		}
2827 	}
2828 
2829 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
2830 	if (!btf) {
2831 		err = -ENOMEM;
2832 		goto errout;
2833 	}
2834 	env->btf = btf;
2835 
2836 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
2837 	if (!data) {
2838 		err = -ENOMEM;
2839 		goto errout;
2840 	}
2841 
2842 	btf->data = data;
2843 	btf->data_size = btf_data_size;
2844 
2845 	if (copy_from_user(data, btf_data, btf_data_size)) {
2846 		err = -EFAULT;
2847 		goto errout;
2848 	}
2849 
2850 	err = btf_parse_hdr(env);
2851 	if (err)
2852 		goto errout;
2853 
2854 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
2855 
2856 	err = btf_parse_str_sec(env);
2857 	if (err)
2858 		goto errout;
2859 
2860 	err = btf_parse_type_sec(env);
2861 	if (err)
2862 		goto errout;
2863 
2864 	if (log->level && bpf_verifier_log_full(log)) {
2865 		err = -ENOSPC;
2866 		goto errout;
2867 	}
2868 
2869 	btf_verifier_env_free(env);
2870 	refcount_set(&btf->refcnt, 1);
2871 	return btf;
2872 
2873 errout:
2874 	btf_verifier_env_free(env);
2875 	if (btf)
2876 		btf_free(btf);
2877 	return ERR_PTR(err);
2878 }
2879 
2880 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
2881 		       struct seq_file *m)
2882 {
2883 	const struct btf_type *t = btf_type_by_id(btf, type_id);
2884 
2885 	btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
2886 }
2887 
2888 static int btf_release(struct inode *inode, struct file *filp)
2889 {
2890 	btf_put(filp->private_data);
2891 	return 0;
2892 }
2893 
2894 const struct file_operations btf_fops = {
2895 	.release	= btf_release,
2896 };
2897 
2898 static int __btf_new_fd(struct btf *btf)
2899 {
2900 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
2901 }
2902 
2903 int btf_new_fd(const union bpf_attr *attr)
2904 {
2905 	struct btf *btf;
2906 	int ret;
2907 
2908 	btf = btf_parse(u64_to_user_ptr(attr->btf),
2909 			attr->btf_size, attr->btf_log_level,
2910 			u64_to_user_ptr(attr->btf_log_buf),
2911 			attr->btf_log_size);
2912 	if (IS_ERR(btf))
2913 		return PTR_ERR(btf);
2914 
2915 	ret = btf_alloc_id(btf);
2916 	if (ret) {
2917 		btf_free(btf);
2918 		return ret;
2919 	}
2920 
2921 	/*
2922 	 * The BTF ID is published to the userspace.
2923 	 * All BTF free must go through call_rcu() from
2924 	 * now on (i.e. free by calling btf_put()).
2925 	 */
2926 
2927 	ret = __btf_new_fd(btf);
2928 	if (ret < 0)
2929 		btf_put(btf);
2930 
2931 	return ret;
2932 }
2933 
2934 struct btf *btf_get_by_fd(int fd)
2935 {
2936 	struct btf *btf;
2937 	struct fd f;
2938 
2939 	f = fdget(fd);
2940 
2941 	if (!f.file)
2942 		return ERR_PTR(-EBADF);
2943 
2944 	if (f.file->f_op != &btf_fops) {
2945 		fdput(f);
2946 		return ERR_PTR(-EINVAL);
2947 	}
2948 
2949 	btf = f.file->private_data;
2950 	refcount_inc(&btf->refcnt);
2951 	fdput(f);
2952 
2953 	return btf;
2954 }
2955 
2956 int btf_get_info_by_fd(const struct btf *btf,
2957 		       const union bpf_attr *attr,
2958 		       union bpf_attr __user *uattr)
2959 {
2960 	struct bpf_btf_info __user *uinfo;
2961 	struct bpf_btf_info info = {};
2962 	u32 info_copy, btf_copy;
2963 	void __user *ubtf;
2964 	u32 uinfo_len;
2965 
2966 	uinfo = u64_to_user_ptr(attr->info.info);
2967 	uinfo_len = attr->info.info_len;
2968 
2969 	info_copy = min_t(u32, uinfo_len, sizeof(info));
2970 	if (copy_from_user(&info, uinfo, info_copy))
2971 		return -EFAULT;
2972 
2973 	info.id = btf->id;
2974 	ubtf = u64_to_user_ptr(info.btf);
2975 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
2976 	if (copy_to_user(ubtf, btf->data, btf_copy))
2977 		return -EFAULT;
2978 	info.btf_size = btf->data_size;
2979 
2980 	if (copy_to_user(uinfo, &info, info_copy) ||
2981 	    put_user(info_copy, &uattr->info.info_len))
2982 		return -EFAULT;
2983 
2984 	return 0;
2985 }
2986 
2987 int btf_get_fd_by_id(u32 id)
2988 {
2989 	struct btf *btf;
2990 	int fd;
2991 
2992 	rcu_read_lock();
2993 	btf = idr_find(&btf_idr, id);
2994 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
2995 		btf = ERR_PTR(-ENOENT);
2996 	rcu_read_unlock();
2997 
2998 	if (IS_ERR(btf))
2999 		return PTR_ERR(btf);
3000 
3001 	fd = __btf_new_fd(btf);
3002 	if (fd < 0)
3003 		btf_put(btf);
3004 
3005 	return fd;
3006 }
3007 
3008 u32 btf_id(const struct btf *btf)
3009 {
3010 	return btf->id;
3011 }
3012