xref: /openbmc/linux/kernel/bpf/btf.c (revision c8f14e2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/kobject.h>
26 #include <linux/sysfs.h>
27 #include <net/sock.h>
28 #include "../tools/lib/bpf/relo_core.h"
29 
30 /* BTF (BPF Type Format) is the meta data format which describes
31  * the data types of BPF program/map.  Hence, it basically focus
32  * on the C programming language which the modern BPF is primary
33  * using.
34  *
35  * ELF Section:
36  * ~~~~~~~~~~~
37  * The BTF data is stored under the ".BTF" ELF section
38  *
39  * struct btf_type:
40  * ~~~~~~~~~~~~~~~
41  * Each 'struct btf_type' object describes a C data type.
42  * Depending on the type it is describing, a 'struct btf_type'
43  * object may be followed by more data.  F.e.
44  * To describe an array, 'struct btf_type' is followed by
45  * 'struct btf_array'.
46  *
47  * 'struct btf_type' and any extra data following it are
48  * 4 bytes aligned.
49  *
50  * Type section:
51  * ~~~~~~~~~~~~~
52  * The BTF type section contains a list of 'struct btf_type' objects.
53  * Each one describes a C type.  Recall from the above section
54  * that a 'struct btf_type' object could be immediately followed by extra
55  * data in order to describe some particular C types.
56  *
57  * type_id:
58  * ~~~~~~~
59  * Each btf_type object is identified by a type_id.  The type_id
60  * is implicitly implied by the location of the btf_type object in
61  * the BTF type section.  The first one has type_id 1.  The second
62  * one has type_id 2...etc.  Hence, an earlier btf_type has
63  * a smaller type_id.
64  *
65  * A btf_type object may refer to another btf_type object by using
66  * type_id (i.e. the "type" in the "struct btf_type").
67  *
68  * NOTE that we cannot assume any reference-order.
69  * A btf_type object can refer to an earlier btf_type object
70  * but it can also refer to a later btf_type object.
71  *
72  * For example, to describe "const void *".  A btf_type
73  * object describing "const" may refer to another btf_type
74  * object describing "void *".  This type-reference is done
75  * by specifying type_id:
76  *
77  * [1] CONST (anon) type_id=2
78  * [2] PTR (anon) type_id=0
79  *
80  * The above is the btf_verifier debug log:
81  *   - Each line started with "[?]" is a btf_type object
82  *   - [?] is the type_id of the btf_type object.
83  *   - CONST/PTR is the BTF_KIND_XXX
84  *   - "(anon)" is the name of the type.  It just
85  *     happens that CONST and PTR has no name.
86  *   - type_id=XXX is the 'u32 type' in btf_type
87  *
88  * NOTE: "void" has type_id 0
89  *
90  * String section:
91  * ~~~~~~~~~~~~~~
92  * The BTF string section contains the names used by the type section.
93  * Each string is referred by an "offset" from the beginning of the
94  * string section.
95  *
96  * Each string is '\0' terminated.
97  *
98  * The first character in the string section must be '\0'
99  * which is used to mean 'anonymous'. Some btf_type may not
100  * have a name.
101  */
102 
103 /* BTF verification:
104  *
105  * To verify BTF data, two passes are needed.
106  *
107  * Pass #1
108  * ~~~~~~~
109  * The first pass is to collect all btf_type objects to
110  * an array: "btf->types".
111  *
112  * Depending on the C type that a btf_type is describing,
113  * a btf_type may be followed by extra data.  We don't know
114  * how many btf_type is there, and more importantly we don't
115  * know where each btf_type is located in the type section.
116  *
117  * Without knowing the location of each type_id, most verifications
118  * cannot be done.  e.g. an earlier btf_type may refer to a later
119  * btf_type (recall the "const void *" above), so we cannot
120  * check this type-reference in the first pass.
121  *
122  * In the first pass, it still does some verifications (e.g.
123  * checking the name is a valid offset to the string section).
124  *
125  * Pass #2
126  * ~~~~~~~
127  * The main focus is to resolve a btf_type that is referring
128  * to another type.
129  *
130  * We have to ensure the referring type:
131  * 1) does exist in the BTF (i.e. in btf->types[])
132  * 2) does not cause a loop:
133  *	struct A {
134  *		struct B b;
135  *	};
136  *
137  *	struct B {
138  *		struct A a;
139  *	};
140  *
141  * btf_type_needs_resolve() decides if a btf_type needs
142  * to be resolved.
143  *
144  * The needs_resolve type implements the "resolve()" ops which
145  * essentially does a DFS and detects backedge.
146  *
147  * During resolve (or DFS), different C types have different
148  * "RESOLVED" conditions.
149  *
150  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
151  * members because a member is always referring to another
152  * type.  A struct's member can be treated as "RESOLVED" if
153  * it is referring to a BTF_KIND_PTR.  Otherwise, the
154  * following valid C struct would be rejected:
155  *
156  *	struct A {
157  *		int m;
158  *		struct A *a;
159  *	};
160  *
161  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
162  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
163  * detect a pointer loop, e.g.:
164  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
165  *                        ^                                         |
166  *                        +-----------------------------------------+
167  *
168  */
169 
170 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
171 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
172 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
173 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
174 #define BITS_ROUNDUP_BYTES(bits) \
175 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
176 
177 #define BTF_INFO_MASK 0x9f00ffff
178 #define BTF_INT_MASK 0x0fffffff
179 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
180 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
181 
182 /* 16MB for 64k structs and each has 16 members and
183  * a few MB spaces for the string section.
184  * The hard limit is S32_MAX.
185  */
186 #define BTF_MAX_SIZE (16 * 1024 * 1024)
187 
188 #define for_each_member_from(i, from, struct_type, member)		\
189 	for (i = from, member = btf_type_member(struct_type) + from;	\
190 	     i < btf_type_vlen(struct_type);				\
191 	     i++, member++)
192 
193 #define for_each_vsi_from(i, from, struct_type, member)				\
194 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
195 	     i < btf_type_vlen(struct_type);					\
196 	     i++, member++)
197 
198 DEFINE_IDR(btf_idr);
199 DEFINE_SPINLOCK(btf_idr_lock);
200 
201 enum btf_kfunc_hook {
202 	BTF_KFUNC_HOOK_XDP,
203 	BTF_KFUNC_HOOK_TC,
204 	BTF_KFUNC_HOOK_STRUCT_OPS,
205 	BTF_KFUNC_HOOK_MAX,
206 };
207 
208 enum {
209 	BTF_KFUNC_SET_MAX_CNT = 32,
210 };
211 
212 struct btf_kfunc_set_tab {
213 	struct btf_id_set *sets[BTF_KFUNC_HOOK_MAX][BTF_KFUNC_TYPE_MAX];
214 };
215 
216 struct btf {
217 	void *data;
218 	struct btf_type **types;
219 	u32 *resolved_ids;
220 	u32 *resolved_sizes;
221 	const char *strings;
222 	void *nohdr_data;
223 	struct btf_header hdr;
224 	u32 nr_types; /* includes VOID for base BTF */
225 	u32 types_size;
226 	u32 data_size;
227 	refcount_t refcnt;
228 	u32 id;
229 	struct rcu_head rcu;
230 	struct btf_kfunc_set_tab *kfunc_set_tab;
231 
232 	/* split BTF support */
233 	struct btf *base_btf;
234 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
235 	u32 start_str_off; /* first string offset (0 for base BTF) */
236 	char name[MODULE_NAME_LEN];
237 	bool kernel_btf;
238 };
239 
240 enum verifier_phase {
241 	CHECK_META,
242 	CHECK_TYPE,
243 };
244 
245 struct resolve_vertex {
246 	const struct btf_type *t;
247 	u32 type_id;
248 	u16 next_member;
249 };
250 
251 enum visit_state {
252 	NOT_VISITED,
253 	VISITED,
254 	RESOLVED,
255 };
256 
257 enum resolve_mode {
258 	RESOLVE_TBD,	/* To Be Determined */
259 	RESOLVE_PTR,	/* Resolving for Pointer */
260 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
261 					 * or array
262 					 */
263 };
264 
265 #define MAX_RESOLVE_DEPTH 32
266 
267 struct btf_sec_info {
268 	u32 off;
269 	u32 len;
270 };
271 
272 struct btf_verifier_env {
273 	struct btf *btf;
274 	u8 *visit_states;
275 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
276 	struct bpf_verifier_log log;
277 	u32 log_type_id;
278 	u32 top_stack;
279 	enum verifier_phase phase;
280 	enum resolve_mode resolve_mode;
281 };
282 
283 static const char * const btf_kind_str[NR_BTF_KINDS] = {
284 	[BTF_KIND_UNKN]		= "UNKNOWN",
285 	[BTF_KIND_INT]		= "INT",
286 	[BTF_KIND_PTR]		= "PTR",
287 	[BTF_KIND_ARRAY]	= "ARRAY",
288 	[BTF_KIND_STRUCT]	= "STRUCT",
289 	[BTF_KIND_UNION]	= "UNION",
290 	[BTF_KIND_ENUM]		= "ENUM",
291 	[BTF_KIND_FWD]		= "FWD",
292 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
293 	[BTF_KIND_VOLATILE]	= "VOLATILE",
294 	[BTF_KIND_CONST]	= "CONST",
295 	[BTF_KIND_RESTRICT]	= "RESTRICT",
296 	[BTF_KIND_FUNC]		= "FUNC",
297 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
298 	[BTF_KIND_VAR]		= "VAR",
299 	[BTF_KIND_DATASEC]	= "DATASEC",
300 	[BTF_KIND_FLOAT]	= "FLOAT",
301 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
302 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
303 };
304 
305 const char *btf_type_str(const struct btf_type *t)
306 {
307 	return btf_kind_str[BTF_INFO_KIND(t->info)];
308 }
309 
310 /* Chunk size we use in safe copy of data to be shown. */
311 #define BTF_SHOW_OBJ_SAFE_SIZE		32
312 
313 /*
314  * This is the maximum size of a base type value (equivalent to a
315  * 128-bit int); if we are at the end of our safe buffer and have
316  * less than 16 bytes space we can't be assured of being able
317  * to copy the next type safely, so in such cases we will initiate
318  * a new copy.
319  */
320 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
321 
322 /* Type name size */
323 #define BTF_SHOW_NAME_SIZE		80
324 
325 /*
326  * Common data to all BTF show operations. Private show functions can add
327  * their own data to a structure containing a struct btf_show and consult it
328  * in the show callback.  See btf_type_show() below.
329  *
330  * One challenge with showing nested data is we want to skip 0-valued
331  * data, but in order to figure out whether a nested object is all zeros
332  * we need to walk through it.  As a result, we need to make two passes
333  * when handling structs, unions and arrays; the first path simply looks
334  * for nonzero data, while the second actually does the display.  The first
335  * pass is signalled by show->state.depth_check being set, and if we
336  * encounter a non-zero value we set show->state.depth_to_show to
337  * the depth at which we encountered it.  When we have completed the
338  * first pass, we will know if anything needs to be displayed if
339  * depth_to_show > depth.  See btf_[struct,array]_show() for the
340  * implementation of this.
341  *
342  * Another problem is we want to ensure the data for display is safe to
343  * access.  To support this, the anonymous "struct {} obj" tracks the data
344  * object and our safe copy of it.  We copy portions of the data needed
345  * to the object "copy" buffer, but because its size is limited to
346  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
347  * traverse larger objects for display.
348  *
349  * The various data type show functions all start with a call to
350  * btf_show_start_type() which returns a pointer to the safe copy
351  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
352  * raw data itself).  btf_show_obj_safe() is responsible for
353  * using copy_from_kernel_nofault() to update the safe data if necessary
354  * as we traverse the object's data.  skbuff-like semantics are
355  * used:
356  *
357  * - obj.head points to the start of the toplevel object for display
358  * - obj.size is the size of the toplevel object
359  * - obj.data points to the current point in the original data at
360  *   which our safe data starts.  obj.data will advance as we copy
361  *   portions of the data.
362  *
363  * In most cases a single copy will suffice, but larger data structures
364  * such as "struct task_struct" will require many copies.  The logic in
365  * btf_show_obj_safe() handles the logic that determines if a new
366  * copy_from_kernel_nofault() is needed.
367  */
368 struct btf_show {
369 	u64 flags;
370 	void *target;	/* target of show operation (seq file, buffer) */
371 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
372 	const struct btf *btf;
373 	/* below are used during iteration */
374 	struct {
375 		u8 depth;
376 		u8 depth_to_show;
377 		u8 depth_check;
378 		u8 array_member:1,
379 		   array_terminated:1;
380 		u16 array_encoding;
381 		u32 type_id;
382 		int status;			/* non-zero for error */
383 		const struct btf_type *type;
384 		const struct btf_member *member;
385 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
386 	} state;
387 	struct {
388 		u32 size;
389 		void *head;
390 		void *data;
391 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
392 	} obj;
393 };
394 
395 struct btf_kind_operations {
396 	s32 (*check_meta)(struct btf_verifier_env *env,
397 			  const struct btf_type *t,
398 			  u32 meta_left);
399 	int (*resolve)(struct btf_verifier_env *env,
400 		       const struct resolve_vertex *v);
401 	int (*check_member)(struct btf_verifier_env *env,
402 			    const struct btf_type *struct_type,
403 			    const struct btf_member *member,
404 			    const struct btf_type *member_type);
405 	int (*check_kflag_member)(struct btf_verifier_env *env,
406 				  const struct btf_type *struct_type,
407 				  const struct btf_member *member,
408 				  const struct btf_type *member_type);
409 	void (*log_details)(struct btf_verifier_env *env,
410 			    const struct btf_type *t);
411 	void (*show)(const struct btf *btf, const struct btf_type *t,
412 			 u32 type_id, void *data, u8 bits_offsets,
413 			 struct btf_show *show);
414 };
415 
416 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
417 static struct btf_type btf_void;
418 
419 static int btf_resolve(struct btf_verifier_env *env,
420 		       const struct btf_type *t, u32 type_id);
421 
422 static int btf_func_check(struct btf_verifier_env *env,
423 			  const struct btf_type *t);
424 
425 static bool btf_type_is_modifier(const struct btf_type *t)
426 {
427 	/* Some of them is not strictly a C modifier
428 	 * but they are grouped into the same bucket
429 	 * for BTF concern:
430 	 *   A type (t) that refers to another
431 	 *   type through t->type AND its size cannot
432 	 *   be determined without following the t->type.
433 	 *
434 	 * ptr does not fall into this bucket
435 	 * because its size is always sizeof(void *).
436 	 */
437 	switch (BTF_INFO_KIND(t->info)) {
438 	case BTF_KIND_TYPEDEF:
439 	case BTF_KIND_VOLATILE:
440 	case BTF_KIND_CONST:
441 	case BTF_KIND_RESTRICT:
442 	case BTF_KIND_TYPE_TAG:
443 		return true;
444 	}
445 
446 	return false;
447 }
448 
449 bool btf_type_is_void(const struct btf_type *t)
450 {
451 	return t == &btf_void;
452 }
453 
454 static bool btf_type_is_fwd(const struct btf_type *t)
455 {
456 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
457 }
458 
459 static bool btf_type_nosize(const struct btf_type *t)
460 {
461 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
462 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
463 }
464 
465 static bool btf_type_nosize_or_null(const struct btf_type *t)
466 {
467 	return !t || btf_type_nosize(t);
468 }
469 
470 static bool __btf_type_is_struct(const struct btf_type *t)
471 {
472 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
473 }
474 
475 static bool btf_type_is_array(const struct btf_type *t)
476 {
477 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
478 }
479 
480 static bool btf_type_is_datasec(const struct btf_type *t)
481 {
482 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
483 }
484 
485 static bool btf_type_is_decl_tag(const struct btf_type *t)
486 {
487 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
488 }
489 
490 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
491 {
492 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
493 	       btf_type_is_var(t) || btf_type_is_typedef(t);
494 }
495 
496 u32 btf_nr_types(const struct btf *btf)
497 {
498 	u32 total = 0;
499 
500 	while (btf) {
501 		total += btf->nr_types;
502 		btf = btf->base_btf;
503 	}
504 
505 	return total;
506 }
507 
508 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
509 {
510 	const struct btf_type *t;
511 	const char *tname;
512 	u32 i, total;
513 
514 	total = btf_nr_types(btf);
515 	for (i = 1; i < total; i++) {
516 		t = btf_type_by_id(btf, i);
517 		if (BTF_INFO_KIND(t->info) != kind)
518 			continue;
519 
520 		tname = btf_name_by_offset(btf, t->name_off);
521 		if (!strcmp(tname, name))
522 			return i;
523 	}
524 
525 	return -ENOENT;
526 }
527 
528 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
529 {
530 	struct btf *btf;
531 	s32 ret;
532 	int id;
533 
534 	btf = bpf_get_btf_vmlinux();
535 	if (IS_ERR(btf))
536 		return PTR_ERR(btf);
537 	if (!btf)
538 		return -EINVAL;
539 
540 	ret = btf_find_by_name_kind(btf, name, kind);
541 	/* ret is never zero, since btf_find_by_name_kind returns
542 	 * positive btf_id or negative error.
543 	 */
544 	if (ret > 0) {
545 		btf_get(btf);
546 		*btf_p = btf;
547 		return ret;
548 	}
549 
550 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
551 	spin_lock_bh(&btf_idr_lock);
552 	idr_for_each_entry(&btf_idr, btf, id) {
553 		if (!btf_is_module(btf))
554 			continue;
555 		/* linear search could be slow hence unlock/lock
556 		 * the IDR to avoiding holding it for too long
557 		 */
558 		btf_get(btf);
559 		spin_unlock_bh(&btf_idr_lock);
560 		ret = btf_find_by_name_kind(btf, name, kind);
561 		if (ret > 0) {
562 			*btf_p = btf;
563 			return ret;
564 		}
565 		spin_lock_bh(&btf_idr_lock);
566 		btf_put(btf);
567 	}
568 	spin_unlock_bh(&btf_idr_lock);
569 	return ret;
570 }
571 
572 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
573 					       u32 id, u32 *res_id)
574 {
575 	const struct btf_type *t = btf_type_by_id(btf, id);
576 
577 	while (btf_type_is_modifier(t)) {
578 		id = t->type;
579 		t = btf_type_by_id(btf, t->type);
580 	}
581 
582 	if (res_id)
583 		*res_id = id;
584 
585 	return t;
586 }
587 
588 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
589 					    u32 id, u32 *res_id)
590 {
591 	const struct btf_type *t;
592 
593 	t = btf_type_skip_modifiers(btf, id, NULL);
594 	if (!btf_type_is_ptr(t))
595 		return NULL;
596 
597 	return btf_type_skip_modifiers(btf, t->type, res_id);
598 }
599 
600 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
601 						 u32 id, u32 *res_id)
602 {
603 	const struct btf_type *ptype;
604 
605 	ptype = btf_type_resolve_ptr(btf, id, res_id);
606 	if (ptype && btf_type_is_func_proto(ptype))
607 		return ptype;
608 
609 	return NULL;
610 }
611 
612 /* Types that act only as a source, not sink or intermediate
613  * type when resolving.
614  */
615 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
616 {
617 	return btf_type_is_var(t) ||
618 	       btf_type_is_decl_tag(t) ||
619 	       btf_type_is_datasec(t);
620 }
621 
622 /* What types need to be resolved?
623  *
624  * btf_type_is_modifier() is an obvious one.
625  *
626  * btf_type_is_struct() because its member refers to
627  * another type (through member->type).
628  *
629  * btf_type_is_var() because the variable refers to
630  * another type. btf_type_is_datasec() holds multiple
631  * btf_type_is_var() types that need resolving.
632  *
633  * btf_type_is_array() because its element (array->type)
634  * refers to another type.  Array can be thought of a
635  * special case of struct while array just has the same
636  * member-type repeated by array->nelems of times.
637  */
638 static bool btf_type_needs_resolve(const struct btf_type *t)
639 {
640 	return btf_type_is_modifier(t) ||
641 	       btf_type_is_ptr(t) ||
642 	       btf_type_is_struct(t) ||
643 	       btf_type_is_array(t) ||
644 	       btf_type_is_var(t) ||
645 	       btf_type_is_func(t) ||
646 	       btf_type_is_decl_tag(t) ||
647 	       btf_type_is_datasec(t);
648 }
649 
650 /* t->size can be used */
651 static bool btf_type_has_size(const struct btf_type *t)
652 {
653 	switch (BTF_INFO_KIND(t->info)) {
654 	case BTF_KIND_INT:
655 	case BTF_KIND_STRUCT:
656 	case BTF_KIND_UNION:
657 	case BTF_KIND_ENUM:
658 	case BTF_KIND_DATASEC:
659 	case BTF_KIND_FLOAT:
660 		return true;
661 	}
662 
663 	return false;
664 }
665 
666 static const char *btf_int_encoding_str(u8 encoding)
667 {
668 	if (encoding == 0)
669 		return "(none)";
670 	else if (encoding == BTF_INT_SIGNED)
671 		return "SIGNED";
672 	else if (encoding == BTF_INT_CHAR)
673 		return "CHAR";
674 	else if (encoding == BTF_INT_BOOL)
675 		return "BOOL";
676 	else
677 		return "UNKN";
678 }
679 
680 static u32 btf_type_int(const struct btf_type *t)
681 {
682 	return *(u32 *)(t + 1);
683 }
684 
685 static const struct btf_array *btf_type_array(const struct btf_type *t)
686 {
687 	return (const struct btf_array *)(t + 1);
688 }
689 
690 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
691 {
692 	return (const struct btf_enum *)(t + 1);
693 }
694 
695 static const struct btf_var *btf_type_var(const struct btf_type *t)
696 {
697 	return (const struct btf_var *)(t + 1);
698 }
699 
700 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
701 {
702 	return (const struct btf_decl_tag *)(t + 1);
703 }
704 
705 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
706 {
707 	return kind_ops[BTF_INFO_KIND(t->info)];
708 }
709 
710 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
711 {
712 	if (!BTF_STR_OFFSET_VALID(offset))
713 		return false;
714 
715 	while (offset < btf->start_str_off)
716 		btf = btf->base_btf;
717 
718 	offset -= btf->start_str_off;
719 	return offset < btf->hdr.str_len;
720 }
721 
722 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
723 {
724 	if ((first ? !isalpha(c) :
725 		     !isalnum(c)) &&
726 	    c != '_' &&
727 	    ((c == '.' && !dot_ok) ||
728 	      c != '.'))
729 		return false;
730 	return true;
731 }
732 
733 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
734 {
735 	while (offset < btf->start_str_off)
736 		btf = btf->base_btf;
737 
738 	offset -= btf->start_str_off;
739 	if (offset < btf->hdr.str_len)
740 		return &btf->strings[offset];
741 
742 	return NULL;
743 }
744 
745 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
746 {
747 	/* offset must be valid */
748 	const char *src = btf_str_by_offset(btf, offset);
749 	const char *src_limit;
750 
751 	if (!__btf_name_char_ok(*src, true, dot_ok))
752 		return false;
753 
754 	/* set a limit on identifier length */
755 	src_limit = src + KSYM_NAME_LEN;
756 	src++;
757 	while (*src && src < src_limit) {
758 		if (!__btf_name_char_ok(*src, false, dot_ok))
759 			return false;
760 		src++;
761 	}
762 
763 	return !*src;
764 }
765 
766 /* Only C-style identifier is permitted. This can be relaxed if
767  * necessary.
768  */
769 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
770 {
771 	return __btf_name_valid(btf, offset, false);
772 }
773 
774 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
775 {
776 	return __btf_name_valid(btf, offset, true);
777 }
778 
779 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
780 {
781 	const char *name;
782 
783 	if (!offset)
784 		return "(anon)";
785 
786 	name = btf_str_by_offset(btf, offset);
787 	return name ?: "(invalid-name-offset)";
788 }
789 
790 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
791 {
792 	return btf_str_by_offset(btf, offset);
793 }
794 
795 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
796 {
797 	while (type_id < btf->start_id)
798 		btf = btf->base_btf;
799 
800 	type_id -= btf->start_id;
801 	if (type_id >= btf->nr_types)
802 		return NULL;
803 	return btf->types[type_id];
804 }
805 
806 /*
807  * Regular int is not a bit field and it must be either
808  * u8/u16/u32/u64 or __int128.
809  */
810 static bool btf_type_int_is_regular(const struct btf_type *t)
811 {
812 	u8 nr_bits, nr_bytes;
813 	u32 int_data;
814 
815 	int_data = btf_type_int(t);
816 	nr_bits = BTF_INT_BITS(int_data);
817 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
818 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
819 	    BTF_INT_OFFSET(int_data) ||
820 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
821 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
822 	     nr_bytes != (2 * sizeof(u64)))) {
823 		return false;
824 	}
825 
826 	return true;
827 }
828 
829 /*
830  * Check that given struct member is a regular int with expected
831  * offset and size.
832  */
833 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
834 			   const struct btf_member *m,
835 			   u32 expected_offset, u32 expected_size)
836 {
837 	const struct btf_type *t;
838 	u32 id, int_data;
839 	u8 nr_bits;
840 
841 	id = m->type;
842 	t = btf_type_id_size(btf, &id, NULL);
843 	if (!t || !btf_type_is_int(t))
844 		return false;
845 
846 	int_data = btf_type_int(t);
847 	nr_bits = BTF_INT_BITS(int_data);
848 	if (btf_type_kflag(s)) {
849 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
850 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
851 
852 		/* if kflag set, int should be a regular int and
853 		 * bit offset should be at byte boundary.
854 		 */
855 		return !bitfield_size &&
856 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
857 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
858 	}
859 
860 	if (BTF_INT_OFFSET(int_data) ||
861 	    BITS_PER_BYTE_MASKED(m->offset) ||
862 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
863 	    BITS_PER_BYTE_MASKED(nr_bits) ||
864 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
865 		return false;
866 
867 	return true;
868 }
869 
870 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
871 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
872 						       u32 id)
873 {
874 	const struct btf_type *t = btf_type_by_id(btf, id);
875 
876 	while (btf_type_is_modifier(t) &&
877 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
878 		t = btf_type_by_id(btf, t->type);
879 	}
880 
881 	return t;
882 }
883 
884 #define BTF_SHOW_MAX_ITER	10
885 
886 #define BTF_KIND_BIT(kind)	(1ULL << kind)
887 
888 /*
889  * Populate show->state.name with type name information.
890  * Format of type name is
891  *
892  * [.member_name = ] (type_name)
893  */
894 static const char *btf_show_name(struct btf_show *show)
895 {
896 	/* BTF_MAX_ITER array suffixes "[]" */
897 	const char *array_suffixes = "[][][][][][][][][][]";
898 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
899 	/* BTF_MAX_ITER pointer suffixes "*" */
900 	const char *ptr_suffixes = "**********";
901 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
902 	const char *name = NULL, *prefix = "", *parens = "";
903 	const struct btf_member *m = show->state.member;
904 	const struct btf_type *t;
905 	const struct btf_array *array;
906 	u32 id = show->state.type_id;
907 	const char *member = NULL;
908 	bool show_member = false;
909 	u64 kinds = 0;
910 	int i;
911 
912 	show->state.name[0] = '\0';
913 
914 	/*
915 	 * Don't show type name if we're showing an array member;
916 	 * in that case we show the array type so don't need to repeat
917 	 * ourselves for each member.
918 	 */
919 	if (show->state.array_member)
920 		return "";
921 
922 	/* Retrieve member name, if any. */
923 	if (m) {
924 		member = btf_name_by_offset(show->btf, m->name_off);
925 		show_member = strlen(member) > 0;
926 		id = m->type;
927 	}
928 
929 	/*
930 	 * Start with type_id, as we have resolved the struct btf_type *
931 	 * via btf_modifier_show() past the parent typedef to the child
932 	 * struct, int etc it is defined as.  In such cases, the type_id
933 	 * still represents the starting type while the struct btf_type *
934 	 * in our show->state points at the resolved type of the typedef.
935 	 */
936 	t = btf_type_by_id(show->btf, id);
937 	if (!t)
938 		return "";
939 
940 	/*
941 	 * The goal here is to build up the right number of pointer and
942 	 * array suffixes while ensuring the type name for a typedef
943 	 * is represented.  Along the way we accumulate a list of
944 	 * BTF kinds we have encountered, since these will inform later
945 	 * display; for example, pointer types will not require an
946 	 * opening "{" for struct, we will just display the pointer value.
947 	 *
948 	 * We also want to accumulate the right number of pointer or array
949 	 * indices in the format string while iterating until we get to
950 	 * the typedef/pointee/array member target type.
951 	 *
952 	 * We start by pointing at the end of pointer and array suffix
953 	 * strings; as we accumulate pointers and arrays we move the pointer
954 	 * or array string backwards so it will show the expected number of
955 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
956 	 * and/or arrays and typedefs are supported as a precaution.
957 	 *
958 	 * We also want to get typedef name while proceeding to resolve
959 	 * type it points to so that we can add parentheses if it is a
960 	 * "typedef struct" etc.
961 	 */
962 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
963 
964 		switch (BTF_INFO_KIND(t->info)) {
965 		case BTF_KIND_TYPEDEF:
966 			if (!name)
967 				name = btf_name_by_offset(show->btf,
968 							       t->name_off);
969 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
970 			id = t->type;
971 			break;
972 		case BTF_KIND_ARRAY:
973 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
974 			parens = "[";
975 			if (!t)
976 				return "";
977 			array = btf_type_array(t);
978 			if (array_suffix > array_suffixes)
979 				array_suffix -= 2;
980 			id = array->type;
981 			break;
982 		case BTF_KIND_PTR:
983 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
984 			if (ptr_suffix > ptr_suffixes)
985 				ptr_suffix -= 1;
986 			id = t->type;
987 			break;
988 		default:
989 			id = 0;
990 			break;
991 		}
992 		if (!id)
993 			break;
994 		t = btf_type_skip_qualifiers(show->btf, id);
995 	}
996 	/* We may not be able to represent this type; bail to be safe */
997 	if (i == BTF_SHOW_MAX_ITER)
998 		return "";
999 
1000 	if (!name)
1001 		name = btf_name_by_offset(show->btf, t->name_off);
1002 
1003 	switch (BTF_INFO_KIND(t->info)) {
1004 	case BTF_KIND_STRUCT:
1005 	case BTF_KIND_UNION:
1006 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1007 			 "struct" : "union";
1008 		/* if it's an array of struct/union, parens is already set */
1009 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1010 			parens = "{";
1011 		break;
1012 	case BTF_KIND_ENUM:
1013 		prefix = "enum";
1014 		break;
1015 	default:
1016 		break;
1017 	}
1018 
1019 	/* pointer does not require parens */
1020 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1021 		parens = "";
1022 	/* typedef does not require struct/union/enum prefix */
1023 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1024 		prefix = "";
1025 
1026 	if (!name)
1027 		name = "";
1028 
1029 	/* Even if we don't want type name info, we want parentheses etc */
1030 	if (show->flags & BTF_SHOW_NONAME)
1031 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1032 			 parens);
1033 	else
1034 		snprintf(show->state.name, sizeof(show->state.name),
1035 			 "%s%s%s(%s%s%s%s%s%s)%s",
1036 			 /* first 3 strings comprise ".member = " */
1037 			 show_member ? "." : "",
1038 			 show_member ? member : "",
1039 			 show_member ? " = " : "",
1040 			 /* ...next is our prefix (struct, enum, etc) */
1041 			 prefix,
1042 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1043 			 /* ...this is the type name itself */
1044 			 name,
1045 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1046 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1047 			 array_suffix, parens);
1048 
1049 	return show->state.name;
1050 }
1051 
1052 static const char *__btf_show_indent(struct btf_show *show)
1053 {
1054 	const char *indents = "                                ";
1055 	const char *indent = &indents[strlen(indents)];
1056 
1057 	if ((indent - show->state.depth) >= indents)
1058 		return indent - show->state.depth;
1059 	return indents;
1060 }
1061 
1062 static const char *btf_show_indent(struct btf_show *show)
1063 {
1064 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1065 }
1066 
1067 static const char *btf_show_newline(struct btf_show *show)
1068 {
1069 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1070 }
1071 
1072 static const char *btf_show_delim(struct btf_show *show)
1073 {
1074 	if (show->state.depth == 0)
1075 		return "";
1076 
1077 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1078 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1079 		return "|";
1080 
1081 	return ",";
1082 }
1083 
1084 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1085 {
1086 	va_list args;
1087 
1088 	if (!show->state.depth_check) {
1089 		va_start(args, fmt);
1090 		show->showfn(show, fmt, args);
1091 		va_end(args);
1092 	}
1093 }
1094 
1095 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1096  * format specifiers to the format specifier passed in; these do the work of
1097  * adding indentation, delimiters etc while the caller simply has to specify
1098  * the type value(s) in the format specifier + value(s).
1099  */
1100 #define btf_show_type_value(show, fmt, value)				       \
1101 	do {								       \
1102 		if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||	       \
1103 		    show->state.depth == 0) {				       \
1104 			btf_show(show, "%s%s" fmt "%s%s",		       \
1105 				 btf_show_indent(show),			       \
1106 				 btf_show_name(show),			       \
1107 				 value, btf_show_delim(show),		       \
1108 				 btf_show_newline(show));		       \
1109 			if (show->state.depth > show->state.depth_to_show)     \
1110 				show->state.depth_to_show = show->state.depth; \
1111 		}							       \
1112 	} while (0)
1113 
1114 #define btf_show_type_values(show, fmt, ...)				       \
1115 	do {								       \
1116 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1117 			 btf_show_name(show),				       \
1118 			 __VA_ARGS__, btf_show_delim(show),		       \
1119 			 btf_show_newline(show));			       \
1120 		if (show->state.depth > show->state.depth_to_show)	       \
1121 			show->state.depth_to_show = show->state.depth;	       \
1122 	} while (0)
1123 
1124 /* How much is left to copy to safe buffer after @data? */
1125 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1126 {
1127 	return show->obj.head + show->obj.size - data;
1128 }
1129 
1130 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1131 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1132 {
1133 	return data >= show->obj.data &&
1134 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1135 }
1136 
1137 /*
1138  * If object pointed to by @data of @size falls within our safe buffer, return
1139  * the equivalent pointer to the same safe data.  Assumes
1140  * copy_from_kernel_nofault() has already happened and our safe buffer is
1141  * populated.
1142  */
1143 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1144 {
1145 	if (btf_show_obj_is_safe(show, data, size))
1146 		return show->obj.safe + (data - show->obj.data);
1147 	return NULL;
1148 }
1149 
1150 /*
1151  * Return a safe-to-access version of data pointed to by @data.
1152  * We do this by copying the relevant amount of information
1153  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1154  *
1155  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1156  * safe copy is needed.
1157  *
1158  * Otherwise we need to determine if we have the required amount
1159  * of data (determined by the @data pointer and the size of the
1160  * largest base type we can encounter (represented by
1161  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1162  * that we will be able to print some of the current object,
1163  * and if more is needed a copy will be triggered.
1164  * Some objects such as structs will not fit into the buffer;
1165  * in such cases additional copies when we iterate over their
1166  * members may be needed.
1167  *
1168  * btf_show_obj_safe() is used to return a safe buffer for
1169  * btf_show_start_type(); this ensures that as we recurse into
1170  * nested types we always have safe data for the given type.
1171  * This approach is somewhat wasteful; it's possible for example
1172  * that when iterating over a large union we'll end up copying the
1173  * same data repeatedly, but the goal is safety not performance.
1174  * We use stack data as opposed to per-CPU buffers because the
1175  * iteration over a type can take some time, and preemption handling
1176  * would greatly complicate use of the safe buffer.
1177  */
1178 static void *btf_show_obj_safe(struct btf_show *show,
1179 			       const struct btf_type *t,
1180 			       void *data)
1181 {
1182 	const struct btf_type *rt;
1183 	int size_left, size;
1184 	void *safe = NULL;
1185 
1186 	if (show->flags & BTF_SHOW_UNSAFE)
1187 		return data;
1188 
1189 	rt = btf_resolve_size(show->btf, t, &size);
1190 	if (IS_ERR(rt)) {
1191 		show->state.status = PTR_ERR(rt);
1192 		return NULL;
1193 	}
1194 
1195 	/*
1196 	 * Is this toplevel object? If so, set total object size and
1197 	 * initialize pointers.  Otherwise check if we still fall within
1198 	 * our safe object data.
1199 	 */
1200 	if (show->state.depth == 0) {
1201 		show->obj.size = size;
1202 		show->obj.head = data;
1203 	} else {
1204 		/*
1205 		 * If the size of the current object is > our remaining
1206 		 * safe buffer we _may_ need to do a new copy.  However
1207 		 * consider the case of a nested struct; it's size pushes
1208 		 * us over the safe buffer limit, but showing any individual
1209 		 * struct members does not.  In such cases, we don't need
1210 		 * to initiate a fresh copy yet; however we definitely need
1211 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1212 		 * in our buffer, regardless of the current object size.
1213 		 * The logic here is that as we resolve types we will
1214 		 * hit a base type at some point, and we need to be sure
1215 		 * the next chunk of data is safely available to display
1216 		 * that type info safely.  We cannot rely on the size of
1217 		 * the current object here because it may be much larger
1218 		 * than our current buffer (e.g. task_struct is 8k).
1219 		 * All we want to do here is ensure that we can print the
1220 		 * next basic type, which we can if either
1221 		 * - the current type size is within the safe buffer; or
1222 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1223 		 *   the safe buffer.
1224 		 */
1225 		safe = __btf_show_obj_safe(show, data,
1226 					   min(size,
1227 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1228 	}
1229 
1230 	/*
1231 	 * We need a new copy to our safe object, either because we haven't
1232 	 * yet copied and are initializing safe data, or because the data
1233 	 * we want falls outside the boundaries of the safe object.
1234 	 */
1235 	if (!safe) {
1236 		size_left = btf_show_obj_size_left(show, data);
1237 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1238 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1239 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1240 							      data, size_left);
1241 		if (!show->state.status) {
1242 			show->obj.data = data;
1243 			safe = show->obj.safe;
1244 		}
1245 	}
1246 
1247 	return safe;
1248 }
1249 
1250 /*
1251  * Set the type we are starting to show and return a safe data pointer
1252  * to be used for showing the associated data.
1253  */
1254 static void *btf_show_start_type(struct btf_show *show,
1255 				 const struct btf_type *t,
1256 				 u32 type_id, void *data)
1257 {
1258 	show->state.type = t;
1259 	show->state.type_id = type_id;
1260 	show->state.name[0] = '\0';
1261 
1262 	return btf_show_obj_safe(show, t, data);
1263 }
1264 
1265 static void btf_show_end_type(struct btf_show *show)
1266 {
1267 	show->state.type = NULL;
1268 	show->state.type_id = 0;
1269 	show->state.name[0] = '\0';
1270 }
1271 
1272 static void *btf_show_start_aggr_type(struct btf_show *show,
1273 				      const struct btf_type *t,
1274 				      u32 type_id, void *data)
1275 {
1276 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1277 
1278 	if (!safe_data)
1279 		return safe_data;
1280 
1281 	btf_show(show, "%s%s%s", btf_show_indent(show),
1282 		 btf_show_name(show),
1283 		 btf_show_newline(show));
1284 	show->state.depth++;
1285 	return safe_data;
1286 }
1287 
1288 static void btf_show_end_aggr_type(struct btf_show *show,
1289 				   const char *suffix)
1290 {
1291 	show->state.depth--;
1292 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1293 		 btf_show_delim(show), btf_show_newline(show));
1294 	btf_show_end_type(show);
1295 }
1296 
1297 static void btf_show_start_member(struct btf_show *show,
1298 				  const struct btf_member *m)
1299 {
1300 	show->state.member = m;
1301 }
1302 
1303 static void btf_show_start_array_member(struct btf_show *show)
1304 {
1305 	show->state.array_member = 1;
1306 	btf_show_start_member(show, NULL);
1307 }
1308 
1309 static void btf_show_end_member(struct btf_show *show)
1310 {
1311 	show->state.member = NULL;
1312 }
1313 
1314 static void btf_show_end_array_member(struct btf_show *show)
1315 {
1316 	show->state.array_member = 0;
1317 	btf_show_end_member(show);
1318 }
1319 
1320 static void *btf_show_start_array_type(struct btf_show *show,
1321 				       const struct btf_type *t,
1322 				       u32 type_id,
1323 				       u16 array_encoding,
1324 				       void *data)
1325 {
1326 	show->state.array_encoding = array_encoding;
1327 	show->state.array_terminated = 0;
1328 	return btf_show_start_aggr_type(show, t, type_id, data);
1329 }
1330 
1331 static void btf_show_end_array_type(struct btf_show *show)
1332 {
1333 	show->state.array_encoding = 0;
1334 	show->state.array_terminated = 0;
1335 	btf_show_end_aggr_type(show, "]");
1336 }
1337 
1338 static void *btf_show_start_struct_type(struct btf_show *show,
1339 					const struct btf_type *t,
1340 					u32 type_id,
1341 					void *data)
1342 {
1343 	return btf_show_start_aggr_type(show, t, type_id, data);
1344 }
1345 
1346 static void btf_show_end_struct_type(struct btf_show *show)
1347 {
1348 	btf_show_end_aggr_type(show, "}");
1349 }
1350 
1351 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1352 					      const char *fmt, ...)
1353 {
1354 	va_list args;
1355 
1356 	va_start(args, fmt);
1357 	bpf_verifier_vlog(log, fmt, args);
1358 	va_end(args);
1359 }
1360 
1361 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1362 					    const char *fmt, ...)
1363 {
1364 	struct bpf_verifier_log *log = &env->log;
1365 	va_list args;
1366 
1367 	if (!bpf_verifier_log_needed(log))
1368 		return;
1369 
1370 	va_start(args, fmt);
1371 	bpf_verifier_vlog(log, fmt, args);
1372 	va_end(args);
1373 }
1374 
1375 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1376 						   const struct btf_type *t,
1377 						   bool log_details,
1378 						   const char *fmt, ...)
1379 {
1380 	struct bpf_verifier_log *log = &env->log;
1381 	u8 kind = BTF_INFO_KIND(t->info);
1382 	struct btf *btf = env->btf;
1383 	va_list args;
1384 
1385 	if (!bpf_verifier_log_needed(log))
1386 		return;
1387 
1388 	/* btf verifier prints all types it is processing via
1389 	 * btf_verifier_log_type(..., fmt = NULL).
1390 	 * Skip those prints for in-kernel BTF verification.
1391 	 */
1392 	if (log->level == BPF_LOG_KERNEL && !fmt)
1393 		return;
1394 
1395 	__btf_verifier_log(log, "[%u] %s %s%s",
1396 			   env->log_type_id,
1397 			   btf_kind_str[kind],
1398 			   __btf_name_by_offset(btf, t->name_off),
1399 			   log_details ? " " : "");
1400 
1401 	if (log_details)
1402 		btf_type_ops(t)->log_details(env, t);
1403 
1404 	if (fmt && *fmt) {
1405 		__btf_verifier_log(log, " ");
1406 		va_start(args, fmt);
1407 		bpf_verifier_vlog(log, fmt, args);
1408 		va_end(args);
1409 	}
1410 
1411 	__btf_verifier_log(log, "\n");
1412 }
1413 
1414 #define btf_verifier_log_type(env, t, ...) \
1415 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1416 #define btf_verifier_log_basic(env, t, ...) \
1417 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1418 
1419 __printf(4, 5)
1420 static void btf_verifier_log_member(struct btf_verifier_env *env,
1421 				    const struct btf_type *struct_type,
1422 				    const struct btf_member *member,
1423 				    const char *fmt, ...)
1424 {
1425 	struct bpf_verifier_log *log = &env->log;
1426 	struct btf *btf = env->btf;
1427 	va_list args;
1428 
1429 	if (!bpf_verifier_log_needed(log))
1430 		return;
1431 
1432 	if (log->level == BPF_LOG_KERNEL && !fmt)
1433 		return;
1434 	/* The CHECK_META phase already did a btf dump.
1435 	 *
1436 	 * If member is logged again, it must hit an error in
1437 	 * parsing this member.  It is useful to print out which
1438 	 * struct this member belongs to.
1439 	 */
1440 	if (env->phase != CHECK_META)
1441 		btf_verifier_log_type(env, struct_type, NULL);
1442 
1443 	if (btf_type_kflag(struct_type))
1444 		__btf_verifier_log(log,
1445 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1446 				   __btf_name_by_offset(btf, member->name_off),
1447 				   member->type,
1448 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1449 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1450 	else
1451 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1452 				   __btf_name_by_offset(btf, member->name_off),
1453 				   member->type, member->offset);
1454 
1455 	if (fmt && *fmt) {
1456 		__btf_verifier_log(log, " ");
1457 		va_start(args, fmt);
1458 		bpf_verifier_vlog(log, fmt, args);
1459 		va_end(args);
1460 	}
1461 
1462 	__btf_verifier_log(log, "\n");
1463 }
1464 
1465 __printf(4, 5)
1466 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1467 				 const struct btf_type *datasec_type,
1468 				 const struct btf_var_secinfo *vsi,
1469 				 const char *fmt, ...)
1470 {
1471 	struct bpf_verifier_log *log = &env->log;
1472 	va_list args;
1473 
1474 	if (!bpf_verifier_log_needed(log))
1475 		return;
1476 	if (log->level == BPF_LOG_KERNEL && !fmt)
1477 		return;
1478 	if (env->phase != CHECK_META)
1479 		btf_verifier_log_type(env, datasec_type, NULL);
1480 
1481 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1482 			   vsi->type, vsi->offset, vsi->size);
1483 	if (fmt && *fmt) {
1484 		__btf_verifier_log(log, " ");
1485 		va_start(args, fmt);
1486 		bpf_verifier_vlog(log, fmt, args);
1487 		va_end(args);
1488 	}
1489 
1490 	__btf_verifier_log(log, "\n");
1491 }
1492 
1493 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1494 				 u32 btf_data_size)
1495 {
1496 	struct bpf_verifier_log *log = &env->log;
1497 	const struct btf *btf = env->btf;
1498 	const struct btf_header *hdr;
1499 
1500 	if (!bpf_verifier_log_needed(log))
1501 		return;
1502 
1503 	if (log->level == BPF_LOG_KERNEL)
1504 		return;
1505 	hdr = &btf->hdr;
1506 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1507 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1508 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1509 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1510 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1511 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1512 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1513 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1514 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1515 }
1516 
1517 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1518 {
1519 	struct btf *btf = env->btf;
1520 
1521 	if (btf->types_size == btf->nr_types) {
1522 		/* Expand 'types' array */
1523 
1524 		struct btf_type **new_types;
1525 		u32 expand_by, new_size;
1526 
1527 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1528 			btf_verifier_log(env, "Exceeded max num of types");
1529 			return -E2BIG;
1530 		}
1531 
1532 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1533 		new_size = min_t(u32, BTF_MAX_TYPE,
1534 				 btf->types_size + expand_by);
1535 
1536 		new_types = kvcalloc(new_size, sizeof(*new_types),
1537 				     GFP_KERNEL | __GFP_NOWARN);
1538 		if (!new_types)
1539 			return -ENOMEM;
1540 
1541 		if (btf->nr_types == 0) {
1542 			if (!btf->base_btf) {
1543 				/* lazily init VOID type */
1544 				new_types[0] = &btf_void;
1545 				btf->nr_types++;
1546 			}
1547 		} else {
1548 			memcpy(new_types, btf->types,
1549 			       sizeof(*btf->types) * btf->nr_types);
1550 		}
1551 
1552 		kvfree(btf->types);
1553 		btf->types = new_types;
1554 		btf->types_size = new_size;
1555 	}
1556 
1557 	btf->types[btf->nr_types++] = t;
1558 
1559 	return 0;
1560 }
1561 
1562 static int btf_alloc_id(struct btf *btf)
1563 {
1564 	int id;
1565 
1566 	idr_preload(GFP_KERNEL);
1567 	spin_lock_bh(&btf_idr_lock);
1568 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1569 	if (id > 0)
1570 		btf->id = id;
1571 	spin_unlock_bh(&btf_idr_lock);
1572 	idr_preload_end();
1573 
1574 	if (WARN_ON_ONCE(!id))
1575 		return -ENOSPC;
1576 
1577 	return id > 0 ? 0 : id;
1578 }
1579 
1580 static void btf_free_id(struct btf *btf)
1581 {
1582 	unsigned long flags;
1583 
1584 	/*
1585 	 * In map-in-map, calling map_delete_elem() on outer
1586 	 * map will call bpf_map_put on the inner map.
1587 	 * It will then eventually call btf_free_id()
1588 	 * on the inner map.  Some of the map_delete_elem()
1589 	 * implementation may have irq disabled, so
1590 	 * we need to use the _irqsave() version instead
1591 	 * of the _bh() version.
1592 	 */
1593 	spin_lock_irqsave(&btf_idr_lock, flags);
1594 	idr_remove(&btf_idr, btf->id);
1595 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1596 }
1597 
1598 static void btf_free_kfunc_set_tab(struct btf *btf)
1599 {
1600 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1601 	int hook, type;
1602 
1603 	if (!tab)
1604 		return;
1605 	/* For module BTF, we directly assign the sets being registered, so
1606 	 * there is nothing to free except kfunc_set_tab.
1607 	 */
1608 	if (btf_is_module(btf))
1609 		goto free_tab;
1610 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) {
1611 		for (type = 0; type < ARRAY_SIZE(tab->sets[0]); type++)
1612 			kfree(tab->sets[hook][type]);
1613 	}
1614 free_tab:
1615 	kfree(tab);
1616 	btf->kfunc_set_tab = NULL;
1617 }
1618 
1619 static void btf_free(struct btf *btf)
1620 {
1621 	btf_free_kfunc_set_tab(btf);
1622 	kvfree(btf->types);
1623 	kvfree(btf->resolved_sizes);
1624 	kvfree(btf->resolved_ids);
1625 	kvfree(btf->data);
1626 	kfree(btf);
1627 }
1628 
1629 static void btf_free_rcu(struct rcu_head *rcu)
1630 {
1631 	struct btf *btf = container_of(rcu, struct btf, rcu);
1632 
1633 	btf_free(btf);
1634 }
1635 
1636 void btf_get(struct btf *btf)
1637 {
1638 	refcount_inc(&btf->refcnt);
1639 }
1640 
1641 void btf_put(struct btf *btf)
1642 {
1643 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1644 		btf_free_id(btf);
1645 		call_rcu(&btf->rcu, btf_free_rcu);
1646 	}
1647 }
1648 
1649 static int env_resolve_init(struct btf_verifier_env *env)
1650 {
1651 	struct btf *btf = env->btf;
1652 	u32 nr_types = btf->nr_types;
1653 	u32 *resolved_sizes = NULL;
1654 	u32 *resolved_ids = NULL;
1655 	u8 *visit_states = NULL;
1656 
1657 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1658 				  GFP_KERNEL | __GFP_NOWARN);
1659 	if (!resolved_sizes)
1660 		goto nomem;
1661 
1662 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1663 				GFP_KERNEL | __GFP_NOWARN);
1664 	if (!resolved_ids)
1665 		goto nomem;
1666 
1667 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1668 				GFP_KERNEL | __GFP_NOWARN);
1669 	if (!visit_states)
1670 		goto nomem;
1671 
1672 	btf->resolved_sizes = resolved_sizes;
1673 	btf->resolved_ids = resolved_ids;
1674 	env->visit_states = visit_states;
1675 
1676 	return 0;
1677 
1678 nomem:
1679 	kvfree(resolved_sizes);
1680 	kvfree(resolved_ids);
1681 	kvfree(visit_states);
1682 	return -ENOMEM;
1683 }
1684 
1685 static void btf_verifier_env_free(struct btf_verifier_env *env)
1686 {
1687 	kvfree(env->visit_states);
1688 	kfree(env);
1689 }
1690 
1691 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1692 				     const struct btf_type *next_type)
1693 {
1694 	switch (env->resolve_mode) {
1695 	case RESOLVE_TBD:
1696 		/* int, enum or void is a sink */
1697 		return !btf_type_needs_resolve(next_type);
1698 	case RESOLVE_PTR:
1699 		/* int, enum, void, struct, array, func or func_proto is a sink
1700 		 * for ptr
1701 		 */
1702 		return !btf_type_is_modifier(next_type) &&
1703 			!btf_type_is_ptr(next_type);
1704 	case RESOLVE_STRUCT_OR_ARRAY:
1705 		/* int, enum, void, ptr, func or func_proto is a sink
1706 		 * for struct and array
1707 		 */
1708 		return !btf_type_is_modifier(next_type) &&
1709 			!btf_type_is_array(next_type) &&
1710 			!btf_type_is_struct(next_type);
1711 	default:
1712 		BUG();
1713 	}
1714 }
1715 
1716 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1717 				 u32 type_id)
1718 {
1719 	/* base BTF types should be resolved by now */
1720 	if (type_id < env->btf->start_id)
1721 		return true;
1722 
1723 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1724 }
1725 
1726 static int env_stack_push(struct btf_verifier_env *env,
1727 			  const struct btf_type *t, u32 type_id)
1728 {
1729 	const struct btf *btf = env->btf;
1730 	struct resolve_vertex *v;
1731 
1732 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1733 		return -E2BIG;
1734 
1735 	if (type_id < btf->start_id
1736 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1737 		return -EEXIST;
1738 
1739 	env->visit_states[type_id - btf->start_id] = VISITED;
1740 
1741 	v = &env->stack[env->top_stack++];
1742 	v->t = t;
1743 	v->type_id = type_id;
1744 	v->next_member = 0;
1745 
1746 	if (env->resolve_mode == RESOLVE_TBD) {
1747 		if (btf_type_is_ptr(t))
1748 			env->resolve_mode = RESOLVE_PTR;
1749 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1750 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1751 	}
1752 
1753 	return 0;
1754 }
1755 
1756 static void env_stack_set_next_member(struct btf_verifier_env *env,
1757 				      u16 next_member)
1758 {
1759 	env->stack[env->top_stack - 1].next_member = next_member;
1760 }
1761 
1762 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1763 				   u32 resolved_type_id,
1764 				   u32 resolved_size)
1765 {
1766 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1767 	struct btf *btf = env->btf;
1768 
1769 	type_id -= btf->start_id; /* adjust to local type id */
1770 	btf->resolved_sizes[type_id] = resolved_size;
1771 	btf->resolved_ids[type_id] = resolved_type_id;
1772 	env->visit_states[type_id] = RESOLVED;
1773 }
1774 
1775 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1776 {
1777 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1778 }
1779 
1780 /* Resolve the size of a passed-in "type"
1781  *
1782  * type: is an array (e.g. u32 array[x][y])
1783  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1784  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1785  *             corresponds to the return type.
1786  * *elem_type: u32
1787  * *elem_id: id of u32
1788  * *total_nelems: (x * y).  Hence, individual elem size is
1789  *                (*type_size / *total_nelems)
1790  * *type_id: id of type if it's changed within the function, 0 if not
1791  *
1792  * type: is not an array (e.g. const struct X)
1793  * return type: type "struct X"
1794  * *type_size: sizeof(struct X)
1795  * *elem_type: same as return type ("struct X")
1796  * *elem_id: 0
1797  * *total_nelems: 1
1798  * *type_id: id of type if it's changed within the function, 0 if not
1799  */
1800 static const struct btf_type *
1801 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1802 		   u32 *type_size, const struct btf_type **elem_type,
1803 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1804 {
1805 	const struct btf_type *array_type = NULL;
1806 	const struct btf_array *array = NULL;
1807 	u32 i, size, nelems = 1, id = 0;
1808 
1809 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1810 		switch (BTF_INFO_KIND(type->info)) {
1811 		/* type->size can be used */
1812 		case BTF_KIND_INT:
1813 		case BTF_KIND_STRUCT:
1814 		case BTF_KIND_UNION:
1815 		case BTF_KIND_ENUM:
1816 		case BTF_KIND_FLOAT:
1817 			size = type->size;
1818 			goto resolved;
1819 
1820 		case BTF_KIND_PTR:
1821 			size = sizeof(void *);
1822 			goto resolved;
1823 
1824 		/* Modifiers */
1825 		case BTF_KIND_TYPEDEF:
1826 		case BTF_KIND_VOLATILE:
1827 		case BTF_KIND_CONST:
1828 		case BTF_KIND_RESTRICT:
1829 		case BTF_KIND_TYPE_TAG:
1830 			id = type->type;
1831 			type = btf_type_by_id(btf, type->type);
1832 			break;
1833 
1834 		case BTF_KIND_ARRAY:
1835 			if (!array_type)
1836 				array_type = type;
1837 			array = btf_type_array(type);
1838 			if (nelems && array->nelems > U32_MAX / nelems)
1839 				return ERR_PTR(-EINVAL);
1840 			nelems *= array->nelems;
1841 			type = btf_type_by_id(btf, array->type);
1842 			break;
1843 
1844 		/* type without size */
1845 		default:
1846 			return ERR_PTR(-EINVAL);
1847 		}
1848 	}
1849 
1850 	return ERR_PTR(-EINVAL);
1851 
1852 resolved:
1853 	if (nelems && size > U32_MAX / nelems)
1854 		return ERR_PTR(-EINVAL);
1855 
1856 	*type_size = nelems * size;
1857 	if (total_nelems)
1858 		*total_nelems = nelems;
1859 	if (elem_type)
1860 		*elem_type = type;
1861 	if (elem_id)
1862 		*elem_id = array ? array->type : 0;
1863 	if (type_id && id)
1864 		*type_id = id;
1865 
1866 	return array_type ? : type;
1867 }
1868 
1869 const struct btf_type *
1870 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1871 		 u32 *type_size)
1872 {
1873 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1874 }
1875 
1876 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1877 {
1878 	while (type_id < btf->start_id)
1879 		btf = btf->base_btf;
1880 
1881 	return btf->resolved_ids[type_id - btf->start_id];
1882 }
1883 
1884 /* The input param "type_id" must point to a needs_resolve type */
1885 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1886 						  u32 *type_id)
1887 {
1888 	*type_id = btf_resolved_type_id(btf, *type_id);
1889 	return btf_type_by_id(btf, *type_id);
1890 }
1891 
1892 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1893 {
1894 	while (type_id < btf->start_id)
1895 		btf = btf->base_btf;
1896 
1897 	return btf->resolved_sizes[type_id - btf->start_id];
1898 }
1899 
1900 const struct btf_type *btf_type_id_size(const struct btf *btf,
1901 					u32 *type_id, u32 *ret_size)
1902 {
1903 	const struct btf_type *size_type;
1904 	u32 size_type_id = *type_id;
1905 	u32 size = 0;
1906 
1907 	size_type = btf_type_by_id(btf, size_type_id);
1908 	if (btf_type_nosize_or_null(size_type))
1909 		return NULL;
1910 
1911 	if (btf_type_has_size(size_type)) {
1912 		size = size_type->size;
1913 	} else if (btf_type_is_array(size_type)) {
1914 		size = btf_resolved_type_size(btf, size_type_id);
1915 	} else if (btf_type_is_ptr(size_type)) {
1916 		size = sizeof(void *);
1917 	} else {
1918 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1919 				 !btf_type_is_var(size_type)))
1920 			return NULL;
1921 
1922 		size_type_id = btf_resolved_type_id(btf, size_type_id);
1923 		size_type = btf_type_by_id(btf, size_type_id);
1924 		if (btf_type_nosize_or_null(size_type))
1925 			return NULL;
1926 		else if (btf_type_has_size(size_type))
1927 			size = size_type->size;
1928 		else if (btf_type_is_array(size_type))
1929 			size = btf_resolved_type_size(btf, size_type_id);
1930 		else if (btf_type_is_ptr(size_type))
1931 			size = sizeof(void *);
1932 		else
1933 			return NULL;
1934 	}
1935 
1936 	*type_id = size_type_id;
1937 	if (ret_size)
1938 		*ret_size = size;
1939 
1940 	return size_type;
1941 }
1942 
1943 static int btf_df_check_member(struct btf_verifier_env *env,
1944 			       const struct btf_type *struct_type,
1945 			       const struct btf_member *member,
1946 			       const struct btf_type *member_type)
1947 {
1948 	btf_verifier_log_basic(env, struct_type,
1949 			       "Unsupported check_member");
1950 	return -EINVAL;
1951 }
1952 
1953 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1954 				     const struct btf_type *struct_type,
1955 				     const struct btf_member *member,
1956 				     const struct btf_type *member_type)
1957 {
1958 	btf_verifier_log_basic(env, struct_type,
1959 			       "Unsupported check_kflag_member");
1960 	return -EINVAL;
1961 }
1962 
1963 /* Used for ptr, array struct/union and float type members.
1964  * int, enum and modifier types have their specific callback functions.
1965  */
1966 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1967 					  const struct btf_type *struct_type,
1968 					  const struct btf_member *member,
1969 					  const struct btf_type *member_type)
1970 {
1971 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1972 		btf_verifier_log_member(env, struct_type, member,
1973 					"Invalid member bitfield_size");
1974 		return -EINVAL;
1975 	}
1976 
1977 	/* bitfield size is 0, so member->offset represents bit offset only.
1978 	 * It is safe to call non kflag check_member variants.
1979 	 */
1980 	return btf_type_ops(member_type)->check_member(env, struct_type,
1981 						       member,
1982 						       member_type);
1983 }
1984 
1985 static int btf_df_resolve(struct btf_verifier_env *env,
1986 			  const struct resolve_vertex *v)
1987 {
1988 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1989 	return -EINVAL;
1990 }
1991 
1992 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1993 			u32 type_id, void *data, u8 bits_offsets,
1994 			struct btf_show *show)
1995 {
1996 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1997 }
1998 
1999 static int btf_int_check_member(struct btf_verifier_env *env,
2000 				const struct btf_type *struct_type,
2001 				const struct btf_member *member,
2002 				const struct btf_type *member_type)
2003 {
2004 	u32 int_data = btf_type_int(member_type);
2005 	u32 struct_bits_off = member->offset;
2006 	u32 struct_size = struct_type->size;
2007 	u32 nr_copy_bits;
2008 	u32 bytes_offset;
2009 
2010 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2011 		btf_verifier_log_member(env, struct_type, member,
2012 					"bits_offset exceeds U32_MAX");
2013 		return -EINVAL;
2014 	}
2015 
2016 	struct_bits_off += BTF_INT_OFFSET(int_data);
2017 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2018 	nr_copy_bits = BTF_INT_BITS(int_data) +
2019 		BITS_PER_BYTE_MASKED(struct_bits_off);
2020 
2021 	if (nr_copy_bits > BITS_PER_U128) {
2022 		btf_verifier_log_member(env, struct_type, member,
2023 					"nr_copy_bits exceeds 128");
2024 		return -EINVAL;
2025 	}
2026 
2027 	if (struct_size < bytes_offset ||
2028 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2029 		btf_verifier_log_member(env, struct_type, member,
2030 					"Member exceeds struct_size");
2031 		return -EINVAL;
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2038 				      const struct btf_type *struct_type,
2039 				      const struct btf_member *member,
2040 				      const struct btf_type *member_type)
2041 {
2042 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2043 	u32 int_data = btf_type_int(member_type);
2044 	u32 struct_size = struct_type->size;
2045 	u32 nr_copy_bits;
2046 
2047 	/* a regular int type is required for the kflag int member */
2048 	if (!btf_type_int_is_regular(member_type)) {
2049 		btf_verifier_log_member(env, struct_type, member,
2050 					"Invalid member base type");
2051 		return -EINVAL;
2052 	}
2053 
2054 	/* check sanity of bitfield size */
2055 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2056 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2057 	nr_int_data_bits = BTF_INT_BITS(int_data);
2058 	if (!nr_bits) {
2059 		/* Not a bitfield member, member offset must be at byte
2060 		 * boundary.
2061 		 */
2062 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2063 			btf_verifier_log_member(env, struct_type, member,
2064 						"Invalid member offset");
2065 			return -EINVAL;
2066 		}
2067 
2068 		nr_bits = nr_int_data_bits;
2069 	} else if (nr_bits > nr_int_data_bits) {
2070 		btf_verifier_log_member(env, struct_type, member,
2071 					"Invalid member bitfield_size");
2072 		return -EINVAL;
2073 	}
2074 
2075 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2076 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2077 	if (nr_copy_bits > BITS_PER_U128) {
2078 		btf_verifier_log_member(env, struct_type, member,
2079 					"nr_copy_bits exceeds 128");
2080 		return -EINVAL;
2081 	}
2082 
2083 	if (struct_size < bytes_offset ||
2084 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2085 		btf_verifier_log_member(env, struct_type, member,
2086 					"Member exceeds struct_size");
2087 		return -EINVAL;
2088 	}
2089 
2090 	return 0;
2091 }
2092 
2093 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2094 			      const struct btf_type *t,
2095 			      u32 meta_left)
2096 {
2097 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2098 	u16 encoding;
2099 
2100 	if (meta_left < meta_needed) {
2101 		btf_verifier_log_basic(env, t,
2102 				       "meta_left:%u meta_needed:%u",
2103 				       meta_left, meta_needed);
2104 		return -EINVAL;
2105 	}
2106 
2107 	if (btf_type_vlen(t)) {
2108 		btf_verifier_log_type(env, t, "vlen != 0");
2109 		return -EINVAL;
2110 	}
2111 
2112 	if (btf_type_kflag(t)) {
2113 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2114 		return -EINVAL;
2115 	}
2116 
2117 	int_data = btf_type_int(t);
2118 	if (int_data & ~BTF_INT_MASK) {
2119 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2120 				       int_data);
2121 		return -EINVAL;
2122 	}
2123 
2124 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2125 
2126 	if (nr_bits > BITS_PER_U128) {
2127 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2128 				      BITS_PER_U128);
2129 		return -EINVAL;
2130 	}
2131 
2132 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2133 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2134 		return -EINVAL;
2135 	}
2136 
2137 	/*
2138 	 * Only one of the encoding bits is allowed and it
2139 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2140 	 * Multiple bits can be allowed later if it is found
2141 	 * to be insufficient.
2142 	 */
2143 	encoding = BTF_INT_ENCODING(int_data);
2144 	if (encoding &&
2145 	    encoding != BTF_INT_SIGNED &&
2146 	    encoding != BTF_INT_CHAR &&
2147 	    encoding != BTF_INT_BOOL) {
2148 		btf_verifier_log_type(env, t, "Unsupported encoding");
2149 		return -ENOTSUPP;
2150 	}
2151 
2152 	btf_verifier_log_type(env, t, NULL);
2153 
2154 	return meta_needed;
2155 }
2156 
2157 static void btf_int_log(struct btf_verifier_env *env,
2158 			const struct btf_type *t)
2159 {
2160 	int int_data = btf_type_int(t);
2161 
2162 	btf_verifier_log(env,
2163 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2164 			 t->size, BTF_INT_OFFSET(int_data),
2165 			 BTF_INT_BITS(int_data),
2166 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2167 }
2168 
2169 static void btf_int128_print(struct btf_show *show, void *data)
2170 {
2171 	/* data points to a __int128 number.
2172 	 * Suppose
2173 	 *     int128_num = *(__int128 *)data;
2174 	 * The below formulas shows what upper_num and lower_num represents:
2175 	 *     upper_num = int128_num >> 64;
2176 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2177 	 */
2178 	u64 upper_num, lower_num;
2179 
2180 #ifdef __BIG_ENDIAN_BITFIELD
2181 	upper_num = *(u64 *)data;
2182 	lower_num = *(u64 *)(data + 8);
2183 #else
2184 	upper_num = *(u64 *)(data + 8);
2185 	lower_num = *(u64 *)data;
2186 #endif
2187 	if (upper_num == 0)
2188 		btf_show_type_value(show, "0x%llx", lower_num);
2189 	else
2190 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2191 				     lower_num);
2192 }
2193 
2194 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2195 			     u16 right_shift_bits)
2196 {
2197 	u64 upper_num, lower_num;
2198 
2199 #ifdef __BIG_ENDIAN_BITFIELD
2200 	upper_num = print_num[0];
2201 	lower_num = print_num[1];
2202 #else
2203 	upper_num = print_num[1];
2204 	lower_num = print_num[0];
2205 #endif
2206 
2207 	/* shake out un-needed bits by shift/or operations */
2208 	if (left_shift_bits >= 64) {
2209 		upper_num = lower_num << (left_shift_bits - 64);
2210 		lower_num = 0;
2211 	} else {
2212 		upper_num = (upper_num << left_shift_bits) |
2213 			    (lower_num >> (64 - left_shift_bits));
2214 		lower_num = lower_num << left_shift_bits;
2215 	}
2216 
2217 	if (right_shift_bits >= 64) {
2218 		lower_num = upper_num >> (right_shift_bits - 64);
2219 		upper_num = 0;
2220 	} else {
2221 		lower_num = (lower_num >> right_shift_bits) |
2222 			    (upper_num << (64 - right_shift_bits));
2223 		upper_num = upper_num >> right_shift_bits;
2224 	}
2225 
2226 #ifdef __BIG_ENDIAN_BITFIELD
2227 	print_num[0] = upper_num;
2228 	print_num[1] = lower_num;
2229 #else
2230 	print_num[0] = lower_num;
2231 	print_num[1] = upper_num;
2232 #endif
2233 }
2234 
2235 static void btf_bitfield_show(void *data, u8 bits_offset,
2236 			      u8 nr_bits, struct btf_show *show)
2237 {
2238 	u16 left_shift_bits, right_shift_bits;
2239 	u8 nr_copy_bytes;
2240 	u8 nr_copy_bits;
2241 	u64 print_num[2] = {};
2242 
2243 	nr_copy_bits = nr_bits + bits_offset;
2244 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2245 
2246 	memcpy(print_num, data, nr_copy_bytes);
2247 
2248 #ifdef __BIG_ENDIAN_BITFIELD
2249 	left_shift_bits = bits_offset;
2250 #else
2251 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2252 #endif
2253 	right_shift_bits = BITS_PER_U128 - nr_bits;
2254 
2255 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2256 	btf_int128_print(show, print_num);
2257 }
2258 
2259 
2260 static void btf_int_bits_show(const struct btf *btf,
2261 			      const struct btf_type *t,
2262 			      void *data, u8 bits_offset,
2263 			      struct btf_show *show)
2264 {
2265 	u32 int_data = btf_type_int(t);
2266 	u8 nr_bits = BTF_INT_BITS(int_data);
2267 	u8 total_bits_offset;
2268 
2269 	/*
2270 	 * bits_offset is at most 7.
2271 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2272 	 */
2273 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2274 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2275 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2276 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2277 }
2278 
2279 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2280 			 u32 type_id, void *data, u8 bits_offset,
2281 			 struct btf_show *show)
2282 {
2283 	u32 int_data = btf_type_int(t);
2284 	u8 encoding = BTF_INT_ENCODING(int_data);
2285 	bool sign = encoding & BTF_INT_SIGNED;
2286 	u8 nr_bits = BTF_INT_BITS(int_data);
2287 	void *safe_data;
2288 
2289 	safe_data = btf_show_start_type(show, t, type_id, data);
2290 	if (!safe_data)
2291 		return;
2292 
2293 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2294 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2295 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2296 		goto out;
2297 	}
2298 
2299 	switch (nr_bits) {
2300 	case 128:
2301 		btf_int128_print(show, safe_data);
2302 		break;
2303 	case 64:
2304 		if (sign)
2305 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2306 		else
2307 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2308 		break;
2309 	case 32:
2310 		if (sign)
2311 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2312 		else
2313 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2314 		break;
2315 	case 16:
2316 		if (sign)
2317 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2318 		else
2319 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2320 		break;
2321 	case 8:
2322 		if (show->state.array_encoding == BTF_INT_CHAR) {
2323 			/* check for null terminator */
2324 			if (show->state.array_terminated)
2325 				break;
2326 			if (*(char *)data == '\0') {
2327 				show->state.array_terminated = 1;
2328 				break;
2329 			}
2330 			if (isprint(*(char *)data)) {
2331 				btf_show_type_value(show, "'%c'",
2332 						    *(char *)safe_data);
2333 				break;
2334 			}
2335 		}
2336 		if (sign)
2337 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2338 		else
2339 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2340 		break;
2341 	default:
2342 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2343 		break;
2344 	}
2345 out:
2346 	btf_show_end_type(show);
2347 }
2348 
2349 static const struct btf_kind_operations int_ops = {
2350 	.check_meta = btf_int_check_meta,
2351 	.resolve = btf_df_resolve,
2352 	.check_member = btf_int_check_member,
2353 	.check_kflag_member = btf_int_check_kflag_member,
2354 	.log_details = btf_int_log,
2355 	.show = btf_int_show,
2356 };
2357 
2358 static int btf_modifier_check_member(struct btf_verifier_env *env,
2359 				     const struct btf_type *struct_type,
2360 				     const struct btf_member *member,
2361 				     const struct btf_type *member_type)
2362 {
2363 	const struct btf_type *resolved_type;
2364 	u32 resolved_type_id = member->type;
2365 	struct btf_member resolved_member;
2366 	struct btf *btf = env->btf;
2367 
2368 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2369 	if (!resolved_type) {
2370 		btf_verifier_log_member(env, struct_type, member,
2371 					"Invalid member");
2372 		return -EINVAL;
2373 	}
2374 
2375 	resolved_member = *member;
2376 	resolved_member.type = resolved_type_id;
2377 
2378 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2379 							 &resolved_member,
2380 							 resolved_type);
2381 }
2382 
2383 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2384 					   const struct btf_type *struct_type,
2385 					   const struct btf_member *member,
2386 					   const struct btf_type *member_type)
2387 {
2388 	const struct btf_type *resolved_type;
2389 	u32 resolved_type_id = member->type;
2390 	struct btf_member resolved_member;
2391 	struct btf *btf = env->btf;
2392 
2393 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2394 	if (!resolved_type) {
2395 		btf_verifier_log_member(env, struct_type, member,
2396 					"Invalid member");
2397 		return -EINVAL;
2398 	}
2399 
2400 	resolved_member = *member;
2401 	resolved_member.type = resolved_type_id;
2402 
2403 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2404 							       &resolved_member,
2405 							       resolved_type);
2406 }
2407 
2408 static int btf_ptr_check_member(struct btf_verifier_env *env,
2409 				const struct btf_type *struct_type,
2410 				const struct btf_member *member,
2411 				const struct btf_type *member_type)
2412 {
2413 	u32 struct_size, struct_bits_off, bytes_offset;
2414 
2415 	struct_size = struct_type->size;
2416 	struct_bits_off = member->offset;
2417 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2418 
2419 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2420 		btf_verifier_log_member(env, struct_type, member,
2421 					"Member is not byte aligned");
2422 		return -EINVAL;
2423 	}
2424 
2425 	if (struct_size - bytes_offset < sizeof(void *)) {
2426 		btf_verifier_log_member(env, struct_type, member,
2427 					"Member exceeds struct_size");
2428 		return -EINVAL;
2429 	}
2430 
2431 	return 0;
2432 }
2433 
2434 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2435 				   const struct btf_type *t,
2436 				   u32 meta_left)
2437 {
2438 	const char *value;
2439 
2440 	if (btf_type_vlen(t)) {
2441 		btf_verifier_log_type(env, t, "vlen != 0");
2442 		return -EINVAL;
2443 	}
2444 
2445 	if (btf_type_kflag(t)) {
2446 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2447 		return -EINVAL;
2448 	}
2449 
2450 	if (!BTF_TYPE_ID_VALID(t->type)) {
2451 		btf_verifier_log_type(env, t, "Invalid type_id");
2452 		return -EINVAL;
2453 	}
2454 
2455 	/* typedef/type_tag type must have a valid name, and other ref types,
2456 	 * volatile, const, restrict, should have a null name.
2457 	 */
2458 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2459 		if (!t->name_off ||
2460 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2461 			btf_verifier_log_type(env, t, "Invalid name");
2462 			return -EINVAL;
2463 		}
2464 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2465 		value = btf_name_by_offset(env->btf, t->name_off);
2466 		if (!value || !value[0]) {
2467 			btf_verifier_log_type(env, t, "Invalid name");
2468 			return -EINVAL;
2469 		}
2470 	} else {
2471 		if (t->name_off) {
2472 			btf_verifier_log_type(env, t, "Invalid name");
2473 			return -EINVAL;
2474 		}
2475 	}
2476 
2477 	btf_verifier_log_type(env, t, NULL);
2478 
2479 	return 0;
2480 }
2481 
2482 static int btf_modifier_resolve(struct btf_verifier_env *env,
2483 				const struct resolve_vertex *v)
2484 {
2485 	const struct btf_type *t = v->t;
2486 	const struct btf_type *next_type;
2487 	u32 next_type_id = t->type;
2488 	struct btf *btf = env->btf;
2489 
2490 	next_type = btf_type_by_id(btf, next_type_id);
2491 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2492 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2493 		return -EINVAL;
2494 	}
2495 
2496 	if (!env_type_is_resolve_sink(env, next_type) &&
2497 	    !env_type_is_resolved(env, next_type_id))
2498 		return env_stack_push(env, next_type, next_type_id);
2499 
2500 	/* Figure out the resolved next_type_id with size.
2501 	 * They will be stored in the current modifier's
2502 	 * resolved_ids and resolved_sizes such that it can
2503 	 * save us a few type-following when we use it later (e.g. in
2504 	 * pretty print).
2505 	 */
2506 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2507 		if (env_type_is_resolved(env, next_type_id))
2508 			next_type = btf_type_id_resolve(btf, &next_type_id);
2509 
2510 		/* "typedef void new_void", "const void"...etc */
2511 		if (!btf_type_is_void(next_type) &&
2512 		    !btf_type_is_fwd(next_type) &&
2513 		    !btf_type_is_func_proto(next_type)) {
2514 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2515 			return -EINVAL;
2516 		}
2517 	}
2518 
2519 	env_stack_pop_resolved(env, next_type_id, 0);
2520 
2521 	return 0;
2522 }
2523 
2524 static int btf_var_resolve(struct btf_verifier_env *env,
2525 			   const struct resolve_vertex *v)
2526 {
2527 	const struct btf_type *next_type;
2528 	const struct btf_type *t = v->t;
2529 	u32 next_type_id = t->type;
2530 	struct btf *btf = env->btf;
2531 
2532 	next_type = btf_type_by_id(btf, next_type_id);
2533 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2534 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2535 		return -EINVAL;
2536 	}
2537 
2538 	if (!env_type_is_resolve_sink(env, next_type) &&
2539 	    !env_type_is_resolved(env, next_type_id))
2540 		return env_stack_push(env, next_type, next_type_id);
2541 
2542 	if (btf_type_is_modifier(next_type)) {
2543 		const struct btf_type *resolved_type;
2544 		u32 resolved_type_id;
2545 
2546 		resolved_type_id = next_type_id;
2547 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2548 
2549 		if (btf_type_is_ptr(resolved_type) &&
2550 		    !env_type_is_resolve_sink(env, resolved_type) &&
2551 		    !env_type_is_resolved(env, resolved_type_id))
2552 			return env_stack_push(env, resolved_type,
2553 					      resolved_type_id);
2554 	}
2555 
2556 	/* We must resolve to something concrete at this point, no
2557 	 * forward types or similar that would resolve to size of
2558 	 * zero is allowed.
2559 	 */
2560 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2561 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2562 		return -EINVAL;
2563 	}
2564 
2565 	env_stack_pop_resolved(env, next_type_id, 0);
2566 
2567 	return 0;
2568 }
2569 
2570 static int btf_ptr_resolve(struct btf_verifier_env *env,
2571 			   const struct resolve_vertex *v)
2572 {
2573 	const struct btf_type *next_type;
2574 	const struct btf_type *t = v->t;
2575 	u32 next_type_id = t->type;
2576 	struct btf *btf = env->btf;
2577 
2578 	next_type = btf_type_by_id(btf, next_type_id);
2579 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2580 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2581 		return -EINVAL;
2582 	}
2583 
2584 	if (!env_type_is_resolve_sink(env, next_type) &&
2585 	    !env_type_is_resolved(env, next_type_id))
2586 		return env_stack_push(env, next_type, next_type_id);
2587 
2588 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2589 	 * the modifier may have stopped resolving when it was resolved
2590 	 * to a ptr (last-resolved-ptr).
2591 	 *
2592 	 * We now need to continue from the last-resolved-ptr to
2593 	 * ensure the last-resolved-ptr will not referring back to
2594 	 * the current ptr (t).
2595 	 */
2596 	if (btf_type_is_modifier(next_type)) {
2597 		const struct btf_type *resolved_type;
2598 		u32 resolved_type_id;
2599 
2600 		resolved_type_id = next_type_id;
2601 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2602 
2603 		if (btf_type_is_ptr(resolved_type) &&
2604 		    !env_type_is_resolve_sink(env, resolved_type) &&
2605 		    !env_type_is_resolved(env, resolved_type_id))
2606 			return env_stack_push(env, resolved_type,
2607 					      resolved_type_id);
2608 	}
2609 
2610 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2611 		if (env_type_is_resolved(env, next_type_id))
2612 			next_type = btf_type_id_resolve(btf, &next_type_id);
2613 
2614 		if (!btf_type_is_void(next_type) &&
2615 		    !btf_type_is_fwd(next_type) &&
2616 		    !btf_type_is_func_proto(next_type)) {
2617 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2618 			return -EINVAL;
2619 		}
2620 	}
2621 
2622 	env_stack_pop_resolved(env, next_type_id, 0);
2623 
2624 	return 0;
2625 }
2626 
2627 static void btf_modifier_show(const struct btf *btf,
2628 			      const struct btf_type *t,
2629 			      u32 type_id, void *data,
2630 			      u8 bits_offset, struct btf_show *show)
2631 {
2632 	if (btf->resolved_ids)
2633 		t = btf_type_id_resolve(btf, &type_id);
2634 	else
2635 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2636 
2637 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2638 }
2639 
2640 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2641 			 u32 type_id, void *data, u8 bits_offset,
2642 			 struct btf_show *show)
2643 {
2644 	t = btf_type_id_resolve(btf, &type_id);
2645 
2646 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2647 }
2648 
2649 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2650 			 u32 type_id, void *data, u8 bits_offset,
2651 			 struct btf_show *show)
2652 {
2653 	void *safe_data;
2654 
2655 	safe_data = btf_show_start_type(show, t, type_id, data);
2656 	if (!safe_data)
2657 		return;
2658 
2659 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2660 	if (show->flags & BTF_SHOW_PTR_RAW)
2661 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2662 	else
2663 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2664 	btf_show_end_type(show);
2665 }
2666 
2667 static void btf_ref_type_log(struct btf_verifier_env *env,
2668 			     const struct btf_type *t)
2669 {
2670 	btf_verifier_log(env, "type_id=%u", t->type);
2671 }
2672 
2673 static struct btf_kind_operations modifier_ops = {
2674 	.check_meta = btf_ref_type_check_meta,
2675 	.resolve = btf_modifier_resolve,
2676 	.check_member = btf_modifier_check_member,
2677 	.check_kflag_member = btf_modifier_check_kflag_member,
2678 	.log_details = btf_ref_type_log,
2679 	.show = btf_modifier_show,
2680 };
2681 
2682 static struct btf_kind_operations ptr_ops = {
2683 	.check_meta = btf_ref_type_check_meta,
2684 	.resolve = btf_ptr_resolve,
2685 	.check_member = btf_ptr_check_member,
2686 	.check_kflag_member = btf_generic_check_kflag_member,
2687 	.log_details = btf_ref_type_log,
2688 	.show = btf_ptr_show,
2689 };
2690 
2691 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2692 			      const struct btf_type *t,
2693 			      u32 meta_left)
2694 {
2695 	if (btf_type_vlen(t)) {
2696 		btf_verifier_log_type(env, t, "vlen != 0");
2697 		return -EINVAL;
2698 	}
2699 
2700 	if (t->type) {
2701 		btf_verifier_log_type(env, t, "type != 0");
2702 		return -EINVAL;
2703 	}
2704 
2705 	/* fwd type must have a valid name */
2706 	if (!t->name_off ||
2707 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2708 		btf_verifier_log_type(env, t, "Invalid name");
2709 		return -EINVAL;
2710 	}
2711 
2712 	btf_verifier_log_type(env, t, NULL);
2713 
2714 	return 0;
2715 }
2716 
2717 static void btf_fwd_type_log(struct btf_verifier_env *env,
2718 			     const struct btf_type *t)
2719 {
2720 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2721 }
2722 
2723 static struct btf_kind_operations fwd_ops = {
2724 	.check_meta = btf_fwd_check_meta,
2725 	.resolve = btf_df_resolve,
2726 	.check_member = btf_df_check_member,
2727 	.check_kflag_member = btf_df_check_kflag_member,
2728 	.log_details = btf_fwd_type_log,
2729 	.show = btf_df_show,
2730 };
2731 
2732 static int btf_array_check_member(struct btf_verifier_env *env,
2733 				  const struct btf_type *struct_type,
2734 				  const struct btf_member *member,
2735 				  const struct btf_type *member_type)
2736 {
2737 	u32 struct_bits_off = member->offset;
2738 	u32 struct_size, bytes_offset;
2739 	u32 array_type_id, array_size;
2740 	struct btf *btf = env->btf;
2741 
2742 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2743 		btf_verifier_log_member(env, struct_type, member,
2744 					"Member is not byte aligned");
2745 		return -EINVAL;
2746 	}
2747 
2748 	array_type_id = member->type;
2749 	btf_type_id_size(btf, &array_type_id, &array_size);
2750 	struct_size = struct_type->size;
2751 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2752 	if (struct_size - bytes_offset < array_size) {
2753 		btf_verifier_log_member(env, struct_type, member,
2754 					"Member exceeds struct_size");
2755 		return -EINVAL;
2756 	}
2757 
2758 	return 0;
2759 }
2760 
2761 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2762 				const struct btf_type *t,
2763 				u32 meta_left)
2764 {
2765 	const struct btf_array *array = btf_type_array(t);
2766 	u32 meta_needed = sizeof(*array);
2767 
2768 	if (meta_left < meta_needed) {
2769 		btf_verifier_log_basic(env, t,
2770 				       "meta_left:%u meta_needed:%u",
2771 				       meta_left, meta_needed);
2772 		return -EINVAL;
2773 	}
2774 
2775 	/* array type should not have a name */
2776 	if (t->name_off) {
2777 		btf_verifier_log_type(env, t, "Invalid name");
2778 		return -EINVAL;
2779 	}
2780 
2781 	if (btf_type_vlen(t)) {
2782 		btf_verifier_log_type(env, t, "vlen != 0");
2783 		return -EINVAL;
2784 	}
2785 
2786 	if (btf_type_kflag(t)) {
2787 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2788 		return -EINVAL;
2789 	}
2790 
2791 	if (t->size) {
2792 		btf_verifier_log_type(env, t, "size != 0");
2793 		return -EINVAL;
2794 	}
2795 
2796 	/* Array elem type and index type cannot be in type void,
2797 	 * so !array->type and !array->index_type are not allowed.
2798 	 */
2799 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2800 		btf_verifier_log_type(env, t, "Invalid elem");
2801 		return -EINVAL;
2802 	}
2803 
2804 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2805 		btf_verifier_log_type(env, t, "Invalid index");
2806 		return -EINVAL;
2807 	}
2808 
2809 	btf_verifier_log_type(env, t, NULL);
2810 
2811 	return meta_needed;
2812 }
2813 
2814 static int btf_array_resolve(struct btf_verifier_env *env,
2815 			     const struct resolve_vertex *v)
2816 {
2817 	const struct btf_array *array = btf_type_array(v->t);
2818 	const struct btf_type *elem_type, *index_type;
2819 	u32 elem_type_id, index_type_id;
2820 	struct btf *btf = env->btf;
2821 	u32 elem_size;
2822 
2823 	/* Check array->index_type */
2824 	index_type_id = array->index_type;
2825 	index_type = btf_type_by_id(btf, index_type_id);
2826 	if (btf_type_nosize_or_null(index_type) ||
2827 	    btf_type_is_resolve_source_only(index_type)) {
2828 		btf_verifier_log_type(env, v->t, "Invalid index");
2829 		return -EINVAL;
2830 	}
2831 
2832 	if (!env_type_is_resolve_sink(env, index_type) &&
2833 	    !env_type_is_resolved(env, index_type_id))
2834 		return env_stack_push(env, index_type, index_type_id);
2835 
2836 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2837 	if (!index_type || !btf_type_is_int(index_type) ||
2838 	    !btf_type_int_is_regular(index_type)) {
2839 		btf_verifier_log_type(env, v->t, "Invalid index");
2840 		return -EINVAL;
2841 	}
2842 
2843 	/* Check array->type */
2844 	elem_type_id = array->type;
2845 	elem_type = btf_type_by_id(btf, elem_type_id);
2846 	if (btf_type_nosize_or_null(elem_type) ||
2847 	    btf_type_is_resolve_source_only(elem_type)) {
2848 		btf_verifier_log_type(env, v->t,
2849 				      "Invalid elem");
2850 		return -EINVAL;
2851 	}
2852 
2853 	if (!env_type_is_resolve_sink(env, elem_type) &&
2854 	    !env_type_is_resolved(env, elem_type_id))
2855 		return env_stack_push(env, elem_type, elem_type_id);
2856 
2857 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2858 	if (!elem_type) {
2859 		btf_verifier_log_type(env, v->t, "Invalid elem");
2860 		return -EINVAL;
2861 	}
2862 
2863 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2864 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2865 		return -EINVAL;
2866 	}
2867 
2868 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2869 		btf_verifier_log_type(env, v->t,
2870 				      "Array size overflows U32_MAX");
2871 		return -EINVAL;
2872 	}
2873 
2874 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2875 
2876 	return 0;
2877 }
2878 
2879 static void btf_array_log(struct btf_verifier_env *env,
2880 			  const struct btf_type *t)
2881 {
2882 	const struct btf_array *array = btf_type_array(t);
2883 
2884 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2885 			 array->type, array->index_type, array->nelems);
2886 }
2887 
2888 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2889 			     u32 type_id, void *data, u8 bits_offset,
2890 			     struct btf_show *show)
2891 {
2892 	const struct btf_array *array = btf_type_array(t);
2893 	const struct btf_kind_operations *elem_ops;
2894 	const struct btf_type *elem_type;
2895 	u32 i, elem_size = 0, elem_type_id;
2896 	u16 encoding = 0;
2897 
2898 	elem_type_id = array->type;
2899 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2900 	if (elem_type && btf_type_has_size(elem_type))
2901 		elem_size = elem_type->size;
2902 
2903 	if (elem_type && btf_type_is_int(elem_type)) {
2904 		u32 int_type = btf_type_int(elem_type);
2905 
2906 		encoding = BTF_INT_ENCODING(int_type);
2907 
2908 		/*
2909 		 * BTF_INT_CHAR encoding never seems to be set for
2910 		 * char arrays, so if size is 1 and element is
2911 		 * printable as a char, we'll do that.
2912 		 */
2913 		if (elem_size == 1)
2914 			encoding = BTF_INT_CHAR;
2915 	}
2916 
2917 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2918 		return;
2919 
2920 	if (!elem_type)
2921 		goto out;
2922 	elem_ops = btf_type_ops(elem_type);
2923 
2924 	for (i = 0; i < array->nelems; i++) {
2925 
2926 		btf_show_start_array_member(show);
2927 
2928 		elem_ops->show(btf, elem_type, elem_type_id, data,
2929 			       bits_offset, show);
2930 		data += elem_size;
2931 
2932 		btf_show_end_array_member(show);
2933 
2934 		if (show->state.array_terminated)
2935 			break;
2936 	}
2937 out:
2938 	btf_show_end_array_type(show);
2939 }
2940 
2941 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2942 			   u32 type_id, void *data, u8 bits_offset,
2943 			   struct btf_show *show)
2944 {
2945 	const struct btf_member *m = show->state.member;
2946 
2947 	/*
2948 	 * First check if any members would be shown (are non-zero).
2949 	 * See comments above "struct btf_show" definition for more
2950 	 * details on how this works at a high-level.
2951 	 */
2952 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2953 		if (!show->state.depth_check) {
2954 			show->state.depth_check = show->state.depth + 1;
2955 			show->state.depth_to_show = 0;
2956 		}
2957 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
2958 		show->state.member = m;
2959 
2960 		if (show->state.depth_check != show->state.depth + 1)
2961 			return;
2962 		show->state.depth_check = 0;
2963 
2964 		if (show->state.depth_to_show <= show->state.depth)
2965 			return;
2966 		/*
2967 		 * Reaching here indicates we have recursed and found
2968 		 * non-zero array member(s).
2969 		 */
2970 	}
2971 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
2972 }
2973 
2974 static struct btf_kind_operations array_ops = {
2975 	.check_meta = btf_array_check_meta,
2976 	.resolve = btf_array_resolve,
2977 	.check_member = btf_array_check_member,
2978 	.check_kflag_member = btf_generic_check_kflag_member,
2979 	.log_details = btf_array_log,
2980 	.show = btf_array_show,
2981 };
2982 
2983 static int btf_struct_check_member(struct btf_verifier_env *env,
2984 				   const struct btf_type *struct_type,
2985 				   const struct btf_member *member,
2986 				   const struct btf_type *member_type)
2987 {
2988 	u32 struct_bits_off = member->offset;
2989 	u32 struct_size, bytes_offset;
2990 
2991 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2992 		btf_verifier_log_member(env, struct_type, member,
2993 					"Member is not byte aligned");
2994 		return -EINVAL;
2995 	}
2996 
2997 	struct_size = struct_type->size;
2998 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2999 	if (struct_size - bytes_offset < member_type->size) {
3000 		btf_verifier_log_member(env, struct_type, member,
3001 					"Member exceeds struct_size");
3002 		return -EINVAL;
3003 	}
3004 
3005 	return 0;
3006 }
3007 
3008 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3009 				 const struct btf_type *t,
3010 				 u32 meta_left)
3011 {
3012 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3013 	const struct btf_member *member;
3014 	u32 meta_needed, last_offset;
3015 	struct btf *btf = env->btf;
3016 	u32 struct_size = t->size;
3017 	u32 offset;
3018 	u16 i;
3019 
3020 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3021 	if (meta_left < meta_needed) {
3022 		btf_verifier_log_basic(env, t,
3023 				       "meta_left:%u meta_needed:%u",
3024 				       meta_left, meta_needed);
3025 		return -EINVAL;
3026 	}
3027 
3028 	/* struct type either no name or a valid one */
3029 	if (t->name_off &&
3030 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3031 		btf_verifier_log_type(env, t, "Invalid name");
3032 		return -EINVAL;
3033 	}
3034 
3035 	btf_verifier_log_type(env, t, NULL);
3036 
3037 	last_offset = 0;
3038 	for_each_member(i, t, member) {
3039 		if (!btf_name_offset_valid(btf, member->name_off)) {
3040 			btf_verifier_log_member(env, t, member,
3041 						"Invalid member name_offset:%u",
3042 						member->name_off);
3043 			return -EINVAL;
3044 		}
3045 
3046 		/* struct member either no name or a valid one */
3047 		if (member->name_off &&
3048 		    !btf_name_valid_identifier(btf, member->name_off)) {
3049 			btf_verifier_log_member(env, t, member, "Invalid name");
3050 			return -EINVAL;
3051 		}
3052 		/* A member cannot be in type void */
3053 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3054 			btf_verifier_log_member(env, t, member,
3055 						"Invalid type_id");
3056 			return -EINVAL;
3057 		}
3058 
3059 		offset = __btf_member_bit_offset(t, member);
3060 		if (is_union && offset) {
3061 			btf_verifier_log_member(env, t, member,
3062 						"Invalid member bits_offset");
3063 			return -EINVAL;
3064 		}
3065 
3066 		/*
3067 		 * ">" instead of ">=" because the last member could be
3068 		 * "char a[0];"
3069 		 */
3070 		if (last_offset > offset) {
3071 			btf_verifier_log_member(env, t, member,
3072 						"Invalid member bits_offset");
3073 			return -EINVAL;
3074 		}
3075 
3076 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3077 			btf_verifier_log_member(env, t, member,
3078 						"Member bits_offset exceeds its struct size");
3079 			return -EINVAL;
3080 		}
3081 
3082 		btf_verifier_log_member(env, t, member, NULL);
3083 		last_offset = offset;
3084 	}
3085 
3086 	return meta_needed;
3087 }
3088 
3089 static int btf_struct_resolve(struct btf_verifier_env *env,
3090 			      const struct resolve_vertex *v)
3091 {
3092 	const struct btf_member *member;
3093 	int err;
3094 	u16 i;
3095 
3096 	/* Before continue resolving the next_member,
3097 	 * ensure the last member is indeed resolved to a
3098 	 * type with size info.
3099 	 */
3100 	if (v->next_member) {
3101 		const struct btf_type *last_member_type;
3102 		const struct btf_member *last_member;
3103 		u16 last_member_type_id;
3104 
3105 		last_member = btf_type_member(v->t) + v->next_member - 1;
3106 		last_member_type_id = last_member->type;
3107 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3108 						       last_member_type_id)))
3109 			return -EINVAL;
3110 
3111 		last_member_type = btf_type_by_id(env->btf,
3112 						  last_member_type_id);
3113 		if (btf_type_kflag(v->t))
3114 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3115 								last_member,
3116 								last_member_type);
3117 		else
3118 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3119 								last_member,
3120 								last_member_type);
3121 		if (err)
3122 			return err;
3123 	}
3124 
3125 	for_each_member_from(i, v->next_member, v->t, member) {
3126 		u32 member_type_id = member->type;
3127 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3128 								member_type_id);
3129 
3130 		if (btf_type_nosize_or_null(member_type) ||
3131 		    btf_type_is_resolve_source_only(member_type)) {
3132 			btf_verifier_log_member(env, v->t, member,
3133 						"Invalid member");
3134 			return -EINVAL;
3135 		}
3136 
3137 		if (!env_type_is_resolve_sink(env, member_type) &&
3138 		    !env_type_is_resolved(env, member_type_id)) {
3139 			env_stack_set_next_member(env, i + 1);
3140 			return env_stack_push(env, member_type, member_type_id);
3141 		}
3142 
3143 		if (btf_type_kflag(v->t))
3144 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3145 									    member,
3146 									    member_type);
3147 		else
3148 			err = btf_type_ops(member_type)->check_member(env, v->t,
3149 								      member,
3150 								      member_type);
3151 		if (err)
3152 			return err;
3153 	}
3154 
3155 	env_stack_pop_resolved(env, 0, 0);
3156 
3157 	return 0;
3158 }
3159 
3160 static void btf_struct_log(struct btf_verifier_env *env,
3161 			   const struct btf_type *t)
3162 {
3163 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3164 }
3165 
3166 static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
3167 				 const char *name, int sz, int align)
3168 {
3169 	const struct btf_member *member;
3170 	u32 i, off = -ENOENT;
3171 
3172 	for_each_member(i, t, member) {
3173 		const struct btf_type *member_type = btf_type_by_id(btf,
3174 								    member->type);
3175 		if (!__btf_type_is_struct(member_type))
3176 			continue;
3177 		if (member_type->size != sz)
3178 			continue;
3179 		if (strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
3180 			continue;
3181 		if (off != -ENOENT)
3182 			/* only one such field is allowed */
3183 			return -E2BIG;
3184 		off = __btf_member_bit_offset(t, member);
3185 		if (off % 8)
3186 			/* valid C code cannot generate such BTF */
3187 			return -EINVAL;
3188 		off /= 8;
3189 		if (off % align)
3190 			return -EINVAL;
3191 	}
3192 	return off;
3193 }
3194 
3195 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3196 				const char *name, int sz, int align)
3197 {
3198 	const struct btf_var_secinfo *vsi;
3199 	u32 i, off = -ENOENT;
3200 
3201 	for_each_vsi(i, t, vsi) {
3202 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3203 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3204 
3205 		if (!__btf_type_is_struct(var_type))
3206 			continue;
3207 		if (var_type->size != sz)
3208 			continue;
3209 		if (vsi->size != sz)
3210 			continue;
3211 		if (strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
3212 			continue;
3213 		if (off != -ENOENT)
3214 			/* only one such field is allowed */
3215 			return -E2BIG;
3216 		off = vsi->offset;
3217 		if (off % align)
3218 			return -EINVAL;
3219 	}
3220 	return off;
3221 }
3222 
3223 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3224 			  const char *name, int sz, int align)
3225 {
3226 
3227 	if (__btf_type_is_struct(t))
3228 		return btf_find_struct_field(btf, t, name, sz, align);
3229 	else if (btf_type_is_datasec(t))
3230 		return btf_find_datasec_var(btf, t, name, sz, align);
3231 	return -EINVAL;
3232 }
3233 
3234 /* find 'struct bpf_spin_lock' in map value.
3235  * return >= 0 offset if found
3236  * and < 0 in case of error
3237  */
3238 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3239 {
3240 	return btf_find_field(btf, t, "bpf_spin_lock",
3241 			      sizeof(struct bpf_spin_lock),
3242 			      __alignof__(struct bpf_spin_lock));
3243 }
3244 
3245 int btf_find_timer(const struct btf *btf, const struct btf_type *t)
3246 {
3247 	return btf_find_field(btf, t, "bpf_timer",
3248 			      sizeof(struct bpf_timer),
3249 			      __alignof__(struct bpf_timer));
3250 }
3251 
3252 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3253 			      u32 type_id, void *data, u8 bits_offset,
3254 			      struct btf_show *show)
3255 {
3256 	const struct btf_member *member;
3257 	void *safe_data;
3258 	u32 i;
3259 
3260 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3261 	if (!safe_data)
3262 		return;
3263 
3264 	for_each_member(i, t, member) {
3265 		const struct btf_type *member_type = btf_type_by_id(btf,
3266 								member->type);
3267 		const struct btf_kind_operations *ops;
3268 		u32 member_offset, bitfield_size;
3269 		u32 bytes_offset;
3270 		u8 bits8_offset;
3271 
3272 		btf_show_start_member(show, member);
3273 
3274 		member_offset = __btf_member_bit_offset(t, member);
3275 		bitfield_size = __btf_member_bitfield_size(t, member);
3276 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3277 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3278 		if (bitfield_size) {
3279 			safe_data = btf_show_start_type(show, member_type,
3280 							member->type,
3281 							data + bytes_offset);
3282 			if (safe_data)
3283 				btf_bitfield_show(safe_data,
3284 						  bits8_offset,
3285 						  bitfield_size, show);
3286 			btf_show_end_type(show);
3287 		} else {
3288 			ops = btf_type_ops(member_type);
3289 			ops->show(btf, member_type, member->type,
3290 				  data + bytes_offset, bits8_offset, show);
3291 		}
3292 
3293 		btf_show_end_member(show);
3294 	}
3295 
3296 	btf_show_end_struct_type(show);
3297 }
3298 
3299 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3300 			    u32 type_id, void *data, u8 bits_offset,
3301 			    struct btf_show *show)
3302 {
3303 	const struct btf_member *m = show->state.member;
3304 
3305 	/*
3306 	 * First check if any members would be shown (are non-zero).
3307 	 * See comments above "struct btf_show" definition for more
3308 	 * details on how this works at a high-level.
3309 	 */
3310 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3311 		if (!show->state.depth_check) {
3312 			show->state.depth_check = show->state.depth + 1;
3313 			show->state.depth_to_show = 0;
3314 		}
3315 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3316 		/* Restore saved member data here */
3317 		show->state.member = m;
3318 		if (show->state.depth_check != show->state.depth + 1)
3319 			return;
3320 		show->state.depth_check = 0;
3321 
3322 		if (show->state.depth_to_show <= show->state.depth)
3323 			return;
3324 		/*
3325 		 * Reaching here indicates we have recursed and found
3326 		 * non-zero child values.
3327 		 */
3328 	}
3329 
3330 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3331 }
3332 
3333 static struct btf_kind_operations struct_ops = {
3334 	.check_meta = btf_struct_check_meta,
3335 	.resolve = btf_struct_resolve,
3336 	.check_member = btf_struct_check_member,
3337 	.check_kflag_member = btf_generic_check_kflag_member,
3338 	.log_details = btf_struct_log,
3339 	.show = btf_struct_show,
3340 };
3341 
3342 static int btf_enum_check_member(struct btf_verifier_env *env,
3343 				 const struct btf_type *struct_type,
3344 				 const struct btf_member *member,
3345 				 const struct btf_type *member_type)
3346 {
3347 	u32 struct_bits_off = member->offset;
3348 	u32 struct_size, bytes_offset;
3349 
3350 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3351 		btf_verifier_log_member(env, struct_type, member,
3352 					"Member is not byte aligned");
3353 		return -EINVAL;
3354 	}
3355 
3356 	struct_size = struct_type->size;
3357 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3358 	if (struct_size - bytes_offset < member_type->size) {
3359 		btf_verifier_log_member(env, struct_type, member,
3360 					"Member exceeds struct_size");
3361 		return -EINVAL;
3362 	}
3363 
3364 	return 0;
3365 }
3366 
3367 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3368 				       const struct btf_type *struct_type,
3369 				       const struct btf_member *member,
3370 				       const struct btf_type *member_type)
3371 {
3372 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3373 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3374 
3375 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3376 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3377 	if (!nr_bits) {
3378 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3379 			btf_verifier_log_member(env, struct_type, member,
3380 						"Member is not byte aligned");
3381 			return -EINVAL;
3382 		}
3383 
3384 		nr_bits = int_bitsize;
3385 	} else if (nr_bits > int_bitsize) {
3386 		btf_verifier_log_member(env, struct_type, member,
3387 					"Invalid member bitfield_size");
3388 		return -EINVAL;
3389 	}
3390 
3391 	struct_size = struct_type->size;
3392 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3393 	if (struct_size < bytes_end) {
3394 		btf_verifier_log_member(env, struct_type, member,
3395 					"Member exceeds struct_size");
3396 		return -EINVAL;
3397 	}
3398 
3399 	return 0;
3400 }
3401 
3402 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3403 			       const struct btf_type *t,
3404 			       u32 meta_left)
3405 {
3406 	const struct btf_enum *enums = btf_type_enum(t);
3407 	struct btf *btf = env->btf;
3408 	u16 i, nr_enums;
3409 	u32 meta_needed;
3410 
3411 	nr_enums = btf_type_vlen(t);
3412 	meta_needed = nr_enums * sizeof(*enums);
3413 
3414 	if (meta_left < meta_needed) {
3415 		btf_verifier_log_basic(env, t,
3416 				       "meta_left:%u meta_needed:%u",
3417 				       meta_left, meta_needed);
3418 		return -EINVAL;
3419 	}
3420 
3421 	if (btf_type_kflag(t)) {
3422 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3423 		return -EINVAL;
3424 	}
3425 
3426 	if (t->size > 8 || !is_power_of_2(t->size)) {
3427 		btf_verifier_log_type(env, t, "Unexpected size");
3428 		return -EINVAL;
3429 	}
3430 
3431 	/* enum type either no name or a valid one */
3432 	if (t->name_off &&
3433 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3434 		btf_verifier_log_type(env, t, "Invalid name");
3435 		return -EINVAL;
3436 	}
3437 
3438 	btf_verifier_log_type(env, t, NULL);
3439 
3440 	for (i = 0; i < nr_enums; i++) {
3441 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3442 			btf_verifier_log(env, "\tInvalid name_offset:%u",
3443 					 enums[i].name_off);
3444 			return -EINVAL;
3445 		}
3446 
3447 		/* enum member must have a valid name */
3448 		if (!enums[i].name_off ||
3449 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3450 			btf_verifier_log_type(env, t, "Invalid name");
3451 			return -EINVAL;
3452 		}
3453 
3454 		if (env->log.level == BPF_LOG_KERNEL)
3455 			continue;
3456 		btf_verifier_log(env, "\t%s val=%d\n",
3457 				 __btf_name_by_offset(btf, enums[i].name_off),
3458 				 enums[i].val);
3459 	}
3460 
3461 	return meta_needed;
3462 }
3463 
3464 static void btf_enum_log(struct btf_verifier_env *env,
3465 			 const struct btf_type *t)
3466 {
3467 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3468 }
3469 
3470 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3471 			  u32 type_id, void *data, u8 bits_offset,
3472 			  struct btf_show *show)
3473 {
3474 	const struct btf_enum *enums = btf_type_enum(t);
3475 	u32 i, nr_enums = btf_type_vlen(t);
3476 	void *safe_data;
3477 	int v;
3478 
3479 	safe_data = btf_show_start_type(show, t, type_id, data);
3480 	if (!safe_data)
3481 		return;
3482 
3483 	v = *(int *)safe_data;
3484 
3485 	for (i = 0; i < nr_enums; i++) {
3486 		if (v != enums[i].val)
3487 			continue;
3488 
3489 		btf_show_type_value(show, "%s",
3490 				    __btf_name_by_offset(btf,
3491 							 enums[i].name_off));
3492 
3493 		btf_show_end_type(show);
3494 		return;
3495 	}
3496 
3497 	btf_show_type_value(show, "%d", v);
3498 	btf_show_end_type(show);
3499 }
3500 
3501 static struct btf_kind_operations enum_ops = {
3502 	.check_meta = btf_enum_check_meta,
3503 	.resolve = btf_df_resolve,
3504 	.check_member = btf_enum_check_member,
3505 	.check_kflag_member = btf_enum_check_kflag_member,
3506 	.log_details = btf_enum_log,
3507 	.show = btf_enum_show,
3508 };
3509 
3510 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3511 				     const struct btf_type *t,
3512 				     u32 meta_left)
3513 {
3514 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3515 
3516 	if (meta_left < meta_needed) {
3517 		btf_verifier_log_basic(env, t,
3518 				       "meta_left:%u meta_needed:%u",
3519 				       meta_left, meta_needed);
3520 		return -EINVAL;
3521 	}
3522 
3523 	if (t->name_off) {
3524 		btf_verifier_log_type(env, t, "Invalid name");
3525 		return -EINVAL;
3526 	}
3527 
3528 	if (btf_type_kflag(t)) {
3529 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3530 		return -EINVAL;
3531 	}
3532 
3533 	btf_verifier_log_type(env, t, NULL);
3534 
3535 	return meta_needed;
3536 }
3537 
3538 static void btf_func_proto_log(struct btf_verifier_env *env,
3539 			       const struct btf_type *t)
3540 {
3541 	const struct btf_param *args = (const struct btf_param *)(t + 1);
3542 	u16 nr_args = btf_type_vlen(t), i;
3543 
3544 	btf_verifier_log(env, "return=%u args=(", t->type);
3545 	if (!nr_args) {
3546 		btf_verifier_log(env, "void");
3547 		goto done;
3548 	}
3549 
3550 	if (nr_args == 1 && !args[0].type) {
3551 		/* Only one vararg */
3552 		btf_verifier_log(env, "vararg");
3553 		goto done;
3554 	}
3555 
3556 	btf_verifier_log(env, "%u %s", args[0].type,
3557 			 __btf_name_by_offset(env->btf,
3558 					      args[0].name_off));
3559 	for (i = 1; i < nr_args - 1; i++)
3560 		btf_verifier_log(env, ", %u %s", args[i].type,
3561 				 __btf_name_by_offset(env->btf,
3562 						      args[i].name_off));
3563 
3564 	if (nr_args > 1) {
3565 		const struct btf_param *last_arg = &args[nr_args - 1];
3566 
3567 		if (last_arg->type)
3568 			btf_verifier_log(env, ", %u %s", last_arg->type,
3569 					 __btf_name_by_offset(env->btf,
3570 							      last_arg->name_off));
3571 		else
3572 			btf_verifier_log(env, ", vararg");
3573 	}
3574 
3575 done:
3576 	btf_verifier_log(env, ")");
3577 }
3578 
3579 static struct btf_kind_operations func_proto_ops = {
3580 	.check_meta = btf_func_proto_check_meta,
3581 	.resolve = btf_df_resolve,
3582 	/*
3583 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3584 	 * a struct's member.
3585 	 *
3586 	 * It should be a function pointer instead.
3587 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3588 	 *
3589 	 * Hence, there is no btf_func_check_member().
3590 	 */
3591 	.check_member = btf_df_check_member,
3592 	.check_kflag_member = btf_df_check_kflag_member,
3593 	.log_details = btf_func_proto_log,
3594 	.show = btf_df_show,
3595 };
3596 
3597 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3598 			       const struct btf_type *t,
3599 			       u32 meta_left)
3600 {
3601 	if (!t->name_off ||
3602 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3603 		btf_verifier_log_type(env, t, "Invalid name");
3604 		return -EINVAL;
3605 	}
3606 
3607 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3608 		btf_verifier_log_type(env, t, "Invalid func linkage");
3609 		return -EINVAL;
3610 	}
3611 
3612 	if (btf_type_kflag(t)) {
3613 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3614 		return -EINVAL;
3615 	}
3616 
3617 	btf_verifier_log_type(env, t, NULL);
3618 
3619 	return 0;
3620 }
3621 
3622 static int btf_func_resolve(struct btf_verifier_env *env,
3623 			    const struct resolve_vertex *v)
3624 {
3625 	const struct btf_type *t = v->t;
3626 	u32 next_type_id = t->type;
3627 	int err;
3628 
3629 	err = btf_func_check(env, t);
3630 	if (err)
3631 		return err;
3632 
3633 	env_stack_pop_resolved(env, next_type_id, 0);
3634 	return 0;
3635 }
3636 
3637 static struct btf_kind_operations func_ops = {
3638 	.check_meta = btf_func_check_meta,
3639 	.resolve = btf_func_resolve,
3640 	.check_member = btf_df_check_member,
3641 	.check_kflag_member = btf_df_check_kflag_member,
3642 	.log_details = btf_ref_type_log,
3643 	.show = btf_df_show,
3644 };
3645 
3646 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3647 			      const struct btf_type *t,
3648 			      u32 meta_left)
3649 {
3650 	const struct btf_var *var;
3651 	u32 meta_needed = sizeof(*var);
3652 
3653 	if (meta_left < meta_needed) {
3654 		btf_verifier_log_basic(env, t,
3655 				       "meta_left:%u meta_needed:%u",
3656 				       meta_left, meta_needed);
3657 		return -EINVAL;
3658 	}
3659 
3660 	if (btf_type_vlen(t)) {
3661 		btf_verifier_log_type(env, t, "vlen != 0");
3662 		return -EINVAL;
3663 	}
3664 
3665 	if (btf_type_kflag(t)) {
3666 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3667 		return -EINVAL;
3668 	}
3669 
3670 	if (!t->name_off ||
3671 	    !__btf_name_valid(env->btf, t->name_off, true)) {
3672 		btf_verifier_log_type(env, t, "Invalid name");
3673 		return -EINVAL;
3674 	}
3675 
3676 	/* A var cannot be in type void */
3677 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3678 		btf_verifier_log_type(env, t, "Invalid type_id");
3679 		return -EINVAL;
3680 	}
3681 
3682 	var = btf_type_var(t);
3683 	if (var->linkage != BTF_VAR_STATIC &&
3684 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3685 		btf_verifier_log_type(env, t, "Linkage not supported");
3686 		return -EINVAL;
3687 	}
3688 
3689 	btf_verifier_log_type(env, t, NULL);
3690 
3691 	return meta_needed;
3692 }
3693 
3694 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3695 {
3696 	const struct btf_var *var = btf_type_var(t);
3697 
3698 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3699 }
3700 
3701 static const struct btf_kind_operations var_ops = {
3702 	.check_meta		= btf_var_check_meta,
3703 	.resolve		= btf_var_resolve,
3704 	.check_member		= btf_df_check_member,
3705 	.check_kflag_member	= btf_df_check_kflag_member,
3706 	.log_details		= btf_var_log,
3707 	.show			= btf_var_show,
3708 };
3709 
3710 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3711 				  const struct btf_type *t,
3712 				  u32 meta_left)
3713 {
3714 	const struct btf_var_secinfo *vsi;
3715 	u64 last_vsi_end_off = 0, sum = 0;
3716 	u32 i, meta_needed;
3717 
3718 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3719 	if (meta_left < meta_needed) {
3720 		btf_verifier_log_basic(env, t,
3721 				       "meta_left:%u meta_needed:%u",
3722 				       meta_left, meta_needed);
3723 		return -EINVAL;
3724 	}
3725 
3726 	if (!t->size) {
3727 		btf_verifier_log_type(env, t, "size == 0");
3728 		return -EINVAL;
3729 	}
3730 
3731 	if (btf_type_kflag(t)) {
3732 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3733 		return -EINVAL;
3734 	}
3735 
3736 	if (!t->name_off ||
3737 	    !btf_name_valid_section(env->btf, t->name_off)) {
3738 		btf_verifier_log_type(env, t, "Invalid name");
3739 		return -EINVAL;
3740 	}
3741 
3742 	btf_verifier_log_type(env, t, NULL);
3743 
3744 	for_each_vsi(i, t, vsi) {
3745 		/* A var cannot be in type void */
3746 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3747 			btf_verifier_log_vsi(env, t, vsi,
3748 					     "Invalid type_id");
3749 			return -EINVAL;
3750 		}
3751 
3752 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3753 			btf_verifier_log_vsi(env, t, vsi,
3754 					     "Invalid offset");
3755 			return -EINVAL;
3756 		}
3757 
3758 		if (!vsi->size || vsi->size > t->size) {
3759 			btf_verifier_log_vsi(env, t, vsi,
3760 					     "Invalid size");
3761 			return -EINVAL;
3762 		}
3763 
3764 		last_vsi_end_off = vsi->offset + vsi->size;
3765 		if (last_vsi_end_off > t->size) {
3766 			btf_verifier_log_vsi(env, t, vsi,
3767 					     "Invalid offset+size");
3768 			return -EINVAL;
3769 		}
3770 
3771 		btf_verifier_log_vsi(env, t, vsi, NULL);
3772 		sum += vsi->size;
3773 	}
3774 
3775 	if (t->size < sum) {
3776 		btf_verifier_log_type(env, t, "Invalid btf_info size");
3777 		return -EINVAL;
3778 	}
3779 
3780 	return meta_needed;
3781 }
3782 
3783 static int btf_datasec_resolve(struct btf_verifier_env *env,
3784 			       const struct resolve_vertex *v)
3785 {
3786 	const struct btf_var_secinfo *vsi;
3787 	struct btf *btf = env->btf;
3788 	u16 i;
3789 
3790 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
3791 		u32 var_type_id = vsi->type, type_id, type_size = 0;
3792 		const struct btf_type *var_type = btf_type_by_id(env->btf,
3793 								 var_type_id);
3794 		if (!var_type || !btf_type_is_var(var_type)) {
3795 			btf_verifier_log_vsi(env, v->t, vsi,
3796 					     "Not a VAR kind member");
3797 			return -EINVAL;
3798 		}
3799 
3800 		if (!env_type_is_resolve_sink(env, var_type) &&
3801 		    !env_type_is_resolved(env, var_type_id)) {
3802 			env_stack_set_next_member(env, i + 1);
3803 			return env_stack_push(env, var_type, var_type_id);
3804 		}
3805 
3806 		type_id = var_type->type;
3807 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
3808 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3809 			return -EINVAL;
3810 		}
3811 
3812 		if (vsi->size < type_size) {
3813 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3814 			return -EINVAL;
3815 		}
3816 	}
3817 
3818 	env_stack_pop_resolved(env, 0, 0);
3819 	return 0;
3820 }
3821 
3822 static void btf_datasec_log(struct btf_verifier_env *env,
3823 			    const struct btf_type *t)
3824 {
3825 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3826 }
3827 
3828 static void btf_datasec_show(const struct btf *btf,
3829 			     const struct btf_type *t, u32 type_id,
3830 			     void *data, u8 bits_offset,
3831 			     struct btf_show *show)
3832 {
3833 	const struct btf_var_secinfo *vsi;
3834 	const struct btf_type *var;
3835 	u32 i;
3836 
3837 	if (!btf_show_start_type(show, t, type_id, data))
3838 		return;
3839 
3840 	btf_show_type_value(show, "section (\"%s\") = {",
3841 			    __btf_name_by_offset(btf, t->name_off));
3842 	for_each_vsi(i, t, vsi) {
3843 		var = btf_type_by_id(btf, vsi->type);
3844 		if (i)
3845 			btf_show(show, ",");
3846 		btf_type_ops(var)->show(btf, var, vsi->type,
3847 					data + vsi->offset, bits_offset, show);
3848 	}
3849 	btf_show_end_type(show);
3850 }
3851 
3852 static const struct btf_kind_operations datasec_ops = {
3853 	.check_meta		= btf_datasec_check_meta,
3854 	.resolve		= btf_datasec_resolve,
3855 	.check_member		= btf_df_check_member,
3856 	.check_kflag_member	= btf_df_check_kflag_member,
3857 	.log_details		= btf_datasec_log,
3858 	.show			= btf_datasec_show,
3859 };
3860 
3861 static s32 btf_float_check_meta(struct btf_verifier_env *env,
3862 				const struct btf_type *t,
3863 				u32 meta_left)
3864 {
3865 	if (btf_type_vlen(t)) {
3866 		btf_verifier_log_type(env, t, "vlen != 0");
3867 		return -EINVAL;
3868 	}
3869 
3870 	if (btf_type_kflag(t)) {
3871 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3872 		return -EINVAL;
3873 	}
3874 
3875 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
3876 	    t->size != 16) {
3877 		btf_verifier_log_type(env, t, "Invalid type_size");
3878 		return -EINVAL;
3879 	}
3880 
3881 	btf_verifier_log_type(env, t, NULL);
3882 
3883 	return 0;
3884 }
3885 
3886 static int btf_float_check_member(struct btf_verifier_env *env,
3887 				  const struct btf_type *struct_type,
3888 				  const struct btf_member *member,
3889 				  const struct btf_type *member_type)
3890 {
3891 	u64 start_offset_bytes;
3892 	u64 end_offset_bytes;
3893 	u64 misalign_bits;
3894 	u64 align_bytes;
3895 	u64 align_bits;
3896 
3897 	/* Different architectures have different alignment requirements, so
3898 	 * here we check only for the reasonable minimum. This way we ensure
3899 	 * that types after CO-RE can pass the kernel BTF verifier.
3900 	 */
3901 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
3902 	align_bits = align_bytes * BITS_PER_BYTE;
3903 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
3904 	if (misalign_bits) {
3905 		btf_verifier_log_member(env, struct_type, member,
3906 					"Member is not properly aligned");
3907 		return -EINVAL;
3908 	}
3909 
3910 	start_offset_bytes = member->offset / BITS_PER_BYTE;
3911 	end_offset_bytes = start_offset_bytes + member_type->size;
3912 	if (end_offset_bytes > struct_type->size) {
3913 		btf_verifier_log_member(env, struct_type, member,
3914 					"Member exceeds struct_size");
3915 		return -EINVAL;
3916 	}
3917 
3918 	return 0;
3919 }
3920 
3921 static void btf_float_log(struct btf_verifier_env *env,
3922 			  const struct btf_type *t)
3923 {
3924 	btf_verifier_log(env, "size=%u", t->size);
3925 }
3926 
3927 static const struct btf_kind_operations float_ops = {
3928 	.check_meta = btf_float_check_meta,
3929 	.resolve = btf_df_resolve,
3930 	.check_member = btf_float_check_member,
3931 	.check_kflag_member = btf_generic_check_kflag_member,
3932 	.log_details = btf_float_log,
3933 	.show = btf_df_show,
3934 };
3935 
3936 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
3937 			      const struct btf_type *t,
3938 			      u32 meta_left)
3939 {
3940 	const struct btf_decl_tag *tag;
3941 	u32 meta_needed = sizeof(*tag);
3942 	s32 component_idx;
3943 	const char *value;
3944 
3945 	if (meta_left < meta_needed) {
3946 		btf_verifier_log_basic(env, t,
3947 				       "meta_left:%u meta_needed:%u",
3948 				       meta_left, meta_needed);
3949 		return -EINVAL;
3950 	}
3951 
3952 	value = btf_name_by_offset(env->btf, t->name_off);
3953 	if (!value || !value[0]) {
3954 		btf_verifier_log_type(env, t, "Invalid value");
3955 		return -EINVAL;
3956 	}
3957 
3958 	if (btf_type_vlen(t)) {
3959 		btf_verifier_log_type(env, t, "vlen != 0");
3960 		return -EINVAL;
3961 	}
3962 
3963 	if (btf_type_kflag(t)) {
3964 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3965 		return -EINVAL;
3966 	}
3967 
3968 	component_idx = btf_type_decl_tag(t)->component_idx;
3969 	if (component_idx < -1) {
3970 		btf_verifier_log_type(env, t, "Invalid component_idx");
3971 		return -EINVAL;
3972 	}
3973 
3974 	btf_verifier_log_type(env, t, NULL);
3975 
3976 	return meta_needed;
3977 }
3978 
3979 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
3980 			   const struct resolve_vertex *v)
3981 {
3982 	const struct btf_type *next_type;
3983 	const struct btf_type *t = v->t;
3984 	u32 next_type_id = t->type;
3985 	struct btf *btf = env->btf;
3986 	s32 component_idx;
3987 	u32 vlen;
3988 
3989 	next_type = btf_type_by_id(btf, next_type_id);
3990 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
3991 		btf_verifier_log_type(env, v->t, "Invalid type_id");
3992 		return -EINVAL;
3993 	}
3994 
3995 	if (!env_type_is_resolve_sink(env, next_type) &&
3996 	    !env_type_is_resolved(env, next_type_id))
3997 		return env_stack_push(env, next_type, next_type_id);
3998 
3999 	component_idx = btf_type_decl_tag(t)->component_idx;
4000 	if (component_idx != -1) {
4001 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4002 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4003 			return -EINVAL;
4004 		}
4005 
4006 		if (btf_type_is_struct(next_type)) {
4007 			vlen = btf_type_vlen(next_type);
4008 		} else {
4009 			/* next_type should be a function */
4010 			next_type = btf_type_by_id(btf, next_type->type);
4011 			vlen = btf_type_vlen(next_type);
4012 		}
4013 
4014 		if ((u32)component_idx >= vlen) {
4015 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4016 			return -EINVAL;
4017 		}
4018 	}
4019 
4020 	env_stack_pop_resolved(env, next_type_id, 0);
4021 
4022 	return 0;
4023 }
4024 
4025 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4026 {
4027 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4028 			 btf_type_decl_tag(t)->component_idx);
4029 }
4030 
4031 static const struct btf_kind_operations decl_tag_ops = {
4032 	.check_meta = btf_decl_tag_check_meta,
4033 	.resolve = btf_decl_tag_resolve,
4034 	.check_member = btf_df_check_member,
4035 	.check_kflag_member = btf_df_check_kflag_member,
4036 	.log_details = btf_decl_tag_log,
4037 	.show = btf_df_show,
4038 };
4039 
4040 static int btf_func_proto_check(struct btf_verifier_env *env,
4041 				const struct btf_type *t)
4042 {
4043 	const struct btf_type *ret_type;
4044 	const struct btf_param *args;
4045 	const struct btf *btf;
4046 	u16 nr_args, i;
4047 	int err;
4048 
4049 	btf = env->btf;
4050 	args = (const struct btf_param *)(t + 1);
4051 	nr_args = btf_type_vlen(t);
4052 
4053 	/* Check func return type which could be "void" (t->type == 0) */
4054 	if (t->type) {
4055 		u32 ret_type_id = t->type;
4056 
4057 		ret_type = btf_type_by_id(btf, ret_type_id);
4058 		if (!ret_type) {
4059 			btf_verifier_log_type(env, t, "Invalid return type");
4060 			return -EINVAL;
4061 		}
4062 
4063 		if (btf_type_needs_resolve(ret_type) &&
4064 		    !env_type_is_resolved(env, ret_type_id)) {
4065 			err = btf_resolve(env, ret_type, ret_type_id);
4066 			if (err)
4067 				return err;
4068 		}
4069 
4070 		/* Ensure the return type is a type that has a size */
4071 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4072 			btf_verifier_log_type(env, t, "Invalid return type");
4073 			return -EINVAL;
4074 		}
4075 	}
4076 
4077 	if (!nr_args)
4078 		return 0;
4079 
4080 	/* Last func arg type_id could be 0 if it is a vararg */
4081 	if (!args[nr_args - 1].type) {
4082 		if (args[nr_args - 1].name_off) {
4083 			btf_verifier_log_type(env, t, "Invalid arg#%u",
4084 					      nr_args);
4085 			return -EINVAL;
4086 		}
4087 		nr_args--;
4088 	}
4089 
4090 	err = 0;
4091 	for (i = 0; i < nr_args; i++) {
4092 		const struct btf_type *arg_type;
4093 		u32 arg_type_id;
4094 
4095 		arg_type_id = args[i].type;
4096 		arg_type = btf_type_by_id(btf, arg_type_id);
4097 		if (!arg_type) {
4098 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4099 			err = -EINVAL;
4100 			break;
4101 		}
4102 
4103 		if (args[i].name_off &&
4104 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4105 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4106 			btf_verifier_log_type(env, t,
4107 					      "Invalid arg#%u", i + 1);
4108 			err = -EINVAL;
4109 			break;
4110 		}
4111 
4112 		if (btf_type_needs_resolve(arg_type) &&
4113 		    !env_type_is_resolved(env, arg_type_id)) {
4114 			err = btf_resolve(env, arg_type, arg_type_id);
4115 			if (err)
4116 				break;
4117 		}
4118 
4119 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4120 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4121 			err = -EINVAL;
4122 			break;
4123 		}
4124 	}
4125 
4126 	return err;
4127 }
4128 
4129 static int btf_func_check(struct btf_verifier_env *env,
4130 			  const struct btf_type *t)
4131 {
4132 	const struct btf_type *proto_type;
4133 	const struct btf_param *args;
4134 	const struct btf *btf;
4135 	u16 nr_args, i;
4136 
4137 	btf = env->btf;
4138 	proto_type = btf_type_by_id(btf, t->type);
4139 
4140 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4141 		btf_verifier_log_type(env, t, "Invalid type_id");
4142 		return -EINVAL;
4143 	}
4144 
4145 	args = (const struct btf_param *)(proto_type + 1);
4146 	nr_args = btf_type_vlen(proto_type);
4147 	for (i = 0; i < nr_args; i++) {
4148 		if (!args[i].name_off && args[i].type) {
4149 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4150 			return -EINVAL;
4151 		}
4152 	}
4153 
4154 	return 0;
4155 }
4156 
4157 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4158 	[BTF_KIND_INT] = &int_ops,
4159 	[BTF_KIND_PTR] = &ptr_ops,
4160 	[BTF_KIND_ARRAY] = &array_ops,
4161 	[BTF_KIND_STRUCT] = &struct_ops,
4162 	[BTF_KIND_UNION] = &struct_ops,
4163 	[BTF_KIND_ENUM] = &enum_ops,
4164 	[BTF_KIND_FWD] = &fwd_ops,
4165 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4166 	[BTF_KIND_VOLATILE] = &modifier_ops,
4167 	[BTF_KIND_CONST] = &modifier_ops,
4168 	[BTF_KIND_RESTRICT] = &modifier_ops,
4169 	[BTF_KIND_FUNC] = &func_ops,
4170 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4171 	[BTF_KIND_VAR] = &var_ops,
4172 	[BTF_KIND_DATASEC] = &datasec_ops,
4173 	[BTF_KIND_FLOAT] = &float_ops,
4174 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4175 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4176 };
4177 
4178 static s32 btf_check_meta(struct btf_verifier_env *env,
4179 			  const struct btf_type *t,
4180 			  u32 meta_left)
4181 {
4182 	u32 saved_meta_left = meta_left;
4183 	s32 var_meta_size;
4184 
4185 	if (meta_left < sizeof(*t)) {
4186 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4187 				 env->log_type_id, meta_left, sizeof(*t));
4188 		return -EINVAL;
4189 	}
4190 	meta_left -= sizeof(*t);
4191 
4192 	if (t->info & ~BTF_INFO_MASK) {
4193 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4194 				 env->log_type_id, t->info);
4195 		return -EINVAL;
4196 	}
4197 
4198 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4199 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4200 		btf_verifier_log(env, "[%u] Invalid kind:%u",
4201 				 env->log_type_id, BTF_INFO_KIND(t->info));
4202 		return -EINVAL;
4203 	}
4204 
4205 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
4206 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4207 				 env->log_type_id, t->name_off);
4208 		return -EINVAL;
4209 	}
4210 
4211 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4212 	if (var_meta_size < 0)
4213 		return var_meta_size;
4214 
4215 	meta_left -= var_meta_size;
4216 
4217 	return saved_meta_left - meta_left;
4218 }
4219 
4220 static int btf_check_all_metas(struct btf_verifier_env *env)
4221 {
4222 	struct btf *btf = env->btf;
4223 	struct btf_header *hdr;
4224 	void *cur, *end;
4225 
4226 	hdr = &btf->hdr;
4227 	cur = btf->nohdr_data + hdr->type_off;
4228 	end = cur + hdr->type_len;
4229 
4230 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
4231 	while (cur < end) {
4232 		struct btf_type *t = cur;
4233 		s32 meta_size;
4234 
4235 		meta_size = btf_check_meta(env, t, end - cur);
4236 		if (meta_size < 0)
4237 			return meta_size;
4238 
4239 		btf_add_type(env, t);
4240 		cur += meta_size;
4241 		env->log_type_id++;
4242 	}
4243 
4244 	return 0;
4245 }
4246 
4247 static bool btf_resolve_valid(struct btf_verifier_env *env,
4248 			      const struct btf_type *t,
4249 			      u32 type_id)
4250 {
4251 	struct btf *btf = env->btf;
4252 
4253 	if (!env_type_is_resolved(env, type_id))
4254 		return false;
4255 
4256 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
4257 		return !btf_resolved_type_id(btf, type_id) &&
4258 		       !btf_resolved_type_size(btf, type_id);
4259 
4260 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
4261 		return btf_resolved_type_id(btf, type_id) &&
4262 		       !btf_resolved_type_size(btf, type_id);
4263 
4264 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4265 	    btf_type_is_var(t)) {
4266 		t = btf_type_id_resolve(btf, &type_id);
4267 		return t &&
4268 		       !btf_type_is_modifier(t) &&
4269 		       !btf_type_is_var(t) &&
4270 		       !btf_type_is_datasec(t);
4271 	}
4272 
4273 	if (btf_type_is_array(t)) {
4274 		const struct btf_array *array = btf_type_array(t);
4275 		const struct btf_type *elem_type;
4276 		u32 elem_type_id = array->type;
4277 		u32 elem_size;
4278 
4279 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4280 		return elem_type && !btf_type_is_modifier(elem_type) &&
4281 			(array->nelems * elem_size ==
4282 			 btf_resolved_type_size(btf, type_id));
4283 	}
4284 
4285 	return false;
4286 }
4287 
4288 static int btf_resolve(struct btf_verifier_env *env,
4289 		       const struct btf_type *t, u32 type_id)
4290 {
4291 	u32 save_log_type_id = env->log_type_id;
4292 	const struct resolve_vertex *v;
4293 	int err = 0;
4294 
4295 	env->resolve_mode = RESOLVE_TBD;
4296 	env_stack_push(env, t, type_id);
4297 	while (!err && (v = env_stack_peak(env))) {
4298 		env->log_type_id = v->type_id;
4299 		err = btf_type_ops(v->t)->resolve(env, v);
4300 	}
4301 
4302 	env->log_type_id = type_id;
4303 	if (err == -E2BIG) {
4304 		btf_verifier_log_type(env, t,
4305 				      "Exceeded max resolving depth:%u",
4306 				      MAX_RESOLVE_DEPTH);
4307 	} else if (err == -EEXIST) {
4308 		btf_verifier_log_type(env, t, "Loop detected");
4309 	}
4310 
4311 	/* Final sanity check */
4312 	if (!err && !btf_resolve_valid(env, t, type_id)) {
4313 		btf_verifier_log_type(env, t, "Invalid resolve state");
4314 		err = -EINVAL;
4315 	}
4316 
4317 	env->log_type_id = save_log_type_id;
4318 	return err;
4319 }
4320 
4321 static int btf_check_all_types(struct btf_verifier_env *env)
4322 {
4323 	struct btf *btf = env->btf;
4324 	const struct btf_type *t;
4325 	u32 type_id, i;
4326 	int err;
4327 
4328 	err = env_resolve_init(env);
4329 	if (err)
4330 		return err;
4331 
4332 	env->phase++;
4333 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4334 		type_id = btf->start_id + i;
4335 		t = btf_type_by_id(btf, type_id);
4336 
4337 		env->log_type_id = type_id;
4338 		if (btf_type_needs_resolve(t) &&
4339 		    !env_type_is_resolved(env, type_id)) {
4340 			err = btf_resolve(env, t, type_id);
4341 			if (err)
4342 				return err;
4343 		}
4344 
4345 		if (btf_type_is_func_proto(t)) {
4346 			err = btf_func_proto_check(env, t);
4347 			if (err)
4348 				return err;
4349 		}
4350 	}
4351 
4352 	return 0;
4353 }
4354 
4355 static int btf_parse_type_sec(struct btf_verifier_env *env)
4356 {
4357 	const struct btf_header *hdr = &env->btf->hdr;
4358 	int err;
4359 
4360 	/* Type section must align to 4 bytes */
4361 	if (hdr->type_off & (sizeof(u32) - 1)) {
4362 		btf_verifier_log(env, "Unaligned type_off");
4363 		return -EINVAL;
4364 	}
4365 
4366 	if (!env->btf->base_btf && !hdr->type_len) {
4367 		btf_verifier_log(env, "No type found");
4368 		return -EINVAL;
4369 	}
4370 
4371 	err = btf_check_all_metas(env);
4372 	if (err)
4373 		return err;
4374 
4375 	return btf_check_all_types(env);
4376 }
4377 
4378 static int btf_parse_str_sec(struct btf_verifier_env *env)
4379 {
4380 	const struct btf_header *hdr;
4381 	struct btf *btf = env->btf;
4382 	const char *start, *end;
4383 
4384 	hdr = &btf->hdr;
4385 	start = btf->nohdr_data + hdr->str_off;
4386 	end = start + hdr->str_len;
4387 
4388 	if (end != btf->data + btf->data_size) {
4389 		btf_verifier_log(env, "String section is not at the end");
4390 		return -EINVAL;
4391 	}
4392 
4393 	btf->strings = start;
4394 
4395 	if (btf->base_btf && !hdr->str_len)
4396 		return 0;
4397 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4398 		btf_verifier_log(env, "Invalid string section");
4399 		return -EINVAL;
4400 	}
4401 	if (!btf->base_btf && start[0]) {
4402 		btf_verifier_log(env, "Invalid string section");
4403 		return -EINVAL;
4404 	}
4405 
4406 	return 0;
4407 }
4408 
4409 static const size_t btf_sec_info_offset[] = {
4410 	offsetof(struct btf_header, type_off),
4411 	offsetof(struct btf_header, str_off),
4412 };
4413 
4414 static int btf_sec_info_cmp(const void *a, const void *b)
4415 {
4416 	const struct btf_sec_info *x = a;
4417 	const struct btf_sec_info *y = b;
4418 
4419 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4420 }
4421 
4422 static int btf_check_sec_info(struct btf_verifier_env *env,
4423 			      u32 btf_data_size)
4424 {
4425 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4426 	u32 total, expected_total, i;
4427 	const struct btf_header *hdr;
4428 	const struct btf *btf;
4429 
4430 	btf = env->btf;
4431 	hdr = &btf->hdr;
4432 
4433 	/* Populate the secs from hdr */
4434 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4435 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
4436 						   btf_sec_info_offset[i]);
4437 
4438 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4439 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4440 
4441 	/* Check for gaps and overlap among sections */
4442 	total = 0;
4443 	expected_total = btf_data_size - hdr->hdr_len;
4444 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4445 		if (expected_total < secs[i].off) {
4446 			btf_verifier_log(env, "Invalid section offset");
4447 			return -EINVAL;
4448 		}
4449 		if (total < secs[i].off) {
4450 			/* gap */
4451 			btf_verifier_log(env, "Unsupported section found");
4452 			return -EINVAL;
4453 		}
4454 		if (total > secs[i].off) {
4455 			btf_verifier_log(env, "Section overlap found");
4456 			return -EINVAL;
4457 		}
4458 		if (expected_total - total < secs[i].len) {
4459 			btf_verifier_log(env,
4460 					 "Total section length too long");
4461 			return -EINVAL;
4462 		}
4463 		total += secs[i].len;
4464 	}
4465 
4466 	/* There is data other than hdr and known sections */
4467 	if (expected_total != total) {
4468 		btf_verifier_log(env, "Unsupported section found");
4469 		return -EINVAL;
4470 	}
4471 
4472 	return 0;
4473 }
4474 
4475 static int btf_parse_hdr(struct btf_verifier_env *env)
4476 {
4477 	u32 hdr_len, hdr_copy, btf_data_size;
4478 	const struct btf_header *hdr;
4479 	struct btf *btf;
4480 	int err;
4481 
4482 	btf = env->btf;
4483 	btf_data_size = btf->data_size;
4484 
4485 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
4486 		btf_verifier_log(env, "hdr_len not found");
4487 		return -EINVAL;
4488 	}
4489 
4490 	hdr = btf->data;
4491 	hdr_len = hdr->hdr_len;
4492 	if (btf_data_size < hdr_len) {
4493 		btf_verifier_log(env, "btf_header not found");
4494 		return -EINVAL;
4495 	}
4496 
4497 	/* Ensure the unsupported header fields are zero */
4498 	if (hdr_len > sizeof(btf->hdr)) {
4499 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
4500 		u8 *end = btf->data + hdr_len;
4501 
4502 		for (; expected_zero < end; expected_zero++) {
4503 			if (*expected_zero) {
4504 				btf_verifier_log(env, "Unsupported btf_header");
4505 				return -E2BIG;
4506 			}
4507 		}
4508 	}
4509 
4510 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4511 	memcpy(&btf->hdr, btf->data, hdr_copy);
4512 
4513 	hdr = &btf->hdr;
4514 
4515 	btf_verifier_log_hdr(env, btf_data_size);
4516 
4517 	if (hdr->magic != BTF_MAGIC) {
4518 		btf_verifier_log(env, "Invalid magic");
4519 		return -EINVAL;
4520 	}
4521 
4522 	if (hdr->version != BTF_VERSION) {
4523 		btf_verifier_log(env, "Unsupported version");
4524 		return -ENOTSUPP;
4525 	}
4526 
4527 	if (hdr->flags) {
4528 		btf_verifier_log(env, "Unsupported flags");
4529 		return -ENOTSUPP;
4530 	}
4531 
4532 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4533 		btf_verifier_log(env, "No data");
4534 		return -EINVAL;
4535 	}
4536 
4537 	err = btf_check_sec_info(env, btf_data_size);
4538 	if (err)
4539 		return err;
4540 
4541 	return 0;
4542 }
4543 
4544 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
4545 			     u32 log_level, char __user *log_ubuf, u32 log_size)
4546 {
4547 	struct btf_verifier_env *env = NULL;
4548 	struct bpf_verifier_log *log;
4549 	struct btf *btf = NULL;
4550 	u8 *data;
4551 	int err;
4552 
4553 	if (btf_data_size > BTF_MAX_SIZE)
4554 		return ERR_PTR(-E2BIG);
4555 
4556 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4557 	if (!env)
4558 		return ERR_PTR(-ENOMEM);
4559 
4560 	log = &env->log;
4561 	if (log_level || log_ubuf || log_size) {
4562 		/* user requested verbose verifier output
4563 		 * and supplied buffer to store the verification trace
4564 		 */
4565 		log->level = log_level;
4566 		log->ubuf = log_ubuf;
4567 		log->len_total = log_size;
4568 
4569 		/* log attributes have to be sane */
4570 		if (!bpf_verifier_log_attr_valid(log)) {
4571 			err = -EINVAL;
4572 			goto errout;
4573 		}
4574 	}
4575 
4576 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4577 	if (!btf) {
4578 		err = -ENOMEM;
4579 		goto errout;
4580 	}
4581 	env->btf = btf;
4582 
4583 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4584 	if (!data) {
4585 		err = -ENOMEM;
4586 		goto errout;
4587 	}
4588 
4589 	btf->data = data;
4590 	btf->data_size = btf_data_size;
4591 
4592 	if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
4593 		err = -EFAULT;
4594 		goto errout;
4595 	}
4596 
4597 	err = btf_parse_hdr(env);
4598 	if (err)
4599 		goto errout;
4600 
4601 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4602 
4603 	err = btf_parse_str_sec(env);
4604 	if (err)
4605 		goto errout;
4606 
4607 	err = btf_parse_type_sec(env);
4608 	if (err)
4609 		goto errout;
4610 
4611 	if (log->level && bpf_verifier_log_full(log)) {
4612 		err = -ENOSPC;
4613 		goto errout;
4614 	}
4615 
4616 	btf_verifier_env_free(env);
4617 	refcount_set(&btf->refcnt, 1);
4618 	return btf;
4619 
4620 errout:
4621 	btf_verifier_env_free(env);
4622 	if (btf)
4623 		btf_free(btf);
4624 	return ERR_PTR(err);
4625 }
4626 
4627 extern char __weak __start_BTF[];
4628 extern char __weak __stop_BTF[];
4629 extern struct btf *btf_vmlinux;
4630 
4631 #define BPF_MAP_TYPE(_id, _ops)
4632 #define BPF_LINK_TYPE(_id, _name)
4633 static union {
4634 	struct bpf_ctx_convert {
4635 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4636 	prog_ctx_type _id##_prog; \
4637 	kern_ctx_type _id##_kern;
4638 #include <linux/bpf_types.h>
4639 #undef BPF_PROG_TYPE
4640 	} *__t;
4641 	/* 't' is written once under lock. Read many times. */
4642 	const struct btf_type *t;
4643 } bpf_ctx_convert;
4644 enum {
4645 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4646 	__ctx_convert##_id,
4647 #include <linux/bpf_types.h>
4648 #undef BPF_PROG_TYPE
4649 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
4650 };
4651 static u8 bpf_ctx_convert_map[] = {
4652 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4653 	[_id] = __ctx_convert##_id,
4654 #include <linux/bpf_types.h>
4655 #undef BPF_PROG_TYPE
4656 	0, /* avoid empty array */
4657 };
4658 #undef BPF_MAP_TYPE
4659 #undef BPF_LINK_TYPE
4660 
4661 static const struct btf_member *
4662 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
4663 		      const struct btf_type *t, enum bpf_prog_type prog_type,
4664 		      int arg)
4665 {
4666 	const struct btf_type *conv_struct;
4667 	const struct btf_type *ctx_struct;
4668 	const struct btf_member *ctx_type;
4669 	const char *tname, *ctx_tname;
4670 
4671 	conv_struct = bpf_ctx_convert.t;
4672 	if (!conv_struct) {
4673 		bpf_log(log, "btf_vmlinux is malformed\n");
4674 		return NULL;
4675 	}
4676 	t = btf_type_by_id(btf, t->type);
4677 	while (btf_type_is_modifier(t))
4678 		t = btf_type_by_id(btf, t->type);
4679 	if (!btf_type_is_struct(t)) {
4680 		/* Only pointer to struct is supported for now.
4681 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4682 		 * is not supported yet.
4683 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4684 		 */
4685 		return NULL;
4686 	}
4687 	tname = btf_name_by_offset(btf, t->name_off);
4688 	if (!tname) {
4689 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4690 		return NULL;
4691 	}
4692 	/* prog_type is valid bpf program type. No need for bounds check. */
4693 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4694 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4695 	 * Like 'struct __sk_buff'
4696 	 */
4697 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4698 	if (!ctx_struct)
4699 		/* should not happen */
4700 		return NULL;
4701 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4702 	if (!ctx_tname) {
4703 		/* should not happen */
4704 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4705 		return NULL;
4706 	}
4707 	/* only compare that prog's ctx type name is the same as
4708 	 * kernel expects. No need to compare field by field.
4709 	 * It's ok for bpf prog to do:
4710 	 * struct __sk_buff {};
4711 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4712 	 * { // no fields of skb are ever used }
4713 	 */
4714 	if (strcmp(ctx_tname, tname))
4715 		return NULL;
4716 	return ctx_type;
4717 }
4718 
4719 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4720 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4721 #define BPF_LINK_TYPE(_id, _name)
4722 #define BPF_MAP_TYPE(_id, _ops) \
4723 	[_id] = &_ops,
4724 #include <linux/bpf_types.h>
4725 #undef BPF_PROG_TYPE
4726 #undef BPF_LINK_TYPE
4727 #undef BPF_MAP_TYPE
4728 };
4729 
4730 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4731 				    struct bpf_verifier_log *log)
4732 {
4733 	const struct bpf_map_ops *ops;
4734 	int i, btf_id;
4735 
4736 	for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4737 		ops = btf_vmlinux_map_ops[i];
4738 		if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4739 			continue;
4740 		if (!ops->map_btf_name || !ops->map_btf_id) {
4741 			bpf_log(log, "map type %d is misconfigured\n", i);
4742 			return -EINVAL;
4743 		}
4744 		btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4745 					       BTF_KIND_STRUCT);
4746 		if (btf_id < 0)
4747 			return btf_id;
4748 		*ops->map_btf_id = btf_id;
4749 	}
4750 
4751 	return 0;
4752 }
4753 
4754 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4755 				     struct btf *btf,
4756 				     const struct btf_type *t,
4757 				     enum bpf_prog_type prog_type,
4758 				     int arg)
4759 {
4760 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
4761 
4762 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4763 	if (!prog_ctx_type)
4764 		return -ENOENT;
4765 	kern_ctx_type = prog_ctx_type + 1;
4766 	return kern_ctx_type->type;
4767 }
4768 
4769 BTF_ID_LIST(bpf_ctx_convert_btf_id)
4770 BTF_ID(struct, bpf_ctx_convert)
4771 
4772 struct btf *btf_parse_vmlinux(void)
4773 {
4774 	struct btf_verifier_env *env = NULL;
4775 	struct bpf_verifier_log *log;
4776 	struct btf *btf = NULL;
4777 	int err;
4778 
4779 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4780 	if (!env)
4781 		return ERR_PTR(-ENOMEM);
4782 
4783 	log = &env->log;
4784 	log->level = BPF_LOG_KERNEL;
4785 
4786 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4787 	if (!btf) {
4788 		err = -ENOMEM;
4789 		goto errout;
4790 	}
4791 	env->btf = btf;
4792 
4793 	btf->data = __start_BTF;
4794 	btf->data_size = __stop_BTF - __start_BTF;
4795 	btf->kernel_btf = true;
4796 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
4797 
4798 	err = btf_parse_hdr(env);
4799 	if (err)
4800 		goto errout;
4801 
4802 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4803 
4804 	err = btf_parse_str_sec(env);
4805 	if (err)
4806 		goto errout;
4807 
4808 	err = btf_check_all_metas(env);
4809 	if (err)
4810 		goto errout;
4811 
4812 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
4813 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4814 
4815 	/* find bpf map structs for map_ptr access checking */
4816 	err = btf_vmlinux_map_ids_init(btf, log);
4817 	if (err < 0)
4818 		goto errout;
4819 
4820 	bpf_struct_ops_init(btf, log);
4821 
4822 	refcount_set(&btf->refcnt, 1);
4823 
4824 	err = btf_alloc_id(btf);
4825 	if (err)
4826 		goto errout;
4827 
4828 	btf_verifier_env_free(env);
4829 	return btf;
4830 
4831 errout:
4832 	btf_verifier_env_free(env);
4833 	if (btf) {
4834 		kvfree(btf->types);
4835 		kfree(btf);
4836 	}
4837 	return ERR_PTR(err);
4838 }
4839 
4840 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4841 
4842 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4843 {
4844 	struct btf_verifier_env *env = NULL;
4845 	struct bpf_verifier_log *log;
4846 	struct btf *btf = NULL, *base_btf;
4847 	int err;
4848 
4849 	base_btf = bpf_get_btf_vmlinux();
4850 	if (IS_ERR(base_btf))
4851 		return base_btf;
4852 	if (!base_btf)
4853 		return ERR_PTR(-EINVAL);
4854 
4855 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4856 	if (!env)
4857 		return ERR_PTR(-ENOMEM);
4858 
4859 	log = &env->log;
4860 	log->level = BPF_LOG_KERNEL;
4861 
4862 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4863 	if (!btf) {
4864 		err = -ENOMEM;
4865 		goto errout;
4866 	}
4867 	env->btf = btf;
4868 
4869 	btf->base_btf = base_btf;
4870 	btf->start_id = base_btf->nr_types;
4871 	btf->start_str_off = base_btf->hdr.str_len;
4872 	btf->kernel_btf = true;
4873 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4874 
4875 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4876 	if (!btf->data) {
4877 		err = -ENOMEM;
4878 		goto errout;
4879 	}
4880 	memcpy(btf->data, data, data_size);
4881 	btf->data_size = data_size;
4882 
4883 	err = btf_parse_hdr(env);
4884 	if (err)
4885 		goto errout;
4886 
4887 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4888 
4889 	err = btf_parse_str_sec(env);
4890 	if (err)
4891 		goto errout;
4892 
4893 	err = btf_check_all_metas(env);
4894 	if (err)
4895 		goto errout;
4896 
4897 	btf_verifier_env_free(env);
4898 	refcount_set(&btf->refcnt, 1);
4899 	return btf;
4900 
4901 errout:
4902 	btf_verifier_env_free(env);
4903 	if (btf) {
4904 		kvfree(btf->data);
4905 		kvfree(btf->types);
4906 		kfree(btf);
4907 	}
4908 	return ERR_PTR(err);
4909 }
4910 
4911 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4912 
4913 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4914 {
4915 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4916 
4917 	if (tgt_prog)
4918 		return tgt_prog->aux->btf;
4919 	else
4920 		return prog->aux->attach_btf;
4921 }
4922 
4923 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
4924 {
4925 	/* t comes in already as a pointer */
4926 	t = btf_type_by_id(btf, t->type);
4927 
4928 	/* allow const */
4929 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4930 		t = btf_type_by_id(btf, t->type);
4931 
4932 	return btf_type_is_int(t);
4933 }
4934 
4935 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4936 		    const struct bpf_prog *prog,
4937 		    struct bpf_insn_access_aux *info)
4938 {
4939 	const struct btf_type *t = prog->aux->attach_func_proto;
4940 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4941 	struct btf *btf = bpf_prog_get_target_btf(prog);
4942 	const char *tname = prog->aux->attach_func_name;
4943 	struct bpf_verifier_log *log = info->log;
4944 	const struct btf_param *args;
4945 	const char *tag_value;
4946 	u32 nr_args, arg;
4947 	int i, ret;
4948 
4949 	if (off % 8) {
4950 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4951 			tname, off);
4952 		return false;
4953 	}
4954 	arg = off / 8;
4955 	args = (const struct btf_param *)(t + 1);
4956 	/* if (t == NULL) Fall back to default BPF prog with
4957 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
4958 	 */
4959 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
4960 	if (prog->aux->attach_btf_trace) {
4961 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
4962 		args++;
4963 		nr_args--;
4964 	}
4965 
4966 	if (arg > nr_args) {
4967 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4968 			tname, arg + 1);
4969 		return false;
4970 	}
4971 
4972 	if (arg == nr_args) {
4973 		switch (prog->expected_attach_type) {
4974 		case BPF_LSM_MAC:
4975 		case BPF_TRACE_FEXIT:
4976 			/* When LSM programs are attached to void LSM hooks
4977 			 * they use FEXIT trampolines and when attached to
4978 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
4979 			 *
4980 			 * While the LSM programs are BPF_MODIFY_RETURN-like
4981 			 * the check:
4982 			 *
4983 			 *	if (ret_type != 'int')
4984 			 *		return -EINVAL;
4985 			 *
4986 			 * is _not_ done here. This is still safe as LSM hooks
4987 			 * have only void and int return types.
4988 			 */
4989 			if (!t)
4990 				return true;
4991 			t = btf_type_by_id(btf, t->type);
4992 			break;
4993 		case BPF_MODIFY_RETURN:
4994 			/* For now the BPF_MODIFY_RETURN can only be attached to
4995 			 * functions that return an int.
4996 			 */
4997 			if (!t)
4998 				return false;
4999 
5000 			t = btf_type_skip_modifiers(btf, t->type, NULL);
5001 			if (!btf_type_is_small_int(t)) {
5002 				bpf_log(log,
5003 					"ret type %s not allowed for fmod_ret\n",
5004 					btf_kind_str[BTF_INFO_KIND(t->info)]);
5005 				return false;
5006 			}
5007 			break;
5008 		default:
5009 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5010 				tname, arg + 1);
5011 			return false;
5012 		}
5013 	} else {
5014 		if (!t)
5015 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
5016 			return true;
5017 		t = btf_type_by_id(btf, args[arg].type);
5018 	}
5019 
5020 	/* skip modifiers */
5021 	while (btf_type_is_modifier(t))
5022 		t = btf_type_by_id(btf, t->type);
5023 	if (btf_type_is_small_int(t) || btf_type_is_enum(t))
5024 		/* accessing a scalar */
5025 		return true;
5026 	if (!btf_type_is_ptr(t)) {
5027 		bpf_log(log,
5028 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
5029 			tname, arg,
5030 			__btf_name_by_offset(btf, t->name_off),
5031 			btf_kind_str[BTF_INFO_KIND(t->info)]);
5032 		return false;
5033 	}
5034 
5035 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
5036 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5037 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5038 		u32 type, flag;
5039 
5040 		type = base_type(ctx_arg_info->reg_type);
5041 		flag = type_flag(ctx_arg_info->reg_type);
5042 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
5043 		    (flag & PTR_MAYBE_NULL)) {
5044 			info->reg_type = ctx_arg_info->reg_type;
5045 			return true;
5046 		}
5047 	}
5048 
5049 	if (t->type == 0)
5050 		/* This is a pointer to void.
5051 		 * It is the same as scalar from the verifier safety pov.
5052 		 * No further pointer walking is allowed.
5053 		 */
5054 		return true;
5055 
5056 	if (is_int_ptr(btf, t))
5057 		return true;
5058 
5059 	/* this is a pointer to another type */
5060 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5061 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5062 
5063 		if (ctx_arg_info->offset == off) {
5064 			if (!ctx_arg_info->btf_id) {
5065 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
5066 				return false;
5067 			}
5068 
5069 			info->reg_type = ctx_arg_info->reg_type;
5070 			info->btf = btf_vmlinux;
5071 			info->btf_id = ctx_arg_info->btf_id;
5072 			return true;
5073 		}
5074 	}
5075 
5076 	info->reg_type = PTR_TO_BTF_ID;
5077 	if (tgt_prog) {
5078 		enum bpf_prog_type tgt_type;
5079 
5080 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
5081 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
5082 		else
5083 			tgt_type = tgt_prog->type;
5084 
5085 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5086 		if (ret > 0) {
5087 			info->btf = btf_vmlinux;
5088 			info->btf_id = ret;
5089 			return true;
5090 		} else {
5091 			return false;
5092 		}
5093 	}
5094 
5095 	info->btf = btf;
5096 	info->btf_id = t->type;
5097 	t = btf_type_by_id(btf, t->type);
5098 
5099 	if (btf_type_is_type_tag(t)) {
5100 		tag_value = __btf_name_by_offset(btf, t->name_off);
5101 		if (strcmp(tag_value, "user") == 0)
5102 			info->reg_type |= MEM_USER;
5103 		if (strcmp(tag_value, "percpu") == 0)
5104 			info->reg_type |= MEM_PERCPU;
5105 	}
5106 
5107 	/* skip modifiers */
5108 	while (btf_type_is_modifier(t)) {
5109 		info->btf_id = t->type;
5110 		t = btf_type_by_id(btf, t->type);
5111 	}
5112 	if (!btf_type_is_struct(t)) {
5113 		bpf_log(log,
5114 			"func '%s' arg%d type %s is not a struct\n",
5115 			tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
5116 		return false;
5117 	}
5118 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
5119 		tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
5120 		__btf_name_by_offset(btf, t->name_off));
5121 	return true;
5122 }
5123 
5124 enum bpf_struct_walk_result {
5125 	/* < 0 error */
5126 	WALK_SCALAR = 0,
5127 	WALK_PTR,
5128 	WALK_STRUCT,
5129 };
5130 
5131 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
5132 			   const struct btf_type *t, int off, int size,
5133 			   u32 *next_btf_id, enum bpf_type_flag *flag)
5134 {
5135 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
5136 	const struct btf_type *mtype, *elem_type = NULL;
5137 	const struct btf_member *member;
5138 	const char *tname, *mname, *tag_value;
5139 	u32 vlen, elem_id, mid;
5140 
5141 again:
5142 	tname = __btf_name_by_offset(btf, t->name_off);
5143 	if (!btf_type_is_struct(t)) {
5144 		bpf_log(log, "Type '%s' is not a struct\n", tname);
5145 		return -EINVAL;
5146 	}
5147 
5148 	vlen = btf_type_vlen(t);
5149 	if (off + size > t->size) {
5150 		/* If the last element is a variable size array, we may
5151 		 * need to relax the rule.
5152 		 */
5153 		struct btf_array *array_elem;
5154 
5155 		if (vlen == 0)
5156 			goto error;
5157 
5158 		member = btf_type_member(t) + vlen - 1;
5159 		mtype = btf_type_skip_modifiers(btf, member->type,
5160 						NULL);
5161 		if (!btf_type_is_array(mtype))
5162 			goto error;
5163 
5164 		array_elem = (struct btf_array *)(mtype + 1);
5165 		if (array_elem->nelems != 0)
5166 			goto error;
5167 
5168 		moff = __btf_member_bit_offset(t, member) / 8;
5169 		if (off < moff)
5170 			goto error;
5171 
5172 		/* Only allow structure for now, can be relaxed for
5173 		 * other types later.
5174 		 */
5175 		t = btf_type_skip_modifiers(btf, array_elem->type,
5176 					    NULL);
5177 		if (!btf_type_is_struct(t))
5178 			goto error;
5179 
5180 		off = (off - moff) % t->size;
5181 		goto again;
5182 
5183 error:
5184 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
5185 			tname, off, size);
5186 		return -EACCES;
5187 	}
5188 
5189 	for_each_member(i, t, member) {
5190 		/* offset of the field in bytes */
5191 		moff = __btf_member_bit_offset(t, member) / 8;
5192 		if (off + size <= moff)
5193 			/* won't find anything, field is already too far */
5194 			break;
5195 
5196 		if (__btf_member_bitfield_size(t, member)) {
5197 			u32 end_bit = __btf_member_bit_offset(t, member) +
5198 				__btf_member_bitfield_size(t, member);
5199 
5200 			/* off <= moff instead of off == moff because clang
5201 			 * does not generate a BTF member for anonymous
5202 			 * bitfield like the ":16" here:
5203 			 * struct {
5204 			 *	int :16;
5205 			 *	int x:8;
5206 			 * };
5207 			 */
5208 			if (off <= moff &&
5209 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
5210 				return WALK_SCALAR;
5211 
5212 			/* off may be accessing a following member
5213 			 *
5214 			 * or
5215 			 *
5216 			 * Doing partial access at either end of this
5217 			 * bitfield.  Continue on this case also to
5218 			 * treat it as not accessing this bitfield
5219 			 * and eventually error out as field not
5220 			 * found to keep it simple.
5221 			 * It could be relaxed if there was a legit
5222 			 * partial access case later.
5223 			 */
5224 			continue;
5225 		}
5226 
5227 		/* In case of "off" is pointing to holes of a struct */
5228 		if (off < moff)
5229 			break;
5230 
5231 		/* type of the field */
5232 		mid = member->type;
5233 		mtype = btf_type_by_id(btf, member->type);
5234 		mname = __btf_name_by_offset(btf, member->name_off);
5235 
5236 		mtype = __btf_resolve_size(btf, mtype, &msize,
5237 					   &elem_type, &elem_id, &total_nelems,
5238 					   &mid);
5239 		if (IS_ERR(mtype)) {
5240 			bpf_log(log, "field %s doesn't have size\n", mname);
5241 			return -EFAULT;
5242 		}
5243 
5244 		mtrue_end = moff + msize;
5245 		if (off >= mtrue_end)
5246 			/* no overlap with member, keep iterating */
5247 			continue;
5248 
5249 		if (btf_type_is_array(mtype)) {
5250 			u32 elem_idx;
5251 
5252 			/* __btf_resolve_size() above helps to
5253 			 * linearize a multi-dimensional array.
5254 			 *
5255 			 * The logic here is treating an array
5256 			 * in a struct as the following way:
5257 			 *
5258 			 * struct outer {
5259 			 *	struct inner array[2][2];
5260 			 * };
5261 			 *
5262 			 * looks like:
5263 			 *
5264 			 * struct outer {
5265 			 *	struct inner array_elem0;
5266 			 *	struct inner array_elem1;
5267 			 *	struct inner array_elem2;
5268 			 *	struct inner array_elem3;
5269 			 * };
5270 			 *
5271 			 * When accessing outer->array[1][0], it moves
5272 			 * moff to "array_elem2", set mtype to
5273 			 * "struct inner", and msize also becomes
5274 			 * sizeof(struct inner).  Then most of the
5275 			 * remaining logic will fall through without
5276 			 * caring the current member is an array or
5277 			 * not.
5278 			 *
5279 			 * Unlike mtype/msize/moff, mtrue_end does not
5280 			 * change.  The naming difference ("_true") tells
5281 			 * that it is not always corresponding to
5282 			 * the current mtype/msize/moff.
5283 			 * It is the true end of the current
5284 			 * member (i.e. array in this case).  That
5285 			 * will allow an int array to be accessed like
5286 			 * a scratch space,
5287 			 * i.e. allow access beyond the size of
5288 			 *      the array's element as long as it is
5289 			 *      within the mtrue_end boundary.
5290 			 */
5291 
5292 			/* skip empty array */
5293 			if (moff == mtrue_end)
5294 				continue;
5295 
5296 			msize /= total_nelems;
5297 			elem_idx = (off - moff) / msize;
5298 			moff += elem_idx * msize;
5299 			mtype = elem_type;
5300 			mid = elem_id;
5301 		}
5302 
5303 		/* the 'off' we're looking for is either equal to start
5304 		 * of this field or inside of this struct
5305 		 */
5306 		if (btf_type_is_struct(mtype)) {
5307 			/* our field must be inside that union or struct */
5308 			t = mtype;
5309 
5310 			/* return if the offset matches the member offset */
5311 			if (off == moff) {
5312 				*next_btf_id = mid;
5313 				return WALK_STRUCT;
5314 			}
5315 
5316 			/* adjust offset we're looking for */
5317 			off -= moff;
5318 			goto again;
5319 		}
5320 
5321 		if (btf_type_is_ptr(mtype)) {
5322 			const struct btf_type *stype, *t;
5323 			enum bpf_type_flag tmp_flag = 0;
5324 			u32 id;
5325 
5326 			if (msize != size || off != moff) {
5327 				bpf_log(log,
5328 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5329 					mname, moff, tname, off, size);
5330 				return -EACCES;
5331 			}
5332 
5333 			/* check type tag */
5334 			t = btf_type_by_id(btf, mtype->type);
5335 			if (btf_type_is_type_tag(t)) {
5336 				tag_value = __btf_name_by_offset(btf, t->name_off);
5337 				/* check __user tag */
5338 				if (strcmp(tag_value, "user") == 0)
5339 					tmp_flag = MEM_USER;
5340 				/* check __percpu tag */
5341 				if (strcmp(tag_value, "percpu") == 0)
5342 					tmp_flag = MEM_PERCPU;
5343 			}
5344 
5345 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
5346 			if (btf_type_is_struct(stype)) {
5347 				*next_btf_id = id;
5348 				*flag = tmp_flag;
5349 				return WALK_PTR;
5350 			}
5351 		}
5352 
5353 		/* Allow more flexible access within an int as long as
5354 		 * it is within mtrue_end.
5355 		 * Since mtrue_end could be the end of an array,
5356 		 * that also allows using an array of int as a scratch
5357 		 * space. e.g. skb->cb[].
5358 		 */
5359 		if (off + size > mtrue_end) {
5360 			bpf_log(log,
5361 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5362 				mname, mtrue_end, tname, off, size);
5363 			return -EACCES;
5364 		}
5365 
5366 		return WALK_SCALAR;
5367 	}
5368 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5369 	return -EINVAL;
5370 }
5371 
5372 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
5373 		      const struct btf_type *t, int off, int size,
5374 		      enum bpf_access_type atype __maybe_unused,
5375 		      u32 *next_btf_id, enum bpf_type_flag *flag)
5376 {
5377 	enum bpf_type_flag tmp_flag = 0;
5378 	int err;
5379 	u32 id;
5380 
5381 	do {
5382 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
5383 
5384 		switch (err) {
5385 		case WALK_PTR:
5386 			/* If we found the pointer or scalar on t+off,
5387 			 * we're done.
5388 			 */
5389 			*next_btf_id = id;
5390 			*flag = tmp_flag;
5391 			return PTR_TO_BTF_ID;
5392 		case WALK_SCALAR:
5393 			return SCALAR_VALUE;
5394 		case WALK_STRUCT:
5395 			/* We found nested struct, so continue the search
5396 			 * by diving in it. At this point the offset is
5397 			 * aligned with the new type, so set it to 0.
5398 			 */
5399 			t = btf_type_by_id(btf, id);
5400 			off = 0;
5401 			break;
5402 		default:
5403 			/* It's either error or unknown return value..
5404 			 * scream and leave.
5405 			 */
5406 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5407 				return -EINVAL;
5408 			return err;
5409 		}
5410 	} while (t);
5411 
5412 	return -EINVAL;
5413 }
5414 
5415 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5416  * the same. Trivial ID check is not enough due to module BTFs, because we can
5417  * end up with two different module BTFs, but IDs point to the common type in
5418  * vmlinux BTF.
5419  */
5420 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5421 			       const struct btf *btf2, u32 id2)
5422 {
5423 	if (id1 != id2)
5424 		return false;
5425 	if (btf1 == btf2)
5426 		return true;
5427 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5428 }
5429 
5430 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5431 			  const struct btf *btf, u32 id, int off,
5432 			  const struct btf *need_btf, u32 need_type_id)
5433 {
5434 	const struct btf_type *type;
5435 	enum bpf_type_flag flag;
5436 	int err;
5437 
5438 	/* Are we already done? */
5439 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5440 		return true;
5441 
5442 again:
5443 	type = btf_type_by_id(btf, id);
5444 	if (!type)
5445 		return false;
5446 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
5447 	if (err != WALK_STRUCT)
5448 		return false;
5449 
5450 	/* We found nested struct object. If it matches
5451 	 * the requested ID, we're done. Otherwise let's
5452 	 * continue the search with offset 0 in the new
5453 	 * type.
5454 	 */
5455 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5456 		off = 0;
5457 		goto again;
5458 	}
5459 
5460 	return true;
5461 }
5462 
5463 static int __get_type_size(struct btf *btf, u32 btf_id,
5464 			   const struct btf_type **bad_type)
5465 {
5466 	const struct btf_type *t;
5467 
5468 	if (!btf_id)
5469 		/* void */
5470 		return 0;
5471 	t = btf_type_by_id(btf, btf_id);
5472 	while (t && btf_type_is_modifier(t))
5473 		t = btf_type_by_id(btf, t->type);
5474 	if (!t) {
5475 		*bad_type = btf_type_by_id(btf, 0);
5476 		return -EINVAL;
5477 	}
5478 	if (btf_type_is_ptr(t))
5479 		/* kernel size of pointer. Not BPF's size of pointer*/
5480 		return sizeof(void *);
5481 	if (btf_type_is_int(t) || btf_type_is_enum(t))
5482 		return t->size;
5483 	*bad_type = t;
5484 	return -EINVAL;
5485 }
5486 
5487 int btf_distill_func_proto(struct bpf_verifier_log *log,
5488 			   struct btf *btf,
5489 			   const struct btf_type *func,
5490 			   const char *tname,
5491 			   struct btf_func_model *m)
5492 {
5493 	const struct btf_param *args;
5494 	const struct btf_type *t;
5495 	u32 i, nargs;
5496 	int ret;
5497 
5498 	if (!func) {
5499 		/* BTF function prototype doesn't match the verifier types.
5500 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5501 		 */
5502 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
5503 			m->arg_size[i] = 8;
5504 		m->ret_size = 8;
5505 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5506 		return 0;
5507 	}
5508 	args = (const struct btf_param *)(func + 1);
5509 	nargs = btf_type_vlen(func);
5510 	if (nargs > MAX_BPF_FUNC_ARGS) {
5511 		bpf_log(log,
5512 			"The function %s has %d arguments. Too many.\n",
5513 			tname, nargs);
5514 		return -EINVAL;
5515 	}
5516 	ret = __get_type_size(btf, func->type, &t);
5517 	if (ret < 0) {
5518 		bpf_log(log,
5519 			"The function %s return type %s is unsupported.\n",
5520 			tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5521 		return -EINVAL;
5522 	}
5523 	m->ret_size = ret;
5524 
5525 	for (i = 0; i < nargs; i++) {
5526 		if (i == nargs - 1 && args[i].type == 0) {
5527 			bpf_log(log,
5528 				"The function %s with variable args is unsupported.\n",
5529 				tname);
5530 			return -EINVAL;
5531 		}
5532 		ret = __get_type_size(btf, args[i].type, &t);
5533 		if (ret < 0) {
5534 			bpf_log(log,
5535 				"The function %s arg%d type %s is unsupported.\n",
5536 				tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5537 			return -EINVAL;
5538 		}
5539 		if (ret == 0) {
5540 			bpf_log(log,
5541 				"The function %s has malformed void argument.\n",
5542 				tname);
5543 			return -EINVAL;
5544 		}
5545 		m->arg_size[i] = ret;
5546 	}
5547 	m->nr_args = nargs;
5548 	return 0;
5549 }
5550 
5551 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5552  * t1 points to BTF_KIND_FUNC in btf1
5553  * t2 points to BTF_KIND_FUNC in btf2
5554  * Returns:
5555  * EINVAL - function prototype mismatch
5556  * EFAULT - verifier bug
5557  * 0 - 99% match. The last 1% is validated by the verifier.
5558  */
5559 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5560 				     struct btf *btf1, const struct btf_type *t1,
5561 				     struct btf *btf2, const struct btf_type *t2)
5562 {
5563 	const struct btf_param *args1, *args2;
5564 	const char *fn1, *fn2, *s1, *s2;
5565 	u32 nargs1, nargs2, i;
5566 
5567 	fn1 = btf_name_by_offset(btf1, t1->name_off);
5568 	fn2 = btf_name_by_offset(btf2, t2->name_off);
5569 
5570 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5571 		bpf_log(log, "%s() is not a global function\n", fn1);
5572 		return -EINVAL;
5573 	}
5574 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5575 		bpf_log(log, "%s() is not a global function\n", fn2);
5576 		return -EINVAL;
5577 	}
5578 
5579 	t1 = btf_type_by_id(btf1, t1->type);
5580 	if (!t1 || !btf_type_is_func_proto(t1))
5581 		return -EFAULT;
5582 	t2 = btf_type_by_id(btf2, t2->type);
5583 	if (!t2 || !btf_type_is_func_proto(t2))
5584 		return -EFAULT;
5585 
5586 	args1 = (const struct btf_param *)(t1 + 1);
5587 	nargs1 = btf_type_vlen(t1);
5588 	args2 = (const struct btf_param *)(t2 + 1);
5589 	nargs2 = btf_type_vlen(t2);
5590 
5591 	if (nargs1 != nargs2) {
5592 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
5593 			fn1, nargs1, fn2, nargs2);
5594 		return -EINVAL;
5595 	}
5596 
5597 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5598 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5599 	if (t1->info != t2->info) {
5600 		bpf_log(log,
5601 			"Return type %s of %s() doesn't match type %s of %s()\n",
5602 			btf_type_str(t1), fn1,
5603 			btf_type_str(t2), fn2);
5604 		return -EINVAL;
5605 	}
5606 
5607 	for (i = 0; i < nargs1; i++) {
5608 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5609 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5610 
5611 		if (t1->info != t2->info) {
5612 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5613 				i, fn1, btf_type_str(t1),
5614 				fn2, btf_type_str(t2));
5615 			return -EINVAL;
5616 		}
5617 		if (btf_type_has_size(t1) && t1->size != t2->size) {
5618 			bpf_log(log,
5619 				"arg%d in %s() has size %d while %s() has %d\n",
5620 				i, fn1, t1->size,
5621 				fn2, t2->size);
5622 			return -EINVAL;
5623 		}
5624 
5625 		/* global functions are validated with scalars and pointers
5626 		 * to context only. And only global functions can be replaced.
5627 		 * Hence type check only those types.
5628 		 */
5629 		if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5630 			continue;
5631 		if (!btf_type_is_ptr(t1)) {
5632 			bpf_log(log,
5633 				"arg%d in %s() has unrecognized type\n",
5634 				i, fn1);
5635 			return -EINVAL;
5636 		}
5637 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5638 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5639 		if (!btf_type_is_struct(t1)) {
5640 			bpf_log(log,
5641 				"arg%d in %s() is not a pointer to context\n",
5642 				i, fn1);
5643 			return -EINVAL;
5644 		}
5645 		if (!btf_type_is_struct(t2)) {
5646 			bpf_log(log,
5647 				"arg%d in %s() is not a pointer to context\n",
5648 				i, fn2);
5649 			return -EINVAL;
5650 		}
5651 		/* This is an optional check to make program writing easier.
5652 		 * Compare names of structs and report an error to the user.
5653 		 * btf_prepare_func_args() already checked that t2 struct
5654 		 * is a context type. btf_prepare_func_args() will check
5655 		 * later that t1 struct is a context type as well.
5656 		 */
5657 		s1 = btf_name_by_offset(btf1, t1->name_off);
5658 		s2 = btf_name_by_offset(btf2, t2->name_off);
5659 		if (strcmp(s1, s2)) {
5660 			bpf_log(log,
5661 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5662 				i, fn1, s1, fn2, s2);
5663 			return -EINVAL;
5664 		}
5665 	}
5666 	return 0;
5667 }
5668 
5669 /* Compare BTFs of given program with BTF of target program */
5670 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5671 			 struct btf *btf2, const struct btf_type *t2)
5672 {
5673 	struct btf *btf1 = prog->aux->btf;
5674 	const struct btf_type *t1;
5675 	u32 btf_id = 0;
5676 
5677 	if (!prog->aux->func_info) {
5678 		bpf_log(log, "Program extension requires BTF\n");
5679 		return -EINVAL;
5680 	}
5681 
5682 	btf_id = prog->aux->func_info[0].type_id;
5683 	if (!btf_id)
5684 		return -EFAULT;
5685 
5686 	t1 = btf_type_by_id(btf1, btf_id);
5687 	if (!t1 || !btf_type_is_func(t1))
5688 		return -EFAULT;
5689 
5690 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5691 }
5692 
5693 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5694 #ifdef CONFIG_NET
5695 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5696 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5697 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5698 #endif
5699 };
5700 
5701 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
5702 static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log,
5703 					const struct btf *btf,
5704 					const struct btf_type *t, int rec)
5705 {
5706 	const struct btf_type *member_type;
5707 	const struct btf_member *member;
5708 	u32 i;
5709 
5710 	if (!btf_type_is_struct(t))
5711 		return false;
5712 
5713 	for_each_member(i, t, member) {
5714 		const struct btf_array *array;
5715 
5716 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
5717 		if (btf_type_is_struct(member_type)) {
5718 			if (rec >= 3) {
5719 				bpf_log(log, "max struct nesting depth exceeded\n");
5720 				return false;
5721 			}
5722 			if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1))
5723 				return false;
5724 			continue;
5725 		}
5726 		if (btf_type_is_array(member_type)) {
5727 			array = btf_type_array(member_type);
5728 			if (!array->nelems)
5729 				return false;
5730 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
5731 			if (!btf_type_is_scalar(member_type))
5732 				return false;
5733 			continue;
5734 		}
5735 		if (!btf_type_is_scalar(member_type))
5736 			return false;
5737 	}
5738 	return true;
5739 }
5740 
5741 static bool is_kfunc_arg_mem_size(const struct btf *btf,
5742 				  const struct btf_param *arg,
5743 				  const struct bpf_reg_state *reg)
5744 {
5745 	int len, sfx_len = sizeof("__sz") - 1;
5746 	const struct btf_type *t;
5747 	const char *param_name;
5748 
5749 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
5750 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
5751 		return false;
5752 
5753 	/* In the future, this can be ported to use BTF tagging */
5754 	param_name = btf_name_by_offset(btf, arg->name_off);
5755 	if (str_is_empty(param_name))
5756 		return false;
5757 	len = strlen(param_name);
5758 	if (len < sfx_len)
5759 		return false;
5760 	param_name += len - sfx_len;
5761 	if (strncmp(param_name, "__sz", sfx_len))
5762 		return false;
5763 
5764 	return true;
5765 }
5766 
5767 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
5768 				    const struct btf *btf, u32 func_id,
5769 				    struct bpf_reg_state *regs,
5770 				    bool ptr_to_mem_ok)
5771 {
5772 	struct bpf_verifier_log *log = &env->log;
5773 	u32 i, nargs, ref_id, ref_obj_id = 0;
5774 	bool is_kfunc = btf_is_kernel(btf);
5775 	const char *func_name, *ref_tname;
5776 	const struct btf_type *t, *ref_t;
5777 	const struct btf_param *args;
5778 	int ref_regno = 0, ret;
5779 	bool rel = false;
5780 
5781 	t = btf_type_by_id(btf, func_id);
5782 	if (!t || !btf_type_is_func(t)) {
5783 		/* These checks were already done by the verifier while loading
5784 		 * struct bpf_func_info or in add_kfunc_call().
5785 		 */
5786 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
5787 			func_id);
5788 		return -EFAULT;
5789 	}
5790 	func_name = btf_name_by_offset(btf, t->name_off);
5791 
5792 	t = btf_type_by_id(btf, t->type);
5793 	if (!t || !btf_type_is_func_proto(t)) {
5794 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
5795 		return -EFAULT;
5796 	}
5797 	args = (const struct btf_param *)(t + 1);
5798 	nargs = btf_type_vlen(t);
5799 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5800 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
5801 			MAX_BPF_FUNC_REG_ARGS);
5802 		return -EINVAL;
5803 	}
5804 
5805 	/* Only kfunc can be release func */
5806 	if (is_kfunc)
5807 		rel = btf_kfunc_id_set_contains(btf, resolve_prog_type(env->prog),
5808 						BTF_KFUNC_TYPE_RELEASE, func_id);
5809 	/* check that BTF function arguments match actual types that the
5810 	 * verifier sees.
5811 	 */
5812 	for (i = 0; i < nargs; i++) {
5813 		u32 regno = i + 1;
5814 		struct bpf_reg_state *reg = &regs[regno];
5815 
5816 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5817 		if (btf_type_is_scalar(t)) {
5818 			if (reg->type == SCALAR_VALUE)
5819 				continue;
5820 			bpf_log(log, "R%d is not a scalar\n", regno);
5821 			return -EINVAL;
5822 		}
5823 
5824 		if (!btf_type_is_ptr(t)) {
5825 			bpf_log(log, "Unrecognized arg#%d type %s\n",
5826 				i, btf_type_str(t));
5827 			return -EINVAL;
5828 		}
5829 
5830 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
5831 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
5832 
5833 		ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE, rel);
5834 		if (ret < 0)
5835 			return ret;
5836 
5837 		if (btf_get_prog_ctx_type(log, btf, t,
5838 					  env->prog->type, i)) {
5839 			/* If function expects ctx type in BTF check that caller
5840 			 * is passing PTR_TO_CTX.
5841 			 */
5842 			if (reg->type != PTR_TO_CTX) {
5843 				bpf_log(log,
5844 					"arg#%d expected pointer to ctx, but got %s\n",
5845 					i, btf_type_str(t));
5846 				return -EINVAL;
5847 			}
5848 		} else if (is_kfunc && (reg->type == PTR_TO_BTF_ID ||
5849 			   (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) {
5850 			const struct btf_type *reg_ref_t;
5851 			const struct btf *reg_btf;
5852 			const char *reg_ref_tname;
5853 			u32 reg_ref_id;
5854 
5855 			if (!btf_type_is_struct(ref_t)) {
5856 				bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
5857 					func_name, i, btf_type_str(ref_t),
5858 					ref_tname);
5859 				return -EINVAL;
5860 			}
5861 
5862 			if (reg->type == PTR_TO_BTF_ID) {
5863 				reg_btf = reg->btf;
5864 				reg_ref_id = reg->btf_id;
5865 				/* Ensure only one argument is referenced
5866 				 * PTR_TO_BTF_ID, check_func_arg_reg_off relies
5867 				 * on only one referenced register being allowed
5868 				 * for kfuncs.
5869 				 */
5870 				if (reg->ref_obj_id) {
5871 					if (ref_obj_id) {
5872 						bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5873 							regno, reg->ref_obj_id, ref_obj_id);
5874 						return -EFAULT;
5875 					}
5876 					ref_regno = regno;
5877 					ref_obj_id = reg->ref_obj_id;
5878 				}
5879 			} else {
5880 				reg_btf = btf_vmlinux;
5881 				reg_ref_id = *reg2btf_ids[base_type(reg->type)];
5882 			}
5883 
5884 			reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
5885 							    &reg_ref_id);
5886 			reg_ref_tname = btf_name_by_offset(reg_btf,
5887 							   reg_ref_t->name_off);
5888 			if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
5889 						  reg->off, btf, ref_id)) {
5890 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
5891 					func_name, i,
5892 					btf_type_str(ref_t), ref_tname,
5893 					regno, btf_type_str(reg_ref_t),
5894 					reg_ref_tname);
5895 				return -EINVAL;
5896 			}
5897 		} else if (ptr_to_mem_ok) {
5898 			const struct btf_type *resolve_ret;
5899 			u32 type_size;
5900 
5901 			if (is_kfunc) {
5902 				bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], &regs[regno + 1]);
5903 
5904 				/* Permit pointer to mem, but only when argument
5905 				 * type is pointer to scalar, or struct composed
5906 				 * (recursively) of scalars.
5907 				 * When arg_mem_size is true, the pointer can be
5908 				 * void *.
5909 				 */
5910 				if (!btf_type_is_scalar(ref_t) &&
5911 				    !__btf_type_is_scalar_struct(log, btf, ref_t, 0) &&
5912 				    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
5913 					bpf_log(log,
5914 						"arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
5915 						i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
5916 					return -EINVAL;
5917 				}
5918 
5919 				/* Check for mem, len pair */
5920 				if (arg_mem_size) {
5921 					if (check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1)) {
5922 						bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n",
5923 							i, i + 1);
5924 						return -EINVAL;
5925 					}
5926 					i++;
5927 					continue;
5928 				}
5929 			}
5930 
5931 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
5932 			if (IS_ERR(resolve_ret)) {
5933 				bpf_log(log,
5934 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5935 					i, btf_type_str(ref_t), ref_tname,
5936 					PTR_ERR(resolve_ret));
5937 				return -EINVAL;
5938 			}
5939 
5940 			if (check_mem_reg(env, reg, regno, type_size))
5941 				return -EINVAL;
5942 		} else {
5943 			bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i,
5944 				is_kfunc ? "kernel " : "", func_name, func_id);
5945 			return -EINVAL;
5946 		}
5947 	}
5948 
5949 	/* Either both are set, or neither */
5950 	WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno));
5951 	/* We already made sure ref_obj_id is set only for one argument. We do
5952 	 * allow (!rel && ref_obj_id), so that passing such referenced
5953 	 * PTR_TO_BTF_ID to other kfuncs works. Note that rel is only true when
5954 	 * is_kfunc is true.
5955 	 */
5956 	if (rel && !ref_obj_id) {
5957 		bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
5958 			func_name);
5959 		return -EINVAL;
5960 	}
5961 	/* returns argument register number > 0 in case of reference release kfunc */
5962 	return rel ? ref_regno : 0;
5963 }
5964 
5965 /* Compare BTF of a function with given bpf_reg_state.
5966  * Returns:
5967  * EFAULT - there is a verifier bug. Abort verification.
5968  * EINVAL - there is a type mismatch or BTF is not available.
5969  * 0 - BTF matches with what bpf_reg_state expects.
5970  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5971  */
5972 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
5973 				struct bpf_reg_state *regs)
5974 {
5975 	struct bpf_prog *prog = env->prog;
5976 	struct btf *btf = prog->aux->btf;
5977 	bool is_global;
5978 	u32 btf_id;
5979 	int err;
5980 
5981 	if (!prog->aux->func_info)
5982 		return -EINVAL;
5983 
5984 	btf_id = prog->aux->func_info[subprog].type_id;
5985 	if (!btf_id)
5986 		return -EFAULT;
5987 
5988 	if (prog->aux->func_info_aux[subprog].unreliable)
5989 		return -EINVAL;
5990 
5991 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5992 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
5993 
5994 	/* Compiler optimizations can remove arguments from static functions
5995 	 * or mismatched type can be passed into a global function.
5996 	 * In such cases mark the function as unreliable from BTF point of view.
5997 	 */
5998 	if (err)
5999 		prog->aux->func_info_aux[subprog].unreliable = true;
6000 	return err;
6001 }
6002 
6003 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
6004 			      const struct btf *btf, u32 func_id,
6005 			      struct bpf_reg_state *regs)
6006 {
6007 	return btf_check_func_arg_match(env, btf, func_id, regs, true);
6008 }
6009 
6010 /* Convert BTF of a function into bpf_reg_state if possible
6011  * Returns:
6012  * EFAULT - there is a verifier bug. Abort verification.
6013  * EINVAL - cannot convert BTF.
6014  * 0 - Successfully converted BTF into bpf_reg_state
6015  * (either PTR_TO_CTX or SCALAR_VALUE).
6016  */
6017 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6018 			  struct bpf_reg_state *regs)
6019 {
6020 	struct bpf_verifier_log *log = &env->log;
6021 	struct bpf_prog *prog = env->prog;
6022 	enum bpf_prog_type prog_type = prog->type;
6023 	struct btf *btf = prog->aux->btf;
6024 	const struct btf_param *args;
6025 	const struct btf_type *t, *ref_t;
6026 	u32 i, nargs, btf_id;
6027 	const char *tname;
6028 
6029 	if (!prog->aux->func_info ||
6030 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6031 		bpf_log(log, "Verifier bug\n");
6032 		return -EFAULT;
6033 	}
6034 
6035 	btf_id = prog->aux->func_info[subprog].type_id;
6036 	if (!btf_id) {
6037 		bpf_log(log, "Global functions need valid BTF\n");
6038 		return -EFAULT;
6039 	}
6040 
6041 	t = btf_type_by_id(btf, btf_id);
6042 	if (!t || !btf_type_is_func(t)) {
6043 		/* These checks were already done by the verifier while loading
6044 		 * struct bpf_func_info
6045 		 */
6046 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6047 			subprog);
6048 		return -EFAULT;
6049 	}
6050 	tname = btf_name_by_offset(btf, t->name_off);
6051 
6052 	if (log->level & BPF_LOG_LEVEL)
6053 		bpf_log(log, "Validating %s() func#%d...\n",
6054 			tname, subprog);
6055 
6056 	if (prog->aux->func_info_aux[subprog].unreliable) {
6057 		bpf_log(log, "Verifier bug in function %s()\n", tname);
6058 		return -EFAULT;
6059 	}
6060 	if (prog_type == BPF_PROG_TYPE_EXT)
6061 		prog_type = prog->aux->dst_prog->type;
6062 
6063 	t = btf_type_by_id(btf, t->type);
6064 	if (!t || !btf_type_is_func_proto(t)) {
6065 		bpf_log(log, "Invalid type of function %s()\n", tname);
6066 		return -EFAULT;
6067 	}
6068 	args = (const struct btf_param *)(t + 1);
6069 	nargs = btf_type_vlen(t);
6070 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6071 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
6072 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
6073 		return -EINVAL;
6074 	}
6075 	/* check that function returns int */
6076 	t = btf_type_by_id(btf, t->type);
6077 	while (btf_type_is_modifier(t))
6078 		t = btf_type_by_id(btf, t->type);
6079 	if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
6080 		bpf_log(log,
6081 			"Global function %s() doesn't return scalar. Only those are supported.\n",
6082 			tname);
6083 		return -EINVAL;
6084 	}
6085 	/* Convert BTF function arguments into verifier types.
6086 	 * Only PTR_TO_CTX and SCALAR are supported atm.
6087 	 */
6088 	for (i = 0; i < nargs; i++) {
6089 		struct bpf_reg_state *reg = &regs[i + 1];
6090 
6091 		t = btf_type_by_id(btf, args[i].type);
6092 		while (btf_type_is_modifier(t))
6093 			t = btf_type_by_id(btf, t->type);
6094 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
6095 			reg->type = SCALAR_VALUE;
6096 			continue;
6097 		}
6098 		if (btf_type_is_ptr(t)) {
6099 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6100 				reg->type = PTR_TO_CTX;
6101 				continue;
6102 			}
6103 
6104 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6105 
6106 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
6107 			if (IS_ERR(ref_t)) {
6108 				bpf_log(log,
6109 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6110 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
6111 					PTR_ERR(ref_t));
6112 				return -EINVAL;
6113 			}
6114 
6115 			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
6116 			reg->id = ++env->id_gen;
6117 
6118 			continue;
6119 		}
6120 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
6121 			i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
6122 		return -EINVAL;
6123 	}
6124 	return 0;
6125 }
6126 
6127 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
6128 			  struct btf_show *show)
6129 {
6130 	const struct btf_type *t = btf_type_by_id(btf, type_id);
6131 
6132 	show->btf = btf;
6133 	memset(&show->state, 0, sizeof(show->state));
6134 	memset(&show->obj, 0, sizeof(show->obj));
6135 
6136 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
6137 }
6138 
6139 static void btf_seq_show(struct btf_show *show, const char *fmt,
6140 			 va_list args)
6141 {
6142 	seq_vprintf((struct seq_file *)show->target, fmt, args);
6143 }
6144 
6145 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
6146 			    void *obj, struct seq_file *m, u64 flags)
6147 {
6148 	struct btf_show sseq;
6149 
6150 	sseq.target = m;
6151 	sseq.showfn = btf_seq_show;
6152 	sseq.flags = flags;
6153 
6154 	btf_type_show(btf, type_id, obj, &sseq);
6155 
6156 	return sseq.state.status;
6157 }
6158 
6159 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
6160 		       struct seq_file *m)
6161 {
6162 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
6163 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
6164 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
6165 }
6166 
6167 struct btf_show_snprintf {
6168 	struct btf_show show;
6169 	int len_left;		/* space left in string */
6170 	int len;		/* length we would have written */
6171 };
6172 
6173 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
6174 			      va_list args)
6175 {
6176 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
6177 	int len;
6178 
6179 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
6180 
6181 	if (len < 0) {
6182 		ssnprintf->len_left = 0;
6183 		ssnprintf->len = len;
6184 	} else if (len > ssnprintf->len_left) {
6185 		/* no space, drive on to get length we would have written */
6186 		ssnprintf->len_left = 0;
6187 		ssnprintf->len += len;
6188 	} else {
6189 		ssnprintf->len_left -= len;
6190 		ssnprintf->len += len;
6191 		show->target += len;
6192 	}
6193 }
6194 
6195 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
6196 			   char *buf, int len, u64 flags)
6197 {
6198 	struct btf_show_snprintf ssnprintf;
6199 
6200 	ssnprintf.show.target = buf;
6201 	ssnprintf.show.flags = flags;
6202 	ssnprintf.show.showfn = btf_snprintf_show;
6203 	ssnprintf.len_left = len;
6204 	ssnprintf.len = 0;
6205 
6206 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
6207 
6208 	/* If we encountered an error, return it. */
6209 	if (ssnprintf.show.state.status)
6210 		return ssnprintf.show.state.status;
6211 
6212 	/* Otherwise return length we would have written */
6213 	return ssnprintf.len;
6214 }
6215 
6216 #ifdef CONFIG_PROC_FS
6217 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
6218 {
6219 	const struct btf *btf = filp->private_data;
6220 
6221 	seq_printf(m, "btf_id:\t%u\n", btf->id);
6222 }
6223 #endif
6224 
6225 static int btf_release(struct inode *inode, struct file *filp)
6226 {
6227 	btf_put(filp->private_data);
6228 	return 0;
6229 }
6230 
6231 const struct file_operations btf_fops = {
6232 #ifdef CONFIG_PROC_FS
6233 	.show_fdinfo	= bpf_btf_show_fdinfo,
6234 #endif
6235 	.release	= btf_release,
6236 };
6237 
6238 static int __btf_new_fd(struct btf *btf)
6239 {
6240 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
6241 }
6242 
6243 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
6244 {
6245 	struct btf *btf;
6246 	int ret;
6247 
6248 	btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
6249 			attr->btf_size, attr->btf_log_level,
6250 			u64_to_user_ptr(attr->btf_log_buf),
6251 			attr->btf_log_size);
6252 	if (IS_ERR(btf))
6253 		return PTR_ERR(btf);
6254 
6255 	ret = btf_alloc_id(btf);
6256 	if (ret) {
6257 		btf_free(btf);
6258 		return ret;
6259 	}
6260 
6261 	/*
6262 	 * The BTF ID is published to the userspace.
6263 	 * All BTF free must go through call_rcu() from
6264 	 * now on (i.e. free by calling btf_put()).
6265 	 */
6266 
6267 	ret = __btf_new_fd(btf);
6268 	if (ret < 0)
6269 		btf_put(btf);
6270 
6271 	return ret;
6272 }
6273 
6274 struct btf *btf_get_by_fd(int fd)
6275 {
6276 	struct btf *btf;
6277 	struct fd f;
6278 
6279 	f = fdget(fd);
6280 
6281 	if (!f.file)
6282 		return ERR_PTR(-EBADF);
6283 
6284 	if (f.file->f_op != &btf_fops) {
6285 		fdput(f);
6286 		return ERR_PTR(-EINVAL);
6287 	}
6288 
6289 	btf = f.file->private_data;
6290 	refcount_inc(&btf->refcnt);
6291 	fdput(f);
6292 
6293 	return btf;
6294 }
6295 
6296 int btf_get_info_by_fd(const struct btf *btf,
6297 		       const union bpf_attr *attr,
6298 		       union bpf_attr __user *uattr)
6299 {
6300 	struct bpf_btf_info __user *uinfo;
6301 	struct bpf_btf_info info;
6302 	u32 info_copy, btf_copy;
6303 	void __user *ubtf;
6304 	char __user *uname;
6305 	u32 uinfo_len, uname_len, name_len;
6306 	int ret = 0;
6307 
6308 	uinfo = u64_to_user_ptr(attr->info.info);
6309 	uinfo_len = attr->info.info_len;
6310 
6311 	info_copy = min_t(u32, uinfo_len, sizeof(info));
6312 	memset(&info, 0, sizeof(info));
6313 	if (copy_from_user(&info, uinfo, info_copy))
6314 		return -EFAULT;
6315 
6316 	info.id = btf->id;
6317 	ubtf = u64_to_user_ptr(info.btf);
6318 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
6319 	if (copy_to_user(ubtf, btf->data, btf_copy))
6320 		return -EFAULT;
6321 	info.btf_size = btf->data_size;
6322 
6323 	info.kernel_btf = btf->kernel_btf;
6324 
6325 	uname = u64_to_user_ptr(info.name);
6326 	uname_len = info.name_len;
6327 	if (!uname ^ !uname_len)
6328 		return -EINVAL;
6329 
6330 	name_len = strlen(btf->name);
6331 	info.name_len = name_len;
6332 
6333 	if (uname) {
6334 		if (uname_len >= name_len + 1) {
6335 			if (copy_to_user(uname, btf->name, name_len + 1))
6336 				return -EFAULT;
6337 		} else {
6338 			char zero = '\0';
6339 
6340 			if (copy_to_user(uname, btf->name, uname_len - 1))
6341 				return -EFAULT;
6342 			if (put_user(zero, uname + uname_len - 1))
6343 				return -EFAULT;
6344 			/* let user-space know about too short buffer */
6345 			ret = -ENOSPC;
6346 		}
6347 	}
6348 
6349 	if (copy_to_user(uinfo, &info, info_copy) ||
6350 	    put_user(info_copy, &uattr->info.info_len))
6351 		return -EFAULT;
6352 
6353 	return ret;
6354 }
6355 
6356 int btf_get_fd_by_id(u32 id)
6357 {
6358 	struct btf *btf;
6359 	int fd;
6360 
6361 	rcu_read_lock();
6362 	btf = idr_find(&btf_idr, id);
6363 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
6364 		btf = ERR_PTR(-ENOENT);
6365 	rcu_read_unlock();
6366 
6367 	if (IS_ERR(btf))
6368 		return PTR_ERR(btf);
6369 
6370 	fd = __btf_new_fd(btf);
6371 	if (fd < 0)
6372 		btf_put(btf);
6373 
6374 	return fd;
6375 }
6376 
6377 u32 btf_obj_id(const struct btf *btf)
6378 {
6379 	return btf->id;
6380 }
6381 
6382 bool btf_is_kernel(const struct btf *btf)
6383 {
6384 	return btf->kernel_btf;
6385 }
6386 
6387 bool btf_is_module(const struct btf *btf)
6388 {
6389 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
6390 }
6391 
6392 static int btf_id_cmp_func(const void *a, const void *b)
6393 {
6394 	const int *pa = a, *pb = b;
6395 
6396 	return *pa - *pb;
6397 }
6398 
6399 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
6400 {
6401 	return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
6402 }
6403 
6404 enum {
6405 	BTF_MODULE_F_LIVE = (1 << 0),
6406 };
6407 
6408 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6409 struct btf_module {
6410 	struct list_head list;
6411 	struct module *module;
6412 	struct btf *btf;
6413 	struct bin_attribute *sysfs_attr;
6414 	int flags;
6415 };
6416 
6417 static LIST_HEAD(btf_modules);
6418 static DEFINE_MUTEX(btf_module_mutex);
6419 
6420 static ssize_t
6421 btf_module_read(struct file *file, struct kobject *kobj,
6422 		struct bin_attribute *bin_attr,
6423 		char *buf, loff_t off, size_t len)
6424 {
6425 	const struct btf *btf = bin_attr->private;
6426 
6427 	memcpy(buf, btf->data + off, len);
6428 	return len;
6429 }
6430 
6431 static void purge_cand_cache(struct btf *btf);
6432 
6433 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
6434 			     void *module)
6435 {
6436 	struct btf_module *btf_mod, *tmp;
6437 	struct module *mod = module;
6438 	struct btf *btf;
6439 	int err = 0;
6440 
6441 	if (mod->btf_data_size == 0 ||
6442 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
6443 	     op != MODULE_STATE_GOING))
6444 		goto out;
6445 
6446 	switch (op) {
6447 	case MODULE_STATE_COMING:
6448 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
6449 		if (!btf_mod) {
6450 			err = -ENOMEM;
6451 			goto out;
6452 		}
6453 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
6454 		if (IS_ERR(btf)) {
6455 			pr_warn("failed to validate module [%s] BTF: %ld\n",
6456 				mod->name, PTR_ERR(btf));
6457 			kfree(btf_mod);
6458 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
6459 				err = PTR_ERR(btf);
6460 			goto out;
6461 		}
6462 		err = btf_alloc_id(btf);
6463 		if (err) {
6464 			btf_free(btf);
6465 			kfree(btf_mod);
6466 			goto out;
6467 		}
6468 
6469 		purge_cand_cache(NULL);
6470 		mutex_lock(&btf_module_mutex);
6471 		btf_mod->module = module;
6472 		btf_mod->btf = btf;
6473 		list_add(&btf_mod->list, &btf_modules);
6474 		mutex_unlock(&btf_module_mutex);
6475 
6476 		if (IS_ENABLED(CONFIG_SYSFS)) {
6477 			struct bin_attribute *attr;
6478 
6479 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
6480 			if (!attr)
6481 				goto out;
6482 
6483 			sysfs_bin_attr_init(attr);
6484 			attr->attr.name = btf->name;
6485 			attr->attr.mode = 0444;
6486 			attr->size = btf->data_size;
6487 			attr->private = btf;
6488 			attr->read = btf_module_read;
6489 
6490 			err = sysfs_create_bin_file(btf_kobj, attr);
6491 			if (err) {
6492 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
6493 					mod->name, err);
6494 				kfree(attr);
6495 				err = 0;
6496 				goto out;
6497 			}
6498 
6499 			btf_mod->sysfs_attr = attr;
6500 		}
6501 
6502 		break;
6503 	case MODULE_STATE_LIVE:
6504 		mutex_lock(&btf_module_mutex);
6505 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6506 			if (btf_mod->module != module)
6507 				continue;
6508 
6509 			btf_mod->flags |= BTF_MODULE_F_LIVE;
6510 			break;
6511 		}
6512 		mutex_unlock(&btf_module_mutex);
6513 		break;
6514 	case MODULE_STATE_GOING:
6515 		mutex_lock(&btf_module_mutex);
6516 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6517 			if (btf_mod->module != module)
6518 				continue;
6519 
6520 			list_del(&btf_mod->list);
6521 			if (btf_mod->sysfs_attr)
6522 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
6523 			purge_cand_cache(btf_mod->btf);
6524 			btf_put(btf_mod->btf);
6525 			kfree(btf_mod->sysfs_attr);
6526 			kfree(btf_mod);
6527 			break;
6528 		}
6529 		mutex_unlock(&btf_module_mutex);
6530 		break;
6531 	}
6532 out:
6533 	return notifier_from_errno(err);
6534 }
6535 
6536 static struct notifier_block btf_module_nb = {
6537 	.notifier_call = btf_module_notify,
6538 };
6539 
6540 static int __init btf_module_init(void)
6541 {
6542 	register_module_notifier(&btf_module_nb);
6543 	return 0;
6544 }
6545 
6546 fs_initcall(btf_module_init);
6547 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6548 
6549 struct module *btf_try_get_module(const struct btf *btf)
6550 {
6551 	struct module *res = NULL;
6552 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6553 	struct btf_module *btf_mod, *tmp;
6554 
6555 	mutex_lock(&btf_module_mutex);
6556 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6557 		if (btf_mod->btf != btf)
6558 			continue;
6559 
6560 		/* We must only consider module whose __init routine has
6561 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
6562 		 * which is set from the notifier callback for
6563 		 * MODULE_STATE_LIVE.
6564 		 */
6565 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
6566 			res = btf_mod->module;
6567 
6568 		break;
6569 	}
6570 	mutex_unlock(&btf_module_mutex);
6571 #endif
6572 
6573 	return res;
6574 }
6575 
6576 /* Returns struct btf corresponding to the struct module.
6577  * This function can return NULL or ERR_PTR.
6578  */
6579 static struct btf *btf_get_module_btf(const struct module *module)
6580 {
6581 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6582 	struct btf_module *btf_mod, *tmp;
6583 #endif
6584 	struct btf *btf = NULL;
6585 
6586 	if (!module) {
6587 		btf = bpf_get_btf_vmlinux();
6588 		if (!IS_ERR_OR_NULL(btf))
6589 			btf_get(btf);
6590 		return btf;
6591 	}
6592 
6593 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6594 	mutex_lock(&btf_module_mutex);
6595 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6596 		if (btf_mod->module != module)
6597 			continue;
6598 
6599 		btf_get(btf_mod->btf);
6600 		btf = btf_mod->btf;
6601 		break;
6602 	}
6603 	mutex_unlock(&btf_module_mutex);
6604 #endif
6605 
6606 	return btf;
6607 }
6608 
6609 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
6610 {
6611 	struct btf *btf = NULL;
6612 	int btf_obj_fd = 0;
6613 	long ret;
6614 
6615 	if (flags)
6616 		return -EINVAL;
6617 
6618 	if (name_sz <= 1 || name[name_sz - 1])
6619 		return -EINVAL;
6620 
6621 	ret = bpf_find_btf_id(name, kind, &btf);
6622 	if (ret > 0 && btf_is_module(btf)) {
6623 		btf_obj_fd = __btf_new_fd(btf);
6624 		if (btf_obj_fd < 0) {
6625 			btf_put(btf);
6626 			return btf_obj_fd;
6627 		}
6628 		return ret | (((u64)btf_obj_fd) << 32);
6629 	}
6630 	if (ret > 0)
6631 		btf_put(btf);
6632 	return ret;
6633 }
6634 
6635 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
6636 	.func		= bpf_btf_find_by_name_kind,
6637 	.gpl_only	= false,
6638 	.ret_type	= RET_INTEGER,
6639 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6640 	.arg2_type	= ARG_CONST_SIZE,
6641 	.arg3_type	= ARG_ANYTHING,
6642 	.arg4_type	= ARG_ANYTHING,
6643 };
6644 
6645 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
6646 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
6647 BTF_TRACING_TYPE_xxx
6648 #undef BTF_TRACING_TYPE
6649 
6650 /* Kernel Function (kfunc) BTF ID set registration API */
6651 
6652 static int __btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
6653 				    enum btf_kfunc_type type,
6654 				    struct btf_id_set *add_set, bool vmlinux_set)
6655 {
6656 	struct btf_kfunc_set_tab *tab;
6657 	struct btf_id_set *set;
6658 	u32 set_cnt;
6659 	int ret;
6660 
6661 	if (hook >= BTF_KFUNC_HOOK_MAX || type >= BTF_KFUNC_TYPE_MAX) {
6662 		ret = -EINVAL;
6663 		goto end;
6664 	}
6665 
6666 	if (!add_set->cnt)
6667 		return 0;
6668 
6669 	tab = btf->kfunc_set_tab;
6670 	if (!tab) {
6671 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
6672 		if (!tab)
6673 			return -ENOMEM;
6674 		btf->kfunc_set_tab = tab;
6675 	}
6676 
6677 	set = tab->sets[hook][type];
6678 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
6679 	 * for module sets.
6680 	 */
6681 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
6682 		ret = -EINVAL;
6683 		goto end;
6684 	}
6685 
6686 	/* We don't need to allocate, concatenate, and sort module sets, because
6687 	 * only one is allowed per hook. Hence, we can directly assign the
6688 	 * pointer and return.
6689 	 */
6690 	if (!vmlinux_set) {
6691 		tab->sets[hook][type] = add_set;
6692 		return 0;
6693 	}
6694 
6695 	/* In case of vmlinux sets, there may be more than one set being
6696 	 * registered per hook. To create a unified set, we allocate a new set
6697 	 * and concatenate all individual sets being registered. While each set
6698 	 * is individually sorted, they may become unsorted when concatenated,
6699 	 * hence re-sorting the final set again is required to make binary
6700 	 * searching the set using btf_id_set_contains function work.
6701 	 */
6702 	set_cnt = set ? set->cnt : 0;
6703 
6704 	if (set_cnt > U32_MAX - add_set->cnt) {
6705 		ret = -EOVERFLOW;
6706 		goto end;
6707 	}
6708 
6709 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
6710 		ret = -E2BIG;
6711 		goto end;
6712 	}
6713 
6714 	/* Grow set */
6715 	set = krealloc(tab->sets[hook][type],
6716 		       offsetof(struct btf_id_set, ids[set_cnt + add_set->cnt]),
6717 		       GFP_KERNEL | __GFP_NOWARN);
6718 	if (!set) {
6719 		ret = -ENOMEM;
6720 		goto end;
6721 	}
6722 
6723 	/* For newly allocated set, initialize set->cnt to 0 */
6724 	if (!tab->sets[hook][type])
6725 		set->cnt = 0;
6726 	tab->sets[hook][type] = set;
6727 
6728 	/* Concatenate the two sets */
6729 	memcpy(set->ids + set->cnt, add_set->ids, add_set->cnt * sizeof(set->ids[0]));
6730 	set->cnt += add_set->cnt;
6731 
6732 	sort(set->ids, set->cnt, sizeof(set->ids[0]), btf_id_cmp_func, NULL);
6733 
6734 	return 0;
6735 end:
6736 	btf_free_kfunc_set_tab(btf);
6737 	return ret;
6738 }
6739 
6740 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
6741 				  const struct btf_kfunc_id_set *kset)
6742 {
6743 	bool vmlinux_set = !btf_is_module(btf);
6744 	int type, ret = 0;
6745 
6746 	for (type = 0; type < ARRAY_SIZE(kset->sets); type++) {
6747 		if (!kset->sets[type])
6748 			continue;
6749 
6750 		ret = __btf_populate_kfunc_set(btf, hook, type, kset->sets[type], vmlinux_set);
6751 		if (ret)
6752 			break;
6753 	}
6754 	return ret;
6755 }
6756 
6757 static bool __btf_kfunc_id_set_contains(const struct btf *btf,
6758 					enum btf_kfunc_hook hook,
6759 					enum btf_kfunc_type type,
6760 					u32 kfunc_btf_id)
6761 {
6762 	struct btf_id_set *set;
6763 
6764 	if (hook >= BTF_KFUNC_HOOK_MAX || type >= BTF_KFUNC_TYPE_MAX)
6765 		return false;
6766 	if (!btf->kfunc_set_tab)
6767 		return false;
6768 	set = btf->kfunc_set_tab->sets[hook][type];
6769 	if (!set)
6770 		return false;
6771 	return btf_id_set_contains(set, kfunc_btf_id);
6772 }
6773 
6774 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
6775 {
6776 	switch (prog_type) {
6777 	case BPF_PROG_TYPE_XDP:
6778 		return BTF_KFUNC_HOOK_XDP;
6779 	case BPF_PROG_TYPE_SCHED_CLS:
6780 		return BTF_KFUNC_HOOK_TC;
6781 	case BPF_PROG_TYPE_STRUCT_OPS:
6782 		return BTF_KFUNC_HOOK_STRUCT_OPS;
6783 	default:
6784 		return BTF_KFUNC_HOOK_MAX;
6785 	}
6786 }
6787 
6788 /* Caution:
6789  * Reference to the module (obtained using btf_try_get_module) corresponding to
6790  * the struct btf *MUST* be held when calling this function from verifier
6791  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
6792  * keeping the reference for the duration of the call provides the necessary
6793  * protection for looking up a well-formed btf->kfunc_set_tab.
6794  */
6795 bool btf_kfunc_id_set_contains(const struct btf *btf,
6796 			       enum bpf_prog_type prog_type,
6797 			       enum btf_kfunc_type type, u32 kfunc_btf_id)
6798 {
6799 	enum btf_kfunc_hook hook;
6800 
6801 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
6802 	return __btf_kfunc_id_set_contains(btf, hook, type, kfunc_btf_id);
6803 }
6804 
6805 /* This function must be invoked only from initcalls/module init functions */
6806 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
6807 			      const struct btf_kfunc_id_set *kset)
6808 {
6809 	enum btf_kfunc_hook hook;
6810 	struct btf *btf;
6811 	int ret;
6812 
6813 	btf = btf_get_module_btf(kset->owner);
6814 	if (!btf) {
6815 		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
6816 			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
6817 			return -ENOENT;
6818 		}
6819 		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
6820 			pr_err("missing module BTF, cannot register kfuncs\n");
6821 			return -ENOENT;
6822 		}
6823 		return 0;
6824 	}
6825 	if (IS_ERR(btf))
6826 		return PTR_ERR(btf);
6827 
6828 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
6829 	ret = btf_populate_kfunc_set(btf, hook, kset);
6830 	btf_put(btf);
6831 	return ret;
6832 }
6833 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
6834 
6835 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
6836 
6837 static
6838 int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
6839 				const struct btf *targ_btf, __u32 targ_id,
6840 				int level)
6841 {
6842 	const struct btf_type *local_type, *targ_type;
6843 	int depth = 32; /* max recursion depth */
6844 
6845 	/* caller made sure that names match (ignoring flavor suffix) */
6846 	local_type = btf_type_by_id(local_btf, local_id);
6847 	targ_type = btf_type_by_id(targ_btf, targ_id);
6848 	if (btf_kind(local_type) != btf_kind(targ_type))
6849 		return 0;
6850 
6851 recur:
6852 	depth--;
6853 	if (depth < 0)
6854 		return -EINVAL;
6855 
6856 	local_type = btf_type_skip_modifiers(local_btf, local_id, &local_id);
6857 	targ_type = btf_type_skip_modifiers(targ_btf, targ_id, &targ_id);
6858 	if (!local_type || !targ_type)
6859 		return -EINVAL;
6860 
6861 	if (btf_kind(local_type) != btf_kind(targ_type))
6862 		return 0;
6863 
6864 	switch (btf_kind(local_type)) {
6865 	case BTF_KIND_UNKN:
6866 	case BTF_KIND_STRUCT:
6867 	case BTF_KIND_UNION:
6868 	case BTF_KIND_ENUM:
6869 	case BTF_KIND_FWD:
6870 		return 1;
6871 	case BTF_KIND_INT:
6872 		/* just reject deprecated bitfield-like integers; all other
6873 		 * integers are by default compatible between each other
6874 		 */
6875 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
6876 	case BTF_KIND_PTR:
6877 		local_id = local_type->type;
6878 		targ_id = targ_type->type;
6879 		goto recur;
6880 	case BTF_KIND_ARRAY:
6881 		local_id = btf_array(local_type)->type;
6882 		targ_id = btf_array(targ_type)->type;
6883 		goto recur;
6884 	case BTF_KIND_FUNC_PROTO: {
6885 		struct btf_param *local_p = btf_params(local_type);
6886 		struct btf_param *targ_p = btf_params(targ_type);
6887 		__u16 local_vlen = btf_vlen(local_type);
6888 		__u16 targ_vlen = btf_vlen(targ_type);
6889 		int i, err;
6890 
6891 		if (local_vlen != targ_vlen)
6892 			return 0;
6893 
6894 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
6895 			if (level <= 0)
6896 				return -EINVAL;
6897 
6898 			btf_type_skip_modifiers(local_btf, local_p->type, &local_id);
6899 			btf_type_skip_modifiers(targ_btf, targ_p->type, &targ_id);
6900 			err = __bpf_core_types_are_compat(local_btf, local_id,
6901 							  targ_btf, targ_id,
6902 							  level - 1);
6903 			if (err <= 0)
6904 				return err;
6905 		}
6906 
6907 		/* tail recurse for return type check */
6908 		btf_type_skip_modifiers(local_btf, local_type->type, &local_id);
6909 		btf_type_skip_modifiers(targ_btf, targ_type->type, &targ_id);
6910 		goto recur;
6911 	}
6912 	default:
6913 		return 0;
6914 	}
6915 }
6916 
6917 /* Check local and target types for compatibility. This check is used for
6918  * type-based CO-RE relocations and follow slightly different rules than
6919  * field-based relocations. This function assumes that root types were already
6920  * checked for name match. Beyond that initial root-level name check, names
6921  * are completely ignored. Compatibility rules are as follows:
6922  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
6923  *     kind should match for local and target types (i.e., STRUCT is not
6924  *     compatible with UNION);
6925  *   - for ENUMs, the size is ignored;
6926  *   - for INT, size and signedness are ignored;
6927  *   - for ARRAY, dimensionality is ignored, element types are checked for
6928  *     compatibility recursively;
6929  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
6930  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
6931  *   - FUNC_PROTOs are compatible if they have compatible signature: same
6932  *     number of input args and compatible return and argument types.
6933  * These rules are not set in stone and probably will be adjusted as we get
6934  * more experience with using BPF CO-RE relocations.
6935  */
6936 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
6937 			      const struct btf *targ_btf, __u32 targ_id)
6938 {
6939 	return __bpf_core_types_are_compat(local_btf, local_id,
6940 					   targ_btf, targ_id,
6941 					   MAX_TYPES_ARE_COMPAT_DEPTH);
6942 }
6943 
6944 static bool bpf_core_is_flavor_sep(const char *s)
6945 {
6946 	/* check X___Y name pattern, where X and Y are not underscores */
6947 	return s[0] != '_' &&				      /* X */
6948 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
6949 	       s[4] != '_';				      /* Y */
6950 }
6951 
6952 size_t bpf_core_essential_name_len(const char *name)
6953 {
6954 	size_t n = strlen(name);
6955 	int i;
6956 
6957 	for (i = n - 5; i >= 0; i--) {
6958 		if (bpf_core_is_flavor_sep(name + i))
6959 			return i + 1;
6960 	}
6961 	return n;
6962 }
6963 
6964 struct bpf_cand_cache {
6965 	const char *name;
6966 	u32 name_len;
6967 	u16 kind;
6968 	u16 cnt;
6969 	struct {
6970 		const struct btf *btf;
6971 		u32 id;
6972 	} cands[];
6973 };
6974 
6975 static void bpf_free_cands(struct bpf_cand_cache *cands)
6976 {
6977 	if (!cands->cnt)
6978 		/* empty candidate array was allocated on stack */
6979 		return;
6980 	kfree(cands);
6981 }
6982 
6983 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
6984 {
6985 	kfree(cands->name);
6986 	kfree(cands);
6987 }
6988 
6989 #define VMLINUX_CAND_CACHE_SIZE 31
6990 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
6991 
6992 #define MODULE_CAND_CACHE_SIZE 31
6993 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
6994 
6995 static DEFINE_MUTEX(cand_cache_mutex);
6996 
6997 static void __print_cand_cache(struct bpf_verifier_log *log,
6998 			       struct bpf_cand_cache **cache,
6999 			       int cache_size)
7000 {
7001 	struct bpf_cand_cache *cc;
7002 	int i, j;
7003 
7004 	for (i = 0; i < cache_size; i++) {
7005 		cc = cache[i];
7006 		if (!cc)
7007 			continue;
7008 		bpf_log(log, "[%d]%s(", i, cc->name);
7009 		for (j = 0; j < cc->cnt; j++) {
7010 			bpf_log(log, "%d", cc->cands[j].id);
7011 			if (j < cc->cnt - 1)
7012 				bpf_log(log, " ");
7013 		}
7014 		bpf_log(log, "), ");
7015 	}
7016 }
7017 
7018 static void print_cand_cache(struct bpf_verifier_log *log)
7019 {
7020 	mutex_lock(&cand_cache_mutex);
7021 	bpf_log(log, "vmlinux_cand_cache:");
7022 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7023 	bpf_log(log, "\nmodule_cand_cache:");
7024 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7025 	bpf_log(log, "\n");
7026 	mutex_unlock(&cand_cache_mutex);
7027 }
7028 
7029 static u32 hash_cands(struct bpf_cand_cache *cands)
7030 {
7031 	return jhash(cands->name, cands->name_len, 0);
7032 }
7033 
7034 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
7035 					       struct bpf_cand_cache **cache,
7036 					       int cache_size)
7037 {
7038 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
7039 
7040 	if (cc && cc->name_len == cands->name_len &&
7041 	    !strncmp(cc->name, cands->name, cands->name_len))
7042 		return cc;
7043 	return NULL;
7044 }
7045 
7046 static size_t sizeof_cands(int cnt)
7047 {
7048 	return offsetof(struct bpf_cand_cache, cands[cnt]);
7049 }
7050 
7051 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
7052 						  struct bpf_cand_cache **cache,
7053 						  int cache_size)
7054 {
7055 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
7056 
7057 	if (*cc) {
7058 		bpf_free_cands_from_cache(*cc);
7059 		*cc = NULL;
7060 	}
7061 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
7062 	if (!new_cands) {
7063 		bpf_free_cands(cands);
7064 		return ERR_PTR(-ENOMEM);
7065 	}
7066 	/* strdup the name, since it will stay in cache.
7067 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
7068 	 */
7069 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
7070 	bpf_free_cands(cands);
7071 	if (!new_cands->name) {
7072 		kfree(new_cands);
7073 		return ERR_PTR(-ENOMEM);
7074 	}
7075 	*cc = new_cands;
7076 	return new_cands;
7077 }
7078 
7079 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7080 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
7081 			       int cache_size)
7082 {
7083 	struct bpf_cand_cache *cc;
7084 	int i, j;
7085 
7086 	for (i = 0; i < cache_size; i++) {
7087 		cc = cache[i];
7088 		if (!cc)
7089 			continue;
7090 		if (!btf) {
7091 			/* when new module is loaded purge all of module_cand_cache,
7092 			 * since new module might have candidates with the name
7093 			 * that matches cached cands.
7094 			 */
7095 			bpf_free_cands_from_cache(cc);
7096 			cache[i] = NULL;
7097 			continue;
7098 		}
7099 		/* when module is unloaded purge cache entries
7100 		 * that match module's btf
7101 		 */
7102 		for (j = 0; j < cc->cnt; j++)
7103 			if (cc->cands[j].btf == btf) {
7104 				bpf_free_cands_from_cache(cc);
7105 				cache[i] = NULL;
7106 				break;
7107 			}
7108 	}
7109 
7110 }
7111 
7112 static void purge_cand_cache(struct btf *btf)
7113 {
7114 	mutex_lock(&cand_cache_mutex);
7115 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7116 	mutex_unlock(&cand_cache_mutex);
7117 }
7118 #endif
7119 
7120 static struct bpf_cand_cache *
7121 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
7122 		   int targ_start_id)
7123 {
7124 	struct bpf_cand_cache *new_cands;
7125 	const struct btf_type *t;
7126 	const char *targ_name;
7127 	size_t targ_essent_len;
7128 	int n, i;
7129 
7130 	n = btf_nr_types(targ_btf);
7131 	for (i = targ_start_id; i < n; i++) {
7132 		t = btf_type_by_id(targ_btf, i);
7133 		if (btf_kind(t) != cands->kind)
7134 			continue;
7135 
7136 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
7137 		if (!targ_name)
7138 			continue;
7139 
7140 		/* the resched point is before strncmp to make sure that search
7141 		 * for non-existing name will have a chance to schedule().
7142 		 */
7143 		cond_resched();
7144 
7145 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
7146 			continue;
7147 
7148 		targ_essent_len = bpf_core_essential_name_len(targ_name);
7149 		if (targ_essent_len != cands->name_len)
7150 			continue;
7151 
7152 		/* most of the time there is only one candidate for a given kind+name pair */
7153 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
7154 		if (!new_cands) {
7155 			bpf_free_cands(cands);
7156 			return ERR_PTR(-ENOMEM);
7157 		}
7158 
7159 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
7160 		bpf_free_cands(cands);
7161 		cands = new_cands;
7162 		cands->cands[cands->cnt].btf = targ_btf;
7163 		cands->cands[cands->cnt].id = i;
7164 		cands->cnt++;
7165 	}
7166 	return cands;
7167 }
7168 
7169 static struct bpf_cand_cache *
7170 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
7171 {
7172 	struct bpf_cand_cache *cands, *cc, local_cand = {};
7173 	const struct btf *local_btf = ctx->btf;
7174 	const struct btf_type *local_type;
7175 	const struct btf *main_btf;
7176 	size_t local_essent_len;
7177 	struct btf *mod_btf;
7178 	const char *name;
7179 	int id;
7180 
7181 	main_btf = bpf_get_btf_vmlinux();
7182 	if (IS_ERR(main_btf))
7183 		return ERR_CAST(main_btf);
7184 	if (!main_btf)
7185 		return ERR_PTR(-EINVAL);
7186 
7187 	local_type = btf_type_by_id(local_btf, local_type_id);
7188 	if (!local_type)
7189 		return ERR_PTR(-EINVAL);
7190 
7191 	name = btf_name_by_offset(local_btf, local_type->name_off);
7192 	if (str_is_empty(name))
7193 		return ERR_PTR(-EINVAL);
7194 	local_essent_len = bpf_core_essential_name_len(name);
7195 
7196 	cands = &local_cand;
7197 	cands->name = name;
7198 	cands->kind = btf_kind(local_type);
7199 	cands->name_len = local_essent_len;
7200 
7201 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7202 	/* cands is a pointer to stack here */
7203 	if (cc) {
7204 		if (cc->cnt)
7205 			return cc;
7206 		goto check_modules;
7207 	}
7208 
7209 	/* Attempt to find target candidates in vmlinux BTF first */
7210 	cands = bpf_core_add_cands(cands, main_btf, 1);
7211 	if (IS_ERR(cands))
7212 		return ERR_CAST(cands);
7213 
7214 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
7215 
7216 	/* populate cache even when cands->cnt == 0 */
7217 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7218 	if (IS_ERR(cc))
7219 		return ERR_CAST(cc);
7220 
7221 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
7222 	if (cc->cnt)
7223 		return cc;
7224 
7225 check_modules:
7226 	/* cands is a pointer to stack here and cands->cnt == 0 */
7227 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7228 	if (cc)
7229 		/* if cache has it return it even if cc->cnt == 0 */
7230 		return cc;
7231 
7232 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
7233 	spin_lock_bh(&btf_idr_lock);
7234 	idr_for_each_entry(&btf_idr, mod_btf, id) {
7235 		if (!btf_is_module(mod_btf))
7236 			continue;
7237 		/* linear search could be slow hence unlock/lock
7238 		 * the IDR to avoiding holding it for too long
7239 		 */
7240 		btf_get(mod_btf);
7241 		spin_unlock_bh(&btf_idr_lock);
7242 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
7243 		if (IS_ERR(cands)) {
7244 			btf_put(mod_btf);
7245 			return ERR_CAST(cands);
7246 		}
7247 		spin_lock_bh(&btf_idr_lock);
7248 		btf_put(mod_btf);
7249 	}
7250 	spin_unlock_bh(&btf_idr_lock);
7251 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
7252 	 * or pointer to stack if cands->cnd == 0.
7253 	 * Copy it into the cache even when cands->cnt == 0 and
7254 	 * return the result.
7255 	 */
7256 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7257 }
7258 
7259 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
7260 		   int relo_idx, void *insn)
7261 {
7262 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
7263 	struct bpf_core_cand_list cands = {};
7264 	struct bpf_core_relo_res targ_res;
7265 	struct bpf_core_spec *specs;
7266 	int err;
7267 
7268 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
7269 	 * into arrays of btf_ids of struct fields and array indices.
7270 	 */
7271 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
7272 	if (!specs)
7273 		return -ENOMEM;
7274 
7275 	if (need_cands) {
7276 		struct bpf_cand_cache *cc;
7277 		int i;
7278 
7279 		mutex_lock(&cand_cache_mutex);
7280 		cc = bpf_core_find_cands(ctx, relo->type_id);
7281 		if (IS_ERR(cc)) {
7282 			bpf_log(ctx->log, "target candidate search failed for %d\n",
7283 				relo->type_id);
7284 			err = PTR_ERR(cc);
7285 			goto out;
7286 		}
7287 		if (cc->cnt) {
7288 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
7289 			if (!cands.cands) {
7290 				err = -ENOMEM;
7291 				goto out;
7292 			}
7293 		}
7294 		for (i = 0; i < cc->cnt; i++) {
7295 			bpf_log(ctx->log,
7296 				"CO-RE relocating %s %s: found target candidate [%d]\n",
7297 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
7298 			cands.cands[i].btf = cc->cands[i].btf;
7299 			cands.cands[i].id = cc->cands[i].id;
7300 		}
7301 		cands.len = cc->cnt;
7302 		/* cand_cache_mutex needs to span the cache lookup and
7303 		 * copy of btf pointer into bpf_core_cand_list,
7304 		 * since module can be unloaded while bpf_core_calc_relo_insn
7305 		 * is working with module's btf.
7306 		 */
7307 	}
7308 
7309 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
7310 				      &targ_res);
7311 	if (err)
7312 		goto out;
7313 
7314 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
7315 				  &targ_res);
7316 
7317 out:
7318 	kfree(specs);
7319 	if (need_cands) {
7320 		kfree(cands.cands);
7321 		mutex_unlock(&cand_cache_mutex);
7322 		if (ctx->log->level & BPF_LOG_LEVEL2)
7323 			print_cand_cache(ctx->log);
7324 	}
7325 	return err;
7326 }
7327