xref: /openbmc/linux/kernel/bpf/btf.c (revision c5c87812)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/btf_ids.h>
26 #include <net/sock.h>
27 
28 /* BTF (BPF Type Format) is the meta data format which describes
29  * the data types of BPF program/map.  Hence, it basically focus
30  * on the C programming language which the modern BPF is primary
31  * using.
32  *
33  * ELF Section:
34  * ~~~~~~~~~~~
35  * The BTF data is stored under the ".BTF" ELF section
36  *
37  * struct btf_type:
38  * ~~~~~~~~~~~~~~~
39  * Each 'struct btf_type' object describes a C data type.
40  * Depending on the type it is describing, a 'struct btf_type'
41  * object may be followed by more data.  F.e.
42  * To describe an array, 'struct btf_type' is followed by
43  * 'struct btf_array'.
44  *
45  * 'struct btf_type' and any extra data following it are
46  * 4 bytes aligned.
47  *
48  * Type section:
49  * ~~~~~~~~~~~~~
50  * The BTF type section contains a list of 'struct btf_type' objects.
51  * Each one describes a C type.  Recall from the above section
52  * that a 'struct btf_type' object could be immediately followed by extra
53  * data in order to desribe some particular C types.
54  *
55  * type_id:
56  * ~~~~~~~
57  * Each btf_type object is identified by a type_id.  The type_id
58  * is implicitly implied by the location of the btf_type object in
59  * the BTF type section.  The first one has type_id 1.  The second
60  * one has type_id 2...etc.  Hence, an earlier btf_type has
61  * a smaller type_id.
62  *
63  * A btf_type object may refer to another btf_type object by using
64  * type_id (i.e. the "type" in the "struct btf_type").
65  *
66  * NOTE that we cannot assume any reference-order.
67  * A btf_type object can refer to an earlier btf_type object
68  * but it can also refer to a later btf_type object.
69  *
70  * For example, to describe "const void *".  A btf_type
71  * object describing "const" may refer to another btf_type
72  * object describing "void *".  This type-reference is done
73  * by specifying type_id:
74  *
75  * [1] CONST (anon) type_id=2
76  * [2] PTR (anon) type_id=0
77  *
78  * The above is the btf_verifier debug log:
79  *   - Each line started with "[?]" is a btf_type object
80  *   - [?] is the type_id of the btf_type object.
81  *   - CONST/PTR is the BTF_KIND_XXX
82  *   - "(anon)" is the name of the type.  It just
83  *     happens that CONST and PTR has no name.
84  *   - type_id=XXX is the 'u32 type' in btf_type
85  *
86  * NOTE: "void" has type_id 0
87  *
88  * String section:
89  * ~~~~~~~~~~~~~~
90  * The BTF string section contains the names used by the type section.
91  * Each string is referred by an "offset" from the beginning of the
92  * string section.
93  *
94  * Each string is '\0' terminated.
95  *
96  * The first character in the string section must be '\0'
97  * which is used to mean 'anonymous'. Some btf_type may not
98  * have a name.
99  */
100 
101 /* BTF verification:
102  *
103  * To verify BTF data, two passes are needed.
104  *
105  * Pass #1
106  * ~~~~~~~
107  * The first pass is to collect all btf_type objects to
108  * an array: "btf->types".
109  *
110  * Depending on the C type that a btf_type is describing,
111  * a btf_type may be followed by extra data.  We don't know
112  * how many btf_type is there, and more importantly we don't
113  * know where each btf_type is located in the type section.
114  *
115  * Without knowing the location of each type_id, most verifications
116  * cannot be done.  e.g. an earlier btf_type may refer to a later
117  * btf_type (recall the "const void *" above), so we cannot
118  * check this type-reference in the first pass.
119  *
120  * In the first pass, it still does some verifications (e.g.
121  * checking the name is a valid offset to the string section).
122  *
123  * Pass #2
124  * ~~~~~~~
125  * The main focus is to resolve a btf_type that is referring
126  * to another type.
127  *
128  * We have to ensure the referring type:
129  * 1) does exist in the BTF (i.e. in btf->types[])
130  * 2) does not cause a loop:
131  *	struct A {
132  *		struct B b;
133  *	};
134  *
135  *	struct B {
136  *		struct A a;
137  *	};
138  *
139  * btf_type_needs_resolve() decides if a btf_type needs
140  * to be resolved.
141  *
142  * The needs_resolve type implements the "resolve()" ops which
143  * essentially does a DFS and detects backedge.
144  *
145  * During resolve (or DFS), different C types have different
146  * "RESOLVED" conditions.
147  *
148  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
149  * members because a member is always referring to another
150  * type.  A struct's member can be treated as "RESOLVED" if
151  * it is referring to a BTF_KIND_PTR.  Otherwise, the
152  * following valid C struct would be rejected:
153  *
154  *	struct A {
155  *		int m;
156  *		struct A *a;
157  *	};
158  *
159  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
160  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
161  * detect a pointer loop, e.g.:
162  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
163  *                        ^                                         |
164  *                        +-----------------------------------------+
165  *
166  */
167 
168 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
169 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
170 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
171 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
172 #define BITS_ROUNDUP_BYTES(bits) \
173 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
174 
175 #define BTF_INFO_MASK 0x8f00ffff
176 #define BTF_INT_MASK 0x0fffffff
177 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
178 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
179 
180 /* 16MB for 64k structs and each has 16 members and
181  * a few MB spaces for the string section.
182  * The hard limit is S32_MAX.
183  */
184 #define BTF_MAX_SIZE (16 * 1024 * 1024)
185 
186 #define for_each_member_from(i, from, struct_type, member)		\
187 	for (i = from, member = btf_type_member(struct_type) + from;	\
188 	     i < btf_type_vlen(struct_type);				\
189 	     i++, member++)
190 
191 #define for_each_vsi_from(i, from, struct_type, member)				\
192 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
193 	     i < btf_type_vlen(struct_type);					\
194 	     i++, member++)
195 
196 DEFINE_IDR(btf_idr);
197 DEFINE_SPINLOCK(btf_idr_lock);
198 
199 struct btf {
200 	void *data;
201 	struct btf_type **types;
202 	u32 *resolved_ids;
203 	u32 *resolved_sizes;
204 	const char *strings;
205 	void *nohdr_data;
206 	struct btf_header hdr;
207 	u32 nr_types;
208 	u32 types_size;
209 	u32 data_size;
210 	refcount_t refcnt;
211 	u32 id;
212 	struct rcu_head rcu;
213 };
214 
215 enum verifier_phase {
216 	CHECK_META,
217 	CHECK_TYPE,
218 };
219 
220 struct resolve_vertex {
221 	const struct btf_type *t;
222 	u32 type_id;
223 	u16 next_member;
224 };
225 
226 enum visit_state {
227 	NOT_VISITED,
228 	VISITED,
229 	RESOLVED,
230 };
231 
232 enum resolve_mode {
233 	RESOLVE_TBD,	/* To Be Determined */
234 	RESOLVE_PTR,	/* Resolving for Pointer */
235 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
236 					 * or array
237 					 */
238 };
239 
240 #define MAX_RESOLVE_DEPTH 32
241 
242 struct btf_sec_info {
243 	u32 off;
244 	u32 len;
245 };
246 
247 struct btf_verifier_env {
248 	struct btf *btf;
249 	u8 *visit_states;
250 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
251 	struct bpf_verifier_log log;
252 	u32 log_type_id;
253 	u32 top_stack;
254 	enum verifier_phase phase;
255 	enum resolve_mode resolve_mode;
256 };
257 
258 static const char * const btf_kind_str[NR_BTF_KINDS] = {
259 	[BTF_KIND_UNKN]		= "UNKNOWN",
260 	[BTF_KIND_INT]		= "INT",
261 	[BTF_KIND_PTR]		= "PTR",
262 	[BTF_KIND_ARRAY]	= "ARRAY",
263 	[BTF_KIND_STRUCT]	= "STRUCT",
264 	[BTF_KIND_UNION]	= "UNION",
265 	[BTF_KIND_ENUM]		= "ENUM",
266 	[BTF_KIND_FWD]		= "FWD",
267 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
268 	[BTF_KIND_VOLATILE]	= "VOLATILE",
269 	[BTF_KIND_CONST]	= "CONST",
270 	[BTF_KIND_RESTRICT]	= "RESTRICT",
271 	[BTF_KIND_FUNC]		= "FUNC",
272 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
273 	[BTF_KIND_VAR]		= "VAR",
274 	[BTF_KIND_DATASEC]	= "DATASEC",
275 };
276 
277 static const char *btf_type_str(const struct btf_type *t)
278 {
279 	return btf_kind_str[BTF_INFO_KIND(t->info)];
280 }
281 
282 /* Chunk size we use in safe copy of data to be shown. */
283 #define BTF_SHOW_OBJ_SAFE_SIZE		32
284 
285 /*
286  * This is the maximum size of a base type value (equivalent to a
287  * 128-bit int); if we are at the end of our safe buffer and have
288  * less than 16 bytes space we can't be assured of being able
289  * to copy the next type safely, so in such cases we will initiate
290  * a new copy.
291  */
292 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
293 
294 /* Type name size */
295 #define BTF_SHOW_NAME_SIZE		80
296 
297 /*
298  * Common data to all BTF show operations. Private show functions can add
299  * their own data to a structure containing a struct btf_show and consult it
300  * in the show callback.  See btf_type_show() below.
301  *
302  * One challenge with showing nested data is we want to skip 0-valued
303  * data, but in order to figure out whether a nested object is all zeros
304  * we need to walk through it.  As a result, we need to make two passes
305  * when handling structs, unions and arrays; the first path simply looks
306  * for nonzero data, while the second actually does the display.  The first
307  * pass is signalled by show->state.depth_check being set, and if we
308  * encounter a non-zero value we set show->state.depth_to_show to
309  * the depth at which we encountered it.  When we have completed the
310  * first pass, we will know if anything needs to be displayed if
311  * depth_to_show > depth.  See btf_[struct,array]_show() for the
312  * implementation of this.
313  *
314  * Another problem is we want to ensure the data for display is safe to
315  * access.  To support this, the anonymous "struct {} obj" tracks the data
316  * object and our safe copy of it.  We copy portions of the data needed
317  * to the object "copy" buffer, but because its size is limited to
318  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
319  * traverse larger objects for display.
320  *
321  * The various data type show functions all start with a call to
322  * btf_show_start_type() which returns a pointer to the safe copy
323  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
324  * raw data itself).  btf_show_obj_safe() is responsible for
325  * using copy_from_kernel_nofault() to update the safe data if necessary
326  * as we traverse the object's data.  skbuff-like semantics are
327  * used:
328  *
329  * - obj.head points to the start of the toplevel object for display
330  * - obj.size is the size of the toplevel object
331  * - obj.data points to the current point in the original data at
332  *   which our safe data starts.  obj.data will advance as we copy
333  *   portions of the data.
334  *
335  * In most cases a single copy will suffice, but larger data structures
336  * such as "struct task_struct" will require many copies.  The logic in
337  * btf_show_obj_safe() handles the logic that determines if a new
338  * copy_from_kernel_nofault() is needed.
339  */
340 struct btf_show {
341 	u64 flags;
342 	void *target;	/* target of show operation (seq file, buffer) */
343 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
344 	const struct btf *btf;
345 	/* below are used during iteration */
346 	struct {
347 		u8 depth;
348 		u8 depth_to_show;
349 		u8 depth_check;
350 		u8 array_member:1,
351 		   array_terminated:1;
352 		u16 array_encoding;
353 		u32 type_id;
354 		int status;			/* non-zero for error */
355 		const struct btf_type *type;
356 		const struct btf_member *member;
357 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
358 	} state;
359 	struct {
360 		u32 size;
361 		void *head;
362 		void *data;
363 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
364 	} obj;
365 };
366 
367 struct btf_kind_operations {
368 	s32 (*check_meta)(struct btf_verifier_env *env,
369 			  const struct btf_type *t,
370 			  u32 meta_left);
371 	int (*resolve)(struct btf_verifier_env *env,
372 		       const struct resolve_vertex *v);
373 	int (*check_member)(struct btf_verifier_env *env,
374 			    const struct btf_type *struct_type,
375 			    const struct btf_member *member,
376 			    const struct btf_type *member_type);
377 	int (*check_kflag_member)(struct btf_verifier_env *env,
378 				  const struct btf_type *struct_type,
379 				  const struct btf_member *member,
380 				  const struct btf_type *member_type);
381 	void (*log_details)(struct btf_verifier_env *env,
382 			    const struct btf_type *t);
383 	void (*show)(const struct btf *btf, const struct btf_type *t,
384 			 u32 type_id, void *data, u8 bits_offsets,
385 			 struct btf_show *show);
386 };
387 
388 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
389 static struct btf_type btf_void;
390 
391 static int btf_resolve(struct btf_verifier_env *env,
392 		       const struct btf_type *t, u32 type_id);
393 
394 static bool btf_type_is_modifier(const struct btf_type *t)
395 {
396 	/* Some of them is not strictly a C modifier
397 	 * but they are grouped into the same bucket
398 	 * for BTF concern:
399 	 *   A type (t) that refers to another
400 	 *   type through t->type AND its size cannot
401 	 *   be determined without following the t->type.
402 	 *
403 	 * ptr does not fall into this bucket
404 	 * because its size is always sizeof(void *).
405 	 */
406 	switch (BTF_INFO_KIND(t->info)) {
407 	case BTF_KIND_TYPEDEF:
408 	case BTF_KIND_VOLATILE:
409 	case BTF_KIND_CONST:
410 	case BTF_KIND_RESTRICT:
411 		return true;
412 	}
413 
414 	return false;
415 }
416 
417 bool btf_type_is_void(const struct btf_type *t)
418 {
419 	return t == &btf_void;
420 }
421 
422 static bool btf_type_is_fwd(const struct btf_type *t)
423 {
424 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
425 }
426 
427 static bool btf_type_nosize(const struct btf_type *t)
428 {
429 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
430 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
431 }
432 
433 static bool btf_type_nosize_or_null(const struct btf_type *t)
434 {
435 	return !t || btf_type_nosize(t);
436 }
437 
438 static bool __btf_type_is_struct(const struct btf_type *t)
439 {
440 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
441 }
442 
443 static bool btf_type_is_array(const struct btf_type *t)
444 {
445 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
446 }
447 
448 static bool btf_type_is_datasec(const struct btf_type *t)
449 {
450 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
451 }
452 
453 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
454 {
455 	const struct btf_type *t;
456 	const char *tname;
457 	u32 i;
458 
459 	for (i = 1; i <= btf->nr_types; i++) {
460 		t = btf->types[i];
461 		if (BTF_INFO_KIND(t->info) != kind)
462 			continue;
463 
464 		tname = btf_name_by_offset(btf, t->name_off);
465 		if (!strcmp(tname, name))
466 			return i;
467 	}
468 
469 	return -ENOENT;
470 }
471 
472 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
473 					       u32 id, u32 *res_id)
474 {
475 	const struct btf_type *t = btf_type_by_id(btf, id);
476 
477 	while (btf_type_is_modifier(t)) {
478 		id = t->type;
479 		t = btf_type_by_id(btf, t->type);
480 	}
481 
482 	if (res_id)
483 		*res_id = id;
484 
485 	return t;
486 }
487 
488 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
489 					    u32 id, u32 *res_id)
490 {
491 	const struct btf_type *t;
492 
493 	t = btf_type_skip_modifiers(btf, id, NULL);
494 	if (!btf_type_is_ptr(t))
495 		return NULL;
496 
497 	return btf_type_skip_modifiers(btf, t->type, res_id);
498 }
499 
500 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
501 						 u32 id, u32 *res_id)
502 {
503 	const struct btf_type *ptype;
504 
505 	ptype = btf_type_resolve_ptr(btf, id, res_id);
506 	if (ptype && btf_type_is_func_proto(ptype))
507 		return ptype;
508 
509 	return NULL;
510 }
511 
512 /* Types that act only as a source, not sink or intermediate
513  * type when resolving.
514  */
515 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
516 {
517 	return btf_type_is_var(t) ||
518 	       btf_type_is_datasec(t);
519 }
520 
521 /* What types need to be resolved?
522  *
523  * btf_type_is_modifier() is an obvious one.
524  *
525  * btf_type_is_struct() because its member refers to
526  * another type (through member->type).
527  *
528  * btf_type_is_var() because the variable refers to
529  * another type. btf_type_is_datasec() holds multiple
530  * btf_type_is_var() types that need resolving.
531  *
532  * btf_type_is_array() because its element (array->type)
533  * refers to another type.  Array can be thought of a
534  * special case of struct while array just has the same
535  * member-type repeated by array->nelems of times.
536  */
537 static bool btf_type_needs_resolve(const struct btf_type *t)
538 {
539 	return btf_type_is_modifier(t) ||
540 	       btf_type_is_ptr(t) ||
541 	       btf_type_is_struct(t) ||
542 	       btf_type_is_array(t) ||
543 	       btf_type_is_var(t) ||
544 	       btf_type_is_datasec(t);
545 }
546 
547 /* t->size can be used */
548 static bool btf_type_has_size(const struct btf_type *t)
549 {
550 	switch (BTF_INFO_KIND(t->info)) {
551 	case BTF_KIND_INT:
552 	case BTF_KIND_STRUCT:
553 	case BTF_KIND_UNION:
554 	case BTF_KIND_ENUM:
555 	case BTF_KIND_DATASEC:
556 		return true;
557 	}
558 
559 	return false;
560 }
561 
562 static const char *btf_int_encoding_str(u8 encoding)
563 {
564 	if (encoding == 0)
565 		return "(none)";
566 	else if (encoding == BTF_INT_SIGNED)
567 		return "SIGNED";
568 	else if (encoding == BTF_INT_CHAR)
569 		return "CHAR";
570 	else if (encoding == BTF_INT_BOOL)
571 		return "BOOL";
572 	else
573 		return "UNKN";
574 }
575 
576 static u32 btf_type_int(const struct btf_type *t)
577 {
578 	return *(u32 *)(t + 1);
579 }
580 
581 static const struct btf_array *btf_type_array(const struct btf_type *t)
582 {
583 	return (const struct btf_array *)(t + 1);
584 }
585 
586 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
587 {
588 	return (const struct btf_enum *)(t + 1);
589 }
590 
591 static const struct btf_var *btf_type_var(const struct btf_type *t)
592 {
593 	return (const struct btf_var *)(t + 1);
594 }
595 
596 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
597 {
598 	return kind_ops[BTF_INFO_KIND(t->info)];
599 }
600 
601 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
602 {
603 	return BTF_STR_OFFSET_VALID(offset) &&
604 		offset < btf->hdr.str_len;
605 }
606 
607 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
608 {
609 	if ((first ? !isalpha(c) :
610 		     !isalnum(c)) &&
611 	    c != '_' &&
612 	    ((c == '.' && !dot_ok) ||
613 	      c != '.'))
614 		return false;
615 	return true;
616 }
617 
618 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
619 {
620 	/* offset must be valid */
621 	const char *src = &btf->strings[offset];
622 	const char *src_limit;
623 
624 	if (!__btf_name_char_ok(*src, true, dot_ok))
625 		return false;
626 
627 	/* set a limit on identifier length */
628 	src_limit = src + KSYM_NAME_LEN;
629 	src++;
630 	while (*src && src < src_limit) {
631 		if (!__btf_name_char_ok(*src, false, dot_ok))
632 			return false;
633 		src++;
634 	}
635 
636 	return !*src;
637 }
638 
639 /* Only C-style identifier is permitted. This can be relaxed if
640  * necessary.
641  */
642 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
643 {
644 	return __btf_name_valid(btf, offset, false);
645 }
646 
647 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
648 {
649 	return __btf_name_valid(btf, offset, true);
650 }
651 
652 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
653 {
654 	if (!offset)
655 		return "(anon)";
656 	else if (offset < btf->hdr.str_len)
657 		return &btf->strings[offset];
658 	else
659 		return "(invalid-name-offset)";
660 }
661 
662 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
663 {
664 	if (offset < btf->hdr.str_len)
665 		return &btf->strings[offset];
666 
667 	return NULL;
668 }
669 
670 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
671 {
672 	if (type_id > btf->nr_types)
673 		return NULL;
674 
675 	return btf->types[type_id];
676 }
677 
678 /*
679  * Regular int is not a bit field and it must be either
680  * u8/u16/u32/u64 or __int128.
681  */
682 static bool btf_type_int_is_regular(const struct btf_type *t)
683 {
684 	u8 nr_bits, nr_bytes;
685 	u32 int_data;
686 
687 	int_data = btf_type_int(t);
688 	nr_bits = BTF_INT_BITS(int_data);
689 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
690 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
691 	    BTF_INT_OFFSET(int_data) ||
692 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
693 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
694 	     nr_bytes != (2 * sizeof(u64)))) {
695 		return false;
696 	}
697 
698 	return true;
699 }
700 
701 /*
702  * Check that given struct member is a regular int with expected
703  * offset and size.
704  */
705 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
706 			   const struct btf_member *m,
707 			   u32 expected_offset, u32 expected_size)
708 {
709 	const struct btf_type *t;
710 	u32 id, int_data;
711 	u8 nr_bits;
712 
713 	id = m->type;
714 	t = btf_type_id_size(btf, &id, NULL);
715 	if (!t || !btf_type_is_int(t))
716 		return false;
717 
718 	int_data = btf_type_int(t);
719 	nr_bits = BTF_INT_BITS(int_data);
720 	if (btf_type_kflag(s)) {
721 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
722 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
723 
724 		/* if kflag set, int should be a regular int and
725 		 * bit offset should be at byte boundary.
726 		 */
727 		return !bitfield_size &&
728 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
729 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
730 	}
731 
732 	if (BTF_INT_OFFSET(int_data) ||
733 	    BITS_PER_BYTE_MASKED(m->offset) ||
734 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
735 	    BITS_PER_BYTE_MASKED(nr_bits) ||
736 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
737 		return false;
738 
739 	return true;
740 }
741 
742 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
743 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
744 						       u32 id)
745 {
746 	const struct btf_type *t = btf_type_by_id(btf, id);
747 
748 	while (btf_type_is_modifier(t) &&
749 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
750 		id = t->type;
751 		t = btf_type_by_id(btf, t->type);
752 	}
753 
754 	return t;
755 }
756 
757 #define BTF_SHOW_MAX_ITER	10
758 
759 #define BTF_KIND_BIT(kind)	(1ULL << kind)
760 
761 /*
762  * Populate show->state.name with type name information.
763  * Format of type name is
764  *
765  * [.member_name = ] (type_name)
766  */
767 static const char *btf_show_name(struct btf_show *show)
768 {
769 	/* BTF_MAX_ITER array suffixes "[]" */
770 	const char *array_suffixes = "[][][][][][][][][][]";
771 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
772 	/* BTF_MAX_ITER pointer suffixes "*" */
773 	const char *ptr_suffixes = "**********";
774 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
775 	const char *name = NULL, *prefix = "", *parens = "";
776 	const struct btf_member *m = show->state.member;
777 	const struct btf_type *t = show->state.type;
778 	const struct btf_array *array;
779 	u32 id = show->state.type_id;
780 	const char *member = NULL;
781 	bool show_member = false;
782 	u64 kinds = 0;
783 	int i;
784 
785 	show->state.name[0] = '\0';
786 
787 	/*
788 	 * Don't show type name if we're showing an array member;
789 	 * in that case we show the array type so don't need to repeat
790 	 * ourselves for each member.
791 	 */
792 	if (show->state.array_member)
793 		return "";
794 
795 	/* Retrieve member name, if any. */
796 	if (m) {
797 		member = btf_name_by_offset(show->btf, m->name_off);
798 		show_member = strlen(member) > 0;
799 		id = m->type;
800 	}
801 
802 	/*
803 	 * Start with type_id, as we have resolved the struct btf_type *
804 	 * via btf_modifier_show() past the parent typedef to the child
805 	 * struct, int etc it is defined as.  In such cases, the type_id
806 	 * still represents the starting type while the struct btf_type *
807 	 * in our show->state points at the resolved type of the typedef.
808 	 */
809 	t = btf_type_by_id(show->btf, id);
810 	if (!t)
811 		return "";
812 
813 	/*
814 	 * The goal here is to build up the right number of pointer and
815 	 * array suffixes while ensuring the type name for a typedef
816 	 * is represented.  Along the way we accumulate a list of
817 	 * BTF kinds we have encountered, since these will inform later
818 	 * display; for example, pointer types will not require an
819 	 * opening "{" for struct, we will just display the pointer value.
820 	 *
821 	 * We also want to accumulate the right number of pointer or array
822 	 * indices in the format string while iterating until we get to
823 	 * the typedef/pointee/array member target type.
824 	 *
825 	 * We start by pointing at the end of pointer and array suffix
826 	 * strings; as we accumulate pointers and arrays we move the pointer
827 	 * or array string backwards so it will show the expected number of
828 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
829 	 * and/or arrays and typedefs are supported as a precaution.
830 	 *
831 	 * We also want to get typedef name while proceeding to resolve
832 	 * type it points to so that we can add parentheses if it is a
833 	 * "typedef struct" etc.
834 	 */
835 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
836 
837 		switch (BTF_INFO_KIND(t->info)) {
838 		case BTF_KIND_TYPEDEF:
839 			if (!name)
840 				name = btf_name_by_offset(show->btf,
841 							       t->name_off);
842 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
843 			id = t->type;
844 			break;
845 		case BTF_KIND_ARRAY:
846 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
847 			parens = "[";
848 			if (!t)
849 				return "";
850 			array = btf_type_array(t);
851 			if (array_suffix > array_suffixes)
852 				array_suffix -= 2;
853 			id = array->type;
854 			break;
855 		case BTF_KIND_PTR:
856 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
857 			if (ptr_suffix > ptr_suffixes)
858 				ptr_suffix -= 1;
859 			id = t->type;
860 			break;
861 		default:
862 			id = 0;
863 			break;
864 		}
865 		if (!id)
866 			break;
867 		t = btf_type_skip_qualifiers(show->btf, id);
868 	}
869 	/* We may not be able to represent this type; bail to be safe */
870 	if (i == BTF_SHOW_MAX_ITER)
871 		return "";
872 
873 	if (!name)
874 		name = btf_name_by_offset(show->btf, t->name_off);
875 
876 	switch (BTF_INFO_KIND(t->info)) {
877 	case BTF_KIND_STRUCT:
878 	case BTF_KIND_UNION:
879 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
880 			 "struct" : "union";
881 		/* if it's an array of struct/union, parens is already set */
882 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
883 			parens = "{";
884 		break;
885 	case BTF_KIND_ENUM:
886 		prefix = "enum";
887 		break;
888 	default:
889 		break;
890 	}
891 
892 	/* pointer does not require parens */
893 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
894 		parens = "";
895 	/* typedef does not require struct/union/enum prefix */
896 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
897 		prefix = "";
898 
899 	if (!name)
900 		name = "";
901 
902 	/* Even if we don't want type name info, we want parentheses etc */
903 	if (show->flags & BTF_SHOW_NONAME)
904 		snprintf(show->state.name, sizeof(show->state.name), "%s",
905 			 parens);
906 	else
907 		snprintf(show->state.name, sizeof(show->state.name),
908 			 "%s%s%s(%s%s%s%s%s%s)%s",
909 			 /* first 3 strings comprise ".member = " */
910 			 show_member ? "." : "",
911 			 show_member ? member : "",
912 			 show_member ? " = " : "",
913 			 /* ...next is our prefix (struct, enum, etc) */
914 			 prefix,
915 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
916 			 /* ...this is the type name itself */
917 			 name,
918 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
919 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
920 			 array_suffix, parens);
921 
922 	return show->state.name;
923 }
924 
925 static const char *__btf_show_indent(struct btf_show *show)
926 {
927 	const char *indents = "                                ";
928 	const char *indent = &indents[strlen(indents)];
929 
930 	if ((indent - show->state.depth) >= indents)
931 		return indent - show->state.depth;
932 	return indents;
933 }
934 
935 static const char *btf_show_indent(struct btf_show *show)
936 {
937 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
938 }
939 
940 static const char *btf_show_newline(struct btf_show *show)
941 {
942 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
943 }
944 
945 static const char *btf_show_delim(struct btf_show *show)
946 {
947 	if (show->state.depth == 0)
948 		return "";
949 
950 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
951 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
952 		return "|";
953 
954 	return ",";
955 }
956 
957 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
958 {
959 	va_list args;
960 
961 	if (!show->state.depth_check) {
962 		va_start(args, fmt);
963 		show->showfn(show, fmt, args);
964 		va_end(args);
965 	}
966 }
967 
968 /* Macros are used here as btf_show_type_value[s]() prepends and appends
969  * format specifiers to the format specifier passed in; these do the work of
970  * adding indentation, delimiters etc while the caller simply has to specify
971  * the type value(s) in the format specifier + value(s).
972  */
973 #define btf_show_type_value(show, fmt, value)				       \
974 	do {								       \
975 		if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||	       \
976 		    show->state.depth == 0) {				       \
977 			btf_show(show, "%s%s" fmt "%s%s",		       \
978 				 btf_show_indent(show),			       \
979 				 btf_show_name(show),			       \
980 				 value, btf_show_delim(show),		       \
981 				 btf_show_newline(show));		       \
982 			if (show->state.depth > show->state.depth_to_show)     \
983 				show->state.depth_to_show = show->state.depth; \
984 		}							       \
985 	} while (0)
986 
987 #define btf_show_type_values(show, fmt, ...)				       \
988 	do {								       \
989 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
990 			 btf_show_name(show),				       \
991 			 __VA_ARGS__, btf_show_delim(show),		       \
992 			 btf_show_newline(show));			       \
993 		if (show->state.depth > show->state.depth_to_show)	       \
994 			show->state.depth_to_show = show->state.depth;	       \
995 	} while (0)
996 
997 /* How much is left to copy to safe buffer after @data? */
998 static int btf_show_obj_size_left(struct btf_show *show, void *data)
999 {
1000 	return show->obj.head + show->obj.size - data;
1001 }
1002 
1003 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1004 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1005 {
1006 	return data >= show->obj.data &&
1007 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1008 }
1009 
1010 /*
1011  * If object pointed to by @data of @size falls within our safe buffer, return
1012  * the equivalent pointer to the same safe data.  Assumes
1013  * copy_from_kernel_nofault() has already happened and our safe buffer is
1014  * populated.
1015  */
1016 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1017 {
1018 	if (btf_show_obj_is_safe(show, data, size))
1019 		return show->obj.safe + (data - show->obj.data);
1020 	return NULL;
1021 }
1022 
1023 /*
1024  * Return a safe-to-access version of data pointed to by @data.
1025  * We do this by copying the relevant amount of information
1026  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1027  *
1028  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1029  * safe copy is needed.
1030  *
1031  * Otherwise we need to determine if we have the required amount
1032  * of data (determined by the @data pointer and the size of the
1033  * largest base type we can encounter (represented by
1034  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1035  * that we will be able to print some of the current object,
1036  * and if more is needed a copy will be triggered.
1037  * Some objects such as structs will not fit into the buffer;
1038  * in such cases additional copies when we iterate over their
1039  * members may be needed.
1040  *
1041  * btf_show_obj_safe() is used to return a safe buffer for
1042  * btf_show_start_type(); this ensures that as we recurse into
1043  * nested types we always have safe data for the given type.
1044  * This approach is somewhat wasteful; it's possible for example
1045  * that when iterating over a large union we'll end up copying the
1046  * same data repeatedly, but the goal is safety not performance.
1047  * We use stack data as opposed to per-CPU buffers because the
1048  * iteration over a type can take some time, and preemption handling
1049  * would greatly complicate use of the safe buffer.
1050  */
1051 static void *btf_show_obj_safe(struct btf_show *show,
1052 			       const struct btf_type *t,
1053 			       void *data)
1054 {
1055 	const struct btf_type *rt;
1056 	int size_left, size;
1057 	void *safe = NULL;
1058 
1059 	if (show->flags & BTF_SHOW_UNSAFE)
1060 		return data;
1061 
1062 	rt = btf_resolve_size(show->btf, t, &size);
1063 	if (IS_ERR(rt)) {
1064 		show->state.status = PTR_ERR(rt);
1065 		return NULL;
1066 	}
1067 
1068 	/*
1069 	 * Is this toplevel object? If so, set total object size and
1070 	 * initialize pointers.  Otherwise check if we still fall within
1071 	 * our safe object data.
1072 	 */
1073 	if (show->state.depth == 0) {
1074 		show->obj.size = size;
1075 		show->obj.head = data;
1076 	} else {
1077 		/*
1078 		 * If the size of the current object is > our remaining
1079 		 * safe buffer we _may_ need to do a new copy.  However
1080 		 * consider the case of a nested struct; it's size pushes
1081 		 * us over the safe buffer limit, but showing any individual
1082 		 * struct members does not.  In such cases, we don't need
1083 		 * to initiate a fresh copy yet; however we definitely need
1084 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1085 		 * in our buffer, regardless of the current object size.
1086 		 * The logic here is that as we resolve types we will
1087 		 * hit a base type at some point, and we need to be sure
1088 		 * the next chunk of data is safely available to display
1089 		 * that type info safely.  We cannot rely on the size of
1090 		 * the current object here because it may be much larger
1091 		 * than our current buffer (e.g. task_struct is 8k).
1092 		 * All we want to do here is ensure that we can print the
1093 		 * next basic type, which we can if either
1094 		 * - the current type size is within the safe buffer; or
1095 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1096 		 *   the safe buffer.
1097 		 */
1098 		safe = __btf_show_obj_safe(show, data,
1099 					   min(size,
1100 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1101 	}
1102 
1103 	/*
1104 	 * We need a new copy to our safe object, either because we haven't
1105 	 * yet copied and are intializing safe data, or because the data
1106 	 * we want falls outside the boundaries of the safe object.
1107 	 */
1108 	if (!safe) {
1109 		size_left = btf_show_obj_size_left(show, data);
1110 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1111 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1112 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1113 							      data, size_left);
1114 		if (!show->state.status) {
1115 			show->obj.data = data;
1116 			safe = show->obj.safe;
1117 		}
1118 	}
1119 
1120 	return safe;
1121 }
1122 
1123 /*
1124  * Set the type we are starting to show and return a safe data pointer
1125  * to be used for showing the associated data.
1126  */
1127 static void *btf_show_start_type(struct btf_show *show,
1128 				 const struct btf_type *t,
1129 				 u32 type_id, void *data)
1130 {
1131 	show->state.type = t;
1132 	show->state.type_id = type_id;
1133 	show->state.name[0] = '\0';
1134 
1135 	return btf_show_obj_safe(show, t, data);
1136 }
1137 
1138 static void btf_show_end_type(struct btf_show *show)
1139 {
1140 	show->state.type = NULL;
1141 	show->state.type_id = 0;
1142 	show->state.name[0] = '\0';
1143 }
1144 
1145 static void *btf_show_start_aggr_type(struct btf_show *show,
1146 				      const struct btf_type *t,
1147 				      u32 type_id, void *data)
1148 {
1149 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1150 
1151 	if (!safe_data)
1152 		return safe_data;
1153 
1154 	btf_show(show, "%s%s%s", btf_show_indent(show),
1155 		 btf_show_name(show),
1156 		 btf_show_newline(show));
1157 	show->state.depth++;
1158 	return safe_data;
1159 }
1160 
1161 static void btf_show_end_aggr_type(struct btf_show *show,
1162 				   const char *suffix)
1163 {
1164 	show->state.depth--;
1165 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1166 		 btf_show_delim(show), btf_show_newline(show));
1167 	btf_show_end_type(show);
1168 }
1169 
1170 static void btf_show_start_member(struct btf_show *show,
1171 				  const struct btf_member *m)
1172 {
1173 	show->state.member = m;
1174 }
1175 
1176 static void btf_show_start_array_member(struct btf_show *show)
1177 {
1178 	show->state.array_member = 1;
1179 	btf_show_start_member(show, NULL);
1180 }
1181 
1182 static void btf_show_end_member(struct btf_show *show)
1183 {
1184 	show->state.member = NULL;
1185 }
1186 
1187 static void btf_show_end_array_member(struct btf_show *show)
1188 {
1189 	show->state.array_member = 0;
1190 	btf_show_end_member(show);
1191 }
1192 
1193 static void *btf_show_start_array_type(struct btf_show *show,
1194 				       const struct btf_type *t,
1195 				       u32 type_id,
1196 				       u16 array_encoding,
1197 				       void *data)
1198 {
1199 	show->state.array_encoding = array_encoding;
1200 	show->state.array_terminated = 0;
1201 	return btf_show_start_aggr_type(show, t, type_id, data);
1202 }
1203 
1204 static void btf_show_end_array_type(struct btf_show *show)
1205 {
1206 	show->state.array_encoding = 0;
1207 	show->state.array_terminated = 0;
1208 	btf_show_end_aggr_type(show, "]");
1209 }
1210 
1211 static void *btf_show_start_struct_type(struct btf_show *show,
1212 					const struct btf_type *t,
1213 					u32 type_id,
1214 					void *data)
1215 {
1216 	return btf_show_start_aggr_type(show, t, type_id, data);
1217 }
1218 
1219 static void btf_show_end_struct_type(struct btf_show *show)
1220 {
1221 	btf_show_end_aggr_type(show, "}");
1222 }
1223 
1224 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1225 					      const char *fmt, ...)
1226 {
1227 	va_list args;
1228 
1229 	va_start(args, fmt);
1230 	bpf_verifier_vlog(log, fmt, args);
1231 	va_end(args);
1232 }
1233 
1234 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1235 					    const char *fmt, ...)
1236 {
1237 	struct bpf_verifier_log *log = &env->log;
1238 	va_list args;
1239 
1240 	if (!bpf_verifier_log_needed(log))
1241 		return;
1242 
1243 	va_start(args, fmt);
1244 	bpf_verifier_vlog(log, fmt, args);
1245 	va_end(args);
1246 }
1247 
1248 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1249 						   const struct btf_type *t,
1250 						   bool log_details,
1251 						   const char *fmt, ...)
1252 {
1253 	struct bpf_verifier_log *log = &env->log;
1254 	u8 kind = BTF_INFO_KIND(t->info);
1255 	struct btf *btf = env->btf;
1256 	va_list args;
1257 
1258 	if (!bpf_verifier_log_needed(log))
1259 		return;
1260 
1261 	/* btf verifier prints all types it is processing via
1262 	 * btf_verifier_log_type(..., fmt = NULL).
1263 	 * Skip those prints for in-kernel BTF verification.
1264 	 */
1265 	if (log->level == BPF_LOG_KERNEL && !fmt)
1266 		return;
1267 
1268 	__btf_verifier_log(log, "[%u] %s %s%s",
1269 			   env->log_type_id,
1270 			   btf_kind_str[kind],
1271 			   __btf_name_by_offset(btf, t->name_off),
1272 			   log_details ? " " : "");
1273 
1274 	if (log_details)
1275 		btf_type_ops(t)->log_details(env, t);
1276 
1277 	if (fmt && *fmt) {
1278 		__btf_verifier_log(log, " ");
1279 		va_start(args, fmt);
1280 		bpf_verifier_vlog(log, fmt, args);
1281 		va_end(args);
1282 	}
1283 
1284 	__btf_verifier_log(log, "\n");
1285 }
1286 
1287 #define btf_verifier_log_type(env, t, ...) \
1288 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1289 #define btf_verifier_log_basic(env, t, ...) \
1290 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1291 
1292 __printf(4, 5)
1293 static void btf_verifier_log_member(struct btf_verifier_env *env,
1294 				    const struct btf_type *struct_type,
1295 				    const struct btf_member *member,
1296 				    const char *fmt, ...)
1297 {
1298 	struct bpf_verifier_log *log = &env->log;
1299 	struct btf *btf = env->btf;
1300 	va_list args;
1301 
1302 	if (!bpf_verifier_log_needed(log))
1303 		return;
1304 
1305 	if (log->level == BPF_LOG_KERNEL && !fmt)
1306 		return;
1307 	/* The CHECK_META phase already did a btf dump.
1308 	 *
1309 	 * If member is logged again, it must hit an error in
1310 	 * parsing this member.  It is useful to print out which
1311 	 * struct this member belongs to.
1312 	 */
1313 	if (env->phase != CHECK_META)
1314 		btf_verifier_log_type(env, struct_type, NULL);
1315 
1316 	if (btf_type_kflag(struct_type))
1317 		__btf_verifier_log(log,
1318 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1319 				   __btf_name_by_offset(btf, member->name_off),
1320 				   member->type,
1321 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1322 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1323 	else
1324 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1325 				   __btf_name_by_offset(btf, member->name_off),
1326 				   member->type, member->offset);
1327 
1328 	if (fmt && *fmt) {
1329 		__btf_verifier_log(log, " ");
1330 		va_start(args, fmt);
1331 		bpf_verifier_vlog(log, fmt, args);
1332 		va_end(args);
1333 	}
1334 
1335 	__btf_verifier_log(log, "\n");
1336 }
1337 
1338 __printf(4, 5)
1339 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1340 				 const struct btf_type *datasec_type,
1341 				 const struct btf_var_secinfo *vsi,
1342 				 const char *fmt, ...)
1343 {
1344 	struct bpf_verifier_log *log = &env->log;
1345 	va_list args;
1346 
1347 	if (!bpf_verifier_log_needed(log))
1348 		return;
1349 	if (log->level == BPF_LOG_KERNEL && !fmt)
1350 		return;
1351 	if (env->phase != CHECK_META)
1352 		btf_verifier_log_type(env, datasec_type, NULL);
1353 
1354 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1355 			   vsi->type, vsi->offset, vsi->size);
1356 	if (fmt && *fmt) {
1357 		__btf_verifier_log(log, " ");
1358 		va_start(args, fmt);
1359 		bpf_verifier_vlog(log, fmt, args);
1360 		va_end(args);
1361 	}
1362 
1363 	__btf_verifier_log(log, "\n");
1364 }
1365 
1366 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1367 				 u32 btf_data_size)
1368 {
1369 	struct bpf_verifier_log *log = &env->log;
1370 	const struct btf *btf = env->btf;
1371 	const struct btf_header *hdr;
1372 
1373 	if (!bpf_verifier_log_needed(log))
1374 		return;
1375 
1376 	if (log->level == BPF_LOG_KERNEL)
1377 		return;
1378 	hdr = &btf->hdr;
1379 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1380 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1381 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1382 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1383 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1384 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1385 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1386 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1387 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1388 }
1389 
1390 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1391 {
1392 	struct btf *btf = env->btf;
1393 
1394 	/* < 2 because +1 for btf_void which is always in btf->types[0].
1395 	 * btf_void is not accounted in btf->nr_types because btf_void
1396 	 * does not come from the BTF file.
1397 	 */
1398 	if (btf->types_size - btf->nr_types < 2) {
1399 		/* Expand 'types' array */
1400 
1401 		struct btf_type **new_types;
1402 		u32 expand_by, new_size;
1403 
1404 		if (btf->types_size == BTF_MAX_TYPE) {
1405 			btf_verifier_log(env, "Exceeded max num of types");
1406 			return -E2BIG;
1407 		}
1408 
1409 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1410 		new_size = min_t(u32, BTF_MAX_TYPE,
1411 				 btf->types_size + expand_by);
1412 
1413 		new_types = kvcalloc(new_size, sizeof(*new_types),
1414 				     GFP_KERNEL | __GFP_NOWARN);
1415 		if (!new_types)
1416 			return -ENOMEM;
1417 
1418 		if (btf->nr_types == 0)
1419 			new_types[0] = &btf_void;
1420 		else
1421 			memcpy(new_types, btf->types,
1422 			       sizeof(*btf->types) * (btf->nr_types + 1));
1423 
1424 		kvfree(btf->types);
1425 		btf->types = new_types;
1426 		btf->types_size = new_size;
1427 	}
1428 
1429 	btf->types[++(btf->nr_types)] = t;
1430 
1431 	return 0;
1432 }
1433 
1434 static int btf_alloc_id(struct btf *btf)
1435 {
1436 	int id;
1437 
1438 	idr_preload(GFP_KERNEL);
1439 	spin_lock_bh(&btf_idr_lock);
1440 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1441 	if (id > 0)
1442 		btf->id = id;
1443 	spin_unlock_bh(&btf_idr_lock);
1444 	idr_preload_end();
1445 
1446 	if (WARN_ON_ONCE(!id))
1447 		return -ENOSPC;
1448 
1449 	return id > 0 ? 0 : id;
1450 }
1451 
1452 static void btf_free_id(struct btf *btf)
1453 {
1454 	unsigned long flags;
1455 
1456 	/*
1457 	 * In map-in-map, calling map_delete_elem() on outer
1458 	 * map will call bpf_map_put on the inner map.
1459 	 * It will then eventually call btf_free_id()
1460 	 * on the inner map.  Some of the map_delete_elem()
1461 	 * implementation may have irq disabled, so
1462 	 * we need to use the _irqsave() version instead
1463 	 * of the _bh() version.
1464 	 */
1465 	spin_lock_irqsave(&btf_idr_lock, flags);
1466 	idr_remove(&btf_idr, btf->id);
1467 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1468 }
1469 
1470 static void btf_free(struct btf *btf)
1471 {
1472 	kvfree(btf->types);
1473 	kvfree(btf->resolved_sizes);
1474 	kvfree(btf->resolved_ids);
1475 	kvfree(btf->data);
1476 	kfree(btf);
1477 }
1478 
1479 static void btf_free_rcu(struct rcu_head *rcu)
1480 {
1481 	struct btf *btf = container_of(rcu, struct btf, rcu);
1482 
1483 	btf_free(btf);
1484 }
1485 
1486 void btf_put(struct btf *btf)
1487 {
1488 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1489 		btf_free_id(btf);
1490 		call_rcu(&btf->rcu, btf_free_rcu);
1491 	}
1492 }
1493 
1494 static int env_resolve_init(struct btf_verifier_env *env)
1495 {
1496 	struct btf *btf = env->btf;
1497 	u32 nr_types = btf->nr_types;
1498 	u32 *resolved_sizes = NULL;
1499 	u32 *resolved_ids = NULL;
1500 	u8 *visit_states = NULL;
1501 
1502 	/* +1 for btf_void */
1503 	resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
1504 				  GFP_KERNEL | __GFP_NOWARN);
1505 	if (!resolved_sizes)
1506 		goto nomem;
1507 
1508 	resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
1509 				GFP_KERNEL | __GFP_NOWARN);
1510 	if (!resolved_ids)
1511 		goto nomem;
1512 
1513 	visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
1514 				GFP_KERNEL | __GFP_NOWARN);
1515 	if (!visit_states)
1516 		goto nomem;
1517 
1518 	btf->resolved_sizes = resolved_sizes;
1519 	btf->resolved_ids = resolved_ids;
1520 	env->visit_states = visit_states;
1521 
1522 	return 0;
1523 
1524 nomem:
1525 	kvfree(resolved_sizes);
1526 	kvfree(resolved_ids);
1527 	kvfree(visit_states);
1528 	return -ENOMEM;
1529 }
1530 
1531 static void btf_verifier_env_free(struct btf_verifier_env *env)
1532 {
1533 	kvfree(env->visit_states);
1534 	kfree(env);
1535 }
1536 
1537 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1538 				     const struct btf_type *next_type)
1539 {
1540 	switch (env->resolve_mode) {
1541 	case RESOLVE_TBD:
1542 		/* int, enum or void is a sink */
1543 		return !btf_type_needs_resolve(next_type);
1544 	case RESOLVE_PTR:
1545 		/* int, enum, void, struct, array, func or func_proto is a sink
1546 		 * for ptr
1547 		 */
1548 		return !btf_type_is_modifier(next_type) &&
1549 			!btf_type_is_ptr(next_type);
1550 	case RESOLVE_STRUCT_OR_ARRAY:
1551 		/* int, enum, void, ptr, func or func_proto is a sink
1552 		 * for struct and array
1553 		 */
1554 		return !btf_type_is_modifier(next_type) &&
1555 			!btf_type_is_array(next_type) &&
1556 			!btf_type_is_struct(next_type);
1557 	default:
1558 		BUG();
1559 	}
1560 }
1561 
1562 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1563 				 u32 type_id)
1564 {
1565 	return env->visit_states[type_id] == RESOLVED;
1566 }
1567 
1568 static int env_stack_push(struct btf_verifier_env *env,
1569 			  const struct btf_type *t, u32 type_id)
1570 {
1571 	struct resolve_vertex *v;
1572 
1573 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1574 		return -E2BIG;
1575 
1576 	if (env->visit_states[type_id] != NOT_VISITED)
1577 		return -EEXIST;
1578 
1579 	env->visit_states[type_id] = VISITED;
1580 
1581 	v = &env->stack[env->top_stack++];
1582 	v->t = t;
1583 	v->type_id = type_id;
1584 	v->next_member = 0;
1585 
1586 	if (env->resolve_mode == RESOLVE_TBD) {
1587 		if (btf_type_is_ptr(t))
1588 			env->resolve_mode = RESOLVE_PTR;
1589 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1590 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1591 	}
1592 
1593 	return 0;
1594 }
1595 
1596 static void env_stack_set_next_member(struct btf_verifier_env *env,
1597 				      u16 next_member)
1598 {
1599 	env->stack[env->top_stack - 1].next_member = next_member;
1600 }
1601 
1602 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1603 				   u32 resolved_type_id,
1604 				   u32 resolved_size)
1605 {
1606 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1607 	struct btf *btf = env->btf;
1608 
1609 	btf->resolved_sizes[type_id] = resolved_size;
1610 	btf->resolved_ids[type_id] = resolved_type_id;
1611 	env->visit_states[type_id] = RESOLVED;
1612 }
1613 
1614 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1615 {
1616 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1617 }
1618 
1619 /* Resolve the size of a passed-in "type"
1620  *
1621  * type: is an array (e.g. u32 array[x][y])
1622  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1623  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1624  *             corresponds to the return type.
1625  * *elem_type: u32
1626  * *elem_id: id of u32
1627  * *total_nelems: (x * y).  Hence, individual elem size is
1628  *                (*type_size / *total_nelems)
1629  * *type_id: id of type if it's changed within the function, 0 if not
1630  *
1631  * type: is not an array (e.g. const struct X)
1632  * return type: type "struct X"
1633  * *type_size: sizeof(struct X)
1634  * *elem_type: same as return type ("struct X")
1635  * *elem_id: 0
1636  * *total_nelems: 1
1637  * *type_id: id of type if it's changed within the function, 0 if not
1638  */
1639 static const struct btf_type *
1640 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1641 		   u32 *type_size, const struct btf_type **elem_type,
1642 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1643 {
1644 	const struct btf_type *array_type = NULL;
1645 	const struct btf_array *array = NULL;
1646 	u32 i, size, nelems = 1, id = 0;
1647 
1648 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1649 		switch (BTF_INFO_KIND(type->info)) {
1650 		/* type->size can be used */
1651 		case BTF_KIND_INT:
1652 		case BTF_KIND_STRUCT:
1653 		case BTF_KIND_UNION:
1654 		case BTF_KIND_ENUM:
1655 			size = type->size;
1656 			goto resolved;
1657 
1658 		case BTF_KIND_PTR:
1659 			size = sizeof(void *);
1660 			goto resolved;
1661 
1662 		/* Modifiers */
1663 		case BTF_KIND_TYPEDEF:
1664 		case BTF_KIND_VOLATILE:
1665 		case BTF_KIND_CONST:
1666 		case BTF_KIND_RESTRICT:
1667 			id = type->type;
1668 			type = btf_type_by_id(btf, type->type);
1669 			break;
1670 
1671 		case BTF_KIND_ARRAY:
1672 			if (!array_type)
1673 				array_type = type;
1674 			array = btf_type_array(type);
1675 			if (nelems && array->nelems > U32_MAX / nelems)
1676 				return ERR_PTR(-EINVAL);
1677 			nelems *= array->nelems;
1678 			type = btf_type_by_id(btf, array->type);
1679 			break;
1680 
1681 		/* type without size */
1682 		default:
1683 			return ERR_PTR(-EINVAL);
1684 		}
1685 	}
1686 
1687 	return ERR_PTR(-EINVAL);
1688 
1689 resolved:
1690 	if (nelems && size > U32_MAX / nelems)
1691 		return ERR_PTR(-EINVAL);
1692 
1693 	*type_size = nelems * size;
1694 	if (total_nelems)
1695 		*total_nelems = nelems;
1696 	if (elem_type)
1697 		*elem_type = type;
1698 	if (elem_id)
1699 		*elem_id = array ? array->type : 0;
1700 	if (type_id && id)
1701 		*type_id = id;
1702 
1703 	return array_type ? : type;
1704 }
1705 
1706 const struct btf_type *
1707 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1708 		 u32 *type_size)
1709 {
1710 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1711 }
1712 
1713 /* The input param "type_id" must point to a needs_resolve type */
1714 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1715 						  u32 *type_id)
1716 {
1717 	*type_id = btf->resolved_ids[*type_id];
1718 	return btf_type_by_id(btf, *type_id);
1719 }
1720 
1721 const struct btf_type *btf_type_id_size(const struct btf *btf,
1722 					u32 *type_id, u32 *ret_size)
1723 {
1724 	const struct btf_type *size_type;
1725 	u32 size_type_id = *type_id;
1726 	u32 size = 0;
1727 
1728 	size_type = btf_type_by_id(btf, size_type_id);
1729 	if (btf_type_nosize_or_null(size_type))
1730 		return NULL;
1731 
1732 	if (btf_type_has_size(size_type)) {
1733 		size = size_type->size;
1734 	} else if (btf_type_is_array(size_type)) {
1735 		size = btf->resolved_sizes[size_type_id];
1736 	} else if (btf_type_is_ptr(size_type)) {
1737 		size = sizeof(void *);
1738 	} else {
1739 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1740 				 !btf_type_is_var(size_type)))
1741 			return NULL;
1742 
1743 		size_type_id = btf->resolved_ids[size_type_id];
1744 		size_type = btf_type_by_id(btf, size_type_id);
1745 		if (btf_type_nosize_or_null(size_type))
1746 			return NULL;
1747 		else if (btf_type_has_size(size_type))
1748 			size = size_type->size;
1749 		else if (btf_type_is_array(size_type))
1750 			size = btf->resolved_sizes[size_type_id];
1751 		else if (btf_type_is_ptr(size_type))
1752 			size = sizeof(void *);
1753 		else
1754 			return NULL;
1755 	}
1756 
1757 	*type_id = size_type_id;
1758 	if (ret_size)
1759 		*ret_size = size;
1760 
1761 	return size_type;
1762 }
1763 
1764 static int btf_df_check_member(struct btf_verifier_env *env,
1765 			       const struct btf_type *struct_type,
1766 			       const struct btf_member *member,
1767 			       const struct btf_type *member_type)
1768 {
1769 	btf_verifier_log_basic(env, struct_type,
1770 			       "Unsupported check_member");
1771 	return -EINVAL;
1772 }
1773 
1774 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1775 				     const struct btf_type *struct_type,
1776 				     const struct btf_member *member,
1777 				     const struct btf_type *member_type)
1778 {
1779 	btf_verifier_log_basic(env, struct_type,
1780 			       "Unsupported check_kflag_member");
1781 	return -EINVAL;
1782 }
1783 
1784 /* Used for ptr, array and struct/union type members.
1785  * int, enum and modifier types have their specific callback functions.
1786  */
1787 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1788 					  const struct btf_type *struct_type,
1789 					  const struct btf_member *member,
1790 					  const struct btf_type *member_type)
1791 {
1792 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1793 		btf_verifier_log_member(env, struct_type, member,
1794 					"Invalid member bitfield_size");
1795 		return -EINVAL;
1796 	}
1797 
1798 	/* bitfield size is 0, so member->offset represents bit offset only.
1799 	 * It is safe to call non kflag check_member variants.
1800 	 */
1801 	return btf_type_ops(member_type)->check_member(env, struct_type,
1802 						       member,
1803 						       member_type);
1804 }
1805 
1806 static int btf_df_resolve(struct btf_verifier_env *env,
1807 			  const struct resolve_vertex *v)
1808 {
1809 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1810 	return -EINVAL;
1811 }
1812 
1813 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1814 			u32 type_id, void *data, u8 bits_offsets,
1815 			struct btf_show *show)
1816 {
1817 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1818 }
1819 
1820 static int btf_int_check_member(struct btf_verifier_env *env,
1821 				const struct btf_type *struct_type,
1822 				const struct btf_member *member,
1823 				const struct btf_type *member_type)
1824 {
1825 	u32 int_data = btf_type_int(member_type);
1826 	u32 struct_bits_off = member->offset;
1827 	u32 struct_size = struct_type->size;
1828 	u32 nr_copy_bits;
1829 	u32 bytes_offset;
1830 
1831 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1832 		btf_verifier_log_member(env, struct_type, member,
1833 					"bits_offset exceeds U32_MAX");
1834 		return -EINVAL;
1835 	}
1836 
1837 	struct_bits_off += BTF_INT_OFFSET(int_data);
1838 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1839 	nr_copy_bits = BTF_INT_BITS(int_data) +
1840 		BITS_PER_BYTE_MASKED(struct_bits_off);
1841 
1842 	if (nr_copy_bits > BITS_PER_U128) {
1843 		btf_verifier_log_member(env, struct_type, member,
1844 					"nr_copy_bits exceeds 128");
1845 		return -EINVAL;
1846 	}
1847 
1848 	if (struct_size < bytes_offset ||
1849 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1850 		btf_verifier_log_member(env, struct_type, member,
1851 					"Member exceeds struct_size");
1852 		return -EINVAL;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1859 				      const struct btf_type *struct_type,
1860 				      const struct btf_member *member,
1861 				      const struct btf_type *member_type)
1862 {
1863 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1864 	u32 int_data = btf_type_int(member_type);
1865 	u32 struct_size = struct_type->size;
1866 	u32 nr_copy_bits;
1867 
1868 	/* a regular int type is required for the kflag int member */
1869 	if (!btf_type_int_is_regular(member_type)) {
1870 		btf_verifier_log_member(env, struct_type, member,
1871 					"Invalid member base type");
1872 		return -EINVAL;
1873 	}
1874 
1875 	/* check sanity of bitfield size */
1876 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1877 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1878 	nr_int_data_bits = BTF_INT_BITS(int_data);
1879 	if (!nr_bits) {
1880 		/* Not a bitfield member, member offset must be at byte
1881 		 * boundary.
1882 		 */
1883 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1884 			btf_verifier_log_member(env, struct_type, member,
1885 						"Invalid member offset");
1886 			return -EINVAL;
1887 		}
1888 
1889 		nr_bits = nr_int_data_bits;
1890 	} else if (nr_bits > nr_int_data_bits) {
1891 		btf_verifier_log_member(env, struct_type, member,
1892 					"Invalid member bitfield_size");
1893 		return -EINVAL;
1894 	}
1895 
1896 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1897 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1898 	if (nr_copy_bits > BITS_PER_U128) {
1899 		btf_verifier_log_member(env, struct_type, member,
1900 					"nr_copy_bits exceeds 128");
1901 		return -EINVAL;
1902 	}
1903 
1904 	if (struct_size < bytes_offset ||
1905 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1906 		btf_verifier_log_member(env, struct_type, member,
1907 					"Member exceeds struct_size");
1908 		return -EINVAL;
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1915 			      const struct btf_type *t,
1916 			      u32 meta_left)
1917 {
1918 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1919 	u16 encoding;
1920 
1921 	if (meta_left < meta_needed) {
1922 		btf_verifier_log_basic(env, t,
1923 				       "meta_left:%u meta_needed:%u",
1924 				       meta_left, meta_needed);
1925 		return -EINVAL;
1926 	}
1927 
1928 	if (btf_type_vlen(t)) {
1929 		btf_verifier_log_type(env, t, "vlen != 0");
1930 		return -EINVAL;
1931 	}
1932 
1933 	if (btf_type_kflag(t)) {
1934 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1935 		return -EINVAL;
1936 	}
1937 
1938 	int_data = btf_type_int(t);
1939 	if (int_data & ~BTF_INT_MASK) {
1940 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1941 				       int_data);
1942 		return -EINVAL;
1943 	}
1944 
1945 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1946 
1947 	if (nr_bits > BITS_PER_U128) {
1948 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1949 				      BITS_PER_U128);
1950 		return -EINVAL;
1951 	}
1952 
1953 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1954 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1955 		return -EINVAL;
1956 	}
1957 
1958 	/*
1959 	 * Only one of the encoding bits is allowed and it
1960 	 * should be sufficient for the pretty print purpose (i.e. decoding).
1961 	 * Multiple bits can be allowed later if it is found
1962 	 * to be insufficient.
1963 	 */
1964 	encoding = BTF_INT_ENCODING(int_data);
1965 	if (encoding &&
1966 	    encoding != BTF_INT_SIGNED &&
1967 	    encoding != BTF_INT_CHAR &&
1968 	    encoding != BTF_INT_BOOL) {
1969 		btf_verifier_log_type(env, t, "Unsupported encoding");
1970 		return -ENOTSUPP;
1971 	}
1972 
1973 	btf_verifier_log_type(env, t, NULL);
1974 
1975 	return meta_needed;
1976 }
1977 
1978 static void btf_int_log(struct btf_verifier_env *env,
1979 			const struct btf_type *t)
1980 {
1981 	int int_data = btf_type_int(t);
1982 
1983 	btf_verifier_log(env,
1984 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1985 			 t->size, BTF_INT_OFFSET(int_data),
1986 			 BTF_INT_BITS(int_data),
1987 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1988 }
1989 
1990 static void btf_int128_print(struct btf_show *show, void *data)
1991 {
1992 	/* data points to a __int128 number.
1993 	 * Suppose
1994 	 *     int128_num = *(__int128 *)data;
1995 	 * The below formulas shows what upper_num and lower_num represents:
1996 	 *     upper_num = int128_num >> 64;
1997 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1998 	 */
1999 	u64 upper_num, lower_num;
2000 
2001 #ifdef __BIG_ENDIAN_BITFIELD
2002 	upper_num = *(u64 *)data;
2003 	lower_num = *(u64 *)(data + 8);
2004 #else
2005 	upper_num = *(u64 *)(data + 8);
2006 	lower_num = *(u64 *)data;
2007 #endif
2008 	if (upper_num == 0)
2009 		btf_show_type_value(show, "0x%llx", lower_num);
2010 	else
2011 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2012 				     lower_num);
2013 }
2014 
2015 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2016 			     u16 right_shift_bits)
2017 {
2018 	u64 upper_num, lower_num;
2019 
2020 #ifdef __BIG_ENDIAN_BITFIELD
2021 	upper_num = print_num[0];
2022 	lower_num = print_num[1];
2023 #else
2024 	upper_num = print_num[1];
2025 	lower_num = print_num[0];
2026 #endif
2027 
2028 	/* shake out un-needed bits by shift/or operations */
2029 	if (left_shift_bits >= 64) {
2030 		upper_num = lower_num << (left_shift_bits - 64);
2031 		lower_num = 0;
2032 	} else {
2033 		upper_num = (upper_num << left_shift_bits) |
2034 			    (lower_num >> (64 - left_shift_bits));
2035 		lower_num = lower_num << left_shift_bits;
2036 	}
2037 
2038 	if (right_shift_bits >= 64) {
2039 		lower_num = upper_num >> (right_shift_bits - 64);
2040 		upper_num = 0;
2041 	} else {
2042 		lower_num = (lower_num >> right_shift_bits) |
2043 			    (upper_num << (64 - right_shift_bits));
2044 		upper_num = upper_num >> right_shift_bits;
2045 	}
2046 
2047 #ifdef __BIG_ENDIAN_BITFIELD
2048 	print_num[0] = upper_num;
2049 	print_num[1] = lower_num;
2050 #else
2051 	print_num[0] = lower_num;
2052 	print_num[1] = upper_num;
2053 #endif
2054 }
2055 
2056 static void btf_bitfield_show(void *data, u8 bits_offset,
2057 			      u8 nr_bits, struct btf_show *show)
2058 {
2059 	u16 left_shift_bits, right_shift_bits;
2060 	u8 nr_copy_bytes;
2061 	u8 nr_copy_bits;
2062 	u64 print_num[2] = {};
2063 
2064 	nr_copy_bits = nr_bits + bits_offset;
2065 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2066 
2067 	memcpy(print_num, data, nr_copy_bytes);
2068 
2069 #ifdef __BIG_ENDIAN_BITFIELD
2070 	left_shift_bits = bits_offset;
2071 #else
2072 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2073 #endif
2074 	right_shift_bits = BITS_PER_U128 - nr_bits;
2075 
2076 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2077 	btf_int128_print(show, print_num);
2078 }
2079 
2080 
2081 static void btf_int_bits_show(const struct btf *btf,
2082 			      const struct btf_type *t,
2083 			      void *data, u8 bits_offset,
2084 			      struct btf_show *show)
2085 {
2086 	u32 int_data = btf_type_int(t);
2087 	u8 nr_bits = BTF_INT_BITS(int_data);
2088 	u8 total_bits_offset;
2089 
2090 	/*
2091 	 * bits_offset is at most 7.
2092 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2093 	 */
2094 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2095 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2096 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2097 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2098 }
2099 
2100 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2101 			 u32 type_id, void *data, u8 bits_offset,
2102 			 struct btf_show *show)
2103 {
2104 	u32 int_data = btf_type_int(t);
2105 	u8 encoding = BTF_INT_ENCODING(int_data);
2106 	bool sign = encoding & BTF_INT_SIGNED;
2107 	u8 nr_bits = BTF_INT_BITS(int_data);
2108 	void *safe_data;
2109 
2110 	safe_data = btf_show_start_type(show, t, type_id, data);
2111 	if (!safe_data)
2112 		return;
2113 
2114 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2115 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2116 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2117 		goto out;
2118 	}
2119 
2120 	switch (nr_bits) {
2121 	case 128:
2122 		btf_int128_print(show, safe_data);
2123 		break;
2124 	case 64:
2125 		if (sign)
2126 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2127 		else
2128 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2129 		break;
2130 	case 32:
2131 		if (sign)
2132 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2133 		else
2134 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2135 		break;
2136 	case 16:
2137 		if (sign)
2138 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2139 		else
2140 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2141 		break;
2142 	case 8:
2143 		if (show->state.array_encoding == BTF_INT_CHAR) {
2144 			/* check for null terminator */
2145 			if (show->state.array_terminated)
2146 				break;
2147 			if (*(char *)data == '\0') {
2148 				show->state.array_terminated = 1;
2149 				break;
2150 			}
2151 			if (isprint(*(char *)data)) {
2152 				btf_show_type_value(show, "'%c'",
2153 						    *(char *)safe_data);
2154 				break;
2155 			}
2156 		}
2157 		if (sign)
2158 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2159 		else
2160 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2161 		break;
2162 	default:
2163 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2164 		break;
2165 	}
2166 out:
2167 	btf_show_end_type(show);
2168 }
2169 
2170 static const struct btf_kind_operations int_ops = {
2171 	.check_meta = btf_int_check_meta,
2172 	.resolve = btf_df_resolve,
2173 	.check_member = btf_int_check_member,
2174 	.check_kflag_member = btf_int_check_kflag_member,
2175 	.log_details = btf_int_log,
2176 	.show = btf_int_show,
2177 };
2178 
2179 static int btf_modifier_check_member(struct btf_verifier_env *env,
2180 				     const struct btf_type *struct_type,
2181 				     const struct btf_member *member,
2182 				     const struct btf_type *member_type)
2183 {
2184 	const struct btf_type *resolved_type;
2185 	u32 resolved_type_id = member->type;
2186 	struct btf_member resolved_member;
2187 	struct btf *btf = env->btf;
2188 
2189 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2190 	if (!resolved_type) {
2191 		btf_verifier_log_member(env, struct_type, member,
2192 					"Invalid member");
2193 		return -EINVAL;
2194 	}
2195 
2196 	resolved_member = *member;
2197 	resolved_member.type = resolved_type_id;
2198 
2199 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2200 							 &resolved_member,
2201 							 resolved_type);
2202 }
2203 
2204 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2205 					   const struct btf_type *struct_type,
2206 					   const struct btf_member *member,
2207 					   const struct btf_type *member_type)
2208 {
2209 	const struct btf_type *resolved_type;
2210 	u32 resolved_type_id = member->type;
2211 	struct btf_member resolved_member;
2212 	struct btf *btf = env->btf;
2213 
2214 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2215 	if (!resolved_type) {
2216 		btf_verifier_log_member(env, struct_type, member,
2217 					"Invalid member");
2218 		return -EINVAL;
2219 	}
2220 
2221 	resolved_member = *member;
2222 	resolved_member.type = resolved_type_id;
2223 
2224 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2225 							       &resolved_member,
2226 							       resolved_type);
2227 }
2228 
2229 static int btf_ptr_check_member(struct btf_verifier_env *env,
2230 				const struct btf_type *struct_type,
2231 				const struct btf_member *member,
2232 				const struct btf_type *member_type)
2233 {
2234 	u32 struct_size, struct_bits_off, bytes_offset;
2235 
2236 	struct_size = struct_type->size;
2237 	struct_bits_off = member->offset;
2238 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2239 
2240 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2241 		btf_verifier_log_member(env, struct_type, member,
2242 					"Member is not byte aligned");
2243 		return -EINVAL;
2244 	}
2245 
2246 	if (struct_size - bytes_offset < sizeof(void *)) {
2247 		btf_verifier_log_member(env, struct_type, member,
2248 					"Member exceeds struct_size");
2249 		return -EINVAL;
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2256 				   const struct btf_type *t,
2257 				   u32 meta_left)
2258 {
2259 	if (btf_type_vlen(t)) {
2260 		btf_verifier_log_type(env, t, "vlen != 0");
2261 		return -EINVAL;
2262 	}
2263 
2264 	if (btf_type_kflag(t)) {
2265 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2266 		return -EINVAL;
2267 	}
2268 
2269 	if (!BTF_TYPE_ID_VALID(t->type)) {
2270 		btf_verifier_log_type(env, t, "Invalid type_id");
2271 		return -EINVAL;
2272 	}
2273 
2274 	/* typedef type must have a valid name, and other ref types,
2275 	 * volatile, const, restrict, should have a null name.
2276 	 */
2277 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2278 		if (!t->name_off ||
2279 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2280 			btf_verifier_log_type(env, t, "Invalid name");
2281 			return -EINVAL;
2282 		}
2283 	} else {
2284 		if (t->name_off) {
2285 			btf_verifier_log_type(env, t, "Invalid name");
2286 			return -EINVAL;
2287 		}
2288 	}
2289 
2290 	btf_verifier_log_type(env, t, NULL);
2291 
2292 	return 0;
2293 }
2294 
2295 static int btf_modifier_resolve(struct btf_verifier_env *env,
2296 				const struct resolve_vertex *v)
2297 {
2298 	const struct btf_type *t = v->t;
2299 	const struct btf_type *next_type;
2300 	u32 next_type_id = t->type;
2301 	struct btf *btf = env->btf;
2302 
2303 	next_type = btf_type_by_id(btf, next_type_id);
2304 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2305 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2306 		return -EINVAL;
2307 	}
2308 
2309 	if (!env_type_is_resolve_sink(env, next_type) &&
2310 	    !env_type_is_resolved(env, next_type_id))
2311 		return env_stack_push(env, next_type, next_type_id);
2312 
2313 	/* Figure out the resolved next_type_id with size.
2314 	 * They will be stored in the current modifier's
2315 	 * resolved_ids and resolved_sizes such that it can
2316 	 * save us a few type-following when we use it later (e.g. in
2317 	 * pretty print).
2318 	 */
2319 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2320 		if (env_type_is_resolved(env, next_type_id))
2321 			next_type = btf_type_id_resolve(btf, &next_type_id);
2322 
2323 		/* "typedef void new_void", "const void"...etc */
2324 		if (!btf_type_is_void(next_type) &&
2325 		    !btf_type_is_fwd(next_type) &&
2326 		    !btf_type_is_func_proto(next_type)) {
2327 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2328 			return -EINVAL;
2329 		}
2330 	}
2331 
2332 	env_stack_pop_resolved(env, next_type_id, 0);
2333 
2334 	return 0;
2335 }
2336 
2337 static int btf_var_resolve(struct btf_verifier_env *env,
2338 			   const struct resolve_vertex *v)
2339 {
2340 	const struct btf_type *next_type;
2341 	const struct btf_type *t = v->t;
2342 	u32 next_type_id = t->type;
2343 	struct btf *btf = env->btf;
2344 
2345 	next_type = btf_type_by_id(btf, next_type_id);
2346 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2347 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2348 		return -EINVAL;
2349 	}
2350 
2351 	if (!env_type_is_resolve_sink(env, next_type) &&
2352 	    !env_type_is_resolved(env, next_type_id))
2353 		return env_stack_push(env, next_type, next_type_id);
2354 
2355 	if (btf_type_is_modifier(next_type)) {
2356 		const struct btf_type *resolved_type;
2357 		u32 resolved_type_id;
2358 
2359 		resolved_type_id = next_type_id;
2360 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2361 
2362 		if (btf_type_is_ptr(resolved_type) &&
2363 		    !env_type_is_resolve_sink(env, resolved_type) &&
2364 		    !env_type_is_resolved(env, resolved_type_id))
2365 			return env_stack_push(env, resolved_type,
2366 					      resolved_type_id);
2367 	}
2368 
2369 	/* We must resolve to something concrete at this point, no
2370 	 * forward types or similar that would resolve to size of
2371 	 * zero is allowed.
2372 	 */
2373 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2374 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2375 		return -EINVAL;
2376 	}
2377 
2378 	env_stack_pop_resolved(env, next_type_id, 0);
2379 
2380 	return 0;
2381 }
2382 
2383 static int btf_ptr_resolve(struct btf_verifier_env *env,
2384 			   const struct resolve_vertex *v)
2385 {
2386 	const struct btf_type *next_type;
2387 	const struct btf_type *t = v->t;
2388 	u32 next_type_id = t->type;
2389 	struct btf *btf = env->btf;
2390 
2391 	next_type = btf_type_by_id(btf, next_type_id);
2392 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2393 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2394 		return -EINVAL;
2395 	}
2396 
2397 	if (!env_type_is_resolve_sink(env, next_type) &&
2398 	    !env_type_is_resolved(env, next_type_id))
2399 		return env_stack_push(env, next_type, next_type_id);
2400 
2401 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2402 	 * the modifier may have stopped resolving when it was resolved
2403 	 * to a ptr (last-resolved-ptr).
2404 	 *
2405 	 * We now need to continue from the last-resolved-ptr to
2406 	 * ensure the last-resolved-ptr will not referring back to
2407 	 * the currenct ptr (t).
2408 	 */
2409 	if (btf_type_is_modifier(next_type)) {
2410 		const struct btf_type *resolved_type;
2411 		u32 resolved_type_id;
2412 
2413 		resolved_type_id = next_type_id;
2414 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2415 
2416 		if (btf_type_is_ptr(resolved_type) &&
2417 		    !env_type_is_resolve_sink(env, resolved_type) &&
2418 		    !env_type_is_resolved(env, resolved_type_id))
2419 			return env_stack_push(env, resolved_type,
2420 					      resolved_type_id);
2421 	}
2422 
2423 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2424 		if (env_type_is_resolved(env, next_type_id))
2425 			next_type = btf_type_id_resolve(btf, &next_type_id);
2426 
2427 		if (!btf_type_is_void(next_type) &&
2428 		    !btf_type_is_fwd(next_type) &&
2429 		    !btf_type_is_func_proto(next_type)) {
2430 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2431 			return -EINVAL;
2432 		}
2433 	}
2434 
2435 	env_stack_pop_resolved(env, next_type_id, 0);
2436 
2437 	return 0;
2438 }
2439 
2440 static void btf_modifier_show(const struct btf *btf,
2441 			      const struct btf_type *t,
2442 			      u32 type_id, void *data,
2443 			      u8 bits_offset, struct btf_show *show)
2444 {
2445 	if (btf->resolved_ids)
2446 		t = btf_type_id_resolve(btf, &type_id);
2447 	else
2448 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2449 
2450 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2451 }
2452 
2453 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2454 			 u32 type_id, void *data, u8 bits_offset,
2455 			 struct btf_show *show)
2456 {
2457 	t = btf_type_id_resolve(btf, &type_id);
2458 
2459 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2460 }
2461 
2462 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2463 			 u32 type_id, void *data, u8 bits_offset,
2464 			 struct btf_show *show)
2465 {
2466 	void *safe_data;
2467 
2468 	safe_data = btf_show_start_type(show, t, type_id, data);
2469 	if (!safe_data)
2470 		return;
2471 
2472 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2473 	if (show->flags & BTF_SHOW_PTR_RAW)
2474 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2475 	else
2476 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2477 	btf_show_end_type(show);
2478 }
2479 
2480 static void btf_ref_type_log(struct btf_verifier_env *env,
2481 			     const struct btf_type *t)
2482 {
2483 	btf_verifier_log(env, "type_id=%u", t->type);
2484 }
2485 
2486 static struct btf_kind_operations modifier_ops = {
2487 	.check_meta = btf_ref_type_check_meta,
2488 	.resolve = btf_modifier_resolve,
2489 	.check_member = btf_modifier_check_member,
2490 	.check_kflag_member = btf_modifier_check_kflag_member,
2491 	.log_details = btf_ref_type_log,
2492 	.show = btf_modifier_show,
2493 };
2494 
2495 static struct btf_kind_operations ptr_ops = {
2496 	.check_meta = btf_ref_type_check_meta,
2497 	.resolve = btf_ptr_resolve,
2498 	.check_member = btf_ptr_check_member,
2499 	.check_kflag_member = btf_generic_check_kflag_member,
2500 	.log_details = btf_ref_type_log,
2501 	.show = btf_ptr_show,
2502 };
2503 
2504 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2505 			      const struct btf_type *t,
2506 			      u32 meta_left)
2507 {
2508 	if (btf_type_vlen(t)) {
2509 		btf_verifier_log_type(env, t, "vlen != 0");
2510 		return -EINVAL;
2511 	}
2512 
2513 	if (t->type) {
2514 		btf_verifier_log_type(env, t, "type != 0");
2515 		return -EINVAL;
2516 	}
2517 
2518 	/* fwd type must have a valid name */
2519 	if (!t->name_off ||
2520 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2521 		btf_verifier_log_type(env, t, "Invalid name");
2522 		return -EINVAL;
2523 	}
2524 
2525 	btf_verifier_log_type(env, t, NULL);
2526 
2527 	return 0;
2528 }
2529 
2530 static void btf_fwd_type_log(struct btf_verifier_env *env,
2531 			     const struct btf_type *t)
2532 {
2533 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2534 }
2535 
2536 static struct btf_kind_operations fwd_ops = {
2537 	.check_meta = btf_fwd_check_meta,
2538 	.resolve = btf_df_resolve,
2539 	.check_member = btf_df_check_member,
2540 	.check_kflag_member = btf_df_check_kflag_member,
2541 	.log_details = btf_fwd_type_log,
2542 	.show = btf_df_show,
2543 };
2544 
2545 static int btf_array_check_member(struct btf_verifier_env *env,
2546 				  const struct btf_type *struct_type,
2547 				  const struct btf_member *member,
2548 				  const struct btf_type *member_type)
2549 {
2550 	u32 struct_bits_off = member->offset;
2551 	u32 struct_size, bytes_offset;
2552 	u32 array_type_id, array_size;
2553 	struct btf *btf = env->btf;
2554 
2555 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2556 		btf_verifier_log_member(env, struct_type, member,
2557 					"Member is not byte aligned");
2558 		return -EINVAL;
2559 	}
2560 
2561 	array_type_id = member->type;
2562 	btf_type_id_size(btf, &array_type_id, &array_size);
2563 	struct_size = struct_type->size;
2564 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2565 	if (struct_size - bytes_offset < array_size) {
2566 		btf_verifier_log_member(env, struct_type, member,
2567 					"Member exceeds struct_size");
2568 		return -EINVAL;
2569 	}
2570 
2571 	return 0;
2572 }
2573 
2574 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2575 				const struct btf_type *t,
2576 				u32 meta_left)
2577 {
2578 	const struct btf_array *array = btf_type_array(t);
2579 	u32 meta_needed = sizeof(*array);
2580 
2581 	if (meta_left < meta_needed) {
2582 		btf_verifier_log_basic(env, t,
2583 				       "meta_left:%u meta_needed:%u",
2584 				       meta_left, meta_needed);
2585 		return -EINVAL;
2586 	}
2587 
2588 	/* array type should not have a name */
2589 	if (t->name_off) {
2590 		btf_verifier_log_type(env, t, "Invalid name");
2591 		return -EINVAL;
2592 	}
2593 
2594 	if (btf_type_vlen(t)) {
2595 		btf_verifier_log_type(env, t, "vlen != 0");
2596 		return -EINVAL;
2597 	}
2598 
2599 	if (btf_type_kflag(t)) {
2600 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2601 		return -EINVAL;
2602 	}
2603 
2604 	if (t->size) {
2605 		btf_verifier_log_type(env, t, "size != 0");
2606 		return -EINVAL;
2607 	}
2608 
2609 	/* Array elem type and index type cannot be in type void,
2610 	 * so !array->type and !array->index_type are not allowed.
2611 	 */
2612 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2613 		btf_verifier_log_type(env, t, "Invalid elem");
2614 		return -EINVAL;
2615 	}
2616 
2617 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2618 		btf_verifier_log_type(env, t, "Invalid index");
2619 		return -EINVAL;
2620 	}
2621 
2622 	btf_verifier_log_type(env, t, NULL);
2623 
2624 	return meta_needed;
2625 }
2626 
2627 static int btf_array_resolve(struct btf_verifier_env *env,
2628 			     const struct resolve_vertex *v)
2629 {
2630 	const struct btf_array *array = btf_type_array(v->t);
2631 	const struct btf_type *elem_type, *index_type;
2632 	u32 elem_type_id, index_type_id;
2633 	struct btf *btf = env->btf;
2634 	u32 elem_size;
2635 
2636 	/* Check array->index_type */
2637 	index_type_id = array->index_type;
2638 	index_type = btf_type_by_id(btf, index_type_id);
2639 	if (btf_type_nosize_or_null(index_type) ||
2640 	    btf_type_is_resolve_source_only(index_type)) {
2641 		btf_verifier_log_type(env, v->t, "Invalid index");
2642 		return -EINVAL;
2643 	}
2644 
2645 	if (!env_type_is_resolve_sink(env, index_type) &&
2646 	    !env_type_is_resolved(env, index_type_id))
2647 		return env_stack_push(env, index_type, index_type_id);
2648 
2649 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2650 	if (!index_type || !btf_type_is_int(index_type) ||
2651 	    !btf_type_int_is_regular(index_type)) {
2652 		btf_verifier_log_type(env, v->t, "Invalid index");
2653 		return -EINVAL;
2654 	}
2655 
2656 	/* Check array->type */
2657 	elem_type_id = array->type;
2658 	elem_type = btf_type_by_id(btf, elem_type_id);
2659 	if (btf_type_nosize_or_null(elem_type) ||
2660 	    btf_type_is_resolve_source_only(elem_type)) {
2661 		btf_verifier_log_type(env, v->t,
2662 				      "Invalid elem");
2663 		return -EINVAL;
2664 	}
2665 
2666 	if (!env_type_is_resolve_sink(env, elem_type) &&
2667 	    !env_type_is_resolved(env, elem_type_id))
2668 		return env_stack_push(env, elem_type, elem_type_id);
2669 
2670 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2671 	if (!elem_type) {
2672 		btf_verifier_log_type(env, v->t, "Invalid elem");
2673 		return -EINVAL;
2674 	}
2675 
2676 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2677 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2678 		return -EINVAL;
2679 	}
2680 
2681 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2682 		btf_verifier_log_type(env, v->t,
2683 				      "Array size overflows U32_MAX");
2684 		return -EINVAL;
2685 	}
2686 
2687 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2688 
2689 	return 0;
2690 }
2691 
2692 static void btf_array_log(struct btf_verifier_env *env,
2693 			  const struct btf_type *t)
2694 {
2695 	const struct btf_array *array = btf_type_array(t);
2696 
2697 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2698 			 array->type, array->index_type, array->nelems);
2699 }
2700 
2701 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2702 			     u32 type_id, void *data, u8 bits_offset,
2703 			     struct btf_show *show)
2704 {
2705 	const struct btf_array *array = btf_type_array(t);
2706 	const struct btf_kind_operations *elem_ops;
2707 	const struct btf_type *elem_type;
2708 	u32 i, elem_size = 0, elem_type_id;
2709 	u16 encoding = 0;
2710 
2711 	elem_type_id = array->type;
2712 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2713 	if (elem_type && btf_type_has_size(elem_type))
2714 		elem_size = elem_type->size;
2715 
2716 	if (elem_type && btf_type_is_int(elem_type)) {
2717 		u32 int_type = btf_type_int(elem_type);
2718 
2719 		encoding = BTF_INT_ENCODING(int_type);
2720 
2721 		/*
2722 		 * BTF_INT_CHAR encoding never seems to be set for
2723 		 * char arrays, so if size is 1 and element is
2724 		 * printable as a char, we'll do that.
2725 		 */
2726 		if (elem_size == 1)
2727 			encoding = BTF_INT_CHAR;
2728 	}
2729 
2730 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2731 		return;
2732 
2733 	if (!elem_type)
2734 		goto out;
2735 	elem_ops = btf_type_ops(elem_type);
2736 
2737 	for (i = 0; i < array->nelems; i++) {
2738 
2739 		btf_show_start_array_member(show);
2740 
2741 		elem_ops->show(btf, elem_type, elem_type_id, data,
2742 			       bits_offset, show);
2743 		data += elem_size;
2744 
2745 		btf_show_end_array_member(show);
2746 
2747 		if (show->state.array_terminated)
2748 			break;
2749 	}
2750 out:
2751 	btf_show_end_array_type(show);
2752 }
2753 
2754 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2755 			   u32 type_id, void *data, u8 bits_offset,
2756 			   struct btf_show *show)
2757 {
2758 	const struct btf_member *m = show->state.member;
2759 
2760 	/*
2761 	 * First check if any members would be shown (are non-zero).
2762 	 * See comments above "struct btf_show" definition for more
2763 	 * details on how this works at a high-level.
2764 	 */
2765 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2766 		if (!show->state.depth_check) {
2767 			show->state.depth_check = show->state.depth + 1;
2768 			show->state.depth_to_show = 0;
2769 		}
2770 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
2771 		show->state.member = m;
2772 
2773 		if (show->state.depth_check != show->state.depth + 1)
2774 			return;
2775 		show->state.depth_check = 0;
2776 
2777 		if (show->state.depth_to_show <= show->state.depth)
2778 			return;
2779 		/*
2780 		 * Reaching here indicates we have recursed and found
2781 		 * non-zero array member(s).
2782 		 */
2783 	}
2784 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
2785 }
2786 
2787 static struct btf_kind_operations array_ops = {
2788 	.check_meta = btf_array_check_meta,
2789 	.resolve = btf_array_resolve,
2790 	.check_member = btf_array_check_member,
2791 	.check_kflag_member = btf_generic_check_kflag_member,
2792 	.log_details = btf_array_log,
2793 	.show = btf_array_show,
2794 };
2795 
2796 static int btf_struct_check_member(struct btf_verifier_env *env,
2797 				   const struct btf_type *struct_type,
2798 				   const struct btf_member *member,
2799 				   const struct btf_type *member_type)
2800 {
2801 	u32 struct_bits_off = member->offset;
2802 	u32 struct_size, bytes_offset;
2803 
2804 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2805 		btf_verifier_log_member(env, struct_type, member,
2806 					"Member is not byte aligned");
2807 		return -EINVAL;
2808 	}
2809 
2810 	struct_size = struct_type->size;
2811 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2812 	if (struct_size - bytes_offset < member_type->size) {
2813 		btf_verifier_log_member(env, struct_type, member,
2814 					"Member exceeds struct_size");
2815 		return -EINVAL;
2816 	}
2817 
2818 	return 0;
2819 }
2820 
2821 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2822 				 const struct btf_type *t,
2823 				 u32 meta_left)
2824 {
2825 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2826 	const struct btf_member *member;
2827 	u32 meta_needed, last_offset;
2828 	struct btf *btf = env->btf;
2829 	u32 struct_size = t->size;
2830 	u32 offset;
2831 	u16 i;
2832 
2833 	meta_needed = btf_type_vlen(t) * sizeof(*member);
2834 	if (meta_left < meta_needed) {
2835 		btf_verifier_log_basic(env, t,
2836 				       "meta_left:%u meta_needed:%u",
2837 				       meta_left, meta_needed);
2838 		return -EINVAL;
2839 	}
2840 
2841 	/* struct type either no name or a valid one */
2842 	if (t->name_off &&
2843 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2844 		btf_verifier_log_type(env, t, "Invalid name");
2845 		return -EINVAL;
2846 	}
2847 
2848 	btf_verifier_log_type(env, t, NULL);
2849 
2850 	last_offset = 0;
2851 	for_each_member(i, t, member) {
2852 		if (!btf_name_offset_valid(btf, member->name_off)) {
2853 			btf_verifier_log_member(env, t, member,
2854 						"Invalid member name_offset:%u",
2855 						member->name_off);
2856 			return -EINVAL;
2857 		}
2858 
2859 		/* struct member either no name or a valid one */
2860 		if (member->name_off &&
2861 		    !btf_name_valid_identifier(btf, member->name_off)) {
2862 			btf_verifier_log_member(env, t, member, "Invalid name");
2863 			return -EINVAL;
2864 		}
2865 		/* A member cannot be in type void */
2866 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2867 			btf_verifier_log_member(env, t, member,
2868 						"Invalid type_id");
2869 			return -EINVAL;
2870 		}
2871 
2872 		offset = btf_member_bit_offset(t, member);
2873 		if (is_union && offset) {
2874 			btf_verifier_log_member(env, t, member,
2875 						"Invalid member bits_offset");
2876 			return -EINVAL;
2877 		}
2878 
2879 		/*
2880 		 * ">" instead of ">=" because the last member could be
2881 		 * "char a[0];"
2882 		 */
2883 		if (last_offset > offset) {
2884 			btf_verifier_log_member(env, t, member,
2885 						"Invalid member bits_offset");
2886 			return -EINVAL;
2887 		}
2888 
2889 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2890 			btf_verifier_log_member(env, t, member,
2891 						"Member bits_offset exceeds its struct size");
2892 			return -EINVAL;
2893 		}
2894 
2895 		btf_verifier_log_member(env, t, member, NULL);
2896 		last_offset = offset;
2897 	}
2898 
2899 	return meta_needed;
2900 }
2901 
2902 static int btf_struct_resolve(struct btf_verifier_env *env,
2903 			      const struct resolve_vertex *v)
2904 {
2905 	const struct btf_member *member;
2906 	int err;
2907 	u16 i;
2908 
2909 	/* Before continue resolving the next_member,
2910 	 * ensure the last member is indeed resolved to a
2911 	 * type with size info.
2912 	 */
2913 	if (v->next_member) {
2914 		const struct btf_type *last_member_type;
2915 		const struct btf_member *last_member;
2916 		u16 last_member_type_id;
2917 
2918 		last_member = btf_type_member(v->t) + v->next_member - 1;
2919 		last_member_type_id = last_member->type;
2920 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
2921 						       last_member_type_id)))
2922 			return -EINVAL;
2923 
2924 		last_member_type = btf_type_by_id(env->btf,
2925 						  last_member_type_id);
2926 		if (btf_type_kflag(v->t))
2927 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2928 								last_member,
2929 								last_member_type);
2930 		else
2931 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
2932 								last_member,
2933 								last_member_type);
2934 		if (err)
2935 			return err;
2936 	}
2937 
2938 	for_each_member_from(i, v->next_member, v->t, member) {
2939 		u32 member_type_id = member->type;
2940 		const struct btf_type *member_type = btf_type_by_id(env->btf,
2941 								member_type_id);
2942 
2943 		if (btf_type_nosize_or_null(member_type) ||
2944 		    btf_type_is_resolve_source_only(member_type)) {
2945 			btf_verifier_log_member(env, v->t, member,
2946 						"Invalid member");
2947 			return -EINVAL;
2948 		}
2949 
2950 		if (!env_type_is_resolve_sink(env, member_type) &&
2951 		    !env_type_is_resolved(env, member_type_id)) {
2952 			env_stack_set_next_member(env, i + 1);
2953 			return env_stack_push(env, member_type, member_type_id);
2954 		}
2955 
2956 		if (btf_type_kflag(v->t))
2957 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2958 									    member,
2959 									    member_type);
2960 		else
2961 			err = btf_type_ops(member_type)->check_member(env, v->t,
2962 								      member,
2963 								      member_type);
2964 		if (err)
2965 			return err;
2966 	}
2967 
2968 	env_stack_pop_resolved(env, 0, 0);
2969 
2970 	return 0;
2971 }
2972 
2973 static void btf_struct_log(struct btf_verifier_env *env,
2974 			   const struct btf_type *t)
2975 {
2976 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2977 }
2978 
2979 /* find 'struct bpf_spin_lock' in map value.
2980  * return >= 0 offset if found
2981  * and < 0 in case of error
2982  */
2983 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2984 {
2985 	const struct btf_member *member;
2986 	u32 i, off = -ENOENT;
2987 
2988 	if (!__btf_type_is_struct(t))
2989 		return -EINVAL;
2990 
2991 	for_each_member(i, t, member) {
2992 		const struct btf_type *member_type = btf_type_by_id(btf,
2993 								    member->type);
2994 		if (!__btf_type_is_struct(member_type))
2995 			continue;
2996 		if (member_type->size != sizeof(struct bpf_spin_lock))
2997 			continue;
2998 		if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2999 			   "bpf_spin_lock"))
3000 			continue;
3001 		if (off != -ENOENT)
3002 			/* only one 'struct bpf_spin_lock' is allowed */
3003 			return -E2BIG;
3004 		off = btf_member_bit_offset(t, member);
3005 		if (off % 8)
3006 			/* valid C code cannot generate such BTF */
3007 			return -EINVAL;
3008 		off /= 8;
3009 		if (off % __alignof__(struct bpf_spin_lock))
3010 			/* valid struct bpf_spin_lock will be 4 byte aligned */
3011 			return -EINVAL;
3012 	}
3013 	return off;
3014 }
3015 
3016 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3017 			      u32 type_id, void *data, u8 bits_offset,
3018 			      struct btf_show *show)
3019 {
3020 	const struct btf_member *member;
3021 	void *safe_data;
3022 	u32 i;
3023 
3024 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3025 	if (!safe_data)
3026 		return;
3027 
3028 	for_each_member(i, t, member) {
3029 		const struct btf_type *member_type = btf_type_by_id(btf,
3030 								member->type);
3031 		const struct btf_kind_operations *ops;
3032 		u32 member_offset, bitfield_size;
3033 		u32 bytes_offset;
3034 		u8 bits8_offset;
3035 
3036 		btf_show_start_member(show, member);
3037 
3038 		member_offset = btf_member_bit_offset(t, member);
3039 		bitfield_size = btf_member_bitfield_size(t, member);
3040 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3041 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3042 		if (bitfield_size) {
3043 			safe_data = btf_show_start_type(show, member_type,
3044 							member->type,
3045 							data + bytes_offset);
3046 			if (safe_data)
3047 				btf_bitfield_show(safe_data,
3048 						  bits8_offset,
3049 						  bitfield_size, show);
3050 			btf_show_end_type(show);
3051 		} else {
3052 			ops = btf_type_ops(member_type);
3053 			ops->show(btf, member_type, member->type,
3054 				  data + bytes_offset, bits8_offset, show);
3055 		}
3056 
3057 		btf_show_end_member(show);
3058 	}
3059 
3060 	btf_show_end_struct_type(show);
3061 }
3062 
3063 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3064 			    u32 type_id, void *data, u8 bits_offset,
3065 			    struct btf_show *show)
3066 {
3067 	const struct btf_member *m = show->state.member;
3068 
3069 	/*
3070 	 * First check if any members would be shown (are non-zero).
3071 	 * See comments above "struct btf_show" definition for more
3072 	 * details on how this works at a high-level.
3073 	 */
3074 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3075 		if (!show->state.depth_check) {
3076 			show->state.depth_check = show->state.depth + 1;
3077 			show->state.depth_to_show = 0;
3078 		}
3079 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3080 		/* Restore saved member data here */
3081 		show->state.member = m;
3082 		if (show->state.depth_check != show->state.depth + 1)
3083 			return;
3084 		show->state.depth_check = 0;
3085 
3086 		if (show->state.depth_to_show <= show->state.depth)
3087 			return;
3088 		/*
3089 		 * Reaching here indicates we have recursed and found
3090 		 * non-zero child values.
3091 		 */
3092 	}
3093 
3094 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3095 }
3096 
3097 static struct btf_kind_operations struct_ops = {
3098 	.check_meta = btf_struct_check_meta,
3099 	.resolve = btf_struct_resolve,
3100 	.check_member = btf_struct_check_member,
3101 	.check_kflag_member = btf_generic_check_kflag_member,
3102 	.log_details = btf_struct_log,
3103 	.show = btf_struct_show,
3104 };
3105 
3106 static int btf_enum_check_member(struct btf_verifier_env *env,
3107 				 const struct btf_type *struct_type,
3108 				 const struct btf_member *member,
3109 				 const struct btf_type *member_type)
3110 {
3111 	u32 struct_bits_off = member->offset;
3112 	u32 struct_size, bytes_offset;
3113 
3114 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3115 		btf_verifier_log_member(env, struct_type, member,
3116 					"Member is not byte aligned");
3117 		return -EINVAL;
3118 	}
3119 
3120 	struct_size = struct_type->size;
3121 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3122 	if (struct_size - bytes_offset < member_type->size) {
3123 		btf_verifier_log_member(env, struct_type, member,
3124 					"Member exceeds struct_size");
3125 		return -EINVAL;
3126 	}
3127 
3128 	return 0;
3129 }
3130 
3131 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3132 				       const struct btf_type *struct_type,
3133 				       const struct btf_member *member,
3134 				       const struct btf_type *member_type)
3135 {
3136 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3137 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3138 
3139 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3140 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3141 	if (!nr_bits) {
3142 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3143 			btf_verifier_log_member(env, struct_type, member,
3144 						"Member is not byte aligned");
3145 			return -EINVAL;
3146 		}
3147 
3148 		nr_bits = int_bitsize;
3149 	} else if (nr_bits > int_bitsize) {
3150 		btf_verifier_log_member(env, struct_type, member,
3151 					"Invalid member bitfield_size");
3152 		return -EINVAL;
3153 	}
3154 
3155 	struct_size = struct_type->size;
3156 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3157 	if (struct_size < bytes_end) {
3158 		btf_verifier_log_member(env, struct_type, member,
3159 					"Member exceeds struct_size");
3160 		return -EINVAL;
3161 	}
3162 
3163 	return 0;
3164 }
3165 
3166 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3167 			       const struct btf_type *t,
3168 			       u32 meta_left)
3169 {
3170 	const struct btf_enum *enums = btf_type_enum(t);
3171 	struct btf *btf = env->btf;
3172 	u16 i, nr_enums;
3173 	u32 meta_needed;
3174 
3175 	nr_enums = btf_type_vlen(t);
3176 	meta_needed = nr_enums * sizeof(*enums);
3177 
3178 	if (meta_left < meta_needed) {
3179 		btf_verifier_log_basic(env, t,
3180 				       "meta_left:%u meta_needed:%u",
3181 				       meta_left, meta_needed);
3182 		return -EINVAL;
3183 	}
3184 
3185 	if (btf_type_kflag(t)) {
3186 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3187 		return -EINVAL;
3188 	}
3189 
3190 	if (t->size > 8 || !is_power_of_2(t->size)) {
3191 		btf_verifier_log_type(env, t, "Unexpected size");
3192 		return -EINVAL;
3193 	}
3194 
3195 	/* enum type either no name or a valid one */
3196 	if (t->name_off &&
3197 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3198 		btf_verifier_log_type(env, t, "Invalid name");
3199 		return -EINVAL;
3200 	}
3201 
3202 	btf_verifier_log_type(env, t, NULL);
3203 
3204 	for (i = 0; i < nr_enums; i++) {
3205 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3206 			btf_verifier_log(env, "\tInvalid name_offset:%u",
3207 					 enums[i].name_off);
3208 			return -EINVAL;
3209 		}
3210 
3211 		/* enum member must have a valid name */
3212 		if (!enums[i].name_off ||
3213 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3214 			btf_verifier_log_type(env, t, "Invalid name");
3215 			return -EINVAL;
3216 		}
3217 
3218 		if (env->log.level == BPF_LOG_KERNEL)
3219 			continue;
3220 		btf_verifier_log(env, "\t%s val=%d\n",
3221 				 __btf_name_by_offset(btf, enums[i].name_off),
3222 				 enums[i].val);
3223 	}
3224 
3225 	return meta_needed;
3226 }
3227 
3228 static void btf_enum_log(struct btf_verifier_env *env,
3229 			 const struct btf_type *t)
3230 {
3231 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3232 }
3233 
3234 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3235 			  u32 type_id, void *data, u8 bits_offset,
3236 			  struct btf_show *show)
3237 {
3238 	const struct btf_enum *enums = btf_type_enum(t);
3239 	u32 i, nr_enums = btf_type_vlen(t);
3240 	void *safe_data;
3241 	int v;
3242 
3243 	safe_data = btf_show_start_type(show, t, type_id, data);
3244 	if (!safe_data)
3245 		return;
3246 
3247 	v = *(int *)safe_data;
3248 
3249 	for (i = 0; i < nr_enums; i++) {
3250 		if (v != enums[i].val)
3251 			continue;
3252 
3253 		btf_show_type_value(show, "%s",
3254 				    __btf_name_by_offset(btf,
3255 							 enums[i].name_off));
3256 
3257 		btf_show_end_type(show);
3258 		return;
3259 	}
3260 
3261 	btf_show_type_value(show, "%d", v);
3262 	btf_show_end_type(show);
3263 }
3264 
3265 static struct btf_kind_operations enum_ops = {
3266 	.check_meta = btf_enum_check_meta,
3267 	.resolve = btf_df_resolve,
3268 	.check_member = btf_enum_check_member,
3269 	.check_kflag_member = btf_enum_check_kflag_member,
3270 	.log_details = btf_enum_log,
3271 	.show = btf_enum_show,
3272 };
3273 
3274 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3275 				     const struct btf_type *t,
3276 				     u32 meta_left)
3277 {
3278 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3279 
3280 	if (meta_left < meta_needed) {
3281 		btf_verifier_log_basic(env, t,
3282 				       "meta_left:%u meta_needed:%u",
3283 				       meta_left, meta_needed);
3284 		return -EINVAL;
3285 	}
3286 
3287 	if (t->name_off) {
3288 		btf_verifier_log_type(env, t, "Invalid name");
3289 		return -EINVAL;
3290 	}
3291 
3292 	if (btf_type_kflag(t)) {
3293 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3294 		return -EINVAL;
3295 	}
3296 
3297 	btf_verifier_log_type(env, t, NULL);
3298 
3299 	return meta_needed;
3300 }
3301 
3302 static void btf_func_proto_log(struct btf_verifier_env *env,
3303 			       const struct btf_type *t)
3304 {
3305 	const struct btf_param *args = (const struct btf_param *)(t + 1);
3306 	u16 nr_args = btf_type_vlen(t), i;
3307 
3308 	btf_verifier_log(env, "return=%u args=(", t->type);
3309 	if (!nr_args) {
3310 		btf_verifier_log(env, "void");
3311 		goto done;
3312 	}
3313 
3314 	if (nr_args == 1 && !args[0].type) {
3315 		/* Only one vararg */
3316 		btf_verifier_log(env, "vararg");
3317 		goto done;
3318 	}
3319 
3320 	btf_verifier_log(env, "%u %s", args[0].type,
3321 			 __btf_name_by_offset(env->btf,
3322 					      args[0].name_off));
3323 	for (i = 1; i < nr_args - 1; i++)
3324 		btf_verifier_log(env, ", %u %s", args[i].type,
3325 				 __btf_name_by_offset(env->btf,
3326 						      args[i].name_off));
3327 
3328 	if (nr_args > 1) {
3329 		const struct btf_param *last_arg = &args[nr_args - 1];
3330 
3331 		if (last_arg->type)
3332 			btf_verifier_log(env, ", %u %s", last_arg->type,
3333 					 __btf_name_by_offset(env->btf,
3334 							      last_arg->name_off));
3335 		else
3336 			btf_verifier_log(env, ", vararg");
3337 	}
3338 
3339 done:
3340 	btf_verifier_log(env, ")");
3341 }
3342 
3343 static struct btf_kind_operations func_proto_ops = {
3344 	.check_meta = btf_func_proto_check_meta,
3345 	.resolve = btf_df_resolve,
3346 	/*
3347 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3348 	 * a struct's member.
3349 	 *
3350 	 * It should be a funciton pointer instead.
3351 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3352 	 *
3353 	 * Hence, there is no btf_func_check_member().
3354 	 */
3355 	.check_member = btf_df_check_member,
3356 	.check_kflag_member = btf_df_check_kflag_member,
3357 	.log_details = btf_func_proto_log,
3358 	.show = btf_df_show,
3359 };
3360 
3361 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3362 			       const struct btf_type *t,
3363 			       u32 meta_left)
3364 {
3365 	if (!t->name_off ||
3366 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3367 		btf_verifier_log_type(env, t, "Invalid name");
3368 		return -EINVAL;
3369 	}
3370 
3371 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3372 		btf_verifier_log_type(env, t, "Invalid func linkage");
3373 		return -EINVAL;
3374 	}
3375 
3376 	if (btf_type_kflag(t)) {
3377 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3378 		return -EINVAL;
3379 	}
3380 
3381 	btf_verifier_log_type(env, t, NULL);
3382 
3383 	return 0;
3384 }
3385 
3386 static struct btf_kind_operations func_ops = {
3387 	.check_meta = btf_func_check_meta,
3388 	.resolve = btf_df_resolve,
3389 	.check_member = btf_df_check_member,
3390 	.check_kflag_member = btf_df_check_kflag_member,
3391 	.log_details = btf_ref_type_log,
3392 	.show = btf_df_show,
3393 };
3394 
3395 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3396 			      const struct btf_type *t,
3397 			      u32 meta_left)
3398 {
3399 	const struct btf_var *var;
3400 	u32 meta_needed = sizeof(*var);
3401 
3402 	if (meta_left < meta_needed) {
3403 		btf_verifier_log_basic(env, t,
3404 				       "meta_left:%u meta_needed:%u",
3405 				       meta_left, meta_needed);
3406 		return -EINVAL;
3407 	}
3408 
3409 	if (btf_type_vlen(t)) {
3410 		btf_verifier_log_type(env, t, "vlen != 0");
3411 		return -EINVAL;
3412 	}
3413 
3414 	if (btf_type_kflag(t)) {
3415 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3416 		return -EINVAL;
3417 	}
3418 
3419 	if (!t->name_off ||
3420 	    !__btf_name_valid(env->btf, t->name_off, true)) {
3421 		btf_verifier_log_type(env, t, "Invalid name");
3422 		return -EINVAL;
3423 	}
3424 
3425 	/* A var cannot be in type void */
3426 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3427 		btf_verifier_log_type(env, t, "Invalid type_id");
3428 		return -EINVAL;
3429 	}
3430 
3431 	var = btf_type_var(t);
3432 	if (var->linkage != BTF_VAR_STATIC &&
3433 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3434 		btf_verifier_log_type(env, t, "Linkage not supported");
3435 		return -EINVAL;
3436 	}
3437 
3438 	btf_verifier_log_type(env, t, NULL);
3439 
3440 	return meta_needed;
3441 }
3442 
3443 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3444 {
3445 	const struct btf_var *var = btf_type_var(t);
3446 
3447 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3448 }
3449 
3450 static const struct btf_kind_operations var_ops = {
3451 	.check_meta		= btf_var_check_meta,
3452 	.resolve		= btf_var_resolve,
3453 	.check_member		= btf_df_check_member,
3454 	.check_kflag_member	= btf_df_check_kflag_member,
3455 	.log_details		= btf_var_log,
3456 	.show			= btf_var_show,
3457 };
3458 
3459 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3460 				  const struct btf_type *t,
3461 				  u32 meta_left)
3462 {
3463 	const struct btf_var_secinfo *vsi;
3464 	u64 last_vsi_end_off = 0, sum = 0;
3465 	u32 i, meta_needed;
3466 
3467 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3468 	if (meta_left < meta_needed) {
3469 		btf_verifier_log_basic(env, t,
3470 				       "meta_left:%u meta_needed:%u",
3471 				       meta_left, meta_needed);
3472 		return -EINVAL;
3473 	}
3474 
3475 	if (!btf_type_vlen(t)) {
3476 		btf_verifier_log_type(env, t, "vlen == 0");
3477 		return -EINVAL;
3478 	}
3479 
3480 	if (!t->size) {
3481 		btf_verifier_log_type(env, t, "size == 0");
3482 		return -EINVAL;
3483 	}
3484 
3485 	if (btf_type_kflag(t)) {
3486 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3487 		return -EINVAL;
3488 	}
3489 
3490 	if (!t->name_off ||
3491 	    !btf_name_valid_section(env->btf, t->name_off)) {
3492 		btf_verifier_log_type(env, t, "Invalid name");
3493 		return -EINVAL;
3494 	}
3495 
3496 	btf_verifier_log_type(env, t, NULL);
3497 
3498 	for_each_vsi(i, t, vsi) {
3499 		/* A var cannot be in type void */
3500 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3501 			btf_verifier_log_vsi(env, t, vsi,
3502 					     "Invalid type_id");
3503 			return -EINVAL;
3504 		}
3505 
3506 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3507 			btf_verifier_log_vsi(env, t, vsi,
3508 					     "Invalid offset");
3509 			return -EINVAL;
3510 		}
3511 
3512 		if (!vsi->size || vsi->size > t->size) {
3513 			btf_verifier_log_vsi(env, t, vsi,
3514 					     "Invalid size");
3515 			return -EINVAL;
3516 		}
3517 
3518 		last_vsi_end_off = vsi->offset + vsi->size;
3519 		if (last_vsi_end_off > t->size) {
3520 			btf_verifier_log_vsi(env, t, vsi,
3521 					     "Invalid offset+size");
3522 			return -EINVAL;
3523 		}
3524 
3525 		btf_verifier_log_vsi(env, t, vsi, NULL);
3526 		sum += vsi->size;
3527 	}
3528 
3529 	if (t->size < sum) {
3530 		btf_verifier_log_type(env, t, "Invalid btf_info size");
3531 		return -EINVAL;
3532 	}
3533 
3534 	return meta_needed;
3535 }
3536 
3537 static int btf_datasec_resolve(struct btf_verifier_env *env,
3538 			       const struct resolve_vertex *v)
3539 {
3540 	const struct btf_var_secinfo *vsi;
3541 	struct btf *btf = env->btf;
3542 	u16 i;
3543 
3544 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
3545 		u32 var_type_id = vsi->type, type_id, type_size = 0;
3546 		const struct btf_type *var_type = btf_type_by_id(env->btf,
3547 								 var_type_id);
3548 		if (!var_type || !btf_type_is_var(var_type)) {
3549 			btf_verifier_log_vsi(env, v->t, vsi,
3550 					     "Not a VAR kind member");
3551 			return -EINVAL;
3552 		}
3553 
3554 		if (!env_type_is_resolve_sink(env, var_type) &&
3555 		    !env_type_is_resolved(env, var_type_id)) {
3556 			env_stack_set_next_member(env, i + 1);
3557 			return env_stack_push(env, var_type, var_type_id);
3558 		}
3559 
3560 		type_id = var_type->type;
3561 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
3562 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3563 			return -EINVAL;
3564 		}
3565 
3566 		if (vsi->size < type_size) {
3567 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3568 			return -EINVAL;
3569 		}
3570 	}
3571 
3572 	env_stack_pop_resolved(env, 0, 0);
3573 	return 0;
3574 }
3575 
3576 static void btf_datasec_log(struct btf_verifier_env *env,
3577 			    const struct btf_type *t)
3578 {
3579 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3580 }
3581 
3582 static void btf_datasec_show(const struct btf *btf,
3583 			     const struct btf_type *t, u32 type_id,
3584 			     void *data, u8 bits_offset,
3585 			     struct btf_show *show)
3586 {
3587 	const struct btf_var_secinfo *vsi;
3588 	const struct btf_type *var;
3589 	u32 i;
3590 
3591 	if (!btf_show_start_type(show, t, type_id, data))
3592 		return;
3593 
3594 	btf_show_type_value(show, "section (\"%s\") = {",
3595 			    __btf_name_by_offset(btf, t->name_off));
3596 	for_each_vsi(i, t, vsi) {
3597 		var = btf_type_by_id(btf, vsi->type);
3598 		if (i)
3599 			btf_show(show, ",");
3600 		btf_type_ops(var)->show(btf, var, vsi->type,
3601 					data + vsi->offset, bits_offset, show);
3602 	}
3603 	btf_show_end_type(show);
3604 }
3605 
3606 static const struct btf_kind_operations datasec_ops = {
3607 	.check_meta		= btf_datasec_check_meta,
3608 	.resolve		= btf_datasec_resolve,
3609 	.check_member		= btf_df_check_member,
3610 	.check_kflag_member	= btf_df_check_kflag_member,
3611 	.log_details		= btf_datasec_log,
3612 	.show			= btf_datasec_show,
3613 };
3614 
3615 static int btf_func_proto_check(struct btf_verifier_env *env,
3616 				const struct btf_type *t)
3617 {
3618 	const struct btf_type *ret_type;
3619 	const struct btf_param *args;
3620 	const struct btf *btf;
3621 	u16 nr_args, i;
3622 	int err;
3623 
3624 	btf = env->btf;
3625 	args = (const struct btf_param *)(t + 1);
3626 	nr_args = btf_type_vlen(t);
3627 
3628 	/* Check func return type which could be "void" (t->type == 0) */
3629 	if (t->type) {
3630 		u32 ret_type_id = t->type;
3631 
3632 		ret_type = btf_type_by_id(btf, ret_type_id);
3633 		if (!ret_type) {
3634 			btf_verifier_log_type(env, t, "Invalid return type");
3635 			return -EINVAL;
3636 		}
3637 
3638 		if (btf_type_needs_resolve(ret_type) &&
3639 		    !env_type_is_resolved(env, ret_type_id)) {
3640 			err = btf_resolve(env, ret_type, ret_type_id);
3641 			if (err)
3642 				return err;
3643 		}
3644 
3645 		/* Ensure the return type is a type that has a size */
3646 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3647 			btf_verifier_log_type(env, t, "Invalid return type");
3648 			return -EINVAL;
3649 		}
3650 	}
3651 
3652 	if (!nr_args)
3653 		return 0;
3654 
3655 	/* Last func arg type_id could be 0 if it is a vararg */
3656 	if (!args[nr_args - 1].type) {
3657 		if (args[nr_args - 1].name_off) {
3658 			btf_verifier_log_type(env, t, "Invalid arg#%u",
3659 					      nr_args);
3660 			return -EINVAL;
3661 		}
3662 		nr_args--;
3663 	}
3664 
3665 	err = 0;
3666 	for (i = 0; i < nr_args; i++) {
3667 		const struct btf_type *arg_type;
3668 		u32 arg_type_id;
3669 
3670 		arg_type_id = args[i].type;
3671 		arg_type = btf_type_by_id(btf, arg_type_id);
3672 		if (!arg_type) {
3673 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3674 			err = -EINVAL;
3675 			break;
3676 		}
3677 
3678 		if (args[i].name_off &&
3679 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
3680 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
3681 			btf_verifier_log_type(env, t,
3682 					      "Invalid arg#%u", i + 1);
3683 			err = -EINVAL;
3684 			break;
3685 		}
3686 
3687 		if (btf_type_needs_resolve(arg_type) &&
3688 		    !env_type_is_resolved(env, arg_type_id)) {
3689 			err = btf_resolve(env, arg_type, arg_type_id);
3690 			if (err)
3691 				break;
3692 		}
3693 
3694 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3695 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3696 			err = -EINVAL;
3697 			break;
3698 		}
3699 	}
3700 
3701 	return err;
3702 }
3703 
3704 static int btf_func_check(struct btf_verifier_env *env,
3705 			  const struct btf_type *t)
3706 {
3707 	const struct btf_type *proto_type;
3708 	const struct btf_param *args;
3709 	const struct btf *btf;
3710 	u16 nr_args, i;
3711 
3712 	btf = env->btf;
3713 	proto_type = btf_type_by_id(btf, t->type);
3714 
3715 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3716 		btf_verifier_log_type(env, t, "Invalid type_id");
3717 		return -EINVAL;
3718 	}
3719 
3720 	args = (const struct btf_param *)(proto_type + 1);
3721 	nr_args = btf_type_vlen(proto_type);
3722 	for (i = 0; i < nr_args; i++) {
3723 		if (!args[i].name_off && args[i].type) {
3724 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3725 			return -EINVAL;
3726 		}
3727 	}
3728 
3729 	return 0;
3730 }
3731 
3732 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3733 	[BTF_KIND_INT] = &int_ops,
3734 	[BTF_KIND_PTR] = &ptr_ops,
3735 	[BTF_KIND_ARRAY] = &array_ops,
3736 	[BTF_KIND_STRUCT] = &struct_ops,
3737 	[BTF_KIND_UNION] = &struct_ops,
3738 	[BTF_KIND_ENUM] = &enum_ops,
3739 	[BTF_KIND_FWD] = &fwd_ops,
3740 	[BTF_KIND_TYPEDEF] = &modifier_ops,
3741 	[BTF_KIND_VOLATILE] = &modifier_ops,
3742 	[BTF_KIND_CONST] = &modifier_ops,
3743 	[BTF_KIND_RESTRICT] = &modifier_ops,
3744 	[BTF_KIND_FUNC] = &func_ops,
3745 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3746 	[BTF_KIND_VAR] = &var_ops,
3747 	[BTF_KIND_DATASEC] = &datasec_ops,
3748 };
3749 
3750 static s32 btf_check_meta(struct btf_verifier_env *env,
3751 			  const struct btf_type *t,
3752 			  u32 meta_left)
3753 {
3754 	u32 saved_meta_left = meta_left;
3755 	s32 var_meta_size;
3756 
3757 	if (meta_left < sizeof(*t)) {
3758 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3759 				 env->log_type_id, meta_left, sizeof(*t));
3760 		return -EINVAL;
3761 	}
3762 	meta_left -= sizeof(*t);
3763 
3764 	if (t->info & ~BTF_INFO_MASK) {
3765 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3766 				 env->log_type_id, t->info);
3767 		return -EINVAL;
3768 	}
3769 
3770 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3771 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3772 		btf_verifier_log(env, "[%u] Invalid kind:%u",
3773 				 env->log_type_id, BTF_INFO_KIND(t->info));
3774 		return -EINVAL;
3775 	}
3776 
3777 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
3778 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3779 				 env->log_type_id, t->name_off);
3780 		return -EINVAL;
3781 	}
3782 
3783 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3784 	if (var_meta_size < 0)
3785 		return var_meta_size;
3786 
3787 	meta_left -= var_meta_size;
3788 
3789 	return saved_meta_left - meta_left;
3790 }
3791 
3792 static int btf_check_all_metas(struct btf_verifier_env *env)
3793 {
3794 	struct btf *btf = env->btf;
3795 	struct btf_header *hdr;
3796 	void *cur, *end;
3797 
3798 	hdr = &btf->hdr;
3799 	cur = btf->nohdr_data + hdr->type_off;
3800 	end = cur + hdr->type_len;
3801 
3802 	env->log_type_id = 1;
3803 	while (cur < end) {
3804 		struct btf_type *t = cur;
3805 		s32 meta_size;
3806 
3807 		meta_size = btf_check_meta(env, t, end - cur);
3808 		if (meta_size < 0)
3809 			return meta_size;
3810 
3811 		btf_add_type(env, t);
3812 		cur += meta_size;
3813 		env->log_type_id++;
3814 	}
3815 
3816 	return 0;
3817 }
3818 
3819 static bool btf_resolve_valid(struct btf_verifier_env *env,
3820 			      const struct btf_type *t,
3821 			      u32 type_id)
3822 {
3823 	struct btf *btf = env->btf;
3824 
3825 	if (!env_type_is_resolved(env, type_id))
3826 		return false;
3827 
3828 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3829 		return !btf->resolved_ids[type_id] &&
3830 		       !btf->resolved_sizes[type_id];
3831 
3832 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3833 	    btf_type_is_var(t)) {
3834 		t = btf_type_id_resolve(btf, &type_id);
3835 		return t &&
3836 		       !btf_type_is_modifier(t) &&
3837 		       !btf_type_is_var(t) &&
3838 		       !btf_type_is_datasec(t);
3839 	}
3840 
3841 	if (btf_type_is_array(t)) {
3842 		const struct btf_array *array = btf_type_array(t);
3843 		const struct btf_type *elem_type;
3844 		u32 elem_type_id = array->type;
3845 		u32 elem_size;
3846 
3847 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3848 		return elem_type && !btf_type_is_modifier(elem_type) &&
3849 			(array->nelems * elem_size ==
3850 			 btf->resolved_sizes[type_id]);
3851 	}
3852 
3853 	return false;
3854 }
3855 
3856 static int btf_resolve(struct btf_verifier_env *env,
3857 		       const struct btf_type *t, u32 type_id)
3858 {
3859 	u32 save_log_type_id = env->log_type_id;
3860 	const struct resolve_vertex *v;
3861 	int err = 0;
3862 
3863 	env->resolve_mode = RESOLVE_TBD;
3864 	env_stack_push(env, t, type_id);
3865 	while (!err && (v = env_stack_peak(env))) {
3866 		env->log_type_id = v->type_id;
3867 		err = btf_type_ops(v->t)->resolve(env, v);
3868 	}
3869 
3870 	env->log_type_id = type_id;
3871 	if (err == -E2BIG) {
3872 		btf_verifier_log_type(env, t,
3873 				      "Exceeded max resolving depth:%u",
3874 				      MAX_RESOLVE_DEPTH);
3875 	} else if (err == -EEXIST) {
3876 		btf_verifier_log_type(env, t, "Loop detected");
3877 	}
3878 
3879 	/* Final sanity check */
3880 	if (!err && !btf_resolve_valid(env, t, type_id)) {
3881 		btf_verifier_log_type(env, t, "Invalid resolve state");
3882 		err = -EINVAL;
3883 	}
3884 
3885 	env->log_type_id = save_log_type_id;
3886 	return err;
3887 }
3888 
3889 static int btf_check_all_types(struct btf_verifier_env *env)
3890 {
3891 	struct btf *btf = env->btf;
3892 	u32 type_id;
3893 	int err;
3894 
3895 	err = env_resolve_init(env);
3896 	if (err)
3897 		return err;
3898 
3899 	env->phase++;
3900 	for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3901 		const struct btf_type *t = btf_type_by_id(btf, type_id);
3902 
3903 		env->log_type_id = type_id;
3904 		if (btf_type_needs_resolve(t) &&
3905 		    !env_type_is_resolved(env, type_id)) {
3906 			err = btf_resolve(env, t, type_id);
3907 			if (err)
3908 				return err;
3909 		}
3910 
3911 		if (btf_type_is_func_proto(t)) {
3912 			err = btf_func_proto_check(env, t);
3913 			if (err)
3914 				return err;
3915 		}
3916 
3917 		if (btf_type_is_func(t)) {
3918 			err = btf_func_check(env, t);
3919 			if (err)
3920 				return err;
3921 		}
3922 	}
3923 
3924 	return 0;
3925 }
3926 
3927 static int btf_parse_type_sec(struct btf_verifier_env *env)
3928 {
3929 	const struct btf_header *hdr = &env->btf->hdr;
3930 	int err;
3931 
3932 	/* Type section must align to 4 bytes */
3933 	if (hdr->type_off & (sizeof(u32) - 1)) {
3934 		btf_verifier_log(env, "Unaligned type_off");
3935 		return -EINVAL;
3936 	}
3937 
3938 	if (!hdr->type_len) {
3939 		btf_verifier_log(env, "No type found");
3940 		return -EINVAL;
3941 	}
3942 
3943 	err = btf_check_all_metas(env);
3944 	if (err)
3945 		return err;
3946 
3947 	return btf_check_all_types(env);
3948 }
3949 
3950 static int btf_parse_str_sec(struct btf_verifier_env *env)
3951 {
3952 	const struct btf_header *hdr;
3953 	struct btf *btf = env->btf;
3954 	const char *start, *end;
3955 
3956 	hdr = &btf->hdr;
3957 	start = btf->nohdr_data + hdr->str_off;
3958 	end = start + hdr->str_len;
3959 
3960 	if (end != btf->data + btf->data_size) {
3961 		btf_verifier_log(env, "String section is not at the end");
3962 		return -EINVAL;
3963 	}
3964 
3965 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3966 	    start[0] || end[-1]) {
3967 		btf_verifier_log(env, "Invalid string section");
3968 		return -EINVAL;
3969 	}
3970 
3971 	btf->strings = start;
3972 
3973 	return 0;
3974 }
3975 
3976 static const size_t btf_sec_info_offset[] = {
3977 	offsetof(struct btf_header, type_off),
3978 	offsetof(struct btf_header, str_off),
3979 };
3980 
3981 static int btf_sec_info_cmp(const void *a, const void *b)
3982 {
3983 	const struct btf_sec_info *x = a;
3984 	const struct btf_sec_info *y = b;
3985 
3986 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3987 }
3988 
3989 static int btf_check_sec_info(struct btf_verifier_env *env,
3990 			      u32 btf_data_size)
3991 {
3992 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3993 	u32 total, expected_total, i;
3994 	const struct btf_header *hdr;
3995 	const struct btf *btf;
3996 
3997 	btf = env->btf;
3998 	hdr = &btf->hdr;
3999 
4000 	/* Populate the secs from hdr */
4001 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4002 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
4003 						   btf_sec_info_offset[i]);
4004 
4005 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4006 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4007 
4008 	/* Check for gaps and overlap among sections */
4009 	total = 0;
4010 	expected_total = btf_data_size - hdr->hdr_len;
4011 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4012 		if (expected_total < secs[i].off) {
4013 			btf_verifier_log(env, "Invalid section offset");
4014 			return -EINVAL;
4015 		}
4016 		if (total < secs[i].off) {
4017 			/* gap */
4018 			btf_verifier_log(env, "Unsupported section found");
4019 			return -EINVAL;
4020 		}
4021 		if (total > secs[i].off) {
4022 			btf_verifier_log(env, "Section overlap found");
4023 			return -EINVAL;
4024 		}
4025 		if (expected_total - total < secs[i].len) {
4026 			btf_verifier_log(env,
4027 					 "Total section length too long");
4028 			return -EINVAL;
4029 		}
4030 		total += secs[i].len;
4031 	}
4032 
4033 	/* There is data other than hdr and known sections */
4034 	if (expected_total != total) {
4035 		btf_verifier_log(env, "Unsupported section found");
4036 		return -EINVAL;
4037 	}
4038 
4039 	return 0;
4040 }
4041 
4042 static int btf_parse_hdr(struct btf_verifier_env *env)
4043 {
4044 	u32 hdr_len, hdr_copy, btf_data_size;
4045 	const struct btf_header *hdr;
4046 	struct btf *btf;
4047 	int err;
4048 
4049 	btf = env->btf;
4050 	btf_data_size = btf->data_size;
4051 
4052 	if (btf_data_size <
4053 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4054 		btf_verifier_log(env, "hdr_len not found");
4055 		return -EINVAL;
4056 	}
4057 
4058 	hdr = btf->data;
4059 	hdr_len = hdr->hdr_len;
4060 	if (btf_data_size < hdr_len) {
4061 		btf_verifier_log(env, "btf_header not found");
4062 		return -EINVAL;
4063 	}
4064 
4065 	/* Ensure the unsupported header fields are zero */
4066 	if (hdr_len > sizeof(btf->hdr)) {
4067 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
4068 		u8 *end = btf->data + hdr_len;
4069 
4070 		for (; expected_zero < end; expected_zero++) {
4071 			if (*expected_zero) {
4072 				btf_verifier_log(env, "Unsupported btf_header");
4073 				return -E2BIG;
4074 			}
4075 		}
4076 	}
4077 
4078 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4079 	memcpy(&btf->hdr, btf->data, hdr_copy);
4080 
4081 	hdr = &btf->hdr;
4082 
4083 	btf_verifier_log_hdr(env, btf_data_size);
4084 
4085 	if (hdr->magic != BTF_MAGIC) {
4086 		btf_verifier_log(env, "Invalid magic");
4087 		return -EINVAL;
4088 	}
4089 
4090 	if (hdr->version != BTF_VERSION) {
4091 		btf_verifier_log(env, "Unsupported version");
4092 		return -ENOTSUPP;
4093 	}
4094 
4095 	if (hdr->flags) {
4096 		btf_verifier_log(env, "Unsupported flags");
4097 		return -ENOTSUPP;
4098 	}
4099 
4100 	if (btf_data_size == hdr->hdr_len) {
4101 		btf_verifier_log(env, "No data");
4102 		return -EINVAL;
4103 	}
4104 
4105 	err = btf_check_sec_info(env, btf_data_size);
4106 	if (err)
4107 		return err;
4108 
4109 	return 0;
4110 }
4111 
4112 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
4113 			     u32 log_level, char __user *log_ubuf, u32 log_size)
4114 {
4115 	struct btf_verifier_env *env = NULL;
4116 	struct bpf_verifier_log *log;
4117 	struct btf *btf = NULL;
4118 	u8 *data;
4119 	int err;
4120 
4121 	if (btf_data_size > BTF_MAX_SIZE)
4122 		return ERR_PTR(-E2BIG);
4123 
4124 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4125 	if (!env)
4126 		return ERR_PTR(-ENOMEM);
4127 
4128 	log = &env->log;
4129 	if (log_level || log_ubuf || log_size) {
4130 		/* user requested verbose verifier output
4131 		 * and supplied buffer to store the verification trace
4132 		 */
4133 		log->level = log_level;
4134 		log->ubuf = log_ubuf;
4135 		log->len_total = log_size;
4136 
4137 		/* log attributes have to be sane */
4138 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4139 		    !log->level || !log->ubuf) {
4140 			err = -EINVAL;
4141 			goto errout;
4142 		}
4143 	}
4144 
4145 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4146 	if (!btf) {
4147 		err = -ENOMEM;
4148 		goto errout;
4149 	}
4150 	env->btf = btf;
4151 
4152 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4153 	if (!data) {
4154 		err = -ENOMEM;
4155 		goto errout;
4156 	}
4157 
4158 	btf->data = data;
4159 	btf->data_size = btf_data_size;
4160 
4161 	if (copy_from_user(data, btf_data, btf_data_size)) {
4162 		err = -EFAULT;
4163 		goto errout;
4164 	}
4165 
4166 	err = btf_parse_hdr(env);
4167 	if (err)
4168 		goto errout;
4169 
4170 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4171 
4172 	err = btf_parse_str_sec(env);
4173 	if (err)
4174 		goto errout;
4175 
4176 	err = btf_parse_type_sec(env);
4177 	if (err)
4178 		goto errout;
4179 
4180 	if (log->level && bpf_verifier_log_full(log)) {
4181 		err = -ENOSPC;
4182 		goto errout;
4183 	}
4184 
4185 	btf_verifier_env_free(env);
4186 	refcount_set(&btf->refcnt, 1);
4187 	return btf;
4188 
4189 errout:
4190 	btf_verifier_env_free(env);
4191 	if (btf)
4192 		btf_free(btf);
4193 	return ERR_PTR(err);
4194 }
4195 
4196 extern char __weak __start_BTF[];
4197 extern char __weak __stop_BTF[];
4198 extern struct btf *btf_vmlinux;
4199 
4200 #define BPF_MAP_TYPE(_id, _ops)
4201 #define BPF_LINK_TYPE(_id, _name)
4202 static union {
4203 	struct bpf_ctx_convert {
4204 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4205 	prog_ctx_type _id##_prog; \
4206 	kern_ctx_type _id##_kern;
4207 #include <linux/bpf_types.h>
4208 #undef BPF_PROG_TYPE
4209 	} *__t;
4210 	/* 't' is written once under lock. Read many times. */
4211 	const struct btf_type *t;
4212 } bpf_ctx_convert;
4213 enum {
4214 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4215 	__ctx_convert##_id,
4216 #include <linux/bpf_types.h>
4217 #undef BPF_PROG_TYPE
4218 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
4219 };
4220 static u8 bpf_ctx_convert_map[] = {
4221 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4222 	[_id] = __ctx_convert##_id,
4223 #include <linux/bpf_types.h>
4224 #undef BPF_PROG_TYPE
4225 	0, /* avoid empty array */
4226 };
4227 #undef BPF_MAP_TYPE
4228 #undef BPF_LINK_TYPE
4229 
4230 static const struct btf_member *
4231 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
4232 		      const struct btf_type *t, enum bpf_prog_type prog_type,
4233 		      int arg)
4234 {
4235 	const struct btf_type *conv_struct;
4236 	const struct btf_type *ctx_struct;
4237 	const struct btf_member *ctx_type;
4238 	const char *tname, *ctx_tname;
4239 
4240 	conv_struct = bpf_ctx_convert.t;
4241 	if (!conv_struct) {
4242 		bpf_log(log, "btf_vmlinux is malformed\n");
4243 		return NULL;
4244 	}
4245 	t = btf_type_by_id(btf, t->type);
4246 	while (btf_type_is_modifier(t))
4247 		t = btf_type_by_id(btf, t->type);
4248 	if (!btf_type_is_struct(t)) {
4249 		/* Only pointer to struct is supported for now.
4250 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4251 		 * is not supported yet.
4252 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4253 		 */
4254 		if (log->level & BPF_LOG_LEVEL)
4255 			bpf_log(log, "arg#%d type is not a struct\n", arg);
4256 		return NULL;
4257 	}
4258 	tname = btf_name_by_offset(btf, t->name_off);
4259 	if (!tname) {
4260 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4261 		return NULL;
4262 	}
4263 	/* prog_type is valid bpf program type. No need for bounds check. */
4264 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4265 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4266 	 * Like 'struct __sk_buff'
4267 	 */
4268 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4269 	if (!ctx_struct)
4270 		/* should not happen */
4271 		return NULL;
4272 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4273 	if (!ctx_tname) {
4274 		/* should not happen */
4275 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4276 		return NULL;
4277 	}
4278 	/* only compare that prog's ctx type name is the same as
4279 	 * kernel expects. No need to compare field by field.
4280 	 * It's ok for bpf prog to do:
4281 	 * struct __sk_buff {};
4282 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4283 	 * { // no fields of skb are ever used }
4284 	 */
4285 	if (strcmp(ctx_tname, tname))
4286 		return NULL;
4287 	return ctx_type;
4288 }
4289 
4290 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4291 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4292 #define BPF_LINK_TYPE(_id, _name)
4293 #define BPF_MAP_TYPE(_id, _ops) \
4294 	[_id] = &_ops,
4295 #include <linux/bpf_types.h>
4296 #undef BPF_PROG_TYPE
4297 #undef BPF_LINK_TYPE
4298 #undef BPF_MAP_TYPE
4299 };
4300 
4301 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4302 				    struct bpf_verifier_log *log)
4303 {
4304 	const struct bpf_map_ops *ops;
4305 	int i, btf_id;
4306 
4307 	for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4308 		ops = btf_vmlinux_map_ops[i];
4309 		if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4310 			continue;
4311 		if (!ops->map_btf_name || !ops->map_btf_id) {
4312 			bpf_log(log, "map type %d is misconfigured\n", i);
4313 			return -EINVAL;
4314 		}
4315 		btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4316 					       BTF_KIND_STRUCT);
4317 		if (btf_id < 0)
4318 			return btf_id;
4319 		*ops->map_btf_id = btf_id;
4320 	}
4321 
4322 	return 0;
4323 }
4324 
4325 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4326 				     struct btf *btf,
4327 				     const struct btf_type *t,
4328 				     enum bpf_prog_type prog_type,
4329 				     int arg)
4330 {
4331 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
4332 
4333 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4334 	if (!prog_ctx_type)
4335 		return -ENOENT;
4336 	kern_ctx_type = prog_ctx_type + 1;
4337 	return kern_ctx_type->type;
4338 }
4339 
4340 BTF_ID_LIST(bpf_ctx_convert_btf_id)
4341 BTF_ID(struct, bpf_ctx_convert)
4342 
4343 struct btf *btf_parse_vmlinux(void)
4344 {
4345 	struct btf_verifier_env *env = NULL;
4346 	struct bpf_verifier_log *log;
4347 	struct btf *btf = NULL;
4348 	int err;
4349 
4350 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4351 	if (!env)
4352 		return ERR_PTR(-ENOMEM);
4353 
4354 	log = &env->log;
4355 	log->level = BPF_LOG_KERNEL;
4356 
4357 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4358 	if (!btf) {
4359 		err = -ENOMEM;
4360 		goto errout;
4361 	}
4362 	env->btf = btf;
4363 
4364 	btf->data = __start_BTF;
4365 	btf->data_size = __stop_BTF - __start_BTF;
4366 
4367 	err = btf_parse_hdr(env);
4368 	if (err)
4369 		goto errout;
4370 
4371 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4372 
4373 	err = btf_parse_str_sec(env);
4374 	if (err)
4375 		goto errout;
4376 
4377 	err = btf_check_all_metas(env);
4378 	if (err)
4379 		goto errout;
4380 
4381 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
4382 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4383 
4384 	/* find bpf map structs for map_ptr access checking */
4385 	err = btf_vmlinux_map_ids_init(btf, log);
4386 	if (err < 0)
4387 		goto errout;
4388 
4389 	bpf_struct_ops_init(btf, log);
4390 
4391 	btf_verifier_env_free(env);
4392 	refcount_set(&btf->refcnt, 1);
4393 	return btf;
4394 
4395 errout:
4396 	btf_verifier_env_free(env);
4397 	if (btf) {
4398 		kvfree(btf->types);
4399 		kfree(btf);
4400 	}
4401 	return ERR_PTR(err);
4402 }
4403 
4404 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4405 {
4406 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4407 
4408 	if (tgt_prog) {
4409 		return tgt_prog->aux->btf;
4410 	} else {
4411 		return btf_vmlinux;
4412 	}
4413 }
4414 
4415 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4416 {
4417 	/* t comes in already as a pointer */
4418 	t = btf_type_by_id(btf, t->type);
4419 
4420 	/* allow const */
4421 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4422 		t = btf_type_by_id(btf, t->type);
4423 
4424 	/* char, signed char, unsigned char */
4425 	return btf_type_is_int(t) && t->size == 1;
4426 }
4427 
4428 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4429 		    const struct bpf_prog *prog,
4430 		    struct bpf_insn_access_aux *info)
4431 {
4432 	const struct btf_type *t = prog->aux->attach_func_proto;
4433 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4434 	struct btf *btf = bpf_prog_get_target_btf(prog);
4435 	const char *tname = prog->aux->attach_func_name;
4436 	struct bpf_verifier_log *log = info->log;
4437 	const struct btf_param *args;
4438 	u32 nr_args, arg;
4439 	int i, ret;
4440 
4441 	if (off % 8) {
4442 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4443 			tname, off);
4444 		return false;
4445 	}
4446 	arg = off / 8;
4447 	args = (const struct btf_param *)(t + 1);
4448 	/* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
4449 	nr_args = t ? btf_type_vlen(t) : 5;
4450 	if (prog->aux->attach_btf_trace) {
4451 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
4452 		args++;
4453 		nr_args--;
4454 	}
4455 
4456 	if (arg > nr_args) {
4457 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4458 			tname, arg + 1);
4459 		return false;
4460 	}
4461 
4462 	if (arg == nr_args) {
4463 		switch (prog->expected_attach_type) {
4464 		case BPF_LSM_MAC:
4465 		case BPF_TRACE_FEXIT:
4466 			/* When LSM programs are attached to void LSM hooks
4467 			 * they use FEXIT trampolines and when attached to
4468 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
4469 			 *
4470 			 * While the LSM programs are BPF_MODIFY_RETURN-like
4471 			 * the check:
4472 			 *
4473 			 *	if (ret_type != 'int')
4474 			 *		return -EINVAL;
4475 			 *
4476 			 * is _not_ done here. This is still safe as LSM hooks
4477 			 * have only void and int return types.
4478 			 */
4479 			if (!t)
4480 				return true;
4481 			t = btf_type_by_id(btf, t->type);
4482 			break;
4483 		case BPF_MODIFY_RETURN:
4484 			/* For now the BPF_MODIFY_RETURN can only be attached to
4485 			 * functions that return an int.
4486 			 */
4487 			if (!t)
4488 				return false;
4489 
4490 			t = btf_type_skip_modifiers(btf, t->type, NULL);
4491 			if (!btf_type_is_small_int(t)) {
4492 				bpf_log(log,
4493 					"ret type %s not allowed for fmod_ret\n",
4494 					btf_kind_str[BTF_INFO_KIND(t->info)]);
4495 				return false;
4496 			}
4497 			break;
4498 		default:
4499 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4500 				tname, arg + 1);
4501 			return false;
4502 		}
4503 	} else {
4504 		if (!t)
4505 			/* Default prog with 5 args */
4506 			return true;
4507 		t = btf_type_by_id(btf, args[arg].type);
4508 	}
4509 
4510 	/* skip modifiers */
4511 	while (btf_type_is_modifier(t))
4512 		t = btf_type_by_id(btf, t->type);
4513 	if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4514 		/* accessing a scalar */
4515 		return true;
4516 	if (!btf_type_is_ptr(t)) {
4517 		bpf_log(log,
4518 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4519 			tname, arg,
4520 			__btf_name_by_offset(btf, t->name_off),
4521 			btf_kind_str[BTF_INFO_KIND(t->info)]);
4522 		return false;
4523 	}
4524 
4525 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4526 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4527 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4528 
4529 		if (ctx_arg_info->offset == off &&
4530 		    (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4531 		     ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4532 			info->reg_type = ctx_arg_info->reg_type;
4533 			return true;
4534 		}
4535 	}
4536 
4537 	if (t->type == 0)
4538 		/* This is a pointer to void.
4539 		 * It is the same as scalar from the verifier safety pov.
4540 		 * No further pointer walking is allowed.
4541 		 */
4542 		return true;
4543 
4544 	if (is_string_ptr(btf, t))
4545 		return true;
4546 
4547 	/* this is a pointer to another type */
4548 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4549 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4550 
4551 		if (ctx_arg_info->offset == off) {
4552 			info->reg_type = ctx_arg_info->reg_type;
4553 			info->btf_id = ctx_arg_info->btf_id;
4554 			return true;
4555 		}
4556 	}
4557 
4558 	info->reg_type = PTR_TO_BTF_ID;
4559 	if (tgt_prog) {
4560 		enum bpf_prog_type tgt_type;
4561 
4562 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4563 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
4564 		else
4565 			tgt_type = tgt_prog->type;
4566 
4567 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4568 		if (ret > 0) {
4569 			info->btf_id = ret;
4570 			return true;
4571 		} else {
4572 			return false;
4573 		}
4574 	}
4575 
4576 	info->btf_id = t->type;
4577 	t = btf_type_by_id(btf, t->type);
4578 	/* skip modifiers */
4579 	while (btf_type_is_modifier(t)) {
4580 		info->btf_id = t->type;
4581 		t = btf_type_by_id(btf, t->type);
4582 	}
4583 	if (!btf_type_is_struct(t)) {
4584 		bpf_log(log,
4585 			"func '%s' arg%d type %s is not a struct\n",
4586 			tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4587 		return false;
4588 	}
4589 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
4590 		tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
4591 		__btf_name_by_offset(btf, t->name_off));
4592 	return true;
4593 }
4594 
4595 enum bpf_struct_walk_result {
4596 	/* < 0 error */
4597 	WALK_SCALAR = 0,
4598 	WALK_PTR,
4599 	WALK_STRUCT,
4600 };
4601 
4602 static int btf_struct_walk(struct bpf_verifier_log *log,
4603 			   const struct btf_type *t, int off, int size,
4604 			   u32 *next_btf_id)
4605 {
4606 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4607 	const struct btf_type *mtype, *elem_type = NULL;
4608 	const struct btf_member *member;
4609 	const char *tname, *mname;
4610 	u32 vlen, elem_id, mid;
4611 
4612 again:
4613 	tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
4614 	if (!btf_type_is_struct(t)) {
4615 		bpf_log(log, "Type '%s' is not a struct\n", tname);
4616 		return -EINVAL;
4617 	}
4618 
4619 	vlen = btf_type_vlen(t);
4620 	if (off + size > t->size) {
4621 		/* If the last element is a variable size array, we may
4622 		 * need to relax the rule.
4623 		 */
4624 		struct btf_array *array_elem;
4625 
4626 		if (vlen == 0)
4627 			goto error;
4628 
4629 		member = btf_type_member(t) + vlen - 1;
4630 		mtype = btf_type_skip_modifiers(btf_vmlinux, member->type,
4631 						NULL);
4632 		if (!btf_type_is_array(mtype))
4633 			goto error;
4634 
4635 		array_elem = (struct btf_array *)(mtype + 1);
4636 		if (array_elem->nelems != 0)
4637 			goto error;
4638 
4639 		moff = btf_member_bit_offset(t, member) / 8;
4640 		if (off < moff)
4641 			goto error;
4642 
4643 		/* Only allow structure for now, can be relaxed for
4644 		 * other types later.
4645 		 */
4646 		t = btf_type_skip_modifiers(btf_vmlinux, array_elem->type,
4647 					    NULL);
4648 		if (!btf_type_is_struct(t))
4649 			goto error;
4650 
4651 		off = (off - moff) % t->size;
4652 		goto again;
4653 
4654 error:
4655 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
4656 			tname, off, size);
4657 		return -EACCES;
4658 	}
4659 
4660 	for_each_member(i, t, member) {
4661 		/* offset of the field in bytes */
4662 		moff = btf_member_bit_offset(t, member) / 8;
4663 		if (off + size <= moff)
4664 			/* won't find anything, field is already too far */
4665 			break;
4666 
4667 		if (btf_member_bitfield_size(t, member)) {
4668 			u32 end_bit = btf_member_bit_offset(t, member) +
4669 				btf_member_bitfield_size(t, member);
4670 
4671 			/* off <= moff instead of off == moff because clang
4672 			 * does not generate a BTF member for anonymous
4673 			 * bitfield like the ":16" here:
4674 			 * struct {
4675 			 *	int :16;
4676 			 *	int x:8;
4677 			 * };
4678 			 */
4679 			if (off <= moff &&
4680 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
4681 				return WALK_SCALAR;
4682 
4683 			/* off may be accessing a following member
4684 			 *
4685 			 * or
4686 			 *
4687 			 * Doing partial access at either end of this
4688 			 * bitfield.  Continue on this case also to
4689 			 * treat it as not accessing this bitfield
4690 			 * and eventually error out as field not
4691 			 * found to keep it simple.
4692 			 * It could be relaxed if there was a legit
4693 			 * partial access case later.
4694 			 */
4695 			continue;
4696 		}
4697 
4698 		/* In case of "off" is pointing to holes of a struct */
4699 		if (off < moff)
4700 			break;
4701 
4702 		/* type of the field */
4703 		mid = member->type;
4704 		mtype = btf_type_by_id(btf_vmlinux, member->type);
4705 		mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
4706 
4707 		mtype = __btf_resolve_size(btf_vmlinux, mtype, &msize,
4708 					   &elem_type, &elem_id, &total_nelems,
4709 					   &mid);
4710 		if (IS_ERR(mtype)) {
4711 			bpf_log(log, "field %s doesn't have size\n", mname);
4712 			return -EFAULT;
4713 		}
4714 
4715 		mtrue_end = moff + msize;
4716 		if (off >= mtrue_end)
4717 			/* no overlap with member, keep iterating */
4718 			continue;
4719 
4720 		if (btf_type_is_array(mtype)) {
4721 			u32 elem_idx;
4722 
4723 			/* __btf_resolve_size() above helps to
4724 			 * linearize a multi-dimensional array.
4725 			 *
4726 			 * The logic here is treating an array
4727 			 * in a struct as the following way:
4728 			 *
4729 			 * struct outer {
4730 			 *	struct inner array[2][2];
4731 			 * };
4732 			 *
4733 			 * looks like:
4734 			 *
4735 			 * struct outer {
4736 			 *	struct inner array_elem0;
4737 			 *	struct inner array_elem1;
4738 			 *	struct inner array_elem2;
4739 			 *	struct inner array_elem3;
4740 			 * };
4741 			 *
4742 			 * When accessing outer->array[1][0], it moves
4743 			 * moff to "array_elem2", set mtype to
4744 			 * "struct inner", and msize also becomes
4745 			 * sizeof(struct inner).  Then most of the
4746 			 * remaining logic will fall through without
4747 			 * caring the current member is an array or
4748 			 * not.
4749 			 *
4750 			 * Unlike mtype/msize/moff, mtrue_end does not
4751 			 * change.  The naming difference ("_true") tells
4752 			 * that it is not always corresponding to
4753 			 * the current mtype/msize/moff.
4754 			 * It is the true end of the current
4755 			 * member (i.e. array in this case).  That
4756 			 * will allow an int array to be accessed like
4757 			 * a scratch space,
4758 			 * i.e. allow access beyond the size of
4759 			 *      the array's element as long as it is
4760 			 *      within the mtrue_end boundary.
4761 			 */
4762 
4763 			/* skip empty array */
4764 			if (moff == mtrue_end)
4765 				continue;
4766 
4767 			msize /= total_nelems;
4768 			elem_idx = (off - moff) / msize;
4769 			moff += elem_idx * msize;
4770 			mtype = elem_type;
4771 			mid = elem_id;
4772 		}
4773 
4774 		/* the 'off' we're looking for is either equal to start
4775 		 * of this field or inside of this struct
4776 		 */
4777 		if (btf_type_is_struct(mtype)) {
4778 			/* our field must be inside that union or struct */
4779 			t = mtype;
4780 
4781 			/* return if the offset matches the member offset */
4782 			if (off == moff) {
4783 				*next_btf_id = mid;
4784 				return WALK_STRUCT;
4785 			}
4786 
4787 			/* adjust offset we're looking for */
4788 			off -= moff;
4789 			goto again;
4790 		}
4791 
4792 		if (btf_type_is_ptr(mtype)) {
4793 			const struct btf_type *stype;
4794 			u32 id;
4795 
4796 			if (msize != size || off != moff) {
4797 				bpf_log(log,
4798 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
4799 					mname, moff, tname, off, size);
4800 				return -EACCES;
4801 			}
4802 			stype = btf_type_skip_modifiers(btf_vmlinux, mtype->type, &id);
4803 			if (btf_type_is_struct(stype)) {
4804 				*next_btf_id = id;
4805 				return WALK_PTR;
4806 			}
4807 		}
4808 
4809 		/* Allow more flexible access within an int as long as
4810 		 * it is within mtrue_end.
4811 		 * Since mtrue_end could be the end of an array,
4812 		 * that also allows using an array of int as a scratch
4813 		 * space. e.g. skb->cb[].
4814 		 */
4815 		if (off + size > mtrue_end) {
4816 			bpf_log(log,
4817 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
4818 				mname, mtrue_end, tname, off, size);
4819 			return -EACCES;
4820 		}
4821 
4822 		return WALK_SCALAR;
4823 	}
4824 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
4825 	return -EINVAL;
4826 }
4827 
4828 int btf_struct_access(struct bpf_verifier_log *log,
4829 		      const struct btf_type *t, int off, int size,
4830 		      enum bpf_access_type atype __maybe_unused,
4831 		      u32 *next_btf_id)
4832 {
4833 	int err;
4834 	u32 id;
4835 
4836 	do {
4837 		err = btf_struct_walk(log, t, off, size, &id);
4838 
4839 		switch (err) {
4840 		case WALK_PTR:
4841 			/* If we found the pointer or scalar on t+off,
4842 			 * we're done.
4843 			 */
4844 			*next_btf_id = id;
4845 			return PTR_TO_BTF_ID;
4846 		case WALK_SCALAR:
4847 			return SCALAR_VALUE;
4848 		case WALK_STRUCT:
4849 			/* We found nested struct, so continue the search
4850 			 * by diving in it. At this point the offset is
4851 			 * aligned with the new type, so set it to 0.
4852 			 */
4853 			t = btf_type_by_id(btf_vmlinux, id);
4854 			off = 0;
4855 			break;
4856 		default:
4857 			/* It's either error or unknown return value..
4858 			 * scream and leave.
4859 			 */
4860 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
4861 				return -EINVAL;
4862 			return err;
4863 		}
4864 	} while (t);
4865 
4866 	return -EINVAL;
4867 }
4868 
4869 bool btf_struct_ids_match(struct bpf_verifier_log *log,
4870 			  int off, u32 id, u32 need_type_id)
4871 {
4872 	const struct btf_type *type;
4873 	int err;
4874 
4875 	/* Are we already done? */
4876 	if (need_type_id == id && off == 0)
4877 		return true;
4878 
4879 again:
4880 	type = btf_type_by_id(btf_vmlinux, id);
4881 	if (!type)
4882 		return false;
4883 	err = btf_struct_walk(log, type, off, 1, &id);
4884 	if (err != WALK_STRUCT)
4885 		return false;
4886 
4887 	/* We found nested struct object. If it matches
4888 	 * the requested ID, we're done. Otherwise let's
4889 	 * continue the search with offset 0 in the new
4890 	 * type.
4891 	 */
4892 	if (need_type_id != id) {
4893 		off = 0;
4894 		goto again;
4895 	}
4896 
4897 	return true;
4898 }
4899 
4900 static int __get_type_size(struct btf *btf, u32 btf_id,
4901 			   const struct btf_type **bad_type)
4902 {
4903 	const struct btf_type *t;
4904 
4905 	if (!btf_id)
4906 		/* void */
4907 		return 0;
4908 	t = btf_type_by_id(btf, btf_id);
4909 	while (t && btf_type_is_modifier(t))
4910 		t = btf_type_by_id(btf, t->type);
4911 	if (!t) {
4912 		*bad_type = btf->types[0];
4913 		return -EINVAL;
4914 	}
4915 	if (btf_type_is_ptr(t))
4916 		/* kernel size of pointer. Not BPF's size of pointer*/
4917 		return sizeof(void *);
4918 	if (btf_type_is_int(t) || btf_type_is_enum(t))
4919 		return t->size;
4920 	*bad_type = t;
4921 	return -EINVAL;
4922 }
4923 
4924 int btf_distill_func_proto(struct bpf_verifier_log *log,
4925 			   struct btf *btf,
4926 			   const struct btf_type *func,
4927 			   const char *tname,
4928 			   struct btf_func_model *m)
4929 {
4930 	const struct btf_param *args;
4931 	const struct btf_type *t;
4932 	u32 i, nargs;
4933 	int ret;
4934 
4935 	if (!func) {
4936 		/* BTF function prototype doesn't match the verifier types.
4937 		 * Fall back to 5 u64 args.
4938 		 */
4939 		for (i = 0; i < 5; i++)
4940 			m->arg_size[i] = 8;
4941 		m->ret_size = 8;
4942 		m->nr_args = 5;
4943 		return 0;
4944 	}
4945 	args = (const struct btf_param *)(func + 1);
4946 	nargs = btf_type_vlen(func);
4947 	if (nargs >= MAX_BPF_FUNC_ARGS) {
4948 		bpf_log(log,
4949 			"The function %s has %d arguments. Too many.\n",
4950 			tname, nargs);
4951 		return -EINVAL;
4952 	}
4953 	ret = __get_type_size(btf, func->type, &t);
4954 	if (ret < 0) {
4955 		bpf_log(log,
4956 			"The function %s return type %s is unsupported.\n",
4957 			tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
4958 		return -EINVAL;
4959 	}
4960 	m->ret_size = ret;
4961 
4962 	for (i = 0; i < nargs; i++) {
4963 		ret = __get_type_size(btf, args[i].type, &t);
4964 		if (ret < 0) {
4965 			bpf_log(log,
4966 				"The function %s arg%d type %s is unsupported.\n",
4967 				tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4968 			return -EINVAL;
4969 		}
4970 		m->arg_size[i] = ret;
4971 	}
4972 	m->nr_args = nargs;
4973 	return 0;
4974 }
4975 
4976 /* Compare BTFs of two functions assuming only scalars and pointers to context.
4977  * t1 points to BTF_KIND_FUNC in btf1
4978  * t2 points to BTF_KIND_FUNC in btf2
4979  * Returns:
4980  * EINVAL - function prototype mismatch
4981  * EFAULT - verifier bug
4982  * 0 - 99% match. The last 1% is validated by the verifier.
4983  */
4984 static int btf_check_func_type_match(struct bpf_verifier_log *log,
4985 				     struct btf *btf1, const struct btf_type *t1,
4986 				     struct btf *btf2, const struct btf_type *t2)
4987 {
4988 	const struct btf_param *args1, *args2;
4989 	const char *fn1, *fn2, *s1, *s2;
4990 	u32 nargs1, nargs2, i;
4991 
4992 	fn1 = btf_name_by_offset(btf1, t1->name_off);
4993 	fn2 = btf_name_by_offset(btf2, t2->name_off);
4994 
4995 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
4996 		bpf_log(log, "%s() is not a global function\n", fn1);
4997 		return -EINVAL;
4998 	}
4999 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5000 		bpf_log(log, "%s() is not a global function\n", fn2);
5001 		return -EINVAL;
5002 	}
5003 
5004 	t1 = btf_type_by_id(btf1, t1->type);
5005 	if (!t1 || !btf_type_is_func_proto(t1))
5006 		return -EFAULT;
5007 	t2 = btf_type_by_id(btf2, t2->type);
5008 	if (!t2 || !btf_type_is_func_proto(t2))
5009 		return -EFAULT;
5010 
5011 	args1 = (const struct btf_param *)(t1 + 1);
5012 	nargs1 = btf_type_vlen(t1);
5013 	args2 = (const struct btf_param *)(t2 + 1);
5014 	nargs2 = btf_type_vlen(t2);
5015 
5016 	if (nargs1 != nargs2) {
5017 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
5018 			fn1, nargs1, fn2, nargs2);
5019 		return -EINVAL;
5020 	}
5021 
5022 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5023 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5024 	if (t1->info != t2->info) {
5025 		bpf_log(log,
5026 			"Return type %s of %s() doesn't match type %s of %s()\n",
5027 			btf_type_str(t1), fn1,
5028 			btf_type_str(t2), fn2);
5029 		return -EINVAL;
5030 	}
5031 
5032 	for (i = 0; i < nargs1; i++) {
5033 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5034 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5035 
5036 		if (t1->info != t2->info) {
5037 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5038 				i, fn1, btf_type_str(t1),
5039 				fn2, btf_type_str(t2));
5040 			return -EINVAL;
5041 		}
5042 		if (btf_type_has_size(t1) && t1->size != t2->size) {
5043 			bpf_log(log,
5044 				"arg%d in %s() has size %d while %s() has %d\n",
5045 				i, fn1, t1->size,
5046 				fn2, t2->size);
5047 			return -EINVAL;
5048 		}
5049 
5050 		/* global functions are validated with scalars and pointers
5051 		 * to context only. And only global functions can be replaced.
5052 		 * Hence type check only those types.
5053 		 */
5054 		if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5055 			continue;
5056 		if (!btf_type_is_ptr(t1)) {
5057 			bpf_log(log,
5058 				"arg%d in %s() has unrecognized type\n",
5059 				i, fn1);
5060 			return -EINVAL;
5061 		}
5062 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5063 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5064 		if (!btf_type_is_struct(t1)) {
5065 			bpf_log(log,
5066 				"arg%d in %s() is not a pointer to context\n",
5067 				i, fn1);
5068 			return -EINVAL;
5069 		}
5070 		if (!btf_type_is_struct(t2)) {
5071 			bpf_log(log,
5072 				"arg%d in %s() is not a pointer to context\n",
5073 				i, fn2);
5074 			return -EINVAL;
5075 		}
5076 		/* This is an optional check to make program writing easier.
5077 		 * Compare names of structs and report an error to the user.
5078 		 * btf_prepare_func_args() already checked that t2 struct
5079 		 * is a context type. btf_prepare_func_args() will check
5080 		 * later that t1 struct is a context type as well.
5081 		 */
5082 		s1 = btf_name_by_offset(btf1, t1->name_off);
5083 		s2 = btf_name_by_offset(btf2, t2->name_off);
5084 		if (strcmp(s1, s2)) {
5085 			bpf_log(log,
5086 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5087 				i, fn1, s1, fn2, s2);
5088 			return -EINVAL;
5089 		}
5090 	}
5091 	return 0;
5092 }
5093 
5094 /* Compare BTFs of given program with BTF of target program */
5095 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5096 			 struct btf *btf2, const struct btf_type *t2)
5097 {
5098 	struct btf *btf1 = prog->aux->btf;
5099 	const struct btf_type *t1;
5100 	u32 btf_id = 0;
5101 
5102 	if (!prog->aux->func_info) {
5103 		bpf_log(log, "Program extension requires BTF\n");
5104 		return -EINVAL;
5105 	}
5106 
5107 	btf_id = prog->aux->func_info[0].type_id;
5108 	if (!btf_id)
5109 		return -EFAULT;
5110 
5111 	t1 = btf_type_by_id(btf1, btf_id);
5112 	if (!t1 || !btf_type_is_func(t1))
5113 		return -EFAULT;
5114 
5115 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5116 }
5117 
5118 /* Compare BTF of a function with given bpf_reg_state.
5119  * Returns:
5120  * EFAULT - there is a verifier bug. Abort verification.
5121  * EINVAL - there is a type mismatch or BTF is not available.
5122  * 0 - BTF matches with what bpf_reg_state expects.
5123  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5124  */
5125 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
5126 			     struct bpf_reg_state *reg)
5127 {
5128 	struct bpf_verifier_log *log = &env->log;
5129 	struct bpf_prog *prog = env->prog;
5130 	struct btf *btf = prog->aux->btf;
5131 	const struct btf_param *args;
5132 	const struct btf_type *t;
5133 	u32 i, nargs, btf_id;
5134 	const char *tname;
5135 
5136 	if (!prog->aux->func_info)
5137 		return -EINVAL;
5138 
5139 	btf_id = prog->aux->func_info[subprog].type_id;
5140 	if (!btf_id)
5141 		return -EFAULT;
5142 
5143 	if (prog->aux->func_info_aux[subprog].unreliable)
5144 		return -EINVAL;
5145 
5146 	t = btf_type_by_id(btf, btf_id);
5147 	if (!t || !btf_type_is_func(t)) {
5148 		/* These checks were already done by the verifier while loading
5149 		 * struct bpf_func_info
5150 		 */
5151 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5152 			subprog);
5153 		return -EFAULT;
5154 	}
5155 	tname = btf_name_by_offset(btf, t->name_off);
5156 
5157 	t = btf_type_by_id(btf, t->type);
5158 	if (!t || !btf_type_is_func_proto(t)) {
5159 		bpf_log(log, "Invalid BTF of func %s\n", tname);
5160 		return -EFAULT;
5161 	}
5162 	args = (const struct btf_param *)(t + 1);
5163 	nargs = btf_type_vlen(t);
5164 	if (nargs > 5) {
5165 		bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
5166 		goto out;
5167 	}
5168 	/* check that BTF function arguments match actual types that the
5169 	 * verifier sees.
5170 	 */
5171 	for (i = 0; i < nargs; i++) {
5172 		t = btf_type_by_id(btf, args[i].type);
5173 		while (btf_type_is_modifier(t))
5174 			t = btf_type_by_id(btf, t->type);
5175 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5176 			if (reg[i + 1].type == SCALAR_VALUE)
5177 				continue;
5178 			bpf_log(log, "R%d is not a scalar\n", i + 1);
5179 			goto out;
5180 		}
5181 		if (btf_type_is_ptr(t)) {
5182 			if (reg[i + 1].type == SCALAR_VALUE) {
5183 				bpf_log(log, "R%d is not a pointer\n", i + 1);
5184 				goto out;
5185 			}
5186 			/* If function expects ctx type in BTF check that caller
5187 			 * is passing PTR_TO_CTX.
5188 			 */
5189 			if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
5190 				if (reg[i + 1].type != PTR_TO_CTX) {
5191 					bpf_log(log,
5192 						"arg#%d expected pointer to ctx, but got %s\n",
5193 						i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5194 					goto out;
5195 				}
5196 				if (check_ctx_reg(env, &reg[i + 1], i + 1))
5197 					goto out;
5198 				continue;
5199 			}
5200 		}
5201 		bpf_log(log, "Unrecognized arg#%d type %s\n",
5202 			i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5203 		goto out;
5204 	}
5205 	return 0;
5206 out:
5207 	/* Compiler optimizations can remove arguments from static functions
5208 	 * or mismatched type can be passed into a global function.
5209 	 * In such cases mark the function as unreliable from BTF point of view.
5210 	 */
5211 	prog->aux->func_info_aux[subprog].unreliable = true;
5212 	return -EINVAL;
5213 }
5214 
5215 /* Convert BTF of a function into bpf_reg_state if possible
5216  * Returns:
5217  * EFAULT - there is a verifier bug. Abort verification.
5218  * EINVAL - cannot convert BTF.
5219  * 0 - Successfully converted BTF into bpf_reg_state
5220  * (either PTR_TO_CTX or SCALAR_VALUE).
5221  */
5222 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5223 			  struct bpf_reg_state *reg)
5224 {
5225 	struct bpf_verifier_log *log = &env->log;
5226 	struct bpf_prog *prog = env->prog;
5227 	enum bpf_prog_type prog_type = prog->type;
5228 	struct btf *btf = prog->aux->btf;
5229 	const struct btf_param *args;
5230 	const struct btf_type *t;
5231 	u32 i, nargs, btf_id;
5232 	const char *tname;
5233 
5234 	if (!prog->aux->func_info ||
5235 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5236 		bpf_log(log, "Verifier bug\n");
5237 		return -EFAULT;
5238 	}
5239 
5240 	btf_id = prog->aux->func_info[subprog].type_id;
5241 	if (!btf_id) {
5242 		bpf_log(log, "Global functions need valid BTF\n");
5243 		return -EFAULT;
5244 	}
5245 
5246 	t = btf_type_by_id(btf, btf_id);
5247 	if (!t || !btf_type_is_func(t)) {
5248 		/* These checks were already done by the verifier while loading
5249 		 * struct bpf_func_info
5250 		 */
5251 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5252 			subprog);
5253 		return -EFAULT;
5254 	}
5255 	tname = btf_name_by_offset(btf, t->name_off);
5256 
5257 	if (log->level & BPF_LOG_LEVEL)
5258 		bpf_log(log, "Validating %s() func#%d...\n",
5259 			tname, subprog);
5260 
5261 	if (prog->aux->func_info_aux[subprog].unreliable) {
5262 		bpf_log(log, "Verifier bug in function %s()\n", tname);
5263 		return -EFAULT;
5264 	}
5265 	if (prog_type == BPF_PROG_TYPE_EXT)
5266 		prog_type = prog->aux->dst_prog->type;
5267 
5268 	t = btf_type_by_id(btf, t->type);
5269 	if (!t || !btf_type_is_func_proto(t)) {
5270 		bpf_log(log, "Invalid type of function %s()\n", tname);
5271 		return -EFAULT;
5272 	}
5273 	args = (const struct btf_param *)(t + 1);
5274 	nargs = btf_type_vlen(t);
5275 	if (nargs > 5) {
5276 		bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
5277 			tname, nargs);
5278 		return -EINVAL;
5279 	}
5280 	/* check that function returns int */
5281 	t = btf_type_by_id(btf, t->type);
5282 	while (btf_type_is_modifier(t))
5283 		t = btf_type_by_id(btf, t->type);
5284 	if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5285 		bpf_log(log,
5286 			"Global function %s() doesn't return scalar. Only those are supported.\n",
5287 			tname);
5288 		return -EINVAL;
5289 	}
5290 	/* Convert BTF function arguments into verifier types.
5291 	 * Only PTR_TO_CTX and SCALAR are supported atm.
5292 	 */
5293 	for (i = 0; i < nargs; i++) {
5294 		t = btf_type_by_id(btf, args[i].type);
5295 		while (btf_type_is_modifier(t))
5296 			t = btf_type_by_id(btf, t->type);
5297 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5298 			reg[i + 1].type = SCALAR_VALUE;
5299 			continue;
5300 		}
5301 		if (btf_type_is_ptr(t) &&
5302 		    btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5303 			reg[i + 1].type = PTR_TO_CTX;
5304 			continue;
5305 		}
5306 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5307 			i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5308 		return -EINVAL;
5309 	}
5310 	return 0;
5311 }
5312 
5313 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5314 			  struct btf_show *show)
5315 {
5316 	const struct btf_type *t = btf_type_by_id(btf, type_id);
5317 
5318 	show->btf = btf;
5319 	memset(&show->state, 0, sizeof(show->state));
5320 	memset(&show->obj, 0, sizeof(show->obj));
5321 
5322 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5323 }
5324 
5325 static void btf_seq_show(struct btf_show *show, const char *fmt,
5326 			 va_list args)
5327 {
5328 	seq_vprintf((struct seq_file *)show->target, fmt, args);
5329 }
5330 
5331 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5332 			    void *obj, struct seq_file *m, u64 flags)
5333 {
5334 	struct btf_show sseq;
5335 
5336 	sseq.target = m;
5337 	sseq.showfn = btf_seq_show;
5338 	sseq.flags = flags;
5339 
5340 	btf_type_show(btf, type_id, obj, &sseq);
5341 
5342 	return sseq.state.status;
5343 }
5344 
5345 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5346 		       struct seq_file *m)
5347 {
5348 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
5349 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5350 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5351 }
5352 
5353 struct btf_show_snprintf {
5354 	struct btf_show show;
5355 	int len_left;		/* space left in string */
5356 	int len;		/* length we would have written */
5357 };
5358 
5359 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5360 			      va_list args)
5361 {
5362 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5363 	int len;
5364 
5365 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5366 
5367 	if (len < 0) {
5368 		ssnprintf->len_left = 0;
5369 		ssnprintf->len = len;
5370 	} else if (len > ssnprintf->len_left) {
5371 		/* no space, drive on to get length we would have written */
5372 		ssnprintf->len_left = 0;
5373 		ssnprintf->len += len;
5374 	} else {
5375 		ssnprintf->len_left -= len;
5376 		ssnprintf->len += len;
5377 		show->target += len;
5378 	}
5379 }
5380 
5381 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5382 			   char *buf, int len, u64 flags)
5383 {
5384 	struct btf_show_snprintf ssnprintf;
5385 
5386 	ssnprintf.show.target = buf;
5387 	ssnprintf.show.flags = flags;
5388 	ssnprintf.show.showfn = btf_snprintf_show;
5389 	ssnprintf.len_left = len;
5390 	ssnprintf.len = 0;
5391 
5392 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5393 
5394 	/* If we encontered an error, return it. */
5395 	if (ssnprintf.show.state.status)
5396 		return ssnprintf.show.state.status;
5397 
5398 	/* Otherwise return length we would have written */
5399 	return ssnprintf.len;
5400 }
5401 
5402 #ifdef CONFIG_PROC_FS
5403 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5404 {
5405 	const struct btf *btf = filp->private_data;
5406 
5407 	seq_printf(m, "btf_id:\t%u\n", btf->id);
5408 }
5409 #endif
5410 
5411 static int btf_release(struct inode *inode, struct file *filp)
5412 {
5413 	btf_put(filp->private_data);
5414 	return 0;
5415 }
5416 
5417 const struct file_operations btf_fops = {
5418 #ifdef CONFIG_PROC_FS
5419 	.show_fdinfo	= bpf_btf_show_fdinfo,
5420 #endif
5421 	.release	= btf_release,
5422 };
5423 
5424 static int __btf_new_fd(struct btf *btf)
5425 {
5426 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5427 }
5428 
5429 int btf_new_fd(const union bpf_attr *attr)
5430 {
5431 	struct btf *btf;
5432 	int ret;
5433 
5434 	btf = btf_parse(u64_to_user_ptr(attr->btf),
5435 			attr->btf_size, attr->btf_log_level,
5436 			u64_to_user_ptr(attr->btf_log_buf),
5437 			attr->btf_log_size);
5438 	if (IS_ERR(btf))
5439 		return PTR_ERR(btf);
5440 
5441 	ret = btf_alloc_id(btf);
5442 	if (ret) {
5443 		btf_free(btf);
5444 		return ret;
5445 	}
5446 
5447 	/*
5448 	 * The BTF ID is published to the userspace.
5449 	 * All BTF free must go through call_rcu() from
5450 	 * now on (i.e. free by calling btf_put()).
5451 	 */
5452 
5453 	ret = __btf_new_fd(btf);
5454 	if (ret < 0)
5455 		btf_put(btf);
5456 
5457 	return ret;
5458 }
5459 
5460 struct btf *btf_get_by_fd(int fd)
5461 {
5462 	struct btf *btf;
5463 	struct fd f;
5464 
5465 	f = fdget(fd);
5466 
5467 	if (!f.file)
5468 		return ERR_PTR(-EBADF);
5469 
5470 	if (f.file->f_op != &btf_fops) {
5471 		fdput(f);
5472 		return ERR_PTR(-EINVAL);
5473 	}
5474 
5475 	btf = f.file->private_data;
5476 	refcount_inc(&btf->refcnt);
5477 	fdput(f);
5478 
5479 	return btf;
5480 }
5481 
5482 int btf_get_info_by_fd(const struct btf *btf,
5483 		       const union bpf_attr *attr,
5484 		       union bpf_attr __user *uattr)
5485 {
5486 	struct bpf_btf_info __user *uinfo;
5487 	struct bpf_btf_info info;
5488 	u32 info_copy, btf_copy;
5489 	void __user *ubtf;
5490 	u32 uinfo_len;
5491 
5492 	uinfo = u64_to_user_ptr(attr->info.info);
5493 	uinfo_len = attr->info.info_len;
5494 
5495 	info_copy = min_t(u32, uinfo_len, sizeof(info));
5496 	memset(&info, 0, sizeof(info));
5497 	if (copy_from_user(&info, uinfo, info_copy))
5498 		return -EFAULT;
5499 
5500 	info.id = btf->id;
5501 	ubtf = u64_to_user_ptr(info.btf);
5502 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
5503 	if (copy_to_user(ubtf, btf->data, btf_copy))
5504 		return -EFAULT;
5505 	info.btf_size = btf->data_size;
5506 
5507 	if (copy_to_user(uinfo, &info, info_copy) ||
5508 	    put_user(info_copy, &uattr->info.info_len))
5509 		return -EFAULT;
5510 
5511 	return 0;
5512 }
5513 
5514 int btf_get_fd_by_id(u32 id)
5515 {
5516 	struct btf *btf;
5517 	int fd;
5518 
5519 	rcu_read_lock();
5520 	btf = idr_find(&btf_idr, id);
5521 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5522 		btf = ERR_PTR(-ENOENT);
5523 	rcu_read_unlock();
5524 
5525 	if (IS_ERR(btf))
5526 		return PTR_ERR(btf);
5527 
5528 	fd = __btf_new_fd(btf);
5529 	if (fd < 0)
5530 		btf_put(btf);
5531 
5532 	return fd;
5533 }
5534 
5535 u32 btf_id(const struct btf *btf)
5536 {
5537 	return btf->id;
5538 }
5539 
5540 static int btf_id_cmp_func(const void *a, const void *b)
5541 {
5542 	const int *pa = a, *pb = b;
5543 
5544 	return *pa - *pb;
5545 }
5546 
5547 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
5548 {
5549 	return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
5550 }
5551