xref: /openbmc/linux/kernel/bpf/btf.c (revision cabce92d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf_lsm.h>
23 #include <linux/skmsg.h>
24 #include <linux/perf_event.h>
25 #include <linux/bsearch.h>
26 #include <linux/kobject.h>
27 #include <linux/sysfs.h>
28 
29 #include <net/netfilter/nf_bpf_link.h>
30 
31 #include <net/sock.h>
32 #include "../tools/lib/bpf/relo_core.h"
33 
34 /* BTF (BPF Type Format) is the meta data format which describes
35  * the data types of BPF program/map.  Hence, it basically focus
36  * on the C programming language which the modern BPF is primary
37  * using.
38  *
39  * ELF Section:
40  * ~~~~~~~~~~~
41  * The BTF data is stored under the ".BTF" ELF section
42  *
43  * struct btf_type:
44  * ~~~~~~~~~~~~~~~
45  * Each 'struct btf_type' object describes a C data type.
46  * Depending on the type it is describing, a 'struct btf_type'
47  * object may be followed by more data.  F.e.
48  * To describe an array, 'struct btf_type' is followed by
49  * 'struct btf_array'.
50  *
51  * 'struct btf_type' and any extra data following it are
52  * 4 bytes aligned.
53  *
54  * Type section:
55  * ~~~~~~~~~~~~~
56  * The BTF type section contains a list of 'struct btf_type' objects.
57  * Each one describes a C type.  Recall from the above section
58  * that a 'struct btf_type' object could be immediately followed by extra
59  * data in order to describe some particular C types.
60  *
61  * type_id:
62  * ~~~~~~~
63  * Each btf_type object is identified by a type_id.  The type_id
64  * is implicitly implied by the location of the btf_type object in
65  * the BTF type section.  The first one has type_id 1.  The second
66  * one has type_id 2...etc.  Hence, an earlier btf_type has
67  * a smaller type_id.
68  *
69  * A btf_type object may refer to another btf_type object by using
70  * type_id (i.e. the "type" in the "struct btf_type").
71  *
72  * NOTE that we cannot assume any reference-order.
73  * A btf_type object can refer to an earlier btf_type object
74  * but it can also refer to a later btf_type object.
75  *
76  * For example, to describe "const void *".  A btf_type
77  * object describing "const" may refer to another btf_type
78  * object describing "void *".  This type-reference is done
79  * by specifying type_id:
80  *
81  * [1] CONST (anon) type_id=2
82  * [2] PTR (anon) type_id=0
83  *
84  * The above is the btf_verifier debug log:
85  *   - Each line started with "[?]" is a btf_type object
86  *   - [?] is the type_id of the btf_type object.
87  *   - CONST/PTR is the BTF_KIND_XXX
88  *   - "(anon)" is the name of the type.  It just
89  *     happens that CONST and PTR has no name.
90  *   - type_id=XXX is the 'u32 type' in btf_type
91  *
92  * NOTE: "void" has type_id 0
93  *
94  * String section:
95  * ~~~~~~~~~~~~~~
96  * The BTF string section contains the names used by the type section.
97  * Each string is referred by an "offset" from the beginning of the
98  * string section.
99  *
100  * Each string is '\0' terminated.
101  *
102  * The first character in the string section must be '\0'
103  * which is used to mean 'anonymous'. Some btf_type may not
104  * have a name.
105  */
106 
107 /* BTF verification:
108  *
109  * To verify BTF data, two passes are needed.
110  *
111  * Pass #1
112  * ~~~~~~~
113  * The first pass is to collect all btf_type objects to
114  * an array: "btf->types".
115  *
116  * Depending on the C type that a btf_type is describing,
117  * a btf_type may be followed by extra data.  We don't know
118  * how many btf_type is there, and more importantly we don't
119  * know where each btf_type is located in the type section.
120  *
121  * Without knowing the location of each type_id, most verifications
122  * cannot be done.  e.g. an earlier btf_type may refer to a later
123  * btf_type (recall the "const void *" above), so we cannot
124  * check this type-reference in the first pass.
125  *
126  * In the first pass, it still does some verifications (e.g.
127  * checking the name is a valid offset to the string section).
128  *
129  * Pass #2
130  * ~~~~~~~
131  * The main focus is to resolve a btf_type that is referring
132  * to another type.
133  *
134  * We have to ensure the referring type:
135  * 1) does exist in the BTF (i.e. in btf->types[])
136  * 2) does not cause a loop:
137  *	struct A {
138  *		struct B b;
139  *	};
140  *
141  *	struct B {
142  *		struct A a;
143  *	};
144  *
145  * btf_type_needs_resolve() decides if a btf_type needs
146  * to be resolved.
147  *
148  * The needs_resolve type implements the "resolve()" ops which
149  * essentially does a DFS and detects backedge.
150  *
151  * During resolve (or DFS), different C types have different
152  * "RESOLVED" conditions.
153  *
154  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
155  * members because a member is always referring to another
156  * type.  A struct's member can be treated as "RESOLVED" if
157  * it is referring to a BTF_KIND_PTR.  Otherwise, the
158  * following valid C struct would be rejected:
159  *
160  *	struct A {
161  *		int m;
162  *		struct A *a;
163  *	};
164  *
165  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
166  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
167  * detect a pointer loop, e.g.:
168  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
169  *                        ^                                         |
170  *                        +-----------------------------------------+
171  *
172  */
173 
174 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
175 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
176 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
177 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
178 #define BITS_ROUNDUP_BYTES(bits) \
179 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
180 
181 #define BTF_INFO_MASK 0x9f00ffff
182 #define BTF_INT_MASK 0x0fffffff
183 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
184 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
185 
186 /* 16MB for 64k structs and each has 16 members and
187  * a few MB spaces for the string section.
188  * The hard limit is S32_MAX.
189  */
190 #define BTF_MAX_SIZE (16 * 1024 * 1024)
191 
192 #define for_each_member_from(i, from, struct_type, member)		\
193 	for (i = from, member = btf_type_member(struct_type) + from;	\
194 	     i < btf_type_vlen(struct_type);				\
195 	     i++, member++)
196 
197 #define for_each_vsi_from(i, from, struct_type, member)				\
198 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
199 	     i < btf_type_vlen(struct_type);					\
200 	     i++, member++)
201 
202 DEFINE_IDR(btf_idr);
203 DEFINE_SPINLOCK(btf_idr_lock);
204 
205 enum btf_kfunc_hook {
206 	BTF_KFUNC_HOOK_COMMON,
207 	BTF_KFUNC_HOOK_XDP,
208 	BTF_KFUNC_HOOK_TC,
209 	BTF_KFUNC_HOOK_STRUCT_OPS,
210 	BTF_KFUNC_HOOK_TRACING,
211 	BTF_KFUNC_HOOK_SYSCALL,
212 	BTF_KFUNC_HOOK_FMODRET,
213 	BTF_KFUNC_HOOK_CGROUP_SKB,
214 	BTF_KFUNC_HOOK_SCHED_ACT,
215 	BTF_KFUNC_HOOK_SK_SKB,
216 	BTF_KFUNC_HOOK_SOCKET_FILTER,
217 	BTF_KFUNC_HOOK_LWT,
218 	BTF_KFUNC_HOOK_NETFILTER,
219 	BTF_KFUNC_HOOK_MAX,
220 };
221 
222 enum {
223 	BTF_KFUNC_SET_MAX_CNT = 256,
224 	BTF_DTOR_KFUNC_MAX_CNT = 256,
225 	BTF_KFUNC_FILTER_MAX_CNT = 16,
226 };
227 
228 struct btf_kfunc_hook_filter {
229 	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
230 	u32 nr_filters;
231 };
232 
233 struct btf_kfunc_set_tab {
234 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
235 	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
236 };
237 
238 struct btf_id_dtor_kfunc_tab {
239 	u32 cnt;
240 	struct btf_id_dtor_kfunc dtors[];
241 };
242 
243 struct btf {
244 	void *data;
245 	struct btf_type **types;
246 	u32 *resolved_ids;
247 	u32 *resolved_sizes;
248 	const char *strings;
249 	void *nohdr_data;
250 	struct btf_header hdr;
251 	u32 nr_types; /* includes VOID for base BTF */
252 	u32 types_size;
253 	u32 data_size;
254 	refcount_t refcnt;
255 	u32 id;
256 	struct rcu_head rcu;
257 	struct btf_kfunc_set_tab *kfunc_set_tab;
258 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
259 	struct btf_struct_metas *struct_meta_tab;
260 
261 	/* split BTF support */
262 	struct btf *base_btf;
263 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
264 	u32 start_str_off; /* first string offset (0 for base BTF) */
265 	char name[MODULE_NAME_LEN];
266 	bool kernel_btf;
267 };
268 
269 enum verifier_phase {
270 	CHECK_META,
271 	CHECK_TYPE,
272 };
273 
274 struct resolve_vertex {
275 	const struct btf_type *t;
276 	u32 type_id;
277 	u16 next_member;
278 };
279 
280 enum visit_state {
281 	NOT_VISITED,
282 	VISITED,
283 	RESOLVED,
284 };
285 
286 enum resolve_mode {
287 	RESOLVE_TBD,	/* To Be Determined */
288 	RESOLVE_PTR,	/* Resolving for Pointer */
289 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
290 					 * or array
291 					 */
292 };
293 
294 #define MAX_RESOLVE_DEPTH 32
295 
296 struct btf_sec_info {
297 	u32 off;
298 	u32 len;
299 };
300 
301 struct btf_verifier_env {
302 	struct btf *btf;
303 	u8 *visit_states;
304 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
305 	struct bpf_verifier_log log;
306 	u32 log_type_id;
307 	u32 top_stack;
308 	enum verifier_phase phase;
309 	enum resolve_mode resolve_mode;
310 };
311 
312 static const char * const btf_kind_str[NR_BTF_KINDS] = {
313 	[BTF_KIND_UNKN]		= "UNKNOWN",
314 	[BTF_KIND_INT]		= "INT",
315 	[BTF_KIND_PTR]		= "PTR",
316 	[BTF_KIND_ARRAY]	= "ARRAY",
317 	[BTF_KIND_STRUCT]	= "STRUCT",
318 	[BTF_KIND_UNION]	= "UNION",
319 	[BTF_KIND_ENUM]		= "ENUM",
320 	[BTF_KIND_FWD]		= "FWD",
321 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
322 	[BTF_KIND_VOLATILE]	= "VOLATILE",
323 	[BTF_KIND_CONST]	= "CONST",
324 	[BTF_KIND_RESTRICT]	= "RESTRICT",
325 	[BTF_KIND_FUNC]		= "FUNC",
326 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
327 	[BTF_KIND_VAR]		= "VAR",
328 	[BTF_KIND_DATASEC]	= "DATASEC",
329 	[BTF_KIND_FLOAT]	= "FLOAT",
330 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
331 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
332 	[BTF_KIND_ENUM64]	= "ENUM64",
333 };
334 
335 const char *btf_type_str(const struct btf_type *t)
336 {
337 	return btf_kind_str[BTF_INFO_KIND(t->info)];
338 }
339 
340 /* Chunk size we use in safe copy of data to be shown. */
341 #define BTF_SHOW_OBJ_SAFE_SIZE		32
342 
343 /*
344  * This is the maximum size of a base type value (equivalent to a
345  * 128-bit int); if we are at the end of our safe buffer and have
346  * less than 16 bytes space we can't be assured of being able
347  * to copy the next type safely, so in such cases we will initiate
348  * a new copy.
349  */
350 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
351 
352 /* Type name size */
353 #define BTF_SHOW_NAME_SIZE		80
354 
355 /*
356  * The suffix of a type that indicates it cannot alias another type when
357  * comparing BTF IDs for kfunc invocations.
358  */
359 #define NOCAST_ALIAS_SUFFIX		"___init"
360 
361 /*
362  * Common data to all BTF show operations. Private show functions can add
363  * their own data to a structure containing a struct btf_show and consult it
364  * in the show callback.  See btf_type_show() below.
365  *
366  * One challenge with showing nested data is we want to skip 0-valued
367  * data, but in order to figure out whether a nested object is all zeros
368  * we need to walk through it.  As a result, we need to make two passes
369  * when handling structs, unions and arrays; the first path simply looks
370  * for nonzero data, while the second actually does the display.  The first
371  * pass is signalled by show->state.depth_check being set, and if we
372  * encounter a non-zero value we set show->state.depth_to_show to
373  * the depth at which we encountered it.  When we have completed the
374  * first pass, we will know if anything needs to be displayed if
375  * depth_to_show > depth.  See btf_[struct,array]_show() for the
376  * implementation of this.
377  *
378  * Another problem is we want to ensure the data for display is safe to
379  * access.  To support this, the anonymous "struct {} obj" tracks the data
380  * object and our safe copy of it.  We copy portions of the data needed
381  * to the object "copy" buffer, but because its size is limited to
382  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
383  * traverse larger objects for display.
384  *
385  * The various data type show functions all start with a call to
386  * btf_show_start_type() which returns a pointer to the safe copy
387  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
388  * raw data itself).  btf_show_obj_safe() is responsible for
389  * using copy_from_kernel_nofault() to update the safe data if necessary
390  * as we traverse the object's data.  skbuff-like semantics are
391  * used:
392  *
393  * - obj.head points to the start of the toplevel object for display
394  * - obj.size is the size of the toplevel object
395  * - obj.data points to the current point in the original data at
396  *   which our safe data starts.  obj.data will advance as we copy
397  *   portions of the data.
398  *
399  * In most cases a single copy will suffice, but larger data structures
400  * such as "struct task_struct" will require many copies.  The logic in
401  * btf_show_obj_safe() handles the logic that determines if a new
402  * copy_from_kernel_nofault() is needed.
403  */
404 struct btf_show {
405 	u64 flags;
406 	void *target;	/* target of show operation (seq file, buffer) */
407 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
408 	const struct btf *btf;
409 	/* below are used during iteration */
410 	struct {
411 		u8 depth;
412 		u8 depth_to_show;
413 		u8 depth_check;
414 		u8 array_member:1,
415 		   array_terminated:1;
416 		u16 array_encoding;
417 		u32 type_id;
418 		int status;			/* non-zero for error */
419 		const struct btf_type *type;
420 		const struct btf_member *member;
421 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
422 	} state;
423 	struct {
424 		u32 size;
425 		void *head;
426 		void *data;
427 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
428 	} obj;
429 };
430 
431 struct btf_kind_operations {
432 	s32 (*check_meta)(struct btf_verifier_env *env,
433 			  const struct btf_type *t,
434 			  u32 meta_left);
435 	int (*resolve)(struct btf_verifier_env *env,
436 		       const struct resolve_vertex *v);
437 	int (*check_member)(struct btf_verifier_env *env,
438 			    const struct btf_type *struct_type,
439 			    const struct btf_member *member,
440 			    const struct btf_type *member_type);
441 	int (*check_kflag_member)(struct btf_verifier_env *env,
442 				  const struct btf_type *struct_type,
443 				  const struct btf_member *member,
444 				  const struct btf_type *member_type);
445 	void (*log_details)(struct btf_verifier_env *env,
446 			    const struct btf_type *t);
447 	void (*show)(const struct btf *btf, const struct btf_type *t,
448 			 u32 type_id, void *data, u8 bits_offsets,
449 			 struct btf_show *show);
450 };
451 
452 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
453 static struct btf_type btf_void;
454 
455 static int btf_resolve(struct btf_verifier_env *env,
456 		       const struct btf_type *t, u32 type_id);
457 
458 static int btf_func_check(struct btf_verifier_env *env,
459 			  const struct btf_type *t);
460 
461 static bool btf_type_is_modifier(const struct btf_type *t)
462 {
463 	/* Some of them is not strictly a C modifier
464 	 * but they are grouped into the same bucket
465 	 * for BTF concern:
466 	 *   A type (t) that refers to another
467 	 *   type through t->type AND its size cannot
468 	 *   be determined without following the t->type.
469 	 *
470 	 * ptr does not fall into this bucket
471 	 * because its size is always sizeof(void *).
472 	 */
473 	switch (BTF_INFO_KIND(t->info)) {
474 	case BTF_KIND_TYPEDEF:
475 	case BTF_KIND_VOLATILE:
476 	case BTF_KIND_CONST:
477 	case BTF_KIND_RESTRICT:
478 	case BTF_KIND_TYPE_TAG:
479 		return true;
480 	}
481 
482 	return false;
483 }
484 
485 bool btf_type_is_void(const struct btf_type *t)
486 {
487 	return t == &btf_void;
488 }
489 
490 static bool btf_type_is_fwd(const struct btf_type *t)
491 {
492 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
493 }
494 
495 static bool btf_type_is_datasec(const struct btf_type *t)
496 {
497 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
498 }
499 
500 static bool btf_type_is_decl_tag(const struct btf_type *t)
501 {
502 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
503 }
504 
505 static bool btf_type_nosize(const struct btf_type *t)
506 {
507 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
508 	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
509 	       btf_type_is_decl_tag(t);
510 }
511 
512 static bool btf_type_nosize_or_null(const struct btf_type *t)
513 {
514 	return !t || btf_type_nosize(t);
515 }
516 
517 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
518 {
519 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
520 	       btf_type_is_var(t) || btf_type_is_typedef(t);
521 }
522 
523 u32 btf_nr_types(const struct btf *btf)
524 {
525 	u32 total = 0;
526 
527 	while (btf) {
528 		total += btf->nr_types;
529 		btf = btf->base_btf;
530 	}
531 
532 	return total;
533 }
534 
535 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
536 {
537 	const struct btf_type *t;
538 	const char *tname;
539 	u32 i, total;
540 
541 	total = btf_nr_types(btf);
542 	for (i = 1; i < total; i++) {
543 		t = btf_type_by_id(btf, i);
544 		if (BTF_INFO_KIND(t->info) != kind)
545 			continue;
546 
547 		tname = btf_name_by_offset(btf, t->name_off);
548 		if (!strcmp(tname, name))
549 			return i;
550 	}
551 
552 	return -ENOENT;
553 }
554 
555 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
556 {
557 	struct btf *btf;
558 	s32 ret;
559 	int id;
560 
561 	btf = bpf_get_btf_vmlinux();
562 	if (IS_ERR(btf))
563 		return PTR_ERR(btf);
564 	if (!btf)
565 		return -EINVAL;
566 
567 	ret = btf_find_by_name_kind(btf, name, kind);
568 	/* ret is never zero, since btf_find_by_name_kind returns
569 	 * positive btf_id or negative error.
570 	 */
571 	if (ret > 0) {
572 		btf_get(btf);
573 		*btf_p = btf;
574 		return ret;
575 	}
576 
577 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
578 	spin_lock_bh(&btf_idr_lock);
579 	idr_for_each_entry(&btf_idr, btf, id) {
580 		if (!btf_is_module(btf))
581 			continue;
582 		/* linear search could be slow hence unlock/lock
583 		 * the IDR to avoiding holding it for too long
584 		 */
585 		btf_get(btf);
586 		spin_unlock_bh(&btf_idr_lock);
587 		ret = btf_find_by_name_kind(btf, name, kind);
588 		if (ret > 0) {
589 			*btf_p = btf;
590 			return ret;
591 		}
592 		btf_put(btf);
593 		spin_lock_bh(&btf_idr_lock);
594 	}
595 	spin_unlock_bh(&btf_idr_lock);
596 	return ret;
597 }
598 
599 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
600 					       u32 id, u32 *res_id)
601 {
602 	const struct btf_type *t = btf_type_by_id(btf, id);
603 
604 	while (btf_type_is_modifier(t)) {
605 		id = t->type;
606 		t = btf_type_by_id(btf, t->type);
607 	}
608 
609 	if (res_id)
610 		*res_id = id;
611 
612 	return t;
613 }
614 
615 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
616 					    u32 id, u32 *res_id)
617 {
618 	const struct btf_type *t;
619 
620 	t = btf_type_skip_modifiers(btf, id, NULL);
621 	if (!btf_type_is_ptr(t))
622 		return NULL;
623 
624 	return btf_type_skip_modifiers(btf, t->type, res_id);
625 }
626 
627 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
628 						 u32 id, u32 *res_id)
629 {
630 	const struct btf_type *ptype;
631 
632 	ptype = btf_type_resolve_ptr(btf, id, res_id);
633 	if (ptype && btf_type_is_func_proto(ptype))
634 		return ptype;
635 
636 	return NULL;
637 }
638 
639 /* Types that act only as a source, not sink or intermediate
640  * type when resolving.
641  */
642 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
643 {
644 	return btf_type_is_var(t) ||
645 	       btf_type_is_decl_tag(t) ||
646 	       btf_type_is_datasec(t);
647 }
648 
649 /* What types need to be resolved?
650  *
651  * btf_type_is_modifier() is an obvious one.
652  *
653  * btf_type_is_struct() because its member refers to
654  * another type (through member->type).
655  *
656  * btf_type_is_var() because the variable refers to
657  * another type. btf_type_is_datasec() holds multiple
658  * btf_type_is_var() types that need resolving.
659  *
660  * btf_type_is_array() because its element (array->type)
661  * refers to another type.  Array can be thought of a
662  * special case of struct while array just has the same
663  * member-type repeated by array->nelems of times.
664  */
665 static bool btf_type_needs_resolve(const struct btf_type *t)
666 {
667 	return btf_type_is_modifier(t) ||
668 	       btf_type_is_ptr(t) ||
669 	       btf_type_is_struct(t) ||
670 	       btf_type_is_array(t) ||
671 	       btf_type_is_var(t) ||
672 	       btf_type_is_func(t) ||
673 	       btf_type_is_decl_tag(t) ||
674 	       btf_type_is_datasec(t);
675 }
676 
677 /* t->size can be used */
678 static bool btf_type_has_size(const struct btf_type *t)
679 {
680 	switch (BTF_INFO_KIND(t->info)) {
681 	case BTF_KIND_INT:
682 	case BTF_KIND_STRUCT:
683 	case BTF_KIND_UNION:
684 	case BTF_KIND_ENUM:
685 	case BTF_KIND_DATASEC:
686 	case BTF_KIND_FLOAT:
687 	case BTF_KIND_ENUM64:
688 		return true;
689 	}
690 
691 	return false;
692 }
693 
694 static const char *btf_int_encoding_str(u8 encoding)
695 {
696 	if (encoding == 0)
697 		return "(none)";
698 	else if (encoding == BTF_INT_SIGNED)
699 		return "SIGNED";
700 	else if (encoding == BTF_INT_CHAR)
701 		return "CHAR";
702 	else if (encoding == BTF_INT_BOOL)
703 		return "BOOL";
704 	else
705 		return "UNKN";
706 }
707 
708 static u32 btf_type_int(const struct btf_type *t)
709 {
710 	return *(u32 *)(t + 1);
711 }
712 
713 static const struct btf_array *btf_type_array(const struct btf_type *t)
714 {
715 	return (const struct btf_array *)(t + 1);
716 }
717 
718 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
719 {
720 	return (const struct btf_enum *)(t + 1);
721 }
722 
723 static const struct btf_var *btf_type_var(const struct btf_type *t)
724 {
725 	return (const struct btf_var *)(t + 1);
726 }
727 
728 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
729 {
730 	return (const struct btf_decl_tag *)(t + 1);
731 }
732 
733 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
734 {
735 	return (const struct btf_enum64 *)(t + 1);
736 }
737 
738 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
739 {
740 	return kind_ops[BTF_INFO_KIND(t->info)];
741 }
742 
743 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
744 {
745 	if (!BTF_STR_OFFSET_VALID(offset))
746 		return false;
747 
748 	while (offset < btf->start_str_off)
749 		btf = btf->base_btf;
750 
751 	offset -= btf->start_str_off;
752 	return offset < btf->hdr.str_len;
753 }
754 
755 static bool __btf_name_char_ok(char c, bool first)
756 {
757 	if ((first ? !isalpha(c) :
758 		     !isalnum(c)) &&
759 	    c != '_' &&
760 	    c != '.')
761 		return false;
762 	return true;
763 }
764 
765 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
766 {
767 	while (offset < btf->start_str_off)
768 		btf = btf->base_btf;
769 
770 	offset -= btf->start_str_off;
771 	if (offset < btf->hdr.str_len)
772 		return &btf->strings[offset];
773 
774 	return NULL;
775 }
776 
777 static bool __btf_name_valid(const struct btf *btf, u32 offset)
778 {
779 	/* offset must be valid */
780 	const char *src = btf_str_by_offset(btf, offset);
781 	const char *src_limit;
782 
783 	if (!__btf_name_char_ok(*src, true))
784 		return false;
785 
786 	/* set a limit on identifier length */
787 	src_limit = src + KSYM_NAME_LEN;
788 	src++;
789 	while (*src && src < src_limit) {
790 		if (!__btf_name_char_ok(*src, false))
791 			return false;
792 		src++;
793 	}
794 
795 	return !*src;
796 }
797 
798 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
799 {
800 	return __btf_name_valid(btf, offset);
801 }
802 
803 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
804 {
805 	return __btf_name_valid(btf, offset);
806 }
807 
808 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
809 {
810 	const char *name;
811 
812 	if (!offset)
813 		return "(anon)";
814 
815 	name = btf_str_by_offset(btf, offset);
816 	return name ?: "(invalid-name-offset)";
817 }
818 
819 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
820 {
821 	return btf_str_by_offset(btf, offset);
822 }
823 
824 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
825 {
826 	while (type_id < btf->start_id)
827 		btf = btf->base_btf;
828 
829 	type_id -= btf->start_id;
830 	if (type_id >= btf->nr_types)
831 		return NULL;
832 	return btf->types[type_id];
833 }
834 EXPORT_SYMBOL_GPL(btf_type_by_id);
835 
836 /*
837  * Regular int is not a bit field and it must be either
838  * u8/u16/u32/u64 or __int128.
839  */
840 static bool btf_type_int_is_regular(const struct btf_type *t)
841 {
842 	u8 nr_bits, nr_bytes;
843 	u32 int_data;
844 
845 	int_data = btf_type_int(t);
846 	nr_bits = BTF_INT_BITS(int_data);
847 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
848 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
849 	    BTF_INT_OFFSET(int_data) ||
850 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
851 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
852 	     nr_bytes != (2 * sizeof(u64)))) {
853 		return false;
854 	}
855 
856 	return true;
857 }
858 
859 /*
860  * Check that given struct member is a regular int with expected
861  * offset and size.
862  */
863 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
864 			   const struct btf_member *m,
865 			   u32 expected_offset, u32 expected_size)
866 {
867 	const struct btf_type *t;
868 	u32 id, int_data;
869 	u8 nr_bits;
870 
871 	id = m->type;
872 	t = btf_type_id_size(btf, &id, NULL);
873 	if (!t || !btf_type_is_int(t))
874 		return false;
875 
876 	int_data = btf_type_int(t);
877 	nr_bits = BTF_INT_BITS(int_data);
878 	if (btf_type_kflag(s)) {
879 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
880 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
881 
882 		/* if kflag set, int should be a regular int and
883 		 * bit offset should be at byte boundary.
884 		 */
885 		return !bitfield_size &&
886 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
887 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
888 	}
889 
890 	if (BTF_INT_OFFSET(int_data) ||
891 	    BITS_PER_BYTE_MASKED(m->offset) ||
892 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
893 	    BITS_PER_BYTE_MASKED(nr_bits) ||
894 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
895 		return false;
896 
897 	return true;
898 }
899 
900 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
901 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
902 						       u32 id)
903 {
904 	const struct btf_type *t = btf_type_by_id(btf, id);
905 
906 	while (btf_type_is_modifier(t) &&
907 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
908 		t = btf_type_by_id(btf, t->type);
909 	}
910 
911 	return t;
912 }
913 
914 #define BTF_SHOW_MAX_ITER	10
915 
916 #define BTF_KIND_BIT(kind)	(1ULL << kind)
917 
918 /*
919  * Populate show->state.name with type name information.
920  * Format of type name is
921  *
922  * [.member_name = ] (type_name)
923  */
924 static const char *btf_show_name(struct btf_show *show)
925 {
926 	/* BTF_MAX_ITER array suffixes "[]" */
927 	const char *array_suffixes = "[][][][][][][][][][]";
928 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
929 	/* BTF_MAX_ITER pointer suffixes "*" */
930 	const char *ptr_suffixes = "**********";
931 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
932 	const char *name = NULL, *prefix = "", *parens = "";
933 	const struct btf_member *m = show->state.member;
934 	const struct btf_type *t;
935 	const struct btf_array *array;
936 	u32 id = show->state.type_id;
937 	const char *member = NULL;
938 	bool show_member = false;
939 	u64 kinds = 0;
940 	int i;
941 
942 	show->state.name[0] = '\0';
943 
944 	/*
945 	 * Don't show type name if we're showing an array member;
946 	 * in that case we show the array type so don't need to repeat
947 	 * ourselves for each member.
948 	 */
949 	if (show->state.array_member)
950 		return "";
951 
952 	/* Retrieve member name, if any. */
953 	if (m) {
954 		member = btf_name_by_offset(show->btf, m->name_off);
955 		show_member = strlen(member) > 0;
956 		id = m->type;
957 	}
958 
959 	/*
960 	 * Start with type_id, as we have resolved the struct btf_type *
961 	 * via btf_modifier_show() past the parent typedef to the child
962 	 * struct, int etc it is defined as.  In such cases, the type_id
963 	 * still represents the starting type while the struct btf_type *
964 	 * in our show->state points at the resolved type of the typedef.
965 	 */
966 	t = btf_type_by_id(show->btf, id);
967 	if (!t)
968 		return "";
969 
970 	/*
971 	 * The goal here is to build up the right number of pointer and
972 	 * array suffixes while ensuring the type name for a typedef
973 	 * is represented.  Along the way we accumulate a list of
974 	 * BTF kinds we have encountered, since these will inform later
975 	 * display; for example, pointer types will not require an
976 	 * opening "{" for struct, we will just display the pointer value.
977 	 *
978 	 * We also want to accumulate the right number of pointer or array
979 	 * indices in the format string while iterating until we get to
980 	 * the typedef/pointee/array member target type.
981 	 *
982 	 * We start by pointing at the end of pointer and array suffix
983 	 * strings; as we accumulate pointers and arrays we move the pointer
984 	 * or array string backwards so it will show the expected number of
985 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
986 	 * and/or arrays and typedefs are supported as a precaution.
987 	 *
988 	 * We also want to get typedef name while proceeding to resolve
989 	 * type it points to so that we can add parentheses if it is a
990 	 * "typedef struct" etc.
991 	 */
992 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
993 
994 		switch (BTF_INFO_KIND(t->info)) {
995 		case BTF_KIND_TYPEDEF:
996 			if (!name)
997 				name = btf_name_by_offset(show->btf,
998 							       t->name_off);
999 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1000 			id = t->type;
1001 			break;
1002 		case BTF_KIND_ARRAY:
1003 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1004 			parens = "[";
1005 			if (!t)
1006 				return "";
1007 			array = btf_type_array(t);
1008 			if (array_suffix > array_suffixes)
1009 				array_suffix -= 2;
1010 			id = array->type;
1011 			break;
1012 		case BTF_KIND_PTR:
1013 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1014 			if (ptr_suffix > ptr_suffixes)
1015 				ptr_suffix -= 1;
1016 			id = t->type;
1017 			break;
1018 		default:
1019 			id = 0;
1020 			break;
1021 		}
1022 		if (!id)
1023 			break;
1024 		t = btf_type_skip_qualifiers(show->btf, id);
1025 	}
1026 	/* We may not be able to represent this type; bail to be safe */
1027 	if (i == BTF_SHOW_MAX_ITER)
1028 		return "";
1029 
1030 	if (!name)
1031 		name = btf_name_by_offset(show->btf, t->name_off);
1032 
1033 	switch (BTF_INFO_KIND(t->info)) {
1034 	case BTF_KIND_STRUCT:
1035 	case BTF_KIND_UNION:
1036 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1037 			 "struct" : "union";
1038 		/* if it's an array of struct/union, parens is already set */
1039 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1040 			parens = "{";
1041 		break;
1042 	case BTF_KIND_ENUM:
1043 	case BTF_KIND_ENUM64:
1044 		prefix = "enum";
1045 		break;
1046 	default:
1047 		break;
1048 	}
1049 
1050 	/* pointer does not require parens */
1051 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1052 		parens = "";
1053 	/* typedef does not require struct/union/enum prefix */
1054 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1055 		prefix = "";
1056 
1057 	if (!name)
1058 		name = "";
1059 
1060 	/* Even if we don't want type name info, we want parentheses etc */
1061 	if (show->flags & BTF_SHOW_NONAME)
1062 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1063 			 parens);
1064 	else
1065 		snprintf(show->state.name, sizeof(show->state.name),
1066 			 "%s%s%s(%s%s%s%s%s%s)%s",
1067 			 /* first 3 strings comprise ".member = " */
1068 			 show_member ? "." : "",
1069 			 show_member ? member : "",
1070 			 show_member ? " = " : "",
1071 			 /* ...next is our prefix (struct, enum, etc) */
1072 			 prefix,
1073 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1074 			 /* ...this is the type name itself */
1075 			 name,
1076 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1077 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1078 			 array_suffix, parens);
1079 
1080 	return show->state.name;
1081 }
1082 
1083 static const char *__btf_show_indent(struct btf_show *show)
1084 {
1085 	const char *indents = "                                ";
1086 	const char *indent = &indents[strlen(indents)];
1087 
1088 	if ((indent - show->state.depth) >= indents)
1089 		return indent - show->state.depth;
1090 	return indents;
1091 }
1092 
1093 static const char *btf_show_indent(struct btf_show *show)
1094 {
1095 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1096 }
1097 
1098 static const char *btf_show_newline(struct btf_show *show)
1099 {
1100 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1101 }
1102 
1103 static const char *btf_show_delim(struct btf_show *show)
1104 {
1105 	if (show->state.depth == 0)
1106 		return "";
1107 
1108 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1109 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1110 		return "|";
1111 
1112 	return ",";
1113 }
1114 
1115 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1116 {
1117 	va_list args;
1118 
1119 	if (!show->state.depth_check) {
1120 		va_start(args, fmt);
1121 		show->showfn(show, fmt, args);
1122 		va_end(args);
1123 	}
1124 }
1125 
1126 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1127  * format specifiers to the format specifier passed in; these do the work of
1128  * adding indentation, delimiters etc while the caller simply has to specify
1129  * the type value(s) in the format specifier + value(s).
1130  */
1131 #define btf_show_type_value(show, fmt, value)				       \
1132 	do {								       \
1133 		if ((value) != (__typeof__(value))0 ||			       \
1134 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1135 		    show->state.depth == 0) {				       \
1136 			btf_show(show, "%s%s" fmt "%s%s",		       \
1137 				 btf_show_indent(show),			       \
1138 				 btf_show_name(show),			       \
1139 				 value, btf_show_delim(show),		       \
1140 				 btf_show_newline(show));		       \
1141 			if (show->state.depth > show->state.depth_to_show)     \
1142 				show->state.depth_to_show = show->state.depth; \
1143 		}							       \
1144 	} while (0)
1145 
1146 #define btf_show_type_values(show, fmt, ...)				       \
1147 	do {								       \
1148 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1149 			 btf_show_name(show),				       \
1150 			 __VA_ARGS__, btf_show_delim(show),		       \
1151 			 btf_show_newline(show));			       \
1152 		if (show->state.depth > show->state.depth_to_show)	       \
1153 			show->state.depth_to_show = show->state.depth;	       \
1154 	} while (0)
1155 
1156 /* How much is left to copy to safe buffer after @data? */
1157 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1158 {
1159 	return show->obj.head + show->obj.size - data;
1160 }
1161 
1162 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1163 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1164 {
1165 	return data >= show->obj.data &&
1166 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1167 }
1168 
1169 /*
1170  * If object pointed to by @data of @size falls within our safe buffer, return
1171  * the equivalent pointer to the same safe data.  Assumes
1172  * copy_from_kernel_nofault() has already happened and our safe buffer is
1173  * populated.
1174  */
1175 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1176 {
1177 	if (btf_show_obj_is_safe(show, data, size))
1178 		return show->obj.safe + (data - show->obj.data);
1179 	return NULL;
1180 }
1181 
1182 /*
1183  * Return a safe-to-access version of data pointed to by @data.
1184  * We do this by copying the relevant amount of information
1185  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1186  *
1187  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1188  * safe copy is needed.
1189  *
1190  * Otherwise we need to determine if we have the required amount
1191  * of data (determined by the @data pointer and the size of the
1192  * largest base type we can encounter (represented by
1193  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1194  * that we will be able to print some of the current object,
1195  * and if more is needed a copy will be triggered.
1196  * Some objects such as structs will not fit into the buffer;
1197  * in such cases additional copies when we iterate over their
1198  * members may be needed.
1199  *
1200  * btf_show_obj_safe() is used to return a safe buffer for
1201  * btf_show_start_type(); this ensures that as we recurse into
1202  * nested types we always have safe data for the given type.
1203  * This approach is somewhat wasteful; it's possible for example
1204  * that when iterating over a large union we'll end up copying the
1205  * same data repeatedly, but the goal is safety not performance.
1206  * We use stack data as opposed to per-CPU buffers because the
1207  * iteration over a type can take some time, and preemption handling
1208  * would greatly complicate use of the safe buffer.
1209  */
1210 static void *btf_show_obj_safe(struct btf_show *show,
1211 			       const struct btf_type *t,
1212 			       void *data)
1213 {
1214 	const struct btf_type *rt;
1215 	int size_left, size;
1216 	void *safe = NULL;
1217 
1218 	if (show->flags & BTF_SHOW_UNSAFE)
1219 		return data;
1220 
1221 	rt = btf_resolve_size(show->btf, t, &size);
1222 	if (IS_ERR(rt)) {
1223 		show->state.status = PTR_ERR(rt);
1224 		return NULL;
1225 	}
1226 
1227 	/*
1228 	 * Is this toplevel object? If so, set total object size and
1229 	 * initialize pointers.  Otherwise check if we still fall within
1230 	 * our safe object data.
1231 	 */
1232 	if (show->state.depth == 0) {
1233 		show->obj.size = size;
1234 		show->obj.head = data;
1235 	} else {
1236 		/*
1237 		 * If the size of the current object is > our remaining
1238 		 * safe buffer we _may_ need to do a new copy.  However
1239 		 * consider the case of a nested struct; it's size pushes
1240 		 * us over the safe buffer limit, but showing any individual
1241 		 * struct members does not.  In such cases, we don't need
1242 		 * to initiate a fresh copy yet; however we definitely need
1243 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1244 		 * in our buffer, regardless of the current object size.
1245 		 * The logic here is that as we resolve types we will
1246 		 * hit a base type at some point, and we need to be sure
1247 		 * the next chunk of data is safely available to display
1248 		 * that type info safely.  We cannot rely on the size of
1249 		 * the current object here because it may be much larger
1250 		 * than our current buffer (e.g. task_struct is 8k).
1251 		 * All we want to do here is ensure that we can print the
1252 		 * next basic type, which we can if either
1253 		 * - the current type size is within the safe buffer; or
1254 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1255 		 *   the safe buffer.
1256 		 */
1257 		safe = __btf_show_obj_safe(show, data,
1258 					   min(size,
1259 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1260 	}
1261 
1262 	/*
1263 	 * We need a new copy to our safe object, either because we haven't
1264 	 * yet copied and are initializing safe data, or because the data
1265 	 * we want falls outside the boundaries of the safe object.
1266 	 */
1267 	if (!safe) {
1268 		size_left = btf_show_obj_size_left(show, data);
1269 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1270 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1271 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1272 							      data, size_left);
1273 		if (!show->state.status) {
1274 			show->obj.data = data;
1275 			safe = show->obj.safe;
1276 		}
1277 	}
1278 
1279 	return safe;
1280 }
1281 
1282 /*
1283  * Set the type we are starting to show and return a safe data pointer
1284  * to be used for showing the associated data.
1285  */
1286 static void *btf_show_start_type(struct btf_show *show,
1287 				 const struct btf_type *t,
1288 				 u32 type_id, void *data)
1289 {
1290 	show->state.type = t;
1291 	show->state.type_id = type_id;
1292 	show->state.name[0] = '\0';
1293 
1294 	return btf_show_obj_safe(show, t, data);
1295 }
1296 
1297 static void btf_show_end_type(struct btf_show *show)
1298 {
1299 	show->state.type = NULL;
1300 	show->state.type_id = 0;
1301 	show->state.name[0] = '\0';
1302 }
1303 
1304 static void *btf_show_start_aggr_type(struct btf_show *show,
1305 				      const struct btf_type *t,
1306 				      u32 type_id, void *data)
1307 {
1308 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1309 
1310 	if (!safe_data)
1311 		return safe_data;
1312 
1313 	btf_show(show, "%s%s%s", btf_show_indent(show),
1314 		 btf_show_name(show),
1315 		 btf_show_newline(show));
1316 	show->state.depth++;
1317 	return safe_data;
1318 }
1319 
1320 static void btf_show_end_aggr_type(struct btf_show *show,
1321 				   const char *suffix)
1322 {
1323 	show->state.depth--;
1324 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1325 		 btf_show_delim(show), btf_show_newline(show));
1326 	btf_show_end_type(show);
1327 }
1328 
1329 static void btf_show_start_member(struct btf_show *show,
1330 				  const struct btf_member *m)
1331 {
1332 	show->state.member = m;
1333 }
1334 
1335 static void btf_show_start_array_member(struct btf_show *show)
1336 {
1337 	show->state.array_member = 1;
1338 	btf_show_start_member(show, NULL);
1339 }
1340 
1341 static void btf_show_end_member(struct btf_show *show)
1342 {
1343 	show->state.member = NULL;
1344 }
1345 
1346 static void btf_show_end_array_member(struct btf_show *show)
1347 {
1348 	show->state.array_member = 0;
1349 	btf_show_end_member(show);
1350 }
1351 
1352 static void *btf_show_start_array_type(struct btf_show *show,
1353 				       const struct btf_type *t,
1354 				       u32 type_id,
1355 				       u16 array_encoding,
1356 				       void *data)
1357 {
1358 	show->state.array_encoding = array_encoding;
1359 	show->state.array_terminated = 0;
1360 	return btf_show_start_aggr_type(show, t, type_id, data);
1361 }
1362 
1363 static void btf_show_end_array_type(struct btf_show *show)
1364 {
1365 	show->state.array_encoding = 0;
1366 	show->state.array_terminated = 0;
1367 	btf_show_end_aggr_type(show, "]");
1368 }
1369 
1370 static void *btf_show_start_struct_type(struct btf_show *show,
1371 					const struct btf_type *t,
1372 					u32 type_id,
1373 					void *data)
1374 {
1375 	return btf_show_start_aggr_type(show, t, type_id, data);
1376 }
1377 
1378 static void btf_show_end_struct_type(struct btf_show *show)
1379 {
1380 	btf_show_end_aggr_type(show, "}");
1381 }
1382 
1383 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1384 					      const char *fmt, ...)
1385 {
1386 	va_list args;
1387 
1388 	va_start(args, fmt);
1389 	bpf_verifier_vlog(log, fmt, args);
1390 	va_end(args);
1391 }
1392 
1393 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1394 					    const char *fmt, ...)
1395 {
1396 	struct bpf_verifier_log *log = &env->log;
1397 	va_list args;
1398 
1399 	if (!bpf_verifier_log_needed(log))
1400 		return;
1401 
1402 	va_start(args, fmt);
1403 	bpf_verifier_vlog(log, fmt, args);
1404 	va_end(args);
1405 }
1406 
1407 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1408 						   const struct btf_type *t,
1409 						   bool log_details,
1410 						   const char *fmt, ...)
1411 {
1412 	struct bpf_verifier_log *log = &env->log;
1413 	struct btf *btf = env->btf;
1414 	va_list args;
1415 
1416 	if (!bpf_verifier_log_needed(log))
1417 		return;
1418 
1419 	if (log->level == BPF_LOG_KERNEL) {
1420 		/* btf verifier prints all types it is processing via
1421 		 * btf_verifier_log_type(..., fmt = NULL).
1422 		 * Skip those prints for in-kernel BTF verification.
1423 		 */
1424 		if (!fmt)
1425 			return;
1426 
1427 		/* Skip logging when loading module BTF with mismatches permitted */
1428 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1429 			return;
1430 	}
1431 
1432 	__btf_verifier_log(log, "[%u] %s %s%s",
1433 			   env->log_type_id,
1434 			   btf_type_str(t),
1435 			   __btf_name_by_offset(btf, t->name_off),
1436 			   log_details ? " " : "");
1437 
1438 	if (log_details)
1439 		btf_type_ops(t)->log_details(env, t);
1440 
1441 	if (fmt && *fmt) {
1442 		__btf_verifier_log(log, " ");
1443 		va_start(args, fmt);
1444 		bpf_verifier_vlog(log, fmt, args);
1445 		va_end(args);
1446 	}
1447 
1448 	__btf_verifier_log(log, "\n");
1449 }
1450 
1451 #define btf_verifier_log_type(env, t, ...) \
1452 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1453 #define btf_verifier_log_basic(env, t, ...) \
1454 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1455 
1456 __printf(4, 5)
1457 static void btf_verifier_log_member(struct btf_verifier_env *env,
1458 				    const struct btf_type *struct_type,
1459 				    const struct btf_member *member,
1460 				    const char *fmt, ...)
1461 {
1462 	struct bpf_verifier_log *log = &env->log;
1463 	struct btf *btf = env->btf;
1464 	va_list args;
1465 
1466 	if (!bpf_verifier_log_needed(log))
1467 		return;
1468 
1469 	if (log->level == BPF_LOG_KERNEL) {
1470 		if (!fmt)
1471 			return;
1472 
1473 		/* Skip logging when loading module BTF with mismatches permitted */
1474 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1475 			return;
1476 	}
1477 
1478 	/* The CHECK_META phase already did a btf dump.
1479 	 *
1480 	 * If member is logged again, it must hit an error in
1481 	 * parsing this member.  It is useful to print out which
1482 	 * struct this member belongs to.
1483 	 */
1484 	if (env->phase != CHECK_META)
1485 		btf_verifier_log_type(env, struct_type, NULL);
1486 
1487 	if (btf_type_kflag(struct_type))
1488 		__btf_verifier_log(log,
1489 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1490 				   __btf_name_by_offset(btf, member->name_off),
1491 				   member->type,
1492 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1493 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1494 	else
1495 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1496 				   __btf_name_by_offset(btf, member->name_off),
1497 				   member->type, member->offset);
1498 
1499 	if (fmt && *fmt) {
1500 		__btf_verifier_log(log, " ");
1501 		va_start(args, fmt);
1502 		bpf_verifier_vlog(log, fmt, args);
1503 		va_end(args);
1504 	}
1505 
1506 	__btf_verifier_log(log, "\n");
1507 }
1508 
1509 __printf(4, 5)
1510 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1511 				 const struct btf_type *datasec_type,
1512 				 const struct btf_var_secinfo *vsi,
1513 				 const char *fmt, ...)
1514 {
1515 	struct bpf_verifier_log *log = &env->log;
1516 	va_list args;
1517 
1518 	if (!bpf_verifier_log_needed(log))
1519 		return;
1520 	if (log->level == BPF_LOG_KERNEL && !fmt)
1521 		return;
1522 	if (env->phase != CHECK_META)
1523 		btf_verifier_log_type(env, datasec_type, NULL);
1524 
1525 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1526 			   vsi->type, vsi->offset, vsi->size);
1527 	if (fmt && *fmt) {
1528 		__btf_verifier_log(log, " ");
1529 		va_start(args, fmt);
1530 		bpf_verifier_vlog(log, fmt, args);
1531 		va_end(args);
1532 	}
1533 
1534 	__btf_verifier_log(log, "\n");
1535 }
1536 
1537 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1538 				 u32 btf_data_size)
1539 {
1540 	struct bpf_verifier_log *log = &env->log;
1541 	const struct btf *btf = env->btf;
1542 	const struct btf_header *hdr;
1543 
1544 	if (!bpf_verifier_log_needed(log))
1545 		return;
1546 
1547 	if (log->level == BPF_LOG_KERNEL)
1548 		return;
1549 	hdr = &btf->hdr;
1550 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1551 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1552 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1553 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1554 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1555 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1556 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1557 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1558 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1559 }
1560 
1561 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1562 {
1563 	struct btf *btf = env->btf;
1564 
1565 	if (btf->types_size == btf->nr_types) {
1566 		/* Expand 'types' array */
1567 
1568 		struct btf_type **new_types;
1569 		u32 expand_by, new_size;
1570 
1571 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1572 			btf_verifier_log(env, "Exceeded max num of types");
1573 			return -E2BIG;
1574 		}
1575 
1576 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1577 		new_size = min_t(u32, BTF_MAX_TYPE,
1578 				 btf->types_size + expand_by);
1579 
1580 		new_types = kvcalloc(new_size, sizeof(*new_types),
1581 				     GFP_KERNEL | __GFP_NOWARN);
1582 		if (!new_types)
1583 			return -ENOMEM;
1584 
1585 		if (btf->nr_types == 0) {
1586 			if (!btf->base_btf) {
1587 				/* lazily init VOID type */
1588 				new_types[0] = &btf_void;
1589 				btf->nr_types++;
1590 			}
1591 		} else {
1592 			memcpy(new_types, btf->types,
1593 			       sizeof(*btf->types) * btf->nr_types);
1594 		}
1595 
1596 		kvfree(btf->types);
1597 		btf->types = new_types;
1598 		btf->types_size = new_size;
1599 	}
1600 
1601 	btf->types[btf->nr_types++] = t;
1602 
1603 	return 0;
1604 }
1605 
1606 static int btf_alloc_id(struct btf *btf)
1607 {
1608 	int id;
1609 
1610 	idr_preload(GFP_KERNEL);
1611 	spin_lock_bh(&btf_idr_lock);
1612 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1613 	if (id > 0)
1614 		btf->id = id;
1615 	spin_unlock_bh(&btf_idr_lock);
1616 	idr_preload_end();
1617 
1618 	if (WARN_ON_ONCE(!id))
1619 		return -ENOSPC;
1620 
1621 	return id > 0 ? 0 : id;
1622 }
1623 
1624 static void btf_free_id(struct btf *btf)
1625 {
1626 	unsigned long flags;
1627 
1628 	/*
1629 	 * In map-in-map, calling map_delete_elem() on outer
1630 	 * map will call bpf_map_put on the inner map.
1631 	 * It will then eventually call btf_free_id()
1632 	 * on the inner map.  Some of the map_delete_elem()
1633 	 * implementation may have irq disabled, so
1634 	 * we need to use the _irqsave() version instead
1635 	 * of the _bh() version.
1636 	 */
1637 	spin_lock_irqsave(&btf_idr_lock, flags);
1638 	idr_remove(&btf_idr, btf->id);
1639 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1640 }
1641 
1642 static void btf_free_kfunc_set_tab(struct btf *btf)
1643 {
1644 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1645 	int hook;
1646 
1647 	if (!tab)
1648 		return;
1649 	/* For module BTF, we directly assign the sets being registered, so
1650 	 * there is nothing to free except kfunc_set_tab.
1651 	 */
1652 	if (btf_is_module(btf))
1653 		goto free_tab;
1654 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1655 		kfree(tab->sets[hook]);
1656 free_tab:
1657 	kfree(tab);
1658 	btf->kfunc_set_tab = NULL;
1659 }
1660 
1661 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1662 {
1663 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1664 
1665 	if (!tab)
1666 		return;
1667 	kfree(tab);
1668 	btf->dtor_kfunc_tab = NULL;
1669 }
1670 
1671 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1672 {
1673 	int i;
1674 
1675 	if (!tab)
1676 		return;
1677 	for (i = 0; i < tab->cnt; i++)
1678 		btf_record_free(tab->types[i].record);
1679 	kfree(tab);
1680 }
1681 
1682 static void btf_free_struct_meta_tab(struct btf *btf)
1683 {
1684 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1685 
1686 	btf_struct_metas_free(tab);
1687 	btf->struct_meta_tab = NULL;
1688 }
1689 
1690 static void btf_free(struct btf *btf)
1691 {
1692 	btf_free_struct_meta_tab(btf);
1693 	btf_free_dtor_kfunc_tab(btf);
1694 	btf_free_kfunc_set_tab(btf);
1695 	kvfree(btf->types);
1696 	kvfree(btf->resolved_sizes);
1697 	kvfree(btf->resolved_ids);
1698 	kvfree(btf->data);
1699 	kfree(btf);
1700 }
1701 
1702 static void btf_free_rcu(struct rcu_head *rcu)
1703 {
1704 	struct btf *btf = container_of(rcu, struct btf, rcu);
1705 
1706 	btf_free(btf);
1707 }
1708 
1709 void btf_get(struct btf *btf)
1710 {
1711 	refcount_inc(&btf->refcnt);
1712 }
1713 
1714 void btf_put(struct btf *btf)
1715 {
1716 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1717 		btf_free_id(btf);
1718 		call_rcu(&btf->rcu, btf_free_rcu);
1719 	}
1720 }
1721 
1722 static int env_resolve_init(struct btf_verifier_env *env)
1723 {
1724 	struct btf *btf = env->btf;
1725 	u32 nr_types = btf->nr_types;
1726 	u32 *resolved_sizes = NULL;
1727 	u32 *resolved_ids = NULL;
1728 	u8 *visit_states = NULL;
1729 
1730 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1731 				  GFP_KERNEL | __GFP_NOWARN);
1732 	if (!resolved_sizes)
1733 		goto nomem;
1734 
1735 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1736 				GFP_KERNEL | __GFP_NOWARN);
1737 	if (!resolved_ids)
1738 		goto nomem;
1739 
1740 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1741 				GFP_KERNEL | __GFP_NOWARN);
1742 	if (!visit_states)
1743 		goto nomem;
1744 
1745 	btf->resolved_sizes = resolved_sizes;
1746 	btf->resolved_ids = resolved_ids;
1747 	env->visit_states = visit_states;
1748 
1749 	return 0;
1750 
1751 nomem:
1752 	kvfree(resolved_sizes);
1753 	kvfree(resolved_ids);
1754 	kvfree(visit_states);
1755 	return -ENOMEM;
1756 }
1757 
1758 static void btf_verifier_env_free(struct btf_verifier_env *env)
1759 {
1760 	kvfree(env->visit_states);
1761 	kfree(env);
1762 }
1763 
1764 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1765 				     const struct btf_type *next_type)
1766 {
1767 	switch (env->resolve_mode) {
1768 	case RESOLVE_TBD:
1769 		/* int, enum or void is a sink */
1770 		return !btf_type_needs_resolve(next_type);
1771 	case RESOLVE_PTR:
1772 		/* int, enum, void, struct, array, func or func_proto is a sink
1773 		 * for ptr
1774 		 */
1775 		return !btf_type_is_modifier(next_type) &&
1776 			!btf_type_is_ptr(next_type);
1777 	case RESOLVE_STRUCT_OR_ARRAY:
1778 		/* int, enum, void, ptr, func or func_proto is a sink
1779 		 * for struct and array
1780 		 */
1781 		return !btf_type_is_modifier(next_type) &&
1782 			!btf_type_is_array(next_type) &&
1783 			!btf_type_is_struct(next_type);
1784 	default:
1785 		BUG();
1786 	}
1787 }
1788 
1789 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1790 				 u32 type_id)
1791 {
1792 	/* base BTF types should be resolved by now */
1793 	if (type_id < env->btf->start_id)
1794 		return true;
1795 
1796 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1797 }
1798 
1799 static int env_stack_push(struct btf_verifier_env *env,
1800 			  const struct btf_type *t, u32 type_id)
1801 {
1802 	const struct btf *btf = env->btf;
1803 	struct resolve_vertex *v;
1804 
1805 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1806 		return -E2BIG;
1807 
1808 	if (type_id < btf->start_id
1809 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1810 		return -EEXIST;
1811 
1812 	env->visit_states[type_id - btf->start_id] = VISITED;
1813 
1814 	v = &env->stack[env->top_stack++];
1815 	v->t = t;
1816 	v->type_id = type_id;
1817 	v->next_member = 0;
1818 
1819 	if (env->resolve_mode == RESOLVE_TBD) {
1820 		if (btf_type_is_ptr(t))
1821 			env->resolve_mode = RESOLVE_PTR;
1822 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1823 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 static void env_stack_set_next_member(struct btf_verifier_env *env,
1830 				      u16 next_member)
1831 {
1832 	env->stack[env->top_stack - 1].next_member = next_member;
1833 }
1834 
1835 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1836 				   u32 resolved_type_id,
1837 				   u32 resolved_size)
1838 {
1839 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1840 	struct btf *btf = env->btf;
1841 
1842 	type_id -= btf->start_id; /* adjust to local type id */
1843 	btf->resolved_sizes[type_id] = resolved_size;
1844 	btf->resolved_ids[type_id] = resolved_type_id;
1845 	env->visit_states[type_id] = RESOLVED;
1846 }
1847 
1848 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1849 {
1850 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1851 }
1852 
1853 /* Resolve the size of a passed-in "type"
1854  *
1855  * type: is an array (e.g. u32 array[x][y])
1856  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1857  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1858  *             corresponds to the return type.
1859  * *elem_type: u32
1860  * *elem_id: id of u32
1861  * *total_nelems: (x * y).  Hence, individual elem size is
1862  *                (*type_size / *total_nelems)
1863  * *type_id: id of type if it's changed within the function, 0 if not
1864  *
1865  * type: is not an array (e.g. const struct X)
1866  * return type: type "struct X"
1867  * *type_size: sizeof(struct X)
1868  * *elem_type: same as return type ("struct X")
1869  * *elem_id: 0
1870  * *total_nelems: 1
1871  * *type_id: id of type if it's changed within the function, 0 if not
1872  */
1873 static const struct btf_type *
1874 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1875 		   u32 *type_size, const struct btf_type **elem_type,
1876 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1877 {
1878 	const struct btf_type *array_type = NULL;
1879 	const struct btf_array *array = NULL;
1880 	u32 i, size, nelems = 1, id = 0;
1881 
1882 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1883 		switch (BTF_INFO_KIND(type->info)) {
1884 		/* type->size can be used */
1885 		case BTF_KIND_INT:
1886 		case BTF_KIND_STRUCT:
1887 		case BTF_KIND_UNION:
1888 		case BTF_KIND_ENUM:
1889 		case BTF_KIND_FLOAT:
1890 		case BTF_KIND_ENUM64:
1891 			size = type->size;
1892 			goto resolved;
1893 
1894 		case BTF_KIND_PTR:
1895 			size = sizeof(void *);
1896 			goto resolved;
1897 
1898 		/* Modifiers */
1899 		case BTF_KIND_TYPEDEF:
1900 		case BTF_KIND_VOLATILE:
1901 		case BTF_KIND_CONST:
1902 		case BTF_KIND_RESTRICT:
1903 		case BTF_KIND_TYPE_TAG:
1904 			id = type->type;
1905 			type = btf_type_by_id(btf, type->type);
1906 			break;
1907 
1908 		case BTF_KIND_ARRAY:
1909 			if (!array_type)
1910 				array_type = type;
1911 			array = btf_type_array(type);
1912 			if (nelems && array->nelems > U32_MAX / nelems)
1913 				return ERR_PTR(-EINVAL);
1914 			nelems *= array->nelems;
1915 			type = btf_type_by_id(btf, array->type);
1916 			break;
1917 
1918 		/* type without size */
1919 		default:
1920 			return ERR_PTR(-EINVAL);
1921 		}
1922 	}
1923 
1924 	return ERR_PTR(-EINVAL);
1925 
1926 resolved:
1927 	if (nelems && size > U32_MAX / nelems)
1928 		return ERR_PTR(-EINVAL);
1929 
1930 	*type_size = nelems * size;
1931 	if (total_nelems)
1932 		*total_nelems = nelems;
1933 	if (elem_type)
1934 		*elem_type = type;
1935 	if (elem_id)
1936 		*elem_id = array ? array->type : 0;
1937 	if (type_id && id)
1938 		*type_id = id;
1939 
1940 	return array_type ? : type;
1941 }
1942 
1943 const struct btf_type *
1944 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1945 		 u32 *type_size)
1946 {
1947 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1948 }
1949 
1950 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1951 {
1952 	while (type_id < btf->start_id)
1953 		btf = btf->base_btf;
1954 
1955 	return btf->resolved_ids[type_id - btf->start_id];
1956 }
1957 
1958 /* The input param "type_id" must point to a needs_resolve type */
1959 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1960 						  u32 *type_id)
1961 {
1962 	*type_id = btf_resolved_type_id(btf, *type_id);
1963 	return btf_type_by_id(btf, *type_id);
1964 }
1965 
1966 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1967 {
1968 	while (type_id < btf->start_id)
1969 		btf = btf->base_btf;
1970 
1971 	return btf->resolved_sizes[type_id - btf->start_id];
1972 }
1973 
1974 const struct btf_type *btf_type_id_size(const struct btf *btf,
1975 					u32 *type_id, u32 *ret_size)
1976 {
1977 	const struct btf_type *size_type;
1978 	u32 size_type_id = *type_id;
1979 	u32 size = 0;
1980 
1981 	size_type = btf_type_by_id(btf, size_type_id);
1982 	if (btf_type_nosize_or_null(size_type))
1983 		return NULL;
1984 
1985 	if (btf_type_has_size(size_type)) {
1986 		size = size_type->size;
1987 	} else if (btf_type_is_array(size_type)) {
1988 		size = btf_resolved_type_size(btf, size_type_id);
1989 	} else if (btf_type_is_ptr(size_type)) {
1990 		size = sizeof(void *);
1991 	} else {
1992 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1993 				 !btf_type_is_var(size_type)))
1994 			return NULL;
1995 
1996 		size_type_id = btf_resolved_type_id(btf, size_type_id);
1997 		size_type = btf_type_by_id(btf, size_type_id);
1998 		if (btf_type_nosize_or_null(size_type))
1999 			return NULL;
2000 		else if (btf_type_has_size(size_type))
2001 			size = size_type->size;
2002 		else if (btf_type_is_array(size_type))
2003 			size = btf_resolved_type_size(btf, size_type_id);
2004 		else if (btf_type_is_ptr(size_type))
2005 			size = sizeof(void *);
2006 		else
2007 			return NULL;
2008 	}
2009 
2010 	*type_id = size_type_id;
2011 	if (ret_size)
2012 		*ret_size = size;
2013 
2014 	return size_type;
2015 }
2016 
2017 static int btf_df_check_member(struct btf_verifier_env *env,
2018 			       const struct btf_type *struct_type,
2019 			       const struct btf_member *member,
2020 			       const struct btf_type *member_type)
2021 {
2022 	btf_verifier_log_basic(env, struct_type,
2023 			       "Unsupported check_member");
2024 	return -EINVAL;
2025 }
2026 
2027 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2028 				     const struct btf_type *struct_type,
2029 				     const struct btf_member *member,
2030 				     const struct btf_type *member_type)
2031 {
2032 	btf_verifier_log_basic(env, struct_type,
2033 			       "Unsupported check_kflag_member");
2034 	return -EINVAL;
2035 }
2036 
2037 /* Used for ptr, array struct/union and float type members.
2038  * int, enum and modifier types have their specific callback functions.
2039  */
2040 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2041 					  const struct btf_type *struct_type,
2042 					  const struct btf_member *member,
2043 					  const struct btf_type *member_type)
2044 {
2045 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2046 		btf_verifier_log_member(env, struct_type, member,
2047 					"Invalid member bitfield_size");
2048 		return -EINVAL;
2049 	}
2050 
2051 	/* bitfield size is 0, so member->offset represents bit offset only.
2052 	 * It is safe to call non kflag check_member variants.
2053 	 */
2054 	return btf_type_ops(member_type)->check_member(env, struct_type,
2055 						       member,
2056 						       member_type);
2057 }
2058 
2059 static int btf_df_resolve(struct btf_verifier_env *env,
2060 			  const struct resolve_vertex *v)
2061 {
2062 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2063 	return -EINVAL;
2064 }
2065 
2066 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2067 			u32 type_id, void *data, u8 bits_offsets,
2068 			struct btf_show *show)
2069 {
2070 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2071 }
2072 
2073 static int btf_int_check_member(struct btf_verifier_env *env,
2074 				const struct btf_type *struct_type,
2075 				const struct btf_member *member,
2076 				const struct btf_type *member_type)
2077 {
2078 	u32 int_data = btf_type_int(member_type);
2079 	u32 struct_bits_off = member->offset;
2080 	u32 struct_size = struct_type->size;
2081 	u32 nr_copy_bits;
2082 	u32 bytes_offset;
2083 
2084 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2085 		btf_verifier_log_member(env, struct_type, member,
2086 					"bits_offset exceeds U32_MAX");
2087 		return -EINVAL;
2088 	}
2089 
2090 	struct_bits_off += BTF_INT_OFFSET(int_data);
2091 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2092 	nr_copy_bits = BTF_INT_BITS(int_data) +
2093 		BITS_PER_BYTE_MASKED(struct_bits_off);
2094 
2095 	if (nr_copy_bits > BITS_PER_U128) {
2096 		btf_verifier_log_member(env, struct_type, member,
2097 					"nr_copy_bits exceeds 128");
2098 		return -EINVAL;
2099 	}
2100 
2101 	if (struct_size < bytes_offset ||
2102 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2103 		btf_verifier_log_member(env, struct_type, member,
2104 					"Member exceeds struct_size");
2105 		return -EINVAL;
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2112 				      const struct btf_type *struct_type,
2113 				      const struct btf_member *member,
2114 				      const struct btf_type *member_type)
2115 {
2116 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2117 	u32 int_data = btf_type_int(member_type);
2118 	u32 struct_size = struct_type->size;
2119 	u32 nr_copy_bits;
2120 
2121 	/* a regular int type is required for the kflag int member */
2122 	if (!btf_type_int_is_regular(member_type)) {
2123 		btf_verifier_log_member(env, struct_type, member,
2124 					"Invalid member base type");
2125 		return -EINVAL;
2126 	}
2127 
2128 	/* check sanity of bitfield size */
2129 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2130 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2131 	nr_int_data_bits = BTF_INT_BITS(int_data);
2132 	if (!nr_bits) {
2133 		/* Not a bitfield member, member offset must be at byte
2134 		 * boundary.
2135 		 */
2136 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2137 			btf_verifier_log_member(env, struct_type, member,
2138 						"Invalid member offset");
2139 			return -EINVAL;
2140 		}
2141 
2142 		nr_bits = nr_int_data_bits;
2143 	} else if (nr_bits > nr_int_data_bits) {
2144 		btf_verifier_log_member(env, struct_type, member,
2145 					"Invalid member bitfield_size");
2146 		return -EINVAL;
2147 	}
2148 
2149 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2150 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2151 	if (nr_copy_bits > BITS_PER_U128) {
2152 		btf_verifier_log_member(env, struct_type, member,
2153 					"nr_copy_bits exceeds 128");
2154 		return -EINVAL;
2155 	}
2156 
2157 	if (struct_size < bytes_offset ||
2158 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2159 		btf_verifier_log_member(env, struct_type, member,
2160 					"Member exceeds struct_size");
2161 		return -EINVAL;
2162 	}
2163 
2164 	return 0;
2165 }
2166 
2167 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2168 			      const struct btf_type *t,
2169 			      u32 meta_left)
2170 {
2171 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2172 	u16 encoding;
2173 
2174 	if (meta_left < meta_needed) {
2175 		btf_verifier_log_basic(env, t,
2176 				       "meta_left:%u meta_needed:%u",
2177 				       meta_left, meta_needed);
2178 		return -EINVAL;
2179 	}
2180 
2181 	if (btf_type_vlen(t)) {
2182 		btf_verifier_log_type(env, t, "vlen != 0");
2183 		return -EINVAL;
2184 	}
2185 
2186 	if (btf_type_kflag(t)) {
2187 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2188 		return -EINVAL;
2189 	}
2190 
2191 	int_data = btf_type_int(t);
2192 	if (int_data & ~BTF_INT_MASK) {
2193 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2194 				       int_data);
2195 		return -EINVAL;
2196 	}
2197 
2198 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2199 
2200 	if (nr_bits > BITS_PER_U128) {
2201 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2202 				      BITS_PER_U128);
2203 		return -EINVAL;
2204 	}
2205 
2206 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2207 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2208 		return -EINVAL;
2209 	}
2210 
2211 	/*
2212 	 * Only one of the encoding bits is allowed and it
2213 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2214 	 * Multiple bits can be allowed later if it is found
2215 	 * to be insufficient.
2216 	 */
2217 	encoding = BTF_INT_ENCODING(int_data);
2218 	if (encoding &&
2219 	    encoding != BTF_INT_SIGNED &&
2220 	    encoding != BTF_INT_CHAR &&
2221 	    encoding != BTF_INT_BOOL) {
2222 		btf_verifier_log_type(env, t, "Unsupported encoding");
2223 		return -ENOTSUPP;
2224 	}
2225 
2226 	btf_verifier_log_type(env, t, NULL);
2227 
2228 	return meta_needed;
2229 }
2230 
2231 static void btf_int_log(struct btf_verifier_env *env,
2232 			const struct btf_type *t)
2233 {
2234 	int int_data = btf_type_int(t);
2235 
2236 	btf_verifier_log(env,
2237 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2238 			 t->size, BTF_INT_OFFSET(int_data),
2239 			 BTF_INT_BITS(int_data),
2240 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2241 }
2242 
2243 static void btf_int128_print(struct btf_show *show, void *data)
2244 {
2245 	/* data points to a __int128 number.
2246 	 * Suppose
2247 	 *     int128_num = *(__int128 *)data;
2248 	 * The below formulas shows what upper_num and lower_num represents:
2249 	 *     upper_num = int128_num >> 64;
2250 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2251 	 */
2252 	u64 upper_num, lower_num;
2253 
2254 #ifdef __BIG_ENDIAN_BITFIELD
2255 	upper_num = *(u64 *)data;
2256 	lower_num = *(u64 *)(data + 8);
2257 #else
2258 	upper_num = *(u64 *)(data + 8);
2259 	lower_num = *(u64 *)data;
2260 #endif
2261 	if (upper_num == 0)
2262 		btf_show_type_value(show, "0x%llx", lower_num);
2263 	else
2264 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2265 				     lower_num);
2266 }
2267 
2268 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2269 			     u16 right_shift_bits)
2270 {
2271 	u64 upper_num, lower_num;
2272 
2273 #ifdef __BIG_ENDIAN_BITFIELD
2274 	upper_num = print_num[0];
2275 	lower_num = print_num[1];
2276 #else
2277 	upper_num = print_num[1];
2278 	lower_num = print_num[0];
2279 #endif
2280 
2281 	/* shake out un-needed bits by shift/or operations */
2282 	if (left_shift_bits >= 64) {
2283 		upper_num = lower_num << (left_shift_bits - 64);
2284 		lower_num = 0;
2285 	} else {
2286 		upper_num = (upper_num << left_shift_bits) |
2287 			    (lower_num >> (64 - left_shift_bits));
2288 		lower_num = lower_num << left_shift_bits;
2289 	}
2290 
2291 	if (right_shift_bits >= 64) {
2292 		lower_num = upper_num >> (right_shift_bits - 64);
2293 		upper_num = 0;
2294 	} else {
2295 		lower_num = (lower_num >> right_shift_bits) |
2296 			    (upper_num << (64 - right_shift_bits));
2297 		upper_num = upper_num >> right_shift_bits;
2298 	}
2299 
2300 #ifdef __BIG_ENDIAN_BITFIELD
2301 	print_num[0] = upper_num;
2302 	print_num[1] = lower_num;
2303 #else
2304 	print_num[0] = lower_num;
2305 	print_num[1] = upper_num;
2306 #endif
2307 }
2308 
2309 static void btf_bitfield_show(void *data, u8 bits_offset,
2310 			      u8 nr_bits, struct btf_show *show)
2311 {
2312 	u16 left_shift_bits, right_shift_bits;
2313 	u8 nr_copy_bytes;
2314 	u8 nr_copy_bits;
2315 	u64 print_num[2] = {};
2316 
2317 	nr_copy_bits = nr_bits + bits_offset;
2318 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2319 
2320 	memcpy(print_num, data, nr_copy_bytes);
2321 
2322 #ifdef __BIG_ENDIAN_BITFIELD
2323 	left_shift_bits = bits_offset;
2324 #else
2325 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2326 #endif
2327 	right_shift_bits = BITS_PER_U128 - nr_bits;
2328 
2329 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2330 	btf_int128_print(show, print_num);
2331 }
2332 
2333 
2334 static void btf_int_bits_show(const struct btf *btf,
2335 			      const struct btf_type *t,
2336 			      void *data, u8 bits_offset,
2337 			      struct btf_show *show)
2338 {
2339 	u32 int_data = btf_type_int(t);
2340 	u8 nr_bits = BTF_INT_BITS(int_data);
2341 	u8 total_bits_offset;
2342 
2343 	/*
2344 	 * bits_offset is at most 7.
2345 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2346 	 */
2347 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2348 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2349 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2350 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2351 }
2352 
2353 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2354 			 u32 type_id, void *data, u8 bits_offset,
2355 			 struct btf_show *show)
2356 {
2357 	u32 int_data = btf_type_int(t);
2358 	u8 encoding = BTF_INT_ENCODING(int_data);
2359 	bool sign = encoding & BTF_INT_SIGNED;
2360 	u8 nr_bits = BTF_INT_BITS(int_data);
2361 	void *safe_data;
2362 
2363 	safe_data = btf_show_start_type(show, t, type_id, data);
2364 	if (!safe_data)
2365 		return;
2366 
2367 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2368 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2369 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2370 		goto out;
2371 	}
2372 
2373 	switch (nr_bits) {
2374 	case 128:
2375 		btf_int128_print(show, safe_data);
2376 		break;
2377 	case 64:
2378 		if (sign)
2379 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2380 		else
2381 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2382 		break;
2383 	case 32:
2384 		if (sign)
2385 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2386 		else
2387 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2388 		break;
2389 	case 16:
2390 		if (sign)
2391 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2392 		else
2393 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2394 		break;
2395 	case 8:
2396 		if (show->state.array_encoding == BTF_INT_CHAR) {
2397 			/* check for null terminator */
2398 			if (show->state.array_terminated)
2399 				break;
2400 			if (*(char *)data == '\0') {
2401 				show->state.array_terminated = 1;
2402 				break;
2403 			}
2404 			if (isprint(*(char *)data)) {
2405 				btf_show_type_value(show, "'%c'",
2406 						    *(char *)safe_data);
2407 				break;
2408 			}
2409 		}
2410 		if (sign)
2411 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2412 		else
2413 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2414 		break;
2415 	default:
2416 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2417 		break;
2418 	}
2419 out:
2420 	btf_show_end_type(show);
2421 }
2422 
2423 static const struct btf_kind_operations int_ops = {
2424 	.check_meta = btf_int_check_meta,
2425 	.resolve = btf_df_resolve,
2426 	.check_member = btf_int_check_member,
2427 	.check_kflag_member = btf_int_check_kflag_member,
2428 	.log_details = btf_int_log,
2429 	.show = btf_int_show,
2430 };
2431 
2432 static int btf_modifier_check_member(struct btf_verifier_env *env,
2433 				     const struct btf_type *struct_type,
2434 				     const struct btf_member *member,
2435 				     const struct btf_type *member_type)
2436 {
2437 	const struct btf_type *resolved_type;
2438 	u32 resolved_type_id = member->type;
2439 	struct btf_member resolved_member;
2440 	struct btf *btf = env->btf;
2441 
2442 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2443 	if (!resolved_type) {
2444 		btf_verifier_log_member(env, struct_type, member,
2445 					"Invalid member");
2446 		return -EINVAL;
2447 	}
2448 
2449 	resolved_member = *member;
2450 	resolved_member.type = resolved_type_id;
2451 
2452 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2453 							 &resolved_member,
2454 							 resolved_type);
2455 }
2456 
2457 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2458 					   const struct btf_type *struct_type,
2459 					   const struct btf_member *member,
2460 					   const struct btf_type *member_type)
2461 {
2462 	const struct btf_type *resolved_type;
2463 	u32 resolved_type_id = member->type;
2464 	struct btf_member resolved_member;
2465 	struct btf *btf = env->btf;
2466 
2467 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2468 	if (!resolved_type) {
2469 		btf_verifier_log_member(env, struct_type, member,
2470 					"Invalid member");
2471 		return -EINVAL;
2472 	}
2473 
2474 	resolved_member = *member;
2475 	resolved_member.type = resolved_type_id;
2476 
2477 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2478 							       &resolved_member,
2479 							       resolved_type);
2480 }
2481 
2482 static int btf_ptr_check_member(struct btf_verifier_env *env,
2483 				const struct btf_type *struct_type,
2484 				const struct btf_member *member,
2485 				const struct btf_type *member_type)
2486 {
2487 	u32 struct_size, struct_bits_off, bytes_offset;
2488 
2489 	struct_size = struct_type->size;
2490 	struct_bits_off = member->offset;
2491 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2492 
2493 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2494 		btf_verifier_log_member(env, struct_type, member,
2495 					"Member is not byte aligned");
2496 		return -EINVAL;
2497 	}
2498 
2499 	if (struct_size - bytes_offset < sizeof(void *)) {
2500 		btf_verifier_log_member(env, struct_type, member,
2501 					"Member exceeds struct_size");
2502 		return -EINVAL;
2503 	}
2504 
2505 	return 0;
2506 }
2507 
2508 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2509 				   const struct btf_type *t,
2510 				   u32 meta_left)
2511 {
2512 	const char *value;
2513 
2514 	if (btf_type_vlen(t)) {
2515 		btf_verifier_log_type(env, t, "vlen != 0");
2516 		return -EINVAL;
2517 	}
2518 
2519 	if (btf_type_kflag(t)) {
2520 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2521 		return -EINVAL;
2522 	}
2523 
2524 	if (!BTF_TYPE_ID_VALID(t->type)) {
2525 		btf_verifier_log_type(env, t, "Invalid type_id");
2526 		return -EINVAL;
2527 	}
2528 
2529 	/* typedef/type_tag type must have a valid name, and other ref types,
2530 	 * volatile, const, restrict, should have a null name.
2531 	 */
2532 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2533 		if (!t->name_off ||
2534 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2535 			btf_verifier_log_type(env, t, "Invalid name");
2536 			return -EINVAL;
2537 		}
2538 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2539 		value = btf_name_by_offset(env->btf, t->name_off);
2540 		if (!value || !value[0]) {
2541 			btf_verifier_log_type(env, t, "Invalid name");
2542 			return -EINVAL;
2543 		}
2544 	} else {
2545 		if (t->name_off) {
2546 			btf_verifier_log_type(env, t, "Invalid name");
2547 			return -EINVAL;
2548 		}
2549 	}
2550 
2551 	btf_verifier_log_type(env, t, NULL);
2552 
2553 	return 0;
2554 }
2555 
2556 static int btf_modifier_resolve(struct btf_verifier_env *env,
2557 				const struct resolve_vertex *v)
2558 {
2559 	const struct btf_type *t = v->t;
2560 	const struct btf_type *next_type;
2561 	u32 next_type_id = t->type;
2562 	struct btf *btf = env->btf;
2563 
2564 	next_type = btf_type_by_id(btf, next_type_id);
2565 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2566 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2567 		return -EINVAL;
2568 	}
2569 
2570 	if (!env_type_is_resolve_sink(env, next_type) &&
2571 	    !env_type_is_resolved(env, next_type_id))
2572 		return env_stack_push(env, next_type, next_type_id);
2573 
2574 	/* Figure out the resolved next_type_id with size.
2575 	 * They will be stored in the current modifier's
2576 	 * resolved_ids and resolved_sizes such that it can
2577 	 * save us a few type-following when we use it later (e.g. in
2578 	 * pretty print).
2579 	 */
2580 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2581 		if (env_type_is_resolved(env, next_type_id))
2582 			next_type = btf_type_id_resolve(btf, &next_type_id);
2583 
2584 		/* "typedef void new_void", "const void"...etc */
2585 		if (!btf_type_is_void(next_type) &&
2586 		    !btf_type_is_fwd(next_type) &&
2587 		    !btf_type_is_func_proto(next_type)) {
2588 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2589 			return -EINVAL;
2590 		}
2591 	}
2592 
2593 	env_stack_pop_resolved(env, next_type_id, 0);
2594 
2595 	return 0;
2596 }
2597 
2598 static int btf_var_resolve(struct btf_verifier_env *env,
2599 			   const struct resolve_vertex *v)
2600 {
2601 	const struct btf_type *next_type;
2602 	const struct btf_type *t = v->t;
2603 	u32 next_type_id = t->type;
2604 	struct btf *btf = env->btf;
2605 
2606 	next_type = btf_type_by_id(btf, next_type_id);
2607 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2608 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2609 		return -EINVAL;
2610 	}
2611 
2612 	if (!env_type_is_resolve_sink(env, next_type) &&
2613 	    !env_type_is_resolved(env, next_type_id))
2614 		return env_stack_push(env, next_type, next_type_id);
2615 
2616 	if (btf_type_is_modifier(next_type)) {
2617 		const struct btf_type *resolved_type;
2618 		u32 resolved_type_id;
2619 
2620 		resolved_type_id = next_type_id;
2621 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2622 
2623 		if (btf_type_is_ptr(resolved_type) &&
2624 		    !env_type_is_resolve_sink(env, resolved_type) &&
2625 		    !env_type_is_resolved(env, resolved_type_id))
2626 			return env_stack_push(env, resolved_type,
2627 					      resolved_type_id);
2628 	}
2629 
2630 	/* We must resolve to something concrete at this point, no
2631 	 * forward types or similar that would resolve to size of
2632 	 * zero is allowed.
2633 	 */
2634 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2635 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2636 		return -EINVAL;
2637 	}
2638 
2639 	env_stack_pop_resolved(env, next_type_id, 0);
2640 
2641 	return 0;
2642 }
2643 
2644 static int btf_ptr_resolve(struct btf_verifier_env *env,
2645 			   const struct resolve_vertex *v)
2646 {
2647 	const struct btf_type *next_type;
2648 	const struct btf_type *t = v->t;
2649 	u32 next_type_id = t->type;
2650 	struct btf *btf = env->btf;
2651 
2652 	next_type = btf_type_by_id(btf, next_type_id);
2653 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2654 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2655 		return -EINVAL;
2656 	}
2657 
2658 	if (!env_type_is_resolve_sink(env, next_type) &&
2659 	    !env_type_is_resolved(env, next_type_id))
2660 		return env_stack_push(env, next_type, next_type_id);
2661 
2662 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2663 	 * the modifier may have stopped resolving when it was resolved
2664 	 * to a ptr (last-resolved-ptr).
2665 	 *
2666 	 * We now need to continue from the last-resolved-ptr to
2667 	 * ensure the last-resolved-ptr will not referring back to
2668 	 * the current ptr (t).
2669 	 */
2670 	if (btf_type_is_modifier(next_type)) {
2671 		const struct btf_type *resolved_type;
2672 		u32 resolved_type_id;
2673 
2674 		resolved_type_id = next_type_id;
2675 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2676 
2677 		if (btf_type_is_ptr(resolved_type) &&
2678 		    !env_type_is_resolve_sink(env, resolved_type) &&
2679 		    !env_type_is_resolved(env, resolved_type_id))
2680 			return env_stack_push(env, resolved_type,
2681 					      resolved_type_id);
2682 	}
2683 
2684 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2685 		if (env_type_is_resolved(env, next_type_id))
2686 			next_type = btf_type_id_resolve(btf, &next_type_id);
2687 
2688 		if (!btf_type_is_void(next_type) &&
2689 		    !btf_type_is_fwd(next_type) &&
2690 		    !btf_type_is_func_proto(next_type)) {
2691 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2692 			return -EINVAL;
2693 		}
2694 	}
2695 
2696 	env_stack_pop_resolved(env, next_type_id, 0);
2697 
2698 	return 0;
2699 }
2700 
2701 static void btf_modifier_show(const struct btf *btf,
2702 			      const struct btf_type *t,
2703 			      u32 type_id, void *data,
2704 			      u8 bits_offset, struct btf_show *show)
2705 {
2706 	if (btf->resolved_ids)
2707 		t = btf_type_id_resolve(btf, &type_id);
2708 	else
2709 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2710 
2711 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2712 }
2713 
2714 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2715 			 u32 type_id, void *data, u8 bits_offset,
2716 			 struct btf_show *show)
2717 {
2718 	t = btf_type_id_resolve(btf, &type_id);
2719 
2720 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2721 }
2722 
2723 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2724 			 u32 type_id, void *data, u8 bits_offset,
2725 			 struct btf_show *show)
2726 {
2727 	void *safe_data;
2728 
2729 	safe_data = btf_show_start_type(show, t, type_id, data);
2730 	if (!safe_data)
2731 		return;
2732 
2733 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2734 	if (show->flags & BTF_SHOW_PTR_RAW)
2735 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2736 	else
2737 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2738 	btf_show_end_type(show);
2739 }
2740 
2741 static void btf_ref_type_log(struct btf_verifier_env *env,
2742 			     const struct btf_type *t)
2743 {
2744 	btf_verifier_log(env, "type_id=%u", t->type);
2745 }
2746 
2747 static struct btf_kind_operations modifier_ops = {
2748 	.check_meta = btf_ref_type_check_meta,
2749 	.resolve = btf_modifier_resolve,
2750 	.check_member = btf_modifier_check_member,
2751 	.check_kflag_member = btf_modifier_check_kflag_member,
2752 	.log_details = btf_ref_type_log,
2753 	.show = btf_modifier_show,
2754 };
2755 
2756 static struct btf_kind_operations ptr_ops = {
2757 	.check_meta = btf_ref_type_check_meta,
2758 	.resolve = btf_ptr_resolve,
2759 	.check_member = btf_ptr_check_member,
2760 	.check_kflag_member = btf_generic_check_kflag_member,
2761 	.log_details = btf_ref_type_log,
2762 	.show = btf_ptr_show,
2763 };
2764 
2765 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2766 			      const struct btf_type *t,
2767 			      u32 meta_left)
2768 {
2769 	if (btf_type_vlen(t)) {
2770 		btf_verifier_log_type(env, t, "vlen != 0");
2771 		return -EINVAL;
2772 	}
2773 
2774 	if (t->type) {
2775 		btf_verifier_log_type(env, t, "type != 0");
2776 		return -EINVAL;
2777 	}
2778 
2779 	/* fwd type must have a valid name */
2780 	if (!t->name_off ||
2781 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2782 		btf_verifier_log_type(env, t, "Invalid name");
2783 		return -EINVAL;
2784 	}
2785 
2786 	btf_verifier_log_type(env, t, NULL);
2787 
2788 	return 0;
2789 }
2790 
2791 static void btf_fwd_type_log(struct btf_verifier_env *env,
2792 			     const struct btf_type *t)
2793 {
2794 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2795 }
2796 
2797 static struct btf_kind_operations fwd_ops = {
2798 	.check_meta = btf_fwd_check_meta,
2799 	.resolve = btf_df_resolve,
2800 	.check_member = btf_df_check_member,
2801 	.check_kflag_member = btf_df_check_kflag_member,
2802 	.log_details = btf_fwd_type_log,
2803 	.show = btf_df_show,
2804 };
2805 
2806 static int btf_array_check_member(struct btf_verifier_env *env,
2807 				  const struct btf_type *struct_type,
2808 				  const struct btf_member *member,
2809 				  const struct btf_type *member_type)
2810 {
2811 	u32 struct_bits_off = member->offset;
2812 	u32 struct_size, bytes_offset;
2813 	u32 array_type_id, array_size;
2814 	struct btf *btf = env->btf;
2815 
2816 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2817 		btf_verifier_log_member(env, struct_type, member,
2818 					"Member is not byte aligned");
2819 		return -EINVAL;
2820 	}
2821 
2822 	array_type_id = member->type;
2823 	btf_type_id_size(btf, &array_type_id, &array_size);
2824 	struct_size = struct_type->size;
2825 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2826 	if (struct_size - bytes_offset < array_size) {
2827 		btf_verifier_log_member(env, struct_type, member,
2828 					"Member exceeds struct_size");
2829 		return -EINVAL;
2830 	}
2831 
2832 	return 0;
2833 }
2834 
2835 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2836 				const struct btf_type *t,
2837 				u32 meta_left)
2838 {
2839 	const struct btf_array *array = btf_type_array(t);
2840 	u32 meta_needed = sizeof(*array);
2841 
2842 	if (meta_left < meta_needed) {
2843 		btf_verifier_log_basic(env, t,
2844 				       "meta_left:%u meta_needed:%u",
2845 				       meta_left, meta_needed);
2846 		return -EINVAL;
2847 	}
2848 
2849 	/* array type should not have a name */
2850 	if (t->name_off) {
2851 		btf_verifier_log_type(env, t, "Invalid name");
2852 		return -EINVAL;
2853 	}
2854 
2855 	if (btf_type_vlen(t)) {
2856 		btf_verifier_log_type(env, t, "vlen != 0");
2857 		return -EINVAL;
2858 	}
2859 
2860 	if (btf_type_kflag(t)) {
2861 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2862 		return -EINVAL;
2863 	}
2864 
2865 	if (t->size) {
2866 		btf_verifier_log_type(env, t, "size != 0");
2867 		return -EINVAL;
2868 	}
2869 
2870 	/* Array elem type and index type cannot be in type void,
2871 	 * so !array->type and !array->index_type are not allowed.
2872 	 */
2873 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2874 		btf_verifier_log_type(env, t, "Invalid elem");
2875 		return -EINVAL;
2876 	}
2877 
2878 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2879 		btf_verifier_log_type(env, t, "Invalid index");
2880 		return -EINVAL;
2881 	}
2882 
2883 	btf_verifier_log_type(env, t, NULL);
2884 
2885 	return meta_needed;
2886 }
2887 
2888 static int btf_array_resolve(struct btf_verifier_env *env,
2889 			     const struct resolve_vertex *v)
2890 {
2891 	const struct btf_array *array = btf_type_array(v->t);
2892 	const struct btf_type *elem_type, *index_type;
2893 	u32 elem_type_id, index_type_id;
2894 	struct btf *btf = env->btf;
2895 	u32 elem_size;
2896 
2897 	/* Check array->index_type */
2898 	index_type_id = array->index_type;
2899 	index_type = btf_type_by_id(btf, index_type_id);
2900 	if (btf_type_nosize_or_null(index_type) ||
2901 	    btf_type_is_resolve_source_only(index_type)) {
2902 		btf_verifier_log_type(env, v->t, "Invalid index");
2903 		return -EINVAL;
2904 	}
2905 
2906 	if (!env_type_is_resolve_sink(env, index_type) &&
2907 	    !env_type_is_resolved(env, index_type_id))
2908 		return env_stack_push(env, index_type, index_type_id);
2909 
2910 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2911 	if (!index_type || !btf_type_is_int(index_type) ||
2912 	    !btf_type_int_is_regular(index_type)) {
2913 		btf_verifier_log_type(env, v->t, "Invalid index");
2914 		return -EINVAL;
2915 	}
2916 
2917 	/* Check array->type */
2918 	elem_type_id = array->type;
2919 	elem_type = btf_type_by_id(btf, elem_type_id);
2920 	if (btf_type_nosize_or_null(elem_type) ||
2921 	    btf_type_is_resolve_source_only(elem_type)) {
2922 		btf_verifier_log_type(env, v->t,
2923 				      "Invalid elem");
2924 		return -EINVAL;
2925 	}
2926 
2927 	if (!env_type_is_resolve_sink(env, elem_type) &&
2928 	    !env_type_is_resolved(env, elem_type_id))
2929 		return env_stack_push(env, elem_type, elem_type_id);
2930 
2931 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2932 	if (!elem_type) {
2933 		btf_verifier_log_type(env, v->t, "Invalid elem");
2934 		return -EINVAL;
2935 	}
2936 
2937 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2938 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2939 		return -EINVAL;
2940 	}
2941 
2942 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2943 		btf_verifier_log_type(env, v->t,
2944 				      "Array size overflows U32_MAX");
2945 		return -EINVAL;
2946 	}
2947 
2948 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2949 
2950 	return 0;
2951 }
2952 
2953 static void btf_array_log(struct btf_verifier_env *env,
2954 			  const struct btf_type *t)
2955 {
2956 	const struct btf_array *array = btf_type_array(t);
2957 
2958 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2959 			 array->type, array->index_type, array->nelems);
2960 }
2961 
2962 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2963 			     u32 type_id, void *data, u8 bits_offset,
2964 			     struct btf_show *show)
2965 {
2966 	const struct btf_array *array = btf_type_array(t);
2967 	const struct btf_kind_operations *elem_ops;
2968 	const struct btf_type *elem_type;
2969 	u32 i, elem_size = 0, elem_type_id;
2970 	u16 encoding = 0;
2971 
2972 	elem_type_id = array->type;
2973 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2974 	if (elem_type && btf_type_has_size(elem_type))
2975 		elem_size = elem_type->size;
2976 
2977 	if (elem_type && btf_type_is_int(elem_type)) {
2978 		u32 int_type = btf_type_int(elem_type);
2979 
2980 		encoding = BTF_INT_ENCODING(int_type);
2981 
2982 		/*
2983 		 * BTF_INT_CHAR encoding never seems to be set for
2984 		 * char arrays, so if size is 1 and element is
2985 		 * printable as a char, we'll do that.
2986 		 */
2987 		if (elem_size == 1)
2988 			encoding = BTF_INT_CHAR;
2989 	}
2990 
2991 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2992 		return;
2993 
2994 	if (!elem_type)
2995 		goto out;
2996 	elem_ops = btf_type_ops(elem_type);
2997 
2998 	for (i = 0; i < array->nelems; i++) {
2999 
3000 		btf_show_start_array_member(show);
3001 
3002 		elem_ops->show(btf, elem_type, elem_type_id, data,
3003 			       bits_offset, show);
3004 		data += elem_size;
3005 
3006 		btf_show_end_array_member(show);
3007 
3008 		if (show->state.array_terminated)
3009 			break;
3010 	}
3011 out:
3012 	btf_show_end_array_type(show);
3013 }
3014 
3015 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3016 			   u32 type_id, void *data, u8 bits_offset,
3017 			   struct btf_show *show)
3018 {
3019 	const struct btf_member *m = show->state.member;
3020 
3021 	/*
3022 	 * First check if any members would be shown (are non-zero).
3023 	 * See comments above "struct btf_show" definition for more
3024 	 * details on how this works at a high-level.
3025 	 */
3026 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3027 		if (!show->state.depth_check) {
3028 			show->state.depth_check = show->state.depth + 1;
3029 			show->state.depth_to_show = 0;
3030 		}
3031 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3032 		show->state.member = m;
3033 
3034 		if (show->state.depth_check != show->state.depth + 1)
3035 			return;
3036 		show->state.depth_check = 0;
3037 
3038 		if (show->state.depth_to_show <= show->state.depth)
3039 			return;
3040 		/*
3041 		 * Reaching here indicates we have recursed and found
3042 		 * non-zero array member(s).
3043 		 */
3044 	}
3045 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3046 }
3047 
3048 static struct btf_kind_operations array_ops = {
3049 	.check_meta = btf_array_check_meta,
3050 	.resolve = btf_array_resolve,
3051 	.check_member = btf_array_check_member,
3052 	.check_kflag_member = btf_generic_check_kflag_member,
3053 	.log_details = btf_array_log,
3054 	.show = btf_array_show,
3055 };
3056 
3057 static int btf_struct_check_member(struct btf_verifier_env *env,
3058 				   const struct btf_type *struct_type,
3059 				   const struct btf_member *member,
3060 				   const struct btf_type *member_type)
3061 {
3062 	u32 struct_bits_off = member->offset;
3063 	u32 struct_size, bytes_offset;
3064 
3065 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3066 		btf_verifier_log_member(env, struct_type, member,
3067 					"Member is not byte aligned");
3068 		return -EINVAL;
3069 	}
3070 
3071 	struct_size = struct_type->size;
3072 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3073 	if (struct_size - bytes_offset < member_type->size) {
3074 		btf_verifier_log_member(env, struct_type, member,
3075 					"Member exceeds struct_size");
3076 		return -EINVAL;
3077 	}
3078 
3079 	return 0;
3080 }
3081 
3082 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3083 				 const struct btf_type *t,
3084 				 u32 meta_left)
3085 {
3086 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3087 	const struct btf_member *member;
3088 	u32 meta_needed, last_offset;
3089 	struct btf *btf = env->btf;
3090 	u32 struct_size = t->size;
3091 	u32 offset;
3092 	u16 i;
3093 
3094 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3095 	if (meta_left < meta_needed) {
3096 		btf_verifier_log_basic(env, t,
3097 				       "meta_left:%u meta_needed:%u",
3098 				       meta_left, meta_needed);
3099 		return -EINVAL;
3100 	}
3101 
3102 	/* struct type either no name or a valid one */
3103 	if (t->name_off &&
3104 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3105 		btf_verifier_log_type(env, t, "Invalid name");
3106 		return -EINVAL;
3107 	}
3108 
3109 	btf_verifier_log_type(env, t, NULL);
3110 
3111 	last_offset = 0;
3112 	for_each_member(i, t, member) {
3113 		if (!btf_name_offset_valid(btf, member->name_off)) {
3114 			btf_verifier_log_member(env, t, member,
3115 						"Invalid member name_offset:%u",
3116 						member->name_off);
3117 			return -EINVAL;
3118 		}
3119 
3120 		/* struct member either no name or a valid one */
3121 		if (member->name_off &&
3122 		    !btf_name_valid_identifier(btf, member->name_off)) {
3123 			btf_verifier_log_member(env, t, member, "Invalid name");
3124 			return -EINVAL;
3125 		}
3126 		/* A member cannot be in type void */
3127 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3128 			btf_verifier_log_member(env, t, member,
3129 						"Invalid type_id");
3130 			return -EINVAL;
3131 		}
3132 
3133 		offset = __btf_member_bit_offset(t, member);
3134 		if (is_union && offset) {
3135 			btf_verifier_log_member(env, t, member,
3136 						"Invalid member bits_offset");
3137 			return -EINVAL;
3138 		}
3139 
3140 		/*
3141 		 * ">" instead of ">=" because the last member could be
3142 		 * "char a[0];"
3143 		 */
3144 		if (last_offset > offset) {
3145 			btf_verifier_log_member(env, t, member,
3146 						"Invalid member bits_offset");
3147 			return -EINVAL;
3148 		}
3149 
3150 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3151 			btf_verifier_log_member(env, t, member,
3152 						"Member bits_offset exceeds its struct size");
3153 			return -EINVAL;
3154 		}
3155 
3156 		btf_verifier_log_member(env, t, member, NULL);
3157 		last_offset = offset;
3158 	}
3159 
3160 	return meta_needed;
3161 }
3162 
3163 static int btf_struct_resolve(struct btf_verifier_env *env,
3164 			      const struct resolve_vertex *v)
3165 {
3166 	const struct btf_member *member;
3167 	int err;
3168 	u16 i;
3169 
3170 	/* Before continue resolving the next_member,
3171 	 * ensure the last member is indeed resolved to a
3172 	 * type with size info.
3173 	 */
3174 	if (v->next_member) {
3175 		const struct btf_type *last_member_type;
3176 		const struct btf_member *last_member;
3177 		u32 last_member_type_id;
3178 
3179 		last_member = btf_type_member(v->t) + v->next_member - 1;
3180 		last_member_type_id = last_member->type;
3181 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3182 						       last_member_type_id)))
3183 			return -EINVAL;
3184 
3185 		last_member_type = btf_type_by_id(env->btf,
3186 						  last_member_type_id);
3187 		if (btf_type_kflag(v->t))
3188 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3189 								last_member,
3190 								last_member_type);
3191 		else
3192 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3193 								last_member,
3194 								last_member_type);
3195 		if (err)
3196 			return err;
3197 	}
3198 
3199 	for_each_member_from(i, v->next_member, v->t, member) {
3200 		u32 member_type_id = member->type;
3201 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3202 								member_type_id);
3203 
3204 		if (btf_type_nosize_or_null(member_type) ||
3205 		    btf_type_is_resolve_source_only(member_type)) {
3206 			btf_verifier_log_member(env, v->t, member,
3207 						"Invalid member");
3208 			return -EINVAL;
3209 		}
3210 
3211 		if (!env_type_is_resolve_sink(env, member_type) &&
3212 		    !env_type_is_resolved(env, member_type_id)) {
3213 			env_stack_set_next_member(env, i + 1);
3214 			return env_stack_push(env, member_type, member_type_id);
3215 		}
3216 
3217 		if (btf_type_kflag(v->t))
3218 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3219 									    member,
3220 									    member_type);
3221 		else
3222 			err = btf_type_ops(member_type)->check_member(env, v->t,
3223 								      member,
3224 								      member_type);
3225 		if (err)
3226 			return err;
3227 	}
3228 
3229 	env_stack_pop_resolved(env, 0, 0);
3230 
3231 	return 0;
3232 }
3233 
3234 static void btf_struct_log(struct btf_verifier_env *env,
3235 			   const struct btf_type *t)
3236 {
3237 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3238 }
3239 
3240 enum {
3241 	BTF_FIELD_IGNORE = 0,
3242 	BTF_FIELD_FOUND  = 1,
3243 };
3244 
3245 struct btf_field_info {
3246 	enum btf_field_type type;
3247 	u32 off;
3248 	union {
3249 		struct {
3250 			u32 type_id;
3251 		} kptr;
3252 		struct {
3253 			const char *node_name;
3254 			u32 value_btf_id;
3255 		} graph_root;
3256 	};
3257 };
3258 
3259 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3260 			   u32 off, int sz, enum btf_field_type field_type,
3261 			   struct btf_field_info *info)
3262 {
3263 	if (!__btf_type_is_struct(t))
3264 		return BTF_FIELD_IGNORE;
3265 	if (t->size != sz)
3266 		return BTF_FIELD_IGNORE;
3267 	info->type = field_type;
3268 	info->off = off;
3269 	return BTF_FIELD_FOUND;
3270 }
3271 
3272 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3273 			 u32 off, int sz, struct btf_field_info *info)
3274 {
3275 	enum btf_field_type type;
3276 	u32 res_id;
3277 
3278 	/* Permit modifiers on the pointer itself */
3279 	if (btf_type_is_volatile(t))
3280 		t = btf_type_by_id(btf, t->type);
3281 	/* For PTR, sz is always == 8 */
3282 	if (!btf_type_is_ptr(t))
3283 		return BTF_FIELD_IGNORE;
3284 	t = btf_type_by_id(btf, t->type);
3285 
3286 	if (!btf_type_is_type_tag(t))
3287 		return BTF_FIELD_IGNORE;
3288 	/* Reject extra tags */
3289 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3290 		return -EINVAL;
3291 	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3292 		type = BPF_KPTR_UNREF;
3293 	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3294 		type = BPF_KPTR_REF;
3295 	else
3296 		return -EINVAL;
3297 
3298 	/* Get the base type */
3299 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3300 	/* Only pointer to struct is allowed */
3301 	if (!__btf_type_is_struct(t))
3302 		return -EINVAL;
3303 
3304 	info->type = type;
3305 	info->off = off;
3306 	info->kptr.type_id = res_id;
3307 	return BTF_FIELD_FOUND;
3308 }
3309 
3310 static const char *btf_find_decl_tag_value(const struct btf *btf,
3311 					   const struct btf_type *pt,
3312 					   int comp_idx, const char *tag_key)
3313 {
3314 	int i;
3315 
3316 	for (i = 1; i < btf_nr_types(btf); i++) {
3317 		const struct btf_type *t = btf_type_by_id(btf, i);
3318 		int len = strlen(tag_key);
3319 
3320 		if (!btf_type_is_decl_tag(t))
3321 			continue;
3322 		if (pt != btf_type_by_id(btf, t->type) ||
3323 		    btf_type_decl_tag(t)->component_idx != comp_idx)
3324 			continue;
3325 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3326 			continue;
3327 		return __btf_name_by_offset(btf, t->name_off) + len;
3328 	}
3329 	return NULL;
3330 }
3331 
3332 static int
3333 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3334 		    const struct btf_type *t, int comp_idx, u32 off,
3335 		    int sz, struct btf_field_info *info,
3336 		    enum btf_field_type head_type)
3337 {
3338 	const char *node_field_name;
3339 	const char *value_type;
3340 	s32 id;
3341 
3342 	if (!__btf_type_is_struct(t))
3343 		return BTF_FIELD_IGNORE;
3344 	if (t->size != sz)
3345 		return BTF_FIELD_IGNORE;
3346 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3347 	if (!value_type)
3348 		return -EINVAL;
3349 	node_field_name = strstr(value_type, ":");
3350 	if (!node_field_name)
3351 		return -EINVAL;
3352 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3353 	if (!value_type)
3354 		return -ENOMEM;
3355 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3356 	kfree(value_type);
3357 	if (id < 0)
3358 		return id;
3359 	node_field_name++;
3360 	if (str_is_empty(node_field_name))
3361 		return -EINVAL;
3362 	info->type = head_type;
3363 	info->off = off;
3364 	info->graph_root.value_btf_id = id;
3365 	info->graph_root.node_name = node_field_name;
3366 	return BTF_FIELD_FOUND;
3367 }
3368 
3369 #define field_mask_test_name(field_type, field_type_str) \
3370 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3371 		type = field_type;					\
3372 		goto end;						\
3373 	}
3374 
3375 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3376 			      int *align, int *sz)
3377 {
3378 	int type = 0;
3379 
3380 	if (field_mask & BPF_SPIN_LOCK) {
3381 		if (!strcmp(name, "bpf_spin_lock")) {
3382 			if (*seen_mask & BPF_SPIN_LOCK)
3383 				return -E2BIG;
3384 			*seen_mask |= BPF_SPIN_LOCK;
3385 			type = BPF_SPIN_LOCK;
3386 			goto end;
3387 		}
3388 	}
3389 	if (field_mask & BPF_TIMER) {
3390 		if (!strcmp(name, "bpf_timer")) {
3391 			if (*seen_mask & BPF_TIMER)
3392 				return -E2BIG;
3393 			*seen_mask |= BPF_TIMER;
3394 			type = BPF_TIMER;
3395 			goto end;
3396 		}
3397 	}
3398 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3399 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3400 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3401 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3402 	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3403 
3404 	/* Only return BPF_KPTR when all other types with matchable names fail */
3405 	if (field_mask & BPF_KPTR) {
3406 		type = BPF_KPTR_REF;
3407 		goto end;
3408 	}
3409 	return 0;
3410 end:
3411 	*sz = btf_field_type_size(type);
3412 	*align = btf_field_type_align(type);
3413 	return type;
3414 }
3415 
3416 #undef field_mask_test_name
3417 
3418 static int btf_find_struct_field(const struct btf *btf,
3419 				 const struct btf_type *t, u32 field_mask,
3420 				 struct btf_field_info *info, int info_cnt)
3421 {
3422 	int ret, idx = 0, align, sz, field_type;
3423 	const struct btf_member *member;
3424 	struct btf_field_info tmp;
3425 	u32 i, off, seen_mask = 0;
3426 
3427 	for_each_member(i, t, member) {
3428 		const struct btf_type *member_type = btf_type_by_id(btf,
3429 								    member->type);
3430 
3431 		field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3432 						field_mask, &seen_mask, &align, &sz);
3433 		if (field_type == 0)
3434 			continue;
3435 		if (field_type < 0)
3436 			return field_type;
3437 
3438 		off = __btf_member_bit_offset(t, member);
3439 		if (off % 8)
3440 			/* valid C code cannot generate such BTF */
3441 			return -EINVAL;
3442 		off /= 8;
3443 		if (off % align)
3444 			continue;
3445 
3446 		switch (field_type) {
3447 		case BPF_SPIN_LOCK:
3448 		case BPF_TIMER:
3449 		case BPF_LIST_NODE:
3450 		case BPF_RB_NODE:
3451 		case BPF_REFCOUNT:
3452 			ret = btf_find_struct(btf, member_type, off, sz, field_type,
3453 					      idx < info_cnt ? &info[idx] : &tmp);
3454 			if (ret < 0)
3455 				return ret;
3456 			break;
3457 		case BPF_KPTR_UNREF:
3458 		case BPF_KPTR_REF:
3459 			ret = btf_find_kptr(btf, member_type, off, sz,
3460 					    idx < info_cnt ? &info[idx] : &tmp);
3461 			if (ret < 0)
3462 				return ret;
3463 			break;
3464 		case BPF_LIST_HEAD:
3465 		case BPF_RB_ROOT:
3466 			ret = btf_find_graph_root(btf, t, member_type,
3467 						  i, off, sz,
3468 						  idx < info_cnt ? &info[idx] : &tmp,
3469 						  field_type);
3470 			if (ret < 0)
3471 				return ret;
3472 			break;
3473 		default:
3474 			return -EFAULT;
3475 		}
3476 
3477 		if (ret == BTF_FIELD_IGNORE)
3478 			continue;
3479 		if (idx >= info_cnt)
3480 			return -E2BIG;
3481 		++idx;
3482 	}
3483 	return idx;
3484 }
3485 
3486 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3487 				u32 field_mask, struct btf_field_info *info,
3488 				int info_cnt)
3489 {
3490 	int ret, idx = 0, align, sz, field_type;
3491 	const struct btf_var_secinfo *vsi;
3492 	struct btf_field_info tmp;
3493 	u32 i, off, seen_mask = 0;
3494 
3495 	for_each_vsi(i, t, vsi) {
3496 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3497 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3498 
3499 		field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3500 						field_mask, &seen_mask, &align, &sz);
3501 		if (field_type == 0)
3502 			continue;
3503 		if (field_type < 0)
3504 			return field_type;
3505 
3506 		off = vsi->offset;
3507 		if (vsi->size != sz)
3508 			continue;
3509 		if (off % align)
3510 			continue;
3511 
3512 		switch (field_type) {
3513 		case BPF_SPIN_LOCK:
3514 		case BPF_TIMER:
3515 		case BPF_LIST_NODE:
3516 		case BPF_RB_NODE:
3517 		case BPF_REFCOUNT:
3518 			ret = btf_find_struct(btf, var_type, off, sz, field_type,
3519 					      idx < info_cnt ? &info[idx] : &tmp);
3520 			if (ret < 0)
3521 				return ret;
3522 			break;
3523 		case BPF_KPTR_UNREF:
3524 		case BPF_KPTR_REF:
3525 			ret = btf_find_kptr(btf, var_type, off, sz,
3526 					    idx < info_cnt ? &info[idx] : &tmp);
3527 			if (ret < 0)
3528 				return ret;
3529 			break;
3530 		case BPF_LIST_HEAD:
3531 		case BPF_RB_ROOT:
3532 			ret = btf_find_graph_root(btf, var, var_type,
3533 						  -1, off, sz,
3534 						  idx < info_cnt ? &info[idx] : &tmp,
3535 						  field_type);
3536 			if (ret < 0)
3537 				return ret;
3538 			break;
3539 		default:
3540 			return -EFAULT;
3541 		}
3542 
3543 		if (ret == BTF_FIELD_IGNORE)
3544 			continue;
3545 		if (idx >= info_cnt)
3546 			return -E2BIG;
3547 		++idx;
3548 	}
3549 	return idx;
3550 }
3551 
3552 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3553 			  u32 field_mask, struct btf_field_info *info,
3554 			  int info_cnt)
3555 {
3556 	if (__btf_type_is_struct(t))
3557 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3558 	else if (btf_type_is_datasec(t))
3559 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3560 	return -EINVAL;
3561 }
3562 
3563 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3564 			  struct btf_field_info *info)
3565 {
3566 	struct module *mod = NULL;
3567 	const struct btf_type *t;
3568 	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3569 	 * is that BTF, otherwise it's program BTF
3570 	 */
3571 	struct btf *kptr_btf;
3572 	int ret;
3573 	s32 id;
3574 
3575 	/* Find type in map BTF, and use it to look up the matching type
3576 	 * in vmlinux or module BTFs, by name and kind.
3577 	 */
3578 	t = btf_type_by_id(btf, info->kptr.type_id);
3579 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3580 			     &kptr_btf);
3581 	if (id == -ENOENT) {
3582 		/* btf_parse_kptr should only be called w/ btf = program BTF */
3583 		WARN_ON_ONCE(btf_is_kernel(btf));
3584 
3585 		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3586 		 * kptr allocated via bpf_obj_new
3587 		 */
3588 		field->kptr.dtor = NULL;
3589 		id = info->kptr.type_id;
3590 		kptr_btf = (struct btf *)btf;
3591 		btf_get(kptr_btf);
3592 		goto found_dtor;
3593 	}
3594 	if (id < 0)
3595 		return id;
3596 
3597 	/* Find and stash the function pointer for the destruction function that
3598 	 * needs to be eventually invoked from the map free path.
3599 	 */
3600 	if (info->type == BPF_KPTR_REF) {
3601 		const struct btf_type *dtor_func;
3602 		const char *dtor_func_name;
3603 		unsigned long addr;
3604 		s32 dtor_btf_id;
3605 
3606 		/* This call also serves as a whitelist of allowed objects that
3607 		 * can be used as a referenced pointer and be stored in a map at
3608 		 * the same time.
3609 		 */
3610 		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3611 		if (dtor_btf_id < 0) {
3612 			ret = dtor_btf_id;
3613 			goto end_btf;
3614 		}
3615 
3616 		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3617 		if (!dtor_func) {
3618 			ret = -ENOENT;
3619 			goto end_btf;
3620 		}
3621 
3622 		if (btf_is_module(kptr_btf)) {
3623 			mod = btf_try_get_module(kptr_btf);
3624 			if (!mod) {
3625 				ret = -ENXIO;
3626 				goto end_btf;
3627 			}
3628 		}
3629 
3630 		/* We already verified dtor_func to be btf_type_is_func
3631 		 * in register_btf_id_dtor_kfuncs.
3632 		 */
3633 		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3634 		addr = kallsyms_lookup_name(dtor_func_name);
3635 		if (!addr) {
3636 			ret = -EINVAL;
3637 			goto end_mod;
3638 		}
3639 		field->kptr.dtor = (void *)addr;
3640 	}
3641 
3642 found_dtor:
3643 	field->kptr.btf_id = id;
3644 	field->kptr.btf = kptr_btf;
3645 	field->kptr.module = mod;
3646 	return 0;
3647 end_mod:
3648 	module_put(mod);
3649 end_btf:
3650 	btf_put(kptr_btf);
3651 	return ret;
3652 }
3653 
3654 static int btf_parse_graph_root(const struct btf *btf,
3655 				struct btf_field *field,
3656 				struct btf_field_info *info,
3657 				const char *node_type_name,
3658 				size_t node_type_align)
3659 {
3660 	const struct btf_type *t, *n = NULL;
3661 	const struct btf_member *member;
3662 	u32 offset;
3663 	int i;
3664 
3665 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3666 	/* We've already checked that value_btf_id is a struct type. We
3667 	 * just need to figure out the offset of the list_node, and
3668 	 * verify its type.
3669 	 */
3670 	for_each_member(i, t, member) {
3671 		if (strcmp(info->graph_root.node_name,
3672 			   __btf_name_by_offset(btf, member->name_off)))
3673 			continue;
3674 		/* Invalid BTF, two members with same name */
3675 		if (n)
3676 			return -EINVAL;
3677 		n = btf_type_by_id(btf, member->type);
3678 		if (!__btf_type_is_struct(n))
3679 			return -EINVAL;
3680 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3681 			return -EINVAL;
3682 		offset = __btf_member_bit_offset(n, member);
3683 		if (offset % 8)
3684 			return -EINVAL;
3685 		offset /= 8;
3686 		if (offset % node_type_align)
3687 			return -EINVAL;
3688 
3689 		field->graph_root.btf = (struct btf *)btf;
3690 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3691 		field->graph_root.node_offset = offset;
3692 	}
3693 	if (!n)
3694 		return -ENOENT;
3695 	return 0;
3696 }
3697 
3698 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3699 			       struct btf_field_info *info)
3700 {
3701 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3702 					    __alignof__(struct bpf_list_node));
3703 }
3704 
3705 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3706 			     struct btf_field_info *info)
3707 {
3708 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3709 					    __alignof__(struct bpf_rb_node));
3710 }
3711 
3712 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3713 {
3714 	const struct btf_field *a = (const struct btf_field *)_a;
3715 	const struct btf_field *b = (const struct btf_field *)_b;
3716 
3717 	if (a->offset < b->offset)
3718 		return -1;
3719 	else if (a->offset > b->offset)
3720 		return 1;
3721 	return 0;
3722 }
3723 
3724 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3725 				    u32 field_mask, u32 value_size)
3726 {
3727 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3728 	u32 next_off = 0, field_type_size;
3729 	struct btf_record *rec;
3730 	int ret, i, cnt;
3731 
3732 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3733 	if (ret < 0)
3734 		return ERR_PTR(ret);
3735 	if (!ret)
3736 		return NULL;
3737 
3738 	cnt = ret;
3739 	/* This needs to be kzalloc to zero out padding and unused fields, see
3740 	 * comment in btf_record_equal.
3741 	 */
3742 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3743 	if (!rec)
3744 		return ERR_PTR(-ENOMEM);
3745 
3746 	rec->spin_lock_off = -EINVAL;
3747 	rec->timer_off = -EINVAL;
3748 	rec->refcount_off = -EINVAL;
3749 	for (i = 0; i < cnt; i++) {
3750 		field_type_size = btf_field_type_size(info_arr[i].type);
3751 		if (info_arr[i].off + field_type_size > value_size) {
3752 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3753 			ret = -EFAULT;
3754 			goto end;
3755 		}
3756 		if (info_arr[i].off < next_off) {
3757 			ret = -EEXIST;
3758 			goto end;
3759 		}
3760 		next_off = info_arr[i].off + field_type_size;
3761 
3762 		rec->field_mask |= info_arr[i].type;
3763 		rec->fields[i].offset = info_arr[i].off;
3764 		rec->fields[i].type = info_arr[i].type;
3765 		rec->fields[i].size = field_type_size;
3766 
3767 		switch (info_arr[i].type) {
3768 		case BPF_SPIN_LOCK:
3769 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3770 			/* Cache offset for faster lookup at runtime */
3771 			rec->spin_lock_off = rec->fields[i].offset;
3772 			break;
3773 		case BPF_TIMER:
3774 			WARN_ON_ONCE(rec->timer_off >= 0);
3775 			/* Cache offset for faster lookup at runtime */
3776 			rec->timer_off = rec->fields[i].offset;
3777 			break;
3778 		case BPF_REFCOUNT:
3779 			WARN_ON_ONCE(rec->refcount_off >= 0);
3780 			/* Cache offset for faster lookup at runtime */
3781 			rec->refcount_off = rec->fields[i].offset;
3782 			break;
3783 		case BPF_KPTR_UNREF:
3784 		case BPF_KPTR_REF:
3785 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3786 			if (ret < 0)
3787 				goto end;
3788 			break;
3789 		case BPF_LIST_HEAD:
3790 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3791 			if (ret < 0)
3792 				goto end;
3793 			break;
3794 		case BPF_RB_ROOT:
3795 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3796 			if (ret < 0)
3797 				goto end;
3798 			break;
3799 		case BPF_LIST_NODE:
3800 		case BPF_RB_NODE:
3801 			break;
3802 		default:
3803 			ret = -EFAULT;
3804 			goto end;
3805 		}
3806 		rec->cnt++;
3807 	}
3808 
3809 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
3810 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
3811 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3812 		ret = -EINVAL;
3813 		goto end;
3814 	}
3815 
3816 	if (rec->refcount_off < 0 &&
3817 	    btf_record_has_field(rec, BPF_LIST_NODE) &&
3818 	    btf_record_has_field(rec, BPF_RB_NODE)) {
3819 		ret = -EINVAL;
3820 		goto end;
3821 	}
3822 
3823 	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
3824 	       NULL, rec);
3825 
3826 	return rec;
3827 end:
3828 	btf_record_free(rec);
3829 	return ERR_PTR(ret);
3830 }
3831 
3832 #define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT)
3833 #define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE)
3834 
3835 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3836 {
3837 	int i;
3838 
3839 	/* There are three types that signify ownership of some other type:
3840 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
3841 	 * kptr_ref only supports storing kernel types, which can't store
3842 	 * references to program allocated local types.
3843 	 *
3844 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3845 	 * does not form cycles.
3846 	 */
3847 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK))
3848 		return 0;
3849 	for (i = 0; i < rec->cnt; i++) {
3850 		struct btf_struct_meta *meta;
3851 		u32 btf_id;
3852 
3853 		if (!(rec->fields[i].type & GRAPH_ROOT_MASK))
3854 			continue;
3855 		btf_id = rec->fields[i].graph_root.value_btf_id;
3856 		meta = btf_find_struct_meta(btf, btf_id);
3857 		if (!meta)
3858 			return -EFAULT;
3859 		rec->fields[i].graph_root.value_rec = meta->record;
3860 
3861 		/* We need to set value_rec for all root types, but no need
3862 		 * to check ownership cycle for a type unless it's also a
3863 		 * node type.
3864 		 */
3865 		if (!(rec->field_mask & GRAPH_NODE_MASK))
3866 			continue;
3867 
3868 		/* We need to ensure ownership acyclicity among all types. The
3869 		 * proper way to do it would be to topologically sort all BTF
3870 		 * IDs based on the ownership edges, since there can be multiple
3871 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
3872 		 * following resaoning:
3873 		 *
3874 		 * - A type can only be owned by another type in user BTF if it
3875 		 *   has a bpf_{list,rb}_node. Let's call these node types.
3876 		 * - A type can only _own_ another type in user BTF if it has a
3877 		 *   bpf_{list_head,rb_root}. Let's call these root types.
3878 		 *
3879 		 * We ensure that if a type is both a root and node, its
3880 		 * element types cannot be root types.
3881 		 *
3882 		 * To ensure acyclicity:
3883 		 *
3884 		 * When A is an root type but not a node, its ownership
3885 		 * chain can be:
3886 		 *	A -> B -> C
3887 		 * Where:
3888 		 * - A is an root, e.g. has bpf_rb_root.
3889 		 * - B is both a root and node, e.g. has bpf_rb_node and
3890 		 *   bpf_list_head.
3891 		 * - C is only an root, e.g. has bpf_list_node
3892 		 *
3893 		 * When A is both a root and node, some other type already
3894 		 * owns it in the BTF domain, hence it can not own
3895 		 * another root type through any of the ownership edges.
3896 		 *	A -> B
3897 		 * Where:
3898 		 * - A is both an root and node.
3899 		 * - B is only an node.
3900 		 */
3901 		if (meta->record->field_mask & GRAPH_ROOT_MASK)
3902 			return -ELOOP;
3903 	}
3904 	return 0;
3905 }
3906 
3907 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3908 			      u32 type_id, void *data, u8 bits_offset,
3909 			      struct btf_show *show)
3910 {
3911 	const struct btf_member *member;
3912 	void *safe_data;
3913 	u32 i;
3914 
3915 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3916 	if (!safe_data)
3917 		return;
3918 
3919 	for_each_member(i, t, member) {
3920 		const struct btf_type *member_type = btf_type_by_id(btf,
3921 								member->type);
3922 		const struct btf_kind_operations *ops;
3923 		u32 member_offset, bitfield_size;
3924 		u32 bytes_offset;
3925 		u8 bits8_offset;
3926 
3927 		btf_show_start_member(show, member);
3928 
3929 		member_offset = __btf_member_bit_offset(t, member);
3930 		bitfield_size = __btf_member_bitfield_size(t, member);
3931 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3932 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3933 		if (bitfield_size) {
3934 			safe_data = btf_show_start_type(show, member_type,
3935 							member->type,
3936 							data + bytes_offset);
3937 			if (safe_data)
3938 				btf_bitfield_show(safe_data,
3939 						  bits8_offset,
3940 						  bitfield_size, show);
3941 			btf_show_end_type(show);
3942 		} else {
3943 			ops = btf_type_ops(member_type);
3944 			ops->show(btf, member_type, member->type,
3945 				  data + bytes_offset, bits8_offset, show);
3946 		}
3947 
3948 		btf_show_end_member(show);
3949 	}
3950 
3951 	btf_show_end_struct_type(show);
3952 }
3953 
3954 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3955 			    u32 type_id, void *data, u8 bits_offset,
3956 			    struct btf_show *show)
3957 {
3958 	const struct btf_member *m = show->state.member;
3959 
3960 	/*
3961 	 * First check if any members would be shown (are non-zero).
3962 	 * See comments above "struct btf_show" definition for more
3963 	 * details on how this works at a high-level.
3964 	 */
3965 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3966 		if (!show->state.depth_check) {
3967 			show->state.depth_check = show->state.depth + 1;
3968 			show->state.depth_to_show = 0;
3969 		}
3970 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3971 		/* Restore saved member data here */
3972 		show->state.member = m;
3973 		if (show->state.depth_check != show->state.depth + 1)
3974 			return;
3975 		show->state.depth_check = 0;
3976 
3977 		if (show->state.depth_to_show <= show->state.depth)
3978 			return;
3979 		/*
3980 		 * Reaching here indicates we have recursed and found
3981 		 * non-zero child values.
3982 		 */
3983 	}
3984 
3985 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3986 }
3987 
3988 static struct btf_kind_operations struct_ops = {
3989 	.check_meta = btf_struct_check_meta,
3990 	.resolve = btf_struct_resolve,
3991 	.check_member = btf_struct_check_member,
3992 	.check_kflag_member = btf_generic_check_kflag_member,
3993 	.log_details = btf_struct_log,
3994 	.show = btf_struct_show,
3995 };
3996 
3997 static int btf_enum_check_member(struct btf_verifier_env *env,
3998 				 const struct btf_type *struct_type,
3999 				 const struct btf_member *member,
4000 				 const struct btf_type *member_type)
4001 {
4002 	u32 struct_bits_off = member->offset;
4003 	u32 struct_size, bytes_offset;
4004 
4005 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4006 		btf_verifier_log_member(env, struct_type, member,
4007 					"Member is not byte aligned");
4008 		return -EINVAL;
4009 	}
4010 
4011 	struct_size = struct_type->size;
4012 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4013 	if (struct_size - bytes_offset < member_type->size) {
4014 		btf_verifier_log_member(env, struct_type, member,
4015 					"Member exceeds struct_size");
4016 		return -EINVAL;
4017 	}
4018 
4019 	return 0;
4020 }
4021 
4022 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4023 				       const struct btf_type *struct_type,
4024 				       const struct btf_member *member,
4025 				       const struct btf_type *member_type)
4026 {
4027 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4028 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4029 
4030 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4031 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4032 	if (!nr_bits) {
4033 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4034 			btf_verifier_log_member(env, struct_type, member,
4035 						"Member is not byte aligned");
4036 			return -EINVAL;
4037 		}
4038 
4039 		nr_bits = int_bitsize;
4040 	} else if (nr_bits > int_bitsize) {
4041 		btf_verifier_log_member(env, struct_type, member,
4042 					"Invalid member bitfield_size");
4043 		return -EINVAL;
4044 	}
4045 
4046 	struct_size = struct_type->size;
4047 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4048 	if (struct_size < bytes_end) {
4049 		btf_verifier_log_member(env, struct_type, member,
4050 					"Member exceeds struct_size");
4051 		return -EINVAL;
4052 	}
4053 
4054 	return 0;
4055 }
4056 
4057 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4058 			       const struct btf_type *t,
4059 			       u32 meta_left)
4060 {
4061 	const struct btf_enum *enums = btf_type_enum(t);
4062 	struct btf *btf = env->btf;
4063 	const char *fmt_str;
4064 	u16 i, nr_enums;
4065 	u32 meta_needed;
4066 
4067 	nr_enums = btf_type_vlen(t);
4068 	meta_needed = nr_enums * sizeof(*enums);
4069 
4070 	if (meta_left < meta_needed) {
4071 		btf_verifier_log_basic(env, t,
4072 				       "meta_left:%u meta_needed:%u",
4073 				       meta_left, meta_needed);
4074 		return -EINVAL;
4075 	}
4076 
4077 	if (t->size > 8 || !is_power_of_2(t->size)) {
4078 		btf_verifier_log_type(env, t, "Unexpected size");
4079 		return -EINVAL;
4080 	}
4081 
4082 	/* enum type either no name or a valid one */
4083 	if (t->name_off &&
4084 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4085 		btf_verifier_log_type(env, t, "Invalid name");
4086 		return -EINVAL;
4087 	}
4088 
4089 	btf_verifier_log_type(env, t, NULL);
4090 
4091 	for (i = 0; i < nr_enums; i++) {
4092 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4093 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4094 					 enums[i].name_off);
4095 			return -EINVAL;
4096 		}
4097 
4098 		/* enum member must have a valid name */
4099 		if (!enums[i].name_off ||
4100 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4101 			btf_verifier_log_type(env, t, "Invalid name");
4102 			return -EINVAL;
4103 		}
4104 
4105 		if (env->log.level == BPF_LOG_KERNEL)
4106 			continue;
4107 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4108 		btf_verifier_log(env, fmt_str,
4109 				 __btf_name_by_offset(btf, enums[i].name_off),
4110 				 enums[i].val);
4111 	}
4112 
4113 	return meta_needed;
4114 }
4115 
4116 static void btf_enum_log(struct btf_verifier_env *env,
4117 			 const struct btf_type *t)
4118 {
4119 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4120 }
4121 
4122 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4123 			  u32 type_id, void *data, u8 bits_offset,
4124 			  struct btf_show *show)
4125 {
4126 	const struct btf_enum *enums = btf_type_enum(t);
4127 	u32 i, nr_enums = btf_type_vlen(t);
4128 	void *safe_data;
4129 	int v;
4130 
4131 	safe_data = btf_show_start_type(show, t, type_id, data);
4132 	if (!safe_data)
4133 		return;
4134 
4135 	v = *(int *)safe_data;
4136 
4137 	for (i = 0; i < nr_enums; i++) {
4138 		if (v != enums[i].val)
4139 			continue;
4140 
4141 		btf_show_type_value(show, "%s",
4142 				    __btf_name_by_offset(btf,
4143 							 enums[i].name_off));
4144 
4145 		btf_show_end_type(show);
4146 		return;
4147 	}
4148 
4149 	if (btf_type_kflag(t))
4150 		btf_show_type_value(show, "%d", v);
4151 	else
4152 		btf_show_type_value(show, "%u", v);
4153 	btf_show_end_type(show);
4154 }
4155 
4156 static struct btf_kind_operations enum_ops = {
4157 	.check_meta = btf_enum_check_meta,
4158 	.resolve = btf_df_resolve,
4159 	.check_member = btf_enum_check_member,
4160 	.check_kflag_member = btf_enum_check_kflag_member,
4161 	.log_details = btf_enum_log,
4162 	.show = btf_enum_show,
4163 };
4164 
4165 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4166 				 const struct btf_type *t,
4167 				 u32 meta_left)
4168 {
4169 	const struct btf_enum64 *enums = btf_type_enum64(t);
4170 	struct btf *btf = env->btf;
4171 	const char *fmt_str;
4172 	u16 i, nr_enums;
4173 	u32 meta_needed;
4174 
4175 	nr_enums = btf_type_vlen(t);
4176 	meta_needed = nr_enums * sizeof(*enums);
4177 
4178 	if (meta_left < meta_needed) {
4179 		btf_verifier_log_basic(env, t,
4180 				       "meta_left:%u meta_needed:%u",
4181 				       meta_left, meta_needed);
4182 		return -EINVAL;
4183 	}
4184 
4185 	if (t->size > 8 || !is_power_of_2(t->size)) {
4186 		btf_verifier_log_type(env, t, "Unexpected size");
4187 		return -EINVAL;
4188 	}
4189 
4190 	/* enum type either no name or a valid one */
4191 	if (t->name_off &&
4192 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4193 		btf_verifier_log_type(env, t, "Invalid name");
4194 		return -EINVAL;
4195 	}
4196 
4197 	btf_verifier_log_type(env, t, NULL);
4198 
4199 	for (i = 0; i < nr_enums; i++) {
4200 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4201 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4202 					 enums[i].name_off);
4203 			return -EINVAL;
4204 		}
4205 
4206 		/* enum member must have a valid name */
4207 		if (!enums[i].name_off ||
4208 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4209 			btf_verifier_log_type(env, t, "Invalid name");
4210 			return -EINVAL;
4211 		}
4212 
4213 		if (env->log.level == BPF_LOG_KERNEL)
4214 			continue;
4215 
4216 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4217 		btf_verifier_log(env, fmt_str,
4218 				 __btf_name_by_offset(btf, enums[i].name_off),
4219 				 btf_enum64_value(enums + i));
4220 	}
4221 
4222 	return meta_needed;
4223 }
4224 
4225 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4226 			    u32 type_id, void *data, u8 bits_offset,
4227 			    struct btf_show *show)
4228 {
4229 	const struct btf_enum64 *enums = btf_type_enum64(t);
4230 	u32 i, nr_enums = btf_type_vlen(t);
4231 	void *safe_data;
4232 	s64 v;
4233 
4234 	safe_data = btf_show_start_type(show, t, type_id, data);
4235 	if (!safe_data)
4236 		return;
4237 
4238 	v = *(u64 *)safe_data;
4239 
4240 	for (i = 0; i < nr_enums; i++) {
4241 		if (v != btf_enum64_value(enums + i))
4242 			continue;
4243 
4244 		btf_show_type_value(show, "%s",
4245 				    __btf_name_by_offset(btf,
4246 							 enums[i].name_off));
4247 
4248 		btf_show_end_type(show);
4249 		return;
4250 	}
4251 
4252 	if (btf_type_kflag(t))
4253 		btf_show_type_value(show, "%lld", v);
4254 	else
4255 		btf_show_type_value(show, "%llu", v);
4256 	btf_show_end_type(show);
4257 }
4258 
4259 static struct btf_kind_operations enum64_ops = {
4260 	.check_meta = btf_enum64_check_meta,
4261 	.resolve = btf_df_resolve,
4262 	.check_member = btf_enum_check_member,
4263 	.check_kflag_member = btf_enum_check_kflag_member,
4264 	.log_details = btf_enum_log,
4265 	.show = btf_enum64_show,
4266 };
4267 
4268 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4269 				     const struct btf_type *t,
4270 				     u32 meta_left)
4271 {
4272 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4273 
4274 	if (meta_left < meta_needed) {
4275 		btf_verifier_log_basic(env, t,
4276 				       "meta_left:%u meta_needed:%u",
4277 				       meta_left, meta_needed);
4278 		return -EINVAL;
4279 	}
4280 
4281 	if (t->name_off) {
4282 		btf_verifier_log_type(env, t, "Invalid name");
4283 		return -EINVAL;
4284 	}
4285 
4286 	if (btf_type_kflag(t)) {
4287 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4288 		return -EINVAL;
4289 	}
4290 
4291 	btf_verifier_log_type(env, t, NULL);
4292 
4293 	return meta_needed;
4294 }
4295 
4296 static void btf_func_proto_log(struct btf_verifier_env *env,
4297 			       const struct btf_type *t)
4298 {
4299 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4300 	u16 nr_args = btf_type_vlen(t), i;
4301 
4302 	btf_verifier_log(env, "return=%u args=(", t->type);
4303 	if (!nr_args) {
4304 		btf_verifier_log(env, "void");
4305 		goto done;
4306 	}
4307 
4308 	if (nr_args == 1 && !args[0].type) {
4309 		/* Only one vararg */
4310 		btf_verifier_log(env, "vararg");
4311 		goto done;
4312 	}
4313 
4314 	btf_verifier_log(env, "%u %s", args[0].type,
4315 			 __btf_name_by_offset(env->btf,
4316 					      args[0].name_off));
4317 	for (i = 1; i < nr_args - 1; i++)
4318 		btf_verifier_log(env, ", %u %s", args[i].type,
4319 				 __btf_name_by_offset(env->btf,
4320 						      args[i].name_off));
4321 
4322 	if (nr_args > 1) {
4323 		const struct btf_param *last_arg = &args[nr_args - 1];
4324 
4325 		if (last_arg->type)
4326 			btf_verifier_log(env, ", %u %s", last_arg->type,
4327 					 __btf_name_by_offset(env->btf,
4328 							      last_arg->name_off));
4329 		else
4330 			btf_verifier_log(env, ", vararg");
4331 	}
4332 
4333 done:
4334 	btf_verifier_log(env, ")");
4335 }
4336 
4337 static struct btf_kind_operations func_proto_ops = {
4338 	.check_meta = btf_func_proto_check_meta,
4339 	.resolve = btf_df_resolve,
4340 	/*
4341 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4342 	 * a struct's member.
4343 	 *
4344 	 * It should be a function pointer instead.
4345 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4346 	 *
4347 	 * Hence, there is no btf_func_check_member().
4348 	 */
4349 	.check_member = btf_df_check_member,
4350 	.check_kflag_member = btf_df_check_kflag_member,
4351 	.log_details = btf_func_proto_log,
4352 	.show = btf_df_show,
4353 };
4354 
4355 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4356 			       const struct btf_type *t,
4357 			       u32 meta_left)
4358 {
4359 	if (!t->name_off ||
4360 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4361 		btf_verifier_log_type(env, t, "Invalid name");
4362 		return -EINVAL;
4363 	}
4364 
4365 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4366 		btf_verifier_log_type(env, t, "Invalid func linkage");
4367 		return -EINVAL;
4368 	}
4369 
4370 	if (btf_type_kflag(t)) {
4371 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4372 		return -EINVAL;
4373 	}
4374 
4375 	btf_verifier_log_type(env, t, NULL);
4376 
4377 	return 0;
4378 }
4379 
4380 static int btf_func_resolve(struct btf_verifier_env *env,
4381 			    const struct resolve_vertex *v)
4382 {
4383 	const struct btf_type *t = v->t;
4384 	u32 next_type_id = t->type;
4385 	int err;
4386 
4387 	err = btf_func_check(env, t);
4388 	if (err)
4389 		return err;
4390 
4391 	env_stack_pop_resolved(env, next_type_id, 0);
4392 	return 0;
4393 }
4394 
4395 static struct btf_kind_operations func_ops = {
4396 	.check_meta = btf_func_check_meta,
4397 	.resolve = btf_func_resolve,
4398 	.check_member = btf_df_check_member,
4399 	.check_kflag_member = btf_df_check_kflag_member,
4400 	.log_details = btf_ref_type_log,
4401 	.show = btf_df_show,
4402 };
4403 
4404 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4405 			      const struct btf_type *t,
4406 			      u32 meta_left)
4407 {
4408 	const struct btf_var *var;
4409 	u32 meta_needed = sizeof(*var);
4410 
4411 	if (meta_left < meta_needed) {
4412 		btf_verifier_log_basic(env, t,
4413 				       "meta_left:%u meta_needed:%u",
4414 				       meta_left, meta_needed);
4415 		return -EINVAL;
4416 	}
4417 
4418 	if (btf_type_vlen(t)) {
4419 		btf_verifier_log_type(env, t, "vlen != 0");
4420 		return -EINVAL;
4421 	}
4422 
4423 	if (btf_type_kflag(t)) {
4424 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4425 		return -EINVAL;
4426 	}
4427 
4428 	if (!t->name_off ||
4429 	    !__btf_name_valid(env->btf, t->name_off)) {
4430 		btf_verifier_log_type(env, t, "Invalid name");
4431 		return -EINVAL;
4432 	}
4433 
4434 	/* A var cannot be in type void */
4435 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4436 		btf_verifier_log_type(env, t, "Invalid type_id");
4437 		return -EINVAL;
4438 	}
4439 
4440 	var = btf_type_var(t);
4441 	if (var->linkage != BTF_VAR_STATIC &&
4442 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4443 		btf_verifier_log_type(env, t, "Linkage not supported");
4444 		return -EINVAL;
4445 	}
4446 
4447 	btf_verifier_log_type(env, t, NULL);
4448 
4449 	return meta_needed;
4450 }
4451 
4452 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4453 {
4454 	const struct btf_var *var = btf_type_var(t);
4455 
4456 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4457 }
4458 
4459 static const struct btf_kind_operations var_ops = {
4460 	.check_meta		= btf_var_check_meta,
4461 	.resolve		= btf_var_resolve,
4462 	.check_member		= btf_df_check_member,
4463 	.check_kflag_member	= btf_df_check_kflag_member,
4464 	.log_details		= btf_var_log,
4465 	.show			= btf_var_show,
4466 };
4467 
4468 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4469 				  const struct btf_type *t,
4470 				  u32 meta_left)
4471 {
4472 	const struct btf_var_secinfo *vsi;
4473 	u64 last_vsi_end_off = 0, sum = 0;
4474 	u32 i, meta_needed;
4475 
4476 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4477 	if (meta_left < meta_needed) {
4478 		btf_verifier_log_basic(env, t,
4479 				       "meta_left:%u meta_needed:%u",
4480 				       meta_left, meta_needed);
4481 		return -EINVAL;
4482 	}
4483 
4484 	if (!t->size) {
4485 		btf_verifier_log_type(env, t, "size == 0");
4486 		return -EINVAL;
4487 	}
4488 
4489 	if (btf_type_kflag(t)) {
4490 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4491 		return -EINVAL;
4492 	}
4493 
4494 	if (!t->name_off ||
4495 	    !btf_name_valid_section(env->btf, t->name_off)) {
4496 		btf_verifier_log_type(env, t, "Invalid name");
4497 		return -EINVAL;
4498 	}
4499 
4500 	btf_verifier_log_type(env, t, NULL);
4501 
4502 	for_each_vsi(i, t, vsi) {
4503 		/* A var cannot be in type void */
4504 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4505 			btf_verifier_log_vsi(env, t, vsi,
4506 					     "Invalid type_id");
4507 			return -EINVAL;
4508 		}
4509 
4510 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4511 			btf_verifier_log_vsi(env, t, vsi,
4512 					     "Invalid offset");
4513 			return -EINVAL;
4514 		}
4515 
4516 		if (!vsi->size || vsi->size > t->size) {
4517 			btf_verifier_log_vsi(env, t, vsi,
4518 					     "Invalid size");
4519 			return -EINVAL;
4520 		}
4521 
4522 		last_vsi_end_off = vsi->offset + vsi->size;
4523 		if (last_vsi_end_off > t->size) {
4524 			btf_verifier_log_vsi(env, t, vsi,
4525 					     "Invalid offset+size");
4526 			return -EINVAL;
4527 		}
4528 
4529 		btf_verifier_log_vsi(env, t, vsi, NULL);
4530 		sum += vsi->size;
4531 	}
4532 
4533 	if (t->size < sum) {
4534 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4535 		return -EINVAL;
4536 	}
4537 
4538 	return meta_needed;
4539 }
4540 
4541 static int btf_datasec_resolve(struct btf_verifier_env *env,
4542 			       const struct resolve_vertex *v)
4543 {
4544 	const struct btf_var_secinfo *vsi;
4545 	struct btf *btf = env->btf;
4546 	u16 i;
4547 
4548 	env->resolve_mode = RESOLVE_TBD;
4549 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4550 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4551 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4552 								 var_type_id);
4553 		if (!var_type || !btf_type_is_var(var_type)) {
4554 			btf_verifier_log_vsi(env, v->t, vsi,
4555 					     "Not a VAR kind member");
4556 			return -EINVAL;
4557 		}
4558 
4559 		if (!env_type_is_resolve_sink(env, var_type) &&
4560 		    !env_type_is_resolved(env, var_type_id)) {
4561 			env_stack_set_next_member(env, i + 1);
4562 			return env_stack_push(env, var_type, var_type_id);
4563 		}
4564 
4565 		type_id = var_type->type;
4566 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4567 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4568 			return -EINVAL;
4569 		}
4570 
4571 		if (vsi->size < type_size) {
4572 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4573 			return -EINVAL;
4574 		}
4575 	}
4576 
4577 	env_stack_pop_resolved(env, 0, 0);
4578 	return 0;
4579 }
4580 
4581 static void btf_datasec_log(struct btf_verifier_env *env,
4582 			    const struct btf_type *t)
4583 {
4584 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4585 }
4586 
4587 static void btf_datasec_show(const struct btf *btf,
4588 			     const struct btf_type *t, u32 type_id,
4589 			     void *data, u8 bits_offset,
4590 			     struct btf_show *show)
4591 {
4592 	const struct btf_var_secinfo *vsi;
4593 	const struct btf_type *var;
4594 	u32 i;
4595 
4596 	if (!btf_show_start_type(show, t, type_id, data))
4597 		return;
4598 
4599 	btf_show_type_value(show, "section (\"%s\") = {",
4600 			    __btf_name_by_offset(btf, t->name_off));
4601 	for_each_vsi(i, t, vsi) {
4602 		var = btf_type_by_id(btf, vsi->type);
4603 		if (i)
4604 			btf_show(show, ",");
4605 		btf_type_ops(var)->show(btf, var, vsi->type,
4606 					data + vsi->offset, bits_offset, show);
4607 	}
4608 	btf_show_end_type(show);
4609 }
4610 
4611 static const struct btf_kind_operations datasec_ops = {
4612 	.check_meta		= btf_datasec_check_meta,
4613 	.resolve		= btf_datasec_resolve,
4614 	.check_member		= btf_df_check_member,
4615 	.check_kflag_member	= btf_df_check_kflag_member,
4616 	.log_details		= btf_datasec_log,
4617 	.show			= btf_datasec_show,
4618 };
4619 
4620 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4621 				const struct btf_type *t,
4622 				u32 meta_left)
4623 {
4624 	if (btf_type_vlen(t)) {
4625 		btf_verifier_log_type(env, t, "vlen != 0");
4626 		return -EINVAL;
4627 	}
4628 
4629 	if (btf_type_kflag(t)) {
4630 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4631 		return -EINVAL;
4632 	}
4633 
4634 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4635 	    t->size != 16) {
4636 		btf_verifier_log_type(env, t, "Invalid type_size");
4637 		return -EINVAL;
4638 	}
4639 
4640 	btf_verifier_log_type(env, t, NULL);
4641 
4642 	return 0;
4643 }
4644 
4645 static int btf_float_check_member(struct btf_verifier_env *env,
4646 				  const struct btf_type *struct_type,
4647 				  const struct btf_member *member,
4648 				  const struct btf_type *member_type)
4649 {
4650 	u64 start_offset_bytes;
4651 	u64 end_offset_bytes;
4652 	u64 misalign_bits;
4653 	u64 align_bytes;
4654 	u64 align_bits;
4655 
4656 	/* Different architectures have different alignment requirements, so
4657 	 * here we check only for the reasonable minimum. This way we ensure
4658 	 * that types after CO-RE can pass the kernel BTF verifier.
4659 	 */
4660 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4661 	align_bits = align_bytes * BITS_PER_BYTE;
4662 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4663 	if (misalign_bits) {
4664 		btf_verifier_log_member(env, struct_type, member,
4665 					"Member is not properly aligned");
4666 		return -EINVAL;
4667 	}
4668 
4669 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4670 	end_offset_bytes = start_offset_bytes + member_type->size;
4671 	if (end_offset_bytes > struct_type->size) {
4672 		btf_verifier_log_member(env, struct_type, member,
4673 					"Member exceeds struct_size");
4674 		return -EINVAL;
4675 	}
4676 
4677 	return 0;
4678 }
4679 
4680 static void btf_float_log(struct btf_verifier_env *env,
4681 			  const struct btf_type *t)
4682 {
4683 	btf_verifier_log(env, "size=%u", t->size);
4684 }
4685 
4686 static const struct btf_kind_operations float_ops = {
4687 	.check_meta = btf_float_check_meta,
4688 	.resolve = btf_df_resolve,
4689 	.check_member = btf_float_check_member,
4690 	.check_kflag_member = btf_generic_check_kflag_member,
4691 	.log_details = btf_float_log,
4692 	.show = btf_df_show,
4693 };
4694 
4695 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4696 			      const struct btf_type *t,
4697 			      u32 meta_left)
4698 {
4699 	const struct btf_decl_tag *tag;
4700 	u32 meta_needed = sizeof(*tag);
4701 	s32 component_idx;
4702 	const char *value;
4703 
4704 	if (meta_left < meta_needed) {
4705 		btf_verifier_log_basic(env, t,
4706 				       "meta_left:%u meta_needed:%u",
4707 				       meta_left, meta_needed);
4708 		return -EINVAL;
4709 	}
4710 
4711 	value = btf_name_by_offset(env->btf, t->name_off);
4712 	if (!value || !value[0]) {
4713 		btf_verifier_log_type(env, t, "Invalid value");
4714 		return -EINVAL;
4715 	}
4716 
4717 	if (btf_type_vlen(t)) {
4718 		btf_verifier_log_type(env, t, "vlen != 0");
4719 		return -EINVAL;
4720 	}
4721 
4722 	if (btf_type_kflag(t)) {
4723 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4724 		return -EINVAL;
4725 	}
4726 
4727 	component_idx = btf_type_decl_tag(t)->component_idx;
4728 	if (component_idx < -1) {
4729 		btf_verifier_log_type(env, t, "Invalid component_idx");
4730 		return -EINVAL;
4731 	}
4732 
4733 	btf_verifier_log_type(env, t, NULL);
4734 
4735 	return meta_needed;
4736 }
4737 
4738 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4739 			   const struct resolve_vertex *v)
4740 {
4741 	const struct btf_type *next_type;
4742 	const struct btf_type *t = v->t;
4743 	u32 next_type_id = t->type;
4744 	struct btf *btf = env->btf;
4745 	s32 component_idx;
4746 	u32 vlen;
4747 
4748 	next_type = btf_type_by_id(btf, next_type_id);
4749 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4750 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4751 		return -EINVAL;
4752 	}
4753 
4754 	if (!env_type_is_resolve_sink(env, next_type) &&
4755 	    !env_type_is_resolved(env, next_type_id))
4756 		return env_stack_push(env, next_type, next_type_id);
4757 
4758 	component_idx = btf_type_decl_tag(t)->component_idx;
4759 	if (component_idx != -1) {
4760 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4761 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4762 			return -EINVAL;
4763 		}
4764 
4765 		if (btf_type_is_struct(next_type)) {
4766 			vlen = btf_type_vlen(next_type);
4767 		} else {
4768 			/* next_type should be a function */
4769 			next_type = btf_type_by_id(btf, next_type->type);
4770 			vlen = btf_type_vlen(next_type);
4771 		}
4772 
4773 		if ((u32)component_idx >= vlen) {
4774 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4775 			return -EINVAL;
4776 		}
4777 	}
4778 
4779 	env_stack_pop_resolved(env, next_type_id, 0);
4780 
4781 	return 0;
4782 }
4783 
4784 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4785 {
4786 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4787 			 btf_type_decl_tag(t)->component_idx);
4788 }
4789 
4790 static const struct btf_kind_operations decl_tag_ops = {
4791 	.check_meta = btf_decl_tag_check_meta,
4792 	.resolve = btf_decl_tag_resolve,
4793 	.check_member = btf_df_check_member,
4794 	.check_kflag_member = btf_df_check_kflag_member,
4795 	.log_details = btf_decl_tag_log,
4796 	.show = btf_df_show,
4797 };
4798 
4799 static int btf_func_proto_check(struct btf_verifier_env *env,
4800 				const struct btf_type *t)
4801 {
4802 	const struct btf_type *ret_type;
4803 	const struct btf_param *args;
4804 	const struct btf *btf;
4805 	u16 nr_args, i;
4806 	int err;
4807 
4808 	btf = env->btf;
4809 	args = (const struct btf_param *)(t + 1);
4810 	nr_args = btf_type_vlen(t);
4811 
4812 	/* Check func return type which could be "void" (t->type == 0) */
4813 	if (t->type) {
4814 		u32 ret_type_id = t->type;
4815 
4816 		ret_type = btf_type_by_id(btf, ret_type_id);
4817 		if (!ret_type) {
4818 			btf_verifier_log_type(env, t, "Invalid return type");
4819 			return -EINVAL;
4820 		}
4821 
4822 		if (btf_type_is_resolve_source_only(ret_type)) {
4823 			btf_verifier_log_type(env, t, "Invalid return type");
4824 			return -EINVAL;
4825 		}
4826 
4827 		if (btf_type_needs_resolve(ret_type) &&
4828 		    !env_type_is_resolved(env, ret_type_id)) {
4829 			err = btf_resolve(env, ret_type, ret_type_id);
4830 			if (err)
4831 				return err;
4832 		}
4833 
4834 		/* Ensure the return type is a type that has a size */
4835 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4836 			btf_verifier_log_type(env, t, "Invalid return type");
4837 			return -EINVAL;
4838 		}
4839 	}
4840 
4841 	if (!nr_args)
4842 		return 0;
4843 
4844 	/* Last func arg type_id could be 0 if it is a vararg */
4845 	if (!args[nr_args - 1].type) {
4846 		if (args[nr_args - 1].name_off) {
4847 			btf_verifier_log_type(env, t, "Invalid arg#%u",
4848 					      nr_args);
4849 			return -EINVAL;
4850 		}
4851 		nr_args--;
4852 	}
4853 
4854 	for (i = 0; i < nr_args; i++) {
4855 		const struct btf_type *arg_type;
4856 		u32 arg_type_id;
4857 
4858 		arg_type_id = args[i].type;
4859 		arg_type = btf_type_by_id(btf, arg_type_id);
4860 		if (!arg_type) {
4861 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4862 			return -EINVAL;
4863 		}
4864 
4865 		if (btf_type_is_resolve_source_only(arg_type)) {
4866 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4867 			return -EINVAL;
4868 		}
4869 
4870 		if (args[i].name_off &&
4871 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4872 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4873 			btf_verifier_log_type(env, t,
4874 					      "Invalid arg#%u", i + 1);
4875 			return -EINVAL;
4876 		}
4877 
4878 		if (btf_type_needs_resolve(arg_type) &&
4879 		    !env_type_is_resolved(env, arg_type_id)) {
4880 			err = btf_resolve(env, arg_type, arg_type_id);
4881 			if (err)
4882 				return err;
4883 		}
4884 
4885 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4886 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4887 			return -EINVAL;
4888 		}
4889 	}
4890 
4891 	return 0;
4892 }
4893 
4894 static int btf_func_check(struct btf_verifier_env *env,
4895 			  const struct btf_type *t)
4896 {
4897 	const struct btf_type *proto_type;
4898 	const struct btf_param *args;
4899 	const struct btf *btf;
4900 	u16 nr_args, i;
4901 
4902 	btf = env->btf;
4903 	proto_type = btf_type_by_id(btf, t->type);
4904 
4905 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4906 		btf_verifier_log_type(env, t, "Invalid type_id");
4907 		return -EINVAL;
4908 	}
4909 
4910 	args = (const struct btf_param *)(proto_type + 1);
4911 	nr_args = btf_type_vlen(proto_type);
4912 	for (i = 0; i < nr_args; i++) {
4913 		if (!args[i].name_off && args[i].type) {
4914 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4915 			return -EINVAL;
4916 		}
4917 	}
4918 
4919 	return 0;
4920 }
4921 
4922 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4923 	[BTF_KIND_INT] = &int_ops,
4924 	[BTF_KIND_PTR] = &ptr_ops,
4925 	[BTF_KIND_ARRAY] = &array_ops,
4926 	[BTF_KIND_STRUCT] = &struct_ops,
4927 	[BTF_KIND_UNION] = &struct_ops,
4928 	[BTF_KIND_ENUM] = &enum_ops,
4929 	[BTF_KIND_FWD] = &fwd_ops,
4930 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4931 	[BTF_KIND_VOLATILE] = &modifier_ops,
4932 	[BTF_KIND_CONST] = &modifier_ops,
4933 	[BTF_KIND_RESTRICT] = &modifier_ops,
4934 	[BTF_KIND_FUNC] = &func_ops,
4935 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4936 	[BTF_KIND_VAR] = &var_ops,
4937 	[BTF_KIND_DATASEC] = &datasec_ops,
4938 	[BTF_KIND_FLOAT] = &float_ops,
4939 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4940 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4941 	[BTF_KIND_ENUM64] = &enum64_ops,
4942 };
4943 
4944 static s32 btf_check_meta(struct btf_verifier_env *env,
4945 			  const struct btf_type *t,
4946 			  u32 meta_left)
4947 {
4948 	u32 saved_meta_left = meta_left;
4949 	s32 var_meta_size;
4950 
4951 	if (meta_left < sizeof(*t)) {
4952 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4953 				 env->log_type_id, meta_left, sizeof(*t));
4954 		return -EINVAL;
4955 	}
4956 	meta_left -= sizeof(*t);
4957 
4958 	if (t->info & ~BTF_INFO_MASK) {
4959 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4960 				 env->log_type_id, t->info);
4961 		return -EINVAL;
4962 	}
4963 
4964 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4965 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4966 		btf_verifier_log(env, "[%u] Invalid kind:%u",
4967 				 env->log_type_id, BTF_INFO_KIND(t->info));
4968 		return -EINVAL;
4969 	}
4970 
4971 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
4972 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4973 				 env->log_type_id, t->name_off);
4974 		return -EINVAL;
4975 	}
4976 
4977 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4978 	if (var_meta_size < 0)
4979 		return var_meta_size;
4980 
4981 	meta_left -= var_meta_size;
4982 
4983 	return saved_meta_left - meta_left;
4984 }
4985 
4986 static int btf_check_all_metas(struct btf_verifier_env *env)
4987 {
4988 	struct btf *btf = env->btf;
4989 	struct btf_header *hdr;
4990 	void *cur, *end;
4991 
4992 	hdr = &btf->hdr;
4993 	cur = btf->nohdr_data + hdr->type_off;
4994 	end = cur + hdr->type_len;
4995 
4996 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
4997 	while (cur < end) {
4998 		struct btf_type *t = cur;
4999 		s32 meta_size;
5000 
5001 		meta_size = btf_check_meta(env, t, end - cur);
5002 		if (meta_size < 0)
5003 			return meta_size;
5004 
5005 		btf_add_type(env, t);
5006 		cur += meta_size;
5007 		env->log_type_id++;
5008 	}
5009 
5010 	return 0;
5011 }
5012 
5013 static bool btf_resolve_valid(struct btf_verifier_env *env,
5014 			      const struct btf_type *t,
5015 			      u32 type_id)
5016 {
5017 	struct btf *btf = env->btf;
5018 
5019 	if (!env_type_is_resolved(env, type_id))
5020 		return false;
5021 
5022 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5023 		return !btf_resolved_type_id(btf, type_id) &&
5024 		       !btf_resolved_type_size(btf, type_id);
5025 
5026 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5027 		return btf_resolved_type_id(btf, type_id) &&
5028 		       !btf_resolved_type_size(btf, type_id);
5029 
5030 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5031 	    btf_type_is_var(t)) {
5032 		t = btf_type_id_resolve(btf, &type_id);
5033 		return t &&
5034 		       !btf_type_is_modifier(t) &&
5035 		       !btf_type_is_var(t) &&
5036 		       !btf_type_is_datasec(t);
5037 	}
5038 
5039 	if (btf_type_is_array(t)) {
5040 		const struct btf_array *array = btf_type_array(t);
5041 		const struct btf_type *elem_type;
5042 		u32 elem_type_id = array->type;
5043 		u32 elem_size;
5044 
5045 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5046 		return elem_type && !btf_type_is_modifier(elem_type) &&
5047 			(array->nelems * elem_size ==
5048 			 btf_resolved_type_size(btf, type_id));
5049 	}
5050 
5051 	return false;
5052 }
5053 
5054 static int btf_resolve(struct btf_verifier_env *env,
5055 		       const struct btf_type *t, u32 type_id)
5056 {
5057 	u32 save_log_type_id = env->log_type_id;
5058 	const struct resolve_vertex *v;
5059 	int err = 0;
5060 
5061 	env->resolve_mode = RESOLVE_TBD;
5062 	env_stack_push(env, t, type_id);
5063 	while (!err && (v = env_stack_peak(env))) {
5064 		env->log_type_id = v->type_id;
5065 		err = btf_type_ops(v->t)->resolve(env, v);
5066 	}
5067 
5068 	env->log_type_id = type_id;
5069 	if (err == -E2BIG) {
5070 		btf_verifier_log_type(env, t,
5071 				      "Exceeded max resolving depth:%u",
5072 				      MAX_RESOLVE_DEPTH);
5073 	} else if (err == -EEXIST) {
5074 		btf_verifier_log_type(env, t, "Loop detected");
5075 	}
5076 
5077 	/* Final sanity check */
5078 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5079 		btf_verifier_log_type(env, t, "Invalid resolve state");
5080 		err = -EINVAL;
5081 	}
5082 
5083 	env->log_type_id = save_log_type_id;
5084 	return err;
5085 }
5086 
5087 static int btf_check_all_types(struct btf_verifier_env *env)
5088 {
5089 	struct btf *btf = env->btf;
5090 	const struct btf_type *t;
5091 	u32 type_id, i;
5092 	int err;
5093 
5094 	err = env_resolve_init(env);
5095 	if (err)
5096 		return err;
5097 
5098 	env->phase++;
5099 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5100 		type_id = btf->start_id + i;
5101 		t = btf_type_by_id(btf, type_id);
5102 
5103 		env->log_type_id = type_id;
5104 		if (btf_type_needs_resolve(t) &&
5105 		    !env_type_is_resolved(env, type_id)) {
5106 			err = btf_resolve(env, t, type_id);
5107 			if (err)
5108 				return err;
5109 		}
5110 
5111 		if (btf_type_is_func_proto(t)) {
5112 			err = btf_func_proto_check(env, t);
5113 			if (err)
5114 				return err;
5115 		}
5116 	}
5117 
5118 	return 0;
5119 }
5120 
5121 static int btf_parse_type_sec(struct btf_verifier_env *env)
5122 {
5123 	const struct btf_header *hdr = &env->btf->hdr;
5124 	int err;
5125 
5126 	/* Type section must align to 4 bytes */
5127 	if (hdr->type_off & (sizeof(u32) - 1)) {
5128 		btf_verifier_log(env, "Unaligned type_off");
5129 		return -EINVAL;
5130 	}
5131 
5132 	if (!env->btf->base_btf && !hdr->type_len) {
5133 		btf_verifier_log(env, "No type found");
5134 		return -EINVAL;
5135 	}
5136 
5137 	err = btf_check_all_metas(env);
5138 	if (err)
5139 		return err;
5140 
5141 	return btf_check_all_types(env);
5142 }
5143 
5144 static int btf_parse_str_sec(struct btf_verifier_env *env)
5145 {
5146 	const struct btf_header *hdr;
5147 	struct btf *btf = env->btf;
5148 	const char *start, *end;
5149 
5150 	hdr = &btf->hdr;
5151 	start = btf->nohdr_data + hdr->str_off;
5152 	end = start + hdr->str_len;
5153 
5154 	if (end != btf->data + btf->data_size) {
5155 		btf_verifier_log(env, "String section is not at the end");
5156 		return -EINVAL;
5157 	}
5158 
5159 	btf->strings = start;
5160 
5161 	if (btf->base_btf && !hdr->str_len)
5162 		return 0;
5163 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5164 		btf_verifier_log(env, "Invalid string section");
5165 		return -EINVAL;
5166 	}
5167 	if (!btf->base_btf && start[0]) {
5168 		btf_verifier_log(env, "Invalid string section");
5169 		return -EINVAL;
5170 	}
5171 
5172 	return 0;
5173 }
5174 
5175 static const size_t btf_sec_info_offset[] = {
5176 	offsetof(struct btf_header, type_off),
5177 	offsetof(struct btf_header, str_off),
5178 };
5179 
5180 static int btf_sec_info_cmp(const void *a, const void *b)
5181 {
5182 	const struct btf_sec_info *x = a;
5183 	const struct btf_sec_info *y = b;
5184 
5185 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5186 }
5187 
5188 static int btf_check_sec_info(struct btf_verifier_env *env,
5189 			      u32 btf_data_size)
5190 {
5191 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5192 	u32 total, expected_total, i;
5193 	const struct btf_header *hdr;
5194 	const struct btf *btf;
5195 
5196 	btf = env->btf;
5197 	hdr = &btf->hdr;
5198 
5199 	/* Populate the secs from hdr */
5200 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5201 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5202 						   btf_sec_info_offset[i]);
5203 
5204 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5205 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5206 
5207 	/* Check for gaps and overlap among sections */
5208 	total = 0;
5209 	expected_total = btf_data_size - hdr->hdr_len;
5210 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5211 		if (expected_total < secs[i].off) {
5212 			btf_verifier_log(env, "Invalid section offset");
5213 			return -EINVAL;
5214 		}
5215 		if (total < secs[i].off) {
5216 			/* gap */
5217 			btf_verifier_log(env, "Unsupported section found");
5218 			return -EINVAL;
5219 		}
5220 		if (total > secs[i].off) {
5221 			btf_verifier_log(env, "Section overlap found");
5222 			return -EINVAL;
5223 		}
5224 		if (expected_total - total < secs[i].len) {
5225 			btf_verifier_log(env,
5226 					 "Total section length too long");
5227 			return -EINVAL;
5228 		}
5229 		total += secs[i].len;
5230 	}
5231 
5232 	/* There is data other than hdr and known sections */
5233 	if (expected_total != total) {
5234 		btf_verifier_log(env, "Unsupported section found");
5235 		return -EINVAL;
5236 	}
5237 
5238 	return 0;
5239 }
5240 
5241 static int btf_parse_hdr(struct btf_verifier_env *env)
5242 {
5243 	u32 hdr_len, hdr_copy, btf_data_size;
5244 	const struct btf_header *hdr;
5245 	struct btf *btf;
5246 
5247 	btf = env->btf;
5248 	btf_data_size = btf->data_size;
5249 
5250 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5251 		btf_verifier_log(env, "hdr_len not found");
5252 		return -EINVAL;
5253 	}
5254 
5255 	hdr = btf->data;
5256 	hdr_len = hdr->hdr_len;
5257 	if (btf_data_size < hdr_len) {
5258 		btf_verifier_log(env, "btf_header not found");
5259 		return -EINVAL;
5260 	}
5261 
5262 	/* Ensure the unsupported header fields are zero */
5263 	if (hdr_len > sizeof(btf->hdr)) {
5264 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5265 		u8 *end = btf->data + hdr_len;
5266 
5267 		for (; expected_zero < end; expected_zero++) {
5268 			if (*expected_zero) {
5269 				btf_verifier_log(env, "Unsupported btf_header");
5270 				return -E2BIG;
5271 			}
5272 		}
5273 	}
5274 
5275 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5276 	memcpy(&btf->hdr, btf->data, hdr_copy);
5277 
5278 	hdr = &btf->hdr;
5279 
5280 	btf_verifier_log_hdr(env, btf_data_size);
5281 
5282 	if (hdr->magic != BTF_MAGIC) {
5283 		btf_verifier_log(env, "Invalid magic");
5284 		return -EINVAL;
5285 	}
5286 
5287 	if (hdr->version != BTF_VERSION) {
5288 		btf_verifier_log(env, "Unsupported version");
5289 		return -ENOTSUPP;
5290 	}
5291 
5292 	if (hdr->flags) {
5293 		btf_verifier_log(env, "Unsupported flags");
5294 		return -ENOTSUPP;
5295 	}
5296 
5297 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5298 		btf_verifier_log(env, "No data");
5299 		return -EINVAL;
5300 	}
5301 
5302 	return btf_check_sec_info(env, btf_data_size);
5303 }
5304 
5305 static const char *alloc_obj_fields[] = {
5306 	"bpf_spin_lock",
5307 	"bpf_list_head",
5308 	"bpf_list_node",
5309 	"bpf_rb_root",
5310 	"bpf_rb_node",
5311 	"bpf_refcount",
5312 };
5313 
5314 static struct btf_struct_metas *
5315 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5316 {
5317 	union {
5318 		struct btf_id_set set;
5319 		struct {
5320 			u32 _cnt;
5321 			u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5322 		} _arr;
5323 	} aof;
5324 	struct btf_struct_metas *tab = NULL;
5325 	int i, n, id, ret;
5326 
5327 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5328 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5329 
5330 	memset(&aof, 0, sizeof(aof));
5331 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5332 		/* Try to find whether this special type exists in user BTF, and
5333 		 * if so remember its ID so we can easily find it among members
5334 		 * of structs that we iterate in the next loop.
5335 		 */
5336 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5337 		if (id < 0)
5338 			continue;
5339 		aof.set.ids[aof.set.cnt++] = id;
5340 	}
5341 
5342 	if (!aof.set.cnt)
5343 		return NULL;
5344 	sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5345 
5346 	n = btf_nr_types(btf);
5347 	for (i = 1; i < n; i++) {
5348 		struct btf_struct_metas *new_tab;
5349 		const struct btf_member *member;
5350 		struct btf_struct_meta *type;
5351 		struct btf_record *record;
5352 		const struct btf_type *t;
5353 		int j, tab_cnt;
5354 
5355 		t = btf_type_by_id(btf, i);
5356 		if (!t) {
5357 			ret = -EINVAL;
5358 			goto free;
5359 		}
5360 		if (!__btf_type_is_struct(t))
5361 			continue;
5362 
5363 		cond_resched();
5364 
5365 		for_each_member(j, t, member) {
5366 			if (btf_id_set_contains(&aof.set, member->type))
5367 				goto parse;
5368 		}
5369 		continue;
5370 	parse:
5371 		tab_cnt = tab ? tab->cnt : 0;
5372 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5373 				   GFP_KERNEL | __GFP_NOWARN);
5374 		if (!new_tab) {
5375 			ret = -ENOMEM;
5376 			goto free;
5377 		}
5378 		if (!tab)
5379 			new_tab->cnt = 0;
5380 		tab = new_tab;
5381 
5382 		type = &tab->types[tab->cnt];
5383 		type->btf_id = i;
5384 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5385 						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
5386 		/* The record cannot be unset, treat it as an error if so */
5387 		if (IS_ERR_OR_NULL(record)) {
5388 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5389 			goto free;
5390 		}
5391 		type->record = record;
5392 		tab->cnt++;
5393 	}
5394 	return tab;
5395 free:
5396 	btf_struct_metas_free(tab);
5397 	return ERR_PTR(ret);
5398 }
5399 
5400 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5401 {
5402 	struct btf_struct_metas *tab;
5403 
5404 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5405 	tab = btf->struct_meta_tab;
5406 	if (!tab)
5407 		return NULL;
5408 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5409 }
5410 
5411 static int btf_check_type_tags(struct btf_verifier_env *env,
5412 			       struct btf *btf, int start_id)
5413 {
5414 	int i, n, good_id = start_id - 1;
5415 	bool in_tags;
5416 
5417 	n = btf_nr_types(btf);
5418 	for (i = start_id; i < n; i++) {
5419 		const struct btf_type *t;
5420 		int chain_limit = 32;
5421 		u32 cur_id = i;
5422 
5423 		t = btf_type_by_id(btf, i);
5424 		if (!t)
5425 			return -EINVAL;
5426 		if (!btf_type_is_modifier(t))
5427 			continue;
5428 
5429 		cond_resched();
5430 
5431 		in_tags = btf_type_is_type_tag(t);
5432 		while (btf_type_is_modifier(t)) {
5433 			if (!chain_limit--) {
5434 				btf_verifier_log(env, "Max chain length or cycle detected");
5435 				return -ELOOP;
5436 			}
5437 			if (btf_type_is_type_tag(t)) {
5438 				if (!in_tags) {
5439 					btf_verifier_log(env, "Type tags don't precede modifiers");
5440 					return -EINVAL;
5441 				}
5442 			} else if (in_tags) {
5443 				in_tags = false;
5444 			}
5445 			if (cur_id <= good_id)
5446 				break;
5447 			/* Move to next type */
5448 			cur_id = t->type;
5449 			t = btf_type_by_id(btf, cur_id);
5450 			if (!t)
5451 				return -EINVAL;
5452 		}
5453 		good_id = i;
5454 	}
5455 	return 0;
5456 }
5457 
5458 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5459 {
5460 	u32 log_true_size;
5461 	int err;
5462 
5463 	err = bpf_vlog_finalize(log, &log_true_size);
5464 
5465 	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5466 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5467 				  &log_true_size, sizeof(log_true_size)))
5468 		err = -EFAULT;
5469 
5470 	return err;
5471 }
5472 
5473 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5474 {
5475 	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5476 	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5477 	struct btf_struct_metas *struct_meta_tab;
5478 	struct btf_verifier_env *env = NULL;
5479 	struct btf *btf = NULL;
5480 	u8 *data;
5481 	int err, ret;
5482 
5483 	if (attr->btf_size > BTF_MAX_SIZE)
5484 		return ERR_PTR(-E2BIG);
5485 
5486 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5487 	if (!env)
5488 		return ERR_PTR(-ENOMEM);
5489 
5490 	/* user could have requested verbose verifier output
5491 	 * and supplied buffer to store the verification trace
5492 	 */
5493 	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5494 			    log_ubuf, attr->btf_log_size);
5495 	if (err)
5496 		goto errout_free;
5497 
5498 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5499 	if (!btf) {
5500 		err = -ENOMEM;
5501 		goto errout;
5502 	}
5503 	env->btf = btf;
5504 
5505 	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5506 	if (!data) {
5507 		err = -ENOMEM;
5508 		goto errout;
5509 	}
5510 
5511 	btf->data = data;
5512 	btf->data_size = attr->btf_size;
5513 
5514 	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5515 		err = -EFAULT;
5516 		goto errout;
5517 	}
5518 
5519 	err = btf_parse_hdr(env);
5520 	if (err)
5521 		goto errout;
5522 
5523 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5524 
5525 	err = btf_parse_str_sec(env);
5526 	if (err)
5527 		goto errout;
5528 
5529 	err = btf_parse_type_sec(env);
5530 	if (err)
5531 		goto errout;
5532 
5533 	err = btf_check_type_tags(env, btf, 1);
5534 	if (err)
5535 		goto errout;
5536 
5537 	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5538 	if (IS_ERR(struct_meta_tab)) {
5539 		err = PTR_ERR(struct_meta_tab);
5540 		goto errout;
5541 	}
5542 	btf->struct_meta_tab = struct_meta_tab;
5543 
5544 	if (struct_meta_tab) {
5545 		int i;
5546 
5547 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5548 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5549 			if (err < 0)
5550 				goto errout_meta;
5551 		}
5552 	}
5553 
5554 	err = finalize_log(&env->log, uattr, uattr_size);
5555 	if (err)
5556 		goto errout_free;
5557 
5558 	btf_verifier_env_free(env);
5559 	refcount_set(&btf->refcnt, 1);
5560 	return btf;
5561 
5562 errout_meta:
5563 	btf_free_struct_meta_tab(btf);
5564 errout:
5565 	/* overwrite err with -ENOSPC or -EFAULT */
5566 	ret = finalize_log(&env->log, uattr, uattr_size);
5567 	if (ret)
5568 		err = ret;
5569 errout_free:
5570 	btf_verifier_env_free(env);
5571 	if (btf)
5572 		btf_free(btf);
5573 	return ERR_PTR(err);
5574 }
5575 
5576 extern char __weak __start_BTF[];
5577 extern char __weak __stop_BTF[];
5578 extern struct btf *btf_vmlinux;
5579 
5580 #define BPF_MAP_TYPE(_id, _ops)
5581 #define BPF_LINK_TYPE(_id, _name)
5582 static union {
5583 	struct bpf_ctx_convert {
5584 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5585 	prog_ctx_type _id##_prog; \
5586 	kern_ctx_type _id##_kern;
5587 #include <linux/bpf_types.h>
5588 #undef BPF_PROG_TYPE
5589 	} *__t;
5590 	/* 't' is written once under lock. Read many times. */
5591 	const struct btf_type *t;
5592 } bpf_ctx_convert;
5593 enum {
5594 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5595 	__ctx_convert##_id,
5596 #include <linux/bpf_types.h>
5597 #undef BPF_PROG_TYPE
5598 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5599 };
5600 static u8 bpf_ctx_convert_map[] = {
5601 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5602 	[_id] = __ctx_convert##_id,
5603 #include <linux/bpf_types.h>
5604 #undef BPF_PROG_TYPE
5605 	0, /* avoid empty array */
5606 };
5607 #undef BPF_MAP_TYPE
5608 #undef BPF_LINK_TYPE
5609 
5610 const struct btf_member *
5611 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5612 		      const struct btf_type *t, enum bpf_prog_type prog_type,
5613 		      int arg)
5614 {
5615 	const struct btf_type *conv_struct;
5616 	const struct btf_type *ctx_struct;
5617 	const struct btf_member *ctx_type;
5618 	const char *tname, *ctx_tname;
5619 
5620 	conv_struct = bpf_ctx_convert.t;
5621 	if (!conv_struct) {
5622 		bpf_log(log, "btf_vmlinux is malformed\n");
5623 		return NULL;
5624 	}
5625 	t = btf_type_by_id(btf, t->type);
5626 	while (btf_type_is_modifier(t))
5627 		t = btf_type_by_id(btf, t->type);
5628 	if (!btf_type_is_struct(t)) {
5629 		/* Only pointer to struct is supported for now.
5630 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5631 		 * is not supported yet.
5632 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5633 		 */
5634 		return NULL;
5635 	}
5636 	tname = btf_name_by_offset(btf, t->name_off);
5637 	if (!tname) {
5638 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5639 		return NULL;
5640 	}
5641 	/* prog_type is valid bpf program type. No need for bounds check. */
5642 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5643 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5644 	 * Like 'struct __sk_buff'
5645 	 */
5646 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5647 	if (!ctx_struct)
5648 		/* should not happen */
5649 		return NULL;
5650 again:
5651 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5652 	if (!ctx_tname) {
5653 		/* should not happen */
5654 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5655 		return NULL;
5656 	}
5657 	/* only compare that prog's ctx type name is the same as
5658 	 * kernel expects. No need to compare field by field.
5659 	 * It's ok for bpf prog to do:
5660 	 * struct __sk_buff {};
5661 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5662 	 * { // no fields of skb are ever used }
5663 	 */
5664 	if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5665 		return ctx_type;
5666 	if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5667 		return ctx_type;
5668 	if (strcmp(ctx_tname, tname)) {
5669 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5670 		 * underlying struct and check name again
5671 		 */
5672 		if (!btf_type_is_modifier(ctx_struct))
5673 			return NULL;
5674 		while (btf_type_is_modifier(ctx_struct))
5675 			ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
5676 		goto again;
5677 	}
5678 	return ctx_type;
5679 }
5680 
5681 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5682 				     struct btf *btf,
5683 				     const struct btf_type *t,
5684 				     enum bpf_prog_type prog_type,
5685 				     int arg)
5686 {
5687 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
5688 
5689 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5690 	if (!prog_ctx_type)
5691 		return -ENOENT;
5692 	kern_ctx_type = prog_ctx_type + 1;
5693 	return kern_ctx_type->type;
5694 }
5695 
5696 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5697 {
5698 	const struct btf_member *kctx_member;
5699 	const struct btf_type *conv_struct;
5700 	const struct btf_type *kctx_type;
5701 	u32 kctx_type_id;
5702 
5703 	conv_struct = bpf_ctx_convert.t;
5704 	/* get member for kernel ctx type */
5705 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5706 	kctx_type_id = kctx_member->type;
5707 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5708 	if (!btf_type_is_struct(kctx_type)) {
5709 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5710 		return -EINVAL;
5711 	}
5712 
5713 	return kctx_type_id;
5714 }
5715 
5716 BTF_ID_LIST(bpf_ctx_convert_btf_id)
5717 BTF_ID(struct, bpf_ctx_convert)
5718 
5719 struct btf *btf_parse_vmlinux(void)
5720 {
5721 	struct btf_verifier_env *env = NULL;
5722 	struct bpf_verifier_log *log;
5723 	struct btf *btf = NULL;
5724 	int err;
5725 
5726 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5727 	if (!env)
5728 		return ERR_PTR(-ENOMEM);
5729 
5730 	log = &env->log;
5731 	log->level = BPF_LOG_KERNEL;
5732 
5733 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5734 	if (!btf) {
5735 		err = -ENOMEM;
5736 		goto errout;
5737 	}
5738 	env->btf = btf;
5739 
5740 	btf->data = __start_BTF;
5741 	btf->data_size = __stop_BTF - __start_BTF;
5742 	btf->kernel_btf = true;
5743 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
5744 
5745 	err = btf_parse_hdr(env);
5746 	if (err)
5747 		goto errout;
5748 
5749 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5750 
5751 	err = btf_parse_str_sec(env);
5752 	if (err)
5753 		goto errout;
5754 
5755 	err = btf_check_all_metas(env);
5756 	if (err)
5757 		goto errout;
5758 
5759 	err = btf_check_type_tags(env, btf, 1);
5760 	if (err)
5761 		goto errout;
5762 
5763 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
5764 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5765 
5766 	bpf_struct_ops_init(btf, log);
5767 
5768 	refcount_set(&btf->refcnt, 1);
5769 
5770 	err = btf_alloc_id(btf);
5771 	if (err)
5772 		goto errout;
5773 
5774 	btf_verifier_env_free(env);
5775 	return btf;
5776 
5777 errout:
5778 	btf_verifier_env_free(env);
5779 	if (btf) {
5780 		kvfree(btf->types);
5781 		kfree(btf);
5782 	}
5783 	return ERR_PTR(err);
5784 }
5785 
5786 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5787 
5788 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5789 {
5790 	struct btf_verifier_env *env = NULL;
5791 	struct bpf_verifier_log *log;
5792 	struct btf *btf = NULL, *base_btf;
5793 	int err;
5794 
5795 	base_btf = bpf_get_btf_vmlinux();
5796 	if (IS_ERR(base_btf))
5797 		return base_btf;
5798 	if (!base_btf)
5799 		return ERR_PTR(-EINVAL);
5800 
5801 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5802 	if (!env)
5803 		return ERR_PTR(-ENOMEM);
5804 
5805 	log = &env->log;
5806 	log->level = BPF_LOG_KERNEL;
5807 
5808 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5809 	if (!btf) {
5810 		err = -ENOMEM;
5811 		goto errout;
5812 	}
5813 	env->btf = btf;
5814 
5815 	btf->base_btf = base_btf;
5816 	btf->start_id = base_btf->nr_types;
5817 	btf->start_str_off = base_btf->hdr.str_len;
5818 	btf->kernel_btf = true;
5819 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5820 
5821 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5822 	if (!btf->data) {
5823 		err = -ENOMEM;
5824 		goto errout;
5825 	}
5826 	memcpy(btf->data, data, data_size);
5827 	btf->data_size = data_size;
5828 
5829 	err = btf_parse_hdr(env);
5830 	if (err)
5831 		goto errout;
5832 
5833 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5834 
5835 	err = btf_parse_str_sec(env);
5836 	if (err)
5837 		goto errout;
5838 
5839 	err = btf_check_all_metas(env);
5840 	if (err)
5841 		goto errout;
5842 
5843 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5844 	if (err)
5845 		goto errout;
5846 
5847 	btf_verifier_env_free(env);
5848 	refcount_set(&btf->refcnt, 1);
5849 	return btf;
5850 
5851 errout:
5852 	btf_verifier_env_free(env);
5853 	if (btf) {
5854 		kvfree(btf->data);
5855 		kvfree(btf->types);
5856 		kfree(btf);
5857 	}
5858 	return ERR_PTR(err);
5859 }
5860 
5861 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5862 
5863 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5864 {
5865 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5866 
5867 	if (tgt_prog)
5868 		return tgt_prog->aux->btf;
5869 	else
5870 		return prog->aux->attach_btf;
5871 }
5872 
5873 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
5874 {
5875 	/* skip modifiers */
5876 	t = btf_type_skip_modifiers(btf, t->type, NULL);
5877 
5878 	return btf_type_is_int(t);
5879 }
5880 
5881 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5882 			   int off)
5883 {
5884 	const struct btf_param *args;
5885 	const struct btf_type *t;
5886 	u32 offset = 0, nr_args;
5887 	int i;
5888 
5889 	if (!func_proto)
5890 		return off / 8;
5891 
5892 	nr_args = btf_type_vlen(func_proto);
5893 	args = (const struct btf_param *)(func_proto + 1);
5894 	for (i = 0; i < nr_args; i++) {
5895 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5896 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5897 		if (off < offset)
5898 			return i;
5899 	}
5900 
5901 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5902 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5903 	if (off < offset)
5904 		return nr_args;
5905 
5906 	return nr_args + 1;
5907 }
5908 
5909 static bool prog_args_trusted(const struct bpf_prog *prog)
5910 {
5911 	enum bpf_attach_type atype = prog->expected_attach_type;
5912 
5913 	switch (prog->type) {
5914 	case BPF_PROG_TYPE_TRACING:
5915 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
5916 	case BPF_PROG_TYPE_LSM:
5917 		return bpf_lsm_is_trusted(prog);
5918 	case BPF_PROG_TYPE_STRUCT_OPS:
5919 		return true;
5920 	default:
5921 		return false;
5922 	}
5923 }
5924 
5925 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5926 		    const struct bpf_prog *prog,
5927 		    struct bpf_insn_access_aux *info)
5928 {
5929 	const struct btf_type *t = prog->aux->attach_func_proto;
5930 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5931 	struct btf *btf = bpf_prog_get_target_btf(prog);
5932 	const char *tname = prog->aux->attach_func_name;
5933 	struct bpf_verifier_log *log = info->log;
5934 	const struct btf_param *args;
5935 	const char *tag_value;
5936 	u32 nr_args, arg;
5937 	int i, ret;
5938 
5939 	if (off % 8) {
5940 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
5941 			tname, off);
5942 		return false;
5943 	}
5944 	arg = get_ctx_arg_idx(btf, t, off);
5945 	args = (const struct btf_param *)(t + 1);
5946 	/* if (t == NULL) Fall back to default BPF prog with
5947 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5948 	 */
5949 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
5950 	if (prog->aux->attach_btf_trace) {
5951 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
5952 		args++;
5953 		nr_args--;
5954 	}
5955 
5956 	if (arg > nr_args) {
5957 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5958 			tname, arg + 1);
5959 		return false;
5960 	}
5961 
5962 	if (arg == nr_args) {
5963 		switch (prog->expected_attach_type) {
5964 		case BPF_LSM_CGROUP:
5965 		case BPF_LSM_MAC:
5966 		case BPF_TRACE_FEXIT:
5967 			/* When LSM programs are attached to void LSM hooks
5968 			 * they use FEXIT trampolines and when attached to
5969 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
5970 			 *
5971 			 * While the LSM programs are BPF_MODIFY_RETURN-like
5972 			 * the check:
5973 			 *
5974 			 *	if (ret_type != 'int')
5975 			 *		return -EINVAL;
5976 			 *
5977 			 * is _not_ done here. This is still safe as LSM hooks
5978 			 * have only void and int return types.
5979 			 */
5980 			if (!t)
5981 				return true;
5982 			t = btf_type_by_id(btf, t->type);
5983 			break;
5984 		case BPF_MODIFY_RETURN:
5985 			/* For now the BPF_MODIFY_RETURN can only be attached to
5986 			 * functions that return an int.
5987 			 */
5988 			if (!t)
5989 				return false;
5990 
5991 			t = btf_type_skip_modifiers(btf, t->type, NULL);
5992 			if (!btf_type_is_small_int(t)) {
5993 				bpf_log(log,
5994 					"ret type %s not allowed for fmod_ret\n",
5995 					btf_type_str(t));
5996 				return false;
5997 			}
5998 			break;
5999 		default:
6000 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6001 				tname, arg + 1);
6002 			return false;
6003 		}
6004 	} else {
6005 		if (!t)
6006 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6007 			return true;
6008 		t = btf_type_by_id(btf, args[arg].type);
6009 	}
6010 
6011 	/* skip modifiers */
6012 	while (btf_type_is_modifier(t))
6013 		t = btf_type_by_id(btf, t->type);
6014 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6015 		/* accessing a scalar */
6016 		return true;
6017 	if (!btf_type_is_ptr(t)) {
6018 		bpf_log(log,
6019 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6020 			tname, arg,
6021 			__btf_name_by_offset(btf, t->name_off),
6022 			btf_type_str(t));
6023 		return false;
6024 	}
6025 
6026 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6027 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6028 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6029 		u32 type, flag;
6030 
6031 		type = base_type(ctx_arg_info->reg_type);
6032 		flag = type_flag(ctx_arg_info->reg_type);
6033 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6034 		    (flag & PTR_MAYBE_NULL)) {
6035 			info->reg_type = ctx_arg_info->reg_type;
6036 			return true;
6037 		}
6038 	}
6039 
6040 	if (t->type == 0)
6041 		/* This is a pointer to void.
6042 		 * It is the same as scalar from the verifier safety pov.
6043 		 * No further pointer walking is allowed.
6044 		 */
6045 		return true;
6046 
6047 	if (is_int_ptr(btf, t))
6048 		return true;
6049 
6050 	/* this is a pointer to another type */
6051 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6052 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6053 
6054 		if (ctx_arg_info->offset == off) {
6055 			if (!ctx_arg_info->btf_id) {
6056 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6057 				return false;
6058 			}
6059 
6060 			info->reg_type = ctx_arg_info->reg_type;
6061 			info->btf = btf_vmlinux;
6062 			info->btf_id = ctx_arg_info->btf_id;
6063 			return true;
6064 		}
6065 	}
6066 
6067 	info->reg_type = PTR_TO_BTF_ID;
6068 	if (prog_args_trusted(prog))
6069 		info->reg_type |= PTR_TRUSTED;
6070 
6071 	if (tgt_prog) {
6072 		enum bpf_prog_type tgt_type;
6073 
6074 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6075 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6076 		else
6077 			tgt_type = tgt_prog->type;
6078 
6079 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6080 		if (ret > 0) {
6081 			info->btf = btf_vmlinux;
6082 			info->btf_id = ret;
6083 			return true;
6084 		} else {
6085 			return false;
6086 		}
6087 	}
6088 
6089 	info->btf = btf;
6090 	info->btf_id = t->type;
6091 	t = btf_type_by_id(btf, t->type);
6092 
6093 	if (btf_type_is_type_tag(t)) {
6094 		tag_value = __btf_name_by_offset(btf, t->name_off);
6095 		if (strcmp(tag_value, "user") == 0)
6096 			info->reg_type |= MEM_USER;
6097 		if (strcmp(tag_value, "percpu") == 0)
6098 			info->reg_type |= MEM_PERCPU;
6099 	}
6100 
6101 	/* skip modifiers */
6102 	while (btf_type_is_modifier(t)) {
6103 		info->btf_id = t->type;
6104 		t = btf_type_by_id(btf, t->type);
6105 	}
6106 	if (!btf_type_is_struct(t)) {
6107 		bpf_log(log,
6108 			"func '%s' arg%d type %s is not a struct\n",
6109 			tname, arg, btf_type_str(t));
6110 		return false;
6111 	}
6112 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6113 		tname, arg, info->btf_id, btf_type_str(t),
6114 		__btf_name_by_offset(btf, t->name_off));
6115 	return true;
6116 }
6117 
6118 enum bpf_struct_walk_result {
6119 	/* < 0 error */
6120 	WALK_SCALAR = 0,
6121 	WALK_PTR,
6122 	WALK_STRUCT,
6123 };
6124 
6125 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6126 			   const struct btf_type *t, int off, int size,
6127 			   u32 *next_btf_id, enum bpf_type_flag *flag,
6128 			   const char **field_name)
6129 {
6130 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6131 	const struct btf_type *mtype, *elem_type = NULL;
6132 	const struct btf_member *member;
6133 	const char *tname, *mname, *tag_value;
6134 	u32 vlen, elem_id, mid;
6135 
6136 	*flag = 0;
6137 again:
6138 	tname = __btf_name_by_offset(btf, t->name_off);
6139 	if (!btf_type_is_struct(t)) {
6140 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6141 		return -EINVAL;
6142 	}
6143 
6144 	vlen = btf_type_vlen(t);
6145 	if (off + size > t->size) {
6146 		/* If the last element is a variable size array, we may
6147 		 * need to relax the rule.
6148 		 */
6149 		struct btf_array *array_elem;
6150 
6151 		if (vlen == 0)
6152 			goto error;
6153 
6154 		member = btf_type_member(t) + vlen - 1;
6155 		mtype = btf_type_skip_modifiers(btf, member->type,
6156 						NULL);
6157 		if (!btf_type_is_array(mtype))
6158 			goto error;
6159 
6160 		array_elem = (struct btf_array *)(mtype + 1);
6161 		if (array_elem->nelems != 0)
6162 			goto error;
6163 
6164 		moff = __btf_member_bit_offset(t, member) / 8;
6165 		if (off < moff)
6166 			goto error;
6167 
6168 		/* allow structure and integer */
6169 		t = btf_type_skip_modifiers(btf, array_elem->type,
6170 					    NULL);
6171 
6172 		if (btf_type_is_int(t))
6173 			return WALK_SCALAR;
6174 
6175 		if (!btf_type_is_struct(t))
6176 			goto error;
6177 
6178 		off = (off - moff) % t->size;
6179 		goto again;
6180 
6181 error:
6182 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6183 			tname, off, size);
6184 		return -EACCES;
6185 	}
6186 
6187 	for_each_member(i, t, member) {
6188 		/* offset of the field in bytes */
6189 		moff = __btf_member_bit_offset(t, member) / 8;
6190 		if (off + size <= moff)
6191 			/* won't find anything, field is already too far */
6192 			break;
6193 
6194 		if (__btf_member_bitfield_size(t, member)) {
6195 			u32 end_bit = __btf_member_bit_offset(t, member) +
6196 				__btf_member_bitfield_size(t, member);
6197 
6198 			/* off <= moff instead of off == moff because clang
6199 			 * does not generate a BTF member for anonymous
6200 			 * bitfield like the ":16" here:
6201 			 * struct {
6202 			 *	int :16;
6203 			 *	int x:8;
6204 			 * };
6205 			 */
6206 			if (off <= moff &&
6207 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6208 				return WALK_SCALAR;
6209 
6210 			/* off may be accessing a following member
6211 			 *
6212 			 * or
6213 			 *
6214 			 * Doing partial access at either end of this
6215 			 * bitfield.  Continue on this case also to
6216 			 * treat it as not accessing this bitfield
6217 			 * and eventually error out as field not
6218 			 * found to keep it simple.
6219 			 * It could be relaxed if there was a legit
6220 			 * partial access case later.
6221 			 */
6222 			continue;
6223 		}
6224 
6225 		/* In case of "off" is pointing to holes of a struct */
6226 		if (off < moff)
6227 			break;
6228 
6229 		/* type of the field */
6230 		mid = member->type;
6231 		mtype = btf_type_by_id(btf, member->type);
6232 		mname = __btf_name_by_offset(btf, member->name_off);
6233 
6234 		mtype = __btf_resolve_size(btf, mtype, &msize,
6235 					   &elem_type, &elem_id, &total_nelems,
6236 					   &mid);
6237 		if (IS_ERR(mtype)) {
6238 			bpf_log(log, "field %s doesn't have size\n", mname);
6239 			return -EFAULT;
6240 		}
6241 
6242 		mtrue_end = moff + msize;
6243 		if (off >= mtrue_end)
6244 			/* no overlap with member, keep iterating */
6245 			continue;
6246 
6247 		if (btf_type_is_array(mtype)) {
6248 			u32 elem_idx;
6249 
6250 			/* __btf_resolve_size() above helps to
6251 			 * linearize a multi-dimensional array.
6252 			 *
6253 			 * The logic here is treating an array
6254 			 * in a struct as the following way:
6255 			 *
6256 			 * struct outer {
6257 			 *	struct inner array[2][2];
6258 			 * };
6259 			 *
6260 			 * looks like:
6261 			 *
6262 			 * struct outer {
6263 			 *	struct inner array_elem0;
6264 			 *	struct inner array_elem1;
6265 			 *	struct inner array_elem2;
6266 			 *	struct inner array_elem3;
6267 			 * };
6268 			 *
6269 			 * When accessing outer->array[1][0], it moves
6270 			 * moff to "array_elem2", set mtype to
6271 			 * "struct inner", and msize also becomes
6272 			 * sizeof(struct inner).  Then most of the
6273 			 * remaining logic will fall through without
6274 			 * caring the current member is an array or
6275 			 * not.
6276 			 *
6277 			 * Unlike mtype/msize/moff, mtrue_end does not
6278 			 * change.  The naming difference ("_true") tells
6279 			 * that it is not always corresponding to
6280 			 * the current mtype/msize/moff.
6281 			 * It is the true end of the current
6282 			 * member (i.e. array in this case).  That
6283 			 * will allow an int array to be accessed like
6284 			 * a scratch space,
6285 			 * i.e. allow access beyond the size of
6286 			 *      the array's element as long as it is
6287 			 *      within the mtrue_end boundary.
6288 			 */
6289 
6290 			/* skip empty array */
6291 			if (moff == mtrue_end)
6292 				continue;
6293 
6294 			msize /= total_nelems;
6295 			elem_idx = (off - moff) / msize;
6296 			moff += elem_idx * msize;
6297 			mtype = elem_type;
6298 			mid = elem_id;
6299 		}
6300 
6301 		/* the 'off' we're looking for is either equal to start
6302 		 * of this field or inside of this struct
6303 		 */
6304 		if (btf_type_is_struct(mtype)) {
6305 			if (BTF_INFO_KIND(mtype->info) == BTF_KIND_UNION &&
6306 			    btf_type_vlen(mtype) != 1)
6307 				/*
6308 				 * walking unions yields untrusted pointers
6309 				 * with exception of __bpf_md_ptr and other
6310 				 * unions with a single member
6311 				 */
6312 				*flag |= PTR_UNTRUSTED;
6313 
6314 			/* our field must be inside that union or struct */
6315 			t = mtype;
6316 
6317 			/* return if the offset matches the member offset */
6318 			if (off == moff) {
6319 				*next_btf_id = mid;
6320 				return WALK_STRUCT;
6321 			}
6322 
6323 			/* adjust offset we're looking for */
6324 			off -= moff;
6325 			goto again;
6326 		}
6327 
6328 		if (btf_type_is_ptr(mtype)) {
6329 			const struct btf_type *stype, *t;
6330 			enum bpf_type_flag tmp_flag = 0;
6331 			u32 id;
6332 
6333 			if (msize != size || off != moff) {
6334 				bpf_log(log,
6335 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6336 					mname, moff, tname, off, size);
6337 				return -EACCES;
6338 			}
6339 
6340 			/* check type tag */
6341 			t = btf_type_by_id(btf, mtype->type);
6342 			if (btf_type_is_type_tag(t)) {
6343 				tag_value = __btf_name_by_offset(btf, t->name_off);
6344 				/* check __user tag */
6345 				if (strcmp(tag_value, "user") == 0)
6346 					tmp_flag = MEM_USER;
6347 				/* check __percpu tag */
6348 				if (strcmp(tag_value, "percpu") == 0)
6349 					tmp_flag = MEM_PERCPU;
6350 				/* check __rcu tag */
6351 				if (strcmp(tag_value, "rcu") == 0)
6352 					tmp_flag = MEM_RCU;
6353 			}
6354 
6355 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6356 			if (btf_type_is_struct(stype)) {
6357 				*next_btf_id = id;
6358 				*flag |= tmp_flag;
6359 				if (field_name)
6360 					*field_name = mname;
6361 				return WALK_PTR;
6362 			}
6363 		}
6364 
6365 		/* Allow more flexible access within an int as long as
6366 		 * it is within mtrue_end.
6367 		 * Since mtrue_end could be the end of an array,
6368 		 * that also allows using an array of int as a scratch
6369 		 * space. e.g. skb->cb[].
6370 		 */
6371 		if (off + size > mtrue_end) {
6372 			bpf_log(log,
6373 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6374 				mname, mtrue_end, tname, off, size);
6375 			return -EACCES;
6376 		}
6377 
6378 		return WALK_SCALAR;
6379 	}
6380 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6381 	return -EINVAL;
6382 }
6383 
6384 int btf_struct_access(struct bpf_verifier_log *log,
6385 		      const struct bpf_reg_state *reg,
6386 		      int off, int size, enum bpf_access_type atype __maybe_unused,
6387 		      u32 *next_btf_id, enum bpf_type_flag *flag,
6388 		      const char **field_name)
6389 {
6390 	const struct btf *btf = reg->btf;
6391 	enum bpf_type_flag tmp_flag = 0;
6392 	const struct btf_type *t;
6393 	u32 id = reg->btf_id;
6394 	int err;
6395 
6396 	while (type_is_alloc(reg->type)) {
6397 		struct btf_struct_meta *meta;
6398 		struct btf_record *rec;
6399 		int i;
6400 
6401 		meta = btf_find_struct_meta(btf, id);
6402 		if (!meta)
6403 			break;
6404 		rec = meta->record;
6405 		for (i = 0; i < rec->cnt; i++) {
6406 			struct btf_field *field = &rec->fields[i];
6407 			u32 offset = field->offset;
6408 			if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6409 				bpf_log(log,
6410 					"direct access to %s is disallowed\n",
6411 					btf_field_type_name(field->type));
6412 				return -EACCES;
6413 			}
6414 		}
6415 		break;
6416 	}
6417 
6418 	t = btf_type_by_id(btf, id);
6419 	do {
6420 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6421 
6422 		switch (err) {
6423 		case WALK_PTR:
6424 			/* For local types, the destination register cannot
6425 			 * become a pointer again.
6426 			 */
6427 			if (type_is_alloc(reg->type))
6428 				return SCALAR_VALUE;
6429 			/* If we found the pointer or scalar on t+off,
6430 			 * we're done.
6431 			 */
6432 			*next_btf_id = id;
6433 			*flag = tmp_flag;
6434 			return PTR_TO_BTF_ID;
6435 		case WALK_SCALAR:
6436 			return SCALAR_VALUE;
6437 		case WALK_STRUCT:
6438 			/* We found nested struct, so continue the search
6439 			 * by diving in it. At this point the offset is
6440 			 * aligned with the new type, so set it to 0.
6441 			 */
6442 			t = btf_type_by_id(btf, id);
6443 			off = 0;
6444 			break;
6445 		default:
6446 			/* It's either error or unknown return value..
6447 			 * scream and leave.
6448 			 */
6449 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6450 				return -EINVAL;
6451 			return err;
6452 		}
6453 	} while (t);
6454 
6455 	return -EINVAL;
6456 }
6457 
6458 /* Check that two BTF types, each specified as an BTF object + id, are exactly
6459  * the same. Trivial ID check is not enough due to module BTFs, because we can
6460  * end up with two different module BTFs, but IDs point to the common type in
6461  * vmlinux BTF.
6462  */
6463 bool btf_types_are_same(const struct btf *btf1, u32 id1,
6464 			const struct btf *btf2, u32 id2)
6465 {
6466 	if (id1 != id2)
6467 		return false;
6468 	if (btf1 == btf2)
6469 		return true;
6470 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6471 }
6472 
6473 bool btf_struct_ids_match(struct bpf_verifier_log *log,
6474 			  const struct btf *btf, u32 id, int off,
6475 			  const struct btf *need_btf, u32 need_type_id,
6476 			  bool strict)
6477 {
6478 	const struct btf_type *type;
6479 	enum bpf_type_flag flag;
6480 	int err;
6481 
6482 	/* Are we already done? */
6483 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6484 		return true;
6485 	/* In case of strict type match, we do not walk struct, the top level
6486 	 * type match must succeed. When strict is true, off should have already
6487 	 * been 0.
6488 	 */
6489 	if (strict)
6490 		return false;
6491 again:
6492 	type = btf_type_by_id(btf, id);
6493 	if (!type)
6494 		return false;
6495 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6496 	if (err != WALK_STRUCT)
6497 		return false;
6498 
6499 	/* We found nested struct object. If it matches
6500 	 * the requested ID, we're done. Otherwise let's
6501 	 * continue the search with offset 0 in the new
6502 	 * type.
6503 	 */
6504 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6505 		off = 0;
6506 		goto again;
6507 	}
6508 
6509 	return true;
6510 }
6511 
6512 static int __get_type_size(struct btf *btf, u32 btf_id,
6513 			   const struct btf_type **ret_type)
6514 {
6515 	const struct btf_type *t;
6516 
6517 	*ret_type = btf_type_by_id(btf, 0);
6518 	if (!btf_id)
6519 		/* void */
6520 		return 0;
6521 	t = btf_type_by_id(btf, btf_id);
6522 	while (t && btf_type_is_modifier(t))
6523 		t = btf_type_by_id(btf, t->type);
6524 	if (!t)
6525 		return -EINVAL;
6526 	*ret_type = t;
6527 	if (btf_type_is_ptr(t))
6528 		/* kernel size of pointer. Not BPF's size of pointer*/
6529 		return sizeof(void *);
6530 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6531 		return t->size;
6532 	return -EINVAL;
6533 }
6534 
6535 static u8 __get_type_fmodel_flags(const struct btf_type *t)
6536 {
6537 	u8 flags = 0;
6538 
6539 	if (__btf_type_is_struct(t))
6540 		flags |= BTF_FMODEL_STRUCT_ARG;
6541 	if (btf_type_is_signed_int(t))
6542 		flags |= BTF_FMODEL_SIGNED_ARG;
6543 
6544 	return flags;
6545 }
6546 
6547 int btf_distill_func_proto(struct bpf_verifier_log *log,
6548 			   struct btf *btf,
6549 			   const struct btf_type *func,
6550 			   const char *tname,
6551 			   struct btf_func_model *m)
6552 {
6553 	const struct btf_param *args;
6554 	const struct btf_type *t;
6555 	u32 i, nargs;
6556 	int ret;
6557 
6558 	if (!func) {
6559 		/* BTF function prototype doesn't match the verifier types.
6560 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6561 		 */
6562 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6563 			m->arg_size[i] = 8;
6564 			m->arg_flags[i] = 0;
6565 		}
6566 		m->ret_size = 8;
6567 		m->ret_flags = 0;
6568 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6569 		return 0;
6570 	}
6571 	args = (const struct btf_param *)(func + 1);
6572 	nargs = btf_type_vlen(func);
6573 	if (nargs > MAX_BPF_FUNC_ARGS) {
6574 		bpf_log(log,
6575 			"The function %s has %d arguments. Too many.\n",
6576 			tname, nargs);
6577 		return -EINVAL;
6578 	}
6579 	ret = __get_type_size(btf, func->type, &t);
6580 	if (ret < 0 || __btf_type_is_struct(t)) {
6581 		bpf_log(log,
6582 			"The function %s return type %s is unsupported.\n",
6583 			tname, btf_type_str(t));
6584 		return -EINVAL;
6585 	}
6586 	m->ret_size = ret;
6587 	m->ret_flags = __get_type_fmodel_flags(t);
6588 
6589 	for (i = 0; i < nargs; i++) {
6590 		if (i == nargs - 1 && args[i].type == 0) {
6591 			bpf_log(log,
6592 				"The function %s with variable args is unsupported.\n",
6593 				tname);
6594 			return -EINVAL;
6595 		}
6596 		ret = __get_type_size(btf, args[i].type, &t);
6597 
6598 		/* No support of struct argument size greater than 16 bytes */
6599 		if (ret < 0 || ret > 16) {
6600 			bpf_log(log,
6601 				"The function %s arg%d type %s is unsupported.\n",
6602 				tname, i, btf_type_str(t));
6603 			return -EINVAL;
6604 		}
6605 		if (ret == 0) {
6606 			bpf_log(log,
6607 				"The function %s has malformed void argument.\n",
6608 				tname);
6609 			return -EINVAL;
6610 		}
6611 		m->arg_size[i] = ret;
6612 		m->arg_flags[i] = __get_type_fmodel_flags(t);
6613 	}
6614 	m->nr_args = nargs;
6615 	return 0;
6616 }
6617 
6618 /* Compare BTFs of two functions assuming only scalars and pointers to context.
6619  * t1 points to BTF_KIND_FUNC in btf1
6620  * t2 points to BTF_KIND_FUNC in btf2
6621  * Returns:
6622  * EINVAL - function prototype mismatch
6623  * EFAULT - verifier bug
6624  * 0 - 99% match. The last 1% is validated by the verifier.
6625  */
6626 static int btf_check_func_type_match(struct bpf_verifier_log *log,
6627 				     struct btf *btf1, const struct btf_type *t1,
6628 				     struct btf *btf2, const struct btf_type *t2)
6629 {
6630 	const struct btf_param *args1, *args2;
6631 	const char *fn1, *fn2, *s1, *s2;
6632 	u32 nargs1, nargs2, i;
6633 
6634 	fn1 = btf_name_by_offset(btf1, t1->name_off);
6635 	fn2 = btf_name_by_offset(btf2, t2->name_off);
6636 
6637 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6638 		bpf_log(log, "%s() is not a global function\n", fn1);
6639 		return -EINVAL;
6640 	}
6641 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6642 		bpf_log(log, "%s() is not a global function\n", fn2);
6643 		return -EINVAL;
6644 	}
6645 
6646 	t1 = btf_type_by_id(btf1, t1->type);
6647 	if (!t1 || !btf_type_is_func_proto(t1))
6648 		return -EFAULT;
6649 	t2 = btf_type_by_id(btf2, t2->type);
6650 	if (!t2 || !btf_type_is_func_proto(t2))
6651 		return -EFAULT;
6652 
6653 	args1 = (const struct btf_param *)(t1 + 1);
6654 	nargs1 = btf_type_vlen(t1);
6655 	args2 = (const struct btf_param *)(t2 + 1);
6656 	nargs2 = btf_type_vlen(t2);
6657 
6658 	if (nargs1 != nargs2) {
6659 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
6660 			fn1, nargs1, fn2, nargs2);
6661 		return -EINVAL;
6662 	}
6663 
6664 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6665 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6666 	if (t1->info != t2->info) {
6667 		bpf_log(log,
6668 			"Return type %s of %s() doesn't match type %s of %s()\n",
6669 			btf_type_str(t1), fn1,
6670 			btf_type_str(t2), fn2);
6671 		return -EINVAL;
6672 	}
6673 
6674 	for (i = 0; i < nargs1; i++) {
6675 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6676 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6677 
6678 		if (t1->info != t2->info) {
6679 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6680 				i, fn1, btf_type_str(t1),
6681 				fn2, btf_type_str(t2));
6682 			return -EINVAL;
6683 		}
6684 		if (btf_type_has_size(t1) && t1->size != t2->size) {
6685 			bpf_log(log,
6686 				"arg%d in %s() has size %d while %s() has %d\n",
6687 				i, fn1, t1->size,
6688 				fn2, t2->size);
6689 			return -EINVAL;
6690 		}
6691 
6692 		/* global functions are validated with scalars and pointers
6693 		 * to context only. And only global functions can be replaced.
6694 		 * Hence type check only those types.
6695 		 */
6696 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6697 			continue;
6698 		if (!btf_type_is_ptr(t1)) {
6699 			bpf_log(log,
6700 				"arg%d in %s() has unrecognized type\n",
6701 				i, fn1);
6702 			return -EINVAL;
6703 		}
6704 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6705 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6706 		if (!btf_type_is_struct(t1)) {
6707 			bpf_log(log,
6708 				"arg%d in %s() is not a pointer to context\n",
6709 				i, fn1);
6710 			return -EINVAL;
6711 		}
6712 		if (!btf_type_is_struct(t2)) {
6713 			bpf_log(log,
6714 				"arg%d in %s() is not a pointer to context\n",
6715 				i, fn2);
6716 			return -EINVAL;
6717 		}
6718 		/* This is an optional check to make program writing easier.
6719 		 * Compare names of structs and report an error to the user.
6720 		 * btf_prepare_func_args() already checked that t2 struct
6721 		 * is a context type. btf_prepare_func_args() will check
6722 		 * later that t1 struct is a context type as well.
6723 		 */
6724 		s1 = btf_name_by_offset(btf1, t1->name_off);
6725 		s2 = btf_name_by_offset(btf2, t2->name_off);
6726 		if (strcmp(s1, s2)) {
6727 			bpf_log(log,
6728 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6729 				i, fn1, s1, fn2, s2);
6730 			return -EINVAL;
6731 		}
6732 	}
6733 	return 0;
6734 }
6735 
6736 /* Compare BTFs of given program with BTF of target program */
6737 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6738 			 struct btf *btf2, const struct btf_type *t2)
6739 {
6740 	struct btf *btf1 = prog->aux->btf;
6741 	const struct btf_type *t1;
6742 	u32 btf_id = 0;
6743 
6744 	if (!prog->aux->func_info) {
6745 		bpf_log(log, "Program extension requires BTF\n");
6746 		return -EINVAL;
6747 	}
6748 
6749 	btf_id = prog->aux->func_info[0].type_id;
6750 	if (!btf_id)
6751 		return -EFAULT;
6752 
6753 	t1 = btf_type_by_id(btf1, btf_id);
6754 	if (!t1 || !btf_type_is_func(t1))
6755 		return -EFAULT;
6756 
6757 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6758 }
6759 
6760 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6761 				    const struct btf *btf, u32 func_id,
6762 				    struct bpf_reg_state *regs,
6763 				    bool ptr_to_mem_ok,
6764 				    bool processing_call)
6765 {
6766 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6767 	struct bpf_verifier_log *log = &env->log;
6768 	const char *func_name, *ref_tname;
6769 	const struct btf_type *t, *ref_t;
6770 	const struct btf_param *args;
6771 	u32 i, nargs, ref_id;
6772 	int ret;
6773 
6774 	t = btf_type_by_id(btf, func_id);
6775 	if (!t || !btf_type_is_func(t)) {
6776 		/* These checks were already done by the verifier while loading
6777 		 * struct bpf_func_info or in add_kfunc_call().
6778 		 */
6779 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6780 			func_id);
6781 		return -EFAULT;
6782 	}
6783 	func_name = btf_name_by_offset(btf, t->name_off);
6784 
6785 	t = btf_type_by_id(btf, t->type);
6786 	if (!t || !btf_type_is_func_proto(t)) {
6787 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
6788 		return -EFAULT;
6789 	}
6790 	args = (const struct btf_param *)(t + 1);
6791 	nargs = btf_type_vlen(t);
6792 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6793 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
6794 			MAX_BPF_FUNC_REG_ARGS);
6795 		return -EINVAL;
6796 	}
6797 
6798 	/* check that BTF function arguments match actual types that the
6799 	 * verifier sees.
6800 	 */
6801 	for (i = 0; i < nargs; i++) {
6802 		enum bpf_arg_type arg_type = ARG_DONTCARE;
6803 		u32 regno = i + 1;
6804 		struct bpf_reg_state *reg = &regs[regno];
6805 
6806 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6807 		if (btf_type_is_scalar(t)) {
6808 			if (reg->type == SCALAR_VALUE)
6809 				continue;
6810 			bpf_log(log, "R%d is not a scalar\n", regno);
6811 			return -EINVAL;
6812 		}
6813 
6814 		if (!btf_type_is_ptr(t)) {
6815 			bpf_log(log, "Unrecognized arg#%d type %s\n",
6816 				i, btf_type_str(t));
6817 			return -EINVAL;
6818 		}
6819 
6820 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
6821 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6822 
6823 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
6824 		if (ret < 0)
6825 			return ret;
6826 
6827 		if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6828 			/* If function expects ctx type in BTF check that caller
6829 			 * is passing PTR_TO_CTX.
6830 			 */
6831 			if (reg->type != PTR_TO_CTX) {
6832 				bpf_log(log,
6833 					"arg#%d expected pointer to ctx, but got %s\n",
6834 					i, btf_type_str(t));
6835 				return -EINVAL;
6836 			}
6837 		} else if (ptr_to_mem_ok && processing_call) {
6838 			const struct btf_type *resolve_ret;
6839 			u32 type_size;
6840 
6841 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6842 			if (IS_ERR(resolve_ret)) {
6843 				bpf_log(log,
6844 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6845 					i, btf_type_str(ref_t), ref_tname,
6846 					PTR_ERR(resolve_ret));
6847 				return -EINVAL;
6848 			}
6849 
6850 			if (check_mem_reg(env, reg, regno, type_size))
6851 				return -EINVAL;
6852 		} else {
6853 			bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i,
6854 				func_name, func_id);
6855 			return -EINVAL;
6856 		}
6857 	}
6858 
6859 	return 0;
6860 }
6861 
6862 /* Compare BTF of a function declaration with given bpf_reg_state.
6863  * Returns:
6864  * EFAULT - there is a verifier bug. Abort verification.
6865  * EINVAL - there is a type mismatch or BTF is not available.
6866  * 0 - BTF matches with what bpf_reg_state expects.
6867  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6868  */
6869 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6870 				struct bpf_reg_state *regs)
6871 {
6872 	struct bpf_prog *prog = env->prog;
6873 	struct btf *btf = prog->aux->btf;
6874 	bool is_global;
6875 	u32 btf_id;
6876 	int err;
6877 
6878 	if (!prog->aux->func_info)
6879 		return -EINVAL;
6880 
6881 	btf_id = prog->aux->func_info[subprog].type_id;
6882 	if (!btf_id)
6883 		return -EFAULT;
6884 
6885 	if (prog->aux->func_info_aux[subprog].unreliable)
6886 		return -EINVAL;
6887 
6888 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6889 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false);
6890 
6891 	/* Compiler optimizations can remove arguments from static functions
6892 	 * or mismatched type can be passed into a global function.
6893 	 * In such cases mark the function as unreliable from BTF point of view.
6894 	 */
6895 	if (err)
6896 		prog->aux->func_info_aux[subprog].unreliable = true;
6897 	return err;
6898 }
6899 
6900 /* Compare BTF of a function call with given bpf_reg_state.
6901  * Returns:
6902  * EFAULT - there is a verifier bug. Abort verification.
6903  * EINVAL - there is a type mismatch or BTF is not available.
6904  * 0 - BTF matches with what bpf_reg_state expects.
6905  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6906  *
6907  * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6908  * because btf_check_func_arg_match() is still doing both. Once that
6909  * function is split in 2, we can call from here btf_check_subprog_arg_match()
6910  * first, and then treat the calling part in a new code path.
6911  */
6912 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6913 			   struct bpf_reg_state *regs)
6914 {
6915 	struct bpf_prog *prog = env->prog;
6916 	struct btf *btf = prog->aux->btf;
6917 	bool is_global;
6918 	u32 btf_id;
6919 	int err;
6920 
6921 	if (!prog->aux->func_info)
6922 		return -EINVAL;
6923 
6924 	btf_id = prog->aux->func_info[subprog].type_id;
6925 	if (!btf_id)
6926 		return -EFAULT;
6927 
6928 	if (prog->aux->func_info_aux[subprog].unreliable)
6929 		return -EINVAL;
6930 
6931 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6932 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true);
6933 
6934 	/* Compiler optimizations can remove arguments from static functions
6935 	 * or mismatched type can be passed into a global function.
6936 	 * In such cases mark the function as unreliable from BTF point of view.
6937 	 */
6938 	if (err)
6939 		prog->aux->func_info_aux[subprog].unreliable = true;
6940 	return err;
6941 }
6942 
6943 /* Convert BTF of a function into bpf_reg_state if possible
6944  * Returns:
6945  * EFAULT - there is a verifier bug. Abort verification.
6946  * EINVAL - cannot convert BTF.
6947  * 0 - Successfully converted BTF into bpf_reg_state
6948  * (either PTR_TO_CTX or SCALAR_VALUE).
6949  */
6950 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6951 			  struct bpf_reg_state *regs)
6952 {
6953 	struct bpf_verifier_log *log = &env->log;
6954 	struct bpf_prog *prog = env->prog;
6955 	enum bpf_prog_type prog_type = prog->type;
6956 	struct btf *btf = prog->aux->btf;
6957 	const struct btf_param *args;
6958 	const struct btf_type *t, *ref_t;
6959 	u32 i, nargs, btf_id;
6960 	const char *tname;
6961 
6962 	if (!prog->aux->func_info ||
6963 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6964 		bpf_log(log, "Verifier bug\n");
6965 		return -EFAULT;
6966 	}
6967 
6968 	btf_id = prog->aux->func_info[subprog].type_id;
6969 	if (!btf_id) {
6970 		bpf_log(log, "Global functions need valid BTF\n");
6971 		return -EFAULT;
6972 	}
6973 
6974 	t = btf_type_by_id(btf, btf_id);
6975 	if (!t || !btf_type_is_func(t)) {
6976 		/* These checks were already done by the verifier while loading
6977 		 * struct bpf_func_info
6978 		 */
6979 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6980 			subprog);
6981 		return -EFAULT;
6982 	}
6983 	tname = btf_name_by_offset(btf, t->name_off);
6984 
6985 	if (log->level & BPF_LOG_LEVEL)
6986 		bpf_log(log, "Validating %s() func#%d...\n",
6987 			tname, subprog);
6988 
6989 	if (prog->aux->func_info_aux[subprog].unreliable) {
6990 		bpf_log(log, "Verifier bug in function %s()\n", tname);
6991 		return -EFAULT;
6992 	}
6993 	if (prog_type == BPF_PROG_TYPE_EXT)
6994 		prog_type = prog->aux->dst_prog->type;
6995 
6996 	t = btf_type_by_id(btf, t->type);
6997 	if (!t || !btf_type_is_func_proto(t)) {
6998 		bpf_log(log, "Invalid type of function %s()\n", tname);
6999 		return -EFAULT;
7000 	}
7001 	args = (const struct btf_param *)(t + 1);
7002 	nargs = btf_type_vlen(t);
7003 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7004 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7005 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7006 		return -EINVAL;
7007 	}
7008 	/* check that function returns int */
7009 	t = btf_type_by_id(btf, t->type);
7010 	while (btf_type_is_modifier(t))
7011 		t = btf_type_by_id(btf, t->type);
7012 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7013 		bpf_log(log,
7014 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7015 			tname);
7016 		return -EINVAL;
7017 	}
7018 	/* Convert BTF function arguments into verifier types.
7019 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7020 	 */
7021 	for (i = 0; i < nargs; i++) {
7022 		struct bpf_reg_state *reg = &regs[i + 1];
7023 
7024 		t = btf_type_by_id(btf, args[i].type);
7025 		while (btf_type_is_modifier(t))
7026 			t = btf_type_by_id(btf, t->type);
7027 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7028 			reg->type = SCALAR_VALUE;
7029 			continue;
7030 		}
7031 		if (btf_type_is_ptr(t)) {
7032 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
7033 				reg->type = PTR_TO_CTX;
7034 				continue;
7035 			}
7036 
7037 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7038 
7039 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
7040 			if (IS_ERR(ref_t)) {
7041 				bpf_log(log,
7042 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7043 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7044 					PTR_ERR(ref_t));
7045 				return -EINVAL;
7046 			}
7047 
7048 			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
7049 			reg->id = ++env->id_gen;
7050 
7051 			continue;
7052 		}
7053 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7054 			i, btf_type_str(t), tname);
7055 		return -EINVAL;
7056 	}
7057 	return 0;
7058 }
7059 
7060 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7061 			  struct btf_show *show)
7062 {
7063 	const struct btf_type *t = btf_type_by_id(btf, type_id);
7064 
7065 	show->btf = btf;
7066 	memset(&show->state, 0, sizeof(show->state));
7067 	memset(&show->obj, 0, sizeof(show->obj));
7068 
7069 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7070 }
7071 
7072 static void btf_seq_show(struct btf_show *show, const char *fmt,
7073 			 va_list args)
7074 {
7075 	seq_vprintf((struct seq_file *)show->target, fmt, args);
7076 }
7077 
7078 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7079 			    void *obj, struct seq_file *m, u64 flags)
7080 {
7081 	struct btf_show sseq;
7082 
7083 	sseq.target = m;
7084 	sseq.showfn = btf_seq_show;
7085 	sseq.flags = flags;
7086 
7087 	btf_type_show(btf, type_id, obj, &sseq);
7088 
7089 	return sseq.state.status;
7090 }
7091 
7092 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7093 		       struct seq_file *m)
7094 {
7095 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7096 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7097 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7098 }
7099 
7100 struct btf_show_snprintf {
7101 	struct btf_show show;
7102 	int len_left;		/* space left in string */
7103 	int len;		/* length we would have written */
7104 };
7105 
7106 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7107 			      va_list args)
7108 {
7109 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7110 	int len;
7111 
7112 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7113 
7114 	if (len < 0) {
7115 		ssnprintf->len_left = 0;
7116 		ssnprintf->len = len;
7117 	} else if (len >= ssnprintf->len_left) {
7118 		/* no space, drive on to get length we would have written */
7119 		ssnprintf->len_left = 0;
7120 		ssnprintf->len += len;
7121 	} else {
7122 		ssnprintf->len_left -= len;
7123 		ssnprintf->len += len;
7124 		show->target += len;
7125 	}
7126 }
7127 
7128 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7129 			   char *buf, int len, u64 flags)
7130 {
7131 	struct btf_show_snprintf ssnprintf;
7132 
7133 	ssnprintf.show.target = buf;
7134 	ssnprintf.show.flags = flags;
7135 	ssnprintf.show.showfn = btf_snprintf_show;
7136 	ssnprintf.len_left = len;
7137 	ssnprintf.len = 0;
7138 
7139 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7140 
7141 	/* If we encountered an error, return it. */
7142 	if (ssnprintf.show.state.status)
7143 		return ssnprintf.show.state.status;
7144 
7145 	/* Otherwise return length we would have written */
7146 	return ssnprintf.len;
7147 }
7148 
7149 #ifdef CONFIG_PROC_FS
7150 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7151 {
7152 	const struct btf *btf = filp->private_data;
7153 
7154 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7155 }
7156 #endif
7157 
7158 static int btf_release(struct inode *inode, struct file *filp)
7159 {
7160 	btf_put(filp->private_data);
7161 	return 0;
7162 }
7163 
7164 const struct file_operations btf_fops = {
7165 #ifdef CONFIG_PROC_FS
7166 	.show_fdinfo	= bpf_btf_show_fdinfo,
7167 #endif
7168 	.release	= btf_release,
7169 };
7170 
7171 static int __btf_new_fd(struct btf *btf)
7172 {
7173 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7174 }
7175 
7176 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7177 {
7178 	struct btf *btf;
7179 	int ret;
7180 
7181 	btf = btf_parse(attr, uattr, uattr_size);
7182 	if (IS_ERR(btf))
7183 		return PTR_ERR(btf);
7184 
7185 	ret = btf_alloc_id(btf);
7186 	if (ret) {
7187 		btf_free(btf);
7188 		return ret;
7189 	}
7190 
7191 	/*
7192 	 * The BTF ID is published to the userspace.
7193 	 * All BTF free must go through call_rcu() from
7194 	 * now on (i.e. free by calling btf_put()).
7195 	 */
7196 
7197 	ret = __btf_new_fd(btf);
7198 	if (ret < 0)
7199 		btf_put(btf);
7200 
7201 	return ret;
7202 }
7203 
7204 struct btf *btf_get_by_fd(int fd)
7205 {
7206 	struct btf *btf;
7207 	struct fd f;
7208 
7209 	f = fdget(fd);
7210 
7211 	if (!f.file)
7212 		return ERR_PTR(-EBADF);
7213 
7214 	if (f.file->f_op != &btf_fops) {
7215 		fdput(f);
7216 		return ERR_PTR(-EINVAL);
7217 	}
7218 
7219 	btf = f.file->private_data;
7220 	refcount_inc(&btf->refcnt);
7221 	fdput(f);
7222 
7223 	return btf;
7224 }
7225 
7226 int btf_get_info_by_fd(const struct btf *btf,
7227 		       const union bpf_attr *attr,
7228 		       union bpf_attr __user *uattr)
7229 {
7230 	struct bpf_btf_info __user *uinfo;
7231 	struct bpf_btf_info info;
7232 	u32 info_copy, btf_copy;
7233 	void __user *ubtf;
7234 	char __user *uname;
7235 	u32 uinfo_len, uname_len, name_len;
7236 	int ret = 0;
7237 
7238 	uinfo = u64_to_user_ptr(attr->info.info);
7239 	uinfo_len = attr->info.info_len;
7240 
7241 	info_copy = min_t(u32, uinfo_len, sizeof(info));
7242 	memset(&info, 0, sizeof(info));
7243 	if (copy_from_user(&info, uinfo, info_copy))
7244 		return -EFAULT;
7245 
7246 	info.id = btf->id;
7247 	ubtf = u64_to_user_ptr(info.btf);
7248 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7249 	if (copy_to_user(ubtf, btf->data, btf_copy))
7250 		return -EFAULT;
7251 	info.btf_size = btf->data_size;
7252 
7253 	info.kernel_btf = btf->kernel_btf;
7254 
7255 	uname = u64_to_user_ptr(info.name);
7256 	uname_len = info.name_len;
7257 	if (!uname ^ !uname_len)
7258 		return -EINVAL;
7259 
7260 	name_len = strlen(btf->name);
7261 	info.name_len = name_len;
7262 
7263 	if (uname) {
7264 		if (uname_len >= name_len + 1) {
7265 			if (copy_to_user(uname, btf->name, name_len + 1))
7266 				return -EFAULT;
7267 		} else {
7268 			char zero = '\0';
7269 
7270 			if (copy_to_user(uname, btf->name, uname_len - 1))
7271 				return -EFAULT;
7272 			if (put_user(zero, uname + uname_len - 1))
7273 				return -EFAULT;
7274 			/* let user-space know about too short buffer */
7275 			ret = -ENOSPC;
7276 		}
7277 	}
7278 
7279 	if (copy_to_user(uinfo, &info, info_copy) ||
7280 	    put_user(info_copy, &uattr->info.info_len))
7281 		return -EFAULT;
7282 
7283 	return ret;
7284 }
7285 
7286 int btf_get_fd_by_id(u32 id)
7287 {
7288 	struct btf *btf;
7289 	int fd;
7290 
7291 	rcu_read_lock();
7292 	btf = idr_find(&btf_idr, id);
7293 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7294 		btf = ERR_PTR(-ENOENT);
7295 	rcu_read_unlock();
7296 
7297 	if (IS_ERR(btf))
7298 		return PTR_ERR(btf);
7299 
7300 	fd = __btf_new_fd(btf);
7301 	if (fd < 0)
7302 		btf_put(btf);
7303 
7304 	return fd;
7305 }
7306 
7307 u32 btf_obj_id(const struct btf *btf)
7308 {
7309 	return btf->id;
7310 }
7311 
7312 bool btf_is_kernel(const struct btf *btf)
7313 {
7314 	return btf->kernel_btf;
7315 }
7316 
7317 bool btf_is_module(const struct btf *btf)
7318 {
7319 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7320 }
7321 
7322 enum {
7323 	BTF_MODULE_F_LIVE = (1 << 0),
7324 };
7325 
7326 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7327 struct btf_module {
7328 	struct list_head list;
7329 	struct module *module;
7330 	struct btf *btf;
7331 	struct bin_attribute *sysfs_attr;
7332 	int flags;
7333 };
7334 
7335 static LIST_HEAD(btf_modules);
7336 static DEFINE_MUTEX(btf_module_mutex);
7337 
7338 static ssize_t
7339 btf_module_read(struct file *file, struct kobject *kobj,
7340 		struct bin_attribute *bin_attr,
7341 		char *buf, loff_t off, size_t len)
7342 {
7343 	const struct btf *btf = bin_attr->private;
7344 
7345 	memcpy(buf, btf->data + off, len);
7346 	return len;
7347 }
7348 
7349 static void purge_cand_cache(struct btf *btf);
7350 
7351 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7352 			     void *module)
7353 {
7354 	struct btf_module *btf_mod, *tmp;
7355 	struct module *mod = module;
7356 	struct btf *btf;
7357 	int err = 0;
7358 
7359 	if (mod->btf_data_size == 0 ||
7360 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7361 	     op != MODULE_STATE_GOING))
7362 		goto out;
7363 
7364 	switch (op) {
7365 	case MODULE_STATE_COMING:
7366 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7367 		if (!btf_mod) {
7368 			err = -ENOMEM;
7369 			goto out;
7370 		}
7371 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7372 		if (IS_ERR(btf)) {
7373 			kfree(btf_mod);
7374 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7375 				pr_warn("failed to validate module [%s] BTF: %ld\n",
7376 					mod->name, PTR_ERR(btf));
7377 				err = PTR_ERR(btf);
7378 			} else {
7379 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7380 			}
7381 			goto out;
7382 		}
7383 		err = btf_alloc_id(btf);
7384 		if (err) {
7385 			btf_free(btf);
7386 			kfree(btf_mod);
7387 			goto out;
7388 		}
7389 
7390 		purge_cand_cache(NULL);
7391 		mutex_lock(&btf_module_mutex);
7392 		btf_mod->module = module;
7393 		btf_mod->btf = btf;
7394 		list_add(&btf_mod->list, &btf_modules);
7395 		mutex_unlock(&btf_module_mutex);
7396 
7397 		if (IS_ENABLED(CONFIG_SYSFS)) {
7398 			struct bin_attribute *attr;
7399 
7400 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7401 			if (!attr)
7402 				goto out;
7403 
7404 			sysfs_bin_attr_init(attr);
7405 			attr->attr.name = btf->name;
7406 			attr->attr.mode = 0444;
7407 			attr->size = btf->data_size;
7408 			attr->private = btf;
7409 			attr->read = btf_module_read;
7410 
7411 			err = sysfs_create_bin_file(btf_kobj, attr);
7412 			if (err) {
7413 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7414 					mod->name, err);
7415 				kfree(attr);
7416 				err = 0;
7417 				goto out;
7418 			}
7419 
7420 			btf_mod->sysfs_attr = attr;
7421 		}
7422 
7423 		break;
7424 	case MODULE_STATE_LIVE:
7425 		mutex_lock(&btf_module_mutex);
7426 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7427 			if (btf_mod->module != module)
7428 				continue;
7429 
7430 			btf_mod->flags |= BTF_MODULE_F_LIVE;
7431 			break;
7432 		}
7433 		mutex_unlock(&btf_module_mutex);
7434 		break;
7435 	case MODULE_STATE_GOING:
7436 		mutex_lock(&btf_module_mutex);
7437 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7438 			if (btf_mod->module != module)
7439 				continue;
7440 
7441 			list_del(&btf_mod->list);
7442 			if (btf_mod->sysfs_attr)
7443 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7444 			purge_cand_cache(btf_mod->btf);
7445 			btf_put(btf_mod->btf);
7446 			kfree(btf_mod->sysfs_attr);
7447 			kfree(btf_mod);
7448 			break;
7449 		}
7450 		mutex_unlock(&btf_module_mutex);
7451 		break;
7452 	}
7453 out:
7454 	return notifier_from_errno(err);
7455 }
7456 
7457 static struct notifier_block btf_module_nb = {
7458 	.notifier_call = btf_module_notify,
7459 };
7460 
7461 static int __init btf_module_init(void)
7462 {
7463 	register_module_notifier(&btf_module_nb);
7464 	return 0;
7465 }
7466 
7467 fs_initcall(btf_module_init);
7468 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7469 
7470 struct module *btf_try_get_module(const struct btf *btf)
7471 {
7472 	struct module *res = NULL;
7473 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7474 	struct btf_module *btf_mod, *tmp;
7475 
7476 	mutex_lock(&btf_module_mutex);
7477 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7478 		if (btf_mod->btf != btf)
7479 			continue;
7480 
7481 		/* We must only consider module whose __init routine has
7482 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7483 		 * which is set from the notifier callback for
7484 		 * MODULE_STATE_LIVE.
7485 		 */
7486 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7487 			res = btf_mod->module;
7488 
7489 		break;
7490 	}
7491 	mutex_unlock(&btf_module_mutex);
7492 #endif
7493 
7494 	return res;
7495 }
7496 
7497 /* Returns struct btf corresponding to the struct module.
7498  * This function can return NULL or ERR_PTR.
7499  */
7500 static struct btf *btf_get_module_btf(const struct module *module)
7501 {
7502 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7503 	struct btf_module *btf_mod, *tmp;
7504 #endif
7505 	struct btf *btf = NULL;
7506 
7507 	if (!module) {
7508 		btf = bpf_get_btf_vmlinux();
7509 		if (!IS_ERR_OR_NULL(btf))
7510 			btf_get(btf);
7511 		return btf;
7512 	}
7513 
7514 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7515 	mutex_lock(&btf_module_mutex);
7516 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7517 		if (btf_mod->module != module)
7518 			continue;
7519 
7520 		btf_get(btf_mod->btf);
7521 		btf = btf_mod->btf;
7522 		break;
7523 	}
7524 	mutex_unlock(&btf_module_mutex);
7525 #endif
7526 
7527 	return btf;
7528 }
7529 
7530 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7531 {
7532 	struct btf *btf = NULL;
7533 	int btf_obj_fd = 0;
7534 	long ret;
7535 
7536 	if (flags)
7537 		return -EINVAL;
7538 
7539 	if (name_sz <= 1 || name[name_sz - 1])
7540 		return -EINVAL;
7541 
7542 	ret = bpf_find_btf_id(name, kind, &btf);
7543 	if (ret > 0 && btf_is_module(btf)) {
7544 		btf_obj_fd = __btf_new_fd(btf);
7545 		if (btf_obj_fd < 0) {
7546 			btf_put(btf);
7547 			return btf_obj_fd;
7548 		}
7549 		return ret | (((u64)btf_obj_fd) << 32);
7550 	}
7551 	if (ret > 0)
7552 		btf_put(btf);
7553 	return ret;
7554 }
7555 
7556 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7557 	.func		= bpf_btf_find_by_name_kind,
7558 	.gpl_only	= false,
7559 	.ret_type	= RET_INTEGER,
7560 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7561 	.arg2_type	= ARG_CONST_SIZE,
7562 	.arg3_type	= ARG_ANYTHING,
7563 	.arg4_type	= ARG_ANYTHING,
7564 };
7565 
7566 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7567 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7568 BTF_TRACING_TYPE_xxx
7569 #undef BTF_TRACING_TYPE
7570 
7571 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7572 				 const struct btf_type *func, u32 func_flags)
7573 {
7574 	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7575 	const char *name, *sfx, *iter_name;
7576 	const struct btf_param *arg;
7577 	const struct btf_type *t;
7578 	char exp_name[128];
7579 	u32 nr_args;
7580 
7581 	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7582 	if (!flags || (flags & (flags - 1)))
7583 		return -EINVAL;
7584 
7585 	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7586 	nr_args = btf_type_vlen(func);
7587 	if (nr_args < 1)
7588 		return -EINVAL;
7589 
7590 	arg = &btf_params(func)[0];
7591 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
7592 	if (!t || !btf_type_is_ptr(t))
7593 		return -EINVAL;
7594 	t = btf_type_skip_modifiers(btf, t->type, NULL);
7595 	if (!t || !__btf_type_is_struct(t))
7596 		return -EINVAL;
7597 
7598 	name = btf_name_by_offset(btf, t->name_off);
7599 	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7600 		return -EINVAL;
7601 
7602 	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7603 	 * fit nicely in stack slots
7604 	 */
7605 	if (t->size == 0 || (t->size % 8))
7606 		return -EINVAL;
7607 
7608 	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7609 	 * naming pattern
7610 	 */
7611 	iter_name = name + sizeof(ITER_PREFIX) - 1;
7612 	if (flags & KF_ITER_NEW)
7613 		sfx = "new";
7614 	else if (flags & KF_ITER_NEXT)
7615 		sfx = "next";
7616 	else /* (flags & KF_ITER_DESTROY) */
7617 		sfx = "destroy";
7618 
7619 	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
7620 	if (strcmp(func_name, exp_name))
7621 		return -EINVAL;
7622 
7623 	/* only iter constructor should have extra arguments */
7624 	if (!(flags & KF_ITER_NEW) && nr_args != 1)
7625 		return -EINVAL;
7626 
7627 	if (flags & KF_ITER_NEXT) {
7628 		/* bpf_iter_<type>_next() should return pointer */
7629 		t = btf_type_skip_modifiers(btf, func->type, NULL);
7630 		if (!t || !btf_type_is_ptr(t))
7631 			return -EINVAL;
7632 	}
7633 
7634 	if (flags & KF_ITER_DESTROY) {
7635 		/* bpf_iter_<type>_destroy() should return void */
7636 		t = btf_type_by_id(btf, func->type);
7637 		if (!t || !btf_type_is_void(t))
7638 			return -EINVAL;
7639 	}
7640 
7641 	return 0;
7642 }
7643 
7644 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7645 {
7646 	const struct btf_type *func;
7647 	const char *func_name;
7648 	int err;
7649 
7650 	/* any kfunc should be FUNC -> FUNC_PROTO */
7651 	func = btf_type_by_id(btf, func_id);
7652 	if (!func || !btf_type_is_func(func))
7653 		return -EINVAL;
7654 
7655 	/* sanity check kfunc name */
7656 	func_name = btf_name_by_offset(btf, func->name_off);
7657 	if (!func_name || !func_name[0])
7658 		return -EINVAL;
7659 
7660 	func = btf_type_by_id(btf, func->type);
7661 	if (!func || !btf_type_is_func_proto(func))
7662 		return -EINVAL;
7663 
7664 	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7665 		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7666 		if (err)
7667 			return err;
7668 	}
7669 
7670 	return 0;
7671 }
7672 
7673 /* Kernel Function (kfunc) BTF ID set registration API */
7674 
7675 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7676 				  const struct btf_kfunc_id_set *kset)
7677 {
7678 	struct btf_kfunc_hook_filter *hook_filter;
7679 	struct btf_id_set8 *add_set = kset->set;
7680 	bool vmlinux_set = !btf_is_module(btf);
7681 	bool add_filter = !!kset->filter;
7682 	struct btf_kfunc_set_tab *tab;
7683 	struct btf_id_set8 *set;
7684 	u32 set_cnt;
7685 	int ret;
7686 
7687 	if (hook >= BTF_KFUNC_HOOK_MAX) {
7688 		ret = -EINVAL;
7689 		goto end;
7690 	}
7691 
7692 	if (!add_set->cnt)
7693 		return 0;
7694 
7695 	tab = btf->kfunc_set_tab;
7696 
7697 	if (tab && add_filter) {
7698 		u32 i;
7699 
7700 		hook_filter = &tab->hook_filters[hook];
7701 		for (i = 0; i < hook_filter->nr_filters; i++) {
7702 			if (hook_filter->filters[i] == kset->filter) {
7703 				add_filter = false;
7704 				break;
7705 			}
7706 		}
7707 
7708 		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
7709 			ret = -E2BIG;
7710 			goto end;
7711 		}
7712 	}
7713 
7714 	if (!tab) {
7715 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7716 		if (!tab)
7717 			return -ENOMEM;
7718 		btf->kfunc_set_tab = tab;
7719 	}
7720 
7721 	set = tab->sets[hook];
7722 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
7723 	 * for module sets.
7724 	 */
7725 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
7726 		ret = -EINVAL;
7727 		goto end;
7728 	}
7729 
7730 	/* We don't need to allocate, concatenate, and sort module sets, because
7731 	 * only one is allowed per hook. Hence, we can directly assign the
7732 	 * pointer and return.
7733 	 */
7734 	if (!vmlinux_set) {
7735 		tab->sets[hook] = add_set;
7736 		goto do_add_filter;
7737 	}
7738 
7739 	/* In case of vmlinux sets, there may be more than one set being
7740 	 * registered per hook. To create a unified set, we allocate a new set
7741 	 * and concatenate all individual sets being registered. While each set
7742 	 * is individually sorted, they may become unsorted when concatenated,
7743 	 * hence re-sorting the final set again is required to make binary
7744 	 * searching the set using btf_id_set8_contains function work.
7745 	 */
7746 	set_cnt = set ? set->cnt : 0;
7747 
7748 	if (set_cnt > U32_MAX - add_set->cnt) {
7749 		ret = -EOVERFLOW;
7750 		goto end;
7751 	}
7752 
7753 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7754 		ret = -E2BIG;
7755 		goto end;
7756 	}
7757 
7758 	/* Grow set */
7759 	set = krealloc(tab->sets[hook],
7760 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7761 		       GFP_KERNEL | __GFP_NOWARN);
7762 	if (!set) {
7763 		ret = -ENOMEM;
7764 		goto end;
7765 	}
7766 
7767 	/* For newly allocated set, initialize set->cnt to 0 */
7768 	if (!tab->sets[hook])
7769 		set->cnt = 0;
7770 	tab->sets[hook] = set;
7771 
7772 	/* Concatenate the two sets */
7773 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7774 	set->cnt += add_set->cnt;
7775 
7776 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
7777 
7778 do_add_filter:
7779 	if (add_filter) {
7780 		hook_filter = &tab->hook_filters[hook];
7781 		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
7782 	}
7783 	return 0;
7784 end:
7785 	btf_free_kfunc_set_tab(btf);
7786 	return ret;
7787 }
7788 
7789 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7790 					enum btf_kfunc_hook hook,
7791 					u32 kfunc_btf_id,
7792 					const struct bpf_prog *prog)
7793 {
7794 	struct btf_kfunc_hook_filter *hook_filter;
7795 	struct btf_id_set8 *set;
7796 	u32 *id, i;
7797 
7798 	if (hook >= BTF_KFUNC_HOOK_MAX)
7799 		return NULL;
7800 	if (!btf->kfunc_set_tab)
7801 		return NULL;
7802 	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
7803 	for (i = 0; i < hook_filter->nr_filters; i++) {
7804 		if (hook_filter->filters[i](prog, kfunc_btf_id))
7805 			return NULL;
7806 	}
7807 	set = btf->kfunc_set_tab->sets[hook];
7808 	if (!set)
7809 		return NULL;
7810 	id = btf_id_set8_contains(set, kfunc_btf_id);
7811 	if (!id)
7812 		return NULL;
7813 	/* The flags for BTF ID are located next to it */
7814 	return id + 1;
7815 }
7816 
7817 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7818 {
7819 	switch (prog_type) {
7820 	case BPF_PROG_TYPE_UNSPEC:
7821 		return BTF_KFUNC_HOOK_COMMON;
7822 	case BPF_PROG_TYPE_XDP:
7823 		return BTF_KFUNC_HOOK_XDP;
7824 	case BPF_PROG_TYPE_SCHED_CLS:
7825 		return BTF_KFUNC_HOOK_TC;
7826 	case BPF_PROG_TYPE_STRUCT_OPS:
7827 		return BTF_KFUNC_HOOK_STRUCT_OPS;
7828 	case BPF_PROG_TYPE_TRACING:
7829 	case BPF_PROG_TYPE_LSM:
7830 		return BTF_KFUNC_HOOK_TRACING;
7831 	case BPF_PROG_TYPE_SYSCALL:
7832 		return BTF_KFUNC_HOOK_SYSCALL;
7833 	case BPF_PROG_TYPE_CGROUP_SKB:
7834 		return BTF_KFUNC_HOOK_CGROUP_SKB;
7835 	case BPF_PROG_TYPE_SCHED_ACT:
7836 		return BTF_KFUNC_HOOK_SCHED_ACT;
7837 	case BPF_PROG_TYPE_SK_SKB:
7838 		return BTF_KFUNC_HOOK_SK_SKB;
7839 	case BPF_PROG_TYPE_SOCKET_FILTER:
7840 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
7841 	case BPF_PROG_TYPE_LWT_OUT:
7842 	case BPF_PROG_TYPE_LWT_IN:
7843 	case BPF_PROG_TYPE_LWT_XMIT:
7844 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
7845 		return BTF_KFUNC_HOOK_LWT;
7846 	case BPF_PROG_TYPE_NETFILTER:
7847 		return BTF_KFUNC_HOOK_NETFILTER;
7848 	default:
7849 		return BTF_KFUNC_HOOK_MAX;
7850 	}
7851 }
7852 
7853 /* Caution:
7854  * Reference to the module (obtained using btf_try_get_module) corresponding to
7855  * the struct btf *MUST* be held when calling this function from verifier
7856  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7857  * keeping the reference for the duration of the call provides the necessary
7858  * protection for looking up a well-formed btf->kfunc_set_tab.
7859  */
7860 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7861 			       u32 kfunc_btf_id,
7862 			       const struct bpf_prog *prog)
7863 {
7864 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
7865 	enum btf_kfunc_hook hook;
7866 	u32 *kfunc_flags;
7867 
7868 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
7869 	if (kfunc_flags)
7870 		return kfunc_flags;
7871 
7872 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7873 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
7874 }
7875 
7876 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
7877 				const struct bpf_prog *prog)
7878 {
7879 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
7880 }
7881 
7882 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7883 				       const struct btf_kfunc_id_set *kset)
7884 {
7885 	struct btf *btf;
7886 	int ret, i;
7887 
7888 	btf = btf_get_module_btf(kset->owner);
7889 	if (!btf) {
7890 		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7891 			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7892 			return -ENOENT;
7893 		}
7894 		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
7895 			pr_warn("missing module BTF, cannot register kfuncs\n");
7896 		return 0;
7897 	}
7898 	if (IS_ERR(btf))
7899 		return PTR_ERR(btf);
7900 
7901 	for (i = 0; i < kset->set->cnt; i++) {
7902 		ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id,
7903 					     kset->set->pairs[i].flags);
7904 		if (ret)
7905 			goto err_out;
7906 	}
7907 
7908 	ret = btf_populate_kfunc_set(btf, hook, kset);
7909 
7910 err_out:
7911 	btf_put(btf);
7912 	return ret;
7913 }
7914 
7915 /* This function must be invoked only from initcalls/module init functions */
7916 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7917 			      const struct btf_kfunc_id_set *kset)
7918 {
7919 	enum btf_kfunc_hook hook;
7920 
7921 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7922 	return __register_btf_kfunc_id_set(hook, kset);
7923 }
7924 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7925 
7926 /* This function must be invoked only from initcalls/module init functions */
7927 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7928 {
7929 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
7930 }
7931 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7932 
7933 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7934 {
7935 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7936 	struct btf_id_dtor_kfunc *dtor;
7937 
7938 	if (!tab)
7939 		return -ENOENT;
7940 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7941 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7942 	 */
7943 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7944 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7945 	if (!dtor)
7946 		return -ENOENT;
7947 	return dtor->kfunc_btf_id;
7948 }
7949 
7950 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7951 {
7952 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
7953 	const struct btf_param *args;
7954 	s32 dtor_btf_id;
7955 	u32 nr_args, i;
7956 
7957 	for (i = 0; i < cnt; i++) {
7958 		dtor_btf_id = dtors[i].kfunc_btf_id;
7959 
7960 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
7961 		if (!dtor_func || !btf_type_is_func(dtor_func))
7962 			return -EINVAL;
7963 
7964 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7965 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7966 			return -EINVAL;
7967 
7968 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7969 		t = btf_type_by_id(btf, dtor_func_proto->type);
7970 		if (!t || !btf_type_is_void(t))
7971 			return -EINVAL;
7972 
7973 		nr_args = btf_type_vlen(dtor_func_proto);
7974 		if (nr_args != 1)
7975 			return -EINVAL;
7976 		args = btf_params(dtor_func_proto);
7977 		t = btf_type_by_id(btf, args[0].type);
7978 		/* Allow any pointer type, as width on targets Linux supports
7979 		 * will be same for all pointer types (i.e. sizeof(void *))
7980 		 */
7981 		if (!t || !btf_type_is_ptr(t))
7982 			return -EINVAL;
7983 	}
7984 	return 0;
7985 }
7986 
7987 /* This function must be invoked only from initcalls/module init functions */
7988 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7989 				struct module *owner)
7990 {
7991 	struct btf_id_dtor_kfunc_tab *tab;
7992 	struct btf *btf;
7993 	u32 tab_cnt;
7994 	int ret;
7995 
7996 	btf = btf_get_module_btf(owner);
7997 	if (!btf) {
7998 		if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7999 			pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
8000 			return -ENOENT;
8001 		}
8002 		if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
8003 			pr_err("missing module BTF, cannot register dtor kfuncs\n");
8004 			return -ENOENT;
8005 		}
8006 		return 0;
8007 	}
8008 	if (IS_ERR(btf))
8009 		return PTR_ERR(btf);
8010 
8011 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8012 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8013 		ret = -E2BIG;
8014 		goto end;
8015 	}
8016 
8017 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8018 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8019 	if (ret < 0)
8020 		goto end;
8021 
8022 	tab = btf->dtor_kfunc_tab;
8023 	/* Only one call allowed for modules */
8024 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8025 		ret = -EINVAL;
8026 		goto end;
8027 	}
8028 
8029 	tab_cnt = tab ? tab->cnt : 0;
8030 	if (tab_cnt > U32_MAX - add_cnt) {
8031 		ret = -EOVERFLOW;
8032 		goto end;
8033 	}
8034 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8035 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8036 		ret = -E2BIG;
8037 		goto end;
8038 	}
8039 
8040 	tab = krealloc(btf->dtor_kfunc_tab,
8041 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8042 		       GFP_KERNEL | __GFP_NOWARN);
8043 	if (!tab) {
8044 		ret = -ENOMEM;
8045 		goto end;
8046 	}
8047 
8048 	if (!btf->dtor_kfunc_tab)
8049 		tab->cnt = 0;
8050 	btf->dtor_kfunc_tab = tab;
8051 
8052 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8053 	tab->cnt += add_cnt;
8054 
8055 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8056 
8057 end:
8058 	if (ret)
8059 		btf_free_dtor_kfunc_tab(btf);
8060 	btf_put(btf);
8061 	return ret;
8062 }
8063 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8064 
8065 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8066 
8067 /* Check local and target types for compatibility. This check is used for
8068  * type-based CO-RE relocations and follow slightly different rules than
8069  * field-based relocations. This function assumes that root types were already
8070  * checked for name match. Beyond that initial root-level name check, names
8071  * are completely ignored. Compatibility rules are as follows:
8072  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8073  *     kind should match for local and target types (i.e., STRUCT is not
8074  *     compatible with UNION);
8075  *   - for ENUMs/ENUM64s, the size is ignored;
8076  *   - for INT, size and signedness are ignored;
8077  *   - for ARRAY, dimensionality is ignored, element types are checked for
8078  *     compatibility recursively;
8079  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8080  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8081  *   - FUNC_PROTOs are compatible if they have compatible signature: same
8082  *     number of input args and compatible return and argument types.
8083  * These rules are not set in stone and probably will be adjusted as we get
8084  * more experience with using BPF CO-RE relocations.
8085  */
8086 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8087 			      const struct btf *targ_btf, __u32 targ_id)
8088 {
8089 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8090 					   MAX_TYPES_ARE_COMPAT_DEPTH);
8091 }
8092 
8093 #define MAX_TYPES_MATCH_DEPTH 2
8094 
8095 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8096 			 const struct btf *targ_btf, u32 targ_id)
8097 {
8098 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8099 				      MAX_TYPES_MATCH_DEPTH);
8100 }
8101 
8102 static bool bpf_core_is_flavor_sep(const char *s)
8103 {
8104 	/* check X___Y name pattern, where X and Y are not underscores */
8105 	return s[0] != '_' &&				      /* X */
8106 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8107 	       s[4] != '_';				      /* Y */
8108 }
8109 
8110 size_t bpf_core_essential_name_len(const char *name)
8111 {
8112 	size_t n = strlen(name);
8113 	int i;
8114 
8115 	for (i = n - 5; i >= 0; i--) {
8116 		if (bpf_core_is_flavor_sep(name + i))
8117 			return i + 1;
8118 	}
8119 	return n;
8120 }
8121 
8122 struct bpf_cand_cache {
8123 	const char *name;
8124 	u32 name_len;
8125 	u16 kind;
8126 	u16 cnt;
8127 	struct {
8128 		const struct btf *btf;
8129 		u32 id;
8130 	} cands[];
8131 };
8132 
8133 static void bpf_free_cands(struct bpf_cand_cache *cands)
8134 {
8135 	if (!cands->cnt)
8136 		/* empty candidate array was allocated on stack */
8137 		return;
8138 	kfree(cands);
8139 }
8140 
8141 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8142 {
8143 	kfree(cands->name);
8144 	kfree(cands);
8145 }
8146 
8147 #define VMLINUX_CAND_CACHE_SIZE 31
8148 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8149 
8150 #define MODULE_CAND_CACHE_SIZE 31
8151 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8152 
8153 static DEFINE_MUTEX(cand_cache_mutex);
8154 
8155 static void __print_cand_cache(struct bpf_verifier_log *log,
8156 			       struct bpf_cand_cache **cache,
8157 			       int cache_size)
8158 {
8159 	struct bpf_cand_cache *cc;
8160 	int i, j;
8161 
8162 	for (i = 0; i < cache_size; i++) {
8163 		cc = cache[i];
8164 		if (!cc)
8165 			continue;
8166 		bpf_log(log, "[%d]%s(", i, cc->name);
8167 		for (j = 0; j < cc->cnt; j++) {
8168 			bpf_log(log, "%d", cc->cands[j].id);
8169 			if (j < cc->cnt - 1)
8170 				bpf_log(log, " ");
8171 		}
8172 		bpf_log(log, "), ");
8173 	}
8174 }
8175 
8176 static void print_cand_cache(struct bpf_verifier_log *log)
8177 {
8178 	mutex_lock(&cand_cache_mutex);
8179 	bpf_log(log, "vmlinux_cand_cache:");
8180 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8181 	bpf_log(log, "\nmodule_cand_cache:");
8182 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8183 	bpf_log(log, "\n");
8184 	mutex_unlock(&cand_cache_mutex);
8185 }
8186 
8187 static u32 hash_cands(struct bpf_cand_cache *cands)
8188 {
8189 	return jhash(cands->name, cands->name_len, 0);
8190 }
8191 
8192 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8193 					       struct bpf_cand_cache **cache,
8194 					       int cache_size)
8195 {
8196 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8197 
8198 	if (cc && cc->name_len == cands->name_len &&
8199 	    !strncmp(cc->name, cands->name, cands->name_len))
8200 		return cc;
8201 	return NULL;
8202 }
8203 
8204 static size_t sizeof_cands(int cnt)
8205 {
8206 	return offsetof(struct bpf_cand_cache, cands[cnt]);
8207 }
8208 
8209 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8210 						  struct bpf_cand_cache **cache,
8211 						  int cache_size)
8212 {
8213 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8214 
8215 	if (*cc) {
8216 		bpf_free_cands_from_cache(*cc);
8217 		*cc = NULL;
8218 	}
8219 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8220 	if (!new_cands) {
8221 		bpf_free_cands(cands);
8222 		return ERR_PTR(-ENOMEM);
8223 	}
8224 	/* strdup the name, since it will stay in cache.
8225 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8226 	 */
8227 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8228 	bpf_free_cands(cands);
8229 	if (!new_cands->name) {
8230 		kfree(new_cands);
8231 		return ERR_PTR(-ENOMEM);
8232 	}
8233 	*cc = new_cands;
8234 	return new_cands;
8235 }
8236 
8237 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8238 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8239 			       int cache_size)
8240 {
8241 	struct bpf_cand_cache *cc;
8242 	int i, j;
8243 
8244 	for (i = 0; i < cache_size; i++) {
8245 		cc = cache[i];
8246 		if (!cc)
8247 			continue;
8248 		if (!btf) {
8249 			/* when new module is loaded purge all of module_cand_cache,
8250 			 * since new module might have candidates with the name
8251 			 * that matches cached cands.
8252 			 */
8253 			bpf_free_cands_from_cache(cc);
8254 			cache[i] = NULL;
8255 			continue;
8256 		}
8257 		/* when module is unloaded purge cache entries
8258 		 * that match module's btf
8259 		 */
8260 		for (j = 0; j < cc->cnt; j++)
8261 			if (cc->cands[j].btf == btf) {
8262 				bpf_free_cands_from_cache(cc);
8263 				cache[i] = NULL;
8264 				break;
8265 			}
8266 	}
8267 
8268 }
8269 
8270 static void purge_cand_cache(struct btf *btf)
8271 {
8272 	mutex_lock(&cand_cache_mutex);
8273 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8274 	mutex_unlock(&cand_cache_mutex);
8275 }
8276 #endif
8277 
8278 static struct bpf_cand_cache *
8279 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8280 		   int targ_start_id)
8281 {
8282 	struct bpf_cand_cache *new_cands;
8283 	const struct btf_type *t;
8284 	const char *targ_name;
8285 	size_t targ_essent_len;
8286 	int n, i;
8287 
8288 	n = btf_nr_types(targ_btf);
8289 	for (i = targ_start_id; i < n; i++) {
8290 		t = btf_type_by_id(targ_btf, i);
8291 		if (btf_kind(t) != cands->kind)
8292 			continue;
8293 
8294 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8295 		if (!targ_name)
8296 			continue;
8297 
8298 		/* the resched point is before strncmp to make sure that search
8299 		 * for non-existing name will have a chance to schedule().
8300 		 */
8301 		cond_resched();
8302 
8303 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8304 			continue;
8305 
8306 		targ_essent_len = bpf_core_essential_name_len(targ_name);
8307 		if (targ_essent_len != cands->name_len)
8308 			continue;
8309 
8310 		/* most of the time there is only one candidate for a given kind+name pair */
8311 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8312 		if (!new_cands) {
8313 			bpf_free_cands(cands);
8314 			return ERR_PTR(-ENOMEM);
8315 		}
8316 
8317 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8318 		bpf_free_cands(cands);
8319 		cands = new_cands;
8320 		cands->cands[cands->cnt].btf = targ_btf;
8321 		cands->cands[cands->cnt].id = i;
8322 		cands->cnt++;
8323 	}
8324 	return cands;
8325 }
8326 
8327 static struct bpf_cand_cache *
8328 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8329 {
8330 	struct bpf_cand_cache *cands, *cc, local_cand = {};
8331 	const struct btf *local_btf = ctx->btf;
8332 	const struct btf_type *local_type;
8333 	const struct btf *main_btf;
8334 	size_t local_essent_len;
8335 	struct btf *mod_btf;
8336 	const char *name;
8337 	int id;
8338 
8339 	main_btf = bpf_get_btf_vmlinux();
8340 	if (IS_ERR(main_btf))
8341 		return ERR_CAST(main_btf);
8342 	if (!main_btf)
8343 		return ERR_PTR(-EINVAL);
8344 
8345 	local_type = btf_type_by_id(local_btf, local_type_id);
8346 	if (!local_type)
8347 		return ERR_PTR(-EINVAL);
8348 
8349 	name = btf_name_by_offset(local_btf, local_type->name_off);
8350 	if (str_is_empty(name))
8351 		return ERR_PTR(-EINVAL);
8352 	local_essent_len = bpf_core_essential_name_len(name);
8353 
8354 	cands = &local_cand;
8355 	cands->name = name;
8356 	cands->kind = btf_kind(local_type);
8357 	cands->name_len = local_essent_len;
8358 
8359 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8360 	/* cands is a pointer to stack here */
8361 	if (cc) {
8362 		if (cc->cnt)
8363 			return cc;
8364 		goto check_modules;
8365 	}
8366 
8367 	/* Attempt to find target candidates in vmlinux BTF first */
8368 	cands = bpf_core_add_cands(cands, main_btf, 1);
8369 	if (IS_ERR(cands))
8370 		return ERR_CAST(cands);
8371 
8372 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8373 
8374 	/* populate cache even when cands->cnt == 0 */
8375 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8376 	if (IS_ERR(cc))
8377 		return ERR_CAST(cc);
8378 
8379 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
8380 	if (cc->cnt)
8381 		return cc;
8382 
8383 check_modules:
8384 	/* cands is a pointer to stack here and cands->cnt == 0 */
8385 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8386 	if (cc)
8387 		/* if cache has it return it even if cc->cnt == 0 */
8388 		return cc;
8389 
8390 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8391 	spin_lock_bh(&btf_idr_lock);
8392 	idr_for_each_entry(&btf_idr, mod_btf, id) {
8393 		if (!btf_is_module(mod_btf))
8394 			continue;
8395 		/* linear search could be slow hence unlock/lock
8396 		 * the IDR to avoiding holding it for too long
8397 		 */
8398 		btf_get(mod_btf);
8399 		spin_unlock_bh(&btf_idr_lock);
8400 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8401 		btf_put(mod_btf);
8402 		if (IS_ERR(cands))
8403 			return ERR_CAST(cands);
8404 		spin_lock_bh(&btf_idr_lock);
8405 	}
8406 	spin_unlock_bh(&btf_idr_lock);
8407 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
8408 	 * or pointer to stack if cands->cnd == 0.
8409 	 * Copy it into the cache even when cands->cnt == 0 and
8410 	 * return the result.
8411 	 */
8412 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8413 }
8414 
8415 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8416 		   int relo_idx, void *insn)
8417 {
8418 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8419 	struct bpf_core_cand_list cands = {};
8420 	struct bpf_core_relo_res targ_res;
8421 	struct bpf_core_spec *specs;
8422 	int err;
8423 
8424 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8425 	 * into arrays of btf_ids of struct fields and array indices.
8426 	 */
8427 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8428 	if (!specs)
8429 		return -ENOMEM;
8430 
8431 	if (need_cands) {
8432 		struct bpf_cand_cache *cc;
8433 		int i;
8434 
8435 		mutex_lock(&cand_cache_mutex);
8436 		cc = bpf_core_find_cands(ctx, relo->type_id);
8437 		if (IS_ERR(cc)) {
8438 			bpf_log(ctx->log, "target candidate search failed for %d\n",
8439 				relo->type_id);
8440 			err = PTR_ERR(cc);
8441 			goto out;
8442 		}
8443 		if (cc->cnt) {
8444 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8445 			if (!cands.cands) {
8446 				err = -ENOMEM;
8447 				goto out;
8448 			}
8449 		}
8450 		for (i = 0; i < cc->cnt; i++) {
8451 			bpf_log(ctx->log,
8452 				"CO-RE relocating %s %s: found target candidate [%d]\n",
8453 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8454 			cands.cands[i].btf = cc->cands[i].btf;
8455 			cands.cands[i].id = cc->cands[i].id;
8456 		}
8457 		cands.len = cc->cnt;
8458 		/* cand_cache_mutex needs to span the cache lookup and
8459 		 * copy of btf pointer into bpf_core_cand_list,
8460 		 * since module can be unloaded while bpf_core_calc_relo_insn
8461 		 * is working with module's btf.
8462 		 */
8463 	}
8464 
8465 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8466 				      &targ_res);
8467 	if (err)
8468 		goto out;
8469 
8470 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8471 				  &targ_res);
8472 
8473 out:
8474 	kfree(specs);
8475 	if (need_cands) {
8476 		kfree(cands.cands);
8477 		mutex_unlock(&cand_cache_mutex);
8478 		if (ctx->log->level & BPF_LOG_LEVEL2)
8479 			print_cand_cache(ctx->log);
8480 	}
8481 	return err;
8482 }
8483 
8484 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8485 				const struct bpf_reg_state *reg,
8486 				const char *field_name, u32 btf_id, const char *suffix)
8487 {
8488 	struct btf *btf = reg->btf;
8489 	const struct btf_type *walk_type, *safe_type;
8490 	const char *tname;
8491 	char safe_tname[64];
8492 	long ret, safe_id;
8493 	const struct btf_member *member;
8494 	u32 i;
8495 
8496 	walk_type = btf_type_by_id(btf, reg->btf_id);
8497 	if (!walk_type)
8498 		return false;
8499 
8500 	tname = btf_name_by_offset(btf, walk_type->name_off);
8501 
8502 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8503 	if (ret < 0)
8504 		return false;
8505 
8506 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8507 	if (safe_id < 0)
8508 		return false;
8509 
8510 	safe_type = btf_type_by_id(btf, safe_id);
8511 	if (!safe_type)
8512 		return false;
8513 
8514 	for_each_member(i, safe_type, member) {
8515 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
8516 		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8517 		u32 id;
8518 
8519 		if (!btf_type_is_ptr(mtype))
8520 			continue;
8521 
8522 		btf_type_skip_modifiers(btf, mtype->type, &id);
8523 		/* If we match on both type and name, the field is considered trusted. */
8524 		if (btf_id == id && !strcmp(field_name, m_name))
8525 			return true;
8526 	}
8527 
8528 	return false;
8529 }
8530 
8531 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8532 			       const struct btf *reg_btf, u32 reg_id,
8533 			       const struct btf *arg_btf, u32 arg_id)
8534 {
8535 	const char *reg_name, *arg_name, *search_needle;
8536 	const struct btf_type *reg_type, *arg_type;
8537 	int reg_len, arg_len, cmp_len;
8538 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8539 
8540 	reg_type = btf_type_by_id(reg_btf, reg_id);
8541 	if (!reg_type)
8542 		return false;
8543 
8544 	arg_type = btf_type_by_id(arg_btf, arg_id);
8545 	if (!arg_type)
8546 		return false;
8547 
8548 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8549 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8550 
8551 	reg_len = strlen(reg_name);
8552 	arg_len = strlen(arg_name);
8553 
8554 	/* Exactly one of the two type names may be suffixed with ___init, so
8555 	 * if the strings are the same size, they can't possibly be no-cast
8556 	 * aliases of one another. If you have two of the same type names, e.g.
8557 	 * they're both nf_conn___init, it would be improper to return true
8558 	 * because they are _not_ no-cast aliases, they are the same type.
8559 	 */
8560 	if (reg_len == arg_len)
8561 		return false;
8562 
8563 	/* Either of the two names must be the other name, suffixed with ___init. */
8564 	if ((reg_len != arg_len + pattern_len) &&
8565 	    (arg_len != reg_len + pattern_len))
8566 		return false;
8567 
8568 	if (reg_len < arg_len) {
8569 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8570 		cmp_len = reg_len;
8571 	} else {
8572 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8573 		cmp_len = arg_len;
8574 	}
8575 
8576 	if (!search_needle)
8577 		return false;
8578 
8579 	/* ___init suffix must come at the end of the name */
8580 	if (*(search_needle + pattern_len) != '\0')
8581 		return false;
8582 
8583 	return !strncmp(reg_name, arg_name, cmp_len);
8584 }
8585