1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf_lsm.h> 23 #include <linux/skmsg.h> 24 #include <linux/perf_event.h> 25 #include <linux/bsearch.h> 26 #include <linux/kobject.h> 27 #include <linux/sysfs.h> 28 29 #include <net/netfilter/nf_bpf_link.h> 30 31 #include <net/sock.h> 32 #include "../tools/lib/bpf/relo_core.h" 33 34 /* BTF (BPF Type Format) is the meta data format which describes 35 * the data types of BPF program/map. Hence, it basically focus 36 * on the C programming language which the modern BPF is primary 37 * using. 38 * 39 * ELF Section: 40 * ~~~~~~~~~~~ 41 * The BTF data is stored under the ".BTF" ELF section 42 * 43 * struct btf_type: 44 * ~~~~~~~~~~~~~~~ 45 * Each 'struct btf_type' object describes a C data type. 46 * Depending on the type it is describing, a 'struct btf_type' 47 * object may be followed by more data. F.e. 48 * To describe an array, 'struct btf_type' is followed by 49 * 'struct btf_array'. 50 * 51 * 'struct btf_type' and any extra data following it are 52 * 4 bytes aligned. 53 * 54 * Type section: 55 * ~~~~~~~~~~~~~ 56 * The BTF type section contains a list of 'struct btf_type' objects. 57 * Each one describes a C type. Recall from the above section 58 * that a 'struct btf_type' object could be immediately followed by extra 59 * data in order to describe some particular C types. 60 * 61 * type_id: 62 * ~~~~~~~ 63 * Each btf_type object is identified by a type_id. The type_id 64 * is implicitly implied by the location of the btf_type object in 65 * the BTF type section. The first one has type_id 1. The second 66 * one has type_id 2...etc. Hence, an earlier btf_type has 67 * a smaller type_id. 68 * 69 * A btf_type object may refer to another btf_type object by using 70 * type_id (i.e. the "type" in the "struct btf_type"). 71 * 72 * NOTE that we cannot assume any reference-order. 73 * A btf_type object can refer to an earlier btf_type object 74 * but it can also refer to a later btf_type object. 75 * 76 * For example, to describe "const void *". A btf_type 77 * object describing "const" may refer to another btf_type 78 * object describing "void *". This type-reference is done 79 * by specifying type_id: 80 * 81 * [1] CONST (anon) type_id=2 82 * [2] PTR (anon) type_id=0 83 * 84 * The above is the btf_verifier debug log: 85 * - Each line started with "[?]" is a btf_type object 86 * - [?] is the type_id of the btf_type object. 87 * - CONST/PTR is the BTF_KIND_XXX 88 * - "(anon)" is the name of the type. It just 89 * happens that CONST and PTR has no name. 90 * - type_id=XXX is the 'u32 type' in btf_type 91 * 92 * NOTE: "void" has type_id 0 93 * 94 * String section: 95 * ~~~~~~~~~~~~~~ 96 * The BTF string section contains the names used by the type section. 97 * Each string is referred by an "offset" from the beginning of the 98 * string section. 99 * 100 * Each string is '\0' terminated. 101 * 102 * The first character in the string section must be '\0' 103 * which is used to mean 'anonymous'. Some btf_type may not 104 * have a name. 105 */ 106 107 /* BTF verification: 108 * 109 * To verify BTF data, two passes are needed. 110 * 111 * Pass #1 112 * ~~~~~~~ 113 * The first pass is to collect all btf_type objects to 114 * an array: "btf->types". 115 * 116 * Depending on the C type that a btf_type is describing, 117 * a btf_type may be followed by extra data. We don't know 118 * how many btf_type is there, and more importantly we don't 119 * know where each btf_type is located in the type section. 120 * 121 * Without knowing the location of each type_id, most verifications 122 * cannot be done. e.g. an earlier btf_type may refer to a later 123 * btf_type (recall the "const void *" above), so we cannot 124 * check this type-reference in the first pass. 125 * 126 * In the first pass, it still does some verifications (e.g. 127 * checking the name is a valid offset to the string section). 128 * 129 * Pass #2 130 * ~~~~~~~ 131 * The main focus is to resolve a btf_type that is referring 132 * to another type. 133 * 134 * We have to ensure the referring type: 135 * 1) does exist in the BTF (i.e. in btf->types[]) 136 * 2) does not cause a loop: 137 * struct A { 138 * struct B b; 139 * }; 140 * 141 * struct B { 142 * struct A a; 143 * }; 144 * 145 * btf_type_needs_resolve() decides if a btf_type needs 146 * to be resolved. 147 * 148 * The needs_resolve type implements the "resolve()" ops which 149 * essentially does a DFS and detects backedge. 150 * 151 * During resolve (or DFS), different C types have different 152 * "RESOLVED" conditions. 153 * 154 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 155 * members because a member is always referring to another 156 * type. A struct's member can be treated as "RESOLVED" if 157 * it is referring to a BTF_KIND_PTR. Otherwise, the 158 * following valid C struct would be rejected: 159 * 160 * struct A { 161 * int m; 162 * struct A *a; 163 * }; 164 * 165 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 166 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 167 * detect a pointer loop, e.g.: 168 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 169 * ^ | 170 * +-----------------------------------------+ 171 * 172 */ 173 174 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 175 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 176 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 177 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 178 #define BITS_ROUNDUP_BYTES(bits) \ 179 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 180 181 #define BTF_INFO_MASK 0x9f00ffff 182 #define BTF_INT_MASK 0x0fffffff 183 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 184 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 185 186 /* 16MB for 64k structs and each has 16 members and 187 * a few MB spaces for the string section. 188 * The hard limit is S32_MAX. 189 */ 190 #define BTF_MAX_SIZE (16 * 1024 * 1024) 191 192 #define for_each_member_from(i, from, struct_type, member) \ 193 for (i = from, member = btf_type_member(struct_type) + from; \ 194 i < btf_type_vlen(struct_type); \ 195 i++, member++) 196 197 #define for_each_vsi_from(i, from, struct_type, member) \ 198 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 199 i < btf_type_vlen(struct_type); \ 200 i++, member++) 201 202 DEFINE_IDR(btf_idr); 203 DEFINE_SPINLOCK(btf_idr_lock); 204 205 enum btf_kfunc_hook { 206 BTF_KFUNC_HOOK_COMMON, 207 BTF_KFUNC_HOOK_XDP, 208 BTF_KFUNC_HOOK_TC, 209 BTF_KFUNC_HOOK_STRUCT_OPS, 210 BTF_KFUNC_HOOK_TRACING, 211 BTF_KFUNC_HOOK_SYSCALL, 212 BTF_KFUNC_HOOK_FMODRET, 213 BTF_KFUNC_HOOK_CGROUP_SKB, 214 BTF_KFUNC_HOOK_SCHED_ACT, 215 BTF_KFUNC_HOOK_SK_SKB, 216 BTF_KFUNC_HOOK_SOCKET_FILTER, 217 BTF_KFUNC_HOOK_LWT, 218 BTF_KFUNC_HOOK_NETFILTER, 219 BTF_KFUNC_HOOK_MAX, 220 }; 221 222 enum { 223 BTF_KFUNC_SET_MAX_CNT = 256, 224 BTF_DTOR_KFUNC_MAX_CNT = 256, 225 BTF_KFUNC_FILTER_MAX_CNT = 16, 226 }; 227 228 struct btf_kfunc_hook_filter { 229 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; 230 u32 nr_filters; 231 }; 232 233 struct btf_kfunc_set_tab { 234 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 235 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; 236 }; 237 238 struct btf_id_dtor_kfunc_tab { 239 u32 cnt; 240 struct btf_id_dtor_kfunc dtors[]; 241 }; 242 243 struct btf { 244 void *data; 245 struct btf_type **types; 246 u32 *resolved_ids; 247 u32 *resolved_sizes; 248 const char *strings; 249 void *nohdr_data; 250 struct btf_header hdr; 251 u32 nr_types; /* includes VOID for base BTF */ 252 u32 types_size; 253 u32 data_size; 254 refcount_t refcnt; 255 u32 id; 256 struct rcu_head rcu; 257 struct btf_kfunc_set_tab *kfunc_set_tab; 258 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 259 struct btf_struct_metas *struct_meta_tab; 260 261 /* split BTF support */ 262 struct btf *base_btf; 263 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 264 u32 start_str_off; /* first string offset (0 for base BTF) */ 265 char name[MODULE_NAME_LEN]; 266 bool kernel_btf; 267 }; 268 269 enum verifier_phase { 270 CHECK_META, 271 CHECK_TYPE, 272 }; 273 274 struct resolve_vertex { 275 const struct btf_type *t; 276 u32 type_id; 277 u16 next_member; 278 }; 279 280 enum visit_state { 281 NOT_VISITED, 282 VISITED, 283 RESOLVED, 284 }; 285 286 enum resolve_mode { 287 RESOLVE_TBD, /* To Be Determined */ 288 RESOLVE_PTR, /* Resolving for Pointer */ 289 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 290 * or array 291 */ 292 }; 293 294 #define MAX_RESOLVE_DEPTH 32 295 296 struct btf_sec_info { 297 u32 off; 298 u32 len; 299 }; 300 301 struct btf_verifier_env { 302 struct btf *btf; 303 u8 *visit_states; 304 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 305 struct bpf_verifier_log log; 306 u32 log_type_id; 307 u32 top_stack; 308 enum verifier_phase phase; 309 enum resolve_mode resolve_mode; 310 }; 311 312 static const char * const btf_kind_str[NR_BTF_KINDS] = { 313 [BTF_KIND_UNKN] = "UNKNOWN", 314 [BTF_KIND_INT] = "INT", 315 [BTF_KIND_PTR] = "PTR", 316 [BTF_KIND_ARRAY] = "ARRAY", 317 [BTF_KIND_STRUCT] = "STRUCT", 318 [BTF_KIND_UNION] = "UNION", 319 [BTF_KIND_ENUM] = "ENUM", 320 [BTF_KIND_FWD] = "FWD", 321 [BTF_KIND_TYPEDEF] = "TYPEDEF", 322 [BTF_KIND_VOLATILE] = "VOLATILE", 323 [BTF_KIND_CONST] = "CONST", 324 [BTF_KIND_RESTRICT] = "RESTRICT", 325 [BTF_KIND_FUNC] = "FUNC", 326 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 327 [BTF_KIND_VAR] = "VAR", 328 [BTF_KIND_DATASEC] = "DATASEC", 329 [BTF_KIND_FLOAT] = "FLOAT", 330 [BTF_KIND_DECL_TAG] = "DECL_TAG", 331 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 332 [BTF_KIND_ENUM64] = "ENUM64", 333 }; 334 335 const char *btf_type_str(const struct btf_type *t) 336 { 337 return btf_kind_str[BTF_INFO_KIND(t->info)]; 338 } 339 340 /* Chunk size we use in safe copy of data to be shown. */ 341 #define BTF_SHOW_OBJ_SAFE_SIZE 32 342 343 /* 344 * This is the maximum size of a base type value (equivalent to a 345 * 128-bit int); if we are at the end of our safe buffer and have 346 * less than 16 bytes space we can't be assured of being able 347 * to copy the next type safely, so in such cases we will initiate 348 * a new copy. 349 */ 350 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 351 352 /* Type name size */ 353 #define BTF_SHOW_NAME_SIZE 80 354 355 /* 356 * The suffix of a type that indicates it cannot alias another type when 357 * comparing BTF IDs for kfunc invocations. 358 */ 359 #define NOCAST_ALIAS_SUFFIX "___init" 360 361 /* 362 * Common data to all BTF show operations. Private show functions can add 363 * their own data to a structure containing a struct btf_show and consult it 364 * in the show callback. See btf_type_show() below. 365 * 366 * One challenge with showing nested data is we want to skip 0-valued 367 * data, but in order to figure out whether a nested object is all zeros 368 * we need to walk through it. As a result, we need to make two passes 369 * when handling structs, unions and arrays; the first path simply looks 370 * for nonzero data, while the second actually does the display. The first 371 * pass is signalled by show->state.depth_check being set, and if we 372 * encounter a non-zero value we set show->state.depth_to_show to 373 * the depth at which we encountered it. When we have completed the 374 * first pass, we will know if anything needs to be displayed if 375 * depth_to_show > depth. See btf_[struct,array]_show() for the 376 * implementation of this. 377 * 378 * Another problem is we want to ensure the data for display is safe to 379 * access. To support this, the anonymous "struct {} obj" tracks the data 380 * object and our safe copy of it. We copy portions of the data needed 381 * to the object "copy" buffer, but because its size is limited to 382 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 383 * traverse larger objects for display. 384 * 385 * The various data type show functions all start with a call to 386 * btf_show_start_type() which returns a pointer to the safe copy 387 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 388 * raw data itself). btf_show_obj_safe() is responsible for 389 * using copy_from_kernel_nofault() to update the safe data if necessary 390 * as we traverse the object's data. skbuff-like semantics are 391 * used: 392 * 393 * - obj.head points to the start of the toplevel object for display 394 * - obj.size is the size of the toplevel object 395 * - obj.data points to the current point in the original data at 396 * which our safe data starts. obj.data will advance as we copy 397 * portions of the data. 398 * 399 * In most cases a single copy will suffice, but larger data structures 400 * such as "struct task_struct" will require many copies. The logic in 401 * btf_show_obj_safe() handles the logic that determines if a new 402 * copy_from_kernel_nofault() is needed. 403 */ 404 struct btf_show { 405 u64 flags; 406 void *target; /* target of show operation (seq file, buffer) */ 407 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 408 const struct btf *btf; 409 /* below are used during iteration */ 410 struct { 411 u8 depth; 412 u8 depth_to_show; 413 u8 depth_check; 414 u8 array_member:1, 415 array_terminated:1; 416 u16 array_encoding; 417 u32 type_id; 418 int status; /* non-zero for error */ 419 const struct btf_type *type; 420 const struct btf_member *member; 421 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 422 } state; 423 struct { 424 u32 size; 425 void *head; 426 void *data; 427 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 428 } obj; 429 }; 430 431 struct btf_kind_operations { 432 s32 (*check_meta)(struct btf_verifier_env *env, 433 const struct btf_type *t, 434 u32 meta_left); 435 int (*resolve)(struct btf_verifier_env *env, 436 const struct resolve_vertex *v); 437 int (*check_member)(struct btf_verifier_env *env, 438 const struct btf_type *struct_type, 439 const struct btf_member *member, 440 const struct btf_type *member_type); 441 int (*check_kflag_member)(struct btf_verifier_env *env, 442 const struct btf_type *struct_type, 443 const struct btf_member *member, 444 const struct btf_type *member_type); 445 void (*log_details)(struct btf_verifier_env *env, 446 const struct btf_type *t); 447 void (*show)(const struct btf *btf, const struct btf_type *t, 448 u32 type_id, void *data, u8 bits_offsets, 449 struct btf_show *show); 450 }; 451 452 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 453 static struct btf_type btf_void; 454 455 static int btf_resolve(struct btf_verifier_env *env, 456 const struct btf_type *t, u32 type_id); 457 458 static int btf_func_check(struct btf_verifier_env *env, 459 const struct btf_type *t); 460 461 static bool btf_type_is_modifier(const struct btf_type *t) 462 { 463 /* Some of them is not strictly a C modifier 464 * but they are grouped into the same bucket 465 * for BTF concern: 466 * A type (t) that refers to another 467 * type through t->type AND its size cannot 468 * be determined without following the t->type. 469 * 470 * ptr does not fall into this bucket 471 * because its size is always sizeof(void *). 472 */ 473 switch (BTF_INFO_KIND(t->info)) { 474 case BTF_KIND_TYPEDEF: 475 case BTF_KIND_VOLATILE: 476 case BTF_KIND_CONST: 477 case BTF_KIND_RESTRICT: 478 case BTF_KIND_TYPE_TAG: 479 return true; 480 } 481 482 return false; 483 } 484 485 bool btf_type_is_void(const struct btf_type *t) 486 { 487 return t == &btf_void; 488 } 489 490 static bool btf_type_is_fwd(const struct btf_type *t) 491 { 492 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 493 } 494 495 static bool btf_type_is_datasec(const struct btf_type *t) 496 { 497 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 498 } 499 500 static bool btf_type_is_decl_tag(const struct btf_type *t) 501 { 502 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 503 } 504 505 static bool btf_type_nosize(const struct btf_type *t) 506 { 507 return btf_type_is_void(t) || btf_type_is_fwd(t) || 508 btf_type_is_func(t) || btf_type_is_func_proto(t) || 509 btf_type_is_decl_tag(t); 510 } 511 512 static bool btf_type_nosize_or_null(const struct btf_type *t) 513 { 514 return !t || btf_type_nosize(t); 515 } 516 517 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 518 { 519 return btf_type_is_func(t) || btf_type_is_struct(t) || 520 btf_type_is_var(t) || btf_type_is_typedef(t); 521 } 522 523 u32 btf_nr_types(const struct btf *btf) 524 { 525 u32 total = 0; 526 527 while (btf) { 528 total += btf->nr_types; 529 btf = btf->base_btf; 530 } 531 532 return total; 533 } 534 535 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 536 { 537 const struct btf_type *t; 538 const char *tname; 539 u32 i, total; 540 541 total = btf_nr_types(btf); 542 for (i = 1; i < total; i++) { 543 t = btf_type_by_id(btf, i); 544 if (BTF_INFO_KIND(t->info) != kind) 545 continue; 546 547 tname = btf_name_by_offset(btf, t->name_off); 548 if (!strcmp(tname, name)) 549 return i; 550 } 551 552 return -ENOENT; 553 } 554 555 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 556 { 557 struct btf *btf; 558 s32 ret; 559 int id; 560 561 btf = bpf_get_btf_vmlinux(); 562 if (IS_ERR(btf)) 563 return PTR_ERR(btf); 564 if (!btf) 565 return -EINVAL; 566 567 ret = btf_find_by_name_kind(btf, name, kind); 568 /* ret is never zero, since btf_find_by_name_kind returns 569 * positive btf_id or negative error. 570 */ 571 if (ret > 0) { 572 btf_get(btf); 573 *btf_p = btf; 574 return ret; 575 } 576 577 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 578 spin_lock_bh(&btf_idr_lock); 579 idr_for_each_entry(&btf_idr, btf, id) { 580 if (!btf_is_module(btf)) 581 continue; 582 /* linear search could be slow hence unlock/lock 583 * the IDR to avoiding holding it for too long 584 */ 585 btf_get(btf); 586 spin_unlock_bh(&btf_idr_lock); 587 ret = btf_find_by_name_kind(btf, name, kind); 588 if (ret > 0) { 589 *btf_p = btf; 590 return ret; 591 } 592 btf_put(btf); 593 spin_lock_bh(&btf_idr_lock); 594 } 595 spin_unlock_bh(&btf_idr_lock); 596 return ret; 597 } 598 599 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 600 u32 id, u32 *res_id) 601 { 602 const struct btf_type *t = btf_type_by_id(btf, id); 603 604 while (btf_type_is_modifier(t)) { 605 id = t->type; 606 t = btf_type_by_id(btf, t->type); 607 } 608 609 if (res_id) 610 *res_id = id; 611 612 return t; 613 } 614 615 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 616 u32 id, u32 *res_id) 617 { 618 const struct btf_type *t; 619 620 t = btf_type_skip_modifiers(btf, id, NULL); 621 if (!btf_type_is_ptr(t)) 622 return NULL; 623 624 return btf_type_skip_modifiers(btf, t->type, res_id); 625 } 626 627 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 628 u32 id, u32 *res_id) 629 { 630 const struct btf_type *ptype; 631 632 ptype = btf_type_resolve_ptr(btf, id, res_id); 633 if (ptype && btf_type_is_func_proto(ptype)) 634 return ptype; 635 636 return NULL; 637 } 638 639 /* Types that act only as a source, not sink or intermediate 640 * type when resolving. 641 */ 642 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 643 { 644 return btf_type_is_var(t) || 645 btf_type_is_decl_tag(t) || 646 btf_type_is_datasec(t); 647 } 648 649 /* What types need to be resolved? 650 * 651 * btf_type_is_modifier() is an obvious one. 652 * 653 * btf_type_is_struct() because its member refers to 654 * another type (through member->type). 655 * 656 * btf_type_is_var() because the variable refers to 657 * another type. btf_type_is_datasec() holds multiple 658 * btf_type_is_var() types that need resolving. 659 * 660 * btf_type_is_array() because its element (array->type) 661 * refers to another type. Array can be thought of a 662 * special case of struct while array just has the same 663 * member-type repeated by array->nelems of times. 664 */ 665 static bool btf_type_needs_resolve(const struct btf_type *t) 666 { 667 return btf_type_is_modifier(t) || 668 btf_type_is_ptr(t) || 669 btf_type_is_struct(t) || 670 btf_type_is_array(t) || 671 btf_type_is_var(t) || 672 btf_type_is_func(t) || 673 btf_type_is_decl_tag(t) || 674 btf_type_is_datasec(t); 675 } 676 677 /* t->size can be used */ 678 static bool btf_type_has_size(const struct btf_type *t) 679 { 680 switch (BTF_INFO_KIND(t->info)) { 681 case BTF_KIND_INT: 682 case BTF_KIND_STRUCT: 683 case BTF_KIND_UNION: 684 case BTF_KIND_ENUM: 685 case BTF_KIND_DATASEC: 686 case BTF_KIND_FLOAT: 687 case BTF_KIND_ENUM64: 688 return true; 689 } 690 691 return false; 692 } 693 694 static const char *btf_int_encoding_str(u8 encoding) 695 { 696 if (encoding == 0) 697 return "(none)"; 698 else if (encoding == BTF_INT_SIGNED) 699 return "SIGNED"; 700 else if (encoding == BTF_INT_CHAR) 701 return "CHAR"; 702 else if (encoding == BTF_INT_BOOL) 703 return "BOOL"; 704 else 705 return "UNKN"; 706 } 707 708 static u32 btf_type_int(const struct btf_type *t) 709 { 710 return *(u32 *)(t + 1); 711 } 712 713 static const struct btf_array *btf_type_array(const struct btf_type *t) 714 { 715 return (const struct btf_array *)(t + 1); 716 } 717 718 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 719 { 720 return (const struct btf_enum *)(t + 1); 721 } 722 723 static const struct btf_var *btf_type_var(const struct btf_type *t) 724 { 725 return (const struct btf_var *)(t + 1); 726 } 727 728 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 729 { 730 return (const struct btf_decl_tag *)(t + 1); 731 } 732 733 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 734 { 735 return (const struct btf_enum64 *)(t + 1); 736 } 737 738 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 739 { 740 return kind_ops[BTF_INFO_KIND(t->info)]; 741 } 742 743 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 744 { 745 if (!BTF_STR_OFFSET_VALID(offset)) 746 return false; 747 748 while (offset < btf->start_str_off) 749 btf = btf->base_btf; 750 751 offset -= btf->start_str_off; 752 return offset < btf->hdr.str_len; 753 } 754 755 static bool __btf_name_char_ok(char c, bool first) 756 { 757 if ((first ? !isalpha(c) : 758 !isalnum(c)) && 759 c != '_' && 760 c != '.') 761 return false; 762 return true; 763 } 764 765 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 766 { 767 while (offset < btf->start_str_off) 768 btf = btf->base_btf; 769 770 offset -= btf->start_str_off; 771 if (offset < btf->hdr.str_len) 772 return &btf->strings[offset]; 773 774 return NULL; 775 } 776 777 static bool __btf_name_valid(const struct btf *btf, u32 offset) 778 { 779 /* offset must be valid */ 780 const char *src = btf_str_by_offset(btf, offset); 781 const char *src_limit; 782 783 if (!__btf_name_char_ok(*src, true)) 784 return false; 785 786 /* set a limit on identifier length */ 787 src_limit = src + KSYM_NAME_LEN; 788 src++; 789 while (*src && src < src_limit) { 790 if (!__btf_name_char_ok(*src, false)) 791 return false; 792 src++; 793 } 794 795 return !*src; 796 } 797 798 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 799 { 800 return __btf_name_valid(btf, offset); 801 } 802 803 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 804 { 805 return __btf_name_valid(btf, offset); 806 } 807 808 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 809 { 810 const char *name; 811 812 if (!offset) 813 return "(anon)"; 814 815 name = btf_str_by_offset(btf, offset); 816 return name ?: "(invalid-name-offset)"; 817 } 818 819 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 820 { 821 return btf_str_by_offset(btf, offset); 822 } 823 824 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 825 { 826 while (type_id < btf->start_id) 827 btf = btf->base_btf; 828 829 type_id -= btf->start_id; 830 if (type_id >= btf->nr_types) 831 return NULL; 832 return btf->types[type_id]; 833 } 834 EXPORT_SYMBOL_GPL(btf_type_by_id); 835 836 /* 837 * Regular int is not a bit field and it must be either 838 * u8/u16/u32/u64 or __int128. 839 */ 840 static bool btf_type_int_is_regular(const struct btf_type *t) 841 { 842 u8 nr_bits, nr_bytes; 843 u32 int_data; 844 845 int_data = btf_type_int(t); 846 nr_bits = BTF_INT_BITS(int_data); 847 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 848 if (BITS_PER_BYTE_MASKED(nr_bits) || 849 BTF_INT_OFFSET(int_data) || 850 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 851 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 852 nr_bytes != (2 * sizeof(u64)))) { 853 return false; 854 } 855 856 return true; 857 } 858 859 /* 860 * Check that given struct member is a regular int with expected 861 * offset and size. 862 */ 863 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 864 const struct btf_member *m, 865 u32 expected_offset, u32 expected_size) 866 { 867 const struct btf_type *t; 868 u32 id, int_data; 869 u8 nr_bits; 870 871 id = m->type; 872 t = btf_type_id_size(btf, &id, NULL); 873 if (!t || !btf_type_is_int(t)) 874 return false; 875 876 int_data = btf_type_int(t); 877 nr_bits = BTF_INT_BITS(int_data); 878 if (btf_type_kflag(s)) { 879 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 880 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 881 882 /* if kflag set, int should be a regular int and 883 * bit offset should be at byte boundary. 884 */ 885 return !bitfield_size && 886 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 887 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 888 } 889 890 if (BTF_INT_OFFSET(int_data) || 891 BITS_PER_BYTE_MASKED(m->offset) || 892 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 893 BITS_PER_BYTE_MASKED(nr_bits) || 894 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 895 return false; 896 897 return true; 898 } 899 900 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 901 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 902 u32 id) 903 { 904 const struct btf_type *t = btf_type_by_id(btf, id); 905 906 while (btf_type_is_modifier(t) && 907 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 908 t = btf_type_by_id(btf, t->type); 909 } 910 911 return t; 912 } 913 914 #define BTF_SHOW_MAX_ITER 10 915 916 #define BTF_KIND_BIT(kind) (1ULL << kind) 917 918 /* 919 * Populate show->state.name with type name information. 920 * Format of type name is 921 * 922 * [.member_name = ] (type_name) 923 */ 924 static const char *btf_show_name(struct btf_show *show) 925 { 926 /* BTF_MAX_ITER array suffixes "[]" */ 927 const char *array_suffixes = "[][][][][][][][][][]"; 928 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 929 /* BTF_MAX_ITER pointer suffixes "*" */ 930 const char *ptr_suffixes = "**********"; 931 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 932 const char *name = NULL, *prefix = "", *parens = ""; 933 const struct btf_member *m = show->state.member; 934 const struct btf_type *t; 935 const struct btf_array *array; 936 u32 id = show->state.type_id; 937 const char *member = NULL; 938 bool show_member = false; 939 u64 kinds = 0; 940 int i; 941 942 show->state.name[0] = '\0'; 943 944 /* 945 * Don't show type name if we're showing an array member; 946 * in that case we show the array type so don't need to repeat 947 * ourselves for each member. 948 */ 949 if (show->state.array_member) 950 return ""; 951 952 /* Retrieve member name, if any. */ 953 if (m) { 954 member = btf_name_by_offset(show->btf, m->name_off); 955 show_member = strlen(member) > 0; 956 id = m->type; 957 } 958 959 /* 960 * Start with type_id, as we have resolved the struct btf_type * 961 * via btf_modifier_show() past the parent typedef to the child 962 * struct, int etc it is defined as. In such cases, the type_id 963 * still represents the starting type while the struct btf_type * 964 * in our show->state points at the resolved type of the typedef. 965 */ 966 t = btf_type_by_id(show->btf, id); 967 if (!t) 968 return ""; 969 970 /* 971 * The goal here is to build up the right number of pointer and 972 * array suffixes while ensuring the type name for a typedef 973 * is represented. Along the way we accumulate a list of 974 * BTF kinds we have encountered, since these will inform later 975 * display; for example, pointer types will not require an 976 * opening "{" for struct, we will just display the pointer value. 977 * 978 * We also want to accumulate the right number of pointer or array 979 * indices in the format string while iterating until we get to 980 * the typedef/pointee/array member target type. 981 * 982 * We start by pointing at the end of pointer and array suffix 983 * strings; as we accumulate pointers and arrays we move the pointer 984 * or array string backwards so it will show the expected number of 985 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 986 * and/or arrays and typedefs are supported as a precaution. 987 * 988 * We also want to get typedef name while proceeding to resolve 989 * type it points to so that we can add parentheses if it is a 990 * "typedef struct" etc. 991 */ 992 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 993 994 switch (BTF_INFO_KIND(t->info)) { 995 case BTF_KIND_TYPEDEF: 996 if (!name) 997 name = btf_name_by_offset(show->btf, 998 t->name_off); 999 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 1000 id = t->type; 1001 break; 1002 case BTF_KIND_ARRAY: 1003 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 1004 parens = "["; 1005 if (!t) 1006 return ""; 1007 array = btf_type_array(t); 1008 if (array_suffix > array_suffixes) 1009 array_suffix -= 2; 1010 id = array->type; 1011 break; 1012 case BTF_KIND_PTR: 1013 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1014 if (ptr_suffix > ptr_suffixes) 1015 ptr_suffix -= 1; 1016 id = t->type; 1017 break; 1018 default: 1019 id = 0; 1020 break; 1021 } 1022 if (!id) 1023 break; 1024 t = btf_type_skip_qualifiers(show->btf, id); 1025 } 1026 /* We may not be able to represent this type; bail to be safe */ 1027 if (i == BTF_SHOW_MAX_ITER) 1028 return ""; 1029 1030 if (!name) 1031 name = btf_name_by_offset(show->btf, t->name_off); 1032 1033 switch (BTF_INFO_KIND(t->info)) { 1034 case BTF_KIND_STRUCT: 1035 case BTF_KIND_UNION: 1036 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1037 "struct" : "union"; 1038 /* if it's an array of struct/union, parens is already set */ 1039 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1040 parens = "{"; 1041 break; 1042 case BTF_KIND_ENUM: 1043 case BTF_KIND_ENUM64: 1044 prefix = "enum"; 1045 break; 1046 default: 1047 break; 1048 } 1049 1050 /* pointer does not require parens */ 1051 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1052 parens = ""; 1053 /* typedef does not require struct/union/enum prefix */ 1054 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1055 prefix = ""; 1056 1057 if (!name) 1058 name = ""; 1059 1060 /* Even if we don't want type name info, we want parentheses etc */ 1061 if (show->flags & BTF_SHOW_NONAME) 1062 snprintf(show->state.name, sizeof(show->state.name), "%s", 1063 parens); 1064 else 1065 snprintf(show->state.name, sizeof(show->state.name), 1066 "%s%s%s(%s%s%s%s%s%s)%s", 1067 /* first 3 strings comprise ".member = " */ 1068 show_member ? "." : "", 1069 show_member ? member : "", 1070 show_member ? " = " : "", 1071 /* ...next is our prefix (struct, enum, etc) */ 1072 prefix, 1073 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1074 /* ...this is the type name itself */ 1075 name, 1076 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1077 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1078 array_suffix, parens); 1079 1080 return show->state.name; 1081 } 1082 1083 static const char *__btf_show_indent(struct btf_show *show) 1084 { 1085 const char *indents = " "; 1086 const char *indent = &indents[strlen(indents)]; 1087 1088 if ((indent - show->state.depth) >= indents) 1089 return indent - show->state.depth; 1090 return indents; 1091 } 1092 1093 static const char *btf_show_indent(struct btf_show *show) 1094 { 1095 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1096 } 1097 1098 static const char *btf_show_newline(struct btf_show *show) 1099 { 1100 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1101 } 1102 1103 static const char *btf_show_delim(struct btf_show *show) 1104 { 1105 if (show->state.depth == 0) 1106 return ""; 1107 1108 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1109 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1110 return "|"; 1111 1112 return ","; 1113 } 1114 1115 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1116 { 1117 va_list args; 1118 1119 if (!show->state.depth_check) { 1120 va_start(args, fmt); 1121 show->showfn(show, fmt, args); 1122 va_end(args); 1123 } 1124 } 1125 1126 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1127 * format specifiers to the format specifier passed in; these do the work of 1128 * adding indentation, delimiters etc while the caller simply has to specify 1129 * the type value(s) in the format specifier + value(s). 1130 */ 1131 #define btf_show_type_value(show, fmt, value) \ 1132 do { \ 1133 if ((value) != (__typeof__(value))0 || \ 1134 (show->flags & BTF_SHOW_ZERO) || \ 1135 show->state.depth == 0) { \ 1136 btf_show(show, "%s%s" fmt "%s%s", \ 1137 btf_show_indent(show), \ 1138 btf_show_name(show), \ 1139 value, btf_show_delim(show), \ 1140 btf_show_newline(show)); \ 1141 if (show->state.depth > show->state.depth_to_show) \ 1142 show->state.depth_to_show = show->state.depth; \ 1143 } \ 1144 } while (0) 1145 1146 #define btf_show_type_values(show, fmt, ...) \ 1147 do { \ 1148 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1149 btf_show_name(show), \ 1150 __VA_ARGS__, btf_show_delim(show), \ 1151 btf_show_newline(show)); \ 1152 if (show->state.depth > show->state.depth_to_show) \ 1153 show->state.depth_to_show = show->state.depth; \ 1154 } while (0) 1155 1156 /* How much is left to copy to safe buffer after @data? */ 1157 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1158 { 1159 return show->obj.head + show->obj.size - data; 1160 } 1161 1162 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1163 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1164 { 1165 return data >= show->obj.data && 1166 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1167 } 1168 1169 /* 1170 * If object pointed to by @data of @size falls within our safe buffer, return 1171 * the equivalent pointer to the same safe data. Assumes 1172 * copy_from_kernel_nofault() has already happened and our safe buffer is 1173 * populated. 1174 */ 1175 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1176 { 1177 if (btf_show_obj_is_safe(show, data, size)) 1178 return show->obj.safe + (data - show->obj.data); 1179 return NULL; 1180 } 1181 1182 /* 1183 * Return a safe-to-access version of data pointed to by @data. 1184 * We do this by copying the relevant amount of information 1185 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1186 * 1187 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1188 * safe copy is needed. 1189 * 1190 * Otherwise we need to determine if we have the required amount 1191 * of data (determined by the @data pointer and the size of the 1192 * largest base type we can encounter (represented by 1193 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1194 * that we will be able to print some of the current object, 1195 * and if more is needed a copy will be triggered. 1196 * Some objects such as structs will not fit into the buffer; 1197 * in such cases additional copies when we iterate over their 1198 * members may be needed. 1199 * 1200 * btf_show_obj_safe() is used to return a safe buffer for 1201 * btf_show_start_type(); this ensures that as we recurse into 1202 * nested types we always have safe data for the given type. 1203 * This approach is somewhat wasteful; it's possible for example 1204 * that when iterating over a large union we'll end up copying the 1205 * same data repeatedly, but the goal is safety not performance. 1206 * We use stack data as opposed to per-CPU buffers because the 1207 * iteration over a type can take some time, and preemption handling 1208 * would greatly complicate use of the safe buffer. 1209 */ 1210 static void *btf_show_obj_safe(struct btf_show *show, 1211 const struct btf_type *t, 1212 void *data) 1213 { 1214 const struct btf_type *rt; 1215 int size_left, size; 1216 void *safe = NULL; 1217 1218 if (show->flags & BTF_SHOW_UNSAFE) 1219 return data; 1220 1221 rt = btf_resolve_size(show->btf, t, &size); 1222 if (IS_ERR(rt)) { 1223 show->state.status = PTR_ERR(rt); 1224 return NULL; 1225 } 1226 1227 /* 1228 * Is this toplevel object? If so, set total object size and 1229 * initialize pointers. Otherwise check if we still fall within 1230 * our safe object data. 1231 */ 1232 if (show->state.depth == 0) { 1233 show->obj.size = size; 1234 show->obj.head = data; 1235 } else { 1236 /* 1237 * If the size of the current object is > our remaining 1238 * safe buffer we _may_ need to do a new copy. However 1239 * consider the case of a nested struct; it's size pushes 1240 * us over the safe buffer limit, but showing any individual 1241 * struct members does not. In such cases, we don't need 1242 * to initiate a fresh copy yet; however we definitely need 1243 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1244 * in our buffer, regardless of the current object size. 1245 * The logic here is that as we resolve types we will 1246 * hit a base type at some point, and we need to be sure 1247 * the next chunk of data is safely available to display 1248 * that type info safely. We cannot rely on the size of 1249 * the current object here because it may be much larger 1250 * than our current buffer (e.g. task_struct is 8k). 1251 * All we want to do here is ensure that we can print the 1252 * next basic type, which we can if either 1253 * - the current type size is within the safe buffer; or 1254 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1255 * the safe buffer. 1256 */ 1257 safe = __btf_show_obj_safe(show, data, 1258 min(size, 1259 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1260 } 1261 1262 /* 1263 * We need a new copy to our safe object, either because we haven't 1264 * yet copied and are initializing safe data, or because the data 1265 * we want falls outside the boundaries of the safe object. 1266 */ 1267 if (!safe) { 1268 size_left = btf_show_obj_size_left(show, data); 1269 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1270 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1271 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1272 data, size_left); 1273 if (!show->state.status) { 1274 show->obj.data = data; 1275 safe = show->obj.safe; 1276 } 1277 } 1278 1279 return safe; 1280 } 1281 1282 /* 1283 * Set the type we are starting to show and return a safe data pointer 1284 * to be used for showing the associated data. 1285 */ 1286 static void *btf_show_start_type(struct btf_show *show, 1287 const struct btf_type *t, 1288 u32 type_id, void *data) 1289 { 1290 show->state.type = t; 1291 show->state.type_id = type_id; 1292 show->state.name[0] = '\0'; 1293 1294 return btf_show_obj_safe(show, t, data); 1295 } 1296 1297 static void btf_show_end_type(struct btf_show *show) 1298 { 1299 show->state.type = NULL; 1300 show->state.type_id = 0; 1301 show->state.name[0] = '\0'; 1302 } 1303 1304 static void *btf_show_start_aggr_type(struct btf_show *show, 1305 const struct btf_type *t, 1306 u32 type_id, void *data) 1307 { 1308 void *safe_data = btf_show_start_type(show, t, type_id, data); 1309 1310 if (!safe_data) 1311 return safe_data; 1312 1313 btf_show(show, "%s%s%s", btf_show_indent(show), 1314 btf_show_name(show), 1315 btf_show_newline(show)); 1316 show->state.depth++; 1317 return safe_data; 1318 } 1319 1320 static void btf_show_end_aggr_type(struct btf_show *show, 1321 const char *suffix) 1322 { 1323 show->state.depth--; 1324 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1325 btf_show_delim(show), btf_show_newline(show)); 1326 btf_show_end_type(show); 1327 } 1328 1329 static void btf_show_start_member(struct btf_show *show, 1330 const struct btf_member *m) 1331 { 1332 show->state.member = m; 1333 } 1334 1335 static void btf_show_start_array_member(struct btf_show *show) 1336 { 1337 show->state.array_member = 1; 1338 btf_show_start_member(show, NULL); 1339 } 1340 1341 static void btf_show_end_member(struct btf_show *show) 1342 { 1343 show->state.member = NULL; 1344 } 1345 1346 static void btf_show_end_array_member(struct btf_show *show) 1347 { 1348 show->state.array_member = 0; 1349 btf_show_end_member(show); 1350 } 1351 1352 static void *btf_show_start_array_type(struct btf_show *show, 1353 const struct btf_type *t, 1354 u32 type_id, 1355 u16 array_encoding, 1356 void *data) 1357 { 1358 show->state.array_encoding = array_encoding; 1359 show->state.array_terminated = 0; 1360 return btf_show_start_aggr_type(show, t, type_id, data); 1361 } 1362 1363 static void btf_show_end_array_type(struct btf_show *show) 1364 { 1365 show->state.array_encoding = 0; 1366 show->state.array_terminated = 0; 1367 btf_show_end_aggr_type(show, "]"); 1368 } 1369 1370 static void *btf_show_start_struct_type(struct btf_show *show, 1371 const struct btf_type *t, 1372 u32 type_id, 1373 void *data) 1374 { 1375 return btf_show_start_aggr_type(show, t, type_id, data); 1376 } 1377 1378 static void btf_show_end_struct_type(struct btf_show *show) 1379 { 1380 btf_show_end_aggr_type(show, "}"); 1381 } 1382 1383 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1384 const char *fmt, ...) 1385 { 1386 va_list args; 1387 1388 va_start(args, fmt); 1389 bpf_verifier_vlog(log, fmt, args); 1390 va_end(args); 1391 } 1392 1393 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1394 const char *fmt, ...) 1395 { 1396 struct bpf_verifier_log *log = &env->log; 1397 va_list args; 1398 1399 if (!bpf_verifier_log_needed(log)) 1400 return; 1401 1402 va_start(args, fmt); 1403 bpf_verifier_vlog(log, fmt, args); 1404 va_end(args); 1405 } 1406 1407 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1408 const struct btf_type *t, 1409 bool log_details, 1410 const char *fmt, ...) 1411 { 1412 struct bpf_verifier_log *log = &env->log; 1413 struct btf *btf = env->btf; 1414 va_list args; 1415 1416 if (!bpf_verifier_log_needed(log)) 1417 return; 1418 1419 if (log->level == BPF_LOG_KERNEL) { 1420 /* btf verifier prints all types it is processing via 1421 * btf_verifier_log_type(..., fmt = NULL). 1422 * Skip those prints for in-kernel BTF verification. 1423 */ 1424 if (!fmt) 1425 return; 1426 1427 /* Skip logging when loading module BTF with mismatches permitted */ 1428 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1429 return; 1430 } 1431 1432 __btf_verifier_log(log, "[%u] %s %s%s", 1433 env->log_type_id, 1434 btf_type_str(t), 1435 __btf_name_by_offset(btf, t->name_off), 1436 log_details ? " " : ""); 1437 1438 if (log_details) 1439 btf_type_ops(t)->log_details(env, t); 1440 1441 if (fmt && *fmt) { 1442 __btf_verifier_log(log, " "); 1443 va_start(args, fmt); 1444 bpf_verifier_vlog(log, fmt, args); 1445 va_end(args); 1446 } 1447 1448 __btf_verifier_log(log, "\n"); 1449 } 1450 1451 #define btf_verifier_log_type(env, t, ...) \ 1452 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1453 #define btf_verifier_log_basic(env, t, ...) \ 1454 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1455 1456 __printf(4, 5) 1457 static void btf_verifier_log_member(struct btf_verifier_env *env, 1458 const struct btf_type *struct_type, 1459 const struct btf_member *member, 1460 const char *fmt, ...) 1461 { 1462 struct bpf_verifier_log *log = &env->log; 1463 struct btf *btf = env->btf; 1464 va_list args; 1465 1466 if (!bpf_verifier_log_needed(log)) 1467 return; 1468 1469 if (log->level == BPF_LOG_KERNEL) { 1470 if (!fmt) 1471 return; 1472 1473 /* Skip logging when loading module BTF with mismatches permitted */ 1474 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1475 return; 1476 } 1477 1478 /* The CHECK_META phase already did a btf dump. 1479 * 1480 * If member is logged again, it must hit an error in 1481 * parsing this member. It is useful to print out which 1482 * struct this member belongs to. 1483 */ 1484 if (env->phase != CHECK_META) 1485 btf_verifier_log_type(env, struct_type, NULL); 1486 1487 if (btf_type_kflag(struct_type)) 1488 __btf_verifier_log(log, 1489 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1490 __btf_name_by_offset(btf, member->name_off), 1491 member->type, 1492 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1493 BTF_MEMBER_BIT_OFFSET(member->offset)); 1494 else 1495 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1496 __btf_name_by_offset(btf, member->name_off), 1497 member->type, member->offset); 1498 1499 if (fmt && *fmt) { 1500 __btf_verifier_log(log, " "); 1501 va_start(args, fmt); 1502 bpf_verifier_vlog(log, fmt, args); 1503 va_end(args); 1504 } 1505 1506 __btf_verifier_log(log, "\n"); 1507 } 1508 1509 __printf(4, 5) 1510 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1511 const struct btf_type *datasec_type, 1512 const struct btf_var_secinfo *vsi, 1513 const char *fmt, ...) 1514 { 1515 struct bpf_verifier_log *log = &env->log; 1516 va_list args; 1517 1518 if (!bpf_verifier_log_needed(log)) 1519 return; 1520 if (log->level == BPF_LOG_KERNEL && !fmt) 1521 return; 1522 if (env->phase != CHECK_META) 1523 btf_verifier_log_type(env, datasec_type, NULL); 1524 1525 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1526 vsi->type, vsi->offset, vsi->size); 1527 if (fmt && *fmt) { 1528 __btf_verifier_log(log, " "); 1529 va_start(args, fmt); 1530 bpf_verifier_vlog(log, fmt, args); 1531 va_end(args); 1532 } 1533 1534 __btf_verifier_log(log, "\n"); 1535 } 1536 1537 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1538 u32 btf_data_size) 1539 { 1540 struct bpf_verifier_log *log = &env->log; 1541 const struct btf *btf = env->btf; 1542 const struct btf_header *hdr; 1543 1544 if (!bpf_verifier_log_needed(log)) 1545 return; 1546 1547 if (log->level == BPF_LOG_KERNEL) 1548 return; 1549 hdr = &btf->hdr; 1550 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1551 __btf_verifier_log(log, "version: %u\n", hdr->version); 1552 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1553 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1554 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1555 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1556 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1557 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1558 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1559 } 1560 1561 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1562 { 1563 struct btf *btf = env->btf; 1564 1565 if (btf->types_size == btf->nr_types) { 1566 /* Expand 'types' array */ 1567 1568 struct btf_type **new_types; 1569 u32 expand_by, new_size; 1570 1571 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1572 btf_verifier_log(env, "Exceeded max num of types"); 1573 return -E2BIG; 1574 } 1575 1576 expand_by = max_t(u32, btf->types_size >> 2, 16); 1577 new_size = min_t(u32, BTF_MAX_TYPE, 1578 btf->types_size + expand_by); 1579 1580 new_types = kvcalloc(new_size, sizeof(*new_types), 1581 GFP_KERNEL | __GFP_NOWARN); 1582 if (!new_types) 1583 return -ENOMEM; 1584 1585 if (btf->nr_types == 0) { 1586 if (!btf->base_btf) { 1587 /* lazily init VOID type */ 1588 new_types[0] = &btf_void; 1589 btf->nr_types++; 1590 } 1591 } else { 1592 memcpy(new_types, btf->types, 1593 sizeof(*btf->types) * btf->nr_types); 1594 } 1595 1596 kvfree(btf->types); 1597 btf->types = new_types; 1598 btf->types_size = new_size; 1599 } 1600 1601 btf->types[btf->nr_types++] = t; 1602 1603 return 0; 1604 } 1605 1606 static int btf_alloc_id(struct btf *btf) 1607 { 1608 int id; 1609 1610 idr_preload(GFP_KERNEL); 1611 spin_lock_bh(&btf_idr_lock); 1612 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1613 if (id > 0) 1614 btf->id = id; 1615 spin_unlock_bh(&btf_idr_lock); 1616 idr_preload_end(); 1617 1618 if (WARN_ON_ONCE(!id)) 1619 return -ENOSPC; 1620 1621 return id > 0 ? 0 : id; 1622 } 1623 1624 static void btf_free_id(struct btf *btf) 1625 { 1626 unsigned long flags; 1627 1628 /* 1629 * In map-in-map, calling map_delete_elem() on outer 1630 * map will call bpf_map_put on the inner map. 1631 * It will then eventually call btf_free_id() 1632 * on the inner map. Some of the map_delete_elem() 1633 * implementation may have irq disabled, so 1634 * we need to use the _irqsave() version instead 1635 * of the _bh() version. 1636 */ 1637 spin_lock_irqsave(&btf_idr_lock, flags); 1638 idr_remove(&btf_idr, btf->id); 1639 spin_unlock_irqrestore(&btf_idr_lock, flags); 1640 } 1641 1642 static void btf_free_kfunc_set_tab(struct btf *btf) 1643 { 1644 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1645 int hook; 1646 1647 if (!tab) 1648 return; 1649 /* For module BTF, we directly assign the sets being registered, so 1650 * there is nothing to free except kfunc_set_tab. 1651 */ 1652 if (btf_is_module(btf)) 1653 goto free_tab; 1654 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1655 kfree(tab->sets[hook]); 1656 free_tab: 1657 kfree(tab); 1658 btf->kfunc_set_tab = NULL; 1659 } 1660 1661 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1662 { 1663 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1664 1665 if (!tab) 1666 return; 1667 kfree(tab); 1668 btf->dtor_kfunc_tab = NULL; 1669 } 1670 1671 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1672 { 1673 int i; 1674 1675 if (!tab) 1676 return; 1677 for (i = 0; i < tab->cnt; i++) 1678 btf_record_free(tab->types[i].record); 1679 kfree(tab); 1680 } 1681 1682 static void btf_free_struct_meta_tab(struct btf *btf) 1683 { 1684 struct btf_struct_metas *tab = btf->struct_meta_tab; 1685 1686 btf_struct_metas_free(tab); 1687 btf->struct_meta_tab = NULL; 1688 } 1689 1690 static void btf_free(struct btf *btf) 1691 { 1692 btf_free_struct_meta_tab(btf); 1693 btf_free_dtor_kfunc_tab(btf); 1694 btf_free_kfunc_set_tab(btf); 1695 kvfree(btf->types); 1696 kvfree(btf->resolved_sizes); 1697 kvfree(btf->resolved_ids); 1698 kvfree(btf->data); 1699 kfree(btf); 1700 } 1701 1702 static void btf_free_rcu(struct rcu_head *rcu) 1703 { 1704 struct btf *btf = container_of(rcu, struct btf, rcu); 1705 1706 btf_free(btf); 1707 } 1708 1709 void btf_get(struct btf *btf) 1710 { 1711 refcount_inc(&btf->refcnt); 1712 } 1713 1714 void btf_put(struct btf *btf) 1715 { 1716 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1717 btf_free_id(btf); 1718 call_rcu(&btf->rcu, btf_free_rcu); 1719 } 1720 } 1721 1722 static int env_resolve_init(struct btf_verifier_env *env) 1723 { 1724 struct btf *btf = env->btf; 1725 u32 nr_types = btf->nr_types; 1726 u32 *resolved_sizes = NULL; 1727 u32 *resolved_ids = NULL; 1728 u8 *visit_states = NULL; 1729 1730 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1731 GFP_KERNEL | __GFP_NOWARN); 1732 if (!resolved_sizes) 1733 goto nomem; 1734 1735 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1736 GFP_KERNEL | __GFP_NOWARN); 1737 if (!resolved_ids) 1738 goto nomem; 1739 1740 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1741 GFP_KERNEL | __GFP_NOWARN); 1742 if (!visit_states) 1743 goto nomem; 1744 1745 btf->resolved_sizes = resolved_sizes; 1746 btf->resolved_ids = resolved_ids; 1747 env->visit_states = visit_states; 1748 1749 return 0; 1750 1751 nomem: 1752 kvfree(resolved_sizes); 1753 kvfree(resolved_ids); 1754 kvfree(visit_states); 1755 return -ENOMEM; 1756 } 1757 1758 static void btf_verifier_env_free(struct btf_verifier_env *env) 1759 { 1760 kvfree(env->visit_states); 1761 kfree(env); 1762 } 1763 1764 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1765 const struct btf_type *next_type) 1766 { 1767 switch (env->resolve_mode) { 1768 case RESOLVE_TBD: 1769 /* int, enum or void is a sink */ 1770 return !btf_type_needs_resolve(next_type); 1771 case RESOLVE_PTR: 1772 /* int, enum, void, struct, array, func or func_proto is a sink 1773 * for ptr 1774 */ 1775 return !btf_type_is_modifier(next_type) && 1776 !btf_type_is_ptr(next_type); 1777 case RESOLVE_STRUCT_OR_ARRAY: 1778 /* int, enum, void, ptr, func or func_proto is a sink 1779 * for struct and array 1780 */ 1781 return !btf_type_is_modifier(next_type) && 1782 !btf_type_is_array(next_type) && 1783 !btf_type_is_struct(next_type); 1784 default: 1785 BUG(); 1786 } 1787 } 1788 1789 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1790 u32 type_id) 1791 { 1792 /* base BTF types should be resolved by now */ 1793 if (type_id < env->btf->start_id) 1794 return true; 1795 1796 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1797 } 1798 1799 static int env_stack_push(struct btf_verifier_env *env, 1800 const struct btf_type *t, u32 type_id) 1801 { 1802 const struct btf *btf = env->btf; 1803 struct resolve_vertex *v; 1804 1805 if (env->top_stack == MAX_RESOLVE_DEPTH) 1806 return -E2BIG; 1807 1808 if (type_id < btf->start_id 1809 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1810 return -EEXIST; 1811 1812 env->visit_states[type_id - btf->start_id] = VISITED; 1813 1814 v = &env->stack[env->top_stack++]; 1815 v->t = t; 1816 v->type_id = type_id; 1817 v->next_member = 0; 1818 1819 if (env->resolve_mode == RESOLVE_TBD) { 1820 if (btf_type_is_ptr(t)) 1821 env->resolve_mode = RESOLVE_PTR; 1822 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1823 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1824 } 1825 1826 return 0; 1827 } 1828 1829 static void env_stack_set_next_member(struct btf_verifier_env *env, 1830 u16 next_member) 1831 { 1832 env->stack[env->top_stack - 1].next_member = next_member; 1833 } 1834 1835 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1836 u32 resolved_type_id, 1837 u32 resolved_size) 1838 { 1839 u32 type_id = env->stack[--(env->top_stack)].type_id; 1840 struct btf *btf = env->btf; 1841 1842 type_id -= btf->start_id; /* adjust to local type id */ 1843 btf->resolved_sizes[type_id] = resolved_size; 1844 btf->resolved_ids[type_id] = resolved_type_id; 1845 env->visit_states[type_id] = RESOLVED; 1846 } 1847 1848 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1849 { 1850 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1851 } 1852 1853 /* Resolve the size of a passed-in "type" 1854 * 1855 * type: is an array (e.g. u32 array[x][y]) 1856 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1857 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1858 * corresponds to the return type. 1859 * *elem_type: u32 1860 * *elem_id: id of u32 1861 * *total_nelems: (x * y). Hence, individual elem size is 1862 * (*type_size / *total_nelems) 1863 * *type_id: id of type if it's changed within the function, 0 if not 1864 * 1865 * type: is not an array (e.g. const struct X) 1866 * return type: type "struct X" 1867 * *type_size: sizeof(struct X) 1868 * *elem_type: same as return type ("struct X") 1869 * *elem_id: 0 1870 * *total_nelems: 1 1871 * *type_id: id of type if it's changed within the function, 0 if not 1872 */ 1873 static const struct btf_type * 1874 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1875 u32 *type_size, const struct btf_type **elem_type, 1876 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1877 { 1878 const struct btf_type *array_type = NULL; 1879 const struct btf_array *array = NULL; 1880 u32 i, size, nelems = 1, id = 0; 1881 1882 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1883 switch (BTF_INFO_KIND(type->info)) { 1884 /* type->size can be used */ 1885 case BTF_KIND_INT: 1886 case BTF_KIND_STRUCT: 1887 case BTF_KIND_UNION: 1888 case BTF_KIND_ENUM: 1889 case BTF_KIND_FLOAT: 1890 case BTF_KIND_ENUM64: 1891 size = type->size; 1892 goto resolved; 1893 1894 case BTF_KIND_PTR: 1895 size = sizeof(void *); 1896 goto resolved; 1897 1898 /* Modifiers */ 1899 case BTF_KIND_TYPEDEF: 1900 case BTF_KIND_VOLATILE: 1901 case BTF_KIND_CONST: 1902 case BTF_KIND_RESTRICT: 1903 case BTF_KIND_TYPE_TAG: 1904 id = type->type; 1905 type = btf_type_by_id(btf, type->type); 1906 break; 1907 1908 case BTF_KIND_ARRAY: 1909 if (!array_type) 1910 array_type = type; 1911 array = btf_type_array(type); 1912 if (nelems && array->nelems > U32_MAX / nelems) 1913 return ERR_PTR(-EINVAL); 1914 nelems *= array->nelems; 1915 type = btf_type_by_id(btf, array->type); 1916 break; 1917 1918 /* type without size */ 1919 default: 1920 return ERR_PTR(-EINVAL); 1921 } 1922 } 1923 1924 return ERR_PTR(-EINVAL); 1925 1926 resolved: 1927 if (nelems && size > U32_MAX / nelems) 1928 return ERR_PTR(-EINVAL); 1929 1930 *type_size = nelems * size; 1931 if (total_nelems) 1932 *total_nelems = nelems; 1933 if (elem_type) 1934 *elem_type = type; 1935 if (elem_id) 1936 *elem_id = array ? array->type : 0; 1937 if (type_id && id) 1938 *type_id = id; 1939 1940 return array_type ? : type; 1941 } 1942 1943 const struct btf_type * 1944 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1945 u32 *type_size) 1946 { 1947 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1948 } 1949 1950 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1951 { 1952 while (type_id < btf->start_id) 1953 btf = btf->base_btf; 1954 1955 return btf->resolved_ids[type_id - btf->start_id]; 1956 } 1957 1958 /* The input param "type_id" must point to a needs_resolve type */ 1959 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1960 u32 *type_id) 1961 { 1962 *type_id = btf_resolved_type_id(btf, *type_id); 1963 return btf_type_by_id(btf, *type_id); 1964 } 1965 1966 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1967 { 1968 while (type_id < btf->start_id) 1969 btf = btf->base_btf; 1970 1971 return btf->resolved_sizes[type_id - btf->start_id]; 1972 } 1973 1974 const struct btf_type *btf_type_id_size(const struct btf *btf, 1975 u32 *type_id, u32 *ret_size) 1976 { 1977 const struct btf_type *size_type; 1978 u32 size_type_id = *type_id; 1979 u32 size = 0; 1980 1981 size_type = btf_type_by_id(btf, size_type_id); 1982 if (btf_type_nosize_or_null(size_type)) 1983 return NULL; 1984 1985 if (btf_type_has_size(size_type)) { 1986 size = size_type->size; 1987 } else if (btf_type_is_array(size_type)) { 1988 size = btf_resolved_type_size(btf, size_type_id); 1989 } else if (btf_type_is_ptr(size_type)) { 1990 size = sizeof(void *); 1991 } else { 1992 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1993 !btf_type_is_var(size_type))) 1994 return NULL; 1995 1996 size_type_id = btf_resolved_type_id(btf, size_type_id); 1997 size_type = btf_type_by_id(btf, size_type_id); 1998 if (btf_type_nosize_or_null(size_type)) 1999 return NULL; 2000 else if (btf_type_has_size(size_type)) 2001 size = size_type->size; 2002 else if (btf_type_is_array(size_type)) 2003 size = btf_resolved_type_size(btf, size_type_id); 2004 else if (btf_type_is_ptr(size_type)) 2005 size = sizeof(void *); 2006 else 2007 return NULL; 2008 } 2009 2010 *type_id = size_type_id; 2011 if (ret_size) 2012 *ret_size = size; 2013 2014 return size_type; 2015 } 2016 2017 static int btf_df_check_member(struct btf_verifier_env *env, 2018 const struct btf_type *struct_type, 2019 const struct btf_member *member, 2020 const struct btf_type *member_type) 2021 { 2022 btf_verifier_log_basic(env, struct_type, 2023 "Unsupported check_member"); 2024 return -EINVAL; 2025 } 2026 2027 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2028 const struct btf_type *struct_type, 2029 const struct btf_member *member, 2030 const struct btf_type *member_type) 2031 { 2032 btf_verifier_log_basic(env, struct_type, 2033 "Unsupported check_kflag_member"); 2034 return -EINVAL; 2035 } 2036 2037 /* Used for ptr, array struct/union and float type members. 2038 * int, enum and modifier types have their specific callback functions. 2039 */ 2040 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2041 const struct btf_type *struct_type, 2042 const struct btf_member *member, 2043 const struct btf_type *member_type) 2044 { 2045 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2046 btf_verifier_log_member(env, struct_type, member, 2047 "Invalid member bitfield_size"); 2048 return -EINVAL; 2049 } 2050 2051 /* bitfield size is 0, so member->offset represents bit offset only. 2052 * It is safe to call non kflag check_member variants. 2053 */ 2054 return btf_type_ops(member_type)->check_member(env, struct_type, 2055 member, 2056 member_type); 2057 } 2058 2059 static int btf_df_resolve(struct btf_verifier_env *env, 2060 const struct resolve_vertex *v) 2061 { 2062 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2063 return -EINVAL; 2064 } 2065 2066 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2067 u32 type_id, void *data, u8 bits_offsets, 2068 struct btf_show *show) 2069 { 2070 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2071 } 2072 2073 static int btf_int_check_member(struct btf_verifier_env *env, 2074 const struct btf_type *struct_type, 2075 const struct btf_member *member, 2076 const struct btf_type *member_type) 2077 { 2078 u32 int_data = btf_type_int(member_type); 2079 u32 struct_bits_off = member->offset; 2080 u32 struct_size = struct_type->size; 2081 u32 nr_copy_bits; 2082 u32 bytes_offset; 2083 2084 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2085 btf_verifier_log_member(env, struct_type, member, 2086 "bits_offset exceeds U32_MAX"); 2087 return -EINVAL; 2088 } 2089 2090 struct_bits_off += BTF_INT_OFFSET(int_data); 2091 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2092 nr_copy_bits = BTF_INT_BITS(int_data) + 2093 BITS_PER_BYTE_MASKED(struct_bits_off); 2094 2095 if (nr_copy_bits > BITS_PER_U128) { 2096 btf_verifier_log_member(env, struct_type, member, 2097 "nr_copy_bits exceeds 128"); 2098 return -EINVAL; 2099 } 2100 2101 if (struct_size < bytes_offset || 2102 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2103 btf_verifier_log_member(env, struct_type, member, 2104 "Member exceeds struct_size"); 2105 return -EINVAL; 2106 } 2107 2108 return 0; 2109 } 2110 2111 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2112 const struct btf_type *struct_type, 2113 const struct btf_member *member, 2114 const struct btf_type *member_type) 2115 { 2116 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2117 u32 int_data = btf_type_int(member_type); 2118 u32 struct_size = struct_type->size; 2119 u32 nr_copy_bits; 2120 2121 /* a regular int type is required for the kflag int member */ 2122 if (!btf_type_int_is_regular(member_type)) { 2123 btf_verifier_log_member(env, struct_type, member, 2124 "Invalid member base type"); 2125 return -EINVAL; 2126 } 2127 2128 /* check sanity of bitfield size */ 2129 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2130 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2131 nr_int_data_bits = BTF_INT_BITS(int_data); 2132 if (!nr_bits) { 2133 /* Not a bitfield member, member offset must be at byte 2134 * boundary. 2135 */ 2136 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2137 btf_verifier_log_member(env, struct_type, member, 2138 "Invalid member offset"); 2139 return -EINVAL; 2140 } 2141 2142 nr_bits = nr_int_data_bits; 2143 } else if (nr_bits > nr_int_data_bits) { 2144 btf_verifier_log_member(env, struct_type, member, 2145 "Invalid member bitfield_size"); 2146 return -EINVAL; 2147 } 2148 2149 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2150 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2151 if (nr_copy_bits > BITS_PER_U128) { 2152 btf_verifier_log_member(env, struct_type, member, 2153 "nr_copy_bits exceeds 128"); 2154 return -EINVAL; 2155 } 2156 2157 if (struct_size < bytes_offset || 2158 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2159 btf_verifier_log_member(env, struct_type, member, 2160 "Member exceeds struct_size"); 2161 return -EINVAL; 2162 } 2163 2164 return 0; 2165 } 2166 2167 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2168 const struct btf_type *t, 2169 u32 meta_left) 2170 { 2171 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2172 u16 encoding; 2173 2174 if (meta_left < meta_needed) { 2175 btf_verifier_log_basic(env, t, 2176 "meta_left:%u meta_needed:%u", 2177 meta_left, meta_needed); 2178 return -EINVAL; 2179 } 2180 2181 if (btf_type_vlen(t)) { 2182 btf_verifier_log_type(env, t, "vlen != 0"); 2183 return -EINVAL; 2184 } 2185 2186 if (btf_type_kflag(t)) { 2187 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2188 return -EINVAL; 2189 } 2190 2191 int_data = btf_type_int(t); 2192 if (int_data & ~BTF_INT_MASK) { 2193 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2194 int_data); 2195 return -EINVAL; 2196 } 2197 2198 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2199 2200 if (nr_bits > BITS_PER_U128) { 2201 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2202 BITS_PER_U128); 2203 return -EINVAL; 2204 } 2205 2206 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2207 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2208 return -EINVAL; 2209 } 2210 2211 /* 2212 * Only one of the encoding bits is allowed and it 2213 * should be sufficient for the pretty print purpose (i.e. decoding). 2214 * Multiple bits can be allowed later if it is found 2215 * to be insufficient. 2216 */ 2217 encoding = BTF_INT_ENCODING(int_data); 2218 if (encoding && 2219 encoding != BTF_INT_SIGNED && 2220 encoding != BTF_INT_CHAR && 2221 encoding != BTF_INT_BOOL) { 2222 btf_verifier_log_type(env, t, "Unsupported encoding"); 2223 return -ENOTSUPP; 2224 } 2225 2226 btf_verifier_log_type(env, t, NULL); 2227 2228 return meta_needed; 2229 } 2230 2231 static void btf_int_log(struct btf_verifier_env *env, 2232 const struct btf_type *t) 2233 { 2234 int int_data = btf_type_int(t); 2235 2236 btf_verifier_log(env, 2237 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2238 t->size, BTF_INT_OFFSET(int_data), 2239 BTF_INT_BITS(int_data), 2240 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2241 } 2242 2243 static void btf_int128_print(struct btf_show *show, void *data) 2244 { 2245 /* data points to a __int128 number. 2246 * Suppose 2247 * int128_num = *(__int128 *)data; 2248 * The below formulas shows what upper_num and lower_num represents: 2249 * upper_num = int128_num >> 64; 2250 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2251 */ 2252 u64 upper_num, lower_num; 2253 2254 #ifdef __BIG_ENDIAN_BITFIELD 2255 upper_num = *(u64 *)data; 2256 lower_num = *(u64 *)(data + 8); 2257 #else 2258 upper_num = *(u64 *)(data + 8); 2259 lower_num = *(u64 *)data; 2260 #endif 2261 if (upper_num == 0) 2262 btf_show_type_value(show, "0x%llx", lower_num); 2263 else 2264 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2265 lower_num); 2266 } 2267 2268 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2269 u16 right_shift_bits) 2270 { 2271 u64 upper_num, lower_num; 2272 2273 #ifdef __BIG_ENDIAN_BITFIELD 2274 upper_num = print_num[0]; 2275 lower_num = print_num[1]; 2276 #else 2277 upper_num = print_num[1]; 2278 lower_num = print_num[0]; 2279 #endif 2280 2281 /* shake out un-needed bits by shift/or operations */ 2282 if (left_shift_bits >= 64) { 2283 upper_num = lower_num << (left_shift_bits - 64); 2284 lower_num = 0; 2285 } else { 2286 upper_num = (upper_num << left_shift_bits) | 2287 (lower_num >> (64 - left_shift_bits)); 2288 lower_num = lower_num << left_shift_bits; 2289 } 2290 2291 if (right_shift_bits >= 64) { 2292 lower_num = upper_num >> (right_shift_bits - 64); 2293 upper_num = 0; 2294 } else { 2295 lower_num = (lower_num >> right_shift_bits) | 2296 (upper_num << (64 - right_shift_bits)); 2297 upper_num = upper_num >> right_shift_bits; 2298 } 2299 2300 #ifdef __BIG_ENDIAN_BITFIELD 2301 print_num[0] = upper_num; 2302 print_num[1] = lower_num; 2303 #else 2304 print_num[0] = lower_num; 2305 print_num[1] = upper_num; 2306 #endif 2307 } 2308 2309 static void btf_bitfield_show(void *data, u8 bits_offset, 2310 u8 nr_bits, struct btf_show *show) 2311 { 2312 u16 left_shift_bits, right_shift_bits; 2313 u8 nr_copy_bytes; 2314 u8 nr_copy_bits; 2315 u64 print_num[2] = {}; 2316 2317 nr_copy_bits = nr_bits + bits_offset; 2318 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2319 2320 memcpy(print_num, data, nr_copy_bytes); 2321 2322 #ifdef __BIG_ENDIAN_BITFIELD 2323 left_shift_bits = bits_offset; 2324 #else 2325 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2326 #endif 2327 right_shift_bits = BITS_PER_U128 - nr_bits; 2328 2329 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2330 btf_int128_print(show, print_num); 2331 } 2332 2333 2334 static void btf_int_bits_show(const struct btf *btf, 2335 const struct btf_type *t, 2336 void *data, u8 bits_offset, 2337 struct btf_show *show) 2338 { 2339 u32 int_data = btf_type_int(t); 2340 u8 nr_bits = BTF_INT_BITS(int_data); 2341 u8 total_bits_offset; 2342 2343 /* 2344 * bits_offset is at most 7. 2345 * BTF_INT_OFFSET() cannot exceed 128 bits. 2346 */ 2347 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2348 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2349 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2350 btf_bitfield_show(data, bits_offset, nr_bits, show); 2351 } 2352 2353 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2354 u32 type_id, void *data, u8 bits_offset, 2355 struct btf_show *show) 2356 { 2357 u32 int_data = btf_type_int(t); 2358 u8 encoding = BTF_INT_ENCODING(int_data); 2359 bool sign = encoding & BTF_INT_SIGNED; 2360 u8 nr_bits = BTF_INT_BITS(int_data); 2361 void *safe_data; 2362 2363 safe_data = btf_show_start_type(show, t, type_id, data); 2364 if (!safe_data) 2365 return; 2366 2367 if (bits_offset || BTF_INT_OFFSET(int_data) || 2368 BITS_PER_BYTE_MASKED(nr_bits)) { 2369 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2370 goto out; 2371 } 2372 2373 switch (nr_bits) { 2374 case 128: 2375 btf_int128_print(show, safe_data); 2376 break; 2377 case 64: 2378 if (sign) 2379 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2380 else 2381 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2382 break; 2383 case 32: 2384 if (sign) 2385 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2386 else 2387 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2388 break; 2389 case 16: 2390 if (sign) 2391 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2392 else 2393 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2394 break; 2395 case 8: 2396 if (show->state.array_encoding == BTF_INT_CHAR) { 2397 /* check for null terminator */ 2398 if (show->state.array_terminated) 2399 break; 2400 if (*(char *)data == '\0') { 2401 show->state.array_terminated = 1; 2402 break; 2403 } 2404 if (isprint(*(char *)data)) { 2405 btf_show_type_value(show, "'%c'", 2406 *(char *)safe_data); 2407 break; 2408 } 2409 } 2410 if (sign) 2411 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2412 else 2413 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2414 break; 2415 default: 2416 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2417 break; 2418 } 2419 out: 2420 btf_show_end_type(show); 2421 } 2422 2423 static const struct btf_kind_operations int_ops = { 2424 .check_meta = btf_int_check_meta, 2425 .resolve = btf_df_resolve, 2426 .check_member = btf_int_check_member, 2427 .check_kflag_member = btf_int_check_kflag_member, 2428 .log_details = btf_int_log, 2429 .show = btf_int_show, 2430 }; 2431 2432 static int btf_modifier_check_member(struct btf_verifier_env *env, 2433 const struct btf_type *struct_type, 2434 const struct btf_member *member, 2435 const struct btf_type *member_type) 2436 { 2437 const struct btf_type *resolved_type; 2438 u32 resolved_type_id = member->type; 2439 struct btf_member resolved_member; 2440 struct btf *btf = env->btf; 2441 2442 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2443 if (!resolved_type) { 2444 btf_verifier_log_member(env, struct_type, member, 2445 "Invalid member"); 2446 return -EINVAL; 2447 } 2448 2449 resolved_member = *member; 2450 resolved_member.type = resolved_type_id; 2451 2452 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2453 &resolved_member, 2454 resolved_type); 2455 } 2456 2457 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2458 const struct btf_type *struct_type, 2459 const struct btf_member *member, 2460 const struct btf_type *member_type) 2461 { 2462 const struct btf_type *resolved_type; 2463 u32 resolved_type_id = member->type; 2464 struct btf_member resolved_member; 2465 struct btf *btf = env->btf; 2466 2467 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2468 if (!resolved_type) { 2469 btf_verifier_log_member(env, struct_type, member, 2470 "Invalid member"); 2471 return -EINVAL; 2472 } 2473 2474 resolved_member = *member; 2475 resolved_member.type = resolved_type_id; 2476 2477 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2478 &resolved_member, 2479 resolved_type); 2480 } 2481 2482 static int btf_ptr_check_member(struct btf_verifier_env *env, 2483 const struct btf_type *struct_type, 2484 const struct btf_member *member, 2485 const struct btf_type *member_type) 2486 { 2487 u32 struct_size, struct_bits_off, bytes_offset; 2488 2489 struct_size = struct_type->size; 2490 struct_bits_off = member->offset; 2491 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2492 2493 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2494 btf_verifier_log_member(env, struct_type, member, 2495 "Member is not byte aligned"); 2496 return -EINVAL; 2497 } 2498 2499 if (struct_size - bytes_offset < sizeof(void *)) { 2500 btf_verifier_log_member(env, struct_type, member, 2501 "Member exceeds struct_size"); 2502 return -EINVAL; 2503 } 2504 2505 return 0; 2506 } 2507 2508 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2509 const struct btf_type *t, 2510 u32 meta_left) 2511 { 2512 const char *value; 2513 2514 if (btf_type_vlen(t)) { 2515 btf_verifier_log_type(env, t, "vlen != 0"); 2516 return -EINVAL; 2517 } 2518 2519 if (btf_type_kflag(t)) { 2520 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2521 return -EINVAL; 2522 } 2523 2524 if (!BTF_TYPE_ID_VALID(t->type)) { 2525 btf_verifier_log_type(env, t, "Invalid type_id"); 2526 return -EINVAL; 2527 } 2528 2529 /* typedef/type_tag type must have a valid name, and other ref types, 2530 * volatile, const, restrict, should have a null name. 2531 */ 2532 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2533 if (!t->name_off || 2534 !btf_name_valid_identifier(env->btf, t->name_off)) { 2535 btf_verifier_log_type(env, t, "Invalid name"); 2536 return -EINVAL; 2537 } 2538 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2539 value = btf_name_by_offset(env->btf, t->name_off); 2540 if (!value || !value[0]) { 2541 btf_verifier_log_type(env, t, "Invalid name"); 2542 return -EINVAL; 2543 } 2544 } else { 2545 if (t->name_off) { 2546 btf_verifier_log_type(env, t, "Invalid name"); 2547 return -EINVAL; 2548 } 2549 } 2550 2551 btf_verifier_log_type(env, t, NULL); 2552 2553 return 0; 2554 } 2555 2556 static int btf_modifier_resolve(struct btf_verifier_env *env, 2557 const struct resolve_vertex *v) 2558 { 2559 const struct btf_type *t = v->t; 2560 const struct btf_type *next_type; 2561 u32 next_type_id = t->type; 2562 struct btf *btf = env->btf; 2563 2564 next_type = btf_type_by_id(btf, next_type_id); 2565 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2566 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2567 return -EINVAL; 2568 } 2569 2570 if (!env_type_is_resolve_sink(env, next_type) && 2571 !env_type_is_resolved(env, next_type_id)) 2572 return env_stack_push(env, next_type, next_type_id); 2573 2574 /* Figure out the resolved next_type_id with size. 2575 * They will be stored in the current modifier's 2576 * resolved_ids and resolved_sizes such that it can 2577 * save us a few type-following when we use it later (e.g. in 2578 * pretty print). 2579 */ 2580 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2581 if (env_type_is_resolved(env, next_type_id)) 2582 next_type = btf_type_id_resolve(btf, &next_type_id); 2583 2584 /* "typedef void new_void", "const void"...etc */ 2585 if (!btf_type_is_void(next_type) && 2586 !btf_type_is_fwd(next_type) && 2587 !btf_type_is_func_proto(next_type)) { 2588 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2589 return -EINVAL; 2590 } 2591 } 2592 2593 env_stack_pop_resolved(env, next_type_id, 0); 2594 2595 return 0; 2596 } 2597 2598 static int btf_var_resolve(struct btf_verifier_env *env, 2599 const struct resolve_vertex *v) 2600 { 2601 const struct btf_type *next_type; 2602 const struct btf_type *t = v->t; 2603 u32 next_type_id = t->type; 2604 struct btf *btf = env->btf; 2605 2606 next_type = btf_type_by_id(btf, next_type_id); 2607 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2608 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2609 return -EINVAL; 2610 } 2611 2612 if (!env_type_is_resolve_sink(env, next_type) && 2613 !env_type_is_resolved(env, next_type_id)) 2614 return env_stack_push(env, next_type, next_type_id); 2615 2616 if (btf_type_is_modifier(next_type)) { 2617 const struct btf_type *resolved_type; 2618 u32 resolved_type_id; 2619 2620 resolved_type_id = next_type_id; 2621 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2622 2623 if (btf_type_is_ptr(resolved_type) && 2624 !env_type_is_resolve_sink(env, resolved_type) && 2625 !env_type_is_resolved(env, resolved_type_id)) 2626 return env_stack_push(env, resolved_type, 2627 resolved_type_id); 2628 } 2629 2630 /* We must resolve to something concrete at this point, no 2631 * forward types or similar that would resolve to size of 2632 * zero is allowed. 2633 */ 2634 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2635 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2636 return -EINVAL; 2637 } 2638 2639 env_stack_pop_resolved(env, next_type_id, 0); 2640 2641 return 0; 2642 } 2643 2644 static int btf_ptr_resolve(struct btf_verifier_env *env, 2645 const struct resolve_vertex *v) 2646 { 2647 const struct btf_type *next_type; 2648 const struct btf_type *t = v->t; 2649 u32 next_type_id = t->type; 2650 struct btf *btf = env->btf; 2651 2652 next_type = btf_type_by_id(btf, next_type_id); 2653 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2654 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2655 return -EINVAL; 2656 } 2657 2658 if (!env_type_is_resolve_sink(env, next_type) && 2659 !env_type_is_resolved(env, next_type_id)) 2660 return env_stack_push(env, next_type, next_type_id); 2661 2662 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2663 * the modifier may have stopped resolving when it was resolved 2664 * to a ptr (last-resolved-ptr). 2665 * 2666 * We now need to continue from the last-resolved-ptr to 2667 * ensure the last-resolved-ptr will not referring back to 2668 * the current ptr (t). 2669 */ 2670 if (btf_type_is_modifier(next_type)) { 2671 const struct btf_type *resolved_type; 2672 u32 resolved_type_id; 2673 2674 resolved_type_id = next_type_id; 2675 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2676 2677 if (btf_type_is_ptr(resolved_type) && 2678 !env_type_is_resolve_sink(env, resolved_type) && 2679 !env_type_is_resolved(env, resolved_type_id)) 2680 return env_stack_push(env, resolved_type, 2681 resolved_type_id); 2682 } 2683 2684 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2685 if (env_type_is_resolved(env, next_type_id)) 2686 next_type = btf_type_id_resolve(btf, &next_type_id); 2687 2688 if (!btf_type_is_void(next_type) && 2689 !btf_type_is_fwd(next_type) && 2690 !btf_type_is_func_proto(next_type)) { 2691 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2692 return -EINVAL; 2693 } 2694 } 2695 2696 env_stack_pop_resolved(env, next_type_id, 0); 2697 2698 return 0; 2699 } 2700 2701 static void btf_modifier_show(const struct btf *btf, 2702 const struct btf_type *t, 2703 u32 type_id, void *data, 2704 u8 bits_offset, struct btf_show *show) 2705 { 2706 if (btf->resolved_ids) 2707 t = btf_type_id_resolve(btf, &type_id); 2708 else 2709 t = btf_type_skip_modifiers(btf, type_id, NULL); 2710 2711 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2712 } 2713 2714 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2715 u32 type_id, void *data, u8 bits_offset, 2716 struct btf_show *show) 2717 { 2718 t = btf_type_id_resolve(btf, &type_id); 2719 2720 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2721 } 2722 2723 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2724 u32 type_id, void *data, u8 bits_offset, 2725 struct btf_show *show) 2726 { 2727 void *safe_data; 2728 2729 safe_data = btf_show_start_type(show, t, type_id, data); 2730 if (!safe_data) 2731 return; 2732 2733 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2734 if (show->flags & BTF_SHOW_PTR_RAW) 2735 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2736 else 2737 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2738 btf_show_end_type(show); 2739 } 2740 2741 static void btf_ref_type_log(struct btf_verifier_env *env, 2742 const struct btf_type *t) 2743 { 2744 btf_verifier_log(env, "type_id=%u", t->type); 2745 } 2746 2747 static struct btf_kind_operations modifier_ops = { 2748 .check_meta = btf_ref_type_check_meta, 2749 .resolve = btf_modifier_resolve, 2750 .check_member = btf_modifier_check_member, 2751 .check_kflag_member = btf_modifier_check_kflag_member, 2752 .log_details = btf_ref_type_log, 2753 .show = btf_modifier_show, 2754 }; 2755 2756 static struct btf_kind_operations ptr_ops = { 2757 .check_meta = btf_ref_type_check_meta, 2758 .resolve = btf_ptr_resolve, 2759 .check_member = btf_ptr_check_member, 2760 .check_kflag_member = btf_generic_check_kflag_member, 2761 .log_details = btf_ref_type_log, 2762 .show = btf_ptr_show, 2763 }; 2764 2765 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2766 const struct btf_type *t, 2767 u32 meta_left) 2768 { 2769 if (btf_type_vlen(t)) { 2770 btf_verifier_log_type(env, t, "vlen != 0"); 2771 return -EINVAL; 2772 } 2773 2774 if (t->type) { 2775 btf_verifier_log_type(env, t, "type != 0"); 2776 return -EINVAL; 2777 } 2778 2779 /* fwd type must have a valid name */ 2780 if (!t->name_off || 2781 !btf_name_valid_identifier(env->btf, t->name_off)) { 2782 btf_verifier_log_type(env, t, "Invalid name"); 2783 return -EINVAL; 2784 } 2785 2786 btf_verifier_log_type(env, t, NULL); 2787 2788 return 0; 2789 } 2790 2791 static void btf_fwd_type_log(struct btf_verifier_env *env, 2792 const struct btf_type *t) 2793 { 2794 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2795 } 2796 2797 static struct btf_kind_operations fwd_ops = { 2798 .check_meta = btf_fwd_check_meta, 2799 .resolve = btf_df_resolve, 2800 .check_member = btf_df_check_member, 2801 .check_kflag_member = btf_df_check_kflag_member, 2802 .log_details = btf_fwd_type_log, 2803 .show = btf_df_show, 2804 }; 2805 2806 static int btf_array_check_member(struct btf_verifier_env *env, 2807 const struct btf_type *struct_type, 2808 const struct btf_member *member, 2809 const struct btf_type *member_type) 2810 { 2811 u32 struct_bits_off = member->offset; 2812 u32 struct_size, bytes_offset; 2813 u32 array_type_id, array_size; 2814 struct btf *btf = env->btf; 2815 2816 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2817 btf_verifier_log_member(env, struct_type, member, 2818 "Member is not byte aligned"); 2819 return -EINVAL; 2820 } 2821 2822 array_type_id = member->type; 2823 btf_type_id_size(btf, &array_type_id, &array_size); 2824 struct_size = struct_type->size; 2825 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2826 if (struct_size - bytes_offset < array_size) { 2827 btf_verifier_log_member(env, struct_type, member, 2828 "Member exceeds struct_size"); 2829 return -EINVAL; 2830 } 2831 2832 return 0; 2833 } 2834 2835 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2836 const struct btf_type *t, 2837 u32 meta_left) 2838 { 2839 const struct btf_array *array = btf_type_array(t); 2840 u32 meta_needed = sizeof(*array); 2841 2842 if (meta_left < meta_needed) { 2843 btf_verifier_log_basic(env, t, 2844 "meta_left:%u meta_needed:%u", 2845 meta_left, meta_needed); 2846 return -EINVAL; 2847 } 2848 2849 /* array type should not have a name */ 2850 if (t->name_off) { 2851 btf_verifier_log_type(env, t, "Invalid name"); 2852 return -EINVAL; 2853 } 2854 2855 if (btf_type_vlen(t)) { 2856 btf_verifier_log_type(env, t, "vlen != 0"); 2857 return -EINVAL; 2858 } 2859 2860 if (btf_type_kflag(t)) { 2861 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2862 return -EINVAL; 2863 } 2864 2865 if (t->size) { 2866 btf_verifier_log_type(env, t, "size != 0"); 2867 return -EINVAL; 2868 } 2869 2870 /* Array elem type and index type cannot be in type void, 2871 * so !array->type and !array->index_type are not allowed. 2872 */ 2873 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2874 btf_verifier_log_type(env, t, "Invalid elem"); 2875 return -EINVAL; 2876 } 2877 2878 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2879 btf_verifier_log_type(env, t, "Invalid index"); 2880 return -EINVAL; 2881 } 2882 2883 btf_verifier_log_type(env, t, NULL); 2884 2885 return meta_needed; 2886 } 2887 2888 static int btf_array_resolve(struct btf_verifier_env *env, 2889 const struct resolve_vertex *v) 2890 { 2891 const struct btf_array *array = btf_type_array(v->t); 2892 const struct btf_type *elem_type, *index_type; 2893 u32 elem_type_id, index_type_id; 2894 struct btf *btf = env->btf; 2895 u32 elem_size; 2896 2897 /* Check array->index_type */ 2898 index_type_id = array->index_type; 2899 index_type = btf_type_by_id(btf, index_type_id); 2900 if (btf_type_nosize_or_null(index_type) || 2901 btf_type_is_resolve_source_only(index_type)) { 2902 btf_verifier_log_type(env, v->t, "Invalid index"); 2903 return -EINVAL; 2904 } 2905 2906 if (!env_type_is_resolve_sink(env, index_type) && 2907 !env_type_is_resolved(env, index_type_id)) 2908 return env_stack_push(env, index_type, index_type_id); 2909 2910 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2911 if (!index_type || !btf_type_is_int(index_type) || 2912 !btf_type_int_is_regular(index_type)) { 2913 btf_verifier_log_type(env, v->t, "Invalid index"); 2914 return -EINVAL; 2915 } 2916 2917 /* Check array->type */ 2918 elem_type_id = array->type; 2919 elem_type = btf_type_by_id(btf, elem_type_id); 2920 if (btf_type_nosize_or_null(elem_type) || 2921 btf_type_is_resolve_source_only(elem_type)) { 2922 btf_verifier_log_type(env, v->t, 2923 "Invalid elem"); 2924 return -EINVAL; 2925 } 2926 2927 if (!env_type_is_resolve_sink(env, elem_type) && 2928 !env_type_is_resolved(env, elem_type_id)) 2929 return env_stack_push(env, elem_type, elem_type_id); 2930 2931 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2932 if (!elem_type) { 2933 btf_verifier_log_type(env, v->t, "Invalid elem"); 2934 return -EINVAL; 2935 } 2936 2937 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2938 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2939 return -EINVAL; 2940 } 2941 2942 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2943 btf_verifier_log_type(env, v->t, 2944 "Array size overflows U32_MAX"); 2945 return -EINVAL; 2946 } 2947 2948 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2949 2950 return 0; 2951 } 2952 2953 static void btf_array_log(struct btf_verifier_env *env, 2954 const struct btf_type *t) 2955 { 2956 const struct btf_array *array = btf_type_array(t); 2957 2958 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2959 array->type, array->index_type, array->nelems); 2960 } 2961 2962 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2963 u32 type_id, void *data, u8 bits_offset, 2964 struct btf_show *show) 2965 { 2966 const struct btf_array *array = btf_type_array(t); 2967 const struct btf_kind_operations *elem_ops; 2968 const struct btf_type *elem_type; 2969 u32 i, elem_size = 0, elem_type_id; 2970 u16 encoding = 0; 2971 2972 elem_type_id = array->type; 2973 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2974 if (elem_type && btf_type_has_size(elem_type)) 2975 elem_size = elem_type->size; 2976 2977 if (elem_type && btf_type_is_int(elem_type)) { 2978 u32 int_type = btf_type_int(elem_type); 2979 2980 encoding = BTF_INT_ENCODING(int_type); 2981 2982 /* 2983 * BTF_INT_CHAR encoding never seems to be set for 2984 * char arrays, so if size is 1 and element is 2985 * printable as a char, we'll do that. 2986 */ 2987 if (elem_size == 1) 2988 encoding = BTF_INT_CHAR; 2989 } 2990 2991 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2992 return; 2993 2994 if (!elem_type) 2995 goto out; 2996 elem_ops = btf_type_ops(elem_type); 2997 2998 for (i = 0; i < array->nelems; i++) { 2999 3000 btf_show_start_array_member(show); 3001 3002 elem_ops->show(btf, elem_type, elem_type_id, data, 3003 bits_offset, show); 3004 data += elem_size; 3005 3006 btf_show_end_array_member(show); 3007 3008 if (show->state.array_terminated) 3009 break; 3010 } 3011 out: 3012 btf_show_end_array_type(show); 3013 } 3014 3015 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3016 u32 type_id, void *data, u8 bits_offset, 3017 struct btf_show *show) 3018 { 3019 const struct btf_member *m = show->state.member; 3020 3021 /* 3022 * First check if any members would be shown (are non-zero). 3023 * See comments above "struct btf_show" definition for more 3024 * details on how this works at a high-level. 3025 */ 3026 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3027 if (!show->state.depth_check) { 3028 show->state.depth_check = show->state.depth + 1; 3029 show->state.depth_to_show = 0; 3030 } 3031 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3032 show->state.member = m; 3033 3034 if (show->state.depth_check != show->state.depth + 1) 3035 return; 3036 show->state.depth_check = 0; 3037 3038 if (show->state.depth_to_show <= show->state.depth) 3039 return; 3040 /* 3041 * Reaching here indicates we have recursed and found 3042 * non-zero array member(s). 3043 */ 3044 } 3045 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3046 } 3047 3048 static struct btf_kind_operations array_ops = { 3049 .check_meta = btf_array_check_meta, 3050 .resolve = btf_array_resolve, 3051 .check_member = btf_array_check_member, 3052 .check_kflag_member = btf_generic_check_kflag_member, 3053 .log_details = btf_array_log, 3054 .show = btf_array_show, 3055 }; 3056 3057 static int btf_struct_check_member(struct btf_verifier_env *env, 3058 const struct btf_type *struct_type, 3059 const struct btf_member *member, 3060 const struct btf_type *member_type) 3061 { 3062 u32 struct_bits_off = member->offset; 3063 u32 struct_size, bytes_offset; 3064 3065 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3066 btf_verifier_log_member(env, struct_type, member, 3067 "Member is not byte aligned"); 3068 return -EINVAL; 3069 } 3070 3071 struct_size = struct_type->size; 3072 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3073 if (struct_size - bytes_offset < member_type->size) { 3074 btf_verifier_log_member(env, struct_type, member, 3075 "Member exceeds struct_size"); 3076 return -EINVAL; 3077 } 3078 3079 return 0; 3080 } 3081 3082 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3083 const struct btf_type *t, 3084 u32 meta_left) 3085 { 3086 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3087 const struct btf_member *member; 3088 u32 meta_needed, last_offset; 3089 struct btf *btf = env->btf; 3090 u32 struct_size = t->size; 3091 u32 offset; 3092 u16 i; 3093 3094 meta_needed = btf_type_vlen(t) * sizeof(*member); 3095 if (meta_left < meta_needed) { 3096 btf_verifier_log_basic(env, t, 3097 "meta_left:%u meta_needed:%u", 3098 meta_left, meta_needed); 3099 return -EINVAL; 3100 } 3101 3102 /* struct type either no name or a valid one */ 3103 if (t->name_off && 3104 !btf_name_valid_identifier(env->btf, t->name_off)) { 3105 btf_verifier_log_type(env, t, "Invalid name"); 3106 return -EINVAL; 3107 } 3108 3109 btf_verifier_log_type(env, t, NULL); 3110 3111 last_offset = 0; 3112 for_each_member(i, t, member) { 3113 if (!btf_name_offset_valid(btf, member->name_off)) { 3114 btf_verifier_log_member(env, t, member, 3115 "Invalid member name_offset:%u", 3116 member->name_off); 3117 return -EINVAL; 3118 } 3119 3120 /* struct member either no name or a valid one */ 3121 if (member->name_off && 3122 !btf_name_valid_identifier(btf, member->name_off)) { 3123 btf_verifier_log_member(env, t, member, "Invalid name"); 3124 return -EINVAL; 3125 } 3126 /* A member cannot be in type void */ 3127 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3128 btf_verifier_log_member(env, t, member, 3129 "Invalid type_id"); 3130 return -EINVAL; 3131 } 3132 3133 offset = __btf_member_bit_offset(t, member); 3134 if (is_union && offset) { 3135 btf_verifier_log_member(env, t, member, 3136 "Invalid member bits_offset"); 3137 return -EINVAL; 3138 } 3139 3140 /* 3141 * ">" instead of ">=" because the last member could be 3142 * "char a[0];" 3143 */ 3144 if (last_offset > offset) { 3145 btf_verifier_log_member(env, t, member, 3146 "Invalid member bits_offset"); 3147 return -EINVAL; 3148 } 3149 3150 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3151 btf_verifier_log_member(env, t, member, 3152 "Member bits_offset exceeds its struct size"); 3153 return -EINVAL; 3154 } 3155 3156 btf_verifier_log_member(env, t, member, NULL); 3157 last_offset = offset; 3158 } 3159 3160 return meta_needed; 3161 } 3162 3163 static int btf_struct_resolve(struct btf_verifier_env *env, 3164 const struct resolve_vertex *v) 3165 { 3166 const struct btf_member *member; 3167 int err; 3168 u16 i; 3169 3170 /* Before continue resolving the next_member, 3171 * ensure the last member is indeed resolved to a 3172 * type with size info. 3173 */ 3174 if (v->next_member) { 3175 const struct btf_type *last_member_type; 3176 const struct btf_member *last_member; 3177 u32 last_member_type_id; 3178 3179 last_member = btf_type_member(v->t) + v->next_member - 1; 3180 last_member_type_id = last_member->type; 3181 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3182 last_member_type_id))) 3183 return -EINVAL; 3184 3185 last_member_type = btf_type_by_id(env->btf, 3186 last_member_type_id); 3187 if (btf_type_kflag(v->t)) 3188 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3189 last_member, 3190 last_member_type); 3191 else 3192 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3193 last_member, 3194 last_member_type); 3195 if (err) 3196 return err; 3197 } 3198 3199 for_each_member_from(i, v->next_member, v->t, member) { 3200 u32 member_type_id = member->type; 3201 const struct btf_type *member_type = btf_type_by_id(env->btf, 3202 member_type_id); 3203 3204 if (btf_type_nosize_or_null(member_type) || 3205 btf_type_is_resolve_source_only(member_type)) { 3206 btf_verifier_log_member(env, v->t, member, 3207 "Invalid member"); 3208 return -EINVAL; 3209 } 3210 3211 if (!env_type_is_resolve_sink(env, member_type) && 3212 !env_type_is_resolved(env, member_type_id)) { 3213 env_stack_set_next_member(env, i + 1); 3214 return env_stack_push(env, member_type, member_type_id); 3215 } 3216 3217 if (btf_type_kflag(v->t)) 3218 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3219 member, 3220 member_type); 3221 else 3222 err = btf_type_ops(member_type)->check_member(env, v->t, 3223 member, 3224 member_type); 3225 if (err) 3226 return err; 3227 } 3228 3229 env_stack_pop_resolved(env, 0, 0); 3230 3231 return 0; 3232 } 3233 3234 static void btf_struct_log(struct btf_verifier_env *env, 3235 const struct btf_type *t) 3236 { 3237 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3238 } 3239 3240 enum { 3241 BTF_FIELD_IGNORE = 0, 3242 BTF_FIELD_FOUND = 1, 3243 }; 3244 3245 struct btf_field_info { 3246 enum btf_field_type type; 3247 u32 off; 3248 union { 3249 struct { 3250 u32 type_id; 3251 } kptr; 3252 struct { 3253 const char *node_name; 3254 u32 value_btf_id; 3255 } graph_root; 3256 }; 3257 }; 3258 3259 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3260 u32 off, int sz, enum btf_field_type field_type, 3261 struct btf_field_info *info) 3262 { 3263 if (!__btf_type_is_struct(t)) 3264 return BTF_FIELD_IGNORE; 3265 if (t->size != sz) 3266 return BTF_FIELD_IGNORE; 3267 info->type = field_type; 3268 info->off = off; 3269 return BTF_FIELD_FOUND; 3270 } 3271 3272 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3273 u32 off, int sz, struct btf_field_info *info) 3274 { 3275 enum btf_field_type type; 3276 u32 res_id; 3277 3278 /* Permit modifiers on the pointer itself */ 3279 if (btf_type_is_volatile(t)) 3280 t = btf_type_by_id(btf, t->type); 3281 /* For PTR, sz is always == 8 */ 3282 if (!btf_type_is_ptr(t)) 3283 return BTF_FIELD_IGNORE; 3284 t = btf_type_by_id(btf, t->type); 3285 3286 if (!btf_type_is_type_tag(t)) 3287 return BTF_FIELD_IGNORE; 3288 /* Reject extra tags */ 3289 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3290 return -EINVAL; 3291 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off))) 3292 type = BPF_KPTR_UNREF; 3293 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3294 type = BPF_KPTR_REF; 3295 else 3296 return -EINVAL; 3297 3298 /* Get the base type */ 3299 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3300 /* Only pointer to struct is allowed */ 3301 if (!__btf_type_is_struct(t)) 3302 return -EINVAL; 3303 3304 info->type = type; 3305 info->off = off; 3306 info->kptr.type_id = res_id; 3307 return BTF_FIELD_FOUND; 3308 } 3309 3310 static const char *btf_find_decl_tag_value(const struct btf *btf, 3311 const struct btf_type *pt, 3312 int comp_idx, const char *tag_key) 3313 { 3314 int i; 3315 3316 for (i = 1; i < btf_nr_types(btf); i++) { 3317 const struct btf_type *t = btf_type_by_id(btf, i); 3318 int len = strlen(tag_key); 3319 3320 if (!btf_type_is_decl_tag(t)) 3321 continue; 3322 if (pt != btf_type_by_id(btf, t->type) || 3323 btf_type_decl_tag(t)->component_idx != comp_idx) 3324 continue; 3325 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3326 continue; 3327 return __btf_name_by_offset(btf, t->name_off) + len; 3328 } 3329 return NULL; 3330 } 3331 3332 static int 3333 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3334 const struct btf_type *t, int comp_idx, u32 off, 3335 int sz, struct btf_field_info *info, 3336 enum btf_field_type head_type) 3337 { 3338 const char *node_field_name; 3339 const char *value_type; 3340 s32 id; 3341 3342 if (!__btf_type_is_struct(t)) 3343 return BTF_FIELD_IGNORE; 3344 if (t->size != sz) 3345 return BTF_FIELD_IGNORE; 3346 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3347 if (!value_type) 3348 return -EINVAL; 3349 node_field_name = strstr(value_type, ":"); 3350 if (!node_field_name) 3351 return -EINVAL; 3352 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3353 if (!value_type) 3354 return -ENOMEM; 3355 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3356 kfree(value_type); 3357 if (id < 0) 3358 return id; 3359 node_field_name++; 3360 if (str_is_empty(node_field_name)) 3361 return -EINVAL; 3362 info->type = head_type; 3363 info->off = off; 3364 info->graph_root.value_btf_id = id; 3365 info->graph_root.node_name = node_field_name; 3366 return BTF_FIELD_FOUND; 3367 } 3368 3369 #define field_mask_test_name(field_type, field_type_str) \ 3370 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3371 type = field_type; \ 3372 goto end; \ 3373 } 3374 3375 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask, 3376 int *align, int *sz) 3377 { 3378 int type = 0; 3379 3380 if (field_mask & BPF_SPIN_LOCK) { 3381 if (!strcmp(name, "bpf_spin_lock")) { 3382 if (*seen_mask & BPF_SPIN_LOCK) 3383 return -E2BIG; 3384 *seen_mask |= BPF_SPIN_LOCK; 3385 type = BPF_SPIN_LOCK; 3386 goto end; 3387 } 3388 } 3389 if (field_mask & BPF_TIMER) { 3390 if (!strcmp(name, "bpf_timer")) { 3391 if (*seen_mask & BPF_TIMER) 3392 return -E2BIG; 3393 *seen_mask |= BPF_TIMER; 3394 type = BPF_TIMER; 3395 goto end; 3396 } 3397 } 3398 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3399 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3400 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3401 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3402 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); 3403 3404 /* Only return BPF_KPTR when all other types with matchable names fail */ 3405 if (field_mask & BPF_KPTR) { 3406 type = BPF_KPTR_REF; 3407 goto end; 3408 } 3409 return 0; 3410 end: 3411 *sz = btf_field_type_size(type); 3412 *align = btf_field_type_align(type); 3413 return type; 3414 } 3415 3416 #undef field_mask_test_name 3417 3418 static int btf_find_struct_field(const struct btf *btf, 3419 const struct btf_type *t, u32 field_mask, 3420 struct btf_field_info *info, int info_cnt) 3421 { 3422 int ret, idx = 0, align, sz, field_type; 3423 const struct btf_member *member; 3424 struct btf_field_info tmp; 3425 u32 i, off, seen_mask = 0; 3426 3427 for_each_member(i, t, member) { 3428 const struct btf_type *member_type = btf_type_by_id(btf, 3429 member->type); 3430 3431 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off), 3432 field_mask, &seen_mask, &align, &sz); 3433 if (field_type == 0) 3434 continue; 3435 if (field_type < 0) 3436 return field_type; 3437 3438 off = __btf_member_bit_offset(t, member); 3439 if (off % 8) 3440 /* valid C code cannot generate such BTF */ 3441 return -EINVAL; 3442 off /= 8; 3443 if (off % align) 3444 continue; 3445 3446 switch (field_type) { 3447 case BPF_SPIN_LOCK: 3448 case BPF_TIMER: 3449 case BPF_LIST_NODE: 3450 case BPF_RB_NODE: 3451 case BPF_REFCOUNT: 3452 ret = btf_find_struct(btf, member_type, off, sz, field_type, 3453 idx < info_cnt ? &info[idx] : &tmp); 3454 if (ret < 0) 3455 return ret; 3456 break; 3457 case BPF_KPTR_UNREF: 3458 case BPF_KPTR_REF: 3459 ret = btf_find_kptr(btf, member_type, off, sz, 3460 idx < info_cnt ? &info[idx] : &tmp); 3461 if (ret < 0) 3462 return ret; 3463 break; 3464 case BPF_LIST_HEAD: 3465 case BPF_RB_ROOT: 3466 ret = btf_find_graph_root(btf, t, member_type, 3467 i, off, sz, 3468 idx < info_cnt ? &info[idx] : &tmp, 3469 field_type); 3470 if (ret < 0) 3471 return ret; 3472 break; 3473 default: 3474 return -EFAULT; 3475 } 3476 3477 if (ret == BTF_FIELD_IGNORE) 3478 continue; 3479 if (idx >= info_cnt) 3480 return -E2BIG; 3481 ++idx; 3482 } 3483 return idx; 3484 } 3485 3486 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3487 u32 field_mask, struct btf_field_info *info, 3488 int info_cnt) 3489 { 3490 int ret, idx = 0, align, sz, field_type; 3491 const struct btf_var_secinfo *vsi; 3492 struct btf_field_info tmp; 3493 u32 i, off, seen_mask = 0; 3494 3495 for_each_vsi(i, t, vsi) { 3496 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3497 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3498 3499 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off), 3500 field_mask, &seen_mask, &align, &sz); 3501 if (field_type == 0) 3502 continue; 3503 if (field_type < 0) 3504 return field_type; 3505 3506 off = vsi->offset; 3507 if (vsi->size != sz) 3508 continue; 3509 if (off % align) 3510 continue; 3511 3512 switch (field_type) { 3513 case BPF_SPIN_LOCK: 3514 case BPF_TIMER: 3515 case BPF_LIST_NODE: 3516 case BPF_RB_NODE: 3517 case BPF_REFCOUNT: 3518 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3519 idx < info_cnt ? &info[idx] : &tmp); 3520 if (ret < 0) 3521 return ret; 3522 break; 3523 case BPF_KPTR_UNREF: 3524 case BPF_KPTR_REF: 3525 ret = btf_find_kptr(btf, var_type, off, sz, 3526 idx < info_cnt ? &info[idx] : &tmp); 3527 if (ret < 0) 3528 return ret; 3529 break; 3530 case BPF_LIST_HEAD: 3531 case BPF_RB_ROOT: 3532 ret = btf_find_graph_root(btf, var, var_type, 3533 -1, off, sz, 3534 idx < info_cnt ? &info[idx] : &tmp, 3535 field_type); 3536 if (ret < 0) 3537 return ret; 3538 break; 3539 default: 3540 return -EFAULT; 3541 } 3542 3543 if (ret == BTF_FIELD_IGNORE) 3544 continue; 3545 if (idx >= info_cnt) 3546 return -E2BIG; 3547 ++idx; 3548 } 3549 return idx; 3550 } 3551 3552 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3553 u32 field_mask, struct btf_field_info *info, 3554 int info_cnt) 3555 { 3556 if (__btf_type_is_struct(t)) 3557 return btf_find_struct_field(btf, t, field_mask, info, info_cnt); 3558 else if (btf_type_is_datasec(t)) 3559 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt); 3560 return -EINVAL; 3561 } 3562 3563 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3564 struct btf_field_info *info) 3565 { 3566 struct module *mod = NULL; 3567 const struct btf_type *t; 3568 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3569 * is that BTF, otherwise it's program BTF 3570 */ 3571 struct btf *kptr_btf; 3572 int ret; 3573 s32 id; 3574 3575 /* Find type in map BTF, and use it to look up the matching type 3576 * in vmlinux or module BTFs, by name and kind. 3577 */ 3578 t = btf_type_by_id(btf, info->kptr.type_id); 3579 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3580 &kptr_btf); 3581 if (id == -ENOENT) { 3582 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3583 WARN_ON_ONCE(btf_is_kernel(btf)); 3584 3585 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3586 * kptr allocated via bpf_obj_new 3587 */ 3588 field->kptr.dtor = NULL; 3589 id = info->kptr.type_id; 3590 kptr_btf = (struct btf *)btf; 3591 btf_get(kptr_btf); 3592 goto found_dtor; 3593 } 3594 if (id < 0) 3595 return id; 3596 3597 /* Find and stash the function pointer for the destruction function that 3598 * needs to be eventually invoked from the map free path. 3599 */ 3600 if (info->type == BPF_KPTR_REF) { 3601 const struct btf_type *dtor_func; 3602 const char *dtor_func_name; 3603 unsigned long addr; 3604 s32 dtor_btf_id; 3605 3606 /* This call also serves as a whitelist of allowed objects that 3607 * can be used as a referenced pointer and be stored in a map at 3608 * the same time. 3609 */ 3610 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3611 if (dtor_btf_id < 0) { 3612 ret = dtor_btf_id; 3613 goto end_btf; 3614 } 3615 3616 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3617 if (!dtor_func) { 3618 ret = -ENOENT; 3619 goto end_btf; 3620 } 3621 3622 if (btf_is_module(kptr_btf)) { 3623 mod = btf_try_get_module(kptr_btf); 3624 if (!mod) { 3625 ret = -ENXIO; 3626 goto end_btf; 3627 } 3628 } 3629 3630 /* We already verified dtor_func to be btf_type_is_func 3631 * in register_btf_id_dtor_kfuncs. 3632 */ 3633 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3634 addr = kallsyms_lookup_name(dtor_func_name); 3635 if (!addr) { 3636 ret = -EINVAL; 3637 goto end_mod; 3638 } 3639 field->kptr.dtor = (void *)addr; 3640 } 3641 3642 found_dtor: 3643 field->kptr.btf_id = id; 3644 field->kptr.btf = kptr_btf; 3645 field->kptr.module = mod; 3646 return 0; 3647 end_mod: 3648 module_put(mod); 3649 end_btf: 3650 btf_put(kptr_btf); 3651 return ret; 3652 } 3653 3654 static int btf_parse_graph_root(const struct btf *btf, 3655 struct btf_field *field, 3656 struct btf_field_info *info, 3657 const char *node_type_name, 3658 size_t node_type_align) 3659 { 3660 const struct btf_type *t, *n = NULL; 3661 const struct btf_member *member; 3662 u32 offset; 3663 int i; 3664 3665 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3666 /* We've already checked that value_btf_id is a struct type. We 3667 * just need to figure out the offset of the list_node, and 3668 * verify its type. 3669 */ 3670 for_each_member(i, t, member) { 3671 if (strcmp(info->graph_root.node_name, 3672 __btf_name_by_offset(btf, member->name_off))) 3673 continue; 3674 /* Invalid BTF, two members with same name */ 3675 if (n) 3676 return -EINVAL; 3677 n = btf_type_by_id(btf, member->type); 3678 if (!__btf_type_is_struct(n)) 3679 return -EINVAL; 3680 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3681 return -EINVAL; 3682 offset = __btf_member_bit_offset(n, member); 3683 if (offset % 8) 3684 return -EINVAL; 3685 offset /= 8; 3686 if (offset % node_type_align) 3687 return -EINVAL; 3688 3689 field->graph_root.btf = (struct btf *)btf; 3690 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3691 field->graph_root.node_offset = offset; 3692 } 3693 if (!n) 3694 return -ENOENT; 3695 return 0; 3696 } 3697 3698 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3699 struct btf_field_info *info) 3700 { 3701 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3702 __alignof__(struct bpf_list_node)); 3703 } 3704 3705 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3706 struct btf_field_info *info) 3707 { 3708 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3709 __alignof__(struct bpf_rb_node)); 3710 } 3711 3712 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3713 { 3714 const struct btf_field *a = (const struct btf_field *)_a; 3715 const struct btf_field *b = (const struct btf_field *)_b; 3716 3717 if (a->offset < b->offset) 3718 return -1; 3719 else if (a->offset > b->offset) 3720 return 1; 3721 return 0; 3722 } 3723 3724 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3725 u32 field_mask, u32 value_size) 3726 { 3727 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3728 u32 next_off = 0, field_type_size; 3729 struct btf_record *rec; 3730 int ret, i, cnt; 3731 3732 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3733 if (ret < 0) 3734 return ERR_PTR(ret); 3735 if (!ret) 3736 return NULL; 3737 3738 cnt = ret; 3739 /* This needs to be kzalloc to zero out padding and unused fields, see 3740 * comment in btf_record_equal. 3741 */ 3742 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3743 if (!rec) 3744 return ERR_PTR(-ENOMEM); 3745 3746 rec->spin_lock_off = -EINVAL; 3747 rec->timer_off = -EINVAL; 3748 rec->refcount_off = -EINVAL; 3749 for (i = 0; i < cnt; i++) { 3750 field_type_size = btf_field_type_size(info_arr[i].type); 3751 if (info_arr[i].off + field_type_size > value_size) { 3752 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3753 ret = -EFAULT; 3754 goto end; 3755 } 3756 if (info_arr[i].off < next_off) { 3757 ret = -EEXIST; 3758 goto end; 3759 } 3760 next_off = info_arr[i].off + field_type_size; 3761 3762 rec->field_mask |= info_arr[i].type; 3763 rec->fields[i].offset = info_arr[i].off; 3764 rec->fields[i].type = info_arr[i].type; 3765 rec->fields[i].size = field_type_size; 3766 3767 switch (info_arr[i].type) { 3768 case BPF_SPIN_LOCK: 3769 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3770 /* Cache offset for faster lookup at runtime */ 3771 rec->spin_lock_off = rec->fields[i].offset; 3772 break; 3773 case BPF_TIMER: 3774 WARN_ON_ONCE(rec->timer_off >= 0); 3775 /* Cache offset for faster lookup at runtime */ 3776 rec->timer_off = rec->fields[i].offset; 3777 break; 3778 case BPF_REFCOUNT: 3779 WARN_ON_ONCE(rec->refcount_off >= 0); 3780 /* Cache offset for faster lookup at runtime */ 3781 rec->refcount_off = rec->fields[i].offset; 3782 break; 3783 case BPF_KPTR_UNREF: 3784 case BPF_KPTR_REF: 3785 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 3786 if (ret < 0) 3787 goto end; 3788 break; 3789 case BPF_LIST_HEAD: 3790 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 3791 if (ret < 0) 3792 goto end; 3793 break; 3794 case BPF_RB_ROOT: 3795 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 3796 if (ret < 0) 3797 goto end; 3798 break; 3799 case BPF_LIST_NODE: 3800 case BPF_RB_NODE: 3801 break; 3802 default: 3803 ret = -EFAULT; 3804 goto end; 3805 } 3806 rec->cnt++; 3807 } 3808 3809 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 3810 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 3811 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { 3812 ret = -EINVAL; 3813 goto end; 3814 } 3815 3816 if (rec->refcount_off < 0 && 3817 btf_record_has_field(rec, BPF_LIST_NODE) && 3818 btf_record_has_field(rec, BPF_RB_NODE)) { 3819 ret = -EINVAL; 3820 goto end; 3821 } 3822 3823 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 3824 NULL, rec); 3825 3826 return rec; 3827 end: 3828 btf_record_free(rec); 3829 return ERR_PTR(ret); 3830 } 3831 3832 #define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT) 3833 #define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE) 3834 3835 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 3836 { 3837 int i; 3838 3839 /* There are three types that signify ownership of some other type: 3840 * kptr_ref, bpf_list_head, bpf_rb_root. 3841 * kptr_ref only supports storing kernel types, which can't store 3842 * references to program allocated local types. 3843 * 3844 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 3845 * does not form cycles. 3846 */ 3847 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK)) 3848 return 0; 3849 for (i = 0; i < rec->cnt; i++) { 3850 struct btf_struct_meta *meta; 3851 u32 btf_id; 3852 3853 if (!(rec->fields[i].type & GRAPH_ROOT_MASK)) 3854 continue; 3855 btf_id = rec->fields[i].graph_root.value_btf_id; 3856 meta = btf_find_struct_meta(btf, btf_id); 3857 if (!meta) 3858 return -EFAULT; 3859 rec->fields[i].graph_root.value_rec = meta->record; 3860 3861 /* We need to set value_rec for all root types, but no need 3862 * to check ownership cycle for a type unless it's also a 3863 * node type. 3864 */ 3865 if (!(rec->field_mask & GRAPH_NODE_MASK)) 3866 continue; 3867 3868 /* We need to ensure ownership acyclicity among all types. The 3869 * proper way to do it would be to topologically sort all BTF 3870 * IDs based on the ownership edges, since there can be multiple 3871 * bpf_{list_head,rb_node} in a type. Instead, we use the 3872 * following resaoning: 3873 * 3874 * - A type can only be owned by another type in user BTF if it 3875 * has a bpf_{list,rb}_node. Let's call these node types. 3876 * - A type can only _own_ another type in user BTF if it has a 3877 * bpf_{list_head,rb_root}. Let's call these root types. 3878 * 3879 * We ensure that if a type is both a root and node, its 3880 * element types cannot be root types. 3881 * 3882 * To ensure acyclicity: 3883 * 3884 * When A is an root type but not a node, its ownership 3885 * chain can be: 3886 * A -> B -> C 3887 * Where: 3888 * - A is an root, e.g. has bpf_rb_root. 3889 * - B is both a root and node, e.g. has bpf_rb_node and 3890 * bpf_list_head. 3891 * - C is only an root, e.g. has bpf_list_node 3892 * 3893 * When A is both a root and node, some other type already 3894 * owns it in the BTF domain, hence it can not own 3895 * another root type through any of the ownership edges. 3896 * A -> B 3897 * Where: 3898 * - A is both an root and node. 3899 * - B is only an node. 3900 */ 3901 if (meta->record->field_mask & GRAPH_ROOT_MASK) 3902 return -ELOOP; 3903 } 3904 return 0; 3905 } 3906 3907 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3908 u32 type_id, void *data, u8 bits_offset, 3909 struct btf_show *show) 3910 { 3911 const struct btf_member *member; 3912 void *safe_data; 3913 u32 i; 3914 3915 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3916 if (!safe_data) 3917 return; 3918 3919 for_each_member(i, t, member) { 3920 const struct btf_type *member_type = btf_type_by_id(btf, 3921 member->type); 3922 const struct btf_kind_operations *ops; 3923 u32 member_offset, bitfield_size; 3924 u32 bytes_offset; 3925 u8 bits8_offset; 3926 3927 btf_show_start_member(show, member); 3928 3929 member_offset = __btf_member_bit_offset(t, member); 3930 bitfield_size = __btf_member_bitfield_size(t, member); 3931 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3932 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3933 if (bitfield_size) { 3934 safe_data = btf_show_start_type(show, member_type, 3935 member->type, 3936 data + bytes_offset); 3937 if (safe_data) 3938 btf_bitfield_show(safe_data, 3939 bits8_offset, 3940 bitfield_size, show); 3941 btf_show_end_type(show); 3942 } else { 3943 ops = btf_type_ops(member_type); 3944 ops->show(btf, member_type, member->type, 3945 data + bytes_offset, bits8_offset, show); 3946 } 3947 3948 btf_show_end_member(show); 3949 } 3950 3951 btf_show_end_struct_type(show); 3952 } 3953 3954 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3955 u32 type_id, void *data, u8 bits_offset, 3956 struct btf_show *show) 3957 { 3958 const struct btf_member *m = show->state.member; 3959 3960 /* 3961 * First check if any members would be shown (are non-zero). 3962 * See comments above "struct btf_show" definition for more 3963 * details on how this works at a high-level. 3964 */ 3965 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3966 if (!show->state.depth_check) { 3967 show->state.depth_check = show->state.depth + 1; 3968 show->state.depth_to_show = 0; 3969 } 3970 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3971 /* Restore saved member data here */ 3972 show->state.member = m; 3973 if (show->state.depth_check != show->state.depth + 1) 3974 return; 3975 show->state.depth_check = 0; 3976 3977 if (show->state.depth_to_show <= show->state.depth) 3978 return; 3979 /* 3980 * Reaching here indicates we have recursed and found 3981 * non-zero child values. 3982 */ 3983 } 3984 3985 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3986 } 3987 3988 static struct btf_kind_operations struct_ops = { 3989 .check_meta = btf_struct_check_meta, 3990 .resolve = btf_struct_resolve, 3991 .check_member = btf_struct_check_member, 3992 .check_kflag_member = btf_generic_check_kflag_member, 3993 .log_details = btf_struct_log, 3994 .show = btf_struct_show, 3995 }; 3996 3997 static int btf_enum_check_member(struct btf_verifier_env *env, 3998 const struct btf_type *struct_type, 3999 const struct btf_member *member, 4000 const struct btf_type *member_type) 4001 { 4002 u32 struct_bits_off = member->offset; 4003 u32 struct_size, bytes_offset; 4004 4005 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4006 btf_verifier_log_member(env, struct_type, member, 4007 "Member is not byte aligned"); 4008 return -EINVAL; 4009 } 4010 4011 struct_size = struct_type->size; 4012 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4013 if (struct_size - bytes_offset < member_type->size) { 4014 btf_verifier_log_member(env, struct_type, member, 4015 "Member exceeds struct_size"); 4016 return -EINVAL; 4017 } 4018 4019 return 0; 4020 } 4021 4022 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4023 const struct btf_type *struct_type, 4024 const struct btf_member *member, 4025 const struct btf_type *member_type) 4026 { 4027 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4028 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4029 4030 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4031 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4032 if (!nr_bits) { 4033 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4034 btf_verifier_log_member(env, struct_type, member, 4035 "Member is not byte aligned"); 4036 return -EINVAL; 4037 } 4038 4039 nr_bits = int_bitsize; 4040 } else if (nr_bits > int_bitsize) { 4041 btf_verifier_log_member(env, struct_type, member, 4042 "Invalid member bitfield_size"); 4043 return -EINVAL; 4044 } 4045 4046 struct_size = struct_type->size; 4047 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4048 if (struct_size < bytes_end) { 4049 btf_verifier_log_member(env, struct_type, member, 4050 "Member exceeds struct_size"); 4051 return -EINVAL; 4052 } 4053 4054 return 0; 4055 } 4056 4057 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4058 const struct btf_type *t, 4059 u32 meta_left) 4060 { 4061 const struct btf_enum *enums = btf_type_enum(t); 4062 struct btf *btf = env->btf; 4063 const char *fmt_str; 4064 u16 i, nr_enums; 4065 u32 meta_needed; 4066 4067 nr_enums = btf_type_vlen(t); 4068 meta_needed = nr_enums * sizeof(*enums); 4069 4070 if (meta_left < meta_needed) { 4071 btf_verifier_log_basic(env, t, 4072 "meta_left:%u meta_needed:%u", 4073 meta_left, meta_needed); 4074 return -EINVAL; 4075 } 4076 4077 if (t->size > 8 || !is_power_of_2(t->size)) { 4078 btf_verifier_log_type(env, t, "Unexpected size"); 4079 return -EINVAL; 4080 } 4081 4082 /* enum type either no name or a valid one */ 4083 if (t->name_off && 4084 !btf_name_valid_identifier(env->btf, t->name_off)) { 4085 btf_verifier_log_type(env, t, "Invalid name"); 4086 return -EINVAL; 4087 } 4088 4089 btf_verifier_log_type(env, t, NULL); 4090 4091 for (i = 0; i < nr_enums; i++) { 4092 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4093 btf_verifier_log(env, "\tInvalid name_offset:%u", 4094 enums[i].name_off); 4095 return -EINVAL; 4096 } 4097 4098 /* enum member must have a valid name */ 4099 if (!enums[i].name_off || 4100 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4101 btf_verifier_log_type(env, t, "Invalid name"); 4102 return -EINVAL; 4103 } 4104 4105 if (env->log.level == BPF_LOG_KERNEL) 4106 continue; 4107 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4108 btf_verifier_log(env, fmt_str, 4109 __btf_name_by_offset(btf, enums[i].name_off), 4110 enums[i].val); 4111 } 4112 4113 return meta_needed; 4114 } 4115 4116 static void btf_enum_log(struct btf_verifier_env *env, 4117 const struct btf_type *t) 4118 { 4119 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4120 } 4121 4122 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4123 u32 type_id, void *data, u8 bits_offset, 4124 struct btf_show *show) 4125 { 4126 const struct btf_enum *enums = btf_type_enum(t); 4127 u32 i, nr_enums = btf_type_vlen(t); 4128 void *safe_data; 4129 int v; 4130 4131 safe_data = btf_show_start_type(show, t, type_id, data); 4132 if (!safe_data) 4133 return; 4134 4135 v = *(int *)safe_data; 4136 4137 for (i = 0; i < nr_enums; i++) { 4138 if (v != enums[i].val) 4139 continue; 4140 4141 btf_show_type_value(show, "%s", 4142 __btf_name_by_offset(btf, 4143 enums[i].name_off)); 4144 4145 btf_show_end_type(show); 4146 return; 4147 } 4148 4149 if (btf_type_kflag(t)) 4150 btf_show_type_value(show, "%d", v); 4151 else 4152 btf_show_type_value(show, "%u", v); 4153 btf_show_end_type(show); 4154 } 4155 4156 static struct btf_kind_operations enum_ops = { 4157 .check_meta = btf_enum_check_meta, 4158 .resolve = btf_df_resolve, 4159 .check_member = btf_enum_check_member, 4160 .check_kflag_member = btf_enum_check_kflag_member, 4161 .log_details = btf_enum_log, 4162 .show = btf_enum_show, 4163 }; 4164 4165 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4166 const struct btf_type *t, 4167 u32 meta_left) 4168 { 4169 const struct btf_enum64 *enums = btf_type_enum64(t); 4170 struct btf *btf = env->btf; 4171 const char *fmt_str; 4172 u16 i, nr_enums; 4173 u32 meta_needed; 4174 4175 nr_enums = btf_type_vlen(t); 4176 meta_needed = nr_enums * sizeof(*enums); 4177 4178 if (meta_left < meta_needed) { 4179 btf_verifier_log_basic(env, t, 4180 "meta_left:%u meta_needed:%u", 4181 meta_left, meta_needed); 4182 return -EINVAL; 4183 } 4184 4185 if (t->size > 8 || !is_power_of_2(t->size)) { 4186 btf_verifier_log_type(env, t, "Unexpected size"); 4187 return -EINVAL; 4188 } 4189 4190 /* enum type either no name or a valid one */ 4191 if (t->name_off && 4192 !btf_name_valid_identifier(env->btf, t->name_off)) { 4193 btf_verifier_log_type(env, t, "Invalid name"); 4194 return -EINVAL; 4195 } 4196 4197 btf_verifier_log_type(env, t, NULL); 4198 4199 for (i = 0; i < nr_enums; i++) { 4200 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4201 btf_verifier_log(env, "\tInvalid name_offset:%u", 4202 enums[i].name_off); 4203 return -EINVAL; 4204 } 4205 4206 /* enum member must have a valid name */ 4207 if (!enums[i].name_off || 4208 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4209 btf_verifier_log_type(env, t, "Invalid name"); 4210 return -EINVAL; 4211 } 4212 4213 if (env->log.level == BPF_LOG_KERNEL) 4214 continue; 4215 4216 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4217 btf_verifier_log(env, fmt_str, 4218 __btf_name_by_offset(btf, enums[i].name_off), 4219 btf_enum64_value(enums + i)); 4220 } 4221 4222 return meta_needed; 4223 } 4224 4225 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4226 u32 type_id, void *data, u8 bits_offset, 4227 struct btf_show *show) 4228 { 4229 const struct btf_enum64 *enums = btf_type_enum64(t); 4230 u32 i, nr_enums = btf_type_vlen(t); 4231 void *safe_data; 4232 s64 v; 4233 4234 safe_data = btf_show_start_type(show, t, type_id, data); 4235 if (!safe_data) 4236 return; 4237 4238 v = *(u64 *)safe_data; 4239 4240 for (i = 0; i < nr_enums; i++) { 4241 if (v != btf_enum64_value(enums + i)) 4242 continue; 4243 4244 btf_show_type_value(show, "%s", 4245 __btf_name_by_offset(btf, 4246 enums[i].name_off)); 4247 4248 btf_show_end_type(show); 4249 return; 4250 } 4251 4252 if (btf_type_kflag(t)) 4253 btf_show_type_value(show, "%lld", v); 4254 else 4255 btf_show_type_value(show, "%llu", v); 4256 btf_show_end_type(show); 4257 } 4258 4259 static struct btf_kind_operations enum64_ops = { 4260 .check_meta = btf_enum64_check_meta, 4261 .resolve = btf_df_resolve, 4262 .check_member = btf_enum_check_member, 4263 .check_kflag_member = btf_enum_check_kflag_member, 4264 .log_details = btf_enum_log, 4265 .show = btf_enum64_show, 4266 }; 4267 4268 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4269 const struct btf_type *t, 4270 u32 meta_left) 4271 { 4272 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4273 4274 if (meta_left < meta_needed) { 4275 btf_verifier_log_basic(env, t, 4276 "meta_left:%u meta_needed:%u", 4277 meta_left, meta_needed); 4278 return -EINVAL; 4279 } 4280 4281 if (t->name_off) { 4282 btf_verifier_log_type(env, t, "Invalid name"); 4283 return -EINVAL; 4284 } 4285 4286 if (btf_type_kflag(t)) { 4287 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4288 return -EINVAL; 4289 } 4290 4291 btf_verifier_log_type(env, t, NULL); 4292 4293 return meta_needed; 4294 } 4295 4296 static void btf_func_proto_log(struct btf_verifier_env *env, 4297 const struct btf_type *t) 4298 { 4299 const struct btf_param *args = (const struct btf_param *)(t + 1); 4300 u16 nr_args = btf_type_vlen(t), i; 4301 4302 btf_verifier_log(env, "return=%u args=(", t->type); 4303 if (!nr_args) { 4304 btf_verifier_log(env, "void"); 4305 goto done; 4306 } 4307 4308 if (nr_args == 1 && !args[0].type) { 4309 /* Only one vararg */ 4310 btf_verifier_log(env, "vararg"); 4311 goto done; 4312 } 4313 4314 btf_verifier_log(env, "%u %s", args[0].type, 4315 __btf_name_by_offset(env->btf, 4316 args[0].name_off)); 4317 for (i = 1; i < nr_args - 1; i++) 4318 btf_verifier_log(env, ", %u %s", args[i].type, 4319 __btf_name_by_offset(env->btf, 4320 args[i].name_off)); 4321 4322 if (nr_args > 1) { 4323 const struct btf_param *last_arg = &args[nr_args - 1]; 4324 4325 if (last_arg->type) 4326 btf_verifier_log(env, ", %u %s", last_arg->type, 4327 __btf_name_by_offset(env->btf, 4328 last_arg->name_off)); 4329 else 4330 btf_verifier_log(env, ", vararg"); 4331 } 4332 4333 done: 4334 btf_verifier_log(env, ")"); 4335 } 4336 4337 static struct btf_kind_operations func_proto_ops = { 4338 .check_meta = btf_func_proto_check_meta, 4339 .resolve = btf_df_resolve, 4340 /* 4341 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4342 * a struct's member. 4343 * 4344 * It should be a function pointer instead. 4345 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4346 * 4347 * Hence, there is no btf_func_check_member(). 4348 */ 4349 .check_member = btf_df_check_member, 4350 .check_kflag_member = btf_df_check_kflag_member, 4351 .log_details = btf_func_proto_log, 4352 .show = btf_df_show, 4353 }; 4354 4355 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4356 const struct btf_type *t, 4357 u32 meta_left) 4358 { 4359 if (!t->name_off || 4360 !btf_name_valid_identifier(env->btf, t->name_off)) { 4361 btf_verifier_log_type(env, t, "Invalid name"); 4362 return -EINVAL; 4363 } 4364 4365 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4366 btf_verifier_log_type(env, t, "Invalid func linkage"); 4367 return -EINVAL; 4368 } 4369 4370 if (btf_type_kflag(t)) { 4371 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4372 return -EINVAL; 4373 } 4374 4375 btf_verifier_log_type(env, t, NULL); 4376 4377 return 0; 4378 } 4379 4380 static int btf_func_resolve(struct btf_verifier_env *env, 4381 const struct resolve_vertex *v) 4382 { 4383 const struct btf_type *t = v->t; 4384 u32 next_type_id = t->type; 4385 int err; 4386 4387 err = btf_func_check(env, t); 4388 if (err) 4389 return err; 4390 4391 env_stack_pop_resolved(env, next_type_id, 0); 4392 return 0; 4393 } 4394 4395 static struct btf_kind_operations func_ops = { 4396 .check_meta = btf_func_check_meta, 4397 .resolve = btf_func_resolve, 4398 .check_member = btf_df_check_member, 4399 .check_kflag_member = btf_df_check_kflag_member, 4400 .log_details = btf_ref_type_log, 4401 .show = btf_df_show, 4402 }; 4403 4404 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4405 const struct btf_type *t, 4406 u32 meta_left) 4407 { 4408 const struct btf_var *var; 4409 u32 meta_needed = sizeof(*var); 4410 4411 if (meta_left < meta_needed) { 4412 btf_verifier_log_basic(env, t, 4413 "meta_left:%u meta_needed:%u", 4414 meta_left, meta_needed); 4415 return -EINVAL; 4416 } 4417 4418 if (btf_type_vlen(t)) { 4419 btf_verifier_log_type(env, t, "vlen != 0"); 4420 return -EINVAL; 4421 } 4422 4423 if (btf_type_kflag(t)) { 4424 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4425 return -EINVAL; 4426 } 4427 4428 if (!t->name_off || 4429 !__btf_name_valid(env->btf, t->name_off)) { 4430 btf_verifier_log_type(env, t, "Invalid name"); 4431 return -EINVAL; 4432 } 4433 4434 /* A var cannot be in type void */ 4435 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4436 btf_verifier_log_type(env, t, "Invalid type_id"); 4437 return -EINVAL; 4438 } 4439 4440 var = btf_type_var(t); 4441 if (var->linkage != BTF_VAR_STATIC && 4442 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4443 btf_verifier_log_type(env, t, "Linkage not supported"); 4444 return -EINVAL; 4445 } 4446 4447 btf_verifier_log_type(env, t, NULL); 4448 4449 return meta_needed; 4450 } 4451 4452 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4453 { 4454 const struct btf_var *var = btf_type_var(t); 4455 4456 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4457 } 4458 4459 static const struct btf_kind_operations var_ops = { 4460 .check_meta = btf_var_check_meta, 4461 .resolve = btf_var_resolve, 4462 .check_member = btf_df_check_member, 4463 .check_kflag_member = btf_df_check_kflag_member, 4464 .log_details = btf_var_log, 4465 .show = btf_var_show, 4466 }; 4467 4468 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4469 const struct btf_type *t, 4470 u32 meta_left) 4471 { 4472 const struct btf_var_secinfo *vsi; 4473 u64 last_vsi_end_off = 0, sum = 0; 4474 u32 i, meta_needed; 4475 4476 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4477 if (meta_left < meta_needed) { 4478 btf_verifier_log_basic(env, t, 4479 "meta_left:%u meta_needed:%u", 4480 meta_left, meta_needed); 4481 return -EINVAL; 4482 } 4483 4484 if (!t->size) { 4485 btf_verifier_log_type(env, t, "size == 0"); 4486 return -EINVAL; 4487 } 4488 4489 if (btf_type_kflag(t)) { 4490 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4491 return -EINVAL; 4492 } 4493 4494 if (!t->name_off || 4495 !btf_name_valid_section(env->btf, t->name_off)) { 4496 btf_verifier_log_type(env, t, "Invalid name"); 4497 return -EINVAL; 4498 } 4499 4500 btf_verifier_log_type(env, t, NULL); 4501 4502 for_each_vsi(i, t, vsi) { 4503 /* A var cannot be in type void */ 4504 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4505 btf_verifier_log_vsi(env, t, vsi, 4506 "Invalid type_id"); 4507 return -EINVAL; 4508 } 4509 4510 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4511 btf_verifier_log_vsi(env, t, vsi, 4512 "Invalid offset"); 4513 return -EINVAL; 4514 } 4515 4516 if (!vsi->size || vsi->size > t->size) { 4517 btf_verifier_log_vsi(env, t, vsi, 4518 "Invalid size"); 4519 return -EINVAL; 4520 } 4521 4522 last_vsi_end_off = vsi->offset + vsi->size; 4523 if (last_vsi_end_off > t->size) { 4524 btf_verifier_log_vsi(env, t, vsi, 4525 "Invalid offset+size"); 4526 return -EINVAL; 4527 } 4528 4529 btf_verifier_log_vsi(env, t, vsi, NULL); 4530 sum += vsi->size; 4531 } 4532 4533 if (t->size < sum) { 4534 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4535 return -EINVAL; 4536 } 4537 4538 return meta_needed; 4539 } 4540 4541 static int btf_datasec_resolve(struct btf_verifier_env *env, 4542 const struct resolve_vertex *v) 4543 { 4544 const struct btf_var_secinfo *vsi; 4545 struct btf *btf = env->btf; 4546 u16 i; 4547 4548 env->resolve_mode = RESOLVE_TBD; 4549 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4550 u32 var_type_id = vsi->type, type_id, type_size = 0; 4551 const struct btf_type *var_type = btf_type_by_id(env->btf, 4552 var_type_id); 4553 if (!var_type || !btf_type_is_var(var_type)) { 4554 btf_verifier_log_vsi(env, v->t, vsi, 4555 "Not a VAR kind member"); 4556 return -EINVAL; 4557 } 4558 4559 if (!env_type_is_resolve_sink(env, var_type) && 4560 !env_type_is_resolved(env, var_type_id)) { 4561 env_stack_set_next_member(env, i + 1); 4562 return env_stack_push(env, var_type, var_type_id); 4563 } 4564 4565 type_id = var_type->type; 4566 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4567 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4568 return -EINVAL; 4569 } 4570 4571 if (vsi->size < type_size) { 4572 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4573 return -EINVAL; 4574 } 4575 } 4576 4577 env_stack_pop_resolved(env, 0, 0); 4578 return 0; 4579 } 4580 4581 static void btf_datasec_log(struct btf_verifier_env *env, 4582 const struct btf_type *t) 4583 { 4584 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4585 } 4586 4587 static void btf_datasec_show(const struct btf *btf, 4588 const struct btf_type *t, u32 type_id, 4589 void *data, u8 bits_offset, 4590 struct btf_show *show) 4591 { 4592 const struct btf_var_secinfo *vsi; 4593 const struct btf_type *var; 4594 u32 i; 4595 4596 if (!btf_show_start_type(show, t, type_id, data)) 4597 return; 4598 4599 btf_show_type_value(show, "section (\"%s\") = {", 4600 __btf_name_by_offset(btf, t->name_off)); 4601 for_each_vsi(i, t, vsi) { 4602 var = btf_type_by_id(btf, vsi->type); 4603 if (i) 4604 btf_show(show, ","); 4605 btf_type_ops(var)->show(btf, var, vsi->type, 4606 data + vsi->offset, bits_offset, show); 4607 } 4608 btf_show_end_type(show); 4609 } 4610 4611 static const struct btf_kind_operations datasec_ops = { 4612 .check_meta = btf_datasec_check_meta, 4613 .resolve = btf_datasec_resolve, 4614 .check_member = btf_df_check_member, 4615 .check_kflag_member = btf_df_check_kflag_member, 4616 .log_details = btf_datasec_log, 4617 .show = btf_datasec_show, 4618 }; 4619 4620 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4621 const struct btf_type *t, 4622 u32 meta_left) 4623 { 4624 if (btf_type_vlen(t)) { 4625 btf_verifier_log_type(env, t, "vlen != 0"); 4626 return -EINVAL; 4627 } 4628 4629 if (btf_type_kflag(t)) { 4630 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4631 return -EINVAL; 4632 } 4633 4634 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4635 t->size != 16) { 4636 btf_verifier_log_type(env, t, "Invalid type_size"); 4637 return -EINVAL; 4638 } 4639 4640 btf_verifier_log_type(env, t, NULL); 4641 4642 return 0; 4643 } 4644 4645 static int btf_float_check_member(struct btf_verifier_env *env, 4646 const struct btf_type *struct_type, 4647 const struct btf_member *member, 4648 const struct btf_type *member_type) 4649 { 4650 u64 start_offset_bytes; 4651 u64 end_offset_bytes; 4652 u64 misalign_bits; 4653 u64 align_bytes; 4654 u64 align_bits; 4655 4656 /* Different architectures have different alignment requirements, so 4657 * here we check only for the reasonable minimum. This way we ensure 4658 * that types after CO-RE can pass the kernel BTF verifier. 4659 */ 4660 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4661 align_bits = align_bytes * BITS_PER_BYTE; 4662 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4663 if (misalign_bits) { 4664 btf_verifier_log_member(env, struct_type, member, 4665 "Member is not properly aligned"); 4666 return -EINVAL; 4667 } 4668 4669 start_offset_bytes = member->offset / BITS_PER_BYTE; 4670 end_offset_bytes = start_offset_bytes + member_type->size; 4671 if (end_offset_bytes > struct_type->size) { 4672 btf_verifier_log_member(env, struct_type, member, 4673 "Member exceeds struct_size"); 4674 return -EINVAL; 4675 } 4676 4677 return 0; 4678 } 4679 4680 static void btf_float_log(struct btf_verifier_env *env, 4681 const struct btf_type *t) 4682 { 4683 btf_verifier_log(env, "size=%u", t->size); 4684 } 4685 4686 static const struct btf_kind_operations float_ops = { 4687 .check_meta = btf_float_check_meta, 4688 .resolve = btf_df_resolve, 4689 .check_member = btf_float_check_member, 4690 .check_kflag_member = btf_generic_check_kflag_member, 4691 .log_details = btf_float_log, 4692 .show = btf_df_show, 4693 }; 4694 4695 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4696 const struct btf_type *t, 4697 u32 meta_left) 4698 { 4699 const struct btf_decl_tag *tag; 4700 u32 meta_needed = sizeof(*tag); 4701 s32 component_idx; 4702 const char *value; 4703 4704 if (meta_left < meta_needed) { 4705 btf_verifier_log_basic(env, t, 4706 "meta_left:%u meta_needed:%u", 4707 meta_left, meta_needed); 4708 return -EINVAL; 4709 } 4710 4711 value = btf_name_by_offset(env->btf, t->name_off); 4712 if (!value || !value[0]) { 4713 btf_verifier_log_type(env, t, "Invalid value"); 4714 return -EINVAL; 4715 } 4716 4717 if (btf_type_vlen(t)) { 4718 btf_verifier_log_type(env, t, "vlen != 0"); 4719 return -EINVAL; 4720 } 4721 4722 if (btf_type_kflag(t)) { 4723 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4724 return -EINVAL; 4725 } 4726 4727 component_idx = btf_type_decl_tag(t)->component_idx; 4728 if (component_idx < -1) { 4729 btf_verifier_log_type(env, t, "Invalid component_idx"); 4730 return -EINVAL; 4731 } 4732 4733 btf_verifier_log_type(env, t, NULL); 4734 4735 return meta_needed; 4736 } 4737 4738 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4739 const struct resolve_vertex *v) 4740 { 4741 const struct btf_type *next_type; 4742 const struct btf_type *t = v->t; 4743 u32 next_type_id = t->type; 4744 struct btf *btf = env->btf; 4745 s32 component_idx; 4746 u32 vlen; 4747 4748 next_type = btf_type_by_id(btf, next_type_id); 4749 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4750 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4751 return -EINVAL; 4752 } 4753 4754 if (!env_type_is_resolve_sink(env, next_type) && 4755 !env_type_is_resolved(env, next_type_id)) 4756 return env_stack_push(env, next_type, next_type_id); 4757 4758 component_idx = btf_type_decl_tag(t)->component_idx; 4759 if (component_idx != -1) { 4760 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4761 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4762 return -EINVAL; 4763 } 4764 4765 if (btf_type_is_struct(next_type)) { 4766 vlen = btf_type_vlen(next_type); 4767 } else { 4768 /* next_type should be a function */ 4769 next_type = btf_type_by_id(btf, next_type->type); 4770 vlen = btf_type_vlen(next_type); 4771 } 4772 4773 if ((u32)component_idx >= vlen) { 4774 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4775 return -EINVAL; 4776 } 4777 } 4778 4779 env_stack_pop_resolved(env, next_type_id, 0); 4780 4781 return 0; 4782 } 4783 4784 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4785 { 4786 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4787 btf_type_decl_tag(t)->component_idx); 4788 } 4789 4790 static const struct btf_kind_operations decl_tag_ops = { 4791 .check_meta = btf_decl_tag_check_meta, 4792 .resolve = btf_decl_tag_resolve, 4793 .check_member = btf_df_check_member, 4794 .check_kflag_member = btf_df_check_kflag_member, 4795 .log_details = btf_decl_tag_log, 4796 .show = btf_df_show, 4797 }; 4798 4799 static int btf_func_proto_check(struct btf_verifier_env *env, 4800 const struct btf_type *t) 4801 { 4802 const struct btf_type *ret_type; 4803 const struct btf_param *args; 4804 const struct btf *btf; 4805 u16 nr_args, i; 4806 int err; 4807 4808 btf = env->btf; 4809 args = (const struct btf_param *)(t + 1); 4810 nr_args = btf_type_vlen(t); 4811 4812 /* Check func return type which could be "void" (t->type == 0) */ 4813 if (t->type) { 4814 u32 ret_type_id = t->type; 4815 4816 ret_type = btf_type_by_id(btf, ret_type_id); 4817 if (!ret_type) { 4818 btf_verifier_log_type(env, t, "Invalid return type"); 4819 return -EINVAL; 4820 } 4821 4822 if (btf_type_is_resolve_source_only(ret_type)) { 4823 btf_verifier_log_type(env, t, "Invalid return type"); 4824 return -EINVAL; 4825 } 4826 4827 if (btf_type_needs_resolve(ret_type) && 4828 !env_type_is_resolved(env, ret_type_id)) { 4829 err = btf_resolve(env, ret_type, ret_type_id); 4830 if (err) 4831 return err; 4832 } 4833 4834 /* Ensure the return type is a type that has a size */ 4835 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 4836 btf_verifier_log_type(env, t, "Invalid return type"); 4837 return -EINVAL; 4838 } 4839 } 4840 4841 if (!nr_args) 4842 return 0; 4843 4844 /* Last func arg type_id could be 0 if it is a vararg */ 4845 if (!args[nr_args - 1].type) { 4846 if (args[nr_args - 1].name_off) { 4847 btf_verifier_log_type(env, t, "Invalid arg#%u", 4848 nr_args); 4849 return -EINVAL; 4850 } 4851 nr_args--; 4852 } 4853 4854 for (i = 0; i < nr_args; i++) { 4855 const struct btf_type *arg_type; 4856 u32 arg_type_id; 4857 4858 arg_type_id = args[i].type; 4859 arg_type = btf_type_by_id(btf, arg_type_id); 4860 if (!arg_type) { 4861 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4862 return -EINVAL; 4863 } 4864 4865 if (btf_type_is_resolve_source_only(arg_type)) { 4866 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4867 return -EINVAL; 4868 } 4869 4870 if (args[i].name_off && 4871 (!btf_name_offset_valid(btf, args[i].name_off) || 4872 !btf_name_valid_identifier(btf, args[i].name_off))) { 4873 btf_verifier_log_type(env, t, 4874 "Invalid arg#%u", i + 1); 4875 return -EINVAL; 4876 } 4877 4878 if (btf_type_needs_resolve(arg_type) && 4879 !env_type_is_resolved(env, arg_type_id)) { 4880 err = btf_resolve(env, arg_type, arg_type_id); 4881 if (err) 4882 return err; 4883 } 4884 4885 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 4886 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4887 return -EINVAL; 4888 } 4889 } 4890 4891 return 0; 4892 } 4893 4894 static int btf_func_check(struct btf_verifier_env *env, 4895 const struct btf_type *t) 4896 { 4897 const struct btf_type *proto_type; 4898 const struct btf_param *args; 4899 const struct btf *btf; 4900 u16 nr_args, i; 4901 4902 btf = env->btf; 4903 proto_type = btf_type_by_id(btf, t->type); 4904 4905 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 4906 btf_verifier_log_type(env, t, "Invalid type_id"); 4907 return -EINVAL; 4908 } 4909 4910 args = (const struct btf_param *)(proto_type + 1); 4911 nr_args = btf_type_vlen(proto_type); 4912 for (i = 0; i < nr_args; i++) { 4913 if (!args[i].name_off && args[i].type) { 4914 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4915 return -EINVAL; 4916 } 4917 } 4918 4919 return 0; 4920 } 4921 4922 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 4923 [BTF_KIND_INT] = &int_ops, 4924 [BTF_KIND_PTR] = &ptr_ops, 4925 [BTF_KIND_ARRAY] = &array_ops, 4926 [BTF_KIND_STRUCT] = &struct_ops, 4927 [BTF_KIND_UNION] = &struct_ops, 4928 [BTF_KIND_ENUM] = &enum_ops, 4929 [BTF_KIND_FWD] = &fwd_ops, 4930 [BTF_KIND_TYPEDEF] = &modifier_ops, 4931 [BTF_KIND_VOLATILE] = &modifier_ops, 4932 [BTF_KIND_CONST] = &modifier_ops, 4933 [BTF_KIND_RESTRICT] = &modifier_ops, 4934 [BTF_KIND_FUNC] = &func_ops, 4935 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 4936 [BTF_KIND_VAR] = &var_ops, 4937 [BTF_KIND_DATASEC] = &datasec_ops, 4938 [BTF_KIND_FLOAT] = &float_ops, 4939 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 4940 [BTF_KIND_TYPE_TAG] = &modifier_ops, 4941 [BTF_KIND_ENUM64] = &enum64_ops, 4942 }; 4943 4944 static s32 btf_check_meta(struct btf_verifier_env *env, 4945 const struct btf_type *t, 4946 u32 meta_left) 4947 { 4948 u32 saved_meta_left = meta_left; 4949 s32 var_meta_size; 4950 4951 if (meta_left < sizeof(*t)) { 4952 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 4953 env->log_type_id, meta_left, sizeof(*t)); 4954 return -EINVAL; 4955 } 4956 meta_left -= sizeof(*t); 4957 4958 if (t->info & ~BTF_INFO_MASK) { 4959 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 4960 env->log_type_id, t->info); 4961 return -EINVAL; 4962 } 4963 4964 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 4965 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 4966 btf_verifier_log(env, "[%u] Invalid kind:%u", 4967 env->log_type_id, BTF_INFO_KIND(t->info)); 4968 return -EINVAL; 4969 } 4970 4971 if (!btf_name_offset_valid(env->btf, t->name_off)) { 4972 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 4973 env->log_type_id, t->name_off); 4974 return -EINVAL; 4975 } 4976 4977 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 4978 if (var_meta_size < 0) 4979 return var_meta_size; 4980 4981 meta_left -= var_meta_size; 4982 4983 return saved_meta_left - meta_left; 4984 } 4985 4986 static int btf_check_all_metas(struct btf_verifier_env *env) 4987 { 4988 struct btf *btf = env->btf; 4989 struct btf_header *hdr; 4990 void *cur, *end; 4991 4992 hdr = &btf->hdr; 4993 cur = btf->nohdr_data + hdr->type_off; 4994 end = cur + hdr->type_len; 4995 4996 env->log_type_id = btf->base_btf ? btf->start_id : 1; 4997 while (cur < end) { 4998 struct btf_type *t = cur; 4999 s32 meta_size; 5000 5001 meta_size = btf_check_meta(env, t, end - cur); 5002 if (meta_size < 0) 5003 return meta_size; 5004 5005 btf_add_type(env, t); 5006 cur += meta_size; 5007 env->log_type_id++; 5008 } 5009 5010 return 0; 5011 } 5012 5013 static bool btf_resolve_valid(struct btf_verifier_env *env, 5014 const struct btf_type *t, 5015 u32 type_id) 5016 { 5017 struct btf *btf = env->btf; 5018 5019 if (!env_type_is_resolved(env, type_id)) 5020 return false; 5021 5022 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5023 return !btf_resolved_type_id(btf, type_id) && 5024 !btf_resolved_type_size(btf, type_id); 5025 5026 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5027 return btf_resolved_type_id(btf, type_id) && 5028 !btf_resolved_type_size(btf, type_id); 5029 5030 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5031 btf_type_is_var(t)) { 5032 t = btf_type_id_resolve(btf, &type_id); 5033 return t && 5034 !btf_type_is_modifier(t) && 5035 !btf_type_is_var(t) && 5036 !btf_type_is_datasec(t); 5037 } 5038 5039 if (btf_type_is_array(t)) { 5040 const struct btf_array *array = btf_type_array(t); 5041 const struct btf_type *elem_type; 5042 u32 elem_type_id = array->type; 5043 u32 elem_size; 5044 5045 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5046 return elem_type && !btf_type_is_modifier(elem_type) && 5047 (array->nelems * elem_size == 5048 btf_resolved_type_size(btf, type_id)); 5049 } 5050 5051 return false; 5052 } 5053 5054 static int btf_resolve(struct btf_verifier_env *env, 5055 const struct btf_type *t, u32 type_id) 5056 { 5057 u32 save_log_type_id = env->log_type_id; 5058 const struct resolve_vertex *v; 5059 int err = 0; 5060 5061 env->resolve_mode = RESOLVE_TBD; 5062 env_stack_push(env, t, type_id); 5063 while (!err && (v = env_stack_peak(env))) { 5064 env->log_type_id = v->type_id; 5065 err = btf_type_ops(v->t)->resolve(env, v); 5066 } 5067 5068 env->log_type_id = type_id; 5069 if (err == -E2BIG) { 5070 btf_verifier_log_type(env, t, 5071 "Exceeded max resolving depth:%u", 5072 MAX_RESOLVE_DEPTH); 5073 } else if (err == -EEXIST) { 5074 btf_verifier_log_type(env, t, "Loop detected"); 5075 } 5076 5077 /* Final sanity check */ 5078 if (!err && !btf_resolve_valid(env, t, type_id)) { 5079 btf_verifier_log_type(env, t, "Invalid resolve state"); 5080 err = -EINVAL; 5081 } 5082 5083 env->log_type_id = save_log_type_id; 5084 return err; 5085 } 5086 5087 static int btf_check_all_types(struct btf_verifier_env *env) 5088 { 5089 struct btf *btf = env->btf; 5090 const struct btf_type *t; 5091 u32 type_id, i; 5092 int err; 5093 5094 err = env_resolve_init(env); 5095 if (err) 5096 return err; 5097 5098 env->phase++; 5099 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5100 type_id = btf->start_id + i; 5101 t = btf_type_by_id(btf, type_id); 5102 5103 env->log_type_id = type_id; 5104 if (btf_type_needs_resolve(t) && 5105 !env_type_is_resolved(env, type_id)) { 5106 err = btf_resolve(env, t, type_id); 5107 if (err) 5108 return err; 5109 } 5110 5111 if (btf_type_is_func_proto(t)) { 5112 err = btf_func_proto_check(env, t); 5113 if (err) 5114 return err; 5115 } 5116 } 5117 5118 return 0; 5119 } 5120 5121 static int btf_parse_type_sec(struct btf_verifier_env *env) 5122 { 5123 const struct btf_header *hdr = &env->btf->hdr; 5124 int err; 5125 5126 /* Type section must align to 4 bytes */ 5127 if (hdr->type_off & (sizeof(u32) - 1)) { 5128 btf_verifier_log(env, "Unaligned type_off"); 5129 return -EINVAL; 5130 } 5131 5132 if (!env->btf->base_btf && !hdr->type_len) { 5133 btf_verifier_log(env, "No type found"); 5134 return -EINVAL; 5135 } 5136 5137 err = btf_check_all_metas(env); 5138 if (err) 5139 return err; 5140 5141 return btf_check_all_types(env); 5142 } 5143 5144 static int btf_parse_str_sec(struct btf_verifier_env *env) 5145 { 5146 const struct btf_header *hdr; 5147 struct btf *btf = env->btf; 5148 const char *start, *end; 5149 5150 hdr = &btf->hdr; 5151 start = btf->nohdr_data + hdr->str_off; 5152 end = start + hdr->str_len; 5153 5154 if (end != btf->data + btf->data_size) { 5155 btf_verifier_log(env, "String section is not at the end"); 5156 return -EINVAL; 5157 } 5158 5159 btf->strings = start; 5160 5161 if (btf->base_btf && !hdr->str_len) 5162 return 0; 5163 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5164 btf_verifier_log(env, "Invalid string section"); 5165 return -EINVAL; 5166 } 5167 if (!btf->base_btf && start[0]) { 5168 btf_verifier_log(env, "Invalid string section"); 5169 return -EINVAL; 5170 } 5171 5172 return 0; 5173 } 5174 5175 static const size_t btf_sec_info_offset[] = { 5176 offsetof(struct btf_header, type_off), 5177 offsetof(struct btf_header, str_off), 5178 }; 5179 5180 static int btf_sec_info_cmp(const void *a, const void *b) 5181 { 5182 const struct btf_sec_info *x = a; 5183 const struct btf_sec_info *y = b; 5184 5185 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5186 } 5187 5188 static int btf_check_sec_info(struct btf_verifier_env *env, 5189 u32 btf_data_size) 5190 { 5191 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5192 u32 total, expected_total, i; 5193 const struct btf_header *hdr; 5194 const struct btf *btf; 5195 5196 btf = env->btf; 5197 hdr = &btf->hdr; 5198 5199 /* Populate the secs from hdr */ 5200 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5201 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5202 btf_sec_info_offset[i]); 5203 5204 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5205 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5206 5207 /* Check for gaps and overlap among sections */ 5208 total = 0; 5209 expected_total = btf_data_size - hdr->hdr_len; 5210 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5211 if (expected_total < secs[i].off) { 5212 btf_verifier_log(env, "Invalid section offset"); 5213 return -EINVAL; 5214 } 5215 if (total < secs[i].off) { 5216 /* gap */ 5217 btf_verifier_log(env, "Unsupported section found"); 5218 return -EINVAL; 5219 } 5220 if (total > secs[i].off) { 5221 btf_verifier_log(env, "Section overlap found"); 5222 return -EINVAL; 5223 } 5224 if (expected_total - total < secs[i].len) { 5225 btf_verifier_log(env, 5226 "Total section length too long"); 5227 return -EINVAL; 5228 } 5229 total += secs[i].len; 5230 } 5231 5232 /* There is data other than hdr and known sections */ 5233 if (expected_total != total) { 5234 btf_verifier_log(env, "Unsupported section found"); 5235 return -EINVAL; 5236 } 5237 5238 return 0; 5239 } 5240 5241 static int btf_parse_hdr(struct btf_verifier_env *env) 5242 { 5243 u32 hdr_len, hdr_copy, btf_data_size; 5244 const struct btf_header *hdr; 5245 struct btf *btf; 5246 5247 btf = env->btf; 5248 btf_data_size = btf->data_size; 5249 5250 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5251 btf_verifier_log(env, "hdr_len not found"); 5252 return -EINVAL; 5253 } 5254 5255 hdr = btf->data; 5256 hdr_len = hdr->hdr_len; 5257 if (btf_data_size < hdr_len) { 5258 btf_verifier_log(env, "btf_header not found"); 5259 return -EINVAL; 5260 } 5261 5262 /* Ensure the unsupported header fields are zero */ 5263 if (hdr_len > sizeof(btf->hdr)) { 5264 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5265 u8 *end = btf->data + hdr_len; 5266 5267 for (; expected_zero < end; expected_zero++) { 5268 if (*expected_zero) { 5269 btf_verifier_log(env, "Unsupported btf_header"); 5270 return -E2BIG; 5271 } 5272 } 5273 } 5274 5275 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5276 memcpy(&btf->hdr, btf->data, hdr_copy); 5277 5278 hdr = &btf->hdr; 5279 5280 btf_verifier_log_hdr(env, btf_data_size); 5281 5282 if (hdr->magic != BTF_MAGIC) { 5283 btf_verifier_log(env, "Invalid magic"); 5284 return -EINVAL; 5285 } 5286 5287 if (hdr->version != BTF_VERSION) { 5288 btf_verifier_log(env, "Unsupported version"); 5289 return -ENOTSUPP; 5290 } 5291 5292 if (hdr->flags) { 5293 btf_verifier_log(env, "Unsupported flags"); 5294 return -ENOTSUPP; 5295 } 5296 5297 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5298 btf_verifier_log(env, "No data"); 5299 return -EINVAL; 5300 } 5301 5302 return btf_check_sec_info(env, btf_data_size); 5303 } 5304 5305 static const char *alloc_obj_fields[] = { 5306 "bpf_spin_lock", 5307 "bpf_list_head", 5308 "bpf_list_node", 5309 "bpf_rb_root", 5310 "bpf_rb_node", 5311 "bpf_refcount", 5312 }; 5313 5314 static struct btf_struct_metas * 5315 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5316 { 5317 union { 5318 struct btf_id_set set; 5319 struct { 5320 u32 _cnt; 5321 u32 _ids[ARRAY_SIZE(alloc_obj_fields)]; 5322 } _arr; 5323 } aof; 5324 struct btf_struct_metas *tab = NULL; 5325 int i, n, id, ret; 5326 5327 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5328 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5329 5330 memset(&aof, 0, sizeof(aof)); 5331 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5332 /* Try to find whether this special type exists in user BTF, and 5333 * if so remember its ID so we can easily find it among members 5334 * of structs that we iterate in the next loop. 5335 */ 5336 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5337 if (id < 0) 5338 continue; 5339 aof.set.ids[aof.set.cnt++] = id; 5340 } 5341 5342 if (!aof.set.cnt) 5343 return NULL; 5344 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL); 5345 5346 n = btf_nr_types(btf); 5347 for (i = 1; i < n; i++) { 5348 struct btf_struct_metas *new_tab; 5349 const struct btf_member *member; 5350 struct btf_struct_meta *type; 5351 struct btf_record *record; 5352 const struct btf_type *t; 5353 int j, tab_cnt; 5354 5355 t = btf_type_by_id(btf, i); 5356 if (!t) { 5357 ret = -EINVAL; 5358 goto free; 5359 } 5360 if (!__btf_type_is_struct(t)) 5361 continue; 5362 5363 cond_resched(); 5364 5365 for_each_member(j, t, member) { 5366 if (btf_id_set_contains(&aof.set, member->type)) 5367 goto parse; 5368 } 5369 continue; 5370 parse: 5371 tab_cnt = tab ? tab->cnt : 0; 5372 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5373 GFP_KERNEL | __GFP_NOWARN); 5374 if (!new_tab) { 5375 ret = -ENOMEM; 5376 goto free; 5377 } 5378 if (!tab) 5379 new_tab->cnt = 0; 5380 tab = new_tab; 5381 5382 type = &tab->types[tab->cnt]; 5383 type->btf_id = i; 5384 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5385 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size); 5386 /* The record cannot be unset, treat it as an error if so */ 5387 if (IS_ERR_OR_NULL(record)) { 5388 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5389 goto free; 5390 } 5391 type->record = record; 5392 tab->cnt++; 5393 } 5394 return tab; 5395 free: 5396 btf_struct_metas_free(tab); 5397 return ERR_PTR(ret); 5398 } 5399 5400 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5401 { 5402 struct btf_struct_metas *tab; 5403 5404 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5405 tab = btf->struct_meta_tab; 5406 if (!tab) 5407 return NULL; 5408 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5409 } 5410 5411 static int btf_check_type_tags(struct btf_verifier_env *env, 5412 struct btf *btf, int start_id) 5413 { 5414 int i, n, good_id = start_id - 1; 5415 bool in_tags; 5416 5417 n = btf_nr_types(btf); 5418 for (i = start_id; i < n; i++) { 5419 const struct btf_type *t; 5420 int chain_limit = 32; 5421 u32 cur_id = i; 5422 5423 t = btf_type_by_id(btf, i); 5424 if (!t) 5425 return -EINVAL; 5426 if (!btf_type_is_modifier(t)) 5427 continue; 5428 5429 cond_resched(); 5430 5431 in_tags = btf_type_is_type_tag(t); 5432 while (btf_type_is_modifier(t)) { 5433 if (!chain_limit--) { 5434 btf_verifier_log(env, "Max chain length or cycle detected"); 5435 return -ELOOP; 5436 } 5437 if (btf_type_is_type_tag(t)) { 5438 if (!in_tags) { 5439 btf_verifier_log(env, "Type tags don't precede modifiers"); 5440 return -EINVAL; 5441 } 5442 } else if (in_tags) { 5443 in_tags = false; 5444 } 5445 if (cur_id <= good_id) 5446 break; 5447 /* Move to next type */ 5448 cur_id = t->type; 5449 t = btf_type_by_id(btf, cur_id); 5450 if (!t) 5451 return -EINVAL; 5452 } 5453 good_id = i; 5454 } 5455 return 0; 5456 } 5457 5458 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5459 { 5460 u32 log_true_size; 5461 int err; 5462 5463 err = bpf_vlog_finalize(log, &log_true_size); 5464 5465 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5466 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5467 &log_true_size, sizeof(log_true_size))) 5468 err = -EFAULT; 5469 5470 return err; 5471 } 5472 5473 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5474 { 5475 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5476 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5477 struct btf_struct_metas *struct_meta_tab; 5478 struct btf_verifier_env *env = NULL; 5479 struct btf *btf = NULL; 5480 u8 *data; 5481 int err, ret; 5482 5483 if (attr->btf_size > BTF_MAX_SIZE) 5484 return ERR_PTR(-E2BIG); 5485 5486 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5487 if (!env) 5488 return ERR_PTR(-ENOMEM); 5489 5490 /* user could have requested verbose verifier output 5491 * and supplied buffer to store the verification trace 5492 */ 5493 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5494 log_ubuf, attr->btf_log_size); 5495 if (err) 5496 goto errout_free; 5497 5498 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5499 if (!btf) { 5500 err = -ENOMEM; 5501 goto errout; 5502 } 5503 env->btf = btf; 5504 5505 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5506 if (!data) { 5507 err = -ENOMEM; 5508 goto errout; 5509 } 5510 5511 btf->data = data; 5512 btf->data_size = attr->btf_size; 5513 5514 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5515 err = -EFAULT; 5516 goto errout; 5517 } 5518 5519 err = btf_parse_hdr(env); 5520 if (err) 5521 goto errout; 5522 5523 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5524 5525 err = btf_parse_str_sec(env); 5526 if (err) 5527 goto errout; 5528 5529 err = btf_parse_type_sec(env); 5530 if (err) 5531 goto errout; 5532 5533 err = btf_check_type_tags(env, btf, 1); 5534 if (err) 5535 goto errout; 5536 5537 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5538 if (IS_ERR(struct_meta_tab)) { 5539 err = PTR_ERR(struct_meta_tab); 5540 goto errout; 5541 } 5542 btf->struct_meta_tab = struct_meta_tab; 5543 5544 if (struct_meta_tab) { 5545 int i; 5546 5547 for (i = 0; i < struct_meta_tab->cnt; i++) { 5548 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5549 if (err < 0) 5550 goto errout_meta; 5551 } 5552 } 5553 5554 err = finalize_log(&env->log, uattr, uattr_size); 5555 if (err) 5556 goto errout_free; 5557 5558 btf_verifier_env_free(env); 5559 refcount_set(&btf->refcnt, 1); 5560 return btf; 5561 5562 errout_meta: 5563 btf_free_struct_meta_tab(btf); 5564 errout: 5565 /* overwrite err with -ENOSPC or -EFAULT */ 5566 ret = finalize_log(&env->log, uattr, uattr_size); 5567 if (ret) 5568 err = ret; 5569 errout_free: 5570 btf_verifier_env_free(env); 5571 if (btf) 5572 btf_free(btf); 5573 return ERR_PTR(err); 5574 } 5575 5576 extern char __weak __start_BTF[]; 5577 extern char __weak __stop_BTF[]; 5578 extern struct btf *btf_vmlinux; 5579 5580 #define BPF_MAP_TYPE(_id, _ops) 5581 #define BPF_LINK_TYPE(_id, _name) 5582 static union { 5583 struct bpf_ctx_convert { 5584 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5585 prog_ctx_type _id##_prog; \ 5586 kern_ctx_type _id##_kern; 5587 #include <linux/bpf_types.h> 5588 #undef BPF_PROG_TYPE 5589 } *__t; 5590 /* 't' is written once under lock. Read many times. */ 5591 const struct btf_type *t; 5592 } bpf_ctx_convert; 5593 enum { 5594 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5595 __ctx_convert##_id, 5596 #include <linux/bpf_types.h> 5597 #undef BPF_PROG_TYPE 5598 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5599 }; 5600 static u8 bpf_ctx_convert_map[] = { 5601 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5602 [_id] = __ctx_convert##_id, 5603 #include <linux/bpf_types.h> 5604 #undef BPF_PROG_TYPE 5605 0, /* avoid empty array */ 5606 }; 5607 #undef BPF_MAP_TYPE 5608 #undef BPF_LINK_TYPE 5609 5610 const struct btf_member * 5611 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5612 const struct btf_type *t, enum bpf_prog_type prog_type, 5613 int arg) 5614 { 5615 const struct btf_type *conv_struct; 5616 const struct btf_type *ctx_struct; 5617 const struct btf_member *ctx_type; 5618 const char *tname, *ctx_tname; 5619 5620 conv_struct = bpf_ctx_convert.t; 5621 if (!conv_struct) { 5622 bpf_log(log, "btf_vmlinux is malformed\n"); 5623 return NULL; 5624 } 5625 t = btf_type_by_id(btf, t->type); 5626 while (btf_type_is_modifier(t)) 5627 t = btf_type_by_id(btf, t->type); 5628 if (!btf_type_is_struct(t)) { 5629 /* Only pointer to struct is supported for now. 5630 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5631 * is not supported yet. 5632 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5633 */ 5634 return NULL; 5635 } 5636 tname = btf_name_by_offset(btf, t->name_off); 5637 if (!tname) { 5638 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5639 return NULL; 5640 } 5641 /* prog_type is valid bpf program type. No need for bounds check. */ 5642 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5643 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 5644 * Like 'struct __sk_buff' 5645 */ 5646 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 5647 if (!ctx_struct) 5648 /* should not happen */ 5649 return NULL; 5650 again: 5651 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 5652 if (!ctx_tname) { 5653 /* should not happen */ 5654 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5655 return NULL; 5656 } 5657 /* only compare that prog's ctx type name is the same as 5658 * kernel expects. No need to compare field by field. 5659 * It's ok for bpf prog to do: 5660 * struct __sk_buff {}; 5661 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5662 * { // no fields of skb are ever used } 5663 */ 5664 if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5665 return ctx_type; 5666 if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5667 return ctx_type; 5668 if (strcmp(ctx_tname, tname)) { 5669 /* bpf_user_pt_regs_t is a typedef, so resolve it to 5670 * underlying struct and check name again 5671 */ 5672 if (!btf_type_is_modifier(ctx_struct)) 5673 return NULL; 5674 while (btf_type_is_modifier(ctx_struct)) 5675 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type); 5676 goto again; 5677 } 5678 return ctx_type; 5679 } 5680 5681 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 5682 struct btf *btf, 5683 const struct btf_type *t, 5684 enum bpf_prog_type prog_type, 5685 int arg) 5686 { 5687 const struct btf_member *prog_ctx_type, *kern_ctx_type; 5688 5689 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 5690 if (!prog_ctx_type) 5691 return -ENOENT; 5692 kern_ctx_type = prog_ctx_type + 1; 5693 return kern_ctx_type->type; 5694 } 5695 5696 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 5697 { 5698 const struct btf_member *kctx_member; 5699 const struct btf_type *conv_struct; 5700 const struct btf_type *kctx_type; 5701 u32 kctx_type_id; 5702 5703 conv_struct = bpf_ctx_convert.t; 5704 /* get member for kernel ctx type */ 5705 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5706 kctx_type_id = kctx_member->type; 5707 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 5708 if (!btf_type_is_struct(kctx_type)) { 5709 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 5710 return -EINVAL; 5711 } 5712 5713 return kctx_type_id; 5714 } 5715 5716 BTF_ID_LIST(bpf_ctx_convert_btf_id) 5717 BTF_ID(struct, bpf_ctx_convert) 5718 5719 struct btf *btf_parse_vmlinux(void) 5720 { 5721 struct btf_verifier_env *env = NULL; 5722 struct bpf_verifier_log *log; 5723 struct btf *btf = NULL; 5724 int err; 5725 5726 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5727 if (!env) 5728 return ERR_PTR(-ENOMEM); 5729 5730 log = &env->log; 5731 log->level = BPF_LOG_KERNEL; 5732 5733 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5734 if (!btf) { 5735 err = -ENOMEM; 5736 goto errout; 5737 } 5738 env->btf = btf; 5739 5740 btf->data = __start_BTF; 5741 btf->data_size = __stop_BTF - __start_BTF; 5742 btf->kernel_btf = true; 5743 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 5744 5745 err = btf_parse_hdr(env); 5746 if (err) 5747 goto errout; 5748 5749 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5750 5751 err = btf_parse_str_sec(env); 5752 if (err) 5753 goto errout; 5754 5755 err = btf_check_all_metas(env); 5756 if (err) 5757 goto errout; 5758 5759 err = btf_check_type_tags(env, btf, 1); 5760 if (err) 5761 goto errout; 5762 5763 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 5764 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 5765 5766 bpf_struct_ops_init(btf, log); 5767 5768 refcount_set(&btf->refcnt, 1); 5769 5770 err = btf_alloc_id(btf); 5771 if (err) 5772 goto errout; 5773 5774 btf_verifier_env_free(env); 5775 return btf; 5776 5777 errout: 5778 btf_verifier_env_free(env); 5779 if (btf) { 5780 kvfree(btf->types); 5781 kfree(btf); 5782 } 5783 return ERR_PTR(err); 5784 } 5785 5786 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 5787 5788 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 5789 { 5790 struct btf_verifier_env *env = NULL; 5791 struct bpf_verifier_log *log; 5792 struct btf *btf = NULL, *base_btf; 5793 int err; 5794 5795 base_btf = bpf_get_btf_vmlinux(); 5796 if (IS_ERR(base_btf)) 5797 return base_btf; 5798 if (!base_btf) 5799 return ERR_PTR(-EINVAL); 5800 5801 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5802 if (!env) 5803 return ERR_PTR(-ENOMEM); 5804 5805 log = &env->log; 5806 log->level = BPF_LOG_KERNEL; 5807 5808 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5809 if (!btf) { 5810 err = -ENOMEM; 5811 goto errout; 5812 } 5813 env->btf = btf; 5814 5815 btf->base_btf = base_btf; 5816 btf->start_id = base_btf->nr_types; 5817 btf->start_str_off = base_btf->hdr.str_len; 5818 btf->kernel_btf = true; 5819 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 5820 5821 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 5822 if (!btf->data) { 5823 err = -ENOMEM; 5824 goto errout; 5825 } 5826 memcpy(btf->data, data, data_size); 5827 btf->data_size = data_size; 5828 5829 err = btf_parse_hdr(env); 5830 if (err) 5831 goto errout; 5832 5833 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5834 5835 err = btf_parse_str_sec(env); 5836 if (err) 5837 goto errout; 5838 5839 err = btf_check_all_metas(env); 5840 if (err) 5841 goto errout; 5842 5843 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 5844 if (err) 5845 goto errout; 5846 5847 btf_verifier_env_free(env); 5848 refcount_set(&btf->refcnt, 1); 5849 return btf; 5850 5851 errout: 5852 btf_verifier_env_free(env); 5853 if (btf) { 5854 kvfree(btf->data); 5855 kvfree(btf->types); 5856 kfree(btf); 5857 } 5858 return ERR_PTR(err); 5859 } 5860 5861 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 5862 5863 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 5864 { 5865 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5866 5867 if (tgt_prog) 5868 return tgt_prog->aux->btf; 5869 else 5870 return prog->aux->attach_btf; 5871 } 5872 5873 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 5874 { 5875 /* skip modifiers */ 5876 t = btf_type_skip_modifiers(btf, t->type, NULL); 5877 5878 return btf_type_is_int(t); 5879 } 5880 5881 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 5882 int off) 5883 { 5884 const struct btf_param *args; 5885 const struct btf_type *t; 5886 u32 offset = 0, nr_args; 5887 int i; 5888 5889 if (!func_proto) 5890 return off / 8; 5891 5892 nr_args = btf_type_vlen(func_proto); 5893 args = (const struct btf_param *)(func_proto + 1); 5894 for (i = 0; i < nr_args; i++) { 5895 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 5896 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5897 if (off < offset) 5898 return i; 5899 } 5900 5901 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 5902 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5903 if (off < offset) 5904 return nr_args; 5905 5906 return nr_args + 1; 5907 } 5908 5909 static bool prog_args_trusted(const struct bpf_prog *prog) 5910 { 5911 enum bpf_attach_type atype = prog->expected_attach_type; 5912 5913 switch (prog->type) { 5914 case BPF_PROG_TYPE_TRACING: 5915 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 5916 case BPF_PROG_TYPE_LSM: 5917 return bpf_lsm_is_trusted(prog); 5918 case BPF_PROG_TYPE_STRUCT_OPS: 5919 return true; 5920 default: 5921 return false; 5922 } 5923 } 5924 5925 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 5926 const struct bpf_prog *prog, 5927 struct bpf_insn_access_aux *info) 5928 { 5929 const struct btf_type *t = prog->aux->attach_func_proto; 5930 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5931 struct btf *btf = bpf_prog_get_target_btf(prog); 5932 const char *tname = prog->aux->attach_func_name; 5933 struct bpf_verifier_log *log = info->log; 5934 const struct btf_param *args; 5935 const char *tag_value; 5936 u32 nr_args, arg; 5937 int i, ret; 5938 5939 if (off % 8) { 5940 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 5941 tname, off); 5942 return false; 5943 } 5944 arg = get_ctx_arg_idx(btf, t, off); 5945 args = (const struct btf_param *)(t + 1); 5946 /* if (t == NULL) Fall back to default BPF prog with 5947 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 5948 */ 5949 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 5950 if (prog->aux->attach_btf_trace) { 5951 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 5952 args++; 5953 nr_args--; 5954 } 5955 5956 if (arg > nr_args) { 5957 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5958 tname, arg + 1); 5959 return false; 5960 } 5961 5962 if (arg == nr_args) { 5963 switch (prog->expected_attach_type) { 5964 case BPF_LSM_CGROUP: 5965 case BPF_LSM_MAC: 5966 case BPF_TRACE_FEXIT: 5967 /* When LSM programs are attached to void LSM hooks 5968 * they use FEXIT trampolines and when attached to 5969 * int LSM hooks, they use MODIFY_RETURN trampolines. 5970 * 5971 * While the LSM programs are BPF_MODIFY_RETURN-like 5972 * the check: 5973 * 5974 * if (ret_type != 'int') 5975 * return -EINVAL; 5976 * 5977 * is _not_ done here. This is still safe as LSM hooks 5978 * have only void and int return types. 5979 */ 5980 if (!t) 5981 return true; 5982 t = btf_type_by_id(btf, t->type); 5983 break; 5984 case BPF_MODIFY_RETURN: 5985 /* For now the BPF_MODIFY_RETURN can only be attached to 5986 * functions that return an int. 5987 */ 5988 if (!t) 5989 return false; 5990 5991 t = btf_type_skip_modifiers(btf, t->type, NULL); 5992 if (!btf_type_is_small_int(t)) { 5993 bpf_log(log, 5994 "ret type %s not allowed for fmod_ret\n", 5995 btf_type_str(t)); 5996 return false; 5997 } 5998 break; 5999 default: 6000 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6001 tname, arg + 1); 6002 return false; 6003 } 6004 } else { 6005 if (!t) 6006 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6007 return true; 6008 t = btf_type_by_id(btf, args[arg].type); 6009 } 6010 6011 /* skip modifiers */ 6012 while (btf_type_is_modifier(t)) 6013 t = btf_type_by_id(btf, t->type); 6014 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6015 /* accessing a scalar */ 6016 return true; 6017 if (!btf_type_is_ptr(t)) { 6018 bpf_log(log, 6019 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6020 tname, arg, 6021 __btf_name_by_offset(btf, t->name_off), 6022 btf_type_str(t)); 6023 return false; 6024 } 6025 6026 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6027 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6028 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6029 u32 type, flag; 6030 6031 type = base_type(ctx_arg_info->reg_type); 6032 flag = type_flag(ctx_arg_info->reg_type); 6033 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6034 (flag & PTR_MAYBE_NULL)) { 6035 info->reg_type = ctx_arg_info->reg_type; 6036 return true; 6037 } 6038 } 6039 6040 if (t->type == 0) 6041 /* This is a pointer to void. 6042 * It is the same as scalar from the verifier safety pov. 6043 * No further pointer walking is allowed. 6044 */ 6045 return true; 6046 6047 if (is_int_ptr(btf, t)) 6048 return true; 6049 6050 /* this is a pointer to another type */ 6051 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6052 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6053 6054 if (ctx_arg_info->offset == off) { 6055 if (!ctx_arg_info->btf_id) { 6056 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6057 return false; 6058 } 6059 6060 info->reg_type = ctx_arg_info->reg_type; 6061 info->btf = btf_vmlinux; 6062 info->btf_id = ctx_arg_info->btf_id; 6063 return true; 6064 } 6065 } 6066 6067 info->reg_type = PTR_TO_BTF_ID; 6068 if (prog_args_trusted(prog)) 6069 info->reg_type |= PTR_TRUSTED; 6070 6071 if (tgt_prog) { 6072 enum bpf_prog_type tgt_type; 6073 6074 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6075 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6076 else 6077 tgt_type = tgt_prog->type; 6078 6079 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6080 if (ret > 0) { 6081 info->btf = btf_vmlinux; 6082 info->btf_id = ret; 6083 return true; 6084 } else { 6085 return false; 6086 } 6087 } 6088 6089 info->btf = btf; 6090 info->btf_id = t->type; 6091 t = btf_type_by_id(btf, t->type); 6092 6093 if (btf_type_is_type_tag(t)) { 6094 tag_value = __btf_name_by_offset(btf, t->name_off); 6095 if (strcmp(tag_value, "user") == 0) 6096 info->reg_type |= MEM_USER; 6097 if (strcmp(tag_value, "percpu") == 0) 6098 info->reg_type |= MEM_PERCPU; 6099 } 6100 6101 /* skip modifiers */ 6102 while (btf_type_is_modifier(t)) { 6103 info->btf_id = t->type; 6104 t = btf_type_by_id(btf, t->type); 6105 } 6106 if (!btf_type_is_struct(t)) { 6107 bpf_log(log, 6108 "func '%s' arg%d type %s is not a struct\n", 6109 tname, arg, btf_type_str(t)); 6110 return false; 6111 } 6112 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6113 tname, arg, info->btf_id, btf_type_str(t), 6114 __btf_name_by_offset(btf, t->name_off)); 6115 return true; 6116 } 6117 6118 enum bpf_struct_walk_result { 6119 /* < 0 error */ 6120 WALK_SCALAR = 0, 6121 WALK_PTR, 6122 WALK_STRUCT, 6123 }; 6124 6125 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6126 const struct btf_type *t, int off, int size, 6127 u32 *next_btf_id, enum bpf_type_flag *flag, 6128 const char **field_name) 6129 { 6130 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6131 const struct btf_type *mtype, *elem_type = NULL; 6132 const struct btf_member *member; 6133 const char *tname, *mname, *tag_value; 6134 u32 vlen, elem_id, mid; 6135 6136 *flag = 0; 6137 again: 6138 tname = __btf_name_by_offset(btf, t->name_off); 6139 if (!btf_type_is_struct(t)) { 6140 bpf_log(log, "Type '%s' is not a struct\n", tname); 6141 return -EINVAL; 6142 } 6143 6144 vlen = btf_type_vlen(t); 6145 if (off + size > t->size) { 6146 /* If the last element is a variable size array, we may 6147 * need to relax the rule. 6148 */ 6149 struct btf_array *array_elem; 6150 6151 if (vlen == 0) 6152 goto error; 6153 6154 member = btf_type_member(t) + vlen - 1; 6155 mtype = btf_type_skip_modifiers(btf, member->type, 6156 NULL); 6157 if (!btf_type_is_array(mtype)) 6158 goto error; 6159 6160 array_elem = (struct btf_array *)(mtype + 1); 6161 if (array_elem->nelems != 0) 6162 goto error; 6163 6164 moff = __btf_member_bit_offset(t, member) / 8; 6165 if (off < moff) 6166 goto error; 6167 6168 /* allow structure and integer */ 6169 t = btf_type_skip_modifiers(btf, array_elem->type, 6170 NULL); 6171 6172 if (btf_type_is_int(t)) 6173 return WALK_SCALAR; 6174 6175 if (!btf_type_is_struct(t)) 6176 goto error; 6177 6178 off = (off - moff) % t->size; 6179 goto again; 6180 6181 error: 6182 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6183 tname, off, size); 6184 return -EACCES; 6185 } 6186 6187 for_each_member(i, t, member) { 6188 /* offset of the field in bytes */ 6189 moff = __btf_member_bit_offset(t, member) / 8; 6190 if (off + size <= moff) 6191 /* won't find anything, field is already too far */ 6192 break; 6193 6194 if (__btf_member_bitfield_size(t, member)) { 6195 u32 end_bit = __btf_member_bit_offset(t, member) + 6196 __btf_member_bitfield_size(t, member); 6197 6198 /* off <= moff instead of off == moff because clang 6199 * does not generate a BTF member for anonymous 6200 * bitfield like the ":16" here: 6201 * struct { 6202 * int :16; 6203 * int x:8; 6204 * }; 6205 */ 6206 if (off <= moff && 6207 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6208 return WALK_SCALAR; 6209 6210 /* off may be accessing a following member 6211 * 6212 * or 6213 * 6214 * Doing partial access at either end of this 6215 * bitfield. Continue on this case also to 6216 * treat it as not accessing this bitfield 6217 * and eventually error out as field not 6218 * found to keep it simple. 6219 * It could be relaxed if there was a legit 6220 * partial access case later. 6221 */ 6222 continue; 6223 } 6224 6225 /* In case of "off" is pointing to holes of a struct */ 6226 if (off < moff) 6227 break; 6228 6229 /* type of the field */ 6230 mid = member->type; 6231 mtype = btf_type_by_id(btf, member->type); 6232 mname = __btf_name_by_offset(btf, member->name_off); 6233 6234 mtype = __btf_resolve_size(btf, mtype, &msize, 6235 &elem_type, &elem_id, &total_nelems, 6236 &mid); 6237 if (IS_ERR(mtype)) { 6238 bpf_log(log, "field %s doesn't have size\n", mname); 6239 return -EFAULT; 6240 } 6241 6242 mtrue_end = moff + msize; 6243 if (off >= mtrue_end) 6244 /* no overlap with member, keep iterating */ 6245 continue; 6246 6247 if (btf_type_is_array(mtype)) { 6248 u32 elem_idx; 6249 6250 /* __btf_resolve_size() above helps to 6251 * linearize a multi-dimensional array. 6252 * 6253 * The logic here is treating an array 6254 * in a struct as the following way: 6255 * 6256 * struct outer { 6257 * struct inner array[2][2]; 6258 * }; 6259 * 6260 * looks like: 6261 * 6262 * struct outer { 6263 * struct inner array_elem0; 6264 * struct inner array_elem1; 6265 * struct inner array_elem2; 6266 * struct inner array_elem3; 6267 * }; 6268 * 6269 * When accessing outer->array[1][0], it moves 6270 * moff to "array_elem2", set mtype to 6271 * "struct inner", and msize also becomes 6272 * sizeof(struct inner). Then most of the 6273 * remaining logic will fall through without 6274 * caring the current member is an array or 6275 * not. 6276 * 6277 * Unlike mtype/msize/moff, mtrue_end does not 6278 * change. The naming difference ("_true") tells 6279 * that it is not always corresponding to 6280 * the current mtype/msize/moff. 6281 * It is the true end of the current 6282 * member (i.e. array in this case). That 6283 * will allow an int array to be accessed like 6284 * a scratch space, 6285 * i.e. allow access beyond the size of 6286 * the array's element as long as it is 6287 * within the mtrue_end boundary. 6288 */ 6289 6290 /* skip empty array */ 6291 if (moff == mtrue_end) 6292 continue; 6293 6294 msize /= total_nelems; 6295 elem_idx = (off - moff) / msize; 6296 moff += elem_idx * msize; 6297 mtype = elem_type; 6298 mid = elem_id; 6299 } 6300 6301 /* the 'off' we're looking for is either equal to start 6302 * of this field or inside of this struct 6303 */ 6304 if (btf_type_is_struct(mtype)) { 6305 if (BTF_INFO_KIND(mtype->info) == BTF_KIND_UNION && 6306 btf_type_vlen(mtype) != 1) 6307 /* 6308 * walking unions yields untrusted pointers 6309 * with exception of __bpf_md_ptr and other 6310 * unions with a single member 6311 */ 6312 *flag |= PTR_UNTRUSTED; 6313 6314 /* our field must be inside that union or struct */ 6315 t = mtype; 6316 6317 /* return if the offset matches the member offset */ 6318 if (off == moff) { 6319 *next_btf_id = mid; 6320 return WALK_STRUCT; 6321 } 6322 6323 /* adjust offset we're looking for */ 6324 off -= moff; 6325 goto again; 6326 } 6327 6328 if (btf_type_is_ptr(mtype)) { 6329 const struct btf_type *stype, *t; 6330 enum bpf_type_flag tmp_flag = 0; 6331 u32 id; 6332 6333 if (msize != size || off != moff) { 6334 bpf_log(log, 6335 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 6336 mname, moff, tname, off, size); 6337 return -EACCES; 6338 } 6339 6340 /* check type tag */ 6341 t = btf_type_by_id(btf, mtype->type); 6342 if (btf_type_is_type_tag(t)) { 6343 tag_value = __btf_name_by_offset(btf, t->name_off); 6344 /* check __user tag */ 6345 if (strcmp(tag_value, "user") == 0) 6346 tmp_flag = MEM_USER; 6347 /* check __percpu tag */ 6348 if (strcmp(tag_value, "percpu") == 0) 6349 tmp_flag = MEM_PERCPU; 6350 /* check __rcu tag */ 6351 if (strcmp(tag_value, "rcu") == 0) 6352 tmp_flag = MEM_RCU; 6353 } 6354 6355 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 6356 if (btf_type_is_struct(stype)) { 6357 *next_btf_id = id; 6358 *flag |= tmp_flag; 6359 if (field_name) 6360 *field_name = mname; 6361 return WALK_PTR; 6362 } 6363 } 6364 6365 /* Allow more flexible access within an int as long as 6366 * it is within mtrue_end. 6367 * Since mtrue_end could be the end of an array, 6368 * that also allows using an array of int as a scratch 6369 * space. e.g. skb->cb[]. 6370 */ 6371 if (off + size > mtrue_end) { 6372 bpf_log(log, 6373 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 6374 mname, mtrue_end, tname, off, size); 6375 return -EACCES; 6376 } 6377 6378 return WALK_SCALAR; 6379 } 6380 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 6381 return -EINVAL; 6382 } 6383 6384 int btf_struct_access(struct bpf_verifier_log *log, 6385 const struct bpf_reg_state *reg, 6386 int off, int size, enum bpf_access_type atype __maybe_unused, 6387 u32 *next_btf_id, enum bpf_type_flag *flag, 6388 const char **field_name) 6389 { 6390 const struct btf *btf = reg->btf; 6391 enum bpf_type_flag tmp_flag = 0; 6392 const struct btf_type *t; 6393 u32 id = reg->btf_id; 6394 int err; 6395 6396 while (type_is_alloc(reg->type)) { 6397 struct btf_struct_meta *meta; 6398 struct btf_record *rec; 6399 int i; 6400 6401 meta = btf_find_struct_meta(btf, id); 6402 if (!meta) 6403 break; 6404 rec = meta->record; 6405 for (i = 0; i < rec->cnt; i++) { 6406 struct btf_field *field = &rec->fields[i]; 6407 u32 offset = field->offset; 6408 if (off < offset + btf_field_type_size(field->type) && offset < off + size) { 6409 bpf_log(log, 6410 "direct access to %s is disallowed\n", 6411 btf_field_type_name(field->type)); 6412 return -EACCES; 6413 } 6414 } 6415 break; 6416 } 6417 6418 t = btf_type_by_id(btf, id); 6419 do { 6420 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 6421 6422 switch (err) { 6423 case WALK_PTR: 6424 /* For local types, the destination register cannot 6425 * become a pointer again. 6426 */ 6427 if (type_is_alloc(reg->type)) 6428 return SCALAR_VALUE; 6429 /* If we found the pointer or scalar on t+off, 6430 * we're done. 6431 */ 6432 *next_btf_id = id; 6433 *flag = tmp_flag; 6434 return PTR_TO_BTF_ID; 6435 case WALK_SCALAR: 6436 return SCALAR_VALUE; 6437 case WALK_STRUCT: 6438 /* We found nested struct, so continue the search 6439 * by diving in it. At this point the offset is 6440 * aligned with the new type, so set it to 0. 6441 */ 6442 t = btf_type_by_id(btf, id); 6443 off = 0; 6444 break; 6445 default: 6446 /* It's either error or unknown return value.. 6447 * scream and leave. 6448 */ 6449 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 6450 return -EINVAL; 6451 return err; 6452 } 6453 } while (t); 6454 6455 return -EINVAL; 6456 } 6457 6458 /* Check that two BTF types, each specified as an BTF object + id, are exactly 6459 * the same. Trivial ID check is not enough due to module BTFs, because we can 6460 * end up with two different module BTFs, but IDs point to the common type in 6461 * vmlinux BTF. 6462 */ 6463 bool btf_types_are_same(const struct btf *btf1, u32 id1, 6464 const struct btf *btf2, u32 id2) 6465 { 6466 if (id1 != id2) 6467 return false; 6468 if (btf1 == btf2) 6469 return true; 6470 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 6471 } 6472 6473 bool btf_struct_ids_match(struct bpf_verifier_log *log, 6474 const struct btf *btf, u32 id, int off, 6475 const struct btf *need_btf, u32 need_type_id, 6476 bool strict) 6477 { 6478 const struct btf_type *type; 6479 enum bpf_type_flag flag; 6480 int err; 6481 6482 /* Are we already done? */ 6483 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 6484 return true; 6485 /* In case of strict type match, we do not walk struct, the top level 6486 * type match must succeed. When strict is true, off should have already 6487 * been 0. 6488 */ 6489 if (strict) 6490 return false; 6491 again: 6492 type = btf_type_by_id(btf, id); 6493 if (!type) 6494 return false; 6495 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 6496 if (err != WALK_STRUCT) 6497 return false; 6498 6499 /* We found nested struct object. If it matches 6500 * the requested ID, we're done. Otherwise let's 6501 * continue the search with offset 0 in the new 6502 * type. 6503 */ 6504 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 6505 off = 0; 6506 goto again; 6507 } 6508 6509 return true; 6510 } 6511 6512 static int __get_type_size(struct btf *btf, u32 btf_id, 6513 const struct btf_type **ret_type) 6514 { 6515 const struct btf_type *t; 6516 6517 *ret_type = btf_type_by_id(btf, 0); 6518 if (!btf_id) 6519 /* void */ 6520 return 0; 6521 t = btf_type_by_id(btf, btf_id); 6522 while (t && btf_type_is_modifier(t)) 6523 t = btf_type_by_id(btf, t->type); 6524 if (!t) 6525 return -EINVAL; 6526 *ret_type = t; 6527 if (btf_type_is_ptr(t)) 6528 /* kernel size of pointer. Not BPF's size of pointer*/ 6529 return sizeof(void *); 6530 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6531 return t->size; 6532 return -EINVAL; 6533 } 6534 6535 static u8 __get_type_fmodel_flags(const struct btf_type *t) 6536 { 6537 u8 flags = 0; 6538 6539 if (__btf_type_is_struct(t)) 6540 flags |= BTF_FMODEL_STRUCT_ARG; 6541 if (btf_type_is_signed_int(t)) 6542 flags |= BTF_FMODEL_SIGNED_ARG; 6543 6544 return flags; 6545 } 6546 6547 int btf_distill_func_proto(struct bpf_verifier_log *log, 6548 struct btf *btf, 6549 const struct btf_type *func, 6550 const char *tname, 6551 struct btf_func_model *m) 6552 { 6553 const struct btf_param *args; 6554 const struct btf_type *t; 6555 u32 i, nargs; 6556 int ret; 6557 6558 if (!func) { 6559 /* BTF function prototype doesn't match the verifier types. 6560 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 6561 */ 6562 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6563 m->arg_size[i] = 8; 6564 m->arg_flags[i] = 0; 6565 } 6566 m->ret_size = 8; 6567 m->ret_flags = 0; 6568 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 6569 return 0; 6570 } 6571 args = (const struct btf_param *)(func + 1); 6572 nargs = btf_type_vlen(func); 6573 if (nargs > MAX_BPF_FUNC_ARGS) { 6574 bpf_log(log, 6575 "The function %s has %d arguments. Too many.\n", 6576 tname, nargs); 6577 return -EINVAL; 6578 } 6579 ret = __get_type_size(btf, func->type, &t); 6580 if (ret < 0 || __btf_type_is_struct(t)) { 6581 bpf_log(log, 6582 "The function %s return type %s is unsupported.\n", 6583 tname, btf_type_str(t)); 6584 return -EINVAL; 6585 } 6586 m->ret_size = ret; 6587 m->ret_flags = __get_type_fmodel_flags(t); 6588 6589 for (i = 0; i < nargs; i++) { 6590 if (i == nargs - 1 && args[i].type == 0) { 6591 bpf_log(log, 6592 "The function %s with variable args is unsupported.\n", 6593 tname); 6594 return -EINVAL; 6595 } 6596 ret = __get_type_size(btf, args[i].type, &t); 6597 6598 /* No support of struct argument size greater than 16 bytes */ 6599 if (ret < 0 || ret > 16) { 6600 bpf_log(log, 6601 "The function %s arg%d type %s is unsupported.\n", 6602 tname, i, btf_type_str(t)); 6603 return -EINVAL; 6604 } 6605 if (ret == 0) { 6606 bpf_log(log, 6607 "The function %s has malformed void argument.\n", 6608 tname); 6609 return -EINVAL; 6610 } 6611 m->arg_size[i] = ret; 6612 m->arg_flags[i] = __get_type_fmodel_flags(t); 6613 } 6614 m->nr_args = nargs; 6615 return 0; 6616 } 6617 6618 /* Compare BTFs of two functions assuming only scalars and pointers to context. 6619 * t1 points to BTF_KIND_FUNC in btf1 6620 * t2 points to BTF_KIND_FUNC in btf2 6621 * Returns: 6622 * EINVAL - function prototype mismatch 6623 * EFAULT - verifier bug 6624 * 0 - 99% match. The last 1% is validated by the verifier. 6625 */ 6626 static int btf_check_func_type_match(struct bpf_verifier_log *log, 6627 struct btf *btf1, const struct btf_type *t1, 6628 struct btf *btf2, const struct btf_type *t2) 6629 { 6630 const struct btf_param *args1, *args2; 6631 const char *fn1, *fn2, *s1, *s2; 6632 u32 nargs1, nargs2, i; 6633 6634 fn1 = btf_name_by_offset(btf1, t1->name_off); 6635 fn2 = btf_name_by_offset(btf2, t2->name_off); 6636 6637 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 6638 bpf_log(log, "%s() is not a global function\n", fn1); 6639 return -EINVAL; 6640 } 6641 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 6642 bpf_log(log, "%s() is not a global function\n", fn2); 6643 return -EINVAL; 6644 } 6645 6646 t1 = btf_type_by_id(btf1, t1->type); 6647 if (!t1 || !btf_type_is_func_proto(t1)) 6648 return -EFAULT; 6649 t2 = btf_type_by_id(btf2, t2->type); 6650 if (!t2 || !btf_type_is_func_proto(t2)) 6651 return -EFAULT; 6652 6653 args1 = (const struct btf_param *)(t1 + 1); 6654 nargs1 = btf_type_vlen(t1); 6655 args2 = (const struct btf_param *)(t2 + 1); 6656 nargs2 = btf_type_vlen(t2); 6657 6658 if (nargs1 != nargs2) { 6659 bpf_log(log, "%s() has %d args while %s() has %d args\n", 6660 fn1, nargs1, fn2, nargs2); 6661 return -EINVAL; 6662 } 6663 6664 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6665 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6666 if (t1->info != t2->info) { 6667 bpf_log(log, 6668 "Return type %s of %s() doesn't match type %s of %s()\n", 6669 btf_type_str(t1), fn1, 6670 btf_type_str(t2), fn2); 6671 return -EINVAL; 6672 } 6673 6674 for (i = 0; i < nargs1; i++) { 6675 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 6676 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 6677 6678 if (t1->info != t2->info) { 6679 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 6680 i, fn1, btf_type_str(t1), 6681 fn2, btf_type_str(t2)); 6682 return -EINVAL; 6683 } 6684 if (btf_type_has_size(t1) && t1->size != t2->size) { 6685 bpf_log(log, 6686 "arg%d in %s() has size %d while %s() has %d\n", 6687 i, fn1, t1->size, 6688 fn2, t2->size); 6689 return -EINVAL; 6690 } 6691 6692 /* global functions are validated with scalars and pointers 6693 * to context only. And only global functions can be replaced. 6694 * Hence type check only those types. 6695 */ 6696 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 6697 continue; 6698 if (!btf_type_is_ptr(t1)) { 6699 bpf_log(log, 6700 "arg%d in %s() has unrecognized type\n", 6701 i, fn1); 6702 return -EINVAL; 6703 } 6704 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6705 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6706 if (!btf_type_is_struct(t1)) { 6707 bpf_log(log, 6708 "arg%d in %s() is not a pointer to context\n", 6709 i, fn1); 6710 return -EINVAL; 6711 } 6712 if (!btf_type_is_struct(t2)) { 6713 bpf_log(log, 6714 "arg%d in %s() is not a pointer to context\n", 6715 i, fn2); 6716 return -EINVAL; 6717 } 6718 /* This is an optional check to make program writing easier. 6719 * Compare names of structs and report an error to the user. 6720 * btf_prepare_func_args() already checked that t2 struct 6721 * is a context type. btf_prepare_func_args() will check 6722 * later that t1 struct is a context type as well. 6723 */ 6724 s1 = btf_name_by_offset(btf1, t1->name_off); 6725 s2 = btf_name_by_offset(btf2, t2->name_off); 6726 if (strcmp(s1, s2)) { 6727 bpf_log(log, 6728 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 6729 i, fn1, s1, fn2, s2); 6730 return -EINVAL; 6731 } 6732 } 6733 return 0; 6734 } 6735 6736 /* Compare BTFs of given program with BTF of target program */ 6737 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 6738 struct btf *btf2, const struct btf_type *t2) 6739 { 6740 struct btf *btf1 = prog->aux->btf; 6741 const struct btf_type *t1; 6742 u32 btf_id = 0; 6743 6744 if (!prog->aux->func_info) { 6745 bpf_log(log, "Program extension requires BTF\n"); 6746 return -EINVAL; 6747 } 6748 6749 btf_id = prog->aux->func_info[0].type_id; 6750 if (!btf_id) 6751 return -EFAULT; 6752 6753 t1 = btf_type_by_id(btf1, btf_id); 6754 if (!t1 || !btf_type_is_func(t1)) 6755 return -EFAULT; 6756 6757 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 6758 } 6759 6760 static int btf_check_func_arg_match(struct bpf_verifier_env *env, 6761 const struct btf *btf, u32 func_id, 6762 struct bpf_reg_state *regs, 6763 bool ptr_to_mem_ok, 6764 bool processing_call) 6765 { 6766 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6767 struct bpf_verifier_log *log = &env->log; 6768 const char *func_name, *ref_tname; 6769 const struct btf_type *t, *ref_t; 6770 const struct btf_param *args; 6771 u32 i, nargs, ref_id; 6772 int ret; 6773 6774 t = btf_type_by_id(btf, func_id); 6775 if (!t || !btf_type_is_func(t)) { 6776 /* These checks were already done by the verifier while loading 6777 * struct bpf_func_info or in add_kfunc_call(). 6778 */ 6779 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", 6780 func_id); 6781 return -EFAULT; 6782 } 6783 func_name = btf_name_by_offset(btf, t->name_off); 6784 6785 t = btf_type_by_id(btf, t->type); 6786 if (!t || !btf_type_is_func_proto(t)) { 6787 bpf_log(log, "Invalid BTF of func %s\n", func_name); 6788 return -EFAULT; 6789 } 6790 args = (const struct btf_param *)(t + 1); 6791 nargs = btf_type_vlen(t); 6792 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6793 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, 6794 MAX_BPF_FUNC_REG_ARGS); 6795 return -EINVAL; 6796 } 6797 6798 /* check that BTF function arguments match actual types that the 6799 * verifier sees. 6800 */ 6801 for (i = 0; i < nargs; i++) { 6802 enum bpf_arg_type arg_type = ARG_DONTCARE; 6803 u32 regno = i + 1; 6804 struct bpf_reg_state *reg = ®s[regno]; 6805 6806 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6807 if (btf_type_is_scalar(t)) { 6808 if (reg->type == SCALAR_VALUE) 6809 continue; 6810 bpf_log(log, "R%d is not a scalar\n", regno); 6811 return -EINVAL; 6812 } 6813 6814 if (!btf_type_is_ptr(t)) { 6815 bpf_log(log, "Unrecognized arg#%d type %s\n", 6816 i, btf_type_str(t)); 6817 return -EINVAL; 6818 } 6819 6820 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 6821 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 6822 6823 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 6824 if (ret < 0) 6825 return ret; 6826 6827 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6828 /* If function expects ctx type in BTF check that caller 6829 * is passing PTR_TO_CTX. 6830 */ 6831 if (reg->type != PTR_TO_CTX) { 6832 bpf_log(log, 6833 "arg#%d expected pointer to ctx, but got %s\n", 6834 i, btf_type_str(t)); 6835 return -EINVAL; 6836 } 6837 } else if (ptr_to_mem_ok && processing_call) { 6838 const struct btf_type *resolve_ret; 6839 u32 type_size; 6840 6841 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 6842 if (IS_ERR(resolve_ret)) { 6843 bpf_log(log, 6844 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6845 i, btf_type_str(ref_t), ref_tname, 6846 PTR_ERR(resolve_ret)); 6847 return -EINVAL; 6848 } 6849 6850 if (check_mem_reg(env, reg, regno, type_size)) 6851 return -EINVAL; 6852 } else { 6853 bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i, 6854 func_name, func_id); 6855 return -EINVAL; 6856 } 6857 } 6858 6859 return 0; 6860 } 6861 6862 /* Compare BTF of a function declaration with given bpf_reg_state. 6863 * Returns: 6864 * EFAULT - there is a verifier bug. Abort verification. 6865 * EINVAL - there is a type mismatch or BTF is not available. 6866 * 0 - BTF matches with what bpf_reg_state expects. 6867 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6868 */ 6869 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 6870 struct bpf_reg_state *regs) 6871 { 6872 struct bpf_prog *prog = env->prog; 6873 struct btf *btf = prog->aux->btf; 6874 bool is_global; 6875 u32 btf_id; 6876 int err; 6877 6878 if (!prog->aux->func_info) 6879 return -EINVAL; 6880 6881 btf_id = prog->aux->func_info[subprog].type_id; 6882 if (!btf_id) 6883 return -EFAULT; 6884 6885 if (prog->aux->func_info_aux[subprog].unreliable) 6886 return -EINVAL; 6887 6888 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6889 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false); 6890 6891 /* Compiler optimizations can remove arguments from static functions 6892 * or mismatched type can be passed into a global function. 6893 * In such cases mark the function as unreliable from BTF point of view. 6894 */ 6895 if (err) 6896 prog->aux->func_info_aux[subprog].unreliable = true; 6897 return err; 6898 } 6899 6900 /* Compare BTF of a function call with given bpf_reg_state. 6901 * Returns: 6902 * EFAULT - there is a verifier bug. Abort verification. 6903 * EINVAL - there is a type mismatch or BTF is not available. 6904 * 0 - BTF matches with what bpf_reg_state expects. 6905 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6906 * 6907 * NOTE: the code is duplicated from btf_check_subprog_arg_match() 6908 * because btf_check_func_arg_match() is still doing both. Once that 6909 * function is split in 2, we can call from here btf_check_subprog_arg_match() 6910 * first, and then treat the calling part in a new code path. 6911 */ 6912 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 6913 struct bpf_reg_state *regs) 6914 { 6915 struct bpf_prog *prog = env->prog; 6916 struct btf *btf = prog->aux->btf; 6917 bool is_global; 6918 u32 btf_id; 6919 int err; 6920 6921 if (!prog->aux->func_info) 6922 return -EINVAL; 6923 6924 btf_id = prog->aux->func_info[subprog].type_id; 6925 if (!btf_id) 6926 return -EFAULT; 6927 6928 if (prog->aux->func_info_aux[subprog].unreliable) 6929 return -EINVAL; 6930 6931 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6932 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true); 6933 6934 /* Compiler optimizations can remove arguments from static functions 6935 * or mismatched type can be passed into a global function. 6936 * In such cases mark the function as unreliable from BTF point of view. 6937 */ 6938 if (err) 6939 prog->aux->func_info_aux[subprog].unreliable = true; 6940 return err; 6941 } 6942 6943 /* Convert BTF of a function into bpf_reg_state if possible 6944 * Returns: 6945 * EFAULT - there is a verifier bug. Abort verification. 6946 * EINVAL - cannot convert BTF. 6947 * 0 - Successfully converted BTF into bpf_reg_state 6948 * (either PTR_TO_CTX or SCALAR_VALUE). 6949 */ 6950 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 6951 struct bpf_reg_state *regs) 6952 { 6953 struct bpf_verifier_log *log = &env->log; 6954 struct bpf_prog *prog = env->prog; 6955 enum bpf_prog_type prog_type = prog->type; 6956 struct btf *btf = prog->aux->btf; 6957 const struct btf_param *args; 6958 const struct btf_type *t, *ref_t; 6959 u32 i, nargs, btf_id; 6960 const char *tname; 6961 6962 if (!prog->aux->func_info || 6963 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 6964 bpf_log(log, "Verifier bug\n"); 6965 return -EFAULT; 6966 } 6967 6968 btf_id = prog->aux->func_info[subprog].type_id; 6969 if (!btf_id) { 6970 bpf_log(log, "Global functions need valid BTF\n"); 6971 return -EFAULT; 6972 } 6973 6974 t = btf_type_by_id(btf, btf_id); 6975 if (!t || !btf_type_is_func(t)) { 6976 /* These checks were already done by the verifier while loading 6977 * struct bpf_func_info 6978 */ 6979 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 6980 subprog); 6981 return -EFAULT; 6982 } 6983 tname = btf_name_by_offset(btf, t->name_off); 6984 6985 if (log->level & BPF_LOG_LEVEL) 6986 bpf_log(log, "Validating %s() func#%d...\n", 6987 tname, subprog); 6988 6989 if (prog->aux->func_info_aux[subprog].unreliable) { 6990 bpf_log(log, "Verifier bug in function %s()\n", tname); 6991 return -EFAULT; 6992 } 6993 if (prog_type == BPF_PROG_TYPE_EXT) 6994 prog_type = prog->aux->dst_prog->type; 6995 6996 t = btf_type_by_id(btf, t->type); 6997 if (!t || !btf_type_is_func_proto(t)) { 6998 bpf_log(log, "Invalid type of function %s()\n", tname); 6999 return -EFAULT; 7000 } 7001 args = (const struct btf_param *)(t + 1); 7002 nargs = btf_type_vlen(t); 7003 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7004 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7005 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7006 return -EINVAL; 7007 } 7008 /* check that function returns int */ 7009 t = btf_type_by_id(btf, t->type); 7010 while (btf_type_is_modifier(t)) 7011 t = btf_type_by_id(btf, t->type); 7012 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7013 bpf_log(log, 7014 "Global function %s() doesn't return scalar. Only those are supported.\n", 7015 tname); 7016 return -EINVAL; 7017 } 7018 /* Convert BTF function arguments into verifier types. 7019 * Only PTR_TO_CTX and SCALAR are supported atm. 7020 */ 7021 for (i = 0; i < nargs; i++) { 7022 struct bpf_reg_state *reg = ®s[i + 1]; 7023 7024 t = btf_type_by_id(btf, args[i].type); 7025 while (btf_type_is_modifier(t)) 7026 t = btf_type_by_id(btf, t->type); 7027 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7028 reg->type = SCALAR_VALUE; 7029 continue; 7030 } 7031 if (btf_type_is_ptr(t)) { 7032 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 7033 reg->type = PTR_TO_CTX; 7034 continue; 7035 } 7036 7037 t = btf_type_skip_modifiers(btf, t->type, NULL); 7038 7039 ref_t = btf_resolve_size(btf, t, ®->mem_size); 7040 if (IS_ERR(ref_t)) { 7041 bpf_log(log, 7042 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7043 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7044 PTR_ERR(ref_t)); 7045 return -EINVAL; 7046 } 7047 7048 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 7049 reg->id = ++env->id_gen; 7050 7051 continue; 7052 } 7053 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7054 i, btf_type_str(t), tname); 7055 return -EINVAL; 7056 } 7057 return 0; 7058 } 7059 7060 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7061 struct btf_show *show) 7062 { 7063 const struct btf_type *t = btf_type_by_id(btf, type_id); 7064 7065 show->btf = btf; 7066 memset(&show->state, 0, sizeof(show->state)); 7067 memset(&show->obj, 0, sizeof(show->obj)); 7068 7069 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7070 } 7071 7072 static void btf_seq_show(struct btf_show *show, const char *fmt, 7073 va_list args) 7074 { 7075 seq_vprintf((struct seq_file *)show->target, fmt, args); 7076 } 7077 7078 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7079 void *obj, struct seq_file *m, u64 flags) 7080 { 7081 struct btf_show sseq; 7082 7083 sseq.target = m; 7084 sseq.showfn = btf_seq_show; 7085 sseq.flags = flags; 7086 7087 btf_type_show(btf, type_id, obj, &sseq); 7088 7089 return sseq.state.status; 7090 } 7091 7092 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7093 struct seq_file *m) 7094 { 7095 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7096 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7097 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7098 } 7099 7100 struct btf_show_snprintf { 7101 struct btf_show show; 7102 int len_left; /* space left in string */ 7103 int len; /* length we would have written */ 7104 }; 7105 7106 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7107 va_list args) 7108 { 7109 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7110 int len; 7111 7112 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7113 7114 if (len < 0) { 7115 ssnprintf->len_left = 0; 7116 ssnprintf->len = len; 7117 } else if (len >= ssnprintf->len_left) { 7118 /* no space, drive on to get length we would have written */ 7119 ssnprintf->len_left = 0; 7120 ssnprintf->len += len; 7121 } else { 7122 ssnprintf->len_left -= len; 7123 ssnprintf->len += len; 7124 show->target += len; 7125 } 7126 } 7127 7128 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7129 char *buf, int len, u64 flags) 7130 { 7131 struct btf_show_snprintf ssnprintf; 7132 7133 ssnprintf.show.target = buf; 7134 ssnprintf.show.flags = flags; 7135 ssnprintf.show.showfn = btf_snprintf_show; 7136 ssnprintf.len_left = len; 7137 ssnprintf.len = 0; 7138 7139 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7140 7141 /* If we encountered an error, return it. */ 7142 if (ssnprintf.show.state.status) 7143 return ssnprintf.show.state.status; 7144 7145 /* Otherwise return length we would have written */ 7146 return ssnprintf.len; 7147 } 7148 7149 #ifdef CONFIG_PROC_FS 7150 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7151 { 7152 const struct btf *btf = filp->private_data; 7153 7154 seq_printf(m, "btf_id:\t%u\n", btf->id); 7155 } 7156 #endif 7157 7158 static int btf_release(struct inode *inode, struct file *filp) 7159 { 7160 btf_put(filp->private_data); 7161 return 0; 7162 } 7163 7164 const struct file_operations btf_fops = { 7165 #ifdef CONFIG_PROC_FS 7166 .show_fdinfo = bpf_btf_show_fdinfo, 7167 #endif 7168 .release = btf_release, 7169 }; 7170 7171 static int __btf_new_fd(struct btf *btf) 7172 { 7173 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7174 } 7175 7176 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 7177 { 7178 struct btf *btf; 7179 int ret; 7180 7181 btf = btf_parse(attr, uattr, uattr_size); 7182 if (IS_ERR(btf)) 7183 return PTR_ERR(btf); 7184 7185 ret = btf_alloc_id(btf); 7186 if (ret) { 7187 btf_free(btf); 7188 return ret; 7189 } 7190 7191 /* 7192 * The BTF ID is published to the userspace. 7193 * All BTF free must go through call_rcu() from 7194 * now on (i.e. free by calling btf_put()). 7195 */ 7196 7197 ret = __btf_new_fd(btf); 7198 if (ret < 0) 7199 btf_put(btf); 7200 7201 return ret; 7202 } 7203 7204 struct btf *btf_get_by_fd(int fd) 7205 { 7206 struct btf *btf; 7207 struct fd f; 7208 7209 f = fdget(fd); 7210 7211 if (!f.file) 7212 return ERR_PTR(-EBADF); 7213 7214 if (f.file->f_op != &btf_fops) { 7215 fdput(f); 7216 return ERR_PTR(-EINVAL); 7217 } 7218 7219 btf = f.file->private_data; 7220 refcount_inc(&btf->refcnt); 7221 fdput(f); 7222 7223 return btf; 7224 } 7225 7226 int btf_get_info_by_fd(const struct btf *btf, 7227 const union bpf_attr *attr, 7228 union bpf_attr __user *uattr) 7229 { 7230 struct bpf_btf_info __user *uinfo; 7231 struct bpf_btf_info info; 7232 u32 info_copy, btf_copy; 7233 void __user *ubtf; 7234 char __user *uname; 7235 u32 uinfo_len, uname_len, name_len; 7236 int ret = 0; 7237 7238 uinfo = u64_to_user_ptr(attr->info.info); 7239 uinfo_len = attr->info.info_len; 7240 7241 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7242 memset(&info, 0, sizeof(info)); 7243 if (copy_from_user(&info, uinfo, info_copy)) 7244 return -EFAULT; 7245 7246 info.id = btf->id; 7247 ubtf = u64_to_user_ptr(info.btf); 7248 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7249 if (copy_to_user(ubtf, btf->data, btf_copy)) 7250 return -EFAULT; 7251 info.btf_size = btf->data_size; 7252 7253 info.kernel_btf = btf->kernel_btf; 7254 7255 uname = u64_to_user_ptr(info.name); 7256 uname_len = info.name_len; 7257 if (!uname ^ !uname_len) 7258 return -EINVAL; 7259 7260 name_len = strlen(btf->name); 7261 info.name_len = name_len; 7262 7263 if (uname) { 7264 if (uname_len >= name_len + 1) { 7265 if (copy_to_user(uname, btf->name, name_len + 1)) 7266 return -EFAULT; 7267 } else { 7268 char zero = '\0'; 7269 7270 if (copy_to_user(uname, btf->name, uname_len - 1)) 7271 return -EFAULT; 7272 if (put_user(zero, uname + uname_len - 1)) 7273 return -EFAULT; 7274 /* let user-space know about too short buffer */ 7275 ret = -ENOSPC; 7276 } 7277 } 7278 7279 if (copy_to_user(uinfo, &info, info_copy) || 7280 put_user(info_copy, &uattr->info.info_len)) 7281 return -EFAULT; 7282 7283 return ret; 7284 } 7285 7286 int btf_get_fd_by_id(u32 id) 7287 { 7288 struct btf *btf; 7289 int fd; 7290 7291 rcu_read_lock(); 7292 btf = idr_find(&btf_idr, id); 7293 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7294 btf = ERR_PTR(-ENOENT); 7295 rcu_read_unlock(); 7296 7297 if (IS_ERR(btf)) 7298 return PTR_ERR(btf); 7299 7300 fd = __btf_new_fd(btf); 7301 if (fd < 0) 7302 btf_put(btf); 7303 7304 return fd; 7305 } 7306 7307 u32 btf_obj_id(const struct btf *btf) 7308 { 7309 return btf->id; 7310 } 7311 7312 bool btf_is_kernel(const struct btf *btf) 7313 { 7314 return btf->kernel_btf; 7315 } 7316 7317 bool btf_is_module(const struct btf *btf) 7318 { 7319 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7320 } 7321 7322 enum { 7323 BTF_MODULE_F_LIVE = (1 << 0), 7324 }; 7325 7326 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7327 struct btf_module { 7328 struct list_head list; 7329 struct module *module; 7330 struct btf *btf; 7331 struct bin_attribute *sysfs_attr; 7332 int flags; 7333 }; 7334 7335 static LIST_HEAD(btf_modules); 7336 static DEFINE_MUTEX(btf_module_mutex); 7337 7338 static ssize_t 7339 btf_module_read(struct file *file, struct kobject *kobj, 7340 struct bin_attribute *bin_attr, 7341 char *buf, loff_t off, size_t len) 7342 { 7343 const struct btf *btf = bin_attr->private; 7344 7345 memcpy(buf, btf->data + off, len); 7346 return len; 7347 } 7348 7349 static void purge_cand_cache(struct btf *btf); 7350 7351 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 7352 void *module) 7353 { 7354 struct btf_module *btf_mod, *tmp; 7355 struct module *mod = module; 7356 struct btf *btf; 7357 int err = 0; 7358 7359 if (mod->btf_data_size == 0 || 7360 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 7361 op != MODULE_STATE_GOING)) 7362 goto out; 7363 7364 switch (op) { 7365 case MODULE_STATE_COMING: 7366 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 7367 if (!btf_mod) { 7368 err = -ENOMEM; 7369 goto out; 7370 } 7371 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 7372 if (IS_ERR(btf)) { 7373 kfree(btf_mod); 7374 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 7375 pr_warn("failed to validate module [%s] BTF: %ld\n", 7376 mod->name, PTR_ERR(btf)); 7377 err = PTR_ERR(btf); 7378 } else { 7379 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 7380 } 7381 goto out; 7382 } 7383 err = btf_alloc_id(btf); 7384 if (err) { 7385 btf_free(btf); 7386 kfree(btf_mod); 7387 goto out; 7388 } 7389 7390 purge_cand_cache(NULL); 7391 mutex_lock(&btf_module_mutex); 7392 btf_mod->module = module; 7393 btf_mod->btf = btf; 7394 list_add(&btf_mod->list, &btf_modules); 7395 mutex_unlock(&btf_module_mutex); 7396 7397 if (IS_ENABLED(CONFIG_SYSFS)) { 7398 struct bin_attribute *attr; 7399 7400 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 7401 if (!attr) 7402 goto out; 7403 7404 sysfs_bin_attr_init(attr); 7405 attr->attr.name = btf->name; 7406 attr->attr.mode = 0444; 7407 attr->size = btf->data_size; 7408 attr->private = btf; 7409 attr->read = btf_module_read; 7410 7411 err = sysfs_create_bin_file(btf_kobj, attr); 7412 if (err) { 7413 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 7414 mod->name, err); 7415 kfree(attr); 7416 err = 0; 7417 goto out; 7418 } 7419 7420 btf_mod->sysfs_attr = attr; 7421 } 7422 7423 break; 7424 case MODULE_STATE_LIVE: 7425 mutex_lock(&btf_module_mutex); 7426 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7427 if (btf_mod->module != module) 7428 continue; 7429 7430 btf_mod->flags |= BTF_MODULE_F_LIVE; 7431 break; 7432 } 7433 mutex_unlock(&btf_module_mutex); 7434 break; 7435 case MODULE_STATE_GOING: 7436 mutex_lock(&btf_module_mutex); 7437 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7438 if (btf_mod->module != module) 7439 continue; 7440 7441 list_del(&btf_mod->list); 7442 if (btf_mod->sysfs_attr) 7443 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 7444 purge_cand_cache(btf_mod->btf); 7445 btf_put(btf_mod->btf); 7446 kfree(btf_mod->sysfs_attr); 7447 kfree(btf_mod); 7448 break; 7449 } 7450 mutex_unlock(&btf_module_mutex); 7451 break; 7452 } 7453 out: 7454 return notifier_from_errno(err); 7455 } 7456 7457 static struct notifier_block btf_module_nb = { 7458 .notifier_call = btf_module_notify, 7459 }; 7460 7461 static int __init btf_module_init(void) 7462 { 7463 register_module_notifier(&btf_module_nb); 7464 return 0; 7465 } 7466 7467 fs_initcall(btf_module_init); 7468 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 7469 7470 struct module *btf_try_get_module(const struct btf *btf) 7471 { 7472 struct module *res = NULL; 7473 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7474 struct btf_module *btf_mod, *tmp; 7475 7476 mutex_lock(&btf_module_mutex); 7477 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7478 if (btf_mod->btf != btf) 7479 continue; 7480 7481 /* We must only consider module whose __init routine has 7482 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 7483 * which is set from the notifier callback for 7484 * MODULE_STATE_LIVE. 7485 */ 7486 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 7487 res = btf_mod->module; 7488 7489 break; 7490 } 7491 mutex_unlock(&btf_module_mutex); 7492 #endif 7493 7494 return res; 7495 } 7496 7497 /* Returns struct btf corresponding to the struct module. 7498 * This function can return NULL or ERR_PTR. 7499 */ 7500 static struct btf *btf_get_module_btf(const struct module *module) 7501 { 7502 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7503 struct btf_module *btf_mod, *tmp; 7504 #endif 7505 struct btf *btf = NULL; 7506 7507 if (!module) { 7508 btf = bpf_get_btf_vmlinux(); 7509 if (!IS_ERR_OR_NULL(btf)) 7510 btf_get(btf); 7511 return btf; 7512 } 7513 7514 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7515 mutex_lock(&btf_module_mutex); 7516 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7517 if (btf_mod->module != module) 7518 continue; 7519 7520 btf_get(btf_mod->btf); 7521 btf = btf_mod->btf; 7522 break; 7523 } 7524 mutex_unlock(&btf_module_mutex); 7525 #endif 7526 7527 return btf; 7528 } 7529 7530 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 7531 { 7532 struct btf *btf = NULL; 7533 int btf_obj_fd = 0; 7534 long ret; 7535 7536 if (flags) 7537 return -EINVAL; 7538 7539 if (name_sz <= 1 || name[name_sz - 1]) 7540 return -EINVAL; 7541 7542 ret = bpf_find_btf_id(name, kind, &btf); 7543 if (ret > 0 && btf_is_module(btf)) { 7544 btf_obj_fd = __btf_new_fd(btf); 7545 if (btf_obj_fd < 0) { 7546 btf_put(btf); 7547 return btf_obj_fd; 7548 } 7549 return ret | (((u64)btf_obj_fd) << 32); 7550 } 7551 if (ret > 0) 7552 btf_put(btf); 7553 return ret; 7554 } 7555 7556 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 7557 .func = bpf_btf_find_by_name_kind, 7558 .gpl_only = false, 7559 .ret_type = RET_INTEGER, 7560 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7561 .arg2_type = ARG_CONST_SIZE, 7562 .arg3_type = ARG_ANYTHING, 7563 .arg4_type = ARG_ANYTHING, 7564 }; 7565 7566 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 7567 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 7568 BTF_TRACING_TYPE_xxx 7569 #undef BTF_TRACING_TYPE 7570 7571 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 7572 const struct btf_type *func, u32 func_flags) 7573 { 7574 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7575 const char *name, *sfx, *iter_name; 7576 const struct btf_param *arg; 7577 const struct btf_type *t; 7578 char exp_name[128]; 7579 u32 nr_args; 7580 7581 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 7582 if (!flags || (flags & (flags - 1))) 7583 return -EINVAL; 7584 7585 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 7586 nr_args = btf_type_vlen(func); 7587 if (nr_args < 1) 7588 return -EINVAL; 7589 7590 arg = &btf_params(func)[0]; 7591 t = btf_type_skip_modifiers(btf, arg->type, NULL); 7592 if (!t || !btf_type_is_ptr(t)) 7593 return -EINVAL; 7594 t = btf_type_skip_modifiers(btf, t->type, NULL); 7595 if (!t || !__btf_type_is_struct(t)) 7596 return -EINVAL; 7597 7598 name = btf_name_by_offset(btf, t->name_off); 7599 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 7600 return -EINVAL; 7601 7602 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 7603 * fit nicely in stack slots 7604 */ 7605 if (t->size == 0 || (t->size % 8)) 7606 return -EINVAL; 7607 7608 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 7609 * naming pattern 7610 */ 7611 iter_name = name + sizeof(ITER_PREFIX) - 1; 7612 if (flags & KF_ITER_NEW) 7613 sfx = "new"; 7614 else if (flags & KF_ITER_NEXT) 7615 sfx = "next"; 7616 else /* (flags & KF_ITER_DESTROY) */ 7617 sfx = "destroy"; 7618 7619 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 7620 if (strcmp(func_name, exp_name)) 7621 return -EINVAL; 7622 7623 /* only iter constructor should have extra arguments */ 7624 if (!(flags & KF_ITER_NEW) && nr_args != 1) 7625 return -EINVAL; 7626 7627 if (flags & KF_ITER_NEXT) { 7628 /* bpf_iter_<type>_next() should return pointer */ 7629 t = btf_type_skip_modifiers(btf, func->type, NULL); 7630 if (!t || !btf_type_is_ptr(t)) 7631 return -EINVAL; 7632 } 7633 7634 if (flags & KF_ITER_DESTROY) { 7635 /* bpf_iter_<type>_destroy() should return void */ 7636 t = btf_type_by_id(btf, func->type); 7637 if (!t || !btf_type_is_void(t)) 7638 return -EINVAL; 7639 } 7640 7641 return 0; 7642 } 7643 7644 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 7645 { 7646 const struct btf_type *func; 7647 const char *func_name; 7648 int err; 7649 7650 /* any kfunc should be FUNC -> FUNC_PROTO */ 7651 func = btf_type_by_id(btf, func_id); 7652 if (!func || !btf_type_is_func(func)) 7653 return -EINVAL; 7654 7655 /* sanity check kfunc name */ 7656 func_name = btf_name_by_offset(btf, func->name_off); 7657 if (!func_name || !func_name[0]) 7658 return -EINVAL; 7659 7660 func = btf_type_by_id(btf, func->type); 7661 if (!func || !btf_type_is_func_proto(func)) 7662 return -EINVAL; 7663 7664 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 7665 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 7666 if (err) 7667 return err; 7668 } 7669 7670 return 0; 7671 } 7672 7673 /* Kernel Function (kfunc) BTF ID set registration API */ 7674 7675 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 7676 const struct btf_kfunc_id_set *kset) 7677 { 7678 struct btf_kfunc_hook_filter *hook_filter; 7679 struct btf_id_set8 *add_set = kset->set; 7680 bool vmlinux_set = !btf_is_module(btf); 7681 bool add_filter = !!kset->filter; 7682 struct btf_kfunc_set_tab *tab; 7683 struct btf_id_set8 *set; 7684 u32 set_cnt; 7685 int ret; 7686 7687 if (hook >= BTF_KFUNC_HOOK_MAX) { 7688 ret = -EINVAL; 7689 goto end; 7690 } 7691 7692 if (!add_set->cnt) 7693 return 0; 7694 7695 tab = btf->kfunc_set_tab; 7696 7697 if (tab && add_filter) { 7698 u32 i; 7699 7700 hook_filter = &tab->hook_filters[hook]; 7701 for (i = 0; i < hook_filter->nr_filters; i++) { 7702 if (hook_filter->filters[i] == kset->filter) { 7703 add_filter = false; 7704 break; 7705 } 7706 } 7707 7708 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { 7709 ret = -E2BIG; 7710 goto end; 7711 } 7712 } 7713 7714 if (!tab) { 7715 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 7716 if (!tab) 7717 return -ENOMEM; 7718 btf->kfunc_set_tab = tab; 7719 } 7720 7721 set = tab->sets[hook]; 7722 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 7723 * for module sets. 7724 */ 7725 if (WARN_ON_ONCE(set && !vmlinux_set)) { 7726 ret = -EINVAL; 7727 goto end; 7728 } 7729 7730 /* We don't need to allocate, concatenate, and sort module sets, because 7731 * only one is allowed per hook. Hence, we can directly assign the 7732 * pointer and return. 7733 */ 7734 if (!vmlinux_set) { 7735 tab->sets[hook] = add_set; 7736 goto do_add_filter; 7737 } 7738 7739 /* In case of vmlinux sets, there may be more than one set being 7740 * registered per hook. To create a unified set, we allocate a new set 7741 * and concatenate all individual sets being registered. While each set 7742 * is individually sorted, they may become unsorted when concatenated, 7743 * hence re-sorting the final set again is required to make binary 7744 * searching the set using btf_id_set8_contains function work. 7745 */ 7746 set_cnt = set ? set->cnt : 0; 7747 7748 if (set_cnt > U32_MAX - add_set->cnt) { 7749 ret = -EOVERFLOW; 7750 goto end; 7751 } 7752 7753 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 7754 ret = -E2BIG; 7755 goto end; 7756 } 7757 7758 /* Grow set */ 7759 set = krealloc(tab->sets[hook], 7760 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 7761 GFP_KERNEL | __GFP_NOWARN); 7762 if (!set) { 7763 ret = -ENOMEM; 7764 goto end; 7765 } 7766 7767 /* For newly allocated set, initialize set->cnt to 0 */ 7768 if (!tab->sets[hook]) 7769 set->cnt = 0; 7770 tab->sets[hook] = set; 7771 7772 /* Concatenate the two sets */ 7773 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 7774 set->cnt += add_set->cnt; 7775 7776 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 7777 7778 do_add_filter: 7779 if (add_filter) { 7780 hook_filter = &tab->hook_filters[hook]; 7781 hook_filter->filters[hook_filter->nr_filters++] = kset->filter; 7782 } 7783 return 0; 7784 end: 7785 btf_free_kfunc_set_tab(btf); 7786 return ret; 7787 } 7788 7789 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 7790 enum btf_kfunc_hook hook, 7791 u32 kfunc_btf_id, 7792 const struct bpf_prog *prog) 7793 { 7794 struct btf_kfunc_hook_filter *hook_filter; 7795 struct btf_id_set8 *set; 7796 u32 *id, i; 7797 7798 if (hook >= BTF_KFUNC_HOOK_MAX) 7799 return NULL; 7800 if (!btf->kfunc_set_tab) 7801 return NULL; 7802 hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; 7803 for (i = 0; i < hook_filter->nr_filters; i++) { 7804 if (hook_filter->filters[i](prog, kfunc_btf_id)) 7805 return NULL; 7806 } 7807 set = btf->kfunc_set_tab->sets[hook]; 7808 if (!set) 7809 return NULL; 7810 id = btf_id_set8_contains(set, kfunc_btf_id); 7811 if (!id) 7812 return NULL; 7813 /* The flags for BTF ID are located next to it */ 7814 return id + 1; 7815 } 7816 7817 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 7818 { 7819 switch (prog_type) { 7820 case BPF_PROG_TYPE_UNSPEC: 7821 return BTF_KFUNC_HOOK_COMMON; 7822 case BPF_PROG_TYPE_XDP: 7823 return BTF_KFUNC_HOOK_XDP; 7824 case BPF_PROG_TYPE_SCHED_CLS: 7825 return BTF_KFUNC_HOOK_TC; 7826 case BPF_PROG_TYPE_STRUCT_OPS: 7827 return BTF_KFUNC_HOOK_STRUCT_OPS; 7828 case BPF_PROG_TYPE_TRACING: 7829 case BPF_PROG_TYPE_LSM: 7830 return BTF_KFUNC_HOOK_TRACING; 7831 case BPF_PROG_TYPE_SYSCALL: 7832 return BTF_KFUNC_HOOK_SYSCALL; 7833 case BPF_PROG_TYPE_CGROUP_SKB: 7834 return BTF_KFUNC_HOOK_CGROUP_SKB; 7835 case BPF_PROG_TYPE_SCHED_ACT: 7836 return BTF_KFUNC_HOOK_SCHED_ACT; 7837 case BPF_PROG_TYPE_SK_SKB: 7838 return BTF_KFUNC_HOOK_SK_SKB; 7839 case BPF_PROG_TYPE_SOCKET_FILTER: 7840 return BTF_KFUNC_HOOK_SOCKET_FILTER; 7841 case BPF_PROG_TYPE_LWT_OUT: 7842 case BPF_PROG_TYPE_LWT_IN: 7843 case BPF_PROG_TYPE_LWT_XMIT: 7844 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 7845 return BTF_KFUNC_HOOK_LWT; 7846 case BPF_PROG_TYPE_NETFILTER: 7847 return BTF_KFUNC_HOOK_NETFILTER; 7848 default: 7849 return BTF_KFUNC_HOOK_MAX; 7850 } 7851 } 7852 7853 /* Caution: 7854 * Reference to the module (obtained using btf_try_get_module) corresponding to 7855 * the struct btf *MUST* be held when calling this function from verifier 7856 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 7857 * keeping the reference for the duration of the call provides the necessary 7858 * protection for looking up a well-formed btf->kfunc_set_tab. 7859 */ 7860 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 7861 u32 kfunc_btf_id, 7862 const struct bpf_prog *prog) 7863 { 7864 enum bpf_prog_type prog_type = resolve_prog_type(prog); 7865 enum btf_kfunc_hook hook; 7866 u32 *kfunc_flags; 7867 7868 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); 7869 if (kfunc_flags) 7870 return kfunc_flags; 7871 7872 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7873 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); 7874 } 7875 7876 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, 7877 const struct bpf_prog *prog) 7878 { 7879 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); 7880 } 7881 7882 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 7883 const struct btf_kfunc_id_set *kset) 7884 { 7885 struct btf *btf; 7886 int ret, i; 7887 7888 btf = btf_get_module_btf(kset->owner); 7889 if (!btf) { 7890 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7891 pr_err("missing vmlinux BTF, cannot register kfuncs\n"); 7892 return -ENOENT; 7893 } 7894 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 7895 pr_warn("missing module BTF, cannot register kfuncs\n"); 7896 return 0; 7897 } 7898 if (IS_ERR(btf)) 7899 return PTR_ERR(btf); 7900 7901 for (i = 0; i < kset->set->cnt; i++) { 7902 ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id, 7903 kset->set->pairs[i].flags); 7904 if (ret) 7905 goto err_out; 7906 } 7907 7908 ret = btf_populate_kfunc_set(btf, hook, kset); 7909 7910 err_out: 7911 btf_put(btf); 7912 return ret; 7913 } 7914 7915 /* This function must be invoked only from initcalls/module init functions */ 7916 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 7917 const struct btf_kfunc_id_set *kset) 7918 { 7919 enum btf_kfunc_hook hook; 7920 7921 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7922 return __register_btf_kfunc_id_set(hook, kset); 7923 } 7924 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 7925 7926 /* This function must be invoked only from initcalls/module init functions */ 7927 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 7928 { 7929 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 7930 } 7931 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 7932 7933 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 7934 { 7935 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 7936 struct btf_id_dtor_kfunc *dtor; 7937 7938 if (!tab) 7939 return -ENOENT; 7940 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 7941 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 7942 */ 7943 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 7944 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 7945 if (!dtor) 7946 return -ENOENT; 7947 return dtor->kfunc_btf_id; 7948 } 7949 7950 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 7951 { 7952 const struct btf_type *dtor_func, *dtor_func_proto, *t; 7953 const struct btf_param *args; 7954 s32 dtor_btf_id; 7955 u32 nr_args, i; 7956 7957 for (i = 0; i < cnt; i++) { 7958 dtor_btf_id = dtors[i].kfunc_btf_id; 7959 7960 dtor_func = btf_type_by_id(btf, dtor_btf_id); 7961 if (!dtor_func || !btf_type_is_func(dtor_func)) 7962 return -EINVAL; 7963 7964 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 7965 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 7966 return -EINVAL; 7967 7968 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 7969 t = btf_type_by_id(btf, dtor_func_proto->type); 7970 if (!t || !btf_type_is_void(t)) 7971 return -EINVAL; 7972 7973 nr_args = btf_type_vlen(dtor_func_proto); 7974 if (nr_args != 1) 7975 return -EINVAL; 7976 args = btf_params(dtor_func_proto); 7977 t = btf_type_by_id(btf, args[0].type); 7978 /* Allow any pointer type, as width on targets Linux supports 7979 * will be same for all pointer types (i.e. sizeof(void *)) 7980 */ 7981 if (!t || !btf_type_is_ptr(t)) 7982 return -EINVAL; 7983 } 7984 return 0; 7985 } 7986 7987 /* This function must be invoked only from initcalls/module init functions */ 7988 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 7989 struct module *owner) 7990 { 7991 struct btf_id_dtor_kfunc_tab *tab; 7992 struct btf *btf; 7993 u32 tab_cnt; 7994 int ret; 7995 7996 btf = btf_get_module_btf(owner); 7997 if (!btf) { 7998 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7999 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n"); 8000 return -ENOENT; 8001 } 8002 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 8003 pr_err("missing module BTF, cannot register dtor kfuncs\n"); 8004 return -ENOENT; 8005 } 8006 return 0; 8007 } 8008 if (IS_ERR(btf)) 8009 return PTR_ERR(btf); 8010 8011 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8012 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8013 ret = -E2BIG; 8014 goto end; 8015 } 8016 8017 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 8018 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 8019 if (ret < 0) 8020 goto end; 8021 8022 tab = btf->dtor_kfunc_tab; 8023 /* Only one call allowed for modules */ 8024 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 8025 ret = -EINVAL; 8026 goto end; 8027 } 8028 8029 tab_cnt = tab ? tab->cnt : 0; 8030 if (tab_cnt > U32_MAX - add_cnt) { 8031 ret = -EOVERFLOW; 8032 goto end; 8033 } 8034 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8035 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8036 ret = -E2BIG; 8037 goto end; 8038 } 8039 8040 tab = krealloc(btf->dtor_kfunc_tab, 8041 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 8042 GFP_KERNEL | __GFP_NOWARN); 8043 if (!tab) { 8044 ret = -ENOMEM; 8045 goto end; 8046 } 8047 8048 if (!btf->dtor_kfunc_tab) 8049 tab->cnt = 0; 8050 btf->dtor_kfunc_tab = tab; 8051 8052 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8053 tab->cnt += add_cnt; 8054 8055 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8056 8057 end: 8058 if (ret) 8059 btf_free_dtor_kfunc_tab(btf); 8060 btf_put(btf); 8061 return ret; 8062 } 8063 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8064 8065 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8066 8067 /* Check local and target types for compatibility. This check is used for 8068 * type-based CO-RE relocations and follow slightly different rules than 8069 * field-based relocations. This function assumes that root types were already 8070 * checked for name match. Beyond that initial root-level name check, names 8071 * are completely ignored. Compatibility rules are as follows: 8072 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8073 * kind should match for local and target types (i.e., STRUCT is not 8074 * compatible with UNION); 8075 * - for ENUMs/ENUM64s, the size is ignored; 8076 * - for INT, size and signedness are ignored; 8077 * - for ARRAY, dimensionality is ignored, element types are checked for 8078 * compatibility recursively; 8079 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8080 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8081 * - FUNC_PROTOs are compatible if they have compatible signature: same 8082 * number of input args and compatible return and argument types. 8083 * These rules are not set in stone and probably will be adjusted as we get 8084 * more experience with using BPF CO-RE relocations. 8085 */ 8086 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8087 const struct btf *targ_btf, __u32 targ_id) 8088 { 8089 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8090 MAX_TYPES_ARE_COMPAT_DEPTH); 8091 } 8092 8093 #define MAX_TYPES_MATCH_DEPTH 2 8094 8095 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8096 const struct btf *targ_btf, u32 targ_id) 8097 { 8098 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8099 MAX_TYPES_MATCH_DEPTH); 8100 } 8101 8102 static bool bpf_core_is_flavor_sep(const char *s) 8103 { 8104 /* check X___Y name pattern, where X and Y are not underscores */ 8105 return s[0] != '_' && /* X */ 8106 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8107 s[4] != '_'; /* Y */ 8108 } 8109 8110 size_t bpf_core_essential_name_len(const char *name) 8111 { 8112 size_t n = strlen(name); 8113 int i; 8114 8115 for (i = n - 5; i >= 0; i--) { 8116 if (bpf_core_is_flavor_sep(name + i)) 8117 return i + 1; 8118 } 8119 return n; 8120 } 8121 8122 struct bpf_cand_cache { 8123 const char *name; 8124 u32 name_len; 8125 u16 kind; 8126 u16 cnt; 8127 struct { 8128 const struct btf *btf; 8129 u32 id; 8130 } cands[]; 8131 }; 8132 8133 static void bpf_free_cands(struct bpf_cand_cache *cands) 8134 { 8135 if (!cands->cnt) 8136 /* empty candidate array was allocated on stack */ 8137 return; 8138 kfree(cands); 8139 } 8140 8141 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8142 { 8143 kfree(cands->name); 8144 kfree(cands); 8145 } 8146 8147 #define VMLINUX_CAND_CACHE_SIZE 31 8148 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8149 8150 #define MODULE_CAND_CACHE_SIZE 31 8151 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8152 8153 static DEFINE_MUTEX(cand_cache_mutex); 8154 8155 static void __print_cand_cache(struct bpf_verifier_log *log, 8156 struct bpf_cand_cache **cache, 8157 int cache_size) 8158 { 8159 struct bpf_cand_cache *cc; 8160 int i, j; 8161 8162 for (i = 0; i < cache_size; i++) { 8163 cc = cache[i]; 8164 if (!cc) 8165 continue; 8166 bpf_log(log, "[%d]%s(", i, cc->name); 8167 for (j = 0; j < cc->cnt; j++) { 8168 bpf_log(log, "%d", cc->cands[j].id); 8169 if (j < cc->cnt - 1) 8170 bpf_log(log, " "); 8171 } 8172 bpf_log(log, "), "); 8173 } 8174 } 8175 8176 static void print_cand_cache(struct bpf_verifier_log *log) 8177 { 8178 mutex_lock(&cand_cache_mutex); 8179 bpf_log(log, "vmlinux_cand_cache:"); 8180 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8181 bpf_log(log, "\nmodule_cand_cache:"); 8182 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8183 bpf_log(log, "\n"); 8184 mutex_unlock(&cand_cache_mutex); 8185 } 8186 8187 static u32 hash_cands(struct bpf_cand_cache *cands) 8188 { 8189 return jhash(cands->name, cands->name_len, 0); 8190 } 8191 8192 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8193 struct bpf_cand_cache **cache, 8194 int cache_size) 8195 { 8196 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 8197 8198 if (cc && cc->name_len == cands->name_len && 8199 !strncmp(cc->name, cands->name, cands->name_len)) 8200 return cc; 8201 return NULL; 8202 } 8203 8204 static size_t sizeof_cands(int cnt) 8205 { 8206 return offsetof(struct bpf_cand_cache, cands[cnt]); 8207 } 8208 8209 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 8210 struct bpf_cand_cache **cache, 8211 int cache_size) 8212 { 8213 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 8214 8215 if (*cc) { 8216 bpf_free_cands_from_cache(*cc); 8217 *cc = NULL; 8218 } 8219 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 8220 if (!new_cands) { 8221 bpf_free_cands(cands); 8222 return ERR_PTR(-ENOMEM); 8223 } 8224 /* strdup the name, since it will stay in cache. 8225 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 8226 */ 8227 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 8228 bpf_free_cands(cands); 8229 if (!new_cands->name) { 8230 kfree(new_cands); 8231 return ERR_PTR(-ENOMEM); 8232 } 8233 *cc = new_cands; 8234 return new_cands; 8235 } 8236 8237 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8238 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 8239 int cache_size) 8240 { 8241 struct bpf_cand_cache *cc; 8242 int i, j; 8243 8244 for (i = 0; i < cache_size; i++) { 8245 cc = cache[i]; 8246 if (!cc) 8247 continue; 8248 if (!btf) { 8249 /* when new module is loaded purge all of module_cand_cache, 8250 * since new module might have candidates with the name 8251 * that matches cached cands. 8252 */ 8253 bpf_free_cands_from_cache(cc); 8254 cache[i] = NULL; 8255 continue; 8256 } 8257 /* when module is unloaded purge cache entries 8258 * that match module's btf 8259 */ 8260 for (j = 0; j < cc->cnt; j++) 8261 if (cc->cands[j].btf == btf) { 8262 bpf_free_cands_from_cache(cc); 8263 cache[i] = NULL; 8264 break; 8265 } 8266 } 8267 8268 } 8269 8270 static void purge_cand_cache(struct btf *btf) 8271 { 8272 mutex_lock(&cand_cache_mutex); 8273 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8274 mutex_unlock(&cand_cache_mutex); 8275 } 8276 #endif 8277 8278 static struct bpf_cand_cache * 8279 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8280 int targ_start_id) 8281 { 8282 struct bpf_cand_cache *new_cands; 8283 const struct btf_type *t; 8284 const char *targ_name; 8285 size_t targ_essent_len; 8286 int n, i; 8287 8288 n = btf_nr_types(targ_btf); 8289 for (i = targ_start_id; i < n; i++) { 8290 t = btf_type_by_id(targ_btf, i); 8291 if (btf_kind(t) != cands->kind) 8292 continue; 8293 8294 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8295 if (!targ_name) 8296 continue; 8297 8298 /* the resched point is before strncmp to make sure that search 8299 * for non-existing name will have a chance to schedule(). 8300 */ 8301 cond_resched(); 8302 8303 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 8304 continue; 8305 8306 targ_essent_len = bpf_core_essential_name_len(targ_name); 8307 if (targ_essent_len != cands->name_len) 8308 continue; 8309 8310 /* most of the time there is only one candidate for a given kind+name pair */ 8311 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 8312 if (!new_cands) { 8313 bpf_free_cands(cands); 8314 return ERR_PTR(-ENOMEM); 8315 } 8316 8317 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 8318 bpf_free_cands(cands); 8319 cands = new_cands; 8320 cands->cands[cands->cnt].btf = targ_btf; 8321 cands->cands[cands->cnt].id = i; 8322 cands->cnt++; 8323 } 8324 return cands; 8325 } 8326 8327 static struct bpf_cand_cache * 8328 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 8329 { 8330 struct bpf_cand_cache *cands, *cc, local_cand = {}; 8331 const struct btf *local_btf = ctx->btf; 8332 const struct btf_type *local_type; 8333 const struct btf *main_btf; 8334 size_t local_essent_len; 8335 struct btf *mod_btf; 8336 const char *name; 8337 int id; 8338 8339 main_btf = bpf_get_btf_vmlinux(); 8340 if (IS_ERR(main_btf)) 8341 return ERR_CAST(main_btf); 8342 if (!main_btf) 8343 return ERR_PTR(-EINVAL); 8344 8345 local_type = btf_type_by_id(local_btf, local_type_id); 8346 if (!local_type) 8347 return ERR_PTR(-EINVAL); 8348 8349 name = btf_name_by_offset(local_btf, local_type->name_off); 8350 if (str_is_empty(name)) 8351 return ERR_PTR(-EINVAL); 8352 local_essent_len = bpf_core_essential_name_len(name); 8353 8354 cands = &local_cand; 8355 cands->name = name; 8356 cands->kind = btf_kind(local_type); 8357 cands->name_len = local_essent_len; 8358 8359 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8360 /* cands is a pointer to stack here */ 8361 if (cc) { 8362 if (cc->cnt) 8363 return cc; 8364 goto check_modules; 8365 } 8366 8367 /* Attempt to find target candidates in vmlinux BTF first */ 8368 cands = bpf_core_add_cands(cands, main_btf, 1); 8369 if (IS_ERR(cands)) 8370 return ERR_CAST(cands); 8371 8372 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 8373 8374 /* populate cache even when cands->cnt == 0 */ 8375 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8376 if (IS_ERR(cc)) 8377 return ERR_CAST(cc); 8378 8379 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 8380 if (cc->cnt) 8381 return cc; 8382 8383 check_modules: 8384 /* cands is a pointer to stack here and cands->cnt == 0 */ 8385 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8386 if (cc) 8387 /* if cache has it return it even if cc->cnt == 0 */ 8388 return cc; 8389 8390 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 8391 spin_lock_bh(&btf_idr_lock); 8392 idr_for_each_entry(&btf_idr, mod_btf, id) { 8393 if (!btf_is_module(mod_btf)) 8394 continue; 8395 /* linear search could be slow hence unlock/lock 8396 * the IDR to avoiding holding it for too long 8397 */ 8398 btf_get(mod_btf); 8399 spin_unlock_bh(&btf_idr_lock); 8400 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 8401 btf_put(mod_btf); 8402 if (IS_ERR(cands)) 8403 return ERR_CAST(cands); 8404 spin_lock_bh(&btf_idr_lock); 8405 } 8406 spin_unlock_bh(&btf_idr_lock); 8407 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 8408 * or pointer to stack if cands->cnd == 0. 8409 * Copy it into the cache even when cands->cnt == 0 and 8410 * return the result. 8411 */ 8412 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8413 } 8414 8415 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 8416 int relo_idx, void *insn) 8417 { 8418 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 8419 struct bpf_core_cand_list cands = {}; 8420 struct bpf_core_relo_res targ_res; 8421 struct bpf_core_spec *specs; 8422 int err; 8423 8424 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 8425 * into arrays of btf_ids of struct fields and array indices. 8426 */ 8427 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 8428 if (!specs) 8429 return -ENOMEM; 8430 8431 if (need_cands) { 8432 struct bpf_cand_cache *cc; 8433 int i; 8434 8435 mutex_lock(&cand_cache_mutex); 8436 cc = bpf_core_find_cands(ctx, relo->type_id); 8437 if (IS_ERR(cc)) { 8438 bpf_log(ctx->log, "target candidate search failed for %d\n", 8439 relo->type_id); 8440 err = PTR_ERR(cc); 8441 goto out; 8442 } 8443 if (cc->cnt) { 8444 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 8445 if (!cands.cands) { 8446 err = -ENOMEM; 8447 goto out; 8448 } 8449 } 8450 for (i = 0; i < cc->cnt; i++) { 8451 bpf_log(ctx->log, 8452 "CO-RE relocating %s %s: found target candidate [%d]\n", 8453 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 8454 cands.cands[i].btf = cc->cands[i].btf; 8455 cands.cands[i].id = cc->cands[i].id; 8456 } 8457 cands.len = cc->cnt; 8458 /* cand_cache_mutex needs to span the cache lookup and 8459 * copy of btf pointer into bpf_core_cand_list, 8460 * since module can be unloaded while bpf_core_calc_relo_insn 8461 * is working with module's btf. 8462 */ 8463 } 8464 8465 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 8466 &targ_res); 8467 if (err) 8468 goto out; 8469 8470 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 8471 &targ_res); 8472 8473 out: 8474 kfree(specs); 8475 if (need_cands) { 8476 kfree(cands.cands); 8477 mutex_unlock(&cand_cache_mutex); 8478 if (ctx->log->level & BPF_LOG_LEVEL2) 8479 print_cand_cache(ctx->log); 8480 } 8481 return err; 8482 } 8483 8484 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 8485 const struct bpf_reg_state *reg, 8486 const char *field_name, u32 btf_id, const char *suffix) 8487 { 8488 struct btf *btf = reg->btf; 8489 const struct btf_type *walk_type, *safe_type; 8490 const char *tname; 8491 char safe_tname[64]; 8492 long ret, safe_id; 8493 const struct btf_member *member; 8494 u32 i; 8495 8496 walk_type = btf_type_by_id(btf, reg->btf_id); 8497 if (!walk_type) 8498 return false; 8499 8500 tname = btf_name_by_offset(btf, walk_type->name_off); 8501 8502 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 8503 if (ret < 0) 8504 return false; 8505 8506 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 8507 if (safe_id < 0) 8508 return false; 8509 8510 safe_type = btf_type_by_id(btf, safe_id); 8511 if (!safe_type) 8512 return false; 8513 8514 for_each_member(i, safe_type, member) { 8515 const char *m_name = __btf_name_by_offset(btf, member->name_off); 8516 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 8517 u32 id; 8518 8519 if (!btf_type_is_ptr(mtype)) 8520 continue; 8521 8522 btf_type_skip_modifiers(btf, mtype->type, &id); 8523 /* If we match on both type and name, the field is considered trusted. */ 8524 if (btf_id == id && !strcmp(field_name, m_name)) 8525 return true; 8526 } 8527 8528 return false; 8529 } 8530 8531 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 8532 const struct btf *reg_btf, u32 reg_id, 8533 const struct btf *arg_btf, u32 arg_id) 8534 { 8535 const char *reg_name, *arg_name, *search_needle; 8536 const struct btf_type *reg_type, *arg_type; 8537 int reg_len, arg_len, cmp_len; 8538 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 8539 8540 reg_type = btf_type_by_id(reg_btf, reg_id); 8541 if (!reg_type) 8542 return false; 8543 8544 arg_type = btf_type_by_id(arg_btf, arg_id); 8545 if (!arg_type) 8546 return false; 8547 8548 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 8549 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 8550 8551 reg_len = strlen(reg_name); 8552 arg_len = strlen(arg_name); 8553 8554 /* Exactly one of the two type names may be suffixed with ___init, so 8555 * if the strings are the same size, they can't possibly be no-cast 8556 * aliases of one another. If you have two of the same type names, e.g. 8557 * they're both nf_conn___init, it would be improper to return true 8558 * because they are _not_ no-cast aliases, they are the same type. 8559 */ 8560 if (reg_len == arg_len) 8561 return false; 8562 8563 /* Either of the two names must be the other name, suffixed with ___init. */ 8564 if ((reg_len != arg_len + pattern_len) && 8565 (arg_len != reg_len + pattern_len)) 8566 return false; 8567 8568 if (reg_len < arg_len) { 8569 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 8570 cmp_len = reg_len; 8571 } else { 8572 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 8573 cmp_len = arg_len; 8574 } 8575 8576 if (!search_needle) 8577 return false; 8578 8579 /* ___init suffix must come at the end of the name */ 8580 if (*(search_needle + pattern_len) != '\0') 8581 return false; 8582 8583 return !strncmp(reg_name, arg_name, cmp_len); 8584 } 8585