xref: /openbmc/linux/kernel/bpf/btf.c (revision b58c6630)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/skmsg.h>
22 #include <linux/perf_event.h>
23 #include <net/sock.h>
24 
25 /* BTF (BPF Type Format) is the meta data format which describes
26  * the data types of BPF program/map.  Hence, it basically focus
27  * on the C programming language which the modern BPF is primary
28  * using.
29  *
30  * ELF Section:
31  * ~~~~~~~~~~~
32  * The BTF data is stored under the ".BTF" ELF section
33  *
34  * struct btf_type:
35  * ~~~~~~~~~~~~~~~
36  * Each 'struct btf_type' object describes a C data type.
37  * Depending on the type it is describing, a 'struct btf_type'
38  * object may be followed by more data.  F.e.
39  * To describe an array, 'struct btf_type' is followed by
40  * 'struct btf_array'.
41  *
42  * 'struct btf_type' and any extra data following it are
43  * 4 bytes aligned.
44  *
45  * Type section:
46  * ~~~~~~~~~~~~~
47  * The BTF type section contains a list of 'struct btf_type' objects.
48  * Each one describes a C type.  Recall from the above section
49  * that a 'struct btf_type' object could be immediately followed by extra
50  * data in order to desribe some particular C types.
51  *
52  * type_id:
53  * ~~~~~~~
54  * Each btf_type object is identified by a type_id.  The type_id
55  * is implicitly implied by the location of the btf_type object in
56  * the BTF type section.  The first one has type_id 1.  The second
57  * one has type_id 2...etc.  Hence, an earlier btf_type has
58  * a smaller type_id.
59  *
60  * A btf_type object may refer to another btf_type object by using
61  * type_id (i.e. the "type" in the "struct btf_type").
62  *
63  * NOTE that we cannot assume any reference-order.
64  * A btf_type object can refer to an earlier btf_type object
65  * but it can also refer to a later btf_type object.
66  *
67  * For example, to describe "const void *".  A btf_type
68  * object describing "const" may refer to another btf_type
69  * object describing "void *".  This type-reference is done
70  * by specifying type_id:
71  *
72  * [1] CONST (anon) type_id=2
73  * [2] PTR (anon) type_id=0
74  *
75  * The above is the btf_verifier debug log:
76  *   - Each line started with "[?]" is a btf_type object
77  *   - [?] is the type_id of the btf_type object.
78  *   - CONST/PTR is the BTF_KIND_XXX
79  *   - "(anon)" is the name of the type.  It just
80  *     happens that CONST and PTR has no name.
81  *   - type_id=XXX is the 'u32 type' in btf_type
82  *
83  * NOTE: "void" has type_id 0
84  *
85  * String section:
86  * ~~~~~~~~~~~~~~
87  * The BTF string section contains the names used by the type section.
88  * Each string is referred by an "offset" from the beginning of the
89  * string section.
90  *
91  * Each string is '\0' terminated.
92  *
93  * The first character in the string section must be '\0'
94  * which is used to mean 'anonymous'. Some btf_type may not
95  * have a name.
96  */
97 
98 /* BTF verification:
99  *
100  * To verify BTF data, two passes are needed.
101  *
102  * Pass #1
103  * ~~~~~~~
104  * The first pass is to collect all btf_type objects to
105  * an array: "btf->types".
106  *
107  * Depending on the C type that a btf_type is describing,
108  * a btf_type may be followed by extra data.  We don't know
109  * how many btf_type is there, and more importantly we don't
110  * know where each btf_type is located in the type section.
111  *
112  * Without knowing the location of each type_id, most verifications
113  * cannot be done.  e.g. an earlier btf_type may refer to a later
114  * btf_type (recall the "const void *" above), so we cannot
115  * check this type-reference in the first pass.
116  *
117  * In the first pass, it still does some verifications (e.g.
118  * checking the name is a valid offset to the string section).
119  *
120  * Pass #2
121  * ~~~~~~~
122  * The main focus is to resolve a btf_type that is referring
123  * to another type.
124  *
125  * We have to ensure the referring type:
126  * 1) does exist in the BTF (i.e. in btf->types[])
127  * 2) does not cause a loop:
128  *	struct A {
129  *		struct B b;
130  *	};
131  *
132  *	struct B {
133  *		struct A a;
134  *	};
135  *
136  * btf_type_needs_resolve() decides if a btf_type needs
137  * to be resolved.
138  *
139  * The needs_resolve type implements the "resolve()" ops which
140  * essentially does a DFS and detects backedge.
141  *
142  * During resolve (or DFS), different C types have different
143  * "RESOLVED" conditions.
144  *
145  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
146  * members because a member is always referring to another
147  * type.  A struct's member can be treated as "RESOLVED" if
148  * it is referring to a BTF_KIND_PTR.  Otherwise, the
149  * following valid C struct would be rejected:
150  *
151  *	struct A {
152  *		int m;
153  *		struct A *a;
154  *	};
155  *
156  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
157  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
158  * detect a pointer loop, e.g.:
159  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
160  *                        ^                                         |
161  *                        +-----------------------------------------+
162  *
163  */
164 
165 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
166 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
167 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
168 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
169 #define BITS_ROUNDUP_BYTES(bits) \
170 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
171 
172 #define BTF_INFO_MASK 0x8f00ffff
173 #define BTF_INT_MASK 0x0fffffff
174 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
175 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
176 
177 /* 16MB for 64k structs and each has 16 members and
178  * a few MB spaces for the string section.
179  * The hard limit is S32_MAX.
180  */
181 #define BTF_MAX_SIZE (16 * 1024 * 1024)
182 
183 #define for_each_member_from(i, from, struct_type, member)		\
184 	for (i = from, member = btf_type_member(struct_type) + from;	\
185 	     i < btf_type_vlen(struct_type);				\
186 	     i++, member++)
187 
188 #define for_each_vsi(i, struct_type, member)			\
189 	for (i = 0, member = btf_type_var_secinfo(struct_type);	\
190 	     i < btf_type_vlen(struct_type);			\
191 	     i++, member++)
192 
193 #define for_each_vsi_from(i, from, struct_type, member)				\
194 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
195 	     i < btf_type_vlen(struct_type);					\
196 	     i++, member++)
197 
198 DEFINE_IDR(btf_idr);
199 DEFINE_SPINLOCK(btf_idr_lock);
200 
201 struct btf {
202 	void *data;
203 	struct btf_type **types;
204 	u32 *resolved_ids;
205 	u32 *resolved_sizes;
206 	const char *strings;
207 	void *nohdr_data;
208 	struct btf_header hdr;
209 	u32 nr_types;
210 	u32 types_size;
211 	u32 data_size;
212 	refcount_t refcnt;
213 	u32 id;
214 	struct rcu_head rcu;
215 };
216 
217 enum verifier_phase {
218 	CHECK_META,
219 	CHECK_TYPE,
220 };
221 
222 struct resolve_vertex {
223 	const struct btf_type *t;
224 	u32 type_id;
225 	u16 next_member;
226 };
227 
228 enum visit_state {
229 	NOT_VISITED,
230 	VISITED,
231 	RESOLVED,
232 };
233 
234 enum resolve_mode {
235 	RESOLVE_TBD,	/* To Be Determined */
236 	RESOLVE_PTR,	/* Resolving for Pointer */
237 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
238 					 * or array
239 					 */
240 };
241 
242 #define MAX_RESOLVE_DEPTH 32
243 
244 struct btf_sec_info {
245 	u32 off;
246 	u32 len;
247 };
248 
249 struct btf_verifier_env {
250 	struct btf *btf;
251 	u8 *visit_states;
252 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
253 	struct bpf_verifier_log log;
254 	u32 log_type_id;
255 	u32 top_stack;
256 	enum verifier_phase phase;
257 	enum resolve_mode resolve_mode;
258 };
259 
260 static const char * const btf_kind_str[NR_BTF_KINDS] = {
261 	[BTF_KIND_UNKN]		= "UNKNOWN",
262 	[BTF_KIND_INT]		= "INT",
263 	[BTF_KIND_PTR]		= "PTR",
264 	[BTF_KIND_ARRAY]	= "ARRAY",
265 	[BTF_KIND_STRUCT]	= "STRUCT",
266 	[BTF_KIND_UNION]	= "UNION",
267 	[BTF_KIND_ENUM]		= "ENUM",
268 	[BTF_KIND_FWD]		= "FWD",
269 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
270 	[BTF_KIND_VOLATILE]	= "VOLATILE",
271 	[BTF_KIND_CONST]	= "CONST",
272 	[BTF_KIND_RESTRICT]	= "RESTRICT",
273 	[BTF_KIND_FUNC]		= "FUNC",
274 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
275 	[BTF_KIND_VAR]		= "VAR",
276 	[BTF_KIND_DATASEC]	= "DATASEC",
277 };
278 
279 static const char *btf_type_str(const struct btf_type *t)
280 {
281 	return btf_kind_str[BTF_INFO_KIND(t->info)];
282 }
283 
284 struct btf_kind_operations {
285 	s32 (*check_meta)(struct btf_verifier_env *env,
286 			  const struct btf_type *t,
287 			  u32 meta_left);
288 	int (*resolve)(struct btf_verifier_env *env,
289 		       const struct resolve_vertex *v);
290 	int (*check_member)(struct btf_verifier_env *env,
291 			    const struct btf_type *struct_type,
292 			    const struct btf_member *member,
293 			    const struct btf_type *member_type);
294 	int (*check_kflag_member)(struct btf_verifier_env *env,
295 				  const struct btf_type *struct_type,
296 				  const struct btf_member *member,
297 				  const struct btf_type *member_type);
298 	void (*log_details)(struct btf_verifier_env *env,
299 			    const struct btf_type *t);
300 	void (*seq_show)(const struct btf *btf, const struct btf_type *t,
301 			 u32 type_id, void *data, u8 bits_offsets,
302 			 struct seq_file *m);
303 };
304 
305 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
306 static struct btf_type btf_void;
307 
308 static int btf_resolve(struct btf_verifier_env *env,
309 		       const struct btf_type *t, u32 type_id);
310 
311 static bool btf_type_is_modifier(const struct btf_type *t)
312 {
313 	/* Some of them is not strictly a C modifier
314 	 * but they are grouped into the same bucket
315 	 * for BTF concern:
316 	 *   A type (t) that refers to another
317 	 *   type through t->type AND its size cannot
318 	 *   be determined without following the t->type.
319 	 *
320 	 * ptr does not fall into this bucket
321 	 * because its size is always sizeof(void *).
322 	 */
323 	switch (BTF_INFO_KIND(t->info)) {
324 	case BTF_KIND_TYPEDEF:
325 	case BTF_KIND_VOLATILE:
326 	case BTF_KIND_CONST:
327 	case BTF_KIND_RESTRICT:
328 		return true;
329 	}
330 
331 	return false;
332 }
333 
334 bool btf_type_is_void(const struct btf_type *t)
335 {
336 	return t == &btf_void;
337 }
338 
339 static bool btf_type_is_fwd(const struct btf_type *t)
340 {
341 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
342 }
343 
344 static bool btf_type_nosize(const struct btf_type *t)
345 {
346 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
347 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
348 }
349 
350 static bool btf_type_nosize_or_null(const struct btf_type *t)
351 {
352 	return !t || btf_type_nosize(t);
353 }
354 
355 /* union is only a special case of struct:
356  * all its offsetof(member) == 0
357  */
358 static bool btf_type_is_struct(const struct btf_type *t)
359 {
360 	u8 kind = BTF_INFO_KIND(t->info);
361 
362 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
363 }
364 
365 static bool __btf_type_is_struct(const struct btf_type *t)
366 {
367 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
368 }
369 
370 static bool btf_type_is_array(const struct btf_type *t)
371 {
372 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
373 }
374 
375 static bool btf_type_is_var(const struct btf_type *t)
376 {
377 	return BTF_INFO_KIND(t->info) == BTF_KIND_VAR;
378 }
379 
380 static bool btf_type_is_datasec(const struct btf_type *t)
381 {
382 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
383 }
384 
385 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
386 {
387 	const struct btf_type *t;
388 	const char *tname;
389 	u32 i;
390 
391 	for (i = 1; i <= btf->nr_types; i++) {
392 		t = btf->types[i];
393 		if (BTF_INFO_KIND(t->info) != kind)
394 			continue;
395 
396 		tname = btf_name_by_offset(btf, t->name_off);
397 		if (!strcmp(tname, name))
398 			return i;
399 	}
400 
401 	return -ENOENT;
402 }
403 
404 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
405 					       u32 id, u32 *res_id)
406 {
407 	const struct btf_type *t = btf_type_by_id(btf, id);
408 
409 	while (btf_type_is_modifier(t)) {
410 		id = t->type;
411 		t = btf_type_by_id(btf, t->type);
412 	}
413 
414 	if (res_id)
415 		*res_id = id;
416 
417 	return t;
418 }
419 
420 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
421 					    u32 id, u32 *res_id)
422 {
423 	const struct btf_type *t;
424 
425 	t = btf_type_skip_modifiers(btf, id, NULL);
426 	if (!btf_type_is_ptr(t))
427 		return NULL;
428 
429 	return btf_type_skip_modifiers(btf, t->type, res_id);
430 }
431 
432 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
433 						 u32 id, u32 *res_id)
434 {
435 	const struct btf_type *ptype;
436 
437 	ptype = btf_type_resolve_ptr(btf, id, res_id);
438 	if (ptype && btf_type_is_func_proto(ptype))
439 		return ptype;
440 
441 	return NULL;
442 }
443 
444 /* Types that act only as a source, not sink or intermediate
445  * type when resolving.
446  */
447 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
448 {
449 	return btf_type_is_var(t) ||
450 	       btf_type_is_datasec(t);
451 }
452 
453 /* What types need to be resolved?
454  *
455  * btf_type_is_modifier() is an obvious one.
456  *
457  * btf_type_is_struct() because its member refers to
458  * another type (through member->type).
459  *
460  * btf_type_is_var() because the variable refers to
461  * another type. btf_type_is_datasec() holds multiple
462  * btf_type_is_var() types that need resolving.
463  *
464  * btf_type_is_array() because its element (array->type)
465  * refers to another type.  Array can be thought of a
466  * special case of struct while array just has the same
467  * member-type repeated by array->nelems of times.
468  */
469 static bool btf_type_needs_resolve(const struct btf_type *t)
470 {
471 	return btf_type_is_modifier(t) ||
472 	       btf_type_is_ptr(t) ||
473 	       btf_type_is_struct(t) ||
474 	       btf_type_is_array(t) ||
475 	       btf_type_is_var(t) ||
476 	       btf_type_is_datasec(t);
477 }
478 
479 /* t->size can be used */
480 static bool btf_type_has_size(const struct btf_type *t)
481 {
482 	switch (BTF_INFO_KIND(t->info)) {
483 	case BTF_KIND_INT:
484 	case BTF_KIND_STRUCT:
485 	case BTF_KIND_UNION:
486 	case BTF_KIND_ENUM:
487 	case BTF_KIND_DATASEC:
488 		return true;
489 	}
490 
491 	return false;
492 }
493 
494 static const char *btf_int_encoding_str(u8 encoding)
495 {
496 	if (encoding == 0)
497 		return "(none)";
498 	else if (encoding == BTF_INT_SIGNED)
499 		return "SIGNED";
500 	else if (encoding == BTF_INT_CHAR)
501 		return "CHAR";
502 	else if (encoding == BTF_INT_BOOL)
503 		return "BOOL";
504 	else
505 		return "UNKN";
506 }
507 
508 static u32 btf_type_int(const struct btf_type *t)
509 {
510 	return *(u32 *)(t + 1);
511 }
512 
513 static const struct btf_array *btf_type_array(const struct btf_type *t)
514 {
515 	return (const struct btf_array *)(t + 1);
516 }
517 
518 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
519 {
520 	return (const struct btf_enum *)(t + 1);
521 }
522 
523 static const struct btf_var *btf_type_var(const struct btf_type *t)
524 {
525 	return (const struct btf_var *)(t + 1);
526 }
527 
528 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t)
529 {
530 	return (const struct btf_var_secinfo *)(t + 1);
531 }
532 
533 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
534 {
535 	return kind_ops[BTF_INFO_KIND(t->info)];
536 }
537 
538 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
539 {
540 	return BTF_STR_OFFSET_VALID(offset) &&
541 		offset < btf->hdr.str_len;
542 }
543 
544 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
545 {
546 	if ((first ? !isalpha(c) :
547 		     !isalnum(c)) &&
548 	    c != '_' &&
549 	    ((c == '.' && !dot_ok) ||
550 	      c != '.'))
551 		return false;
552 	return true;
553 }
554 
555 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
556 {
557 	/* offset must be valid */
558 	const char *src = &btf->strings[offset];
559 	const char *src_limit;
560 
561 	if (!__btf_name_char_ok(*src, true, dot_ok))
562 		return false;
563 
564 	/* set a limit on identifier length */
565 	src_limit = src + KSYM_NAME_LEN;
566 	src++;
567 	while (*src && src < src_limit) {
568 		if (!__btf_name_char_ok(*src, false, dot_ok))
569 			return false;
570 		src++;
571 	}
572 
573 	return !*src;
574 }
575 
576 /* Only C-style identifier is permitted. This can be relaxed if
577  * necessary.
578  */
579 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
580 {
581 	return __btf_name_valid(btf, offset, false);
582 }
583 
584 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
585 {
586 	return __btf_name_valid(btf, offset, true);
587 }
588 
589 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
590 {
591 	if (!offset)
592 		return "(anon)";
593 	else if (offset < btf->hdr.str_len)
594 		return &btf->strings[offset];
595 	else
596 		return "(invalid-name-offset)";
597 }
598 
599 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
600 {
601 	if (offset < btf->hdr.str_len)
602 		return &btf->strings[offset];
603 
604 	return NULL;
605 }
606 
607 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
608 {
609 	if (type_id > btf->nr_types)
610 		return NULL;
611 
612 	return btf->types[type_id];
613 }
614 
615 /*
616  * Regular int is not a bit field and it must be either
617  * u8/u16/u32/u64 or __int128.
618  */
619 static bool btf_type_int_is_regular(const struct btf_type *t)
620 {
621 	u8 nr_bits, nr_bytes;
622 	u32 int_data;
623 
624 	int_data = btf_type_int(t);
625 	nr_bits = BTF_INT_BITS(int_data);
626 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
627 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
628 	    BTF_INT_OFFSET(int_data) ||
629 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
630 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
631 	     nr_bytes != (2 * sizeof(u64)))) {
632 		return false;
633 	}
634 
635 	return true;
636 }
637 
638 /*
639  * Check that given struct member is a regular int with expected
640  * offset and size.
641  */
642 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
643 			   const struct btf_member *m,
644 			   u32 expected_offset, u32 expected_size)
645 {
646 	const struct btf_type *t;
647 	u32 id, int_data;
648 	u8 nr_bits;
649 
650 	id = m->type;
651 	t = btf_type_id_size(btf, &id, NULL);
652 	if (!t || !btf_type_is_int(t))
653 		return false;
654 
655 	int_data = btf_type_int(t);
656 	nr_bits = BTF_INT_BITS(int_data);
657 	if (btf_type_kflag(s)) {
658 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
659 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
660 
661 		/* if kflag set, int should be a regular int and
662 		 * bit offset should be at byte boundary.
663 		 */
664 		return !bitfield_size &&
665 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
666 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
667 	}
668 
669 	if (BTF_INT_OFFSET(int_data) ||
670 	    BITS_PER_BYTE_MASKED(m->offset) ||
671 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
672 	    BITS_PER_BYTE_MASKED(nr_bits) ||
673 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
674 		return false;
675 
676 	return true;
677 }
678 
679 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
680 					      const char *fmt, ...)
681 {
682 	va_list args;
683 
684 	va_start(args, fmt);
685 	bpf_verifier_vlog(log, fmt, args);
686 	va_end(args);
687 }
688 
689 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
690 					    const char *fmt, ...)
691 {
692 	struct bpf_verifier_log *log = &env->log;
693 	va_list args;
694 
695 	if (!bpf_verifier_log_needed(log))
696 		return;
697 
698 	va_start(args, fmt);
699 	bpf_verifier_vlog(log, fmt, args);
700 	va_end(args);
701 }
702 
703 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
704 						   const struct btf_type *t,
705 						   bool log_details,
706 						   const char *fmt, ...)
707 {
708 	struct bpf_verifier_log *log = &env->log;
709 	u8 kind = BTF_INFO_KIND(t->info);
710 	struct btf *btf = env->btf;
711 	va_list args;
712 
713 	if (!bpf_verifier_log_needed(log))
714 		return;
715 
716 	/* btf verifier prints all types it is processing via
717 	 * btf_verifier_log_type(..., fmt = NULL).
718 	 * Skip those prints for in-kernel BTF verification.
719 	 */
720 	if (log->level == BPF_LOG_KERNEL && !fmt)
721 		return;
722 
723 	__btf_verifier_log(log, "[%u] %s %s%s",
724 			   env->log_type_id,
725 			   btf_kind_str[kind],
726 			   __btf_name_by_offset(btf, t->name_off),
727 			   log_details ? " " : "");
728 
729 	if (log_details)
730 		btf_type_ops(t)->log_details(env, t);
731 
732 	if (fmt && *fmt) {
733 		__btf_verifier_log(log, " ");
734 		va_start(args, fmt);
735 		bpf_verifier_vlog(log, fmt, args);
736 		va_end(args);
737 	}
738 
739 	__btf_verifier_log(log, "\n");
740 }
741 
742 #define btf_verifier_log_type(env, t, ...) \
743 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
744 #define btf_verifier_log_basic(env, t, ...) \
745 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
746 
747 __printf(4, 5)
748 static void btf_verifier_log_member(struct btf_verifier_env *env,
749 				    const struct btf_type *struct_type,
750 				    const struct btf_member *member,
751 				    const char *fmt, ...)
752 {
753 	struct bpf_verifier_log *log = &env->log;
754 	struct btf *btf = env->btf;
755 	va_list args;
756 
757 	if (!bpf_verifier_log_needed(log))
758 		return;
759 
760 	if (log->level == BPF_LOG_KERNEL && !fmt)
761 		return;
762 	/* The CHECK_META phase already did a btf dump.
763 	 *
764 	 * If member is logged again, it must hit an error in
765 	 * parsing this member.  It is useful to print out which
766 	 * struct this member belongs to.
767 	 */
768 	if (env->phase != CHECK_META)
769 		btf_verifier_log_type(env, struct_type, NULL);
770 
771 	if (btf_type_kflag(struct_type))
772 		__btf_verifier_log(log,
773 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
774 				   __btf_name_by_offset(btf, member->name_off),
775 				   member->type,
776 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
777 				   BTF_MEMBER_BIT_OFFSET(member->offset));
778 	else
779 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
780 				   __btf_name_by_offset(btf, member->name_off),
781 				   member->type, member->offset);
782 
783 	if (fmt && *fmt) {
784 		__btf_verifier_log(log, " ");
785 		va_start(args, fmt);
786 		bpf_verifier_vlog(log, fmt, args);
787 		va_end(args);
788 	}
789 
790 	__btf_verifier_log(log, "\n");
791 }
792 
793 __printf(4, 5)
794 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
795 				 const struct btf_type *datasec_type,
796 				 const struct btf_var_secinfo *vsi,
797 				 const char *fmt, ...)
798 {
799 	struct bpf_verifier_log *log = &env->log;
800 	va_list args;
801 
802 	if (!bpf_verifier_log_needed(log))
803 		return;
804 	if (log->level == BPF_LOG_KERNEL && !fmt)
805 		return;
806 	if (env->phase != CHECK_META)
807 		btf_verifier_log_type(env, datasec_type, NULL);
808 
809 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
810 			   vsi->type, vsi->offset, vsi->size);
811 	if (fmt && *fmt) {
812 		__btf_verifier_log(log, " ");
813 		va_start(args, fmt);
814 		bpf_verifier_vlog(log, fmt, args);
815 		va_end(args);
816 	}
817 
818 	__btf_verifier_log(log, "\n");
819 }
820 
821 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
822 				 u32 btf_data_size)
823 {
824 	struct bpf_verifier_log *log = &env->log;
825 	const struct btf *btf = env->btf;
826 	const struct btf_header *hdr;
827 
828 	if (!bpf_verifier_log_needed(log))
829 		return;
830 
831 	if (log->level == BPF_LOG_KERNEL)
832 		return;
833 	hdr = &btf->hdr;
834 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
835 	__btf_verifier_log(log, "version: %u\n", hdr->version);
836 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
837 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
838 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
839 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
840 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
841 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
842 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
843 }
844 
845 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
846 {
847 	struct btf *btf = env->btf;
848 
849 	/* < 2 because +1 for btf_void which is always in btf->types[0].
850 	 * btf_void is not accounted in btf->nr_types because btf_void
851 	 * does not come from the BTF file.
852 	 */
853 	if (btf->types_size - btf->nr_types < 2) {
854 		/* Expand 'types' array */
855 
856 		struct btf_type **new_types;
857 		u32 expand_by, new_size;
858 
859 		if (btf->types_size == BTF_MAX_TYPE) {
860 			btf_verifier_log(env, "Exceeded max num of types");
861 			return -E2BIG;
862 		}
863 
864 		expand_by = max_t(u32, btf->types_size >> 2, 16);
865 		new_size = min_t(u32, BTF_MAX_TYPE,
866 				 btf->types_size + expand_by);
867 
868 		new_types = kvcalloc(new_size, sizeof(*new_types),
869 				     GFP_KERNEL | __GFP_NOWARN);
870 		if (!new_types)
871 			return -ENOMEM;
872 
873 		if (btf->nr_types == 0)
874 			new_types[0] = &btf_void;
875 		else
876 			memcpy(new_types, btf->types,
877 			       sizeof(*btf->types) * (btf->nr_types + 1));
878 
879 		kvfree(btf->types);
880 		btf->types = new_types;
881 		btf->types_size = new_size;
882 	}
883 
884 	btf->types[++(btf->nr_types)] = t;
885 
886 	return 0;
887 }
888 
889 static int btf_alloc_id(struct btf *btf)
890 {
891 	int id;
892 
893 	idr_preload(GFP_KERNEL);
894 	spin_lock_bh(&btf_idr_lock);
895 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
896 	if (id > 0)
897 		btf->id = id;
898 	spin_unlock_bh(&btf_idr_lock);
899 	idr_preload_end();
900 
901 	if (WARN_ON_ONCE(!id))
902 		return -ENOSPC;
903 
904 	return id > 0 ? 0 : id;
905 }
906 
907 static void btf_free_id(struct btf *btf)
908 {
909 	unsigned long flags;
910 
911 	/*
912 	 * In map-in-map, calling map_delete_elem() on outer
913 	 * map will call bpf_map_put on the inner map.
914 	 * It will then eventually call btf_free_id()
915 	 * on the inner map.  Some of the map_delete_elem()
916 	 * implementation may have irq disabled, so
917 	 * we need to use the _irqsave() version instead
918 	 * of the _bh() version.
919 	 */
920 	spin_lock_irqsave(&btf_idr_lock, flags);
921 	idr_remove(&btf_idr, btf->id);
922 	spin_unlock_irqrestore(&btf_idr_lock, flags);
923 }
924 
925 static void btf_free(struct btf *btf)
926 {
927 	kvfree(btf->types);
928 	kvfree(btf->resolved_sizes);
929 	kvfree(btf->resolved_ids);
930 	kvfree(btf->data);
931 	kfree(btf);
932 }
933 
934 static void btf_free_rcu(struct rcu_head *rcu)
935 {
936 	struct btf *btf = container_of(rcu, struct btf, rcu);
937 
938 	btf_free(btf);
939 }
940 
941 void btf_put(struct btf *btf)
942 {
943 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
944 		btf_free_id(btf);
945 		call_rcu(&btf->rcu, btf_free_rcu);
946 	}
947 }
948 
949 static int env_resolve_init(struct btf_verifier_env *env)
950 {
951 	struct btf *btf = env->btf;
952 	u32 nr_types = btf->nr_types;
953 	u32 *resolved_sizes = NULL;
954 	u32 *resolved_ids = NULL;
955 	u8 *visit_states = NULL;
956 
957 	/* +1 for btf_void */
958 	resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
959 				  GFP_KERNEL | __GFP_NOWARN);
960 	if (!resolved_sizes)
961 		goto nomem;
962 
963 	resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
964 				GFP_KERNEL | __GFP_NOWARN);
965 	if (!resolved_ids)
966 		goto nomem;
967 
968 	visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
969 				GFP_KERNEL | __GFP_NOWARN);
970 	if (!visit_states)
971 		goto nomem;
972 
973 	btf->resolved_sizes = resolved_sizes;
974 	btf->resolved_ids = resolved_ids;
975 	env->visit_states = visit_states;
976 
977 	return 0;
978 
979 nomem:
980 	kvfree(resolved_sizes);
981 	kvfree(resolved_ids);
982 	kvfree(visit_states);
983 	return -ENOMEM;
984 }
985 
986 static void btf_verifier_env_free(struct btf_verifier_env *env)
987 {
988 	kvfree(env->visit_states);
989 	kfree(env);
990 }
991 
992 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
993 				     const struct btf_type *next_type)
994 {
995 	switch (env->resolve_mode) {
996 	case RESOLVE_TBD:
997 		/* int, enum or void is a sink */
998 		return !btf_type_needs_resolve(next_type);
999 	case RESOLVE_PTR:
1000 		/* int, enum, void, struct, array, func or func_proto is a sink
1001 		 * for ptr
1002 		 */
1003 		return !btf_type_is_modifier(next_type) &&
1004 			!btf_type_is_ptr(next_type);
1005 	case RESOLVE_STRUCT_OR_ARRAY:
1006 		/* int, enum, void, ptr, func or func_proto is a sink
1007 		 * for struct and array
1008 		 */
1009 		return !btf_type_is_modifier(next_type) &&
1010 			!btf_type_is_array(next_type) &&
1011 			!btf_type_is_struct(next_type);
1012 	default:
1013 		BUG();
1014 	}
1015 }
1016 
1017 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1018 				 u32 type_id)
1019 {
1020 	return env->visit_states[type_id] == RESOLVED;
1021 }
1022 
1023 static int env_stack_push(struct btf_verifier_env *env,
1024 			  const struct btf_type *t, u32 type_id)
1025 {
1026 	struct resolve_vertex *v;
1027 
1028 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1029 		return -E2BIG;
1030 
1031 	if (env->visit_states[type_id] != NOT_VISITED)
1032 		return -EEXIST;
1033 
1034 	env->visit_states[type_id] = VISITED;
1035 
1036 	v = &env->stack[env->top_stack++];
1037 	v->t = t;
1038 	v->type_id = type_id;
1039 	v->next_member = 0;
1040 
1041 	if (env->resolve_mode == RESOLVE_TBD) {
1042 		if (btf_type_is_ptr(t))
1043 			env->resolve_mode = RESOLVE_PTR;
1044 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1045 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1046 	}
1047 
1048 	return 0;
1049 }
1050 
1051 static void env_stack_set_next_member(struct btf_verifier_env *env,
1052 				      u16 next_member)
1053 {
1054 	env->stack[env->top_stack - 1].next_member = next_member;
1055 }
1056 
1057 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1058 				   u32 resolved_type_id,
1059 				   u32 resolved_size)
1060 {
1061 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1062 	struct btf *btf = env->btf;
1063 
1064 	btf->resolved_sizes[type_id] = resolved_size;
1065 	btf->resolved_ids[type_id] = resolved_type_id;
1066 	env->visit_states[type_id] = RESOLVED;
1067 }
1068 
1069 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1070 {
1071 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1072 }
1073 
1074 /* Resolve the size of a passed-in "type"
1075  *
1076  * type: is an array (e.g. u32 array[x][y])
1077  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1078  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1079  *             corresponds to the return type.
1080  * *elem_type: u32
1081  * *total_nelems: (x * y).  Hence, individual elem size is
1082  *                (*type_size / *total_nelems)
1083  *
1084  * type: is not an array (e.g. const struct X)
1085  * return type: type "struct X"
1086  * *type_size: sizeof(struct X)
1087  * *elem_type: same as return type ("struct X")
1088  * *total_nelems: 1
1089  */
1090 const struct btf_type *
1091 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1092 		 u32 *type_size, const struct btf_type **elem_type,
1093 		 u32 *total_nelems)
1094 {
1095 	const struct btf_type *array_type = NULL;
1096 	const struct btf_array *array;
1097 	u32 i, size, nelems = 1;
1098 
1099 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1100 		switch (BTF_INFO_KIND(type->info)) {
1101 		/* type->size can be used */
1102 		case BTF_KIND_INT:
1103 		case BTF_KIND_STRUCT:
1104 		case BTF_KIND_UNION:
1105 		case BTF_KIND_ENUM:
1106 			size = type->size;
1107 			goto resolved;
1108 
1109 		case BTF_KIND_PTR:
1110 			size = sizeof(void *);
1111 			goto resolved;
1112 
1113 		/* Modifiers */
1114 		case BTF_KIND_TYPEDEF:
1115 		case BTF_KIND_VOLATILE:
1116 		case BTF_KIND_CONST:
1117 		case BTF_KIND_RESTRICT:
1118 			type = btf_type_by_id(btf, type->type);
1119 			break;
1120 
1121 		case BTF_KIND_ARRAY:
1122 			if (!array_type)
1123 				array_type = type;
1124 			array = btf_type_array(type);
1125 			if (nelems && array->nelems > U32_MAX / nelems)
1126 				return ERR_PTR(-EINVAL);
1127 			nelems *= array->nelems;
1128 			type = btf_type_by_id(btf, array->type);
1129 			break;
1130 
1131 		/* type without size */
1132 		default:
1133 			return ERR_PTR(-EINVAL);
1134 		}
1135 	}
1136 
1137 	return ERR_PTR(-EINVAL);
1138 
1139 resolved:
1140 	if (nelems && size > U32_MAX / nelems)
1141 		return ERR_PTR(-EINVAL);
1142 
1143 	*type_size = nelems * size;
1144 	if (total_nelems)
1145 		*total_nelems = nelems;
1146 	if (elem_type)
1147 		*elem_type = type;
1148 
1149 	return array_type ? : type;
1150 }
1151 
1152 /* The input param "type_id" must point to a needs_resolve type */
1153 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1154 						  u32 *type_id)
1155 {
1156 	*type_id = btf->resolved_ids[*type_id];
1157 	return btf_type_by_id(btf, *type_id);
1158 }
1159 
1160 const struct btf_type *btf_type_id_size(const struct btf *btf,
1161 					u32 *type_id, u32 *ret_size)
1162 {
1163 	const struct btf_type *size_type;
1164 	u32 size_type_id = *type_id;
1165 	u32 size = 0;
1166 
1167 	size_type = btf_type_by_id(btf, size_type_id);
1168 	if (btf_type_nosize_or_null(size_type))
1169 		return NULL;
1170 
1171 	if (btf_type_has_size(size_type)) {
1172 		size = size_type->size;
1173 	} else if (btf_type_is_array(size_type)) {
1174 		size = btf->resolved_sizes[size_type_id];
1175 	} else if (btf_type_is_ptr(size_type)) {
1176 		size = sizeof(void *);
1177 	} else {
1178 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1179 				 !btf_type_is_var(size_type)))
1180 			return NULL;
1181 
1182 		size_type_id = btf->resolved_ids[size_type_id];
1183 		size_type = btf_type_by_id(btf, size_type_id);
1184 		if (btf_type_nosize_or_null(size_type))
1185 			return NULL;
1186 		else if (btf_type_has_size(size_type))
1187 			size = size_type->size;
1188 		else if (btf_type_is_array(size_type))
1189 			size = btf->resolved_sizes[size_type_id];
1190 		else if (btf_type_is_ptr(size_type))
1191 			size = sizeof(void *);
1192 		else
1193 			return NULL;
1194 	}
1195 
1196 	*type_id = size_type_id;
1197 	if (ret_size)
1198 		*ret_size = size;
1199 
1200 	return size_type;
1201 }
1202 
1203 static int btf_df_check_member(struct btf_verifier_env *env,
1204 			       const struct btf_type *struct_type,
1205 			       const struct btf_member *member,
1206 			       const struct btf_type *member_type)
1207 {
1208 	btf_verifier_log_basic(env, struct_type,
1209 			       "Unsupported check_member");
1210 	return -EINVAL;
1211 }
1212 
1213 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1214 				     const struct btf_type *struct_type,
1215 				     const struct btf_member *member,
1216 				     const struct btf_type *member_type)
1217 {
1218 	btf_verifier_log_basic(env, struct_type,
1219 			       "Unsupported check_kflag_member");
1220 	return -EINVAL;
1221 }
1222 
1223 /* Used for ptr, array and struct/union type members.
1224  * int, enum and modifier types have their specific callback functions.
1225  */
1226 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1227 					  const struct btf_type *struct_type,
1228 					  const struct btf_member *member,
1229 					  const struct btf_type *member_type)
1230 {
1231 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1232 		btf_verifier_log_member(env, struct_type, member,
1233 					"Invalid member bitfield_size");
1234 		return -EINVAL;
1235 	}
1236 
1237 	/* bitfield size is 0, so member->offset represents bit offset only.
1238 	 * It is safe to call non kflag check_member variants.
1239 	 */
1240 	return btf_type_ops(member_type)->check_member(env, struct_type,
1241 						       member,
1242 						       member_type);
1243 }
1244 
1245 static int btf_df_resolve(struct btf_verifier_env *env,
1246 			  const struct resolve_vertex *v)
1247 {
1248 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1249 	return -EINVAL;
1250 }
1251 
1252 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1253 			    u32 type_id, void *data, u8 bits_offsets,
1254 			    struct seq_file *m)
1255 {
1256 	seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1257 }
1258 
1259 static int btf_int_check_member(struct btf_verifier_env *env,
1260 				const struct btf_type *struct_type,
1261 				const struct btf_member *member,
1262 				const struct btf_type *member_type)
1263 {
1264 	u32 int_data = btf_type_int(member_type);
1265 	u32 struct_bits_off = member->offset;
1266 	u32 struct_size = struct_type->size;
1267 	u32 nr_copy_bits;
1268 	u32 bytes_offset;
1269 
1270 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1271 		btf_verifier_log_member(env, struct_type, member,
1272 					"bits_offset exceeds U32_MAX");
1273 		return -EINVAL;
1274 	}
1275 
1276 	struct_bits_off += BTF_INT_OFFSET(int_data);
1277 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1278 	nr_copy_bits = BTF_INT_BITS(int_data) +
1279 		BITS_PER_BYTE_MASKED(struct_bits_off);
1280 
1281 	if (nr_copy_bits > BITS_PER_U128) {
1282 		btf_verifier_log_member(env, struct_type, member,
1283 					"nr_copy_bits exceeds 128");
1284 		return -EINVAL;
1285 	}
1286 
1287 	if (struct_size < bytes_offset ||
1288 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1289 		btf_verifier_log_member(env, struct_type, member,
1290 					"Member exceeds struct_size");
1291 		return -EINVAL;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1298 				      const struct btf_type *struct_type,
1299 				      const struct btf_member *member,
1300 				      const struct btf_type *member_type)
1301 {
1302 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1303 	u32 int_data = btf_type_int(member_type);
1304 	u32 struct_size = struct_type->size;
1305 	u32 nr_copy_bits;
1306 
1307 	/* a regular int type is required for the kflag int member */
1308 	if (!btf_type_int_is_regular(member_type)) {
1309 		btf_verifier_log_member(env, struct_type, member,
1310 					"Invalid member base type");
1311 		return -EINVAL;
1312 	}
1313 
1314 	/* check sanity of bitfield size */
1315 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1316 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1317 	nr_int_data_bits = BTF_INT_BITS(int_data);
1318 	if (!nr_bits) {
1319 		/* Not a bitfield member, member offset must be at byte
1320 		 * boundary.
1321 		 */
1322 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1323 			btf_verifier_log_member(env, struct_type, member,
1324 						"Invalid member offset");
1325 			return -EINVAL;
1326 		}
1327 
1328 		nr_bits = nr_int_data_bits;
1329 	} else if (nr_bits > nr_int_data_bits) {
1330 		btf_verifier_log_member(env, struct_type, member,
1331 					"Invalid member bitfield_size");
1332 		return -EINVAL;
1333 	}
1334 
1335 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1336 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1337 	if (nr_copy_bits > BITS_PER_U128) {
1338 		btf_verifier_log_member(env, struct_type, member,
1339 					"nr_copy_bits exceeds 128");
1340 		return -EINVAL;
1341 	}
1342 
1343 	if (struct_size < bytes_offset ||
1344 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1345 		btf_verifier_log_member(env, struct_type, member,
1346 					"Member exceeds struct_size");
1347 		return -EINVAL;
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1354 			      const struct btf_type *t,
1355 			      u32 meta_left)
1356 {
1357 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1358 	u16 encoding;
1359 
1360 	if (meta_left < meta_needed) {
1361 		btf_verifier_log_basic(env, t,
1362 				       "meta_left:%u meta_needed:%u",
1363 				       meta_left, meta_needed);
1364 		return -EINVAL;
1365 	}
1366 
1367 	if (btf_type_vlen(t)) {
1368 		btf_verifier_log_type(env, t, "vlen != 0");
1369 		return -EINVAL;
1370 	}
1371 
1372 	if (btf_type_kflag(t)) {
1373 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1374 		return -EINVAL;
1375 	}
1376 
1377 	int_data = btf_type_int(t);
1378 	if (int_data & ~BTF_INT_MASK) {
1379 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1380 				       int_data);
1381 		return -EINVAL;
1382 	}
1383 
1384 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1385 
1386 	if (nr_bits > BITS_PER_U128) {
1387 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1388 				      BITS_PER_U128);
1389 		return -EINVAL;
1390 	}
1391 
1392 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1393 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1394 		return -EINVAL;
1395 	}
1396 
1397 	/*
1398 	 * Only one of the encoding bits is allowed and it
1399 	 * should be sufficient for the pretty print purpose (i.e. decoding).
1400 	 * Multiple bits can be allowed later if it is found
1401 	 * to be insufficient.
1402 	 */
1403 	encoding = BTF_INT_ENCODING(int_data);
1404 	if (encoding &&
1405 	    encoding != BTF_INT_SIGNED &&
1406 	    encoding != BTF_INT_CHAR &&
1407 	    encoding != BTF_INT_BOOL) {
1408 		btf_verifier_log_type(env, t, "Unsupported encoding");
1409 		return -ENOTSUPP;
1410 	}
1411 
1412 	btf_verifier_log_type(env, t, NULL);
1413 
1414 	return meta_needed;
1415 }
1416 
1417 static void btf_int_log(struct btf_verifier_env *env,
1418 			const struct btf_type *t)
1419 {
1420 	int int_data = btf_type_int(t);
1421 
1422 	btf_verifier_log(env,
1423 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1424 			 t->size, BTF_INT_OFFSET(int_data),
1425 			 BTF_INT_BITS(int_data),
1426 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1427 }
1428 
1429 static void btf_int128_print(struct seq_file *m, void *data)
1430 {
1431 	/* data points to a __int128 number.
1432 	 * Suppose
1433 	 *     int128_num = *(__int128 *)data;
1434 	 * The below formulas shows what upper_num and lower_num represents:
1435 	 *     upper_num = int128_num >> 64;
1436 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1437 	 */
1438 	u64 upper_num, lower_num;
1439 
1440 #ifdef __BIG_ENDIAN_BITFIELD
1441 	upper_num = *(u64 *)data;
1442 	lower_num = *(u64 *)(data + 8);
1443 #else
1444 	upper_num = *(u64 *)(data + 8);
1445 	lower_num = *(u64 *)data;
1446 #endif
1447 	if (upper_num == 0)
1448 		seq_printf(m, "0x%llx", lower_num);
1449 	else
1450 		seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
1451 }
1452 
1453 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
1454 			     u16 right_shift_bits)
1455 {
1456 	u64 upper_num, lower_num;
1457 
1458 #ifdef __BIG_ENDIAN_BITFIELD
1459 	upper_num = print_num[0];
1460 	lower_num = print_num[1];
1461 #else
1462 	upper_num = print_num[1];
1463 	lower_num = print_num[0];
1464 #endif
1465 
1466 	/* shake out un-needed bits by shift/or operations */
1467 	if (left_shift_bits >= 64) {
1468 		upper_num = lower_num << (left_shift_bits - 64);
1469 		lower_num = 0;
1470 	} else {
1471 		upper_num = (upper_num << left_shift_bits) |
1472 			    (lower_num >> (64 - left_shift_bits));
1473 		lower_num = lower_num << left_shift_bits;
1474 	}
1475 
1476 	if (right_shift_bits >= 64) {
1477 		lower_num = upper_num >> (right_shift_bits - 64);
1478 		upper_num = 0;
1479 	} else {
1480 		lower_num = (lower_num >> right_shift_bits) |
1481 			    (upper_num << (64 - right_shift_bits));
1482 		upper_num = upper_num >> right_shift_bits;
1483 	}
1484 
1485 #ifdef __BIG_ENDIAN_BITFIELD
1486 	print_num[0] = upper_num;
1487 	print_num[1] = lower_num;
1488 #else
1489 	print_num[0] = lower_num;
1490 	print_num[1] = upper_num;
1491 #endif
1492 }
1493 
1494 static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1495 				  u8 nr_bits, struct seq_file *m)
1496 {
1497 	u16 left_shift_bits, right_shift_bits;
1498 	u8 nr_copy_bytes;
1499 	u8 nr_copy_bits;
1500 	u64 print_num[2] = {};
1501 
1502 	nr_copy_bits = nr_bits + bits_offset;
1503 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1504 
1505 	memcpy(print_num, data, nr_copy_bytes);
1506 
1507 #ifdef __BIG_ENDIAN_BITFIELD
1508 	left_shift_bits = bits_offset;
1509 #else
1510 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
1511 #endif
1512 	right_shift_bits = BITS_PER_U128 - nr_bits;
1513 
1514 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
1515 	btf_int128_print(m, print_num);
1516 }
1517 
1518 
1519 static void btf_int_bits_seq_show(const struct btf *btf,
1520 				  const struct btf_type *t,
1521 				  void *data, u8 bits_offset,
1522 				  struct seq_file *m)
1523 {
1524 	u32 int_data = btf_type_int(t);
1525 	u8 nr_bits = BTF_INT_BITS(int_data);
1526 	u8 total_bits_offset;
1527 
1528 	/*
1529 	 * bits_offset is at most 7.
1530 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
1531 	 */
1532 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1533 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1534 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1535 	btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
1536 }
1537 
1538 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1539 			     u32 type_id, void *data, u8 bits_offset,
1540 			     struct seq_file *m)
1541 {
1542 	u32 int_data = btf_type_int(t);
1543 	u8 encoding = BTF_INT_ENCODING(int_data);
1544 	bool sign = encoding & BTF_INT_SIGNED;
1545 	u8 nr_bits = BTF_INT_BITS(int_data);
1546 
1547 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
1548 	    BITS_PER_BYTE_MASKED(nr_bits)) {
1549 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1550 		return;
1551 	}
1552 
1553 	switch (nr_bits) {
1554 	case 128:
1555 		btf_int128_print(m, data);
1556 		break;
1557 	case 64:
1558 		if (sign)
1559 			seq_printf(m, "%lld", *(s64 *)data);
1560 		else
1561 			seq_printf(m, "%llu", *(u64 *)data);
1562 		break;
1563 	case 32:
1564 		if (sign)
1565 			seq_printf(m, "%d", *(s32 *)data);
1566 		else
1567 			seq_printf(m, "%u", *(u32 *)data);
1568 		break;
1569 	case 16:
1570 		if (sign)
1571 			seq_printf(m, "%d", *(s16 *)data);
1572 		else
1573 			seq_printf(m, "%u", *(u16 *)data);
1574 		break;
1575 	case 8:
1576 		if (sign)
1577 			seq_printf(m, "%d", *(s8 *)data);
1578 		else
1579 			seq_printf(m, "%u", *(u8 *)data);
1580 		break;
1581 	default:
1582 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1583 	}
1584 }
1585 
1586 static const struct btf_kind_operations int_ops = {
1587 	.check_meta = btf_int_check_meta,
1588 	.resolve = btf_df_resolve,
1589 	.check_member = btf_int_check_member,
1590 	.check_kflag_member = btf_int_check_kflag_member,
1591 	.log_details = btf_int_log,
1592 	.seq_show = btf_int_seq_show,
1593 };
1594 
1595 static int btf_modifier_check_member(struct btf_verifier_env *env,
1596 				     const struct btf_type *struct_type,
1597 				     const struct btf_member *member,
1598 				     const struct btf_type *member_type)
1599 {
1600 	const struct btf_type *resolved_type;
1601 	u32 resolved_type_id = member->type;
1602 	struct btf_member resolved_member;
1603 	struct btf *btf = env->btf;
1604 
1605 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1606 	if (!resolved_type) {
1607 		btf_verifier_log_member(env, struct_type, member,
1608 					"Invalid member");
1609 		return -EINVAL;
1610 	}
1611 
1612 	resolved_member = *member;
1613 	resolved_member.type = resolved_type_id;
1614 
1615 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
1616 							 &resolved_member,
1617 							 resolved_type);
1618 }
1619 
1620 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1621 					   const struct btf_type *struct_type,
1622 					   const struct btf_member *member,
1623 					   const struct btf_type *member_type)
1624 {
1625 	const struct btf_type *resolved_type;
1626 	u32 resolved_type_id = member->type;
1627 	struct btf_member resolved_member;
1628 	struct btf *btf = env->btf;
1629 
1630 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1631 	if (!resolved_type) {
1632 		btf_verifier_log_member(env, struct_type, member,
1633 					"Invalid member");
1634 		return -EINVAL;
1635 	}
1636 
1637 	resolved_member = *member;
1638 	resolved_member.type = resolved_type_id;
1639 
1640 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1641 							       &resolved_member,
1642 							       resolved_type);
1643 }
1644 
1645 static int btf_ptr_check_member(struct btf_verifier_env *env,
1646 				const struct btf_type *struct_type,
1647 				const struct btf_member *member,
1648 				const struct btf_type *member_type)
1649 {
1650 	u32 struct_size, struct_bits_off, bytes_offset;
1651 
1652 	struct_size = struct_type->size;
1653 	struct_bits_off = member->offset;
1654 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1655 
1656 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1657 		btf_verifier_log_member(env, struct_type, member,
1658 					"Member is not byte aligned");
1659 		return -EINVAL;
1660 	}
1661 
1662 	if (struct_size - bytes_offset < sizeof(void *)) {
1663 		btf_verifier_log_member(env, struct_type, member,
1664 					"Member exceeds struct_size");
1665 		return -EINVAL;
1666 	}
1667 
1668 	return 0;
1669 }
1670 
1671 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1672 				   const struct btf_type *t,
1673 				   u32 meta_left)
1674 {
1675 	if (btf_type_vlen(t)) {
1676 		btf_verifier_log_type(env, t, "vlen != 0");
1677 		return -EINVAL;
1678 	}
1679 
1680 	if (btf_type_kflag(t)) {
1681 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1682 		return -EINVAL;
1683 	}
1684 
1685 	if (!BTF_TYPE_ID_VALID(t->type)) {
1686 		btf_verifier_log_type(env, t, "Invalid type_id");
1687 		return -EINVAL;
1688 	}
1689 
1690 	/* typedef type must have a valid name, and other ref types,
1691 	 * volatile, const, restrict, should have a null name.
1692 	 */
1693 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1694 		if (!t->name_off ||
1695 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
1696 			btf_verifier_log_type(env, t, "Invalid name");
1697 			return -EINVAL;
1698 		}
1699 	} else {
1700 		if (t->name_off) {
1701 			btf_verifier_log_type(env, t, "Invalid name");
1702 			return -EINVAL;
1703 		}
1704 	}
1705 
1706 	btf_verifier_log_type(env, t, NULL);
1707 
1708 	return 0;
1709 }
1710 
1711 static int btf_modifier_resolve(struct btf_verifier_env *env,
1712 				const struct resolve_vertex *v)
1713 {
1714 	const struct btf_type *t = v->t;
1715 	const struct btf_type *next_type;
1716 	u32 next_type_id = t->type;
1717 	struct btf *btf = env->btf;
1718 
1719 	next_type = btf_type_by_id(btf, next_type_id);
1720 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1721 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1722 		return -EINVAL;
1723 	}
1724 
1725 	if (!env_type_is_resolve_sink(env, next_type) &&
1726 	    !env_type_is_resolved(env, next_type_id))
1727 		return env_stack_push(env, next_type, next_type_id);
1728 
1729 	/* Figure out the resolved next_type_id with size.
1730 	 * They will be stored in the current modifier's
1731 	 * resolved_ids and resolved_sizes such that it can
1732 	 * save us a few type-following when we use it later (e.g. in
1733 	 * pretty print).
1734 	 */
1735 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1736 		if (env_type_is_resolved(env, next_type_id))
1737 			next_type = btf_type_id_resolve(btf, &next_type_id);
1738 
1739 		/* "typedef void new_void", "const void"...etc */
1740 		if (!btf_type_is_void(next_type) &&
1741 		    !btf_type_is_fwd(next_type) &&
1742 		    !btf_type_is_func_proto(next_type)) {
1743 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1744 			return -EINVAL;
1745 		}
1746 	}
1747 
1748 	env_stack_pop_resolved(env, next_type_id, 0);
1749 
1750 	return 0;
1751 }
1752 
1753 static int btf_var_resolve(struct btf_verifier_env *env,
1754 			   const struct resolve_vertex *v)
1755 {
1756 	const struct btf_type *next_type;
1757 	const struct btf_type *t = v->t;
1758 	u32 next_type_id = t->type;
1759 	struct btf *btf = env->btf;
1760 
1761 	next_type = btf_type_by_id(btf, next_type_id);
1762 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1763 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1764 		return -EINVAL;
1765 	}
1766 
1767 	if (!env_type_is_resolve_sink(env, next_type) &&
1768 	    !env_type_is_resolved(env, next_type_id))
1769 		return env_stack_push(env, next_type, next_type_id);
1770 
1771 	if (btf_type_is_modifier(next_type)) {
1772 		const struct btf_type *resolved_type;
1773 		u32 resolved_type_id;
1774 
1775 		resolved_type_id = next_type_id;
1776 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1777 
1778 		if (btf_type_is_ptr(resolved_type) &&
1779 		    !env_type_is_resolve_sink(env, resolved_type) &&
1780 		    !env_type_is_resolved(env, resolved_type_id))
1781 			return env_stack_push(env, resolved_type,
1782 					      resolved_type_id);
1783 	}
1784 
1785 	/* We must resolve to something concrete at this point, no
1786 	 * forward types or similar that would resolve to size of
1787 	 * zero is allowed.
1788 	 */
1789 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1790 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1791 		return -EINVAL;
1792 	}
1793 
1794 	env_stack_pop_resolved(env, next_type_id, 0);
1795 
1796 	return 0;
1797 }
1798 
1799 static int btf_ptr_resolve(struct btf_verifier_env *env,
1800 			   const struct resolve_vertex *v)
1801 {
1802 	const struct btf_type *next_type;
1803 	const struct btf_type *t = v->t;
1804 	u32 next_type_id = t->type;
1805 	struct btf *btf = env->btf;
1806 
1807 	next_type = btf_type_by_id(btf, next_type_id);
1808 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1809 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1810 		return -EINVAL;
1811 	}
1812 
1813 	if (!env_type_is_resolve_sink(env, next_type) &&
1814 	    !env_type_is_resolved(env, next_type_id))
1815 		return env_stack_push(env, next_type, next_type_id);
1816 
1817 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1818 	 * the modifier may have stopped resolving when it was resolved
1819 	 * to a ptr (last-resolved-ptr).
1820 	 *
1821 	 * We now need to continue from the last-resolved-ptr to
1822 	 * ensure the last-resolved-ptr will not referring back to
1823 	 * the currenct ptr (t).
1824 	 */
1825 	if (btf_type_is_modifier(next_type)) {
1826 		const struct btf_type *resolved_type;
1827 		u32 resolved_type_id;
1828 
1829 		resolved_type_id = next_type_id;
1830 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1831 
1832 		if (btf_type_is_ptr(resolved_type) &&
1833 		    !env_type_is_resolve_sink(env, resolved_type) &&
1834 		    !env_type_is_resolved(env, resolved_type_id))
1835 			return env_stack_push(env, resolved_type,
1836 					      resolved_type_id);
1837 	}
1838 
1839 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1840 		if (env_type_is_resolved(env, next_type_id))
1841 			next_type = btf_type_id_resolve(btf, &next_type_id);
1842 
1843 		if (!btf_type_is_void(next_type) &&
1844 		    !btf_type_is_fwd(next_type) &&
1845 		    !btf_type_is_func_proto(next_type)) {
1846 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1847 			return -EINVAL;
1848 		}
1849 	}
1850 
1851 	env_stack_pop_resolved(env, next_type_id, 0);
1852 
1853 	return 0;
1854 }
1855 
1856 static void btf_modifier_seq_show(const struct btf *btf,
1857 				  const struct btf_type *t,
1858 				  u32 type_id, void *data,
1859 				  u8 bits_offset, struct seq_file *m)
1860 {
1861 	if (btf->resolved_ids)
1862 		t = btf_type_id_resolve(btf, &type_id);
1863 	else
1864 		t = btf_type_skip_modifiers(btf, type_id, NULL);
1865 
1866 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1867 }
1868 
1869 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t,
1870 			     u32 type_id, void *data, u8 bits_offset,
1871 			     struct seq_file *m)
1872 {
1873 	t = btf_type_id_resolve(btf, &type_id);
1874 
1875 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1876 }
1877 
1878 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1879 			     u32 type_id, void *data, u8 bits_offset,
1880 			     struct seq_file *m)
1881 {
1882 	/* It is a hashed value */
1883 	seq_printf(m, "%p", *(void **)data);
1884 }
1885 
1886 static void btf_ref_type_log(struct btf_verifier_env *env,
1887 			     const struct btf_type *t)
1888 {
1889 	btf_verifier_log(env, "type_id=%u", t->type);
1890 }
1891 
1892 static struct btf_kind_operations modifier_ops = {
1893 	.check_meta = btf_ref_type_check_meta,
1894 	.resolve = btf_modifier_resolve,
1895 	.check_member = btf_modifier_check_member,
1896 	.check_kflag_member = btf_modifier_check_kflag_member,
1897 	.log_details = btf_ref_type_log,
1898 	.seq_show = btf_modifier_seq_show,
1899 };
1900 
1901 static struct btf_kind_operations ptr_ops = {
1902 	.check_meta = btf_ref_type_check_meta,
1903 	.resolve = btf_ptr_resolve,
1904 	.check_member = btf_ptr_check_member,
1905 	.check_kflag_member = btf_generic_check_kflag_member,
1906 	.log_details = btf_ref_type_log,
1907 	.seq_show = btf_ptr_seq_show,
1908 };
1909 
1910 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1911 			      const struct btf_type *t,
1912 			      u32 meta_left)
1913 {
1914 	if (btf_type_vlen(t)) {
1915 		btf_verifier_log_type(env, t, "vlen != 0");
1916 		return -EINVAL;
1917 	}
1918 
1919 	if (t->type) {
1920 		btf_verifier_log_type(env, t, "type != 0");
1921 		return -EINVAL;
1922 	}
1923 
1924 	/* fwd type must have a valid name */
1925 	if (!t->name_off ||
1926 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1927 		btf_verifier_log_type(env, t, "Invalid name");
1928 		return -EINVAL;
1929 	}
1930 
1931 	btf_verifier_log_type(env, t, NULL);
1932 
1933 	return 0;
1934 }
1935 
1936 static void btf_fwd_type_log(struct btf_verifier_env *env,
1937 			     const struct btf_type *t)
1938 {
1939 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1940 }
1941 
1942 static struct btf_kind_operations fwd_ops = {
1943 	.check_meta = btf_fwd_check_meta,
1944 	.resolve = btf_df_resolve,
1945 	.check_member = btf_df_check_member,
1946 	.check_kflag_member = btf_df_check_kflag_member,
1947 	.log_details = btf_fwd_type_log,
1948 	.seq_show = btf_df_seq_show,
1949 };
1950 
1951 static int btf_array_check_member(struct btf_verifier_env *env,
1952 				  const struct btf_type *struct_type,
1953 				  const struct btf_member *member,
1954 				  const struct btf_type *member_type)
1955 {
1956 	u32 struct_bits_off = member->offset;
1957 	u32 struct_size, bytes_offset;
1958 	u32 array_type_id, array_size;
1959 	struct btf *btf = env->btf;
1960 
1961 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1962 		btf_verifier_log_member(env, struct_type, member,
1963 					"Member is not byte aligned");
1964 		return -EINVAL;
1965 	}
1966 
1967 	array_type_id = member->type;
1968 	btf_type_id_size(btf, &array_type_id, &array_size);
1969 	struct_size = struct_type->size;
1970 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1971 	if (struct_size - bytes_offset < array_size) {
1972 		btf_verifier_log_member(env, struct_type, member,
1973 					"Member exceeds struct_size");
1974 		return -EINVAL;
1975 	}
1976 
1977 	return 0;
1978 }
1979 
1980 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1981 				const struct btf_type *t,
1982 				u32 meta_left)
1983 {
1984 	const struct btf_array *array = btf_type_array(t);
1985 	u32 meta_needed = sizeof(*array);
1986 
1987 	if (meta_left < meta_needed) {
1988 		btf_verifier_log_basic(env, t,
1989 				       "meta_left:%u meta_needed:%u",
1990 				       meta_left, meta_needed);
1991 		return -EINVAL;
1992 	}
1993 
1994 	/* array type should not have a name */
1995 	if (t->name_off) {
1996 		btf_verifier_log_type(env, t, "Invalid name");
1997 		return -EINVAL;
1998 	}
1999 
2000 	if (btf_type_vlen(t)) {
2001 		btf_verifier_log_type(env, t, "vlen != 0");
2002 		return -EINVAL;
2003 	}
2004 
2005 	if (btf_type_kflag(t)) {
2006 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2007 		return -EINVAL;
2008 	}
2009 
2010 	if (t->size) {
2011 		btf_verifier_log_type(env, t, "size != 0");
2012 		return -EINVAL;
2013 	}
2014 
2015 	/* Array elem type and index type cannot be in type void,
2016 	 * so !array->type and !array->index_type are not allowed.
2017 	 */
2018 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2019 		btf_verifier_log_type(env, t, "Invalid elem");
2020 		return -EINVAL;
2021 	}
2022 
2023 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2024 		btf_verifier_log_type(env, t, "Invalid index");
2025 		return -EINVAL;
2026 	}
2027 
2028 	btf_verifier_log_type(env, t, NULL);
2029 
2030 	return meta_needed;
2031 }
2032 
2033 static int btf_array_resolve(struct btf_verifier_env *env,
2034 			     const struct resolve_vertex *v)
2035 {
2036 	const struct btf_array *array = btf_type_array(v->t);
2037 	const struct btf_type *elem_type, *index_type;
2038 	u32 elem_type_id, index_type_id;
2039 	struct btf *btf = env->btf;
2040 	u32 elem_size;
2041 
2042 	/* Check array->index_type */
2043 	index_type_id = array->index_type;
2044 	index_type = btf_type_by_id(btf, index_type_id);
2045 	if (btf_type_nosize_or_null(index_type) ||
2046 	    btf_type_is_resolve_source_only(index_type)) {
2047 		btf_verifier_log_type(env, v->t, "Invalid index");
2048 		return -EINVAL;
2049 	}
2050 
2051 	if (!env_type_is_resolve_sink(env, index_type) &&
2052 	    !env_type_is_resolved(env, index_type_id))
2053 		return env_stack_push(env, index_type, index_type_id);
2054 
2055 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2056 	if (!index_type || !btf_type_is_int(index_type) ||
2057 	    !btf_type_int_is_regular(index_type)) {
2058 		btf_verifier_log_type(env, v->t, "Invalid index");
2059 		return -EINVAL;
2060 	}
2061 
2062 	/* Check array->type */
2063 	elem_type_id = array->type;
2064 	elem_type = btf_type_by_id(btf, elem_type_id);
2065 	if (btf_type_nosize_or_null(elem_type) ||
2066 	    btf_type_is_resolve_source_only(elem_type)) {
2067 		btf_verifier_log_type(env, v->t,
2068 				      "Invalid elem");
2069 		return -EINVAL;
2070 	}
2071 
2072 	if (!env_type_is_resolve_sink(env, elem_type) &&
2073 	    !env_type_is_resolved(env, elem_type_id))
2074 		return env_stack_push(env, elem_type, elem_type_id);
2075 
2076 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2077 	if (!elem_type) {
2078 		btf_verifier_log_type(env, v->t, "Invalid elem");
2079 		return -EINVAL;
2080 	}
2081 
2082 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2083 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2084 		return -EINVAL;
2085 	}
2086 
2087 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2088 		btf_verifier_log_type(env, v->t,
2089 				      "Array size overflows U32_MAX");
2090 		return -EINVAL;
2091 	}
2092 
2093 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2094 
2095 	return 0;
2096 }
2097 
2098 static void btf_array_log(struct btf_verifier_env *env,
2099 			  const struct btf_type *t)
2100 {
2101 	const struct btf_array *array = btf_type_array(t);
2102 
2103 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2104 			 array->type, array->index_type, array->nelems);
2105 }
2106 
2107 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
2108 			       u32 type_id, void *data, u8 bits_offset,
2109 			       struct seq_file *m)
2110 {
2111 	const struct btf_array *array = btf_type_array(t);
2112 	const struct btf_kind_operations *elem_ops;
2113 	const struct btf_type *elem_type;
2114 	u32 i, elem_size, elem_type_id;
2115 
2116 	elem_type_id = array->type;
2117 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2118 	elem_ops = btf_type_ops(elem_type);
2119 	seq_puts(m, "[");
2120 	for (i = 0; i < array->nelems; i++) {
2121 		if (i)
2122 			seq_puts(m, ",");
2123 
2124 		elem_ops->seq_show(btf, elem_type, elem_type_id, data,
2125 				   bits_offset, m);
2126 		data += elem_size;
2127 	}
2128 	seq_puts(m, "]");
2129 }
2130 
2131 static struct btf_kind_operations array_ops = {
2132 	.check_meta = btf_array_check_meta,
2133 	.resolve = btf_array_resolve,
2134 	.check_member = btf_array_check_member,
2135 	.check_kflag_member = btf_generic_check_kflag_member,
2136 	.log_details = btf_array_log,
2137 	.seq_show = btf_array_seq_show,
2138 };
2139 
2140 static int btf_struct_check_member(struct btf_verifier_env *env,
2141 				   const struct btf_type *struct_type,
2142 				   const struct btf_member *member,
2143 				   const struct btf_type *member_type)
2144 {
2145 	u32 struct_bits_off = member->offset;
2146 	u32 struct_size, bytes_offset;
2147 
2148 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2149 		btf_verifier_log_member(env, struct_type, member,
2150 					"Member is not byte aligned");
2151 		return -EINVAL;
2152 	}
2153 
2154 	struct_size = struct_type->size;
2155 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2156 	if (struct_size - bytes_offset < member_type->size) {
2157 		btf_verifier_log_member(env, struct_type, member,
2158 					"Member exceeds struct_size");
2159 		return -EINVAL;
2160 	}
2161 
2162 	return 0;
2163 }
2164 
2165 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2166 				 const struct btf_type *t,
2167 				 u32 meta_left)
2168 {
2169 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2170 	const struct btf_member *member;
2171 	u32 meta_needed, last_offset;
2172 	struct btf *btf = env->btf;
2173 	u32 struct_size = t->size;
2174 	u32 offset;
2175 	u16 i;
2176 
2177 	meta_needed = btf_type_vlen(t) * sizeof(*member);
2178 	if (meta_left < meta_needed) {
2179 		btf_verifier_log_basic(env, t,
2180 				       "meta_left:%u meta_needed:%u",
2181 				       meta_left, meta_needed);
2182 		return -EINVAL;
2183 	}
2184 
2185 	/* struct type either no name or a valid one */
2186 	if (t->name_off &&
2187 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2188 		btf_verifier_log_type(env, t, "Invalid name");
2189 		return -EINVAL;
2190 	}
2191 
2192 	btf_verifier_log_type(env, t, NULL);
2193 
2194 	last_offset = 0;
2195 	for_each_member(i, t, member) {
2196 		if (!btf_name_offset_valid(btf, member->name_off)) {
2197 			btf_verifier_log_member(env, t, member,
2198 						"Invalid member name_offset:%u",
2199 						member->name_off);
2200 			return -EINVAL;
2201 		}
2202 
2203 		/* struct member either no name or a valid one */
2204 		if (member->name_off &&
2205 		    !btf_name_valid_identifier(btf, member->name_off)) {
2206 			btf_verifier_log_member(env, t, member, "Invalid name");
2207 			return -EINVAL;
2208 		}
2209 		/* A member cannot be in type void */
2210 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2211 			btf_verifier_log_member(env, t, member,
2212 						"Invalid type_id");
2213 			return -EINVAL;
2214 		}
2215 
2216 		offset = btf_member_bit_offset(t, member);
2217 		if (is_union && offset) {
2218 			btf_verifier_log_member(env, t, member,
2219 						"Invalid member bits_offset");
2220 			return -EINVAL;
2221 		}
2222 
2223 		/*
2224 		 * ">" instead of ">=" because the last member could be
2225 		 * "char a[0];"
2226 		 */
2227 		if (last_offset > offset) {
2228 			btf_verifier_log_member(env, t, member,
2229 						"Invalid member bits_offset");
2230 			return -EINVAL;
2231 		}
2232 
2233 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2234 			btf_verifier_log_member(env, t, member,
2235 						"Member bits_offset exceeds its struct size");
2236 			return -EINVAL;
2237 		}
2238 
2239 		btf_verifier_log_member(env, t, member, NULL);
2240 		last_offset = offset;
2241 	}
2242 
2243 	return meta_needed;
2244 }
2245 
2246 static int btf_struct_resolve(struct btf_verifier_env *env,
2247 			      const struct resolve_vertex *v)
2248 {
2249 	const struct btf_member *member;
2250 	int err;
2251 	u16 i;
2252 
2253 	/* Before continue resolving the next_member,
2254 	 * ensure the last member is indeed resolved to a
2255 	 * type with size info.
2256 	 */
2257 	if (v->next_member) {
2258 		const struct btf_type *last_member_type;
2259 		const struct btf_member *last_member;
2260 		u16 last_member_type_id;
2261 
2262 		last_member = btf_type_member(v->t) + v->next_member - 1;
2263 		last_member_type_id = last_member->type;
2264 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
2265 						       last_member_type_id)))
2266 			return -EINVAL;
2267 
2268 		last_member_type = btf_type_by_id(env->btf,
2269 						  last_member_type_id);
2270 		if (btf_type_kflag(v->t))
2271 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2272 								last_member,
2273 								last_member_type);
2274 		else
2275 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
2276 								last_member,
2277 								last_member_type);
2278 		if (err)
2279 			return err;
2280 	}
2281 
2282 	for_each_member_from(i, v->next_member, v->t, member) {
2283 		u32 member_type_id = member->type;
2284 		const struct btf_type *member_type = btf_type_by_id(env->btf,
2285 								member_type_id);
2286 
2287 		if (btf_type_nosize_or_null(member_type) ||
2288 		    btf_type_is_resolve_source_only(member_type)) {
2289 			btf_verifier_log_member(env, v->t, member,
2290 						"Invalid member");
2291 			return -EINVAL;
2292 		}
2293 
2294 		if (!env_type_is_resolve_sink(env, member_type) &&
2295 		    !env_type_is_resolved(env, member_type_id)) {
2296 			env_stack_set_next_member(env, i + 1);
2297 			return env_stack_push(env, member_type, member_type_id);
2298 		}
2299 
2300 		if (btf_type_kflag(v->t))
2301 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2302 									    member,
2303 									    member_type);
2304 		else
2305 			err = btf_type_ops(member_type)->check_member(env, v->t,
2306 								      member,
2307 								      member_type);
2308 		if (err)
2309 			return err;
2310 	}
2311 
2312 	env_stack_pop_resolved(env, 0, 0);
2313 
2314 	return 0;
2315 }
2316 
2317 static void btf_struct_log(struct btf_verifier_env *env,
2318 			   const struct btf_type *t)
2319 {
2320 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2321 }
2322 
2323 /* find 'struct bpf_spin_lock' in map value.
2324  * return >= 0 offset if found
2325  * and < 0 in case of error
2326  */
2327 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2328 {
2329 	const struct btf_member *member;
2330 	u32 i, off = -ENOENT;
2331 
2332 	if (!__btf_type_is_struct(t))
2333 		return -EINVAL;
2334 
2335 	for_each_member(i, t, member) {
2336 		const struct btf_type *member_type = btf_type_by_id(btf,
2337 								    member->type);
2338 		if (!__btf_type_is_struct(member_type))
2339 			continue;
2340 		if (member_type->size != sizeof(struct bpf_spin_lock))
2341 			continue;
2342 		if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2343 			   "bpf_spin_lock"))
2344 			continue;
2345 		if (off != -ENOENT)
2346 			/* only one 'struct bpf_spin_lock' is allowed */
2347 			return -E2BIG;
2348 		off = btf_member_bit_offset(t, member);
2349 		if (off % 8)
2350 			/* valid C code cannot generate such BTF */
2351 			return -EINVAL;
2352 		off /= 8;
2353 		if (off % __alignof__(struct bpf_spin_lock))
2354 			/* valid struct bpf_spin_lock will be 4 byte aligned */
2355 			return -EINVAL;
2356 	}
2357 	return off;
2358 }
2359 
2360 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
2361 				u32 type_id, void *data, u8 bits_offset,
2362 				struct seq_file *m)
2363 {
2364 	const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
2365 	const struct btf_member *member;
2366 	u32 i;
2367 
2368 	seq_puts(m, "{");
2369 	for_each_member(i, t, member) {
2370 		const struct btf_type *member_type = btf_type_by_id(btf,
2371 								member->type);
2372 		const struct btf_kind_operations *ops;
2373 		u32 member_offset, bitfield_size;
2374 		u32 bytes_offset;
2375 		u8 bits8_offset;
2376 
2377 		if (i)
2378 			seq_puts(m, seq);
2379 
2380 		member_offset = btf_member_bit_offset(t, member);
2381 		bitfield_size = btf_member_bitfield_size(t, member);
2382 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2383 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2384 		if (bitfield_size) {
2385 			btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
2386 					      bitfield_size, m);
2387 		} else {
2388 			ops = btf_type_ops(member_type);
2389 			ops->seq_show(btf, member_type, member->type,
2390 				      data + bytes_offset, bits8_offset, m);
2391 		}
2392 	}
2393 	seq_puts(m, "}");
2394 }
2395 
2396 static struct btf_kind_operations struct_ops = {
2397 	.check_meta = btf_struct_check_meta,
2398 	.resolve = btf_struct_resolve,
2399 	.check_member = btf_struct_check_member,
2400 	.check_kflag_member = btf_generic_check_kflag_member,
2401 	.log_details = btf_struct_log,
2402 	.seq_show = btf_struct_seq_show,
2403 };
2404 
2405 static int btf_enum_check_member(struct btf_verifier_env *env,
2406 				 const struct btf_type *struct_type,
2407 				 const struct btf_member *member,
2408 				 const struct btf_type *member_type)
2409 {
2410 	u32 struct_bits_off = member->offset;
2411 	u32 struct_size, bytes_offset;
2412 
2413 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2414 		btf_verifier_log_member(env, struct_type, member,
2415 					"Member is not byte aligned");
2416 		return -EINVAL;
2417 	}
2418 
2419 	struct_size = struct_type->size;
2420 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2421 	if (struct_size - bytes_offset < member_type->size) {
2422 		btf_verifier_log_member(env, struct_type, member,
2423 					"Member exceeds struct_size");
2424 		return -EINVAL;
2425 	}
2426 
2427 	return 0;
2428 }
2429 
2430 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2431 				       const struct btf_type *struct_type,
2432 				       const struct btf_member *member,
2433 				       const struct btf_type *member_type)
2434 {
2435 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2436 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2437 
2438 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2439 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2440 	if (!nr_bits) {
2441 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2442 			btf_verifier_log_member(env, struct_type, member,
2443 						"Member is not byte aligned");
2444 			return -EINVAL;
2445 		}
2446 
2447 		nr_bits = int_bitsize;
2448 	} else if (nr_bits > int_bitsize) {
2449 		btf_verifier_log_member(env, struct_type, member,
2450 					"Invalid member bitfield_size");
2451 		return -EINVAL;
2452 	}
2453 
2454 	struct_size = struct_type->size;
2455 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2456 	if (struct_size < bytes_end) {
2457 		btf_verifier_log_member(env, struct_type, member,
2458 					"Member exceeds struct_size");
2459 		return -EINVAL;
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2466 			       const struct btf_type *t,
2467 			       u32 meta_left)
2468 {
2469 	const struct btf_enum *enums = btf_type_enum(t);
2470 	struct btf *btf = env->btf;
2471 	u16 i, nr_enums;
2472 	u32 meta_needed;
2473 
2474 	nr_enums = btf_type_vlen(t);
2475 	meta_needed = nr_enums * sizeof(*enums);
2476 
2477 	if (meta_left < meta_needed) {
2478 		btf_verifier_log_basic(env, t,
2479 				       "meta_left:%u meta_needed:%u",
2480 				       meta_left, meta_needed);
2481 		return -EINVAL;
2482 	}
2483 
2484 	if (btf_type_kflag(t)) {
2485 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2486 		return -EINVAL;
2487 	}
2488 
2489 	if (t->size > 8 || !is_power_of_2(t->size)) {
2490 		btf_verifier_log_type(env, t, "Unexpected size");
2491 		return -EINVAL;
2492 	}
2493 
2494 	/* enum type either no name or a valid one */
2495 	if (t->name_off &&
2496 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2497 		btf_verifier_log_type(env, t, "Invalid name");
2498 		return -EINVAL;
2499 	}
2500 
2501 	btf_verifier_log_type(env, t, NULL);
2502 
2503 	for (i = 0; i < nr_enums; i++) {
2504 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2505 			btf_verifier_log(env, "\tInvalid name_offset:%u",
2506 					 enums[i].name_off);
2507 			return -EINVAL;
2508 		}
2509 
2510 		/* enum member must have a valid name */
2511 		if (!enums[i].name_off ||
2512 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
2513 			btf_verifier_log_type(env, t, "Invalid name");
2514 			return -EINVAL;
2515 		}
2516 
2517 		if (env->log.level == BPF_LOG_KERNEL)
2518 			continue;
2519 		btf_verifier_log(env, "\t%s val=%d\n",
2520 				 __btf_name_by_offset(btf, enums[i].name_off),
2521 				 enums[i].val);
2522 	}
2523 
2524 	return meta_needed;
2525 }
2526 
2527 static void btf_enum_log(struct btf_verifier_env *env,
2528 			 const struct btf_type *t)
2529 {
2530 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2531 }
2532 
2533 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2534 			      u32 type_id, void *data, u8 bits_offset,
2535 			      struct seq_file *m)
2536 {
2537 	const struct btf_enum *enums = btf_type_enum(t);
2538 	u32 i, nr_enums = btf_type_vlen(t);
2539 	int v = *(int *)data;
2540 
2541 	for (i = 0; i < nr_enums; i++) {
2542 		if (v == enums[i].val) {
2543 			seq_printf(m, "%s",
2544 				   __btf_name_by_offset(btf,
2545 							enums[i].name_off));
2546 			return;
2547 		}
2548 	}
2549 
2550 	seq_printf(m, "%d", v);
2551 }
2552 
2553 static struct btf_kind_operations enum_ops = {
2554 	.check_meta = btf_enum_check_meta,
2555 	.resolve = btf_df_resolve,
2556 	.check_member = btf_enum_check_member,
2557 	.check_kflag_member = btf_enum_check_kflag_member,
2558 	.log_details = btf_enum_log,
2559 	.seq_show = btf_enum_seq_show,
2560 };
2561 
2562 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2563 				     const struct btf_type *t,
2564 				     u32 meta_left)
2565 {
2566 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2567 
2568 	if (meta_left < meta_needed) {
2569 		btf_verifier_log_basic(env, t,
2570 				       "meta_left:%u meta_needed:%u",
2571 				       meta_left, meta_needed);
2572 		return -EINVAL;
2573 	}
2574 
2575 	if (t->name_off) {
2576 		btf_verifier_log_type(env, t, "Invalid name");
2577 		return -EINVAL;
2578 	}
2579 
2580 	if (btf_type_kflag(t)) {
2581 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2582 		return -EINVAL;
2583 	}
2584 
2585 	btf_verifier_log_type(env, t, NULL);
2586 
2587 	return meta_needed;
2588 }
2589 
2590 static void btf_func_proto_log(struct btf_verifier_env *env,
2591 			       const struct btf_type *t)
2592 {
2593 	const struct btf_param *args = (const struct btf_param *)(t + 1);
2594 	u16 nr_args = btf_type_vlen(t), i;
2595 
2596 	btf_verifier_log(env, "return=%u args=(", t->type);
2597 	if (!nr_args) {
2598 		btf_verifier_log(env, "void");
2599 		goto done;
2600 	}
2601 
2602 	if (nr_args == 1 && !args[0].type) {
2603 		/* Only one vararg */
2604 		btf_verifier_log(env, "vararg");
2605 		goto done;
2606 	}
2607 
2608 	btf_verifier_log(env, "%u %s", args[0].type,
2609 			 __btf_name_by_offset(env->btf,
2610 					      args[0].name_off));
2611 	for (i = 1; i < nr_args - 1; i++)
2612 		btf_verifier_log(env, ", %u %s", args[i].type,
2613 				 __btf_name_by_offset(env->btf,
2614 						      args[i].name_off));
2615 
2616 	if (nr_args > 1) {
2617 		const struct btf_param *last_arg = &args[nr_args - 1];
2618 
2619 		if (last_arg->type)
2620 			btf_verifier_log(env, ", %u %s", last_arg->type,
2621 					 __btf_name_by_offset(env->btf,
2622 							      last_arg->name_off));
2623 		else
2624 			btf_verifier_log(env, ", vararg");
2625 	}
2626 
2627 done:
2628 	btf_verifier_log(env, ")");
2629 }
2630 
2631 static struct btf_kind_operations func_proto_ops = {
2632 	.check_meta = btf_func_proto_check_meta,
2633 	.resolve = btf_df_resolve,
2634 	/*
2635 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
2636 	 * a struct's member.
2637 	 *
2638 	 * It should be a funciton pointer instead.
2639 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2640 	 *
2641 	 * Hence, there is no btf_func_check_member().
2642 	 */
2643 	.check_member = btf_df_check_member,
2644 	.check_kflag_member = btf_df_check_kflag_member,
2645 	.log_details = btf_func_proto_log,
2646 	.seq_show = btf_df_seq_show,
2647 };
2648 
2649 static s32 btf_func_check_meta(struct btf_verifier_env *env,
2650 			       const struct btf_type *t,
2651 			       u32 meta_left)
2652 {
2653 	if (!t->name_off ||
2654 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2655 		btf_verifier_log_type(env, t, "Invalid name");
2656 		return -EINVAL;
2657 	}
2658 
2659 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
2660 		btf_verifier_log_type(env, t, "Invalid func linkage");
2661 		return -EINVAL;
2662 	}
2663 
2664 	if (btf_type_kflag(t)) {
2665 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2666 		return -EINVAL;
2667 	}
2668 
2669 	btf_verifier_log_type(env, t, NULL);
2670 
2671 	return 0;
2672 }
2673 
2674 static struct btf_kind_operations func_ops = {
2675 	.check_meta = btf_func_check_meta,
2676 	.resolve = btf_df_resolve,
2677 	.check_member = btf_df_check_member,
2678 	.check_kflag_member = btf_df_check_kflag_member,
2679 	.log_details = btf_ref_type_log,
2680 	.seq_show = btf_df_seq_show,
2681 };
2682 
2683 static s32 btf_var_check_meta(struct btf_verifier_env *env,
2684 			      const struct btf_type *t,
2685 			      u32 meta_left)
2686 {
2687 	const struct btf_var *var;
2688 	u32 meta_needed = sizeof(*var);
2689 
2690 	if (meta_left < meta_needed) {
2691 		btf_verifier_log_basic(env, t,
2692 				       "meta_left:%u meta_needed:%u",
2693 				       meta_left, meta_needed);
2694 		return -EINVAL;
2695 	}
2696 
2697 	if (btf_type_vlen(t)) {
2698 		btf_verifier_log_type(env, t, "vlen != 0");
2699 		return -EINVAL;
2700 	}
2701 
2702 	if (btf_type_kflag(t)) {
2703 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2704 		return -EINVAL;
2705 	}
2706 
2707 	if (!t->name_off ||
2708 	    !__btf_name_valid(env->btf, t->name_off, true)) {
2709 		btf_verifier_log_type(env, t, "Invalid name");
2710 		return -EINVAL;
2711 	}
2712 
2713 	/* A var cannot be in type void */
2714 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
2715 		btf_verifier_log_type(env, t, "Invalid type_id");
2716 		return -EINVAL;
2717 	}
2718 
2719 	var = btf_type_var(t);
2720 	if (var->linkage != BTF_VAR_STATIC &&
2721 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2722 		btf_verifier_log_type(env, t, "Linkage not supported");
2723 		return -EINVAL;
2724 	}
2725 
2726 	btf_verifier_log_type(env, t, NULL);
2727 
2728 	return meta_needed;
2729 }
2730 
2731 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
2732 {
2733 	const struct btf_var *var = btf_type_var(t);
2734 
2735 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
2736 }
2737 
2738 static const struct btf_kind_operations var_ops = {
2739 	.check_meta		= btf_var_check_meta,
2740 	.resolve		= btf_var_resolve,
2741 	.check_member		= btf_df_check_member,
2742 	.check_kflag_member	= btf_df_check_kflag_member,
2743 	.log_details		= btf_var_log,
2744 	.seq_show		= btf_var_seq_show,
2745 };
2746 
2747 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
2748 				  const struct btf_type *t,
2749 				  u32 meta_left)
2750 {
2751 	const struct btf_var_secinfo *vsi;
2752 	u64 last_vsi_end_off = 0, sum = 0;
2753 	u32 i, meta_needed;
2754 
2755 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
2756 	if (meta_left < meta_needed) {
2757 		btf_verifier_log_basic(env, t,
2758 				       "meta_left:%u meta_needed:%u",
2759 				       meta_left, meta_needed);
2760 		return -EINVAL;
2761 	}
2762 
2763 	if (!btf_type_vlen(t)) {
2764 		btf_verifier_log_type(env, t, "vlen == 0");
2765 		return -EINVAL;
2766 	}
2767 
2768 	if (!t->size) {
2769 		btf_verifier_log_type(env, t, "size == 0");
2770 		return -EINVAL;
2771 	}
2772 
2773 	if (btf_type_kflag(t)) {
2774 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2775 		return -EINVAL;
2776 	}
2777 
2778 	if (!t->name_off ||
2779 	    !btf_name_valid_section(env->btf, t->name_off)) {
2780 		btf_verifier_log_type(env, t, "Invalid name");
2781 		return -EINVAL;
2782 	}
2783 
2784 	btf_verifier_log_type(env, t, NULL);
2785 
2786 	for_each_vsi(i, t, vsi) {
2787 		/* A var cannot be in type void */
2788 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
2789 			btf_verifier_log_vsi(env, t, vsi,
2790 					     "Invalid type_id");
2791 			return -EINVAL;
2792 		}
2793 
2794 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
2795 			btf_verifier_log_vsi(env, t, vsi,
2796 					     "Invalid offset");
2797 			return -EINVAL;
2798 		}
2799 
2800 		if (!vsi->size || vsi->size > t->size) {
2801 			btf_verifier_log_vsi(env, t, vsi,
2802 					     "Invalid size");
2803 			return -EINVAL;
2804 		}
2805 
2806 		last_vsi_end_off = vsi->offset + vsi->size;
2807 		if (last_vsi_end_off > t->size) {
2808 			btf_verifier_log_vsi(env, t, vsi,
2809 					     "Invalid offset+size");
2810 			return -EINVAL;
2811 		}
2812 
2813 		btf_verifier_log_vsi(env, t, vsi, NULL);
2814 		sum += vsi->size;
2815 	}
2816 
2817 	if (t->size < sum) {
2818 		btf_verifier_log_type(env, t, "Invalid btf_info size");
2819 		return -EINVAL;
2820 	}
2821 
2822 	return meta_needed;
2823 }
2824 
2825 static int btf_datasec_resolve(struct btf_verifier_env *env,
2826 			       const struct resolve_vertex *v)
2827 {
2828 	const struct btf_var_secinfo *vsi;
2829 	struct btf *btf = env->btf;
2830 	u16 i;
2831 
2832 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
2833 		u32 var_type_id = vsi->type, type_id, type_size = 0;
2834 		const struct btf_type *var_type = btf_type_by_id(env->btf,
2835 								 var_type_id);
2836 		if (!var_type || !btf_type_is_var(var_type)) {
2837 			btf_verifier_log_vsi(env, v->t, vsi,
2838 					     "Not a VAR kind member");
2839 			return -EINVAL;
2840 		}
2841 
2842 		if (!env_type_is_resolve_sink(env, var_type) &&
2843 		    !env_type_is_resolved(env, var_type_id)) {
2844 			env_stack_set_next_member(env, i + 1);
2845 			return env_stack_push(env, var_type, var_type_id);
2846 		}
2847 
2848 		type_id = var_type->type;
2849 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
2850 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
2851 			return -EINVAL;
2852 		}
2853 
2854 		if (vsi->size < type_size) {
2855 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
2856 			return -EINVAL;
2857 		}
2858 	}
2859 
2860 	env_stack_pop_resolved(env, 0, 0);
2861 	return 0;
2862 }
2863 
2864 static void btf_datasec_log(struct btf_verifier_env *env,
2865 			    const struct btf_type *t)
2866 {
2867 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2868 }
2869 
2870 static void btf_datasec_seq_show(const struct btf *btf,
2871 				 const struct btf_type *t, u32 type_id,
2872 				 void *data, u8 bits_offset,
2873 				 struct seq_file *m)
2874 {
2875 	const struct btf_var_secinfo *vsi;
2876 	const struct btf_type *var;
2877 	u32 i;
2878 
2879 	seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off));
2880 	for_each_vsi(i, t, vsi) {
2881 		var = btf_type_by_id(btf, vsi->type);
2882 		if (i)
2883 			seq_puts(m, ",");
2884 		btf_type_ops(var)->seq_show(btf, var, vsi->type,
2885 					    data + vsi->offset, bits_offset, m);
2886 	}
2887 	seq_puts(m, "}");
2888 }
2889 
2890 static const struct btf_kind_operations datasec_ops = {
2891 	.check_meta		= btf_datasec_check_meta,
2892 	.resolve		= btf_datasec_resolve,
2893 	.check_member		= btf_df_check_member,
2894 	.check_kflag_member	= btf_df_check_kflag_member,
2895 	.log_details		= btf_datasec_log,
2896 	.seq_show		= btf_datasec_seq_show,
2897 };
2898 
2899 static int btf_func_proto_check(struct btf_verifier_env *env,
2900 				const struct btf_type *t)
2901 {
2902 	const struct btf_type *ret_type;
2903 	const struct btf_param *args;
2904 	const struct btf *btf;
2905 	u16 nr_args, i;
2906 	int err;
2907 
2908 	btf = env->btf;
2909 	args = (const struct btf_param *)(t + 1);
2910 	nr_args = btf_type_vlen(t);
2911 
2912 	/* Check func return type which could be "void" (t->type == 0) */
2913 	if (t->type) {
2914 		u32 ret_type_id = t->type;
2915 
2916 		ret_type = btf_type_by_id(btf, ret_type_id);
2917 		if (!ret_type) {
2918 			btf_verifier_log_type(env, t, "Invalid return type");
2919 			return -EINVAL;
2920 		}
2921 
2922 		if (btf_type_needs_resolve(ret_type) &&
2923 		    !env_type_is_resolved(env, ret_type_id)) {
2924 			err = btf_resolve(env, ret_type, ret_type_id);
2925 			if (err)
2926 				return err;
2927 		}
2928 
2929 		/* Ensure the return type is a type that has a size */
2930 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2931 			btf_verifier_log_type(env, t, "Invalid return type");
2932 			return -EINVAL;
2933 		}
2934 	}
2935 
2936 	if (!nr_args)
2937 		return 0;
2938 
2939 	/* Last func arg type_id could be 0 if it is a vararg */
2940 	if (!args[nr_args - 1].type) {
2941 		if (args[nr_args - 1].name_off) {
2942 			btf_verifier_log_type(env, t, "Invalid arg#%u",
2943 					      nr_args);
2944 			return -EINVAL;
2945 		}
2946 		nr_args--;
2947 	}
2948 
2949 	err = 0;
2950 	for (i = 0; i < nr_args; i++) {
2951 		const struct btf_type *arg_type;
2952 		u32 arg_type_id;
2953 
2954 		arg_type_id = args[i].type;
2955 		arg_type = btf_type_by_id(btf, arg_type_id);
2956 		if (!arg_type) {
2957 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2958 			err = -EINVAL;
2959 			break;
2960 		}
2961 
2962 		if (args[i].name_off &&
2963 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
2964 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
2965 			btf_verifier_log_type(env, t,
2966 					      "Invalid arg#%u", i + 1);
2967 			err = -EINVAL;
2968 			break;
2969 		}
2970 
2971 		if (btf_type_needs_resolve(arg_type) &&
2972 		    !env_type_is_resolved(env, arg_type_id)) {
2973 			err = btf_resolve(env, arg_type, arg_type_id);
2974 			if (err)
2975 				break;
2976 		}
2977 
2978 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2979 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2980 			err = -EINVAL;
2981 			break;
2982 		}
2983 	}
2984 
2985 	return err;
2986 }
2987 
2988 static int btf_func_check(struct btf_verifier_env *env,
2989 			  const struct btf_type *t)
2990 {
2991 	const struct btf_type *proto_type;
2992 	const struct btf_param *args;
2993 	const struct btf *btf;
2994 	u16 nr_args, i;
2995 
2996 	btf = env->btf;
2997 	proto_type = btf_type_by_id(btf, t->type);
2998 
2999 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3000 		btf_verifier_log_type(env, t, "Invalid type_id");
3001 		return -EINVAL;
3002 	}
3003 
3004 	args = (const struct btf_param *)(proto_type + 1);
3005 	nr_args = btf_type_vlen(proto_type);
3006 	for (i = 0; i < nr_args; i++) {
3007 		if (!args[i].name_off && args[i].type) {
3008 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3009 			return -EINVAL;
3010 		}
3011 	}
3012 
3013 	return 0;
3014 }
3015 
3016 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3017 	[BTF_KIND_INT] = &int_ops,
3018 	[BTF_KIND_PTR] = &ptr_ops,
3019 	[BTF_KIND_ARRAY] = &array_ops,
3020 	[BTF_KIND_STRUCT] = &struct_ops,
3021 	[BTF_KIND_UNION] = &struct_ops,
3022 	[BTF_KIND_ENUM] = &enum_ops,
3023 	[BTF_KIND_FWD] = &fwd_ops,
3024 	[BTF_KIND_TYPEDEF] = &modifier_ops,
3025 	[BTF_KIND_VOLATILE] = &modifier_ops,
3026 	[BTF_KIND_CONST] = &modifier_ops,
3027 	[BTF_KIND_RESTRICT] = &modifier_ops,
3028 	[BTF_KIND_FUNC] = &func_ops,
3029 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3030 	[BTF_KIND_VAR] = &var_ops,
3031 	[BTF_KIND_DATASEC] = &datasec_ops,
3032 };
3033 
3034 static s32 btf_check_meta(struct btf_verifier_env *env,
3035 			  const struct btf_type *t,
3036 			  u32 meta_left)
3037 {
3038 	u32 saved_meta_left = meta_left;
3039 	s32 var_meta_size;
3040 
3041 	if (meta_left < sizeof(*t)) {
3042 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3043 				 env->log_type_id, meta_left, sizeof(*t));
3044 		return -EINVAL;
3045 	}
3046 	meta_left -= sizeof(*t);
3047 
3048 	if (t->info & ~BTF_INFO_MASK) {
3049 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3050 				 env->log_type_id, t->info);
3051 		return -EINVAL;
3052 	}
3053 
3054 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3055 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3056 		btf_verifier_log(env, "[%u] Invalid kind:%u",
3057 				 env->log_type_id, BTF_INFO_KIND(t->info));
3058 		return -EINVAL;
3059 	}
3060 
3061 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
3062 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3063 				 env->log_type_id, t->name_off);
3064 		return -EINVAL;
3065 	}
3066 
3067 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3068 	if (var_meta_size < 0)
3069 		return var_meta_size;
3070 
3071 	meta_left -= var_meta_size;
3072 
3073 	return saved_meta_left - meta_left;
3074 }
3075 
3076 static int btf_check_all_metas(struct btf_verifier_env *env)
3077 {
3078 	struct btf *btf = env->btf;
3079 	struct btf_header *hdr;
3080 	void *cur, *end;
3081 
3082 	hdr = &btf->hdr;
3083 	cur = btf->nohdr_data + hdr->type_off;
3084 	end = cur + hdr->type_len;
3085 
3086 	env->log_type_id = 1;
3087 	while (cur < end) {
3088 		struct btf_type *t = cur;
3089 		s32 meta_size;
3090 
3091 		meta_size = btf_check_meta(env, t, end - cur);
3092 		if (meta_size < 0)
3093 			return meta_size;
3094 
3095 		btf_add_type(env, t);
3096 		cur += meta_size;
3097 		env->log_type_id++;
3098 	}
3099 
3100 	return 0;
3101 }
3102 
3103 static bool btf_resolve_valid(struct btf_verifier_env *env,
3104 			      const struct btf_type *t,
3105 			      u32 type_id)
3106 {
3107 	struct btf *btf = env->btf;
3108 
3109 	if (!env_type_is_resolved(env, type_id))
3110 		return false;
3111 
3112 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3113 		return !btf->resolved_ids[type_id] &&
3114 		       !btf->resolved_sizes[type_id];
3115 
3116 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3117 	    btf_type_is_var(t)) {
3118 		t = btf_type_id_resolve(btf, &type_id);
3119 		return t &&
3120 		       !btf_type_is_modifier(t) &&
3121 		       !btf_type_is_var(t) &&
3122 		       !btf_type_is_datasec(t);
3123 	}
3124 
3125 	if (btf_type_is_array(t)) {
3126 		const struct btf_array *array = btf_type_array(t);
3127 		const struct btf_type *elem_type;
3128 		u32 elem_type_id = array->type;
3129 		u32 elem_size;
3130 
3131 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3132 		return elem_type && !btf_type_is_modifier(elem_type) &&
3133 			(array->nelems * elem_size ==
3134 			 btf->resolved_sizes[type_id]);
3135 	}
3136 
3137 	return false;
3138 }
3139 
3140 static int btf_resolve(struct btf_verifier_env *env,
3141 		       const struct btf_type *t, u32 type_id)
3142 {
3143 	u32 save_log_type_id = env->log_type_id;
3144 	const struct resolve_vertex *v;
3145 	int err = 0;
3146 
3147 	env->resolve_mode = RESOLVE_TBD;
3148 	env_stack_push(env, t, type_id);
3149 	while (!err && (v = env_stack_peak(env))) {
3150 		env->log_type_id = v->type_id;
3151 		err = btf_type_ops(v->t)->resolve(env, v);
3152 	}
3153 
3154 	env->log_type_id = type_id;
3155 	if (err == -E2BIG) {
3156 		btf_verifier_log_type(env, t,
3157 				      "Exceeded max resolving depth:%u",
3158 				      MAX_RESOLVE_DEPTH);
3159 	} else if (err == -EEXIST) {
3160 		btf_verifier_log_type(env, t, "Loop detected");
3161 	}
3162 
3163 	/* Final sanity check */
3164 	if (!err && !btf_resolve_valid(env, t, type_id)) {
3165 		btf_verifier_log_type(env, t, "Invalid resolve state");
3166 		err = -EINVAL;
3167 	}
3168 
3169 	env->log_type_id = save_log_type_id;
3170 	return err;
3171 }
3172 
3173 static int btf_check_all_types(struct btf_verifier_env *env)
3174 {
3175 	struct btf *btf = env->btf;
3176 	u32 type_id;
3177 	int err;
3178 
3179 	err = env_resolve_init(env);
3180 	if (err)
3181 		return err;
3182 
3183 	env->phase++;
3184 	for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3185 		const struct btf_type *t = btf_type_by_id(btf, type_id);
3186 
3187 		env->log_type_id = type_id;
3188 		if (btf_type_needs_resolve(t) &&
3189 		    !env_type_is_resolved(env, type_id)) {
3190 			err = btf_resolve(env, t, type_id);
3191 			if (err)
3192 				return err;
3193 		}
3194 
3195 		if (btf_type_is_func_proto(t)) {
3196 			err = btf_func_proto_check(env, t);
3197 			if (err)
3198 				return err;
3199 		}
3200 
3201 		if (btf_type_is_func(t)) {
3202 			err = btf_func_check(env, t);
3203 			if (err)
3204 				return err;
3205 		}
3206 	}
3207 
3208 	return 0;
3209 }
3210 
3211 static int btf_parse_type_sec(struct btf_verifier_env *env)
3212 {
3213 	const struct btf_header *hdr = &env->btf->hdr;
3214 	int err;
3215 
3216 	/* Type section must align to 4 bytes */
3217 	if (hdr->type_off & (sizeof(u32) - 1)) {
3218 		btf_verifier_log(env, "Unaligned type_off");
3219 		return -EINVAL;
3220 	}
3221 
3222 	if (!hdr->type_len) {
3223 		btf_verifier_log(env, "No type found");
3224 		return -EINVAL;
3225 	}
3226 
3227 	err = btf_check_all_metas(env);
3228 	if (err)
3229 		return err;
3230 
3231 	return btf_check_all_types(env);
3232 }
3233 
3234 static int btf_parse_str_sec(struct btf_verifier_env *env)
3235 {
3236 	const struct btf_header *hdr;
3237 	struct btf *btf = env->btf;
3238 	const char *start, *end;
3239 
3240 	hdr = &btf->hdr;
3241 	start = btf->nohdr_data + hdr->str_off;
3242 	end = start + hdr->str_len;
3243 
3244 	if (end != btf->data + btf->data_size) {
3245 		btf_verifier_log(env, "String section is not at the end");
3246 		return -EINVAL;
3247 	}
3248 
3249 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3250 	    start[0] || end[-1]) {
3251 		btf_verifier_log(env, "Invalid string section");
3252 		return -EINVAL;
3253 	}
3254 
3255 	btf->strings = start;
3256 
3257 	return 0;
3258 }
3259 
3260 static const size_t btf_sec_info_offset[] = {
3261 	offsetof(struct btf_header, type_off),
3262 	offsetof(struct btf_header, str_off),
3263 };
3264 
3265 static int btf_sec_info_cmp(const void *a, const void *b)
3266 {
3267 	const struct btf_sec_info *x = a;
3268 	const struct btf_sec_info *y = b;
3269 
3270 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3271 }
3272 
3273 static int btf_check_sec_info(struct btf_verifier_env *env,
3274 			      u32 btf_data_size)
3275 {
3276 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3277 	u32 total, expected_total, i;
3278 	const struct btf_header *hdr;
3279 	const struct btf *btf;
3280 
3281 	btf = env->btf;
3282 	hdr = &btf->hdr;
3283 
3284 	/* Populate the secs from hdr */
3285 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
3286 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
3287 						   btf_sec_info_offset[i]);
3288 
3289 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
3290 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
3291 
3292 	/* Check for gaps and overlap among sections */
3293 	total = 0;
3294 	expected_total = btf_data_size - hdr->hdr_len;
3295 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
3296 		if (expected_total < secs[i].off) {
3297 			btf_verifier_log(env, "Invalid section offset");
3298 			return -EINVAL;
3299 		}
3300 		if (total < secs[i].off) {
3301 			/* gap */
3302 			btf_verifier_log(env, "Unsupported section found");
3303 			return -EINVAL;
3304 		}
3305 		if (total > secs[i].off) {
3306 			btf_verifier_log(env, "Section overlap found");
3307 			return -EINVAL;
3308 		}
3309 		if (expected_total - total < secs[i].len) {
3310 			btf_verifier_log(env,
3311 					 "Total section length too long");
3312 			return -EINVAL;
3313 		}
3314 		total += secs[i].len;
3315 	}
3316 
3317 	/* There is data other than hdr and known sections */
3318 	if (expected_total != total) {
3319 		btf_verifier_log(env, "Unsupported section found");
3320 		return -EINVAL;
3321 	}
3322 
3323 	return 0;
3324 }
3325 
3326 static int btf_parse_hdr(struct btf_verifier_env *env)
3327 {
3328 	u32 hdr_len, hdr_copy, btf_data_size;
3329 	const struct btf_header *hdr;
3330 	struct btf *btf;
3331 	int err;
3332 
3333 	btf = env->btf;
3334 	btf_data_size = btf->data_size;
3335 
3336 	if (btf_data_size <
3337 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
3338 		btf_verifier_log(env, "hdr_len not found");
3339 		return -EINVAL;
3340 	}
3341 
3342 	hdr = btf->data;
3343 	hdr_len = hdr->hdr_len;
3344 	if (btf_data_size < hdr_len) {
3345 		btf_verifier_log(env, "btf_header not found");
3346 		return -EINVAL;
3347 	}
3348 
3349 	/* Ensure the unsupported header fields are zero */
3350 	if (hdr_len > sizeof(btf->hdr)) {
3351 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
3352 		u8 *end = btf->data + hdr_len;
3353 
3354 		for (; expected_zero < end; expected_zero++) {
3355 			if (*expected_zero) {
3356 				btf_verifier_log(env, "Unsupported btf_header");
3357 				return -E2BIG;
3358 			}
3359 		}
3360 	}
3361 
3362 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
3363 	memcpy(&btf->hdr, btf->data, hdr_copy);
3364 
3365 	hdr = &btf->hdr;
3366 
3367 	btf_verifier_log_hdr(env, btf_data_size);
3368 
3369 	if (hdr->magic != BTF_MAGIC) {
3370 		btf_verifier_log(env, "Invalid magic");
3371 		return -EINVAL;
3372 	}
3373 
3374 	if (hdr->version != BTF_VERSION) {
3375 		btf_verifier_log(env, "Unsupported version");
3376 		return -ENOTSUPP;
3377 	}
3378 
3379 	if (hdr->flags) {
3380 		btf_verifier_log(env, "Unsupported flags");
3381 		return -ENOTSUPP;
3382 	}
3383 
3384 	if (btf_data_size == hdr->hdr_len) {
3385 		btf_verifier_log(env, "No data");
3386 		return -EINVAL;
3387 	}
3388 
3389 	err = btf_check_sec_info(env, btf_data_size);
3390 	if (err)
3391 		return err;
3392 
3393 	return 0;
3394 }
3395 
3396 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
3397 			     u32 log_level, char __user *log_ubuf, u32 log_size)
3398 {
3399 	struct btf_verifier_env *env = NULL;
3400 	struct bpf_verifier_log *log;
3401 	struct btf *btf = NULL;
3402 	u8 *data;
3403 	int err;
3404 
3405 	if (btf_data_size > BTF_MAX_SIZE)
3406 		return ERR_PTR(-E2BIG);
3407 
3408 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3409 	if (!env)
3410 		return ERR_PTR(-ENOMEM);
3411 
3412 	log = &env->log;
3413 	if (log_level || log_ubuf || log_size) {
3414 		/* user requested verbose verifier output
3415 		 * and supplied buffer to store the verification trace
3416 		 */
3417 		log->level = log_level;
3418 		log->ubuf = log_ubuf;
3419 		log->len_total = log_size;
3420 
3421 		/* log attributes have to be sane */
3422 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
3423 		    !log->level || !log->ubuf) {
3424 			err = -EINVAL;
3425 			goto errout;
3426 		}
3427 	}
3428 
3429 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3430 	if (!btf) {
3431 		err = -ENOMEM;
3432 		goto errout;
3433 	}
3434 	env->btf = btf;
3435 
3436 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
3437 	if (!data) {
3438 		err = -ENOMEM;
3439 		goto errout;
3440 	}
3441 
3442 	btf->data = data;
3443 	btf->data_size = btf_data_size;
3444 
3445 	if (copy_from_user(data, btf_data, btf_data_size)) {
3446 		err = -EFAULT;
3447 		goto errout;
3448 	}
3449 
3450 	err = btf_parse_hdr(env);
3451 	if (err)
3452 		goto errout;
3453 
3454 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3455 
3456 	err = btf_parse_str_sec(env);
3457 	if (err)
3458 		goto errout;
3459 
3460 	err = btf_parse_type_sec(env);
3461 	if (err)
3462 		goto errout;
3463 
3464 	if (log->level && bpf_verifier_log_full(log)) {
3465 		err = -ENOSPC;
3466 		goto errout;
3467 	}
3468 
3469 	btf_verifier_env_free(env);
3470 	refcount_set(&btf->refcnt, 1);
3471 	return btf;
3472 
3473 errout:
3474 	btf_verifier_env_free(env);
3475 	if (btf)
3476 		btf_free(btf);
3477 	return ERR_PTR(err);
3478 }
3479 
3480 extern char __weak __start_BTF[];
3481 extern char __weak __stop_BTF[];
3482 extern struct btf *btf_vmlinux;
3483 
3484 #define BPF_MAP_TYPE(_id, _ops)
3485 static union {
3486 	struct bpf_ctx_convert {
3487 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3488 	prog_ctx_type _id##_prog; \
3489 	kern_ctx_type _id##_kern;
3490 #include <linux/bpf_types.h>
3491 #undef BPF_PROG_TYPE
3492 	} *__t;
3493 	/* 't' is written once under lock. Read many times. */
3494 	const struct btf_type *t;
3495 } bpf_ctx_convert;
3496 enum {
3497 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3498 	__ctx_convert##_id,
3499 #include <linux/bpf_types.h>
3500 #undef BPF_PROG_TYPE
3501 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
3502 };
3503 static u8 bpf_ctx_convert_map[] = {
3504 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3505 	[_id] = __ctx_convert##_id,
3506 #include <linux/bpf_types.h>
3507 #undef BPF_PROG_TYPE
3508 	0, /* avoid empty array */
3509 };
3510 #undef BPF_MAP_TYPE
3511 
3512 static const struct btf_member *
3513 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
3514 		      const struct btf_type *t, enum bpf_prog_type prog_type,
3515 		      int arg)
3516 {
3517 	const struct btf_type *conv_struct;
3518 	const struct btf_type *ctx_struct;
3519 	const struct btf_member *ctx_type;
3520 	const char *tname, *ctx_tname;
3521 
3522 	conv_struct = bpf_ctx_convert.t;
3523 	if (!conv_struct) {
3524 		bpf_log(log, "btf_vmlinux is malformed\n");
3525 		return NULL;
3526 	}
3527 	t = btf_type_by_id(btf, t->type);
3528 	while (btf_type_is_modifier(t))
3529 		t = btf_type_by_id(btf, t->type);
3530 	if (!btf_type_is_struct(t)) {
3531 		/* Only pointer to struct is supported for now.
3532 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
3533 		 * is not supported yet.
3534 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
3535 		 */
3536 		if (log->level & BPF_LOG_LEVEL)
3537 			bpf_log(log, "arg#%d type is not a struct\n", arg);
3538 		return NULL;
3539 	}
3540 	tname = btf_name_by_offset(btf, t->name_off);
3541 	if (!tname) {
3542 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
3543 		return NULL;
3544 	}
3545 	/* prog_type is valid bpf program type. No need for bounds check. */
3546 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
3547 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
3548 	 * Like 'struct __sk_buff'
3549 	 */
3550 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
3551 	if (!ctx_struct)
3552 		/* should not happen */
3553 		return NULL;
3554 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
3555 	if (!ctx_tname) {
3556 		/* should not happen */
3557 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
3558 		return NULL;
3559 	}
3560 	/* only compare that prog's ctx type name is the same as
3561 	 * kernel expects. No need to compare field by field.
3562 	 * It's ok for bpf prog to do:
3563 	 * struct __sk_buff {};
3564 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
3565 	 * { // no fields of skb are ever used }
3566 	 */
3567 	if (strcmp(ctx_tname, tname))
3568 		return NULL;
3569 	return ctx_type;
3570 }
3571 
3572 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
3573 				     struct btf *btf,
3574 				     const struct btf_type *t,
3575 				     enum bpf_prog_type prog_type,
3576 				     int arg)
3577 {
3578 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
3579 
3580 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
3581 	if (!prog_ctx_type)
3582 		return -ENOENT;
3583 	kern_ctx_type = prog_ctx_type + 1;
3584 	return kern_ctx_type->type;
3585 }
3586 
3587 struct btf *btf_parse_vmlinux(void)
3588 {
3589 	struct btf_verifier_env *env = NULL;
3590 	struct bpf_verifier_log *log;
3591 	struct btf *btf = NULL;
3592 	int err, i;
3593 
3594 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3595 	if (!env)
3596 		return ERR_PTR(-ENOMEM);
3597 
3598 	log = &env->log;
3599 	log->level = BPF_LOG_KERNEL;
3600 
3601 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3602 	if (!btf) {
3603 		err = -ENOMEM;
3604 		goto errout;
3605 	}
3606 	env->btf = btf;
3607 
3608 	btf->data = __start_BTF;
3609 	btf->data_size = __stop_BTF - __start_BTF;
3610 
3611 	err = btf_parse_hdr(env);
3612 	if (err)
3613 		goto errout;
3614 
3615 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3616 
3617 	err = btf_parse_str_sec(env);
3618 	if (err)
3619 		goto errout;
3620 
3621 	err = btf_check_all_metas(env);
3622 	if (err)
3623 		goto errout;
3624 
3625 	/* find struct bpf_ctx_convert for type checking later */
3626 	for (i = 1; i <= btf->nr_types; i++) {
3627 		const struct btf_type *t;
3628 		const char *tname;
3629 
3630 		t = btf_type_by_id(btf, i);
3631 		if (!__btf_type_is_struct(t))
3632 			continue;
3633 		tname = __btf_name_by_offset(btf, t->name_off);
3634 		if (!strcmp(tname, "bpf_ctx_convert")) {
3635 			/* btf_parse_vmlinux() runs under bpf_verifier_lock */
3636 			bpf_ctx_convert.t = t;
3637 			break;
3638 		}
3639 	}
3640 	if (i > btf->nr_types) {
3641 		err = -ENOENT;
3642 		goto errout;
3643 	}
3644 
3645 	bpf_struct_ops_init(btf, log);
3646 
3647 	btf_verifier_env_free(env);
3648 	refcount_set(&btf->refcnt, 1);
3649 	return btf;
3650 
3651 errout:
3652 	btf_verifier_env_free(env);
3653 	if (btf) {
3654 		kvfree(btf->types);
3655 		kfree(btf);
3656 	}
3657 	return ERR_PTR(err);
3658 }
3659 
3660 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
3661 {
3662 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
3663 
3664 	if (tgt_prog) {
3665 		return tgt_prog->aux->btf;
3666 	} else {
3667 		return btf_vmlinux;
3668 	}
3669 }
3670 
3671 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
3672 {
3673 	/* t comes in already as a pointer */
3674 	t = btf_type_by_id(btf, t->type);
3675 
3676 	/* allow const */
3677 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
3678 		t = btf_type_by_id(btf, t->type);
3679 
3680 	/* char, signed char, unsigned char */
3681 	return btf_type_is_int(t) && t->size == 1;
3682 }
3683 
3684 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
3685 		    const struct bpf_prog *prog,
3686 		    struct bpf_insn_access_aux *info)
3687 {
3688 	const struct btf_type *t = prog->aux->attach_func_proto;
3689 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
3690 	struct btf *btf = bpf_prog_get_target_btf(prog);
3691 	const char *tname = prog->aux->attach_func_name;
3692 	struct bpf_verifier_log *log = info->log;
3693 	const struct btf_param *args;
3694 	u32 nr_args, arg;
3695 	int ret;
3696 
3697 	if (off % 8) {
3698 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
3699 			tname, off);
3700 		return false;
3701 	}
3702 	arg = off / 8;
3703 	args = (const struct btf_param *)(t + 1);
3704 	/* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
3705 	nr_args = t ? btf_type_vlen(t) : 5;
3706 	if (prog->aux->attach_btf_trace) {
3707 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
3708 		args++;
3709 		nr_args--;
3710 	}
3711 
3712 	if (arg > nr_args) {
3713 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
3714 			tname, arg + 1);
3715 		return false;
3716 	}
3717 
3718 	if (arg == nr_args) {
3719 		switch (prog->expected_attach_type) {
3720 		case BPF_LSM_MAC:
3721 		case BPF_TRACE_FEXIT:
3722 			/* When LSM programs are attached to void LSM hooks
3723 			 * they use FEXIT trampolines and when attached to
3724 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
3725 			 *
3726 			 * While the LSM programs are BPF_MODIFY_RETURN-like
3727 			 * the check:
3728 			 *
3729 			 *	if (ret_type != 'int')
3730 			 *		return -EINVAL;
3731 			 *
3732 			 * is _not_ done here. This is still safe as LSM hooks
3733 			 * have only void and int return types.
3734 			 */
3735 			if (!t)
3736 				return true;
3737 			t = btf_type_by_id(btf, t->type);
3738 			break;
3739 		case BPF_MODIFY_RETURN:
3740 			/* For now the BPF_MODIFY_RETURN can only be attached to
3741 			 * functions that return an int.
3742 			 */
3743 			if (!t)
3744 				return false;
3745 
3746 			t = btf_type_skip_modifiers(btf, t->type, NULL);
3747 			if (!btf_type_is_int(t)) {
3748 				bpf_log(log,
3749 					"ret type %s not allowed for fmod_ret\n",
3750 					btf_kind_str[BTF_INFO_KIND(t->info)]);
3751 				return false;
3752 			}
3753 			break;
3754 		default:
3755 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
3756 				tname, arg + 1);
3757 			return false;
3758 		}
3759 	} else {
3760 		if (!t)
3761 			/* Default prog with 5 args */
3762 			return true;
3763 		t = btf_type_by_id(btf, args[arg].type);
3764 	}
3765 
3766 	/* skip modifiers */
3767 	while (btf_type_is_modifier(t))
3768 		t = btf_type_by_id(btf, t->type);
3769 	if (btf_type_is_int(t) || btf_type_is_enum(t))
3770 		/* accessing a scalar */
3771 		return true;
3772 	if (!btf_type_is_ptr(t)) {
3773 		bpf_log(log,
3774 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
3775 			tname, arg,
3776 			__btf_name_by_offset(btf, t->name_off),
3777 			btf_kind_str[BTF_INFO_KIND(t->info)]);
3778 		return false;
3779 	}
3780 	if (t->type == 0)
3781 		/* This is a pointer to void.
3782 		 * It is the same as scalar from the verifier safety pov.
3783 		 * No further pointer walking is allowed.
3784 		 */
3785 		return true;
3786 
3787 	if (is_string_ptr(btf, t))
3788 		return true;
3789 
3790 	/* this is a pointer to another type */
3791 	info->reg_type = PTR_TO_BTF_ID;
3792 
3793 	if (tgt_prog) {
3794 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_prog->type, arg);
3795 		if (ret > 0) {
3796 			info->btf_id = ret;
3797 			return true;
3798 		} else {
3799 			return false;
3800 		}
3801 	}
3802 
3803 	info->btf_id = t->type;
3804 	t = btf_type_by_id(btf, t->type);
3805 	/* skip modifiers */
3806 	while (btf_type_is_modifier(t)) {
3807 		info->btf_id = t->type;
3808 		t = btf_type_by_id(btf, t->type);
3809 	}
3810 	if (!btf_type_is_struct(t)) {
3811 		bpf_log(log,
3812 			"func '%s' arg%d type %s is not a struct\n",
3813 			tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
3814 		return false;
3815 	}
3816 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
3817 		tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
3818 		__btf_name_by_offset(btf, t->name_off));
3819 	return true;
3820 }
3821 
3822 int btf_struct_access(struct bpf_verifier_log *log,
3823 		      const struct btf_type *t, int off, int size,
3824 		      enum bpf_access_type atype,
3825 		      u32 *next_btf_id)
3826 {
3827 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
3828 	const struct btf_type *mtype, *elem_type = NULL;
3829 	const struct btf_member *member;
3830 	const char *tname, *mname;
3831 
3832 again:
3833 	tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
3834 	if (!btf_type_is_struct(t)) {
3835 		bpf_log(log, "Type '%s' is not a struct\n", tname);
3836 		return -EINVAL;
3837 	}
3838 
3839 	if (off + size > t->size) {
3840 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
3841 			tname, off, size);
3842 		return -EACCES;
3843 	}
3844 
3845 	for_each_member(i, t, member) {
3846 		/* offset of the field in bytes */
3847 		moff = btf_member_bit_offset(t, member) / 8;
3848 		if (off + size <= moff)
3849 			/* won't find anything, field is already too far */
3850 			break;
3851 
3852 		if (btf_member_bitfield_size(t, member)) {
3853 			u32 end_bit = btf_member_bit_offset(t, member) +
3854 				btf_member_bitfield_size(t, member);
3855 
3856 			/* off <= moff instead of off == moff because clang
3857 			 * does not generate a BTF member for anonymous
3858 			 * bitfield like the ":16" here:
3859 			 * struct {
3860 			 *	int :16;
3861 			 *	int x:8;
3862 			 * };
3863 			 */
3864 			if (off <= moff &&
3865 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
3866 				return SCALAR_VALUE;
3867 
3868 			/* off may be accessing a following member
3869 			 *
3870 			 * or
3871 			 *
3872 			 * Doing partial access at either end of this
3873 			 * bitfield.  Continue on this case also to
3874 			 * treat it as not accessing this bitfield
3875 			 * and eventually error out as field not
3876 			 * found to keep it simple.
3877 			 * It could be relaxed if there was a legit
3878 			 * partial access case later.
3879 			 */
3880 			continue;
3881 		}
3882 
3883 		/* In case of "off" is pointing to holes of a struct */
3884 		if (off < moff)
3885 			break;
3886 
3887 		/* type of the field */
3888 		mtype = btf_type_by_id(btf_vmlinux, member->type);
3889 		mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
3890 
3891 		mtype = btf_resolve_size(btf_vmlinux, mtype, &msize,
3892 					 &elem_type, &total_nelems);
3893 		if (IS_ERR(mtype)) {
3894 			bpf_log(log, "field %s doesn't have size\n", mname);
3895 			return -EFAULT;
3896 		}
3897 
3898 		mtrue_end = moff + msize;
3899 		if (off >= mtrue_end)
3900 			/* no overlap with member, keep iterating */
3901 			continue;
3902 
3903 		if (btf_type_is_array(mtype)) {
3904 			u32 elem_idx;
3905 
3906 			/* btf_resolve_size() above helps to
3907 			 * linearize a multi-dimensional array.
3908 			 *
3909 			 * The logic here is treating an array
3910 			 * in a struct as the following way:
3911 			 *
3912 			 * struct outer {
3913 			 *	struct inner array[2][2];
3914 			 * };
3915 			 *
3916 			 * looks like:
3917 			 *
3918 			 * struct outer {
3919 			 *	struct inner array_elem0;
3920 			 *	struct inner array_elem1;
3921 			 *	struct inner array_elem2;
3922 			 *	struct inner array_elem3;
3923 			 * };
3924 			 *
3925 			 * When accessing outer->array[1][0], it moves
3926 			 * moff to "array_elem2", set mtype to
3927 			 * "struct inner", and msize also becomes
3928 			 * sizeof(struct inner).  Then most of the
3929 			 * remaining logic will fall through without
3930 			 * caring the current member is an array or
3931 			 * not.
3932 			 *
3933 			 * Unlike mtype/msize/moff, mtrue_end does not
3934 			 * change.  The naming difference ("_true") tells
3935 			 * that it is not always corresponding to
3936 			 * the current mtype/msize/moff.
3937 			 * It is the true end of the current
3938 			 * member (i.e. array in this case).  That
3939 			 * will allow an int array to be accessed like
3940 			 * a scratch space,
3941 			 * i.e. allow access beyond the size of
3942 			 *      the array's element as long as it is
3943 			 *      within the mtrue_end boundary.
3944 			 */
3945 
3946 			/* skip empty array */
3947 			if (moff == mtrue_end)
3948 				continue;
3949 
3950 			msize /= total_nelems;
3951 			elem_idx = (off - moff) / msize;
3952 			moff += elem_idx * msize;
3953 			mtype = elem_type;
3954 		}
3955 
3956 		/* the 'off' we're looking for is either equal to start
3957 		 * of this field or inside of this struct
3958 		 */
3959 		if (btf_type_is_struct(mtype)) {
3960 			/* our field must be inside that union or struct */
3961 			t = mtype;
3962 
3963 			/* adjust offset we're looking for */
3964 			off -= moff;
3965 			goto again;
3966 		}
3967 
3968 		if (btf_type_is_ptr(mtype)) {
3969 			const struct btf_type *stype;
3970 			u32 id;
3971 
3972 			if (msize != size || off != moff) {
3973 				bpf_log(log,
3974 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
3975 					mname, moff, tname, off, size);
3976 				return -EACCES;
3977 			}
3978 
3979 			stype = btf_type_skip_modifiers(btf_vmlinux, mtype->type, &id);
3980 			if (btf_type_is_struct(stype)) {
3981 				*next_btf_id = id;
3982 				return PTR_TO_BTF_ID;
3983 			}
3984 		}
3985 
3986 		/* Allow more flexible access within an int as long as
3987 		 * it is within mtrue_end.
3988 		 * Since mtrue_end could be the end of an array,
3989 		 * that also allows using an array of int as a scratch
3990 		 * space. e.g. skb->cb[].
3991 		 */
3992 		if (off + size > mtrue_end) {
3993 			bpf_log(log,
3994 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
3995 				mname, mtrue_end, tname, off, size);
3996 			return -EACCES;
3997 		}
3998 
3999 		return SCALAR_VALUE;
4000 	}
4001 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
4002 	return -EINVAL;
4003 }
4004 
4005 static int __btf_resolve_helper_id(struct bpf_verifier_log *log, void *fn,
4006 				   int arg)
4007 {
4008 	char fnname[KSYM_SYMBOL_LEN + 4] = "btf_";
4009 	const struct btf_param *args;
4010 	const struct btf_type *t;
4011 	const char *tname, *sym;
4012 	u32 btf_id, i;
4013 
4014 	if (IS_ERR(btf_vmlinux)) {
4015 		bpf_log(log, "btf_vmlinux is malformed\n");
4016 		return -EINVAL;
4017 	}
4018 
4019 	sym = kallsyms_lookup((long)fn, NULL, NULL, NULL, fnname + 4);
4020 	if (!sym) {
4021 		bpf_log(log, "kernel doesn't have kallsyms\n");
4022 		return -EFAULT;
4023 	}
4024 
4025 	for (i = 1; i <= btf_vmlinux->nr_types; i++) {
4026 		t = btf_type_by_id(btf_vmlinux, i);
4027 		if (BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF)
4028 			continue;
4029 		tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
4030 		if (!strcmp(tname, fnname))
4031 			break;
4032 	}
4033 	if (i > btf_vmlinux->nr_types) {
4034 		bpf_log(log, "helper %s type is not found\n", fnname);
4035 		return -ENOENT;
4036 	}
4037 
4038 	t = btf_type_by_id(btf_vmlinux, t->type);
4039 	if (!btf_type_is_ptr(t))
4040 		return -EFAULT;
4041 	t = btf_type_by_id(btf_vmlinux, t->type);
4042 	if (!btf_type_is_func_proto(t))
4043 		return -EFAULT;
4044 
4045 	args = (const struct btf_param *)(t + 1);
4046 	if (arg >= btf_type_vlen(t)) {
4047 		bpf_log(log, "bpf helper %s doesn't have %d-th argument\n",
4048 			fnname, arg);
4049 		return -EINVAL;
4050 	}
4051 
4052 	t = btf_type_by_id(btf_vmlinux, args[arg].type);
4053 	if (!btf_type_is_ptr(t) || !t->type) {
4054 		/* anything but the pointer to struct is a helper config bug */
4055 		bpf_log(log, "ARG_PTR_TO_BTF is misconfigured\n");
4056 		return -EFAULT;
4057 	}
4058 	btf_id = t->type;
4059 	t = btf_type_by_id(btf_vmlinux, t->type);
4060 	/* skip modifiers */
4061 	while (btf_type_is_modifier(t)) {
4062 		btf_id = t->type;
4063 		t = btf_type_by_id(btf_vmlinux, t->type);
4064 	}
4065 	if (!btf_type_is_struct(t)) {
4066 		bpf_log(log, "ARG_PTR_TO_BTF is not a struct\n");
4067 		return -EFAULT;
4068 	}
4069 	bpf_log(log, "helper %s arg%d has btf_id %d struct %s\n", fnname + 4,
4070 		arg, btf_id, __btf_name_by_offset(btf_vmlinux, t->name_off));
4071 	return btf_id;
4072 }
4073 
4074 int btf_resolve_helper_id(struct bpf_verifier_log *log,
4075 			  const struct bpf_func_proto *fn, int arg)
4076 {
4077 	int *btf_id = &fn->btf_id[arg];
4078 	int ret;
4079 
4080 	if (fn->arg_type[arg] != ARG_PTR_TO_BTF_ID)
4081 		return -EINVAL;
4082 
4083 	ret = READ_ONCE(*btf_id);
4084 	if (ret)
4085 		return ret;
4086 	/* ok to race the search. The result is the same */
4087 	ret = __btf_resolve_helper_id(log, fn->func, arg);
4088 	if (!ret) {
4089 		/* Function argument cannot be type 'void' */
4090 		bpf_log(log, "BTF resolution bug\n");
4091 		return -EFAULT;
4092 	}
4093 	WRITE_ONCE(*btf_id, ret);
4094 	return ret;
4095 }
4096 
4097 static int __get_type_size(struct btf *btf, u32 btf_id,
4098 			   const struct btf_type **bad_type)
4099 {
4100 	const struct btf_type *t;
4101 
4102 	if (!btf_id)
4103 		/* void */
4104 		return 0;
4105 	t = btf_type_by_id(btf, btf_id);
4106 	while (t && btf_type_is_modifier(t))
4107 		t = btf_type_by_id(btf, t->type);
4108 	if (!t) {
4109 		*bad_type = btf->types[0];
4110 		return -EINVAL;
4111 	}
4112 	if (btf_type_is_ptr(t))
4113 		/* kernel size of pointer. Not BPF's size of pointer*/
4114 		return sizeof(void *);
4115 	if (btf_type_is_int(t) || btf_type_is_enum(t))
4116 		return t->size;
4117 	*bad_type = t;
4118 	return -EINVAL;
4119 }
4120 
4121 int btf_distill_func_proto(struct bpf_verifier_log *log,
4122 			   struct btf *btf,
4123 			   const struct btf_type *func,
4124 			   const char *tname,
4125 			   struct btf_func_model *m)
4126 {
4127 	const struct btf_param *args;
4128 	const struct btf_type *t;
4129 	u32 i, nargs;
4130 	int ret;
4131 
4132 	if (!func) {
4133 		/* BTF function prototype doesn't match the verifier types.
4134 		 * Fall back to 5 u64 args.
4135 		 */
4136 		for (i = 0; i < 5; i++)
4137 			m->arg_size[i] = 8;
4138 		m->ret_size = 8;
4139 		m->nr_args = 5;
4140 		return 0;
4141 	}
4142 	args = (const struct btf_param *)(func + 1);
4143 	nargs = btf_type_vlen(func);
4144 	if (nargs >= MAX_BPF_FUNC_ARGS) {
4145 		bpf_log(log,
4146 			"The function %s has %d arguments. Too many.\n",
4147 			tname, nargs);
4148 		return -EINVAL;
4149 	}
4150 	ret = __get_type_size(btf, func->type, &t);
4151 	if (ret < 0) {
4152 		bpf_log(log,
4153 			"The function %s return type %s is unsupported.\n",
4154 			tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
4155 		return -EINVAL;
4156 	}
4157 	m->ret_size = ret;
4158 
4159 	for (i = 0; i < nargs; i++) {
4160 		ret = __get_type_size(btf, args[i].type, &t);
4161 		if (ret < 0) {
4162 			bpf_log(log,
4163 				"The function %s arg%d type %s is unsupported.\n",
4164 				tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4165 			return -EINVAL;
4166 		}
4167 		m->arg_size[i] = ret;
4168 	}
4169 	m->nr_args = nargs;
4170 	return 0;
4171 }
4172 
4173 /* Compare BTFs of two functions assuming only scalars and pointers to context.
4174  * t1 points to BTF_KIND_FUNC in btf1
4175  * t2 points to BTF_KIND_FUNC in btf2
4176  * Returns:
4177  * EINVAL - function prototype mismatch
4178  * EFAULT - verifier bug
4179  * 0 - 99% match. The last 1% is validated by the verifier.
4180  */
4181 static int btf_check_func_type_match(struct bpf_verifier_log *log,
4182 				     struct btf *btf1, const struct btf_type *t1,
4183 				     struct btf *btf2, const struct btf_type *t2)
4184 {
4185 	const struct btf_param *args1, *args2;
4186 	const char *fn1, *fn2, *s1, *s2;
4187 	u32 nargs1, nargs2, i;
4188 
4189 	fn1 = btf_name_by_offset(btf1, t1->name_off);
4190 	fn2 = btf_name_by_offset(btf2, t2->name_off);
4191 
4192 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
4193 		bpf_log(log, "%s() is not a global function\n", fn1);
4194 		return -EINVAL;
4195 	}
4196 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
4197 		bpf_log(log, "%s() is not a global function\n", fn2);
4198 		return -EINVAL;
4199 	}
4200 
4201 	t1 = btf_type_by_id(btf1, t1->type);
4202 	if (!t1 || !btf_type_is_func_proto(t1))
4203 		return -EFAULT;
4204 	t2 = btf_type_by_id(btf2, t2->type);
4205 	if (!t2 || !btf_type_is_func_proto(t2))
4206 		return -EFAULT;
4207 
4208 	args1 = (const struct btf_param *)(t1 + 1);
4209 	nargs1 = btf_type_vlen(t1);
4210 	args2 = (const struct btf_param *)(t2 + 1);
4211 	nargs2 = btf_type_vlen(t2);
4212 
4213 	if (nargs1 != nargs2) {
4214 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
4215 			fn1, nargs1, fn2, nargs2);
4216 		return -EINVAL;
4217 	}
4218 
4219 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
4220 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
4221 	if (t1->info != t2->info) {
4222 		bpf_log(log,
4223 			"Return type %s of %s() doesn't match type %s of %s()\n",
4224 			btf_type_str(t1), fn1,
4225 			btf_type_str(t2), fn2);
4226 		return -EINVAL;
4227 	}
4228 
4229 	for (i = 0; i < nargs1; i++) {
4230 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
4231 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
4232 
4233 		if (t1->info != t2->info) {
4234 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
4235 				i, fn1, btf_type_str(t1),
4236 				fn2, btf_type_str(t2));
4237 			return -EINVAL;
4238 		}
4239 		if (btf_type_has_size(t1) && t1->size != t2->size) {
4240 			bpf_log(log,
4241 				"arg%d in %s() has size %d while %s() has %d\n",
4242 				i, fn1, t1->size,
4243 				fn2, t2->size);
4244 			return -EINVAL;
4245 		}
4246 
4247 		/* global functions are validated with scalars and pointers
4248 		 * to context only. And only global functions can be replaced.
4249 		 * Hence type check only those types.
4250 		 */
4251 		if (btf_type_is_int(t1) || btf_type_is_enum(t1))
4252 			continue;
4253 		if (!btf_type_is_ptr(t1)) {
4254 			bpf_log(log,
4255 				"arg%d in %s() has unrecognized type\n",
4256 				i, fn1);
4257 			return -EINVAL;
4258 		}
4259 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
4260 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
4261 		if (!btf_type_is_struct(t1)) {
4262 			bpf_log(log,
4263 				"arg%d in %s() is not a pointer to context\n",
4264 				i, fn1);
4265 			return -EINVAL;
4266 		}
4267 		if (!btf_type_is_struct(t2)) {
4268 			bpf_log(log,
4269 				"arg%d in %s() is not a pointer to context\n",
4270 				i, fn2);
4271 			return -EINVAL;
4272 		}
4273 		/* This is an optional check to make program writing easier.
4274 		 * Compare names of structs and report an error to the user.
4275 		 * btf_prepare_func_args() already checked that t2 struct
4276 		 * is a context type. btf_prepare_func_args() will check
4277 		 * later that t1 struct is a context type as well.
4278 		 */
4279 		s1 = btf_name_by_offset(btf1, t1->name_off);
4280 		s2 = btf_name_by_offset(btf2, t2->name_off);
4281 		if (strcmp(s1, s2)) {
4282 			bpf_log(log,
4283 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
4284 				i, fn1, s1, fn2, s2);
4285 			return -EINVAL;
4286 		}
4287 	}
4288 	return 0;
4289 }
4290 
4291 /* Compare BTFs of given program with BTF of target program */
4292 int btf_check_type_match(struct bpf_verifier_env *env, struct bpf_prog *prog,
4293 			 struct btf *btf2, const struct btf_type *t2)
4294 {
4295 	struct btf *btf1 = prog->aux->btf;
4296 	const struct btf_type *t1;
4297 	u32 btf_id = 0;
4298 
4299 	if (!prog->aux->func_info) {
4300 		bpf_log(&env->log, "Program extension requires BTF\n");
4301 		return -EINVAL;
4302 	}
4303 
4304 	btf_id = prog->aux->func_info[0].type_id;
4305 	if (!btf_id)
4306 		return -EFAULT;
4307 
4308 	t1 = btf_type_by_id(btf1, btf_id);
4309 	if (!t1 || !btf_type_is_func(t1))
4310 		return -EFAULT;
4311 
4312 	return btf_check_func_type_match(&env->log, btf1, t1, btf2, t2);
4313 }
4314 
4315 /* Compare BTF of a function with given bpf_reg_state.
4316  * Returns:
4317  * EFAULT - there is a verifier bug. Abort verification.
4318  * EINVAL - there is a type mismatch or BTF is not available.
4319  * 0 - BTF matches with what bpf_reg_state expects.
4320  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
4321  */
4322 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
4323 			     struct bpf_reg_state *reg)
4324 {
4325 	struct bpf_verifier_log *log = &env->log;
4326 	struct bpf_prog *prog = env->prog;
4327 	struct btf *btf = prog->aux->btf;
4328 	const struct btf_param *args;
4329 	const struct btf_type *t;
4330 	u32 i, nargs, btf_id;
4331 	const char *tname;
4332 
4333 	if (!prog->aux->func_info)
4334 		return -EINVAL;
4335 
4336 	btf_id = prog->aux->func_info[subprog].type_id;
4337 	if (!btf_id)
4338 		return -EFAULT;
4339 
4340 	if (prog->aux->func_info_aux[subprog].unreliable)
4341 		return -EINVAL;
4342 
4343 	t = btf_type_by_id(btf, btf_id);
4344 	if (!t || !btf_type_is_func(t)) {
4345 		/* These checks were already done by the verifier while loading
4346 		 * struct bpf_func_info
4347 		 */
4348 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
4349 			subprog);
4350 		return -EFAULT;
4351 	}
4352 	tname = btf_name_by_offset(btf, t->name_off);
4353 
4354 	t = btf_type_by_id(btf, t->type);
4355 	if (!t || !btf_type_is_func_proto(t)) {
4356 		bpf_log(log, "Invalid BTF of func %s\n", tname);
4357 		return -EFAULT;
4358 	}
4359 	args = (const struct btf_param *)(t + 1);
4360 	nargs = btf_type_vlen(t);
4361 	if (nargs > 5) {
4362 		bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
4363 		goto out;
4364 	}
4365 	/* check that BTF function arguments match actual types that the
4366 	 * verifier sees.
4367 	 */
4368 	for (i = 0; i < nargs; i++) {
4369 		t = btf_type_by_id(btf, args[i].type);
4370 		while (btf_type_is_modifier(t))
4371 			t = btf_type_by_id(btf, t->type);
4372 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
4373 			if (reg[i + 1].type == SCALAR_VALUE)
4374 				continue;
4375 			bpf_log(log, "R%d is not a scalar\n", i + 1);
4376 			goto out;
4377 		}
4378 		if (btf_type_is_ptr(t)) {
4379 			if (reg[i + 1].type == SCALAR_VALUE) {
4380 				bpf_log(log, "R%d is not a pointer\n", i + 1);
4381 				goto out;
4382 			}
4383 			/* If function expects ctx type in BTF check that caller
4384 			 * is passing PTR_TO_CTX.
4385 			 */
4386 			if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
4387 				if (reg[i + 1].type != PTR_TO_CTX) {
4388 					bpf_log(log,
4389 						"arg#%d expected pointer to ctx, but got %s\n",
4390 						i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4391 					goto out;
4392 				}
4393 				if (check_ctx_reg(env, &reg[i + 1], i + 1))
4394 					goto out;
4395 				continue;
4396 			}
4397 		}
4398 		bpf_log(log, "Unrecognized arg#%d type %s\n",
4399 			i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4400 		goto out;
4401 	}
4402 	return 0;
4403 out:
4404 	/* Compiler optimizations can remove arguments from static functions
4405 	 * or mismatched type can be passed into a global function.
4406 	 * In such cases mark the function as unreliable from BTF point of view.
4407 	 */
4408 	prog->aux->func_info_aux[subprog].unreliable = true;
4409 	return -EINVAL;
4410 }
4411 
4412 /* Convert BTF of a function into bpf_reg_state if possible
4413  * Returns:
4414  * EFAULT - there is a verifier bug. Abort verification.
4415  * EINVAL - cannot convert BTF.
4416  * 0 - Successfully converted BTF into bpf_reg_state
4417  * (either PTR_TO_CTX or SCALAR_VALUE).
4418  */
4419 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
4420 			  struct bpf_reg_state *reg)
4421 {
4422 	struct bpf_verifier_log *log = &env->log;
4423 	struct bpf_prog *prog = env->prog;
4424 	enum bpf_prog_type prog_type = prog->type;
4425 	struct btf *btf = prog->aux->btf;
4426 	const struct btf_param *args;
4427 	const struct btf_type *t;
4428 	u32 i, nargs, btf_id;
4429 	const char *tname;
4430 
4431 	if (!prog->aux->func_info ||
4432 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
4433 		bpf_log(log, "Verifier bug\n");
4434 		return -EFAULT;
4435 	}
4436 
4437 	btf_id = prog->aux->func_info[subprog].type_id;
4438 	if (!btf_id) {
4439 		bpf_log(log, "Global functions need valid BTF\n");
4440 		return -EFAULT;
4441 	}
4442 
4443 	t = btf_type_by_id(btf, btf_id);
4444 	if (!t || !btf_type_is_func(t)) {
4445 		/* These checks were already done by the verifier while loading
4446 		 * struct bpf_func_info
4447 		 */
4448 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
4449 			subprog);
4450 		return -EFAULT;
4451 	}
4452 	tname = btf_name_by_offset(btf, t->name_off);
4453 
4454 	if (log->level & BPF_LOG_LEVEL)
4455 		bpf_log(log, "Validating %s() func#%d...\n",
4456 			tname, subprog);
4457 
4458 	if (prog->aux->func_info_aux[subprog].unreliable) {
4459 		bpf_log(log, "Verifier bug in function %s()\n", tname);
4460 		return -EFAULT;
4461 	}
4462 	if (prog_type == BPF_PROG_TYPE_EXT)
4463 		prog_type = prog->aux->linked_prog->type;
4464 
4465 	t = btf_type_by_id(btf, t->type);
4466 	if (!t || !btf_type_is_func_proto(t)) {
4467 		bpf_log(log, "Invalid type of function %s()\n", tname);
4468 		return -EFAULT;
4469 	}
4470 	args = (const struct btf_param *)(t + 1);
4471 	nargs = btf_type_vlen(t);
4472 	if (nargs > 5) {
4473 		bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
4474 			tname, nargs);
4475 		return -EINVAL;
4476 	}
4477 	/* check that function returns int */
4478 	t = btf_type_by_id(btf, t->type);
4479 	while (btf_type_is_modifier(t))
4480 		t = btf_type_by_id(btf, t->type);
4481 	if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
4482 		bpf_log(log,
4483 			"Global function %s() doesn't return scalar. Only those are supported.\n",
4484 			tname);
4485 		return -EINVAL;
4486 	}
4487 	/* Convert BTF function arguments into verifier types.
4488 	 * Only PTR_TO_CTX and SCALAR are supported atm.
4489 	 */
4490 	for (i = 0; i < nargs; i++) {
4491 		t = btf_type_by_id(btf, args[i].type);
4492 		while (btf_type_is_modifier(t))
4493 			t = btf_type_by_id(btf, t->type);
4494 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
4495 			reg[i + 1].type = SCALAR_VALUE;
4496 			continue;
4497 		}
4498 		if (btf_type_is_ptr(t) &&
4499 		    btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
4500 			reg[i + 1].type = PTR_TO_CTX;
4501 			continue;
4502 		}
4503 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
4504 			i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
4505 		return -EINVAL;
4506 	}
4507 	return 0;
4508 }
4509 
4510 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
4511 		       struct seq_file *m)
4512 {
4513 	const struct btf_type *t = btf_type_by_id(btf, type_id);
4514 
4515 	btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
4516 }
4517 
4518 #ifdef CONFIG_PROC_FS
4519 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
4520 {
4521 	const struct btf *btf = filp->private_data;
4522 
4523 	seq_printf(m, "btf_id:\t%u\n", btf->id);
4524 }
4525 #endif
4526 
4527 static int btf_release(struct inode *inode, struct file *filp)
4528 {
4529 	btf_put(filp->private_data);
4530 	return 0;
4531 }
4532 
4533 const struct file_operations btf_fops = {
4534 #ifdef CONFIG_PROC_FS
4535 	.show_fdinfo	= bpf_btf_show_fdinfo,
4536 #endif
4537 	.release	= btf_release,
4538 };
4539 
4540 static int __btf_new_fd(struct btf *btf)
4541 {
4542 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
4543 }
4544 
4545 int btf_new_fd(const union bpf_attr *attr)
4546 {
4547 	struct btf *btf;
4548 	int ret;
4549 
4550 	btf = btf_parse(u64_to_user_ptr(attr->btf),
4551 			attr->btf_size, attr->btf_log_level,
4552 			u64_to_user_ptr(attr->btf_log_buf),
4553 			attr->btf_log_size);
4554 	if (IS_ERR(btf))
4555 		return PTR_ERR(btf);
4556 
4557 	ret = btf_alloc_id(btf);
4558 	if (ret) {
4559 		btf_free(btf);
4560 		return ret;
4561 	}
4562 
4563 	/*
4564 	 * The BTF ID is published to the userspace.
4565 	 * All BTF free must go through call_rcu() from
4566 	 * now on (i.e. free by calling btf_put()).
4567 	 */
4568 
4569 	ret = __btf_new_fd(btf);
4570 	if (ret < 0)
4571 		btf_put(btf);
4572 
4573 	return ret;
4574 }
4575 
4576 struct btf *btf_get_by_fd(int fd)
4577 {
4578 	struct btf *btf;
4579 	struct fd f;
4580 
4581 	f = fdget(fd);
4582 
4583 	if (!f.file)
4584 		return ERR_PTR(-EBADF);
4585 
4586 	if (f.file->f_op != &btf_fops) {
4587 		fdput(f);
4588 		return ERR_PTR(-EINVAL);
4589 	}
4590 
4591 	btf = f.file->private_data;
4592 	refcount_inc(&btf->refcnt);
4593 	fdput(f);
4594 
4595 	return btf;
4596 }
4597 
4598 int btf_get_info_by_fd(const struct btf *btf,
4599 		       const union bpf_attr *attr,
4600 		       union bpf_attr __user *uattr)
4601 {
4602 	struct bpf_btf_info __user *uinfo;
4603 	struct bpf_btf_info info;
4604 	u32 info_copy, btf_copy;
4605 	void __user *ubtf;
4606 	u32 uinfo_len;
4607 
4608 	uinfo = u64_to_user_ptr(attr->info.info);
4609 	uinfo_len = attr->info.info_len;
4610 
4611 	info_copy = min_t(u32, uinfo_len, sizeof(info));
4612 	memset(&info, 0, sizeof(info));
4613 	if (copy_from_user(&info, uinfo, info_copy))
4614 		return -EFAULT;
4615 
4616 	info.id = btf->id;
4617 	ubtf = u64_to_user_ptr(info.btf);
4618 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
4619 	if (copy_to_user(ubtf, btf->data, btf_copy))
4620 		return -EFAULT;
4621 	info.btf_size = btf->data_size;
4622 
4623 	if (copy_to_user(uinfo, &info, info_copy) ||
4624 	    put_user(info_copy, &uattr->info.info_len))
4625 		return -EFAULT;
4626 
4627 	return 0;
4628 }
4629 
4630 int btf_get_fd_by_id(u32 id)
4631 {
4632 	struct btf *btf;
4633 	int fd;
4634 
4635 	rcu_read_lock();
4636 	btf = idr_find(&btf_idr, id);
4637 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
4638 		btf = ERR_PTR(-ENOENT);
4639 	rcu_read_unlock();
4640 
4641 	if (IS_ERR(btf))
4642 		return PTR_ERR(btf);
4643 
4644 	fd = __btf_new_fd(btf);
4645 	if (fd < 0)
4646 		btf_put(btf);
4647 
4648 	return fd;
4649 }
4650 
4651 u32 btf_id(const struct btf *btf)
4652 {
4653 	return btf->id;
4654 }
4655