1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/skmsg.h> 23 #include <linux/perf_event.h> 24 #include <linux/bsearch.h> 25 #include <linux/kobject.h> 26 #include <linux/sysfs.h> 27 #include <net/sock.h> 28 #include "../tools/lib/bpf/relo_core.h" 29 30 /* BTF (BPF Type Format) is the meta data format which describes 31 * the data types of BPF program/map. Hence, it basically focus 32 * on the C programming language which the modern BPF is primary 33 * using. 34 * 35 * ELF Section: 36 * ~~~~~~~~~~~ 37 * The BTF data is stored under the ".BTF" ELF section 38 * 39 * struct btf_type: 40 * ~~~~~~~~~~~~~~~ 41 * Each 'struct btf_type' object describes a C data type. 42 * Depending on the type it is describing, a 'struct btf_type' 43 * object may be followed by more data. F.e. 44 * To describe an array, 'struct btf_type' is followed by 45 * 'struct btf_array'. 46 * 47 * 'struct btf_type' and any extra data following it are 48 * 4 bytes aligned. 49 * 50 * Type section: 51 * ~~~~~~~~~~~~~ 52 * The BTF type section contains a list of 'struct btf_type' objects. 53 * Each one describes a C type. Recall from the above section 54 * that a 'struct btf_type' object could be immediately followed by extra 55 * data in order to describe some particular C types. 56 * 57 * type_id: 58 * ~~~~~~~ 59 * Each btf_type object is identified by a type_id. The type_id 60 * is implicitly implied by the location of the btf_type object in 61 * the BTF type section. The first one has type_id 1. The second 62 * one has type_id 2...etc. Hence, an earlier btf_type has 63 * a smaller type_id. 64 * 65 * A btf_type object may refer to another btf_type object by using 66 * type_id (i.e. the "type" in the "struct btf_type"). 67 * 68 * NOTE that we cannot assume any reference-order. 69 * A btf_type object can refer to an earlier btf_type object 70 * but it can also refer to a later btf_type object. 71 * 72 * For example, to describe "const void *". A btf_type 73 * object describing "const" may refer to another btf_type 74 * object describing "void *". This type-reference is done 75 * by specifying type_id: 76 * 77 * [1] CONST (anon) type_id=2 78 * [2] PTR (anon) type_id=0 79 * 80 * The above is the btf_verifier debug log: 81 * - Each line started with "[?]" is a btf_type object 82 * - [?] is the type_id of the btf_type object. 83 * - CONST/PTR is the BTF_KIND_XXX 84 * - "(anon)" is the name of the type. It just 85 * happens that CONST and PTR has no name. 86 * - type_id=XXX is the 'u32 type' in btf_type 87 * 88 * NOTE: "void" has type_id 0 89 * 90 * String section: 91 * ~~~~~~~~~~~~~~ 92 * The BTF string section contains the names used by the type section. 93 * Each string is referred by an "offset" from the beginning of the 94 * string section. 95 * 96 * Each string is '\0' terminated. 97 * 98 * The first character in the string section must be '\0' 99 * which is used to mean 'anonymous'. Some btf_type may not 100 * have a name. 101 */ 102 103 /* BTF verification: 104 * 105 * To verify BTF data, two passes are needed. 106 * 107 * Pass #1 108 * ~~~~~~~ 109 * The first pass is to collect all btf_type objects to 110 * an array: "btf->types". 111 * 112 * Depending on the C type that a btf_type is describing, 113 * a btf_type may be followed by extra data. We don't know 114 * how many btf_type is there, and more importantly we don't 115 * know where each btf_type is located in the type section. 116 * 117 * Without knowing the location of each type_id, most verifications 118 * cannot be done. e.g. an earlier btf_type may refer to a later 119 * btf_type (recall the "const void *" above), so we cannot 120 * check this type-reference in the first pass. 121 * 122 * In the first pass, it still does some verifications (e.g. 123 * checking the name is a valid offset to the string section). 124 * 125 * Pass #2 126 * ~~~~~~~ 127 * The main focus is to resolve a btf_type that is referring 128 * to another type. 129 * 130 * We have to ensure the referring type: 131 * 1) does exist in the BTF (i.e. in btf->types[]) 132 * 2) does not cause a loop: 133 * struct A { 134 * struct B b; 135 * }; 136 * 137 * struct B { 138 * struct A a; 139 * }; 140 * 141 * btf_type_needs_resolve() decides if a btf_type needs 142 * to be resolved. 143 * 144 * The needs_resolve type implements the "resolve()" ops which 145 * essentially does a DFS and detects backedge. 146 * 147 * During resolve (or DFS), different C types have different 148 * "RESOLVED" conditions. 149 * 150 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 151 * members because a member is always referring to another 152 * type. A struct's member can be treated as "RESOLVED" if 153 * it is referring to a BTF_KIND_PTR. Otherwise, the 154 * following valid C struct would be rejected: 155 * 156 * struct A { 157 * int m; 158 * struct A *a; 159 * }; 160 * 161 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 162 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 163 * detect a pointer loop, e.g.: 164 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 165 * ^ | 166 * +-----------------------------------------+ 167 * 168 */ 169 170 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 171 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 172 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 173 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 174 #define BITS_ROUNDUP_BYTES(bits) \ 175 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 176 177 #define BTF_INFO_MASK 0x9f00ffff 178 #define BTF_INT_MASK 0x0fffffff 179 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 180 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 181 182 /* 16MB for 64k structs and each has 16 members and 183 * a few MB spaces for the string section. 184 * The hard limit is S32_MAX. 185 */ 186 #define BTF_MAX_SIZE (16 * 1024 * 1024) 187 188 #define for_each_member_from(i, from, struct_type, member) \ 189 for (i = from, member = btf_type_member(struct_type) + from; \ 190 i < btf_type_vlen(struct_type); \ 191 i++, member++) 192 193 #define for_each_vsi_from(i, from, struct_type, member) \ 194 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 195 i < btf_type_vlen(struct_type); \ 196 i++, member++) 197 198 DEFINE_IDR(btf_idr); 199 DEFINE_SPINLOCK(btf_idr_lock); 200 201 enum btf_kfunc_hook { 202 BTF_KFUNC_HOOK_XDP, 203 BTF_KFUNC_HOOK_TC, 204 BTF_KFUNC_HOOK_STRUCT_OPS, 205 BTF_KFUNC_HOOK_TRACING, 206 BTF_KFUNC_HOOK_SYSCALL, 207 BTF_KFUNC_HOOK_MAX, 208 }; 209 210 enum { 211 BTF_KFUNC_SET_MAX_CNT = 256, 212 BTF_DTOR_KFUNC_MAX_CNT = 256, 213 }; 214 215 struct btf_kfunc_set_tab { 216 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 217 }; 218 219 struct btf_id_dtor_kfunc_tab { 220 u32 cnt; 221 struct btf_id_dtor_kfunc dtors[]; 222 }; 223 224 struct btf { 225 void *data; 226 struct btf_type **types; 227 u32 *resolved_ids; 228 u32 *resolved_sizes; 229 const char *strings; 230 void *nohdr_data; 231 struct btf_header hdr; 232 u32 nr_types; /* includes VOID for base BTF */ 233 u32 types_size; 234 u32 data_size; 235 refcount_t refcnt; 236 u32 id; 237 struct rcu_head rcu; 238 struct btf_kfunc_set_tab *kfunc_set_tab; 239 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 240 241 /* split BTF support */ 242 struct btf *base_btf; 243 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 244 u32 start_str_off; /* first string offset (0 for base BTF) */ 245 char name[MODULE_NAME_LEN]; 246 bool kernel_btf; 247 }; 248 249 enum verifier_phase { 250 CHECK_META, 251 CHECK_TYPE, 252 }; 253 254 struct resolve_vertex { 255 const struct btf_type *t; 256 u32 type_id; 257 u16 next_member; 258 }; 259 260 enum visit_state { 261 NOT_VISITED, 262 VISITED, 263 RESOLVED, 264 }; 265 266 enum resolve_mode { 267 RESOLVE_TBD, /* To Be Determined */ 268 RESOLVE_PTR, /* Resolving for Pointer */ 269 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 270 * or array 271 */ 272 }; 273 274 #define MAX_RESOLVE_DEPTH 32 275 276 struct btf_sec_info { 277 u32 off; 278 u32 len; 279 }; 280 281 struct btf_verifier_env { 282 struct btf *btf; 283 u8 *visit_states; 284 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 285 struct bpf_verifier_log log; 286 u32 log_type_id; 287 u32 top_stack; 288 enum verifier_phase phase; 289 enum resolve_mode resolve_mode; 290 }; 291 292 static const char * const btf_kind_str[NR_BTF_KINDS] = { 293 [BTF_KIND_UNKN] = "UNKNOWN", 294 [BTF_KIND_INT] = "INT", 295 [BTF_KIND_PTR] = "PTR", 296 [BTF_KIND_ARRAY] = "ARRAY", 297 [BTF_KIND_STRUCT] = "STRUCT", 298 [BTF_KIND_UNION] = "UNION", 299 [BTF_KIND_ENUM] = "ENUM", 300 [BTF_KIND_FWD] = "FWD", 301 [BTF_KIND_TYPEDEF] = "TYPEDEF", 302 [BTF_KIND_VOLATILE] = "VOLATILE", 303 [BTF_KIND_CONST] = "CONST", 304 [BTF_KIND_RESTRICT] = "RESTRICT", 305 [BTF_KIND_FUNC] = "FUNC", 306 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 307 [BTF_KIND_VAR] = "VAR", 308 [BTF_KIND_DATASEC] = "DATASEC", 309 [BTF_KIND_FLOAT] = "FLOAT", 310 [BTF_KIND_DECL_TAG] = "DECL_TAG", 311 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 312 [BTF_KIND_ENUM64] = "ENUM64", 313 }; 314 315 const char *btf_type_str(const struct btf_type *t) 316 { 317 return btf_kind_str[BTF_INFO_KIND(t->info)]; 318 } 319 320 /* Chunk size we use in safe copy of data to be shown. */ 321 #define BTF_SHOW_OBJ_SAFE_SIZE 32 322 323 /* 324 * This is the maximum size of a base type value (equivalent to a 325 * 128-bit int); if we are at the end of our safe buffer and have 326 * less than 16 bytes space we can't be assured of being able 327 * to copy the next type safely, so in such cases we will initiate 328 * a new copy. 329 */ 330 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 331 332 /* Type name size */ 333 #define BTF_SHOW_NAME_SIZE 80 334 335 /* 336 * Common data to all BTF show operations. Private show functions can add 337 * their own data to a structure containing a struct btf_show and consult it 338 * in the show callback. See btf_type_show() below. 339 * 340 * One challenge with showing nested data is we want to skip 0-valued 341 * data, but in order to figure out whether a nested object is all zeros 342 * we need to walk through it. As a result, we need to make two passes 343 * when handling structs, unions and arrays; the first path simply looks 344 * for nonzero data, while the second actually does the display. The first 345 * pass is signalled by show->state.depth_check being set, and if we 346 * encounter a non-zero value we set show->state.depth_to_show to 347 * the depth at which we encountered it. When we have completed the 348 * first pass, we will know if anything needs to be displayed if 349 * depth_to_show > depth. See btf_[struct,array]_show() for the 350 * implementation of this. 351 * 352 * Another problem is we want to ensure the data for display is safe to 353 * access. To support this, the anonymous "struct {} obj" tracks the data 354 * object and our safe copy of it. We copy portions of the data needed 355 * to the object "copy" buffer, but because its size is limited to 356 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 357 * traverse larger objects for display. 358 * 359 * The various data type show functions all start with a call to 360 * btf_show_start_type() which returns a pointer to the safe copy 361 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 362 * raw data itself). btf_show_obj_safe() is responsible for 363 * using copy_from_kernel_nofault() to update the safe data if necessary 364 * as we traverse the object's data. skbuff-like semantics are 365 * used: 366 * 367 * - obj.head points to the start of the toplevel object for display 368 * - obj.size is the size of the toplevel object 369 * - obj.data points to the current point in the original data at 370 * which our safe data starts. obj.data will advance as we copy 371 * portions of the data. 372 * 373 * In most cases a single copy will suffice, but larger data structures 374 * such as "struct task_struct" will require many copies. The logic in 375 * btf_show_obj_safe() handles the logic that determines if a new 376 * copy_from_kernel_nofault() is needed. 377 */ 378 struct btf_show { 379 u64 flags; 380 void *target; /* target of show operation (seq file, buffer) */ 381 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 382 const struct btf *btf; 383 /* below are used during iteration */ 384 struct { 385 u8 depth; 386 u8 depth_to_show; 387 u8 depth_check; 388 u8 array_member:1, 389 array_terminated:1; 390 u16 array_encoding; 391 u32 type_id; 392 int status; /* non-zero for error */ 393 const struct btf_type *type; 394 const struct btf_member *member; 395 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 396 } state; 397 struct { 398 u32 size; 399 void *head; 400 void *data; 401 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 402 } obj; 403 }; 404 405 struct btf_kind_operations { 406 s32 (*check_meta)(struct btf_verifier_env *env, 407 const struct btf_type *t, 408 u32 meta_left); 409 int (*resolve)(struct btf_verifier_env *env, 410 const struct resolve_vertex *v); 411 int (*check_member)(struct btf_verifier_env *env, 412 const struct btf_type *struct_type, 413 const struct btf_member *member, 414 const struct btf_type *member_type); 415 int (*check_kflag_member)(struct btf_verifier_env *env, 416 const struct btf_type *struct_type, 417 const struct btf_member *member, 418 const struct btf_type *member_type); 419 void (*log_details)(struct btf_verifier_env *env, 420 const struct btf_type *t); 421 void (*show)(const struct btf *btf, const struct btf_type *t, 422 u32 type_id, void *data, u8 bits_offsets, 423 struct btf_show *show); 424 }; 425 426 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 427 static struct btf_type btf_void; 428 429 static int btf_resolve(struct btf_verifier_env *env, 430 const struct btf_type *t, u32 type_id); 431 432 static int btf_func_check(struct btf_verifier_env *env, 433 const struct btf_type *t); 434 435 static bool btf_type_is_modifier(const struct btf_type *t) 436 { 437 /* Some of them is not strictly a C modifier 438 * but they are grouped into the same bucket 439 * for BTF concern: 440 * A type (t) that refers to another 441 * type through t->type AND its size cannot 442 * be determined without following the t->type. 443 * 444 * ptr does not fall into this bucket 445 * because its size is always sizeof(void *). 446 */ 447 switch (BTF_INFO_KIND(t->info)) { 448 case BTF_KIND_TYPEDEF: 449 case BTF_KIND_VOLATILE: 450 case BTF_KIND_CONST: 451 case BTF_KIND_RESTRICT: 452 case BTF_KIND_TYPE_TAG: 453 return true; 454 } 455 456 return false; 457 } 458 459 bool btf_type_is_void(const struct btf_type *t) 460 { 461 return t == &btf_void; 462 } 463 464 static bool btf_type_is_fwd(const struct btf_type *t) 465 { 466 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 467 } 468 469 static bool btf_type_nosize(const struct btf_type *t) 470 { 471 return btf_type_is_void(t) || btf_type_is_fwd(t) || 472 btf_type_is_func(t) || btf_type_is_func_proto(t); 473 } 474 475 static bool btf_type_nosize_or_null(const struct btf_type *t) 476 { 477 return !t || btf_type_nosize(t); 478 } 479 480 static bool __btf_type_is_struct(const struct btf_type *t) 481 { 482 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; 483 } 484 485 static bool btf_type_is_array(const struct btf_type *t) 486 { 487 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 488 } 489 490 static bool btf_type_is_datasec(const struct btf_type *t) 491 { 492 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 493 } 494 495 static bool btf_type_is_decl_tag(const struct btf_type *t) 496 { 497 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 498 } 499 500 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 501 { 502 return btf_type_is_func(t) || btf_type_is_struct(t) || 503 btf_type_is_var(t) || btf_type_is_typedef(t); 504 } 505 506 u32 btf_nr_types(const struct btf *btf) 507 { 508 u32 total = 0; 509 510 while (btf) { 511 total += btf->nr_types; 512 btf = btf->base_btf; 513 } 514 515 return total; 516 } 517 518 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 519 { 520 const struct btf_type *t; 521 const char *tname; 522 u32 i, total; 523 524 total = btf_nr_types(btf); 525 for (i = 1; i < total; i++) { 526 t = btf_type_by_id(btf, i); 527 if (BTF_INFO_KIND(t->info) != kind) 528 continue; 529 530 tname = btf_name_by_offset(btf, t->name_off); 531 if (!strcmp(tname, name)) 532 return i; 533 } 534 535 return -ENOENT; 536 } 537 538 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 539 { 540 struct btf *btf; 541 s32 ret; 542 int id; 543 544 btf = bpf_get_btf_vmlinux(); 545 if (IS_ERR(btf)) 546 return PTR_ERR(btf); 547 if (!btf) 548 return -EINVAL; 549 550 ret = btf_find_by_name_kind(btf, name, kind); 551 /* ret is never zero, since btf_find_by_name_kind returns 552 * positive btf_id or negative error. 553 */ 554 if (ret > 0) { 555 btf_get(btf); 556 *btf_p = btf; 557 return ret; 558 } 559 560 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 561 spin_lock_bh(&btf_idr_lock); 562 idr_for_each_entry(&btf_idr, btf, id) { 563 if (!btf_is_module(btf)) 564 continue; 565 /* linear search could be slow hence unlock/lock 566 * the IDR to avoiding holding it for too long 567 */ 568 btf_get(btf); 569 spin_unlock_bh(&btf_idr_lock); 570 ret = btf_find_by_name_kind(btf, name, kind); 571 if (ret > 0) { 572 *btf_p = btf; 573 return ret; 574 } 575 spin_lock_bh(&btf_idr_lock); 576 btf_put(btf); 577 } 578 spin_unlock_bh(&btf_idr_lock); 579 return ret; 580 } 581 582 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 583 u32 id, u32 *res_id) 584 { 585 const struct btf_type *t = btf_type_by_id(btf, id); 586 587 while (btf_type_is_modifier(t)) { 588 id = t->type; 589 t = btf_type_by_id(btf, t->type); 590 } 591 592 if (res_id) 593 *res_id = id; 594 595 return t; 596 } 597 598 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 599 u32 id, u32 *res_id) 600 { 601 const struct btf_type *t; 602 603 t = btf_type_skip_modifiers(btf, id, NULL); 604 if (!btf_type_is_ptr(t)) 605 return NULL; 606 607 return btf_type_skip_modifiers(btf, t->type, res_id); 608 } 609 610 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 611 u32 id, u32 *res_id) 612 { 613 const struct btf_type *ptype; 614 615 ptype = btf_type_resolve_ptr(btf, id, res_id); 616 if (ptype && btf_type_is_func_proto(ptype)) 617 return ptype; 618 619 return NULL; 620 } 621 622 /* Types that act only as a source, not sink or intermediate 623 * type when resolving. 624 */ 625 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 626 { 627 return btf_type_is_var(t) || 628 btf_type_is_decl_tag(t) || 629 btf_type_is_datasec(t); 630 } 631 632 /* What types need to be resolved? 633 * 634 * btf_type_is_modifier() is an obvious one. 635 * 636 * btf_type_is_struct() because its member refers to 637 * another type (through member->type). 638 * 639 * btf_type_is_var() because the variable refers to 640 * another type. btf_type_is_datasec() holds multiple 641 * btf_type_is_var() types that need resolving. 642 * 643 * btf_type_is_array() because its element (array->type) 644 * refers to another type. Array can be thought of a 645 * special case of struct while array just has the same 646 * member-type repeated by array->nelems of times. 647 */ 648 static bool btf_type_needs_resolve(const struct btf_type *t) 649 { 650 return btf_type_is_modifier(t) || 651 btf_type_is_ptr(t) || 652 btf_type_is_struct(t) || 653 btf_type_is_array(t) || 654 btf_type_is_var(t) || 655 btf_type_is_func(t) || 656 btf_type_is_decl_tag(t) || 657 btf_type_is_datasec(t); 658 } 659 660 /* t->size can be used */ 661 static bool btf_type_has_size(const struct btf_type *t) 662 { 663 switch (BTF_INFO_KIND(t->info)) { 664 case BTF_KIND_INT: 665 case BTF_KIND_STRUCT: 666 case BTF_KIND_UNION: 667 case BTF_KIND_ENUM: 668 case BTF_KIND_DATASEC: 669 case BTF_KIND_FLOAT: 670 case BTF_KIND_ENUM64: 671 return true; 672 } 673 674 return false; 675 } 676 677 static const char *btf_int_encoding_str(u8 encoding) 678 { 679 if (encoding == 0) 680 return "(none)"; 681 else if (encoding == BTF_INT_SIGNED) 682 return "SIGNED"; 683 else if (encoding == BTF_INT_CHAR) 684 return "CHAR"; 685 else if (encoding == BTF_INT_BOOL) 686 return "BOOL"; 687 else 688 return "UNKN"; 689 } 690 691 static u32 btf_type_int(const struct btf_type *t) 692 { 693 return *(u32 *)(t + 1); 694 } 695 696 static const struct btf_array *btf_type_array(const struct btf_type *t) 697 { 698 return (const struct btf_array *)(t + 1); 699 } 700 701 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 702 { 703 return (const struct btf_enum *)(t + 1); 704 } 705 706 static const struct btf_var *btf_type_var(const struct btf_type *t) 707 { 708 return (const struct btf_var *)(t + 1); 709 } 710 711 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 712 { 713 return (const struct btf_decl_tag *)(t + 1); 714 } 715 716 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 717 { 718 return (const struct btf_enum64 *)(t + 1); 719 } 720 721 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 722 { 723 return kind_ops[BTF_INFO_KIND(t->info)]; 724 } 725 726 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 727 { 728 if (!BTF_STR_OFFSET_VALID(offset)) 729 return false; 730 731 while (offset < btf->start_str_off) 732 btf = btf->base_btf; 733 734 offset -= btf->start_str_off; 735 return offset < btf->hdr.str_len; 736 } 737 738 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 739 { 740 if ((first ? !isalpha(c) : 741 !isalnum(c)) && 742 c != '_' && 743 ((c == '.' && !dot_ok) || 744 c != '.')) 745 return false; 746 return true; 747 } 748 749 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 750 { 751 while (offset < btf->start_str_off) 752 btf = btf->base_btf; 753 754 offset -= btf->start_str_off; 755 if (offset < btf->hdr.str_len) 756 return &btf->strings[offset]; 757 758 return NULL; 759 } 760 761 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 762 { 763 /* offset must be valid */ 764 const char *src = btf_str_by_offset(btf, offset); 765 const char *src_limit; 766 767 if (!__btf_name_char_ok(*src, true, dot_ok)) 768 return false; 769 770 /* set a limit on identifier length */ 771 src_limit = src + KSYM_NAME_LEN; 772 src++; 773 while (*src && src < src_limit) { 774 if (!__btf_name_char_ok(*src, false, dot_ok)) 775 return false; 776 src++; 777 } 778 779 return !*src; 780 } 781 782 /* Only C-style identifier is permitted. This can be relaxed if 783 * necessary. 784 */ 785 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 786 { 787 return __btf_name_valid(btf, offset, false); 788 } 789 790 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 791 { 792 return __btf_name_valid(btf, offset, true); 793 } 794 795 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 796 { 797 const char *name; 798 799 if (!offset) 800 return "(anon)"; 801 802 name = btf_str_by_offset(btf, offset); 803 return name ?: "(invalid-name-offset)"; 804 } 805 806 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 807 { 808 return btf_str_by_offset(btf, offset); 809 } 810 811 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 812 { 813 while (type_id < btf->start_id) 814 btf = btf->base_btf; 815 816 type_id -= btf->start_id; 817 if (type_id >= btf->nr_types) 818 return NULL; 819 return btf->types[type_id]; 820 } 821 EXPORT_SYMBOL_GPL(btf_type_by_id); 822 823 /* 824 * Regular int is not a bit field and it must be either 825 * u8/u16/u32/u64 or __int128. 826 */ 827 static bool btf_type_int_is_regular(const struct btf_type *t) 828 { 829 u8 nr_bits, nr_bytes; 830 u32 int_data; 831 832 int_data = btf_type_int(t); 833 nr_bits = BTF_INT_BITS(int_data); 834 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 835 if (BITS_PER_BYTE_MASKED(nr_bits) || 836 BTF_INT_OFFSET(int_data) || 837 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 838 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 839 nr_bytes != (2 * sizeof(u64)))) { 840 return false; 841 } 842 843 return true; 844 } 845 846 /* 847 * Check that given struct member is a regular int with expected 848 * offset and size. 849 */ 850 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 851 const struct btf_member *m, 852 u32 expected_offset, u32 expected_size) 853 { 854 const struct btf_type *t; 855 u32 id, int_data; 856 u8 nr_bits; 857 858 id = m->type; 859 t = btf_type_id_size(btf, &id, NULL); 860 if (!t || !btf_type_is_int(t)) 861 return false; 862 863 int_data = btf_type_int(t); 864 nr_bits = BTF_INT_BITS(int_data); 865 if (btf_type_kflag(s)) { 866 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 867 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 868 869 /* if kflag set, int should be a regular int and 870 * bit offset should be at byte boundary. 871 */ 872 return !bitfield_size && 873 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 874 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 875 } 876 877 if (BTF_INT_OFFSET(int_data) || 878 BITS_PER_BYTE_MASKED(m->offset) || 879 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 880 BITS_PER_BYTE_MASKED(nr_bits) || 881 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 882 return false; 883 884 return true; 885 } 886 887 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 888 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 889 u32 id) 890 { 891 const struct btf_type *t = btf_type_by_id(btf, id); 892 893 while (btf_type_is_modifier(t) && 894 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 895 t = btf_type_by_id(btf, t->type); 896 } 897 898 return t; 899 } 900 901 #define BTF_SHOW_MAX_ITER 10 902 903 #define BTF_KIND_BIT(kind) (1ULL << kind) 904 905 /* 906 * Populate show->state.name with type name information. 907 * Format of type name is 908 * 909 * [.member_name = ] (type_name) 910 */ 911 static const char *btf_show_name(struct btf_show *show) 912 { 913 /* BTF_MAX_ITER array suffixes "[]" */ 914 const char *array_suffixes = "[][][][][][][][][][]"; 915 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 916 /* BTF_MAX_ITER pointer suffixes "*" */ 917 const char *ptr_suffixes = "**********"; 918 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 919 const char *name = NULL, *prefix = "", *parens = ""; 920 const struct btf_member *m = show->state.member; 921 const struct btf_type *t; 922 const struct btf_array *array; 923 u32 id = show->state.type_id; 924 const char *member = NULL; 925 bool show_member = false; 926 u64 kinds = 0; 927 int i; 928 929 show->state.name[0] = '\0'; 930 931 /* 932 * Don't show type name if we're showing an array member; 933 * in that case we show the array type so don't need to repeat 934 * ourselves for each member. 935 */ 936 if (show->state.array_member) 937 return ""; 938 939 /* Retrieve member name, if any. */ 940 if (m) { 941 member = btf_name_by_offset(show->btf, m->name_off); 942 show_member = strlen(member) > 0; 943 id = m->type; 944 } 945 946 /* 947 * Start with type_id, as we have resolved the struct btf_type * 948 * via btf_modifier_show() past the parent typedef to the child 949 * struct, int etc it is defined as. In such cases, the type_id 950 * still represents the starting type while the struct btf_type * 951 * in our show->state points at the resolved type of the typedef. 952 */ 953 t = btf_type_by_id(show->btf, id); 954 if (!t) 955 return ""; 956 957 /* 958 * The goal here is to build up the right number of pointer and 959 * array suffixes while ensuring the type name for a typedef 960 * is represented. Along the way we accumulate a list of 961 * BTF kinds we have encountered, since these will inform later 962 * display; for example, pointer types will not require an 963 * opening "{" for struct, we will just display the pointer value. 964 * 965 * We also want to accumulate the right number of pointer or array 966 * indices in the format string while iterating until we get to 967 * the typedef/pointee/array member target type. 968 * 969 * We start by pointing at the end of pointer and array suffix 970 * strings; as we accumulate pointers and arrays we move the pointer 971 * or array string backwards so it will show the expected number of 972 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 973 * and/or arrays and typedefs are supported as a precaution. 974 * 975 * We also want to get typedef name while proceeding to resolve 976 * type it points to so that we can add parentheses if it is a 977 * "typedef struct" etc. 978 */ 979 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 980 981 switch (BTF_INFO_KIND(t->info)) { 982 case BTF_KIND_TYPEDEF: 983 if (!name) 984 name = btf_name_by_offset(show->btf, 985 t->name_off); 986 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 987 id = t->type; 988 break; 989 case BTF_KIND_ARRAY: 990 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 991 parens = "["; 992 if (!t) 993 return ""; 994 array = btf_type_array(t); 995 if (array_suffix > array_suffixes) 996 array_suffix -= 2; 997 id = array->type; 998 break; 999 case BTF_KIND_PTR: 1000 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1001 if (ptr_suffix > ptr_suffixes) 1002 ptr_suffix -= 1; 1003 id = t->type; 1004 break; 1005 default: 1006 id = 0; 1007 break; 1008 } 1009 if (!id) 1010 break; 1011 t = btf_type_skip_qualifiers(show->btf, id); 1012 } 1013 /* We may not be able to represent this type; bail to be safe */ 1014 if (i == BTF_SHOW_MAX_ITER) 1015 return ""; 1016 1017 if (!name) 1018 name = btf_name_by_offset(show->btf, t->name_off); 1019 1020 switch (BTF_INFO_KIND(t->info)) { 1021 case BTF_KIND_STRUCT: 1022 case BTF_KIND_UNION: 1023 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1024 "struct" : "union"; 1025 /* if it's an array of struct/union, parens is already set */ 1026 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1027 parens = "{"; 1028 break; 1029 case BTF_KIND_ENUM: 1030 case BTF_KIND_ENUM64: 1031 prefix = "enum"; 1032 break; 1033 default: 1034 break; 1035 } 1036 1037 /* pointer does not require parens */ 1038 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1039 parens = ""; 1040 /* typedef does not require struct/union/enum prefix */ 1041 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1042 prefix = ""; 1043 1044 if (!name) 1045 name = ""; 1046 1047 /* Even if we don't want type name info, we want parentheses etc */ 1048 if (show->flags & BTF_SHOW_NONAME) 1049 snprintf(show->state.name, sizeof(show->state.name), "%s", 1050 parens); 1051 else 1052 snprintf(show->state.name, sizeof(show->state.name), 1053 "%s%s%s(%s%s%s%s%s%s)%s", 1054 /* first 3 strings comprise ".member = " */ 1055 show_member ? "." : "", 1056 show_member ? member : "", 1057 show_member ? " = " : "", 1058 /* ...next is our prefix (struct, enum, etc) */ 1059 prefix, 1060 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1061 /* ...this is the type name itself */ 1062 name, 1063 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1064 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1065 array_suffix, parens); 1066 1067 return show->state.name; 1068 } 1069 1070 static const char *__btf_show_indent(struct btf_show *show) 1071 { 1072 const char *indents = " "; 1073 const char *indent = &indents[strlen(indents)]; 1074 1075 if ((indent - show->state.depth) >= indents) 1076 return indent - show->state.depth; 1077 return indents; 1078 } 1079 1080 static const char *btf_show_indent(struct btf_show *show) 1081 { 1082 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1083 } 1084 1085 static const char *btf_show_newline(struct btf_show *show) 1086 { 1087 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1088 } 1089 1090 static const char *btf_show_delim(struct btf_show *show) 1091 { 1092 if (show->state.depth == 0) 1093 return ""; 1094 1095 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1096 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1097 return "|"; 1098 1099 return ","; 1100 } 1101 1102 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1103 { 1104 va_list args; 1105 1106 if (!show->state.depth_check) { 1107 va_start(args, fmt); 1108 show->showfn(show, fmt, args); 1109 va_end(args); 1110 } 1111 } 1112 1113 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1114 * format specifiers to the format specifier passed in; these do the work of 1115 * adding indentation, delimiters etc while the caller simply has to specify 1116 * the type value(s) in the format specifier + value(s). 1117 */ 1118 #define btf_show_type_value(show, fmt, value) \ 1119 do { \ 1120 if ((value) != (__typeof__(value))0 || \ 1121 (show->flags & BTF_SHOW_ZERO) || \ 1122 show->state.depth == 0) { \ 1123 btf_show(show, "%s%s" fmt "%s%s", \ 1124 btf_show_indent(show), \ 1125 btf_show_name(show), \ 1126 value, btf_show_delim(show), \ 1127 btf_show_newline(show)); \ 1128 if (show->state.depth > show->state.depth_to_show) \ 1129 show->state.depth_to_show = show->state.depth; \ 1130 } \ 1131 } while (0) 1132 1133 #define btf_show_type_values(show, fmt, ...) \ 1134 do { \ 1135 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1136 btf_show_name(show), \ 1137 __VA_ARGS__, btf_show_delim(show), \ 1138 btf_show_newline(show)); \ 1139 if (show->state.depth > show->state.depth_to_show) \ 1140 show->state.depth_to_show = show->state.depth; \ 1141 } while (0) 1142 1143 /* How much is left to copy to safe buffer after @data? */ 1144 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1145 { 1146 return show->obj.head + show->obj.size - data; 1147 } 1148 1149 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1150 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1151 { 1152 return data >= show->obj.data && 1153 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1154 } 1155 1156 /* 1157 * If object pointed to by @data of @size falls within our safe buffer, return 1158 * the equivalent pointer to the same safe data. Assumes 1159 * copy_from_kernel_nofault() has already happened and our safe buffer is 1160 * populated. 1161 */ 1162 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1163 { 1164 if (btf_show_obj_is_safe(show, data, size)) 1165 return show->obj.safe + (data - show->obj.data); 1166 return NULL; 1167 } 1168 1169 /* 1170 * Return a safe-to-access version of data pointed to by @data. 1171 * We do this by copying the relevant amount of information 1172 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1173 * 1174 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1175 * safe copy is needed. 1176 * 1177 * Otherwise we need to determine if we have the required amount 1178 * of data (determined by the @data pointer and the size of the 1179 * largest base type we can encounter (represented by 1180 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1181 * that we will be able to print some of the current object, 1182 * and if more is needed a copy will be triggered. 1183 * Some objects such as structs will not fit into the buffer; 1184 * in such cases additional copies when we iterate over their 1185 * members may be needed. 1186 * 1187 * btf_show_obj_safe() is used to return a safe buffer for 1188 * btf_show_start_type(); this ensures that as we recurse into 1189 * nested types we always have safe data for the given type. 1190 * This approach is somewhat wasteful; it's possible for example 1191 * that when iterating over a large union we'll end up copying the 1192 * same data repeatedly, but the goal is safety not performance. 1193 * We use stack data as opposed to per-CPU buffers because the 1194 * iteration over a type can take some time, and preemption handling 1195 * would greatly complicate use of the safe buffer. 1196 */ 1197 static void *btf_show_obj_safe(struct btf_show *show, 1198 const struct btf_type *t, 1199 void *data) 1200 { 1201 const struct btf_type *rt; 1202 int size_left, size; 1203 void *safe = NULL; 1204 1205 if (show->flags & BTF_SHOW_UNSAFE) 1206 return data; 1207 1208 rt = btf_resolve_size(show->btf, t, &size); 1209 if (IS_ERR(rt)) { 1210 show->state.status = PTR_ERR(rt); 1211 return NULL; 1212 } 1213 1214 /* 1215 * Is this toplevel object? If so, set total object size and 1216 * initialize pointers. Otherwise check if we still fall within 1217 * our safe object data. 1218 */ 1219 if (show->state.depth == 0) { 1220 show->obj.size = size; 1221 show->obj.head = data; 1222 } else { 1223 /* 1224 * If the size of the current object is > our remaining 1225 * safe buffer we _may_ need to do a new copy. However 1226 * consider the case of a nested struct; it's size pushes 1227 * us over the safe buffer limit, but showing any individual 1228 * struct members does not. In such cases, we don't need 1229 * to initiate a fresh copy yet; however we definitely need 1230 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1231 * in our buffer, regardless of the current object size. 1232 * The logic here is that as we resolve types we will 1233 * hit a base type at some point, and we need to be sure 1234 * the next chunk of data is safely available to display 1235 * that type info safely. We cannot rely on the size of 1236 * the current object here because it may be much larger 1237 * than our current buffer (e.g. task_struct is 8k). 1238 * All we want to do here is ensure that we can print the 1239 * next basic type, which we can if either 1240 * - the current type size is within the safe buffer; or 1241 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1242 * the safe buffer. 1243 */ 1244 safe = __btf_show_obj_safe(show, data, 1245 min(size, 1246 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1247 } 1248 1249 /* 1250 * We need a new copy to our safe object, either because we haven't 1251 * yet copied and are initializing safe data, or because the data 1252 * we want falls outside the boundaries of the safe object. 1253 */ 1254 if (!safe) { 1255 size_left = btf_show_obj_size_left(show, data); 1256 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1257 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1258 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1259 data, size_left); 1260 if (!show->state.status) { 1261 show->obj.data = data; 1262 safe = show->obj.safe; 1263 } 1264 } 1265 1266 return safe; 1267 } 1268 1269 /* 1270 * Set the type we are starting to show and return a safe data pointer 1271 * to be used for showing the associated data. 1272 */ 1273 static void *btf_show_start_type(struct btf_show *show, 1274 const struct btf_type *t, 1275 u32 type_id, void *data) 1276 { 1277 show->state.type = t; 1278 show->state.type_id = type_id; 1279 show->state.name[0] = '\0'; 1280 1281 return btf_show_obj_safe(show, t, data); 1282 } 1283 1284 static void btf_show_end_type(struct btf_show *show) 1285 { 1286 show->state.type = NULL; 1287 show->state.type_id = 0; 1288 show->state.name[0] = '\0'; 1289 } 1290 1291 static void *btf_show_start_aggr_type(struct btf_show *show, 1292 const struct btf_type *t, 1293 u32 type_id, void *data) 1294 { 1295 void *safe_data = btf_show_start_type(show, t, type_id, data); 1296 1297 if (!safe_data) 1298 return safe_data; 1299 1300 btf_show(show, "%s%s%s", btf_show_indent(show), 1301 btf_show_name(show), 1302 btf_show_newline(show)); 1303 show->state.depth++; 1304 return safe_data; 1305 } 1306 1307 static void btf_show_end_aggr_type(struct btf_show *show, 1308 const char *suffix) 1309 { 1310 show->state.depth--; 1311 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1312 btf_show_delim(show), btf_show_newline(show)); 1313 btf_show_end_type(show); 1314 } 1315 1316 static void btf_show_start_member(struct btf_show *show, 1317 const struct btf_member *m) 1318 { 1319 show->state.member = m; 1320 } 1321 1322 static void btf_show_start_array_member(struct btf_show *show) 1323 { 1324 show->state.array_member = 1; 1325 btf_show_start_member(show, NULL); 1326 } 1327 1328 static void btf_show_end_member(struct btf_show *show) 1329 { 1330 show->state.member = NULL; 1331 } 1332 1333 static void btf_show_end_array_member(struct btf_show *show) 1334 { 1335 show->state.array_member = 0; 1336 btf_show_end_member(show); 1337 } 1338 1339 static void *btf_show_start_array_type(struct btf_show *show, 1340 const struct btf_type *t, 1341 u32 type_id, 1342 u16 array_encoding, 1343 void *data) 1344 { 1345 show->state.array_encoding = array_encoding; 1346 show->state.array_terminated = 0; 1347 return btf_show_start_aggr_type(show, t, type_id, data); 1348 } 1349 1350 static void btf_show_end_array_type(struct btf_show *show) 1351 { 1352 show->state.array_encoding = 0; 1353 show->state.array_terminated = 0; 1354 btf_show_end_aggr_type(show, "]"); 1355 } 1356 1357 static void *btf_show_start_struct_type(struct btf_show *show, 1358 const struct btf_type *t, 1359 u32 type_id, 1360 void *data) 1361 { 1362 return btf_show_start_aggr_type(show, t, type_id, data); 1363 } 1364 1365 static void btf_show_end_struct_type(struct btf_show *show) 1366 { 1367 btf_show_end_aggr_type(show, "}"); 1368 } 1369 1370 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1371 const char *fmt, ...) 1372 { 1373 va_list args; 1374 1375 va_start(args, fmt); 1376 bpf_verifier_vlog(log, fmt, args); 1377 va_end(args); 1378 } 1379 1380 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1381 const char *fmt, ...) 1382 { 1383 struct bpf_verifier_log *log = &env->log; 1384 va_list args; 1385 1386 if (!bpf_verifier_log_needed(log)) 1387 return; 1388 1389 va_start(args, fmt); 1390 bpf_verifier_vlog(log, fmt, args); 1391 va_end(args); 1392 } 1393 1394 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1395 const struct btf_type *t, 1396 bool log_details, 1397 const char *fmt, ...) 1398 { 1399 struct bpf_verifier_log *log = &env->log; 1400 struct btf *btf = env->btf; 1401 va_list args; 1402 1403 if (!bpf_verifier_log_needed(log)) 1404 return; 1405 1406 /* btf verifier prints all types it is processing via 1407 * btf_verifier_log_type(..., fmt = NULL). 1408 * Skip those prints for in-kernel BTF verification. 1409 */ 1410 if (log->level == BPF_LOG_KERNEL && !fmt) 1411 return; 1412 1413 __btf_verifier_log(log, "[%u] %s %s%s", 1414 env->log_type_id, 1415 btf_type_str(t), 1416 __btf_name_by_offset(btf, t->name_off), 1417 log_details ? " " : ""); 1418 1419 if (log_details) 1420 btf_type_ops(t)->log_details(env, t); 1421 1422 if (fmt && *fmt) { 1423 __btf_verifier_log(log, " "); 1424 va_start(args, fmt); 1425 bpf_verifier_vlog(log, fmt, args); 1426 va_end(args); 1427 } 1428 1429 __btf_verifier_log(log, "\n"); 1430 } 1431 1432 #define btf_verifier_log_type(env, t, ...) \ 1433 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1434 #define btf_verifier_log_basic(env, t, ...) \ 1435 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1436 1437 __printf(4, 5) 1438 static void btf_verifier_log_member(struct btf_verifier_env *env, 1439 const struct btf_type *struct_type, 1440 const struct btf_member *member, 1441 const char *fmt, ...) 1442 { 1443 struct bpf_verifier_log *log = &env->log; 1444 struct btf *btf = env->btf; 1445 va_list args; 1446 1447 if (!bpf_verifier_log_needed(log)) 1448 return; 1449 1450 if (log->level == BPF_LOG_KERNEL && !fmt) 1451 return; 1452 /* The CHECK_META phase already did a btf dump. 1453 * 1454 * If member is logged again, it must hit an error in 1455 * parsing this member. It is useful to print out which 1456 * struct this member belongs to. 1457 */ 1458 if (env->phase != CHECK_META) 1459 btf_verifier_log_type(env, struct_type, NULL); 1460 1461 if (btf_type_kflag(struct_type)) 1462 __btf_verifier_log(log, 1463 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1464 __btf_name_by_offset(btf, member->name_off), 1465 member->type, 1466 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1467 BTF_MEMBER_BIT_OFFSET(member->offset)); 1468 else 1469 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1470 __btf_name_by_offset(btf, member->name_off), 1471 member->type, member->offset); 1472 1473 if (fmt && *fmt) { 1474 __btf_verifier_log(log, " "); 1475 va_start(args, fmt); 1476 bpf_verifier_vlog(log, fmt, args); 1477 va_end(args); 1478 } 1479 1480 __btf_verifier_log(log, "\n"); 1481 } 1482 1483 __printf(4, 5) 1484 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1485 const struct btf_type *datasec_type, 1486 const struct btf_var_secinfo *vsi, 1487 const char *fmt, ...) 1488 { 1489 struct bpf_verifier_log *log = &env->log; 1490 va_list args; 1491 1492 if (!bpf_verifier_log_needed(log)) 1493 return; 1494 if (log->level == BPF_LOG_KERNEL && !fmt) 1495 return; 1496 if (env->phase != CHECK_META) 1497 btf_verifier_log_type(env, datasec_type, NULL); 1498 1499 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1500 vsi->type, vsi->offset, vsi->size); 1501 if (fmt && *fmt) { 1502 __btf_verifier_log(log, " "); 1503 va_start(args, fmt); 1504 bpf_verifier_vlog(log, fmt, args); 1505 va_end(args); 1506 } 1507 1508 __btf_verifier_log(log, "\n"); 1509 } 1510 1511 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1512 u32 btf_data_size) 1513 { 1514 struct bpf_verifier_log *log = &env->log; 1515 const struct btf *btf = env->btf; 1516 const struct btf_header *hdr; 1517 1518 if (!bpf_verifier_log_needed(log)) 1519 return; 1520 1521 if (log->level == BPF_LOG_KERNEL) 1522 return; 1523 hdr = &btf->hdr; 1524 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1525 __btf_verifier_log(log, "version: %u\n", hdr->version); 1526 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1527 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1528 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1529 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1530 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1531 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1532 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1533 } 1534 1535 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1536 { 1537 struct btf *btf = env->btf; 1538 1539 if (btf->types_size == btf->nr_types) { 1540 /* Expand 'types' array */ 1541 1542 struct btf_type **new_types; 1543 u32 expand_by, new_size; 1544 1545 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1546 btf_verifier_log(env, "Exceeded max num of types"); 1547 return -E2BIG; 1548 } 1549 1550 expand_by = max_t(u32, btf->types_size >> 2, 16); 1551 new_size = min_t(u32, BTF_MAX_TYPE, 1552 btf->types_size + expand_by); 1553 1554 new_types = kvcalloc(new_size, sizeof(*new_types), 1555 GFP_KERNEL | __GFP_NOWARN); 1556 if (!new_types) 1557 return -ENOMEM; 1558 1559 if (btf->nr_types == 0) { 1560 if (!btf->base_btf) { 1561 /* lazily init VOID type */ 1562 new_types[0] = &btf_void; 1563 btf->nr_types++; 1564 } 1565 } else { 1566 memcpy(new_types, btf->types, 1567 sizeof(*btf->types) * btf->nr_types); 1568 } 1569 1570 kvfree(btf->types); 1571 btf->types = new_types; 1572 btf->types_size = new_size; 1573 } 1574 1575 btf->types[btf->nr_types++] = t; 1576 1577 return 0; 1578 } 1579 1580 static int btf_alloc_id(struct btf *btf) 1581 { 1582 int id; 1583 1584 idr_preload(GFP_KERNEL); 1585 spin_lock_bh(&btf_idr_lock); 1586 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1587 if (id > 0) 1588 btf->id = id; 1589 spin_unlock_bh(&btf_idr_lock); 1590 idr_preload_end(); 1591 1592 if (WARN_ON_ONCE(!id)) 1593 return -ENOSPC; 1594 1595 return id > 0 ? 0 : id; 1596 } 1597 1598 static void btf_free_id(struct btf *btf) 1599 { 1600 unsigned long flags; 1601 1602 /* 1603 * In map-in-map, calling map_delete_elem() on outer 1604 * map will call bpf_map_put on the inner map. 1605 * It will then eventually call btf_free_id() 1606 * on the inner map. Some of the map_delete_elem() 1607 * implementation may have irq disabled, so 1608 * we need to use the _irqsave() version instead 1609 * of the _bh() version. 1610 */ 1611 spin_lock_irqsave(&btf_idr_lock, flags); 1612 idr_remove(&btf_idr, btf->id); 1613 spin_unlock_irqrestore(&btf_idr_lock, flags); 1614 } 1615 1616 static void btf_free_kfunc_set_tab(struct btf *btf) 1617 { 1618 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1619 int hook; 1620 1621 if (!tab) 1622 return; 1623 /* For module BTF, we directly assign the sets being registered, so 1624 * there is nothing to free except kfunc_set_tab. 1625 */ 1626 if (btf_is_module(btf)) 1627 goto free_tab; 1628 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1629 kfree(tab->sets[hook]); 1630 free_tab: 1631 kfree(tab); 1632 btf->kfunc_set_tab = NULL; 1633 } 1634 1635 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1636 { 1637 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1638 1639 if (!tab) 1640 return; 1641 kfree(tab); 1642 btf->dtor_kfunc_tab = NULL; 1643 } 1644 1645 static void btf_free(struct btf *btf) 1646 { 1647 btf_free_dtor_kfunc_tab(btf); 1648 btf_free_kfunc_set_tab(btf); 1649 kvfree(btf->types); 1650 kvfree(btf->resolved_sizes); 1651 kvfree(btf->resolved_ids); 1652 kvfree(btf->data); 1653 kfree(btf); 1654 } 1655 1656 static void btf_free_rcu(struct rcu_head *rcu) 1657 { 1658 struct btf *btf = container_of(rcu, struct btf, rcu); 1659 1660 btf_free(btf); 1661 } 1662 1663 void btf_get(struct btf *btf) 1664 { 1665 refcount_inc(&btf->refcnt); 1666 } 1667 1668 void btf_put(struct btf *btf) 1669 { 1670 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1671 btf_free_id(btf); 1672 call_rcu(&btf->rcu, btf_free_rcu); 1673 } 1674 } 1675 1676 static int env_resolve_init(struct btf_verifier_env *env) 1677 { 1678 struct btf *btf = env->btf; 1679 u32 nr_types = btf->nr_types; 1680 u32 *resolved_sizes = NULL; 1681 u32 *resolved_ids = NULL; 1682 u8 *visit_states = NULL; 1683 1684 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1685 GFP_KERNEL | __GFP_NOWARN); 1686 if (!resolved_sizes) 1687 goto nomem; 1688 1689 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1690 GFP_KERNEL | __GFP_NOWARN); 1691 if (!resolved_ids) 1692 goto nomem; 1693 1694 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1695 GFP_KERNEL | __GFP_NOWARN); 1696 if (!visit_states) 1697 goto nomem; 1698 1699 btf->resolved_sizes = resolved_sizes; 1700 btf->resolved_ids = resolved_ids; 1701 env->visit_states = visit_states; 1702 1703 return 0; 1704 1705 nomem: 1706 kvfree(resolved_sizes); 1707 kvfree(resolved_ids); 1708 kvfree(visit_states); 1709 return -ENOMEM; 1710 } 1711 1712 static void btf_verifier_env_free(struct btf_verifier_env *env) 1713 { 1714 kvfree(env->visit_states); 1715 kfree(env); 1716 } 1717 1718 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1719 const struct btf_type *next_type) 1720 { 1721 switch (env->resolve_mode) { 1722 case RESOLVE_TBD: 1723 /* int, enum or void is a sink */ 1724 return !btf_type_needs_resolve(next_type); 1725 case RESOLVE_PTR: 1726 /* int, enum, void, struct, array, func or func_proto is a sink 1727 * for ptr 1728 */ 1729 return !btf_type_is_modifier(next_type) && 1730 !btf_type_is_ptr(next_type); 1731 case RESOLVE_STRUCT_OR_ARRAY: 1732 /* int, enum, void, ptr, func or func_proto is a sink 1733 * for struct and array 1734 */ 1735 return !btf_type_is_modifier(next_type) && 1736 !btf_type_is_array(next_type) && 1737 !btf_type_is_struct(next_type); 1738 default: 1739 BUG(); 1740 } 1741 } 1742 1743 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1744 u32 type_id) 1745 { 1746 /* base BTF types should be resolved by now */ 1747 if (type_id < env->btf->start_id) 1748 return true; 1749 1750 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1751 } 1752 1753 static int env_stack_push(struct btf_verifier_env *env, 1754 const struct btf_type *t, u32 type_id) 1755 { 1756 const struct btf *btf = env->btf; 1757 struct resolve_vertex *v; 1758 1759 if (env->top_stack == MAX_RESOLVE_DEPTH) 1760 return -E2BIG; 1761 1762 if (type_id < btf->start_id 1763 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1764 return -EEXIST; 1765 1766 env->visit_states[type_id - btf->start_id] = VISITED; 1767 1768 v = &env->stack[env->top_stack++]; 1769 v->t = t; 1770 v->type_id = type_id; 1771 v->next_member = 0; 1772 1773 if (env->resolve_mode == RESOLVE_TBD) { 1774 if (btf_type_is_ptr(t)) 1775 env->resolve_mode = RESOLVE_PTR; 1776 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1777 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1778 } 1779 1780 return 0; 1781 } 1782 1783 static void env_stack_set_next_member(struct btf_verifier_env *env, 1784 u16 next_member) 1785 { 1786 env->stack[env->top_stack - 1].next_member = next_member; 1787 } 1788 1789 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1790 u32 resolved_type_id, 1791 u32 resolved_size) 1792 { 1793 u32 type_id = env->stack[--(env->top_stack)].type_id; 1794 struct btf *btf = env->btf; 1795 1796 type_id -= btf->start_id; /* adjust to local type id */ 1797 btf->resolved_sizes[type_id] = resolved_size; 1798 btf->resolved_ids[type_id] = resolved_type_id; 1799 env->visit_states[type_id] = RESOLVED; 1800 } 1801 1802 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1803 { 1804 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1805 } 1806 1807 /* Resolve the size of a passed-in "type" 1808 * 1809 * type: is an array (e.g. u32 array[x][y]) 1810 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1811 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1812 * corresponds to the return type. 1813 * *elem_type: u32 1814 * *elem_id: id of u32 1815 * *total_nelems: (x * y). Hence, individual elem size is 1816 * (*type_size / *total_nelems) 1817 * *type_id: id of type if it's changed within the function, 0 if not 1818 * 1819 * type: is not an array (e.g. const struct X) 1820 * return type: type "struct X" 1821 * *type_size: sizeof(struct X) 1822 * *elem_type: same as return type ("struct X") 1823 * *elem_id: 0 1824 * *total_nelems: 1 1825 * *type_id: id of type if it's changed within the function, 0 if not 1826 */ 1827 static const struct btf_type * 1828 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1829 u32 *type_size, const struct btf_type **elem_type, 1830 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1831 { 1832 const struct btf_type *array_type = NULL; 1833 const struct btf_array *array = NULL; 1834 u32 i, size, nelems = 1, id = 0; 1835 1836 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1837 switch (BTF_INFO_KIND(type->info)) { 1838 /* type->size can be used */ 1839 case BTF_KIND_INT: 1840 case BTF_KIND_STRUCT: 1841 case BTF_KIND_UNION: 1842 case BTF_KIND_ENUM: 1843 case BTF_KIND_FLOAT: 1844 case BTF_KIND_ENUM64: 1845 size = type->size; 1846 goto resolved; 1847 1848 case BTF_KIND_PTR: 1849 size = sizeof(void *); 1850 goto resolved; 1851 1852 /* Modifiers */ 1853 case BTF_KIND_TYPEDEF: 1854 case BTF_KIND_VOLATILE: 1855 case BTF_KIND_CONST: 1856 case BTF_KIND_RESTRICT: 1857 case BTF_KIND_TYPE_TAG: 1858 id = type->type; 1859 type = btf_type_by_id(btf, type->type); 1860 break; 1861 1862 case BTF_KIND_ARRAY: 1863 if (!array_type) 1864 array_type = type; 1865 array = btf_type_array(type); 1866 if (nelems && array->nelems > U32_MAX / nelems) 1867 return ERR_PTR(-EINVAL); 1868 nelems *= array->nelems; 1869 type = btf_type_by_id(btf, array->type); 1870 break; 1871 1872 /* type without size */ 1873 default: 1874 return ERR_PTR(-EINVAL); 1875 } 1876 } 1877 1878 return ERR_PTR(-EINVAL); 1879 1880 resolved: 1881 if (nelems && size > U32_MAX / nelems) 1882 return ERR_PTR(-EINVAL); 1883 1884 *type_size = nelems * size; 1885 if (total_nelems) 1886 *total_nelems = nelems; 1887 if (elem_type) 1888 *elem_type = type; 1889 if (elem_id) 1890 *elem_id = array ? array->type : 0; 1891 if (type_id && id) 1892 *type_id = id; 1893 1894 return array_type ? : type; 1895 } 1896 1897 const struct btf_type * 1898 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1899 u32 *type_size) 1900 { 1901 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1902 } 1903 1904 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1905 { 1906 while (type_id < btf->start_id) 1907 btf = btf->base_btf; 1908 1909 return btf->resolved_ids[type_id - btf->start_id]; 1910 } 1911 1912 /* The input param "type_id" must point to a needs_resolve type */ 1913 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1914 u32 *type_id) 1915 { 1916 *type_id = btf_resolved_type_id(btf, *type_id); 1917 return btf_type_by_id(btf, *type_id); 1918 } 1919 1920 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1921 { 1922 while (type_id < btf->start_id) 1923 btf = btf->base_btf; 1924 1925 return btf->resolved_sizes[type_id - btf->start_id]; 1926 } 1927 1928 const struct btf_type *btf_type_id_size(const struct btf *btf, 1929 u32 *type_id, u32 *ret_size) 1930 { 1931 const struct btf_type *size_type; 1932 u32 size_type_id = *type_id; 1933 u32 size = 0; 1934 1935 size_type = btf_type_by_id(btf, size_type_id); 1936 if (btf_type_nosize_or_null(size_type)) 1937 return NULL; 1938 1939 if (btf_type_has_size(size_type)) { 1940 size = size_type->size; 1941 } else if (btf_type_is_array(size_type)) { 1942 size = btf_resolved_type_size(btf, size_type_id); 1943 } else if (btf_type_is_ptr(size_type)) { 1944 size = sizeof(void *); 1945 } else { 1946 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1947 !btf_type_is_var(size_type))) 1948 return NULL; 1949 1950 size_type_id = btf_resolved_type_id(btf, size_type_id); 1951 size_type = btf_type_by_id(btf, size_type_id); 1952 if (btf_type_nosize_or_null(size_type)) 1953 return NULL; 1954 else if (btf_type_has_size(size_type)) 1955 size = size_type->size; 1956 else if (btf_type_is_array(size_type)) 1957 size = btf_resolved_type_size(btf, size_type_id); 1958 else if (btf_type_is_ptr(size_type)) 1959 size = sizeof(void *); 1960 else 1961 return NULL; 1962 } 1963 1964 *type_id = size_type_id; 1965 if (ret_size) 1966 *ret_size = size; 1967 1968 return size_type; 1969 } 1970 1971 static int btf_df_check_member(struct btf_verifier_env *env, 1972 const struct btf_type *struct_type, 1973 const struct btf_member *member, 1974 const struct btf_type *member_type) 1975 { 1976 btf_verifier_log_basic(env, struct_type, 1977 "Unsupported check_member"); 1978 return -EINVAL; 1979 } 1980 1981 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1982 const struct btf_type *struct_type, 1983 const struct btf_member *member, 1984 const struct btf_type *member_type) 1985 { 1986 btf_verifier_log_basic(env, struct_type, 1987 "Unsupported check_kflag_member"); 1988 return -EINVAL; 1989 } 1990 1991 /* Used for ptr, array struct/union and float type members. 1992 * int, enum and modifier types have their specific callback functions. 1993 */ 1994 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 1995 const struct btf_type *struct_type, 1996 const struct btf_member *member, 1997 const struct btf_type *member_type) 1998 { 1999 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2000 btf_verifier_log_member(env, struct_type, member, 2001 "Invalid member bitfield_size"); 2002 return -EINVAL; 2003 } 2004 2005 /* bitfield size is 0, so member->offset represents bit offset only. 2006 * It is safe to call non kflag check_member variants. 2007 */ 2008 return btf_type_ops(member_type)->check_member(env, struct_type, 2009 member, 2010 member_type); 2011 } 2012 2013 static int btf_df_resolve(struct btf_verifier_env *env, 2014 const struct resolve_vertex *v) 2015 { 2016 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2017 return -EINVAL; 2018 } 2019 2020 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2021 u32 type_id, void *data, u8 bits_offsets, 2022 struct btf_show *show) 2023 { 2024 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2025 } 2026 2027 static int btf_int_check_member(struct btf_verifier_env *env, 2028 const struct btf_type *struct_type, 2029 const struct btf_member *member, 2030 const struct btf_type *member_type) 2031 { 2032 u32 int_data = btf_type_int(member_type); 2033 u32 struct_bits_off = member->offset; 2034 u32 struct_size = struct_type->size; 2035 u32 nr_copy_bits; 2036 u32 bytes_offset; 2037 2038 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2039 btf_verifier_log_member(env, struct_type, member, 2040 "bits_offset exceeds U32_MAX"); 2041 return -EINVAL; 2042 } 2043 2044 struct_bits_off += BTF_INT_OFFSET(int_data); 2045 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2046 nr_copy_bits = BTF_INT_BITS(int_data) + 2047 BITS_PER_BYTE_MASKED(struct_bits_off); 2048 2049 if (nr_copy_bits > BITS_PER_U128) { 2050 btf_verifier_log_member(env, struct_type, member, 2051 "nr_copy_bits exceeds 128"); 2052 return -EINVAL; 2053 } 2054 2055 if (struct_size < bytes_offset || 2056 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2057 btf_verifier_log_member(env, struct_type, member, 2058 "Member exceeds struct_size"); 2059 return -EINVAL; 2060 } 2061 2062 return 0; 2063 } 2064 2065 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2066 const struct btf_type *struct_type, 2067 const struct btf_member *member, 2068 const struct btf_type *member_type) 2069 { 2070 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2071 u32 int_data = btf_type_int(member_type); 2072 u32 struct_size = struct_type->size; 2073 u32 nr_copy_bits; 2074 2075 /* a regular int type is required for the kflag int member */ 2076 if (!btf_type_int_is_regular(member_type)) { 2077 btf_verifier_log_member(env, struct_type, member, 2078 "Invalid member base type"); 2079 return -EINVAL; 2080 } 2081 2082 /* check sanity of bitfield size */ 2083 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2084 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2085 nr_int_data_bits = BTF_INT_BITS(int_data); 2086 if (!nr_bits) { 2087 /* Not a bitfield member, member offset must be at byte 2088 * boundary. 2089 */ 2090 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2091 btf_verifier_log_member(env, struct_type, member, 2092 "Invalid member offset"); 2093 return -EINVAL; 2094 } 2095 2096 nr_bits = nr_int_data_bits; 2097 } else if (nr_bits > nr_int_data_bits) { 2098 btf_verifier_log_member(env, struct_type, member, 2099 "Invalid member bitfield_size"); 2100 return -EINVAL; 2101 } 2102 2103 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2104 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2105 if (nr_copy_bits > BITS_PER_U128) { 2106 btf_verifier_log_member(env, struct_type, member, 2107 "nr_copy_bits exceeds 128"); 2108 return -EINVAL; 2109 } 2110 2111 if (struct_size < bytes_offset || 2112 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2113 btf_verifier_log_member(env, struct_type, member, 2114 "Member exceeds struct_size"); 2115 return -EINVAL; 2116 } 2117 2118 return 0; 2119 } 2120 2121 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2122 const struct btf_type *t, 2123 u32 meta_left) 2124 { 2125 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2126 u16 encoding; 2127 2128 if (meta_left < meta_needed) { 2129 btf_verifier_log_basic(env, t, 2130 "meta_left:%u meta_needed:%u", 2131 meta_left, meta_needed); 2132 return -EINVAL; 2133 } 2134 2135 if (btf_type_vlen(t)) { 2136 btf_verifier_log_type(env, t, "vlen != 0"); 2137 return -EINVAL; 2138 } 2139 2140 if (btf_type_kflag(t)) { 2141 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2142 return -EINVAL; 2143 } 2144 2145 int_data = btf_type_int(t); 2146 if (int_data & ~BTF_INT_MASK) { 2147 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2148 int_data); 2149 return -EINVAL; 2150 } 2151 2152 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2153 2154 if (nr_bits > BITS_PER_U128) { 2155 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2156 BITS_PER_U128); 2157 return -EINVAL; 2158 } 2159 2160 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2161 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2162 return -EINVAL; 2163 } 2164 2165 /* 2166 * Only one of the encoding bits is allowed and it 2167 * should be sufficient for the pretty print purpose (i.e. decoding). 2168 * Multiple bits can be allowed later if it is found 2169 * to be insufficient. 2170 */ 2171 encoding = BTF_INT_ENCODING(int_data); 2172 if (encoding && 2173 encoding != BTF_INT_SIGNED && 2174 encoding != BTF_INT_CHAR && 2175 encoding != BTF_INT_BOOL) { 2176 btf_verifier_log_type(env, t, "Unsupported encoding"); 2177 return -ENOTSUPP; 2178 } 2179 2180 btf_verifier_log_type(env, t, NULL); 2181 2182 return meta_needed; 2183 } 2184 2185 static void btf_int_log(struct btf_verifier_env *env, 2186 const struct btf_type *t) 2187 { 2188 int int_data = btf_type_int(t); 2189 2190 btf_verifier_log(env, 2191 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2192 t->size, BTF_INT_OFFSET(int_data), 2193 BTF_INT_BITS(int_data), 2194 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2195 } 2196 2197 static void btf_int128_print(struct btf_show *show, void *data) 2198 { 2199 /* data points to a __int128 number. 2200 * Suppose 2201 * int128_num = *(__int128 *)data; 2202 * The below formulas shows what upper_num and lower_num represents: 2203 * upper_num = int128_num >> 64; 2204 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2205 */ 2206 u64 upper_num, lower_num; 2207 2208 #ifdef __BIG_ENDIAN_BITFIELD 2209 upper_num = *(u64 *)data; 2210 lower_num = *(u64 *)(data + 8); 2211 #else 2212 upper_num = *(u64 *)(data + 8); 2213 lower_num = *(u64 *)data; 2214 #endif 2215 if (upper_num == 0) 2216 btf_show_type_value(show, "0x%llx", lower_num); 2217 else 2218 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2219 lower_num); 2220 } 2221 2222 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2223 u16 right_shift_bits) 2224 { 2225 u64 upper_num, lower_num; 2226 2227 #ifdef __BIG_ENDIAN_BITFIELD 2228 upper_num = print_num[0]; 2229 lower_num = print_num[1]; 2230 #else 2231 upper_num = print_num[1]; 2232 lower_num = print_num[0]; 2233 #endif 2234 2235 /* shake out un-needed bits by shift/or operations */ 2236 if (left_shift_bits >= 64) { 2237 upper_num = lower_num << (left_shift_bits - 64); 2238 lower_num = 0; 2239 } else { 2240 upper_num = (upper_num << left_shift_bits) | 2241 (lower_num >> (64 - left_shift_bits)); 2242 lower_num = lower_num << left_shift_bits; 2243 } 2244 2245 if (right_shift_bits >= 64) { 2246 lower_num = upper_num >> (right_shift_bits - 64); 2247 upper_num = 0; 2248 } else { 2249 lower_num = (lower_num >> right_shift_bits) | 2250 (upper_num << (64 - right_shift_bits)); 2251 upper_num = upper_num >> right_shift_bits; 2252 } 2253 2254 #ifdef __BIG_ENDIAN_BITFIELD 2255 print_num[0] = upper_num; 2256 print_num[1] = lower_num; 2257 #else 2258 print_num[0] = lower_num; 2259 print_num[1] = upper_num; 2260 #endif 2261 } 2262 2263 static void btf_bitfield_show(void *data, u8 bits_offset, 2264 u8 nr_bits, struct btf_show *show) 2265 { 2266 u16 left_shift_bits, right_shift_bits; 2267 u8 nr_copy_bytes; 2268 u8 nr_copy_bits; 2269 u64 print_num[2] = {}; 2270 2271 nr_copy_bits = nr_bits + bits_offset; 2272 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2273 2274 memcpy(print_num, data, nr_copy_bytes); 2275 2276 #ifdef __BIG_ENDIAN_BITFIELD 2277 left_shift_bits = bits_offset; 2278 #else 2279 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2280 #endif 2281 right_shift_bits = BITS_PER_U128 - nr_bits; 2282 2283 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2284 btf_int128_print(show, print_num); 2285 } 2286 2287 2288 static void btf_int_bits_show(const struct btf *btf, 2289 const struct btf_type *t, 2290 void *data, u8 bits_offset, 2291 struct btf_show *show) 2292 { 2293 u32 int_data = btf_type_int(t); 2294 u8 nr_bits = BTF_INT_BITS(int_data); 2295 u8 total_bits_offset; 2296 2297 /* 2298 * bits_offset is at most 7. 2299 * BTF_INT_OFFSET() cannot exceed 128 bits. 2300 */ 2301 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2302 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2303 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2304 btf_bitfield_show(data, bits_offset, nr_bits, show); 2305 } 2306 2307 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2308 u32 type_id, void *data, u8 bits_offset, 2309 struct btf_show *show) 2310 { 2311 u32 int_data = btf_type_int(t); 2312 u8 encoding = BTF_INT_ENCODING(int_data); 2313 bool sign = encoding & BTF_INT_SIGNED; 2314 u8 nr_bits = BTF_INT_BITS(int_data); 2315 void *safe_data; 2316 2317 safe_data = btf_show_start_type(show, t, type_id, data); 2318 if (!safe_data) 2319 return; 2320 2321 if (bits_offset || BTF_INT_OFFSET(int_data) || 2322 BITS_PER_BYTE_MASKED(nr_bits)) { 2323 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2324 goto out; 2325 } 2326 2327 switch (nr_bits) { 2328 case 128: 2329 btf_int128_print(show, safe_data); 2330 break; 2331 case 64: 2332 if (sign) 2333 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2334 else 2335 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2336 break; 2337 case 32: 2338 if (sign) 2339 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2340 else 2341 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2342 break; 2343 case 16: 2344 if (sign) 2345 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2346 else 2347 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2348 break; 2349 case 8: 2350 if (show->state.array_encoding == BTF_INT_CHAR) { 2351 /* check for null terminator */ 2352 if (show->state.array_terminated) 2353 break; 2354 if (*(char *)data == '\0') { 2355 show->state.array_terminated = 1; 2356 break; 2357 } 2358 if (isprint(*(char *)data)) { 2359 btf_show_type_value(show, "'%c'", 2360 *(char *)safe_data); 2361 break; 2362 } 2363 } 2364 if (sign) 2365 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2366 else 2367 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2368 break; 2369 default: 2370 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2371 break; 2372 } 2373 out: 2374 btf_show_end_type(show); 2375 } 2376 2377 static const struct btf_kind_operations int_ops = { 2378 .check_meta = btf_int_check_meta, 2379 .resolve = btf_df_resolve, 2380 .check_member = btf_int_check_member, 2381 .check_kflag_member = btf_int_check_kflag_member, 2382 .log_details = btf_int_log, 2383 .show = btf_int_show, 2384 }; 2385 2386 static int btf_modifier_check_member(struct btf_verifier_env *env, 2387 const struct btf_type *struct_type, 2388 const struct btf_member *member, 2389 const struct btf_type *member_type) 2390 { 2391 const struct btf_type *resolved_type; 2392 u32 resolved_type_id = member->type; 2393 struct btf_member resolved_member; 2394 struct btf *btf = env->btf; 2395 2396 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2397 if (!resolved_type) { 2398 btf_verifier_log_member(env, struct_type, member, 2399 "Invalid member"); 2400 return -EINVAL; 2401 } 2402 2403 resolved_member = *member; 2404 resolved_member.type = resolved_type_id; 2405 2406 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2407 &resolved_member, 2408 resolved_type); 2409 } 2410 2411 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2412 const struct btf_type *struct_type, 2413 const struct btf_member *member, 2414 const struct btf_type *member_type) 2415 { 2416 const struct btf_type *resolved_type; 2417 u32 resolved_type_id = member->type; 2418 struct btf_member resolved_member; 2419 struct btf *btf = env->btf; 2420 2421 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2422 if (!resolved_type) { 2423 btf_verifier_log_member(env, struct_type, member, 2424 "Invalid member"); 2425 return -EINVAL; 2426 } 2427 2428 resolved_member = *member; 2429 resolved_member.type = resolved_type_id; 2430 2431 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2432 &resolved_member, 2433 resolved_type); 2434 } 2435 2436 static int btf_ptr_check_member(struct btf_verifier_env *env, 2437 const struct btf_type *struct_type, 2438 const struct btf_member *member, 2439 const struct btf_type *member_type) 2440 { 2441 u32 struct_size, struct_bits_off, bytes_offset; 2442 2443 struct_size = struct_type->size; 2444 struct_bits_off = member->offset; 2445 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2446 2447 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2448 btf_verifier_log_member(env, struct_type, member, 2449 "Member is not byte aligned"); 2450 return -EINVAL; 2451 } 2452 2453 if (struct_size - bytes_offset < sizeof(void *)) { 2454 btf_verifier_log_member(env, struct_type, member, 2455 "Member exceeds struct_size"); 2456 return -EINVAL; 2457 } 2458 2459 return 0; 2460 } 2461 2462 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2463 const struct btf_type *t, 2464 u32 meta_left) 2465 { 2466 const char *value; 2467 2468 if (btf_type_vlen(t)) { 2469 btf_verifier_log_type(env, t, "vlen != 0"); 2470 return -EINVAL; 2471 } 2472 2473 if (btf_type_kflag(t)) { 2474 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2475 return -EINVAL; 2476 } 2477 2478 if (!BTF_TYPE_ID_VALID(t->type)) { 2479 btf_verifier_log_type(env, t, "Invalid type_id"); 2480 return -EINVAL; 2481 } 2482 2483 /* typedef/type_tag type must have a valid name, and other ref types, 2484 * volatile, const, restrict, should have a null name. 2485 */ 2486 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2487 if (!t->name_off || 2488 !btf_name_valid_identifier(env->btf, t->name_off)) { 2489 btf_verifier_log_type(env, t, "Invalid name"); 2490 return -EINVAL; 2491 } 2492 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2493 value = btf_name_by_offset(env->btf, t->name_off); 2494 if (!value || !value[0]) { 2495 btf_verifier_log_type(env, t, "Invalid name"); 2496 return -EINVAL; 2497 } 2498 } else { 2499 if (t->name_off) { 2500 btf_verifier_log_type(env, t, "Invalid name"); 2501 return -EINVAL; 2502 } 2503 } 2504 2505 btf_verifier_log_type(env, t, NULL); 2506 2507 return 0; 2508 } 2509 2510 static int btf_modifier_resolve(struct btf_verifier_env *env, 2511 const struct resolve_vertex *v) 2512 { 2513 const struct btf_type *t = v->t; 2514 const struct btf_type *next_type; 2515 u32 next_type_id = t->type; 2516 struct btf *btf = env->btf; 2517 2518 next_type = btf_type_by_id(btf, next_type_id); 2519 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2520 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2521 return -EINVAL; 2522 } 2523 2524 if (!env_type_is_resolve_sink(env, next_type) && 2525 !env_type_is_resolved(env, next_type_id)) 2526 return env_stack_push(env, next_type, next_type_id); 2527 2528 /* Figure out the resolved next_type_id with size. 2529 * They will be stored in the current modifier's 2530 * resolved_ids and resolved_sizes such that it can 2531 * save us a few type-following when we use it later (e.g. in 2532 * pretty print). 2533 */ 2534 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2535 if (env_type_is_resolved(env, next_type_id)) 2536 next_type = btf_type_id_resolve(btf, &next_type_id); 2537 2538 /* "typedef void new_void", "const void"...etc */ 2539 if (!btf_type_is_void(next_type) && 2540 !btf_type_is_fwd(next_type) && 2541 !btf_type_is_func_proto(next_type)) { 2542 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2543 return -EINVAL; 2544 } 2545 } 2546 2547 env_stack_pop_resolved(env, next_type_id, 0); 2548 2549 return 0; 2550 } 2551 2552 static int btf_var_resolve(struct btf_verifier_env *env, 2553 const struct resolve_vertex *v) 2554 { 2555 const struct btf_type *next_type; 2556 const struct btf_type *t = v->t; 2557 u32 next_type_id = t->type; 2558 struct btf *btf = env->btf; 2559 2560 next_type = btf_type_by_id(btf, next_type_id); 2561 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2562 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2563 return -EINVAL; 2564 } 2565 2566 if (!env_type_is_resolve_sink(env, next_type) && 2567 !env_type_is_resolved(env, next_type_id)) 2568 return env_stack_push(env, next_type, next_type_id); 2569 2570 if (btf_type_is_modifier(next_type)) { 2571 const struct btf_type *resolved_type; 2572 u32 resolved_type_id; 2573 2574 resolved_type_id = next_type_id; 2575 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2576 2577 if (btf_type_is_ptr(resolved_type) && 2578 !env_type_is_resolve_sink(env, resolved_type) && 2579 !env_type_is_resolved(env, resolved_type_id)) 2580 return env_stack_push(env, resolved_type, 2581 resolved_type_id); 2582 } 2583 2584 /* We must resolve to something concrete at this point, no 2585 * forward types or similar that would resolve to size of 2586 * zero is allowed. 2587 */ 2588 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2589 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2590 return -EINVAL; 2591 } 2592 2593 env_stack_pop_resolved(env, next_type_id, 0); 2594 2595 return 0; 2596 } 2597 2598 static int btf_ptr_resolve(struct btf_verifier_env *env, 2599 const struct resolve_vertex *v) 2600 { 2601 const struct btf_type *next_type; 2602 const struct btf_type *t = v->t; 2603 u32 next_type_id = t->type; 2604 struct btf *btf = env->btf; 2605 2606 next_type = btf_type_by_id(btf, next_type_id); 2607 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2608 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2609 return -EINVAL; 2610 } 2611 2612 if (!env_type_is_resolve_sink(env, next_type) && 2613 !env_type_is_resolved(env, next_type_id)) 2614 return env_stack_push(env, next_type, next_type_id); 2615 2616 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2617 * the modifier may have stopped resolving when it was resolved 2618 * to a ptr (last-resolved-ptr). 2619 * 2620 * We now need to continue from the last-resolved-ptr to 2621 * ensure the last-resolved-ptr will not referring back to 2622 * the current ptr (t). 2623 */ 2624 if (btf_type_is_modifier(next_type)) { 2625 const struct btf_type *resolved_type; 2626 u32 resolved_type_id; 2627 2628 resolved_type_id = next_type_id; 2629 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2630 2631 if (btf_type_is_ptr(resolved_type) && 2632 !env_type_is_resolve_sink(env, resolved_type) && 2633 !env_type_is_resolved(env, resolved_type_id)) 2634 return env_stack_push(env, resolved_type, 2635 resolved_type_id); 2636 } 2637 2638 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2639 if (env_type_is_resolved(env, next_type_id)) 2640 next_type = btf_type_id_resolve(btf, &next_type_id); 2641 2642 if (!btf_type_is_void(next_type) && 2643 !btf_type_is_fwd(next_type) && 2644 !btf_type_is_func_proto(next_type)) { 2645 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2646 return -EINVAL; 2647 } 2648 } 2649 2650 env_stack_pop_resolved(env, next_type_id, 0); 2651 2652 return 0; 2653 } 2654 2655 static void btf_modifier_show(const struct btf *btf, 2656 const struct btf_type *t, 2657 u32 type_id, void *data, 2658 u8 bits_offset, struct btf_show *show) 2659 { 2660 if (btf->resolved_ids) 2661 t = btf_type_id_resolve(btf, &type_id); 2662 else 2663 t = btf_type_skip_modifiers(btf, type_id, NULL); 2664 2665 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2666 } 2667 2668 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2669 u32 type_id, void *data, u8 bits_offset, 2670 struct btf_show *show) 2671 { 2672 t = btf_type_id_resolve(btf, &type_id); 2673 2674 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2675 } 2676 2677 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2678 u32 type_id, void *data, u8 bits_offset, 2679 struct btf_show *show) 2680 { 2681 void *safe_data; 2682 2683 safe_data = btf_show_start_type(show, t, type_id, data); 2684 if (!safe_data) 2685 return; 2686 2687 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2688 if (show->flags & BTF_SHOW_PTR_RAW) 2689 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2690 else 2691 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2692 btf_show_end_type(show); 2693 } 2694 2695 static void btf_ref_type_log(struct btf_verifier_env *env, 2696 const struct btf_type *t) 2697 { 2698 btf_verifier_log(env, "type_id=%u", t->type); 2699 } 2700 2701 static struct btf_kind_operations modifier_ops = { 2702 .check_meta = btf_ref_type_check_meta, 2703 .resolve = btf_modifier_resolve, 2704 .check_member = btf_modifier_check_member, 2705 .check_kflag_member = btf_modifier_check_kflag_member, 2706 .log_details = btf_ref_type_log, 2707 .show = btf_modifier_show, 2708 }; 2709 2710 static struct btf_kind_operations ptr_ops = { 2711 .check_meta = btf_ref_type_check_meta, 2712 .resolve = btf_ptr_resolve, 2713 .check_member = btf_ptr_check_member, 2714 .check_kflag_member = btf_generic_check_kflag_member, 2715 .log_details = btf_ref_type_log, 2716 .show = btf_ptr_show, 2717 }; 2718 2719 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2720 const struct btf_type *t, 2721 u32 meta_left) 2722 { 2723 if (btf_type_vlen(t)) { 2724 btf_verifier_log_type(env, t, "vlen != 0"); 2725 return -EINVAL; 2726 } 2727 2728 if (t->type) { 2729 btf_verifier_log_type(env, t, "type != 0"); 2730 return -EINVAL; 2731 } 2732 2733 /* fwd type must have a valid name */ 2734 if (!t->name_off || 2735 !btf_name_valid_identifier(env->btf, t->name_off)) { 2736 btf_verifier_log_type(env, t, "Invalid name"); 2737 return -EINVAL; 2738 } 2739 2740 btf_verifier_log_type(env, t, NULL); 2741 2742 return 0; 2743 } 2744 2745 static void btf_fwd_type_log(struct btf_verifier_env *env, 2746 const struct btf_type *t) 2747 { 2748 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2749 } 2750 2751 static struct btf_kind_operations fwd_ops = { 2752 .check_meta = btf_fwd_check_meta, 2753 .resolve = btf_df_resolve, 2754 .check_member = btf_df_check_member, 2755 .check_kflag_member = btf_df_check_kflag_member, 2756 .log_details = btf_fwd_type_log, 2757 .show = btf_df_show, 2758 }; 2759 2760 static int btf_array_check_member(struct btf_verifier_env *env, 2761 const struct btf_type *struct_type, 2762 const struct btf_member *member, 2763 const struct btf_type *member_type) 2764 { 2765 u32 struct_bits_off = member->offset; 2766 u32 struct_size, bytes_offset; 2767 u32 array_type_id, array_size; 2768 struct btf *btf = env->btf; 2769 2770 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2771 btf_verifier_log_member(env, struct_type, member, 2772 "Member is not byte aligned"); 2773 return -EINVAL; 2774 } 2775 2776 array_type_id = member->type; 2777 btf_type_id_size(btf, &array_type_id, &array_size); 2778 struct_size = struct_type->size; 2779 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2780 if (struct_size - bytes_offset < array_size) { 2781 btf_verifier_log_member(env, struct_type, member, 2782 "Member exceeds struct_size"); 2783 return -EINVAL; 2784 } 2785 2786 return 0; 2787 } 2788 2789 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2790 const struct btf_type *t, 2791 u32 meta_left) 2792 { 2793 const struct btf_array *array = btf_type_array(t); 2794 u32 meta_needed = sizeof(*array); 2795 2796 if (meta_left < meta_needed) { 2797 btf_verifier_log_basic(env, t, 2798 "meta_left:%u meta_needed:%u", 2799 meta_left, meta_needed); 2800 return -EINVAL; 2801 } 2802 2803 /* array type should not have a name */ 2804 if (t->name_off) { 2805 btf_verifier_log_type(env, t, "Invalid name"); 2806 return -EINVAL; 2807 } 2808 2809 if (btf_type_vlen(t)) { 2810 btf_verifier_log_type(env, t, "vlen != 0"); 2811 return -EINVAL; 2812 } 2813 2814 if (btf_type_kflag(t)) { 2815 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2816 return -EINVAL; 2817 } 2818 2819 if (t->size) { 2820 btf_verifier_log_type(env, t, "size != 0"); 2821 return -EINVAL; 2822 } 2823 2824 /* Array elem type and index type cannot be in type void, 2825 * so !array->type and !array->index_type are not allowed. 2826 */ 2827 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2828 btf_verifier_log_type(env, t, "Invalid elem"); 2829 return -EINVAL; 2830 } 2831 2832 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2833 btf_verifier_log_type(env, t, "Invalid index"); 2834 return -EINVAL; 2835 } 2836 2837 btf_verifier_log_type(env, t, NULL); 2838 2839 return meta_needed; 2840 } 2841 2842 static int btf_array_resolve(struct btf_verifier_env *env, 2843 const struct resolve_vertex *v) 2844 { 2845 const struct btf_array *array = btf_type_array(v->t); 2846 const struct btf_type *elem_type, *index_type; 2847 u32 elem_type_id, index_type_id; 2848 struct btf *btf = env->btf; 2849 u32 elem_size; 2850 2851 /* Check array->index_type */ 2852 index_type_id = array->index_type; 2853 index_type = btf_type_by_id(btf, index_type_id); 2854 if (btf_type_nosize_or_null(index_type) || 2855 btf_type_is_resolve_source_only(index_type)) { 2856 btf_verifier_log_type(env, v->t, "Invalid index"); 2857 return -EINVAL; 2858 } 2859 2860 if (!env_type_is_resolve_sink(env, index_type) && 2861 !env_type_is_resolved(env, index_type_id)) 2862 return env_stack_push(env, index_type, index_type_id); 2863 2864 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2865 if (!index_type || !btf_type_is_int(index_type) || 2866 !btf_type_int_is_regular(index_type)) { 2867 btf_verifier_log_type(env, v->t, "Invalid index"); 2868 return -EINVAL; 2869 } 2870 2871 /* Check array->type */ 2872 elem_type_id = array->type; 2873 elem_type = btf_type_by_id(btf, elem_type_id); 2874 if (btf_type_nosize_or_null(elem_type) || 2875 btf_type_is_resolve_source_only(elem_type)) { 2876 btf_verifier_log_type(env, v->t, 2877 "Invalid elem"); 2878 return -EINVAL; 2879 } 2880 2881 if (!env_type_is_resolve_sink(env, elem_type) && 2882 !env_type_is_resolved(env, elem_type_id)) 2883 return env_stack_push(env, elem_type, elem_type_id); 2884 2885 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2886 if (!elem_type) { 2887 btf_verifier_log_type(env, v->t, "Invalid elem"); 2888 return -EINVAL; 2889 } 2890 2891 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2892 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2893 return -EINVAL; 2894 } 2895 2896 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2897 btf_verifier_log_type(env, v->t, 2898 "Array size overflows U32_MAX"); 2899 return -EINVAL; 2900 } 2901 2902 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2903 2904 return 0; 2905 } 2906 2907 static void btf_array_log(struct btf_verifier_env *env, 2908 const struct btf_type *t) 2909 { 2910 const struct btf_array *array = btf_type_array(t); 2911 2912 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2913 array->type, array->index_type, array->nelems); 2914 } 2915 2916 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2917 u32 type_id, void *data, u8 bits_offset, 2918 struct btf_show *show) 2919 { 2920 const struct btf_array *array = btf_type_array(t); 2921 const struct btf_kind_operations *elem_ops; 2922 const struct btf_type *elem_type; 2923 u32 i, elem_size = 0, elem_type_id; 2924 u16 encoding = 0; 2925 2926 elem_type_id = array->type; 2927 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2928 if (elem_type && btf_type_has_size(elem_type)) 2929 elem_size = elem_type->size; 2930 2931 if (elem_type && btf_type_is_int(elem_type)) { 2932 u32 int_type = btf_type_int(elem_type); 2933 2934 encoding = BTF_INT_ENCODING(int_type); 2935 2936 /* 2937 * BTF_INT_CHAR encoding never seems to be set for 2938 * char arrays, so if size is 1 and element is 2939 * printable as a char, we'll do that. 2940 */ 2941 if (elem_size == 1) 2942 encoding = BTF_INT_CHAR; 2943 } 2944 2945 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2946 return; 2947 2948 if (!elem_type) 2949 goto out; 2950 elem_ops = btf_type_ops(elem_type); 2951 2952 for (i = 0; i < array->nelems; i++) { 2953 2954 btf_show_start_array_member(show); 2955 2956 elem_ops->show(btf, elem_type, elem_type_id, data, 2957 bits_offset, show); 2958 data += elem_size; 2959 2960 btf_show_end_array_member(show); 2961 2962 if (show->state.array_terminated) 2963 break; 2964 } 2965 out: 2966 btf_show_end_array_type(show); 2967 } 2968 2969 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 2970 u32 type_id, void *data, u8 bits_offset, 2971 struct btf_show *show) 2972 { 2973 const struct btf_member *m = show->state.member; 2974 2975 /* 2976 * First check if any members would be shown (are non-zero). 2977 * See comments above "struct btf_show" definition for more 2978 * details on how this works at a high-level. 2979 */ 2980 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 2981 if (!show->state.depth_check) { 2982 show->state.depth_check = show->state.depth + 1; 2983 show->state.depth_to_show = 0; 2984 } 2985 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2986 show->state.member = m; 2987 2988 if (show->state.depth_check != show->state.depth + 1) 2989 return; 2990 show->state.depth_check = 0; 2991 2992 if (show->state.depth_to_show <= show->state.depth) 2993 return; 2994 /* 2995 * Reaching here indicates we have recursed and found 2996 * non-zero array member(s). 2997 */ 2998 } 2999 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3000 } 3001 3002 static struct btf_kind_operations array_ops = { 3003 .check_meta = btf_array_check_meta, 3004 .resolve = btf_array_resolve, 3005 .check_member = btf_array_check_member, 3006 .check_kflag_member = btf_generic_check_kflag_member, 3007 .log_details = btf_array_log, 3008 .show = btf_array_show, 3009 }; 3010 3011 static int btf_struct_check_member(struct btf_verifier_env *env, 3012 const struct btf_type *struct_type, 3013 const struct btf_member *member, 3014 const struct btf_type *member_type) 3015 { 3016 u32 struct_bits_off = member->offset; 3017 u32 struct_size, bytes_offset; 3018 3019 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3020 btf_verifier_log_member(env, struct_type, member, 3021 "Member is not byte aligned"); 3022 return -EINVAL; 3023 } 3024 3025 struct_size = struct_type->size; 3026 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3027 if (struct_size - bytes_offset < member_type->size) { 3028 btf_verifier_log_member(env, struct_type, member, 3029 "Member exceeds struct_size"); 3030 return -EINVAL; 3031 } 3032 3033 return 0; 3034 } 3035 3036 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3037 const struct btf_type *t, 3038 u32 meta_left) 3039 { 3040 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3041 const struct btf_member *member; 3042 u32 meta_needed, last_offset; 3043 struct btf *btf = env->btf; 3044 u32 struct_size = t->size; 3045 u32 offset; 3046 u16 i; 3047 3048 meta_needed = btf_type_vlen(t) * sizeof(*member); 3049 if (meta_left < meta_needed) { 3050 btf_verifier_log_basic(env, t, 3051 "meta_left:%u meta_needed:%u", 3052 meta_left, meta_needed); 3053 return -EINVAL; 3054 } 3055 3056 /* struct type either no name or a valid one */ 3057 if (t->name_off && 3058 !btf_name_valid_identifier(env->btf, t->name_off)) { 3059 btf_verifier_log_type(env, t, "Invalid name"); 3060 return -EINVAL; 3061 } 3062 3063 btf_verifier_log_type(env, t, NULL); 3064 3065 last_offset = 0; 3066 for_each_member(i, t, member) { 3067 if (!btf_name_offset_valid(btf, member->name_off)) { 3068 btf_verifier_log_member(env, t, member, 3069 "Invalid member name_offset:%u", 3070 member->name_off); 3071 return -EINVAL; 3072 } 3073 3074 /* struct member either no name or a valid one */ 3075 if (member->name_off && 3076 !btf_name_valid_identifier(btf, member->name_off)) { 3077 btf_verifier_log_member(env, t, member, "Invalid name"); 3078 return -EINVAL; 3079 } 3080 /* A member cannot be in type void */ 3081 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3082 btf_verifier_log_member(env, t, member, 3083 "Invalid type_id"); 3084 return -EINVAL; 3085 } 3086 3087 offset = __btf_member_bit_offset(t, member); 3088 if (is_union && offset) { 3089 btf_verifier_log_member(env, t, member, 3090 "Invalid member bits_offset"); 3091 return -EINVAL; 3092 } 3093 3094 /* 3095 * ">" instead of ">=" because the last member could be 3096 * "char a[0];" 3097 */ 3098 if (last_offset > offset) { 3099 btf_verifier_log_member(env, t, member, 3100 "Invalid member bits_offset"); 3101 return -EINVAL; 3102 } 3103 3104 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3105 btf_verifier_log_member(env, t, member, 3106 "Member bits_offset exceeds its struct size"); 3107 return -EINVAL; 3108 } 3109 3110 btf_verifier_log_member(env, t, member, NULL); 3111 last_offset = offset; 3112 } 3113 3114 return meta_needed; 3115 } 3116 3117 static int btf_struct_resolve(struct btf_verifier_env *env, 3118 const struct resolve_vertex *v) 3119 { 3120 const struct btf_member *member; 3121 int err; 3122 u16 i; 3123 3124 /* Before continue resolving the next_member, 3125 * ensure the last member is indeed resolved to a 3126 * type with size info. 3127 */ 3128 if (v->next_member) { 3129 const struct btf_type *last_member_type; 3130 const struct btf_member *last_member; 3131 u32 last_member_type_id; 3132 3133 last_member = btf_type_member(v->t) + v->next_member - 1; 3134 last_member_type_id = last_member->type; 3135 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3136 last_member_type_id))) 3137 return -EINVAL; 3138 3139 last_member_type = btf_type_by_id(env->btf, 3140 last_member_type_id); 3141 if (btf_type_kflag(v->t)) 3142 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3143 last_member, 3144 last_member_type); 3145 else 3146 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3147 last_member, 3148 last_member_type); 3149 if (err) 3150 return err; 3151 } 3152 3153 for_each_member_from(i, v->next_member, v->t, member) { 3154 u32 member_type_id = member->type; 3155 const struct btf_type *member_type = btf_type_by_id(env->btf, 3156 member_type_id); 3157 3158 if (btf_type_nosize_or_null(member_type) || 3159 btf_type_is_resolve_source_only(member_type)) { 3160 btf_verifier_log_member(env, v->t, member, 3161 "Invalid member"); 3162 return -EINVAL; 3163 } 3164 3165 if (!env_type_is_resolve_sink(env, member_type) && 3166 !env_type_is_resolved(env, member_type_id)) { 3167 env_stack_set_next_member(env, i + 1); 3168 return env_stack_push(env, member_type, member_type_id); 3169 } 3170 3171 if (btf_type_kflag(v->t)) 3172 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3173 member, 3174 member_type); 3175 else 3176 err = btf_type_ops(member_type)->check_member(env, v->t, 3177 member, 3178 member_type); 3179 if (err) 3180 return err; 3181 } 3182 3183 env_stack_pop_resolved(env, 0, 0); 3184 3185 return 0; 3186 } 3187 3188 static void btf_struct_log(struct btf_verifier_env *env, 3189 const struct btf_type *t) 3190 { 3191 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3192 } 3193 3194 enum btf_field_type { 3195 BTF_FIELD_SPIN_LOCK, 3196 BTF_FIELD_TIMER, 3197 BTF_FIELD_KPTR, 3198 }; 3199 3200 enum { 3201 BTF_FIELD_IGNORE = 0, 3202 BTF_FIELD_FOUND = 1, 3203 }; 3204 3205 struct btf_field_info { 3206 u32 type_id; 3207 u32 off; 3208 enum bpf_kptr_type type; 3209 }; 3210 3211 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3212 u32 off, int sz, struct btf_field_info *info) 3213 { 3214 if (!__btf_type_is_struct(t)) 3215 return BTF_FIELD_IGNORE; 3216 if (t->size != sz) 3217 return BTF_FIELD_IGNORE; 3218 info->off = off; 3219 return BTF_FIELD_FOUND; 3220 } 3221 3222 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3223 u32 off, int sz, struct btf_field_info *info) 3224 { 3225 enum bpf_kptr_type type; 3226 u32 res_id; 3227 3228 /* For PTR, sz is always == 8 */ 3229 if (!btf_type_is_ptr(t)) 3230 return BTF_FIELD_IGNORE; 3231 t = btf_type_by_id(btf, t->type); 3232 3233 if (!btf_type_is_type_tag(t)) 3234 return BTF_FIELD_IGNORE; 3235 /* Reject extra tags */ 3236 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3237 return -EINVAL; 3238 if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3239 type = BPF_KPTR_UNREF; 3240 else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off))) 3241 type = BPF_KPTR_REF; 3242 else 3243 return -EINVAL; 3244 3245 /* Get the base type */ 3246 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3247 /* Only pointer to struct is allowed */ 3248 if (!__btf_type_is_struct(t)) 3249 return -EINVAL; 3250 3251 info->type_id = res_id; 3252 info->off = off; 3253 info->type = type; 3254 return BTF_FIELD_FOUND; 3255 } 3256 3257 static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t, 3258 const char *name, int sz, int align, 3259 enum btf_field_type field_type, 3260 struct btf_field_info *info, int info_cnt) 3261 { 3262 const struct btf_member *member; 3263 struct btf_field_info tmp; 3264 int ret, idx = 0; 3265 u32 i, off; 3266 3267 for_each_member(i, t, member) { 3268 const struct btf_type *member_type = btf_type_by_id(btf, 3269 member->type); 3270 3271 if (name && strcmp(__btf_name_by_offset(btf, member_type->name_off), name)) 3272 continue; 3273 3274 off = __btf_member_bit_offset(t, member); 3275 if (off % 8) 3276 /* valid C code cannot generate such BTF */ 3277 return -EINVAL; 3278 off /= 8; 3279 if (off % align) 3280 return -EINVAL; 3281 3282 switch (field_type) { 3283 case BTF_FIELD_SPIN_LOCK: 3284 case BTF_FIELD_TIMER: 3285 ret = btf_find_struct(btf, member_type, off, sz, 3286 idx < info_cnt ? &info[idx] : &tmp); 3287 if (ret < 0) 3288 return ret; 3289 break; 3290 case BTF_FIELD_KPTR: 3291 ret = btf_find_kptr(btf, member_type, off, sz, 3292 idx < info_cnt ? &info[idx] : &tmp); 3293 if (ret < 0) 3294 return ret; 3295 break; 3296 default: 3297 return -EFAULT; 3298 } 3299 3300 if (ret == BTF_FIELD_IGNORE) 3301 continue; 3302 if (idx >= info_cnt) 3303 return -E2BIG; 3304 ++idx; 3305 } 3306 return idx; 3307 } 3308 3309 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3310 const char *name, int sz, int align, 3311 enum btf_field_type field_type, 3312 struct btf_field_info *info, int info_cnt) 3313 { 3314 const struct btf_var_secinfo *vsi; 3315 struct btf_field_info tmp; 3316 int ret, idx = 0; 3317 u32 i, off; 3318 3319 for_each_vsi(i, t, vsi) { 3320 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3321 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3322 3323 off = vsi->offset; 3324 3325 if (name && strcmp(__btf_name_by_offset(btf, var_type->name_off), name)) 3326 continue; 3327 if (vsi->size != sz) 3328 continue; 3329 if (off % align) 3330 return -EINVAL; 3331 3332 switch (field_type) { 3333 case BTF_FIELD_SPIN_LOCK: 3334 case BTF_FIELD_TIMER: 3335 ret = btf_find_struct(btf, var_type, off, sz, 3336 idx < info_cnt ? &info[idx] : &tmp); 3337 if (ret < 0) 3338 return ret; 3339 break; 3340 case BTF_FIELD_KPTR: 3341 ret = btf_find_kptr(btf, var_type, off, sz, 3342 idx < info_cnt ? &info[idx] : &tmp); 3343 if (ret < 0) 3344 return ret; 3345 break; 3346 default: 3347 return -EFAULT; 3348 } 3349 3350 if (ret == BTF_FIELD_IGNORE) 3351 continue; 3352 if (idx >= info_cnt) 3353 return -E2BIG; 3354 ++idx; 3355 } 3356 return idx; 3357 } 3358 3359 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3360 enum btf_field_type field_type, 3361 struct btf_field_info *info, int info_cnt) 3362 { 3363 const char *name; 3364 int sz, align; 3365 3366 switch (field_type) { 3367 case BTF_FIELD_SPIN_LOCK: 3368 name = "bpf_spin_lock"; 3369 sz = sizeof(struct bpf_spin_lock); 3370 align = __alignof__(struct bpf_spin_lock); 3371 break; 3372 case BTF_FIELD_TIMER: 3373 name = "bpf_timer"; 3374 sz = sizeof(struct bpf_timer); 3375 align = __alignof__(struct bpf_timer); 3376 break; 3377 case BTF_FIELD_KPTR: 3378 name = NULL; 3379 sz = sizeof(u64); 3380 align = 8; 3381 break; 3382 default: 3383 return -EFAULT; 3384 } 3385 3386 if (__btf_type_is_struct(t)) 3387 return btf_find_struct_field(btf, t, name, sz, align, field_type, info, info_cnt); 3388 else if (btf_type_is_datasec(t)) 3389 return btf_find_datasec_var(btf, t, name, sz, align, field_type, info, info_cnt); 3390 return -EINVAL; 3391 } 3392 3393 /* find 'struct bpf_spin_lock' in map value. 3394 * return >= 0 offset if found 3395 * and < 0 in case of error 3396 */ 3397 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) 3398 { 3399 struct btf_field_info info; 3400 int ret; 3401 3402 ret = btf_find_field(btf, t, BTF_FIELD_SPIN_LOCK, &info, 1); 3403 if (ret < 0) 3404 return ret; 3405 if (!ret) 3406 return -ENOENT; 3407 return info.off; 3408 } 3409 3410 int btf_find_timer(const struct btf *btf, const struct btf_type *t) 3411 { 3412 struct btf_field_info info; 3413 int ret; 3414 3415 ret = btf_find_field(btf, t, BTF_FIELD_TIMER, &info, 1); 3416 if (ret < 0) 3417 return ret; 3418 if (!ret) 3419 return -ENOENT; 3420 return info.off; 3421 } 3422 3423 struct bpf_map_value_off *btf_parse_kptrs(const struct btf *btf, 3424 const struct btf_type *t) 3425 { 3426 struct btf_field_info info_arr[BPF_MAP_VALUE_OFF_MAX]; 3427 struct bpf_map_value_off *tab; 3428 struct btf *kernel_btf = NULL; 3429 struct module *mod = NULL; 3430 int ret, i, nr_off; 3431 3432 ret = btf_find_field(btf, t, BTF_FIELD_KPTR, info_arr, ARRAY_SIZE(info_arr)); 3433 if (ret < 0) 3434 return ERR_PTR(ret); 3435 if (!ret) 3436 return NULL; 3437 3438 nr_off = ret; 3439 tab = kzalloc(offsetof(struct bpf_map_value_off, off[nr_off]), GFP_KERNEL | __GFP_NOWARN); 3440 if (!tab) 3441 return ERR_PTR(-ENOMEM); 3442 3443 for (i = 0; i < nr_off; i++) { 3444 const struct btf_type *t; 3445 s32 id; 3446 3447 /* Find type in map BTF, and use it to look up the matching type 3448 * in vmlinux or module BTFs, by name and kind. 3449 */ 3450 t = btf_type_by_id(btf, info_arr[i].type_id); 3451 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3452 &kernel_btf); 3453 if (id < 0) { 3454 ret = id; 3455 goto end; 3456 } 3457 3458 /* Find and stash the function pointer for the destruction function that 3459 * needs to be eventually invoked from the map free path. 3460 */ 3461 if (info_arr[i].type == BPF_KPTR_REF) { 3462 const struct btf_type *dtor_func; 3463 const char *dtor_func_name; 3464 unsigned long addr; 3465 s32 dtor_btf_id; 3466 3467 /* This call also serves as a whitelist of allowed objects that 3468 * can be used as a referenced pointer and be stored in a map at 3469 * the same time. 3470 */ 3471 dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id); 3472 if (dtor_btf_id < 0) { 3473 ret = dtor_btf_id; 3474 goto end_btf; 3475 } 3476 3477 dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id); 3478 if (!dtor_func) { 3479 ret = -ENOENT; 3480 goto end_btf; 3481 } 3482 3483 if (btf_is_module(kernel_btf)) { 3484 mod = btf_try_get_module(kernel_btf); 3485 if (!mod) { 3486 ret = -ENXIO; 3487 goto end_btf; 3488 } 3489 } 3490 3491 /* We already verified dtor_func to be btf_type_is_func 3492 * in register_btf_id_dtor_kfuncs. 3493 */ 3494 dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off); 3495 addr = kallsyms_lookup_name(dtor_func_name); 3496 if (!addr) { 3497 ret = -EINVAL; 3498 goto end_mod; 3499 } 3500 tab->off[i].kptr.dtor = (void *)addr; 3501 } 3502 3503 tab->off[i].offset = info_arr[i].off; 3504 tab->off[i].type = info_arr[i].type; 3505 tab->off[i].kptr.btf_id = id; 3506 tab->off[i].kptr.btf = kernel_btf; 3507 tab->off[i].kptr.module = mod; 3508 } 3509 tab->nr_off = nr_off; 3510 return tab; 3511 end_mod: 3512 module_put(mod); 3513 end_btf: 3514 btf_put(kernel_btf); 3515 end: 3516 while (i--) { 3517 btf_put(tab->off[i].kptr.btf); 3518 if (tab->off[i].kptr.module) 3519 module_put(tab->off[i].kptr.module); 3520 } 3521 kfree(tab); 3522 return ERR_PTR(ret); 3523 } 3524 3525 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3526 u32 type_id, void *data, u8 bits_offset, 3527 struct btf_show *show) 3528 { 3529 const struct btf_member *member; 3530 void *safe_data; 3531 u32 i; 3532 3533 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3534 if (!safe_data) 3535 return; 3536 3537 for_each_member(i, t, member) { 3538 const struct btf_type *member_type = btf_type_by_id(btf, 3539 member->type); 3540 const struct btf_kind_operations *ops; 3541 u32 member_offset, bitfield_size; 3542 u32 bytes_offset; 3543 u8 bits8_offset; 3544 3545 btf_show_start_member(show, member); 3546 3547 member_offset = __btf_member_bit_offset(t, member); 3548 bitfield_size = __btf_member_bitfield_size(t, member); 3549 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3550 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3551 if (bitfield_size) { 3552 safe_data = btf_show_start_type(show, member_type, 3553 member->type, 3554 data + bytes_offset); 3555 if (safe_data) 3556 btf_bitfield_show(safe_data, 3557 bits8_offset, 3558 bitfield_size, show); 3559 btf_show_end_type(show); 3560 } else { 3561 ops = btf_type_ops(member_type); 3562 ops->show(btf, member_type, member->type, 3563 data + bytes_offset, bits8_offset, show); 3564 } 3565 3566 btf_show_end_member(show); 3567 } 3568 3569 btf_show_end_struct_type(show); 3570 } 3571 3572 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3573 u32 type_id, void *data, u8 bits_offset, 3574 struct btf_show *show) 3575 { 3576 const struct btf_member *m = show->state.member; 3577 3578 /* 3579 * First check if any members would be shown (are non-zero). 3580 * See comments above "struct btf_show" definition for more 3581 * details on how this works at a high-level. 3582 */ 3583 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3584 if (!show->state.depth_check) { 3585 show->state.depth_check = show->state.depth + 1; 3586 show->state.depth_to_show = 0; 3587 } 3588 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3589 /* Restore saved member data here */ 3590 show->state.member = m; 3591 if (show->state.depth_check != show->state.depth + 1) 3592 return; 3593 show->state.depth_check = 0; 3594 3595 if (show->state.depth_to_show <= show->state.depth) 3596 return; 3597 /* 3598 * Reaching here indicates we have recursed and found 3599 * non-zero child values. 3600 */ 3601 } 3602 3603 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3604 } 3605 3606 static struct btf_kind_operations struct_ops = { 3607 .check_meta = btf_struct_check_meta, 3608 .resolve = btf_struct_resolve, 3609 .check_member = btf_struct_check_member, 3610 .check_kflag_member = btf_generic_check_kflag_member, 3611 .log_details = btf_struct_log, 3612 .show = btf_struct_show, 3613 }; 3614 3615 static int btf_enum_check_member(struct btf_verifier_env *env, 3616 const struct btf_type *struct_type, 3617 const struct btf_member *member, 3618 const struct btf_type *member_type) 3619 { 3620 u32 struct_bits_off = member->offset; 3621 u32 struct_size, bytes_offset; 3622 3623 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3624 btf_verifier_log_member(env, struct_type, member, 3625 "Member is not byte aligned"); 3626 return -EINVAL; 3627 } 3628 3629 struct_size = struct_type->size; 3630 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3631 if (struct_size - bytes_offset < member_type->size) { 3632 btf_verifier_log_member(env, struct_type, member, 3633 "Member exceeds struct_size"); 3634 return -EINVAL; 3635 } 3636 3637 return 0; 3638 } 3639 3640 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 3641 const struct btf_type *struct_type, 3642 const struct btf_member *member, 3643 const struct btf_type *member_type) 3644 { 3645 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 3646 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 3647 3648 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 3649 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 3650 if (!nr_bits) { 3651 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3652 btf_verifier_log_member(env, struct_type, member, 3653 "Member is not byte aligned"); 3654 return -EINVAL; 3655 } 3656 3657 nr_bits = int_bitsize; 3658 } else if (nr_bits > int_bitsize) { 3659 btf_verifier_log_member(env, struct_type, member, 3660 "Invalid member bitfield_size"); 3661 return -EINVAL; 3662 } 3663 3664 struct_size = struct_type->size; 3665 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 3666 if (struct_size < bytes_end) { 3667 btf_verifier_log_member(env, struct_type, member, 3668 "Member exceeds struct_size"); 3669 return -EINVAL; 3670 } 3671 3672 return 0; 3673 } 3674 3675 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 3676 const struct btf_type *t, 3677 u32 meta_left) 3678 { 3679 const struct btf_enum *enums = btf_type_enum(t); 3680 struct btf *btf = env->btf; 3681 const char *fmt_str; 3682 u16 i, nr_enums; 3683 u32 meta_needed; 3684 3685 nr_enums = btf_type_vlen(t); 3686 meta_needed = nr_enums * sizeof(*enums); 3687 3688 if (meta_left < meta_needed) { 3689 btf_verifier_log_basic(env, t, 3690 "meta_left:%u meta_needed:%u", 3691 meta_left, meta_needed); 3692 return -EINVAL; 3693 } 3694 3695 if (t->size > 8 || !is_power_of_2(t->size)) { 3696 btf_verifier_log_type(env, t, "Unexpected size"); 3697 return -EINVAL; 3698 } 3699 3700 /* enum type either no name or a valid one */ 3701 if (t->name_off && 3702 !btf_name_valid_identifier(env->btf, t->name_off)) { 3703 btf_verifier_log_type(env, t, "Invalid name"); 3704 return -EINVAL; 3705 } 3706 3707 btf_verifier_log_type(env, t, NULL); 3708 3709 for (i = 0; i < nr_enums; i++) { 3710 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 3711 btf_verifier_log(env, "\tInvalid name_offset:%u", 3712 enums[i].name_off); 3713 return -EINVAL; 3714 } 3715 3716 /* enum member must have a valid name */ 3717 if (!enums[i].name_off || 3718 !btf_name_valid_identifier(btf, enums[i].name_off)) { 3719 btf_verifier_log_type(env, t, "Invalid name"); 3720 return -EINVAL; 3721 } 3722 3723 if (env->log.level == BPF_LOG_KERNEL) 3724 continue; 3725 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 3726 btf_verifier_log(env, fmt_str, 3727 __btf_name_by_offset(btf, enums[i].name_off), 3728 enums[i].val); 3729 } 3730 3731 return meta_needed; 3732 } 3733 3734 static void btf_enum_log(struct btf_verifier_env *env, 3735 const struct btf_type *t) 3736 { 3737 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3738 } 3739 3740 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 3741 u32 type_id, void *data, u8 bits_offset, 3742 struct btf_show *show) 3743 { 3744 const struct btf_enum *enums = btf_type_enum(t); 3745 u32 i, nr_enums = btf_type_vlen(t); 3746 void *safe_data; 3747 int v; 3748 3749 safe_data = btf_show_start_type(show, t, type_id, data); 3750 if (!safe_data) 3751 return; 3752 3753 v = *(int *)safe_data; 3754 3755 for (i = 0; i < nr_enums; i++) { 3756 if (v != enums[i].val) 3757 continue; 3758 3759 btf_show_type_value(show, "%s", 3760 __btf_name_by_offset(btf, 3761 enums[i].name_off)); 3762 3763 btf_show_end_type(show); 3764 return; 3765 } 3766 3767 if (btf_type_kflag(t)) 3768 btf_show_type_value(show, "%d", v); 3769 else 3770 btf_show_type_value(show, "%u", v); 3771 btf_show_end_type(show); 3772 } 3773 3774 static struct btf_kind_operations enum_ops = { 3775 .check_meta = btf_enum_check_meta, 3776 .resolve = btf_df_resolve, 3777 .check_member = btf_enum_check_member, 3778 .check_kflag_member = btf_enum_check_kflag_member, 3779 .log_details = btf_enum_log, 3780 .show = btf_enum_show, 3781 }; 3782 3783 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 3784 const struct btf_type *t, 3785 u32 meta_left) 3786 { 3787 const struct btf_enum64 *enums = btf_type_enum64(t); 3788 struct btf *btf = env->btf; 3789 const char *fmt_str; 3790 u16 i, nr_enums; 3791 u32 meta_needed; 3792 3793 nr_enums = btf_type_vlen(t); 3794 meta_needed = nr_enums * sizeof(*enums); 3795 3796 if (meta_left < meta_needed) { 3797 btf_verifier_log_basic(env, t, 3798 "meta_left:%u meta_needed:%u", 3799 meta_left, meta_needed); 3800 return -EINVAL; 3801 } 3802 3803 if (t->size > 8 || !is_power_of_2(t->size)) { 3804 btf_verifier_log_type(env, t, "Unexpected size"); 3805 return -EINVAL; 3806 } 3807 3808 /* enum type either no name or a valid one */ 3809 if (t->name_off && 3810 !btf_name_valid_identifier(env->btf, t->name_off)) { 3811 btf_verifier_log_type(env, t, "Invalid name"); 3812 return -EINVAL; 3813 } 3814 3815 btf_verifier_log_type(env, t, NULL); 3816 3817 for (i = 0; i < nr_enums; i++) { 3818 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 3819 btf_verifier_log(env, "\tInvalid name_offset:%u", 3820 enums[i].name_off); 3821 return -EINVAL; 3822 } 3823 3824 /* enum member must have a valid name */ 3825 if (!enums[i].name_off || 3826 !btf_name_valid_identifier(btf, enums[i].name_off)) { 3827 btf_verifier_log_type(env, t, "Invalid name"); 3828 return -EINVAL; 3829 } 3830 3831 if (env->log.level == BPF_LOG_KERNEL) 3832 continue; 3833 3834 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 3835 btf_verifier_log(env, fmt_str, 3836 __btf_name_by_offset(btf, enums[i].name_off), 3837 btf_enum64_value(enums + i)); 3838 } 3839 3840 return meta_needed; 3841 } 3842 3843 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 3844 u32 type_id, void *data, u8 bits_offset, 3845 struct btf_show *show) 3846 { 3847 const struct btf_enum64 *enums = btf_type_enum64(t); 3848 u32 i, nr_enums = btf_type_vlen(t); 3849 void *safe_data; 3850 s64 v; 3851 3852 safe_data = btf_show_start_type(show, t, type_id, data); 3853 if (!safe_data) 3854 return; 3855 3856 v = *(u64 *)safe_data; 3857 3858 for (i = 0; i < nr_enums; i++) { 3859 if (v != btf_enum64_value(enums + i)) 3860 continue; 3861 3862 btf_show_type_value(show, "%s", 3863 __btf_name_by_offset(btf, 3864 enums[i].name_off)); 3865 3866 btf_show_end_type(show); 3867 return; 3868 } 3869 3870 if (btf_type_kflag(t)) 3871 btf_show_type_value(show, "%lld", v); 3872 else 3873 btf_show_type_value(show, "%llu", v); 3874 btf_show_end_type(show); 3875 } 3876 3877 static struct btf_kind_operations enum64_ops = { 3878 .check_meta = btf_enum64_check_meta, 3879 .resolve = btf_df_resolve, 3880 .check_member = btf_enum_check_member, 3881 .check_kflag_member = btf_enum_check_kflag_member, 3882 .log_details = btf_enum_log, 3883 .show = btf_enum64_show, 3884 }; 3885 3886 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 3887 const struct btf_type *t, 3888 u32 meta_left) 3889 { 3890 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 3891 3892 if (meta_left < meta_needed) { 3893 btf_verifier_log_basic(env, t, 3894 "meta_left:%u meta_needed:%u", 3895 meta_left, meta_needed); 3896 return -EINVAL; 3897 } 3898 3899 if (t->name_off) { 3900 btf_verifier_log_type(env, t, "Invalid name"); 3901 return -EINVAL; 3902 } 3903 3904 if (btf_type_kflag(t)) { 3905 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3906 return -EINVAL; 3907 } 3908 3909 btf_verifier_log_type(env, t, NULL); 3910 3911 return meta_needed; 3912 } 3913 3914 static void btf_func_proto_log(struct btf_verifier_env *env, 3915 const struct btf_type *t) 3916 { 3917 const struct btf_param *args = (const struct btf_param *)(t + 1); 3918 u16 nr_args = btf_type_vlen(t), i; 3919 3920 btf_verifier_log(env, "return=%u args=(", t->type); 3921 if (!nr_args) { 3922 btf_verifier_log(env, "void"); 3923 goto done; 3924 } 3925 3926 if (nr_args == 1 && !args[0].type) { 3927 /* Only one vararg */ 3928 btf_verifier_log(env, "vararg"); 3929 goto done; 3930 } 3931 3932 btf_verifier_log(env, "%u %s", args[0].type, 3933 __btf_name_by_offset(env->btf, 3934 args[0].name_off)); 3935 for (i = 1; i < nr_args - 1; i++) 3936 btf_verifier_log(env, ", %u %s", args[i].type, 3937 __btf_name_by_offset(env->btf, 3938 args[i].name_off)); 3939 3940 if (nr_args > 1) { 3941 const struct btf_param *last_arg = &args[nr_args - 1]; 3942 3943 if (last_arg->type) 3944 btf_verifier_log(env, ", %u %s", last_arg->type, 3945 __btf_name_by_offset(env->btf, 3946 last_arg->name_off)); 3947 else 3948 btf_verifier_log(env, ", vararg"); 3949 } 3950 3951 done: 3952 btf_verifier_log(env, ")"); 3953 } 3954 3955 static struct btf_kind_operations func_proto_ops = { 3956 .check_meta = btf_func_proto_check_meta, 3957 .resolve = btf_df_resolve, 3958 /* 3959 * BTF_KIND_FUNC_PROTO cannot be directly referred by 3960 * a struct's member. 3961 * 3962 * It should be a function pointer instead. 3963 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 3964 * 3965 * Hence, there is no btf_func_check_member(). 3966 */ 3967 .check_member = btf_df_check_member, 3968 .check_kflag_member = btf_df_check_kflag_member, 3969 .log_details = btf_func_proto_log, 3970 .show = btf_df_show, 3971 }; 3972 3973 static s32 btf_func_check_meta(struct btf_verifier_env *env, 3974 const struct btf_type *t, 3975 u32 meta_left) 3976 { 3977 if (!t->name_off || 3978 !btf_name_valid_identifier(env->btf, t->name_off)) { 3979 btf_verifier_log_type(env, t, "Invalid name"); 3980 return -EINVAL; 3981 } 3982 3983 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 3984 btf_verifier_log_type(env, t, "Invalid func linkage"); 3985 return -EINVAL; 3986 } 3987 3988 if (btf_type_kflag(t)) { 3989 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3990 return -EINVAL; 3991 } 3992 3993 btf_verifier_log_type(env, t, NULL); 3994 3995 return 0; 3996 } 3997 3998 static int btf_func_resolve(struct btf_verifier_env *env, 3999 const struct resolve_vertex *v) 4000 { 4001 const struct btf_type *t = v->t; 4002 u32 next_type_id = t->type; 4003 int err; 4004 4005 err = btf_func_check(env, t); 4006 if (err) 4007 return err; 4008 4009 env_stack_pop_resolved(env, next_type_id, 0); 4010 return 0; 4011 } 4012 4013 static struct btf_kind_operations func_ops = { 4014 .check_meta = btf_func_check_meta, 4015 .resolve = btf_func_resolve, 4016 .check_member = btf_df_check_member, 4017 .check_kflag_member = btf_df_check_kflag_member, 4018 .log_details = btf_ref_type_log, 4019 .show = btf_df_show, 4020 }; 4021 4022 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4023 const struct btf_type *t, 4024 u32 meta_left) 4025 { 4026 const struct btf_var *var; 4027 u32 meta_needed = sizeof(*var); 4028 4029 if (meta_left < meta_needed) { 4030 btf_verifier_log_basic(env, t, 4031 "meta_left:%u meta_needed:%u", 4032 meta_left, meta_needed); 4033 return -EINVAL; 4034 } 4035 4036 if (btf_type_vlen(t)) { 4037 btf_verifier_log_type(env, t, "vlen != 0"); 4038 return -EINVAL; 4039 } 4040 4041 if (btf_type_kflag(t)) { 4042 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4043 return -EINVAL; 4044 } 4045 4046 if (!t->name_off || 4047 !__btf_name_valid(env->btf, t->name_off, true)) { 4048 btf_verifier_log_type(env, t, "Invalid name"); 4049 return -EINVAL; 4050 } 4051 4052 /* A var cannot be in type void */ 4053 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4054 btf_verifier_log_type(env, t, "Invalid type_id"); 4055 return -EINVAL; 4056 } 4057 4058 var = btf_type_var(t); 4059 if (var->linkage != BTF_VAR_STATIC && 4060 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4061 btf_verifier_log_type(env, t, "Linkage not supported"); 4062 return -EINVAL; 4063 } 4064 4065 btf_verifier_log_type(env, t, NULL); 4066 4067 return meta_needed; 4068 } 4069 4070 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4071 { 4072 const struct btf_var *var = btf_type_var(t); 4073 4074 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4075 } 4076 4077 static const struct btf_kind_operations var_ops = { 4078 .check_meta = btf_var_check_meta, 4079 .resolve = btf_var_resolve, 4080 .check_member = btf_df_check_member, 4081 .check_kflag_member = btf_df_check_kflag_member, 4082 .log_details = btf_var_log, 4083 .show = btf_var_show, 4084 }; 4085 4086 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4087 const struct btf_type *t, 4088 u32 meta_left) 4089 { 4090 const struct btf_var_secinfo *vsi; 4091 u64 last_vsi_end_off = 0, sum = 0; 4092 u32 i, meta_needed; 4093 4094 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4095 if (meta_left < meta_needed) { 4096 btf_verifier_log_basic(env, t, 4097 "meta_left:%u meta_needed:%u", 4098 meta_left, meta_needed); 4099 return -EINVAL; 4100 } 4101 4102 if (!t->size) { 4103 btf_verifier_log_type(env, t, "size == 0"); 4104 return -EINVAL; 4105 } 4106 4107 if (btf_type_kflag(t)) { 4108 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4109 return -EINVAL; 4110 } 4111 4112 if (!t->name_off || 4113 !btf_name_valid_section(env->btf, t->name_off)) { 4114 btf_verifier_log_type(env, t, "Invalid name"); 4115 return -EINVAL; 4116 } 4117 4118 btf_verifier_log_type(env, t, NULL); 4119 4120 for_each_vsi(i, t, vsi) { 4121 /* A var cannot be in type void */ 4122 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4123 btf_verifier_log_vsi(env, t, vsi, 4124 "Invalid type_id"); 4125 return -EINVAL; 4126 } 4127 4128 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4129 btf_verifier_log_vsi(env, t, vsi, 4130 "Invalid offset"); 4131 return -EINVAL; 4132 } 4133 4134 if (!vsi->size || vsi->size > t->size) { 4135 btf_verifier_log_vsi(env, t, vsi, 4136 "Invalid size"); 4137 return -EINVAL; 4138 } 4139 4140 last_vsi_end_off = vsi->offset + vsi->size; 4141 if (last_vsi_end_off > t->size) { 4142 btf_verifier_log_vsi(env, t, vsi, 4143 "Invalid offset+size"); 4144 return -EINVAL; 4145 } 4146 4147 btf_verifier_log_vsi(env, t, vsi, NULL); 4148 sum += vsi->size; 4149 } 4150 4151 if (t->size < sum) { 4152 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4153 return -EINVAL; 4154 } 4155 4156 return meta_needed; 4157 } 4158 4159 static int btf_datasec_resolve(struct btf_verifier_env *env, 4160 const struct resolve_vertex *v) 4161 { 4162 const struct btf_var_secinfo *vsi; 4163 struct btf *btf = env->btf; 4164 u16 i; 4165 4166 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4167 u32 var_type_id = vsi->type, type_id, type_size = 0; 4168 const struct btf_type *var_type = btf_type_by_id(env->btf, 4169 var_type_id); 4170 if (!var_type || !btf_type_is_var(var_type)) { 4171 btf_verifier_log_vsi(env, v->t, vsi, 4172 "Not a VAR kind member"); 4173 return -EINVAL; 4174 } 4175 4176 if (!env_type_is_resolve_sink(env, var_type) && 4177 !env_type_is_resolved(env, var_type_id)) { 4178 env_stack_set_next_member(env, i + 1); 4179 return env_stack_push(env, var_type, var_type_id); 4180 } 4181 4182 type_id = var_type->type; 4183 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4184 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4185 return -EINVAL; 4186 } 4187 4188 if (vsi->size < type_size) { 4189 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4190 return -EINVAL; 4191 } 4192 } 4193 4194 env_stack_pop_resolved(env, 0, 0); 4195 return 0; 4196 } 4197 4198 static void btf_datasec_log(struct btf_verifier_env *env, 4199 const struct btf_type *t) 4200 { 4201 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4202 } 4203 4204 static void btf_datasec_show(const struct btf *btf, 4205 const struct btf_type *t, u32 type_id, 4206 void *data, u8 bits_offset, 4207 struct btf_show *show) 4208 { 4209 const struct btf_var_secinfo *vsi; 4210 const struct btf_type *var; 4211 u32 i; 4212 4213 if (!btf_show_start_type(show, t, type_id, data)) 4214 return; 4215 4216 btf_show_type_value(show, "section (\"%s\") = {", 4217 __btf_name_by_offset(btf, t->name_off)); 4218 for_each_vsi(i, t, vsi) { 4219 var = btf_type_by_id(btf, vsi->type); 4220 if (i) 4221 btf_show(show, ","); 4222 btf_type_ops(var)->show(btf, var, vsi->type, 4223 data + vsi->offset, bits_offset, show); 4224 } 4225 btf_show_end_type(show); 4226 } 4227 4228 static const struct btf_kind_operations datasec_ops = { 4229 .check_meta = btf_datasec_check_meta, 4230 .resolve = btf_datasec_resolve, 4231 .check_member = btf_df_check_member, 4232 .check_kflag_member = btf_df_check_kflag_member, 4233 .log_details = btf_datasec_log, 4234 .show = btf_datasec_show, 4235 }; 4236 4237 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4238 const struct btf_type *t, 4239 u32 meta_left) 4240 { 4241 if (btf_type_vlen(t)) { 4242 btf_verifier_log_type(env, t, "vlen != 0"); 4243 return -EINVAL; 4244 } 4245 4246 if (btf_type_kflag(t)) { 4247 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4248 return -EINVAL; 4249 } 4250 4251 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4252 t->size != 16) { 4253 btf_verifier_log_type(env, t, "Invalid type_size"); 4254 return -EINVAL; 4255 } 4256 4257 btf_verifier_log_type(env, t, NULL); 4258 4259 return 0; 4260 } 4261 4262 static int btf_float_check_member(struct btf_verifier_env *env, 4263 const struct btf_type *struct_type, 4264 const struct btf_member *member, 4265 const struct btf_type *member_type) 4266 { 4267 u64 start_offset_bytes; 4268 u64 end_offset_bytes; 4269 u64 misalign_bits; 4270 u64 align_bytes; 4271 u64 align_bits; 4272 4273 /* Different architectures have different alignment requirements, so 4274 * here we check only for the reasonable minimum. This way we ensure 4275 * that types after CO-RE can pass the kernel BTF verifier. 4276 */ 4277 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4278 align_bits = align_bytes * BITS_PER_BYTE; 4279 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4280 if (misalign_bits) { 4281 btf_verifier_log_member(env, struct_type, member, 4282 "Member is not properly aligned"); 4283 return -EINVAL; 4284 } 4285 4286 start_offset_bytes = member->offset / BITS_PER_BYTE; 4287 end_offset_bytes = start_offset_bytes + member_type->size; 4288 if (end_offset_bytes > struct_type->size) { 4289 btf_verifier_log_member(env, struct_type, member, 4290 "Member exceeds struct_size"); 4291 return -EINVAL; 4292 } 4293 4294 return 0; 4295 } 4296 4297 static void btf_float_log(struct btf_verifier_env *env, 4298 const struct btf_type *t) 4299 { 4300 btf_verifier_log(env, "size=%u", t->size); 4301 } 4302 4303 static const struct btf_kind_operations float_ops = { 4304 .check_meta = btf_float_check_meta, 4305 .resolve = btf_df_resolve, 4306 .check_member = btf_float_check_member, 4307 .check_kflag_member = btf_generic_check_kflag_member, 4308 .log_details = btf_float_log, 4309 .show = btf_df_show, 4310 }; 4311 4312 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4313 const struct btf_type *t, 4314 u32 meta_left) 4315 { 4316 const struct btf_decl_tag *tag; 4317 u32 meta_needed = sizeof(*tag); 4318 s32 component_idx; 4319 const char *value; 4320 4321 if (meta_left < meta_needed) { 4322 btf_verifier_log_basic(env, t, 4323 "meta_left:%u meta_needed:%u", 4324 meta_left, meta_needed); 4325 return -EINVAL; 4326 } 4327 4328 value = btf_name_by_offset(env->btf, t->name_off); 4329 if (!value || !value[0]) { 4330 btf_verifier_log_type(env, t, "Invalid value"); 4331 return -EINVAL; 4332 } 4333 4334 if (btf_type_vlen(t)) { 4335 btf_verifier_log_type(env, t, "vlen != 0"); 4336 return -EINVAL; 4337 } 4338 4339 if (btf_type_kflag(t)) { 4340 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4341 return -EINVAL; 4342 } 4343 4344 component_idx = btf_type_decl_tag(t)->component_idx; 4345 if (component_idx < -1) { 4346 btf_verifier_log_type(env, t, "Invalid component_idx"); 4347 return -EINVAL; 4348 } 4349 4350 btf_verifier_log_type(env, t, NULL); 4351 4352 return meta_needed; 4353 } 4354 4355 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4356 const struct resolve_vertex *v) 4357 { 4358 const struct btf_type *next_type; 4359 const struct btf_type *t = v->t; 4360 u32 next_type_id = t->type; 4361 struct btf *btf = env->btf; 4362 s32 component_idx; 4363 u32 vlen; 4364 4365 next_type = btf_type_by_id(btf, next_type_id); 4366 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4367 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4368 return -EINVAL; 4369 } 4370 4371 if (!env_type_is_resolve_sink(env, next_type) && 4372 !env_type_is_resolved(env, next_type_id)) 4373 return env_stack_push(env, next_type, next_type_id); 4374 4375 component_idx = btf_type_decl_tag(t)->component_idx; 4376 if (component_idx != -1) { 4377 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4378 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4379 return -EINVAL; 4380 } 4381 4382 if (btf_type_is_struct(next_type)) { 4383 vlen = btf_type_vlen(next_type); 4384 } else { 4385 /* next_type should be a function */ 4386 next_type = btf_type_by_id(btf, next_type->type); 4387 vlen = btf_type_vlen(next_type); 4388 } 4389 4390 if ((u32)component_idx >= vlen) { 4391 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4392 return -EINVAL; 4393 } 4394 } 4395 4396 env_stack_pop_resolved(env, next_type_id, 0); 4397 4398 return 0; 4399 } 4400 4401 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4402 { 4403 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4404 btf_type_decl_tag(t)->component_idx); 4405 } 4406 4407 static const struct btf_kind_operations decl_tag_ops = { 4408 .check_meta = btf_decl_tag_check_meta, 4409 .resolve = btf_decl_tag_resolve, 4410 .check_member = btf_df_check_member, 4411 .check_kflag_member = btf_df_check_kflag_member, 4412 .log_details = btf_decl_tag_log, 4413 .show = btf_df_show, 4414 }; 4415 4416 static int btf_func_proto_check(struct btf_verifier_env *env, 4417 const struct btf_type *t) 4418 { 4419 const struct btf_type *ret_type; 4420 const struct btf_param *args; 4421 const struct btf *btf; 4422 u16 nr_args, i; 4423 int err; 4424 4425 btf = env->btf; 4426 args = (const struct btf_param *)(t + 1); 4427 nr_args = btf_type_vlen(t); 4428 4429 /* Check func return type which could be "void" (t->type == 0) */ 4430 if (t->type) { 4431 u32 ret_type_id = t->type; 4432 4433 ret_type = btf_type_by_id(btf, ret_type_id); 4434 if (!ret_type) { 4435 btf_verifier_log_type(env, t, "Invalid return type"); 4436 return -EINVAL; 4437 } 4438 4439 if (btf_type_needs_resolve(ret_type) && 4440 !env_type_is_resolved(env, ret_type_id)) { 4441 err = btf_resolve(env, ret_type, ret_type_id); 4442 if (err) 4443 return err; 4444 } 4445 4446 /* Ensure the return type is a type that has a size */ 4447 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 4448 btf_verifier_log_type(env, t, "Invalid return type"); 4449 return -EINVAL; 4450 } 4451 } 4452 4453 if (!nr_args) 4454 return 0; 4455 4456 /* Last func arg type_id could be 0 if it is a vararg */ 4457 if (!args[nr_args - 1].type) { 4458 if (args[nr_args - 1].name_off) { 4459 btf_verifier_log_type(env, t, "Invalid arg#%u", 4460 nr_args); 4461 return -EINVAL; 4462 } 4463 nr_args--; 4464 } 4465 4466 err = 0; 4467 for (i = 0; i < nr_args; i++) { 4468 const struct btf_type *arg_type; 4469 u32 arg_type_id; 4470 4471 arg_type_id = args[i].type; 4472 arg_type = btf_type_by_id(btf, arg_type_id); 4473 if (!arg_type) { 4474 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4475 err = -EINVAL; 4476 break; 4477 } 4478 4479 if (args[i].name_off && 4480 (!btf_name_offset_valid(btf, args[i].name_off) || 4481 !btf_name_valid_identifier(btf, args[i].name_off))) { 4482 btf_verifier_log_type(env, t, 4483 "Invalid arg#%u", i + 1); 4484 err = -EINVAL; 4485 break; 4486 } 4487 4488 if (btf_type_needs_resolve(arg_type) && 4489 !env_type_is_resolved(env, arg_type_id)) { 4490 err = btf_resolve(env, arg_type, arg_type_id); 4491 if (err) 4492 break; 4493 } 4494 4495 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 4496 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4497 err = -EINVAL; 4498 break; 4499 } 4500 } 4501 4502 return err; 4503 } 4504 4505 static int btf_func_check(struct btf_verifier_env *env, 4506 const struct btf_type *t) 4507 { 4508 const struct btf_type *proto_type; 4509 const struct btf_param *args; 4510 const struct btf *btf; 4511 u16 nr_args, i; 4512 4513 btf = env->btf; 4514 proto_type = btf_type_by_id(btf, t->type); 4515 4516 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 4517 btf_verifier_log_type(env, t, "Invalid type_id"); 4518 return -EINVAL; 4519 } 4520 4521 args = (const struct btf_param *)(proto_type + 1); 4522 nr_args = btf_type_vlen(proto_type); 4523 for (i = 0; i < nr_args; i++) { 4524 if (!args[i].name_off && args[i].type) { 4525 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4526 return -EINVAL; 4527 } 4528 } 4529 4530 return 0; 4531 } 4532 4533 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 4534 [BTF_KIND_INT] = &int_ops, 4535 [BTF_KIND_PTR] = &ptr_ops, 4536 [BTF_KIND_ARRAY] = &array_ops, 4537 [BTF_KIND_STRUCT] = &struct_ops, 4538 [BTF_KIND_UNION] = &struct_ops, 4539 [BTF_KIND_ENUM] = &enum_ops, 4540 [BTF_KIND_FWD] = &fwd_ops, 4541 [BTF_KIND_TYPEDEF] = &modifier_ops, 4542 [BTF_KIND_VOLATILE] = &modifier_ops, 4543 [BTF_KIND_CONST] = &modifier_ops, 4544 [BTF_KIND_RESTRICT] = &modifier_ops, 4545 [BTF_KIND_FUNC] = &func_ops, 4546 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 4547 [BTF_KIND_VAR] = &var_ops, 4548 [BTF_KIND_DATASEC] = &datasec_ops, 4549 [BTF_KIND_FLOAT] = &float_ops, 4550 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 4551 [BTF_KIND_TYPE_TAG] = &modifier_ops, 4552 [BTF_KIND_ENUM64] = &enum64_ops, 4553 }; 4554 4555 static s32 btf_check_meta(struct btf_verifier_env *env, 4556 const struct btf_type *t, 4557 u32 meta_left) 4558 { 4559 u32 saved_meta_left = meta_left; 4560 s32 var_meta_size; 4561 4562 if (meta_left < sizeof(*t)) { 4563 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 4564 env->log_type_id, meta_left, sizeof(*t)); 4565 return -EINVAL; 4566 } 4567 meta_left -= sizeof(*t); 4568 4569 if (t->info & ~BTF_INFO_MASK) { 4570 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 4571 env->log_type_id, t->info); 4572 return -EINVAL; 4573 } 4574 4575 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 4576 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 4577 btf_verifier_log(env, "[%u] Invalid kind:%u", 4578 env->log_type_id, BTF_INFO_KIND(t->info)); 4579 return -EINVAL; 4580 } 4581 4582 if (!btf_name_offset_valid(env->btf, t->name_off)) { 4583 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 4584 env->log_type_id, t->name_off); 4585 return -EINVAL; 4586 } 4587 4588 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 4589 if (var_meta_size < 0) 4590 return var_meta_size; 4591 4592 meta_left -= var_meta_size; 4593 4594 return saved_meta_left - meta_left; 4595 } 4596 4597 static int btf_check_all_metas(struct btf_verifier_env *env) 4598 { 4599 struct btf *btf = env->btf; 4600 struct btf_header *hdr; 4601 void *cur, *end; 4602 4603 hdr = &btf->hdr; 4604 cur = btf->nohdr_data + hdr->type_off; 4605 end = cur + hdr->type_len; 4606 4607 env->log_type_id = btf->base_btf ? btf->start_id : 1; 4608 while (cur < end) { 4609 struct btf_type *t = cur; 4610 s32 meta_size; 4611 4612 meta_size = btf_check_meta(env, t, end - cur); 4613 if (meta_size < 0) 4614 return meta_size; 4615 4616 btf_add_type(env, t); 4617 cur += meta_size; 4618 env->log_type_id++; 4619 } 4620 4621 return 0; 4622 } 4623 4624 static bool btf_resolve_valid(struct btf_verifier_env *env, 4625 const struct btf_type *t, 4626 u32 type_id) 4627 { 4628 struct btf *btf = env->btf; 4629 4630 if (!env_type_is_resolved(env, type_id)) 4631 return false; 4632 4633 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 4634 return !btf_resolved_type_id(btf, type_id) && 4635 !btf_resolved_type_size(btf, type_id); 4636 4637 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 4638 return btf_resolved_type_id(btf, type_id) && 4639 !btf_resolved_type_size(btf, type_id); 4640 4641 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 4642 btf_type_is_var(t)) { 4643 t = btf_type_id_resolve(btf, &type_id); 4644 return t && 4645 !btf_type_is_modifier(t) && 4646 !btf_type_is_var(t) && 4647 !btf_type_is_datasec(t); 4648 } 4649 4650 if (btf_type_is_array(t)) { 4651 const struct btf_array *array = btf_type_array(t); 4652 const struct btf_type *elem_type; 4653 u32 elem_type_id = array->type; 4654 u32 elem_size; 4655 4656 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 4657 return elem_type && !btf_type_is_modifier(elem_type) && 4658 (array->nelems * elem_size == 4659 btf_resolved_type_size(btf, type_id)); 4660 } 4661 4662 return false; 4663 } 4664 4665 static int btf_resolve(struct btf_verifier_env *env, 4666 const struct btf_type *t, u32 type_id) 4667 { 4668 u32 save_log_type_id = env->log_type_id; 4669 const struct resolve_vertex *v; 4670 int err = 0; 4671 4672 env->resolve_mode = RESOLVE_TBD; 4673 env_stack_push(env, t, type_id); 4674 while (!err && (v = env_stack_peak(env))) { 4675 env->log_type_id = v->type_id; 4676 err = btf_type_ops(v->t)->resolve(env, v); 4677 } 4678 4679 env->log_type_id = type_id; 4680 if (err == -E2BIG) { 4681 btf_verifier_log_type(env, t, 4682 "Exceeded max resolving depth:%u", 4683 MAX_RESOLVE_DEPTH); 4684 } else if (err == -EEXIST) { 4685 btf_verifier_log_type(env, t, "Loop detected"); 4686 } 4687 4688 /* Final sanity check */ 4689 if (!err && !btf_resolve_valid(env, t, type_id)) { 4690 btf_verifier_log_type(env, t, "Invalid resolve state"); 4691 err = -EINVAL; 4692 } 4693 4694 env->log_type_id = save_log_type_id; 4695 return err; 4696 } 4697 4698 static int btf_check_all_types(struct btf_verifier_env *env) 4699 { 4700 struct btf *btf = env->btf; 4701 const struct btf_type *t; 4702 u32 type_id, i; 4703 int err; 4704 4705 err = env_resolve_init(env); 4706 if (err) 4707 return err; 4708 4709 env->phase++; 4710 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 4711 type_id = btf->start_id + i; 4712 t = btf_type_by_id(btf, type_id); 4713 4714 env->log_type_id = type_id; 4715 if (btf_type_needs_resolve(t) && 4716 !env_type_is_resolved(env, type_id)) { 4717 err = btf_resolve(env, t, type_id); 4718 if (err) 4719 return err; 4720 } 4721 4722 if (btf_type_is_func_proto(t)) { 4723 err = btf_func_proto_check(env, t); 4724 if (err) 4725 return err; 4726 } 4727 } 4728 4729 return 0; 4730 } 4731 4732 static int btf_parse_type_sec(struct btf_verifier_env *env) 4733 { 4734 const struct btf_header *hdr = &env->btf->hdr; 4735 int err; 4736 4737 /* Type section must align to 4 bytes */ 4738 if (hdr->type_off & (sizeof(u32) - 1)) { 4739 btf_verifier_log(env, "Unaligned type_off"); 4740 return -EINVAL; 4741 } 4742 4743 if (!env->btf->base_btf && !hdr->type_len) { 4744 btf_verifier_log(env, "No type found"); 4745 return -EINVAL; 4746 } 4747 4748 err = btf_check_all_metas(env); 4749 if (err) 4750 return err; 4751 4752 return btf_check_all_types(env); 4753 } 4754 4755 static int btf_parse_str_sec(struct btf_verifier_env *env) 4756 { 4757 const struct btf_header *hdr; 4758 struct btf *btf = env->btf; 4759 const char *start, *end; 4760 4761 hdr = &btf->hdr; 4762 start = btf->nohdr_data + hdr->str_off; 4763 end = start + hdr->str_len; 4764 4765 if (end != btf->data + btf->data_size) { 4766 btf_verifier_log(env, "String section is not at the end"); 4767 return -EINVAL; 4768 } 4769 4770 btf->strings = start; 4771 4772 if (btf->base_btf && !hdr->str_len) 4773 return 0; 4774 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 4775 btf_verifier_log(env, "Invalid string section"); 4776 return -EINVAL; 4777 } 4778 if (!btf->base_btf && start[0]) { 4779 btf_verifier_log(env, "Invalid string section"); 4780 return -EINVAL; 4781 } 4782 4783 return 0; 4784 } 4785 4786 static const size_t btf_sec_info_offset[] = { 4787 offsetof(struct btf_header, type_off), 4788 offsetof(struct btf_header, str_off), 4789 }; 4790 4791 static int btf_sec_info_cmp(const void *a, const void *b) 4792 { 4793 const struct btf_sec_info *x = a; 4794 const struct btf_sec_info *y = b; 4795 4796 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 4797 } 4798 4799 static int btf_check_sec_info(struct btf_verifier_env *env, 4800 u32 btf_data_size) 4801 { 4802 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 4803 u32 total, expected_total, i; 4804 const struct btf_header *hdr; 4805 const struct btf *btf; 4806 4807 btf = env->btf; 4808 hdr = &btf->hdr; 4809 4810 /* Populate the secs from hdr */ 4811 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 4812 secs[i] = *(struct btf_sec_info *)((void *)hdr + 4813 btf_sec_info_offset[i]); 4814 4815 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 4816 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 4817 4818 /* Check for gaps and overlap among sections */ 4819 total = 0; 4820 expected_total = btf_data_size - hdr->hdr_len; 4821 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 4822 if (expected_total < secs[i].off) { 4823 btf_verifier_log(env, "Invalid section offset"); 4824 return -EINVAL; 4825 } 4826 if (total < secs[i].off) { 4827 /* gap */ 4828 btf_verifier_log(env, "Unsupported section found"); 4829 return -EINVAL; 4830 } 4831 if (total > secs[i].off) { 4832 btf_verifier_log(env, "Section overlap found"); 4833 return -EINVAL; 4834 } 4835 if (expected_total - total < secs[i].len) { 4836 btf_verifier_log(env, 4837 "Total section length too long"); 4838 return -EINVAL; 4839 } 4840 total += secs[i].len; 4841 } 4842 4843 /* There is data other than hdr and known sections */ 4844 if (expected_total != total) { 4845 btf_verifier_log(env, "Unsupported section found"); 4846 return -EINVAL; 4847 } 4848 4849 return 0; 4850 } 4851 4852 static int btf_parse_hdr(struct btf_verifier_env *env) 4853 { 4854 u32 hdr_len, hdr_copy, btf_data_size; 4855 const struct btf_header *hdr; 4856 struct btf *btf; 4857 4858 btf = env->btf; 4859 btf_data_size = btf->data_size; 4860 4861 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 4862 btf_verifier_log(env, "hdr_len not found"); 4863 return -EINVAL; 4864 } 4865 4866 hdr = btf->data; 4867 hdr_len = hdr->hdr_len; 4868 if (btf_data_size < hdr_len) { 4869 btf_verifier_log(env, "btf_header not found"); 4870 return -EINVAL; 4871 } 4872 4873 /* Ensure the unsupported header fields are zero */ 4874 if (hdr_len > sizeof(btf->hdr)) { 4875 u8 *expected_zero = btf->data + sizeof(btf->hdr); 4876 u8 *end = btf->data + hdr_len; 4877 4878 for (; expected_zero < end; expected_zero++) { 4879 if (*expected_zero) { 4880 btf_verifier_log(env, "Unsupported btf_header"); 4881 return -E2BIG; 4882 } 4883 } 4884 } 4885 4886 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 4887 memcpy(&btf->hdr, btf->data, hdr_copy); 4888 4889 hdr = &btf->hdr; 4890 4891 btf_verifier_log_hdr(env, btf_data_size); 4892 4893 if (hdr->magic != BTF_MAGIC) { 4894 btf_verifier_log(env, "Invalid magic"); 4895 return -EINVAL; 4896 } 4897 4898 if (hdr->version != BTF_VERSION) { 4899 btf_verifier_log(env, "Unsupported version"); 4900 return -ENOTSUPP; 4901 } 4902 4903 if (hdr->flags) { 4904 btf_verifier_log(env, "Unsupported flags"); 4905 return -ENOTSUPP; 4906 } 4907 4908 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 4909 btf_verifier_log(env, "No data"); 4910 return -EINVAL; 4911 } 4912 4913 return btf_check_sec_info(env, btf_data_size); 4914 } 4915 4916 static int btf_check_type_tags(struct btf_verifier_env *env, 4917 struct btf *btf, int start_id) 4918 { 4919 int i, n, good_id = start_id - 1; 4920 bool in_tags; 4921 4922 n = btf_nr_types(btf); 4923 for (i = start_id; i < n; i++) { 4924 const struct btf_type *t; 4925 int chain_limit = 32; 4926 u32 cur_id = i; 4927 4928 t = btf_type_by_id(btf, i); 4929 if (!t) 4930 return -EINVAL; 4931 if (!btf_type_is_modifier(t)) 4932 continue; 4933 4934 cond_resched(); 4935 4936 in_tags = btf_type_is_type_tag(t); 4937 while (btf_type_is_modifier(t)) { 4938 if (!chain_limit--) { 4939 btf_verifier_log(env, "Max chain length or cycle detected"); 4940 return -ELOOP; 4941 } 4942 if (btf_type_is_type_tag(t)) { 4943 if (!in_tags) { 4944 btf_verifier_log(env, "Type tags don't precede modifiers"); 4945 return -EINVAL; 4946 } 4947 } else if (in_tags) { 4948 in_tags = false; 4949 } 4950 if (cur_id <= good_id) 4951 break; 4952 /* Move to next type */ 4953 cur_id = t->type; 4954 t = btf_type_by_id(btf, cur_id); 4955 if (!t) 4956 return -EINVAL; 4957 } 4958 good_id = i; 4959 } 4960 return 0; 4961 } 4962 4963 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size, 4964 u32 log_level, char __user *log_ubuf, u32 log_size) 4965 { 4966 struct btf_verifier_env *env = NULL; 4967 struct bpf_verifier_log *log; 4968 struct btf *btf = NULL; 4969 u8 *data; 4970 int err; 4971 4972 if (btf_data_size > BTF_MAX_SIZE) 4973 return ERR_PTR(-E2BIG); 4974 4975 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4976 if (!env) 4977 return ERR_PTR(-ENOMEM); 4978 4979 log = &env->log; 4980 if (log_level || log_ubuf || log_size) { 4981 /* user requested verbose verifier output 4982 * and supplied buffer to store the verification trace 4983 */ 4984 log->level = log_level; 4985 log->ubuf = log_ubuf; 4986 log->len_total = log_size; 4987 4988 /* log attributes have to be sane */ 4989 if (!bpf_verifier_log_attr_valid(log)) { 4990 err = -EINVAL; 4991 goto errout; 4992 } 4993 } 4994 4995 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4996 if (!btf) { 4997 err = -ENOMEM; 4998 goto errout; 4999 } 5000 env->btf = btf; 5001 5002 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 5003 if (!data) { 5004 err = -ENOMEM; 5005 goto errout; 5006 } 5007 5008 btf->data = data; 5009 btf->data_size = btf_data_size; 5010 5011 if (copy_from_bpfptr(data, btf_data, btf_data_size)) { 5012 err = -EFAULT; 5013 goto errout; 5014 } 5015 5016 err = btf_parse_hdr(env); 5017 if (err) 5018 goto errout; 5019 5020 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5021 5022 err = btf_parse_str_sec(env); 5023 if (err) 5024 goto errout; 5025 5026 err = btf_parse_type_sec(env); 5027 if (err) 5028 goto errout; 5029 5030 err = btf_check_type_tags(env, btf, 1); 5031 if (err) 5032 goto errout; 5033 5034 if (log->level && bpf_verifier_log_full(log)) { 5035 err = -ENOSPC; 5036 goto errout; 5037 } 5038 5039 btf_verifier_env_free(env); 5040 refcount_set(&btf->refcnt, 1); 5041 return btf; 5042 5043 errout: 5044 btf_verifier_env_free(env); 5045 if (btf) 5046 btf_free(btf); 5047 return ERR_PTR(err); 5048 } 5049 5050 extern char __weak __start_BTF[]; 5051 extern char __weak __stop_BTF[]; 5052 extern struct btf *btf_vmlinux; 5053 5054 #define BPF_MAP_TYPE(_id, _ops) 5055 #define BPF_LINK_TYPE(_id, _name) 5056 static union { 5057 struct bpf_ctx_convert { 5058 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5059 prog_ctx_type _id##_prog; \ 5060 kern_ctx_type _id##_kern; 5061 #include <linux/bpf_types.h> 5062 #undef BPF_PROG_TYPE 5063 } *__t; 5064 /* 't' is written once under lock. Read many times. */ 5065 const struct btf_type *t; 5066 } bpf_ctx_convert; 5067 enum { 5068 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5069 __ctx_convert##_id, 5070 #include <linux/bpf_types.h> 5071 #undef BPF_PROG_TYPE 5072 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5073 }; 5074 static u8 bpf_ctx_convert_map[] = { 5075 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5076 [_id] = __ctx_convert##_id, 5077 #include <linux/bpf_types.h> 5078 #undef BPF_PROG_TYPE 5079 0, /* avoid empty array */ 5080 }; 5081 #undef BPF_MAP_TYPE 5082 #undef BPF_LINK_TYPE 5083 5084 static const struct btf_member * 5085 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5086 const struct btf_type *t, enum bpf_prog_type prog_type, 5087 int arg) 5088 { 5089 const struct btf_type *conv_struct; 5090 const struct btf_type *ctx_struct; 5091 const struct btf_member *ctx_type; 5092 const char *tname, *ctx_tname; 5093 5094 conv_struct = bpf_ctx_convert.t; 5095 if (!conv_struct) { 5096 bpf_log(log, "btf_vmlinux is malformed\n"); 5097 return NULL; 5098 } 5099 t = btf_type_by_id(btf, t->type); 5100 while (btf_type_is_modifier(t)) 5101 t = btf_type_by_id(btf, t->type); 5102 if (!btf_type_is_struct(t)) { 5103 /* Only pointer to struct is supported for now. 5104 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5105 * is not supported yet. 5106 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5107 */ 5108 return NULL; 5109 } 5110 tname = btf_name_by_offset(btf, t->name_off); 5111 if (!tname) { 5112 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5113 return NULL; 5114 } 5115 /* prog_type is valid bpf program type. No need for bounds check. */ 5116 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5117 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 5118 * Like 'struct __sk_buff' 5119 */ 5120 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 5121 if (!ctx_struct) 5122 /* should not happen */ 5123 return NULL; 5124 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 5125 if (!ctx_tname) { 5126 /* should not happen */ 5127 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5128 return NULL; 5129 } 5130 /* only compare that prog's ctx type name is the same as 5131 * kernel expects. No need to compare field by field. 5132 * It's ok for bpf prog to do: 5133 * struct __sk_buff {}; 5134 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5135 * { // no fields of skb are ever used } 5136 */ 5137 if (strcmp(ctx_tname, tname)) 5138 return NULL; 5139 return ctx_type; 5140 } 5141 5142 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 5143 struct btf *btf, 5144 const struct btf_type *t, 5145 enum bpf_prog_type prog_type, 5146 int arg) 5147 { 5148 const struct btf_member *prog_ctx_type, *kern_ctx_type; 5149 5150 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 5151 if (!prog_ctx_type) 5152 return -ENOENT; 5153 kern_ctx_type = prog_ctx_type + 1; 5154 return kern_ctx_type->type; 5155 } 5156 5157 BTF_ID_LIST(bpf_ctx_convert_btf_id) 5158 BTF_ID(struct, bpf_ctx_convert) 5159 5160 struct btf *btf_parse_vmlinux(void) 5161 { 5162 struct btf_verifier_env *env = NULL; 5163 struct bpf_verifier_log *log; 5164 struct btf *btf = NULL; 5165 int err; 5166 5167 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5168 if (!env) 5169 return ERR_PTR(-ENOMEM); 5170 5171 log = &env->log; 5172 log->level = BPF_LOG_KERNEL; 5173 5174 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5175 if (!btf) { 5176 err = -ENOMEM; 5177 goto errout; 5178 } 5179 env->btf = btf; 5180 5181 btf->data = __start_BTF; 5182 btf->data_size = __stop_BTF - __start_BTF; 5183 btf->kernel_btf = true; 5184 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 5185 5186 err = btf_parse_hdr(env); 5187 if (err) 5188 goto errout; 5189 5190 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5191 5192 err = btf_parse_str_sec(env); 5193 if (err) 5194 goto errout; 5195 5196 err = btf_check_all_metas(env); 5197 if (err) 5198 goto errout; 5199 5200 err = btf_check_type_tags(env, btf, 1); 5201 if (err) 5202 goto errout; 5203 5204 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 5205 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 5206 5207 bpf_struct_ops_init(btf, log); 5208 5209 refcount_set(&btf->refcnt, 1); 5210 5211 err = btf_alloc_id(btf); 5212 if (err) 5213 goto errout; 5214 5215 btf_verifier_env_free(env); 5216 return btf; 5217 5218 errout: 5219 btf_verifier_env_free(env); 5220 if (btf) { 5221 kvfree(btf->types); 5222 kfree(btf); 5223 } 5224 return ERR_PTR(err); 5225 } 5226 5227 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 5228 5229 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 5230 { 5231 struct btf_verifier_env *env = NULL; 5232 struct bpf_verifier_log *log; 5233 struct btf *btf = NULL, *base_btf; 5234 int err; 5235 5236 base_btf = bpf_get_btf_vmlinux(); 5237 if (IS_ERR(base_btf)) 5238 return base_btf; 5239 if (!base_btf) 5240 return ERR_PTR(-EINVAL); 5241 5242 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5243 if (!env) 5244 return ERR_PTR(-ENOMEM); 5245 5246 log = &env->log; 5247 log->level = BPF_LOG_KERNEL; 5248 5249 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5250 if (!btf) { 5251 err = -ENOMEM; 5252 goto errout; 5253 } 5254 env->btf = btf; 5255 5256 btf->base_btf = base_btf; 5257 btf->start_id = base_btf->nr_types; 5258 btf->start_str_off = base_btf->hdr.str_len; 5259 btf->kernel_btf = true; 5260 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 5261 5262 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 5263 if (!btf->data) { 5264 err = -ENOMEM; 5265 goto errout; 5266 } 5267 memcpy(btf->data, data, data_size); 5268 btf->data_size = data_size; 5269 5270 err = btf_parse_hdr(env); 5271 if (err) 5272 goto errout; 5273 5274 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5275 5276 err = btf_parse_str_sec(env); 5277 if (err) 5278 goto errout; 5279 5280 err = btf_check_all_metas(env); 5281 if (err) 5282 goto errout; 5283 5284 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 5285 if (err) 5286 goto errout; 5287 5288 btf_verifier_env_free(env); 5289 refcount_set(&btf->refcnt, 1); 5290 return btf; 5291 5292 errout: 5293 btf_verifier_env_free(env); 5294 if (btf) { 5295 kvfree(btf->data); 5296 kvfree(btf->types); 5297 kfree(btf); 5298 } 5299 return ERR_PTR(err); 5300 } 5301 5302 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 5303 5304 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 5305 { 5306 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5307 5308 if (tgt_prog) 5309 return tgt_prog->aux->btf; 5310 else 5311 return prog->aux->attach_btf; 5312 } 5313 5314 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 5315 { 5316 /* t comes in already as a pointer */ 5317 t = btf_type_by_id(btf, t->type); 5318 5319 /* allow const */ 5320 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) 5321 t = btf_type_by_id(btf, t->type); 5322 5323 return btf_type_is_int(t); 5324 } 5325 5326 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 5327 int off) 5328 { 5329 const struct btf_param *args; 5330 const struct btf_type *t; 5331 u32 offset = 0, nr_args; 5332 int i; 5333 5334 if (!func_proto) 5335 return off / 8; 5336 5337 nr_args = btf_type_vlen(func_proto); 5338 args = (const struct btf_param *)(func_proto + 1); 5339 for (i = 0; i < nr_args; i++) { 5340 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 5341 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5342 if (off < offset) 5343 return i; 5344 } 5345 5346 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 5347 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5348 if (off < offset) 5349 return nr_args; 5350 5351 return nr_args + 1; 5352 } 5353 5354 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 5355 const struct bpf_prog *prog, 5356 struct bpf_insn_access_aux *info) 5357 { 5358 const struct btf_type *t = prog->aux->attach_func_proto; 5359 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5360 struct btf *btf = bpf_prog_get_target_btf(prog); 5361 const char *tname = prog->aux->attach_func_name; 5362 struct bpf_verifier_log *log = info->log; 5363 const struct btf_param *args; 5364 const char *tag_value; 5365 u32 nr_args, arg; 5366 int i, ret; 5367 5368 if (off % 8) { 5369 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 5370 tname, off); 5371 return false; 5372 } 5373 arg = get_ctx_arg_idx(btf, t, off); 5374 args = (const struct btf_param *)(t + 1); 5375 /* if (t == NULL) Fall back to default BPF prog with 5376 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 5377 */ 5378 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 5379 if (prog->aux->attach_btf_trace) { 5380 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 5381 args++; 5382 nr_args--; 5383 } 5384 5385 if (arg > nr_args) { 5386 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5387 tname, arg + 1); 5388 return false; 5389 } 5390 5391 if (arg == nr_args) { 5392 switch (prog->expected_attach_type) { 5393 case BPF_LSM_CGROUP: 5394 case BPF_LSM_MAC: 5395 case BPF_TRACE_FEXIT: 5396 /* When LSM programs are attached to void LSM hooks 5397 * they use FEXIT trampolines and when attached to 5398 * int LSM hooks, they use MODIFY_RETURN trampolines. 5399 * 5400 * While the LSM programs are BPF_MODIFY_RETURN-like 5401 * the check: 5402 * 5403 * if (ret_type != 'int') 5404 * return -EINVAL; 5405 * 5406 * is _not_ done here. This is still safe as LSM hooks 5407 * have only void and int return types. 5408 */ 5409 if (!t) 5410 return true; 5411 t = btf_type_by_id(btf, t->type); 5412 break; 5413 case BPF_MODIFY_RETURN: 5414 /* For now the BPF_MODIFY_RETURN can only be attached to 5415 * functions that return an int. 5416 */ 5417 if (!t) 5418 return false; 5419 5420 t = btf_type_skip_modifiers(btf, t->type, NULL); 5421 if (!btf_type_is_small_int(t)) { 5422 bpf_log(log, 5423 "ret type %s not allowed for fmod_ret\n", 5424 btf_type_str(t)); 5425 return false; 5426 } 5427 break; 5428 default: 5429 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5430 tname, arg + 1); 5431 return false; 5432 } 5433 } else { 5434 if (!t) 5435 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 5436 return true; 5437 t = btf_type_by_id(btf, args[arg].type); 5438 } 5439 5440 /* skip modifiers */ 5441 while (btf_type_is_modifier(t)) 5442 t = btf_type_by_id(btf, t->type); 5443 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 5444 /* accessing a scalar */ 5445 return true; 5446 if (!btf_type_is_ptr(t)) { 5447 bpf_log(log, 5448 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 5449 tname, arg, 5450 __btf_name_by_offset(btf, t->name_off), 5451 btf_type_str(t)); 5452 return false; 5453 } 5454 5455 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 5456 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 5457 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 5458 u32 type, flag; 5459 5460 type = base_type(ctx_arg_info->reg_type); 5461 flag = type_flag(ctx_arg_info->reg_type); 5462 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 5463 (flag & PTR_MAYBE_NULL)) { 5464 info->reg_type = ctx_arg_info->reg_type; 5465 return true; 5466 } 5467 } 5468 5469 if (t->type == 0) 5470 /* This is a pointer to void. 5471 * It is the same as scalar from the verifier safety pov. 5472 * No further pointer walking is allowed. 5473 */ 5474 return true; 5475 5476 if (is_int_ptr(btf, t)) 5477 return true; 5478 5479 /* this is a pointer to another type */ 5480 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 5481 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 5482 5483 if (ctx_arg_info->offset == off) { 5484 if (!ctx_arg_info->btf_id) { 5485 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 5486 return false; 5487 } 5488 5489 info->reg_type = ctx_arg_info->reg_type; 5490 info->btf = btf_vmlinux; 5491 info->btf_id = ctx_arg_info->btf_id; 5492 return true; 5493 } 5494 } 5495 5496 info->reg_type = PTR_TO_BTF_ID; 5497 if (tgt_prog) { 5498 enum bpf_prog_type tgt_type; 5499 5500 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 5501 tgt_type = tgt_prog->aux->saved_dst_prog_type; 5502 else 5503 tgt_type = tgt_prog->type; 5504 5505 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 5506 if (ret > 0) { 5507 info->btf = btf_vmlinux; 5508 info->btf_id = ret; 5509 return true; 5510 } else { 5511 return false; 5512 } 5513 } 5514 5515 info->btf = btf; 5516 info->btf_id = t->type; 5517 t = btf_type_by_id(btf, t->type); 5518 5519 if (btf_type_is_type_tag(t)) { 5520 tag_value = __btf_name_by_offset(btf, t->name_off); 5521 if (strcmp(tag_value, "user") == 0) 5522 info->reg_type |= MEM_USER; 5523 if (strcmp(tag_value, "percpu") == 0) 5524 info->reg_type |= MEM_PERCPU; 5525 } 5526 5527 /* skip modifiers */ 5528 while (btf_type_is_modifier(t)) { 5529 info->btf_id = t->type; 5530 t = btf_type_by_id(btf, t->type); 5531 } 5532 if (!btf_type_is_struct(t)) { 5533 bpf_log(log, 5534 "func '%s' arg%d type %s is not a struct\n", 5535 tname, arg, btf_type_str(t)); 5536 return false; 5537 } 5538 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 5539 tname, arg, info->btf_id, btf_type_str(t), 5540 __btf_name_by_offset(btf, t->name_off)); 5541 return true; 5542 } 5543 5544 enum bpf_struct_walk_result { 5545 /* < 0 error */ 5546 WALK_SCALAR = 0, 5547 WALK_PTR, 5548 WALK_STRUCT, 5549 }; 5550 5551 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 5552 const struct btf_type *t, int off, int size, 5553 u32 *next_btf_id, enum bpf_type_flag *flag) 5554 { 5555 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 5556 const struct btf_type *mtype, *elem_type = NULL; 5557 const struct btf_member *member; 5558 const char *tname, *mname, *tag_value; 5559 u32 vlen, elem_id, mid; 5560 5561 again: 5562 tname = __btf_name_by_offset(btf, t->name_off); 5563 if (!btf_type_is_struct(t)) { 5564 bpf_log(log, "Type '%s' is not a struct\n", tname); 5565 return -EINVAL; 5566 } 5567 5568 vlen = btf_type_vlen(t); 5569 if (off + size > t->size) { 5570 /* If the last element is a variable size array, we may 5571 * need to relax the rule. 5572 */ 5573 struct btf_array *array_elem; 5574 5575 if (vlen == 0) 5576 goto error; 5577 5578 member = btf_type_member(t) + vlen - 1; 5579 mtype = btf_type_skip_modifiers(btf, member->type, 5580 NULL); 5581 if (!btf_type_is_array(mtype)) 5582 goto error; 5583 5584 array_elem = (struct btf_array *)(mtype + 1); 5585 if (array_elem->nelems != 0) 5586 goto error; 5587 5588 moff = __btf_member_bit_offset(t, member) / 8; 5589 if (off < moff) 5590 goto error; 5591 5592 /* Only allow structure for now, can be relaxed for 5593 * other types later. 5594 */ 5595 t = btf_type_skip_modifiers(btf, array_elem->type, 5596 NULL); 5597 if (!btf_type_is_struct(t)) 5598 goto error; 5599 5600 off = (off - moff) % t->size; 5601 goto again; 5602 5603 error: 5604 bpf_log(log, "access beyond struct %s at off %u size %u\n", 5605 tname, off, size); 5606 return -EACCES; 5607 } 5608 5609 for_each_member(i, t, member) { 5610 /* offset of the field in bytes */ 5611 moff = __btf_member_bit_offset(t, member) / 8; 5612 if (off + size <= moff) 5613 /* won't find anything, field is already too far */ 5614 break; 5615 5616 if (__btf_member_bitfield_size(t, member)) { 5617 u32 end_bit = __btf_member_bit_offset(t, member) + 5618 __btf_member_bitfield_size(t, member); 5619 5620 /* off <= moff instead of off == moff because clang 5621 * does not generate a BTF member for anonymous 5622 * bitfield like the ":16" here: 5623 * struct { 5624 * int :16; 5625 * int x:8; 5626 * }; 5627 */ 5628 if (off <= moff && 5629 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 5630 return WALK_SCALAR; 5631 5632 /* off may be accessing a following member 5633 * 5634 * or 5635 * 5636 * Doing partial access at either end of this 5637 * bitfield. Continue on this case also to 5638 * treat it as not accessing this bitfield 5639 * and eventually error out as field not 5640 * found to keep it simple. 5641 * It could be relaxed if there was a legit 5642 * partial access case later. 5643 */ 5644 continue; 5645 } 5646 5647 /* In case of "off" is pointing to holes of a struct */ 5648 if (off < moff) 5649 break; 5650 5651 /* type of the field */ 5652 mid = member->type; 5653 mtype = btf_type_by_id(btf, member->type); 5654 mname = __btf_name_by_offset(btf, member->name_off); 5655 5656 mtype = __btf_resolve_size(btf, mtype, &msize, 5657 &elem_type, &elem_id, &total_nelems, 5658 &mid); 5659 if (IS_ERR(mtype)) { 5660 bpf_log(log, "field %s doesn't have size\n", mname); 5661 return -EFAULT; 5662 } 5663 5664 mtrue_end = moff + msize; 5665 if (off >= mtrue_end) 5666 /* no overlap with member, keep iterating */ 5667 continue; 5668 5669 if (btf_type_is_array(mtype)) { 5670 u32 elem_idx; 5671 5672 /* __btf_resolve_size() above helps to 5673 * linearize a multi-dimensional array. 5674 * 5675 * The logic here is treating an array 5676 * in a struct as the following way: 5677 * 5678 * struct outer { 5679 * struct inner array[2][2]; 5680 * }; 5681 * 5682 * looks like: 5683 * 5684 * struct outer { 5685 * struct inner array_elem0; 5686 * struct inner array_elem1; 5687 * struct inner array_elem2; 5688 * struct inner array_elem3; 5689 * }; 5690 * 5691 * When accessing outer->array[1][0], it moves 5692 * moff to "array_elem2", set mtype to 5693 * "struct inner", and msize also becomes 5694 * sizeof(struct inner). Then most of the 5695 * remaining logic will fall through without 5696 * caring the current member is an array or 5697 * not. 5698 * 5699 * Unlike mtype/msize/moff, mtrue_end does not 5700 * change. The naming difference ("_true") tells 5701 * that it is not always corresponding to 5702 * the current mtype/msize/moff. 5703 * It is the true end of the current 5704 * member (i.e. array in this case). That 5705 * will allow an int array to be accessed like 5706 * a scratch space, 5707 * i.e. allow access beyond the size of 5708 * the array's element as long as it is 5709 * within the mtrue_end boundary. 5710 */ 5711 5712 /* skip empty array */ 5713 if (moff == mtrue_end) 5714 continue; 5715 5716 msize /= total_nelems; 5717 elem_idx = (off - moff) / msize; 5718 moff += elem_idx * msize; 5719 mtype = elem_type; 5720 mid = elem_id; 5721 } 5722 5723 /* the 'off' we're looking for is either equal to start 5724 * of this field or inside of this struct 5725 */ 5726 if (btf_type_is_struct(mtype)) { 5727 /* our field must be inside that union or struct */ 5728 t = mtype; 5729 5730 /* return if the offset matches the member offset */ 5731 if (off == moff) { 5732 *next_btf_id = mid; 5733 return WALK_STRUCT; 5734 } 5735 5736 /* adjust offset we're looking for */ 5737 off -= moff; 5738 goto again; 5739 } 5740 5741 if (btf_type_is_ptr(mtype)) { 5742 const struct btf_type *stype, *t; 5743 enum bpf_type_flag tmp_flag = 0; 5744 u32 id; 5745 5746 if (msize != size || off != moff) { 5747 bpf_log(log, 5748 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 5749 mname, moff, tname, off, size); 5750 return -EACCES; 5751 } 5752 5753 /* check type tag */ 5754 t = btf_type_by_id(btf, mtype->type); 5755 if (btf_type_is_type_tag(t)) { 5756 tag_value = __btf_name_by_offset(btf, t->name_off); 5757 /* check __user tag */ 5758 if (strcmp(tag_value, "user") == 0) 5759 tmp_flag = MEM_USER; 5760 /* check __percpu tag */ 5761 if (strcmp(tag_value, "percpu") == 0) 5762 tmp_flag = MEM_PERCPU; 5763 } 5764 5765 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 5766 if (btf_type_is_struct(stype)) { 5767 *next_btf_id = id; 5768 *flag = tmp_flag; 5769 return WALK_PTR; 5770 } 5771 } 5772 5773 /* Allow more flexible access within an int as long as 5774 * it is within mtrue_end. 5775 * Since mtrue_end could be the end of an array, 5776 * that also allows using an array of int as a scratch 5777 * space. e.g. skb->cb[]. 5778 */ 5779 if (off + size > mtrue_end) { 5780 bpf_log(log, 5781 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 5782 mname, mtrue_end, tname, off, size); 5783 return -EACCES; 5784 } 5785 5786 return WALK_SCALAR; 5787 } 5788 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 5789 return -EINVAL; 5790 } 5791 5792 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, 5793 const struct btf_type *t, int off, int size, 5794 enum bpf_access_type atype __maybe_unused, 5795 u32 *next_btf_id, enum bpf_type_flag *flag) 5796 { 5797 enum bpf_type_flag tmp_flag = 0; 5798 int err; 5799 u32 id; 5800 5801 do { 5802 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag); 5803 5804 switch (err) { 5805 case WALK_PTR: 5806 /* If we found the pointer or scalar on t+off, 5807 * we're done. 5808 */ 5809 *next_btf_id = id; 5810 *flag = tmp_flag; 5811 return PTR_TO_BTF_ID; 5812 case WALK_SCALAR: 5813 return SCALAR_VALUE; 5814 case WALK_STRUCT: 5815 /* We found nested struct, so continue the search 5816 * by diving in it. At this point the offset is 5817 * aligned with the new type, so set it to 0. 5818 */ 5819 t = btf_type_by_id(btf, id); 5820 off = 0; 5821 break; 5822 default: 5823 /* It's either error or unknown return value.. 5824 * scream and leave. 5825 */ 5826 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 5827 return -EINVAL; 5828 return err; 5829 } 5830 } while (t); 5831 5832 return -EINVAL; 5833 } 5834 5835 /* Check that two BTF types, each specified as an BTF object + id, are exactly 5836 * the same. Trivial ID check is not enough due to module BTFs, because we can 5837 * end up with two different module BTFs, but IDs point to the common type in 5838 * vmlinux BTF. 5839 */ 5840 static bool btf_types_are_same(const struct btf *btf1, u32 id1, 5841 const struct btf *btf2, u32 id2) 5842 { 5843 if (id1 != id2) 5844 return false; 5845 if (btf1 == btf2) 5846 return true; 5847 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 5848 } 5849 5850 bool btf_struct_ids_match(struct bpf_verifier_log *log, 5851 const struct btf *btf, u32 id, int off, 5852 const struct btf *need_btf, u32 need_type_id, 5853 bool strict) 5854 { 5855 const struct btf_type *type; 5856 enum bpf_type_flag flag; 5857 int err; 5858 5859 /* Are we already done? */ 5860 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 5861 return true; 5862 /* In case of strict type match, we do not walk struct, the top level 5863 * type match must succeed. When strict is true, off should have already 5864 * been 0. 5865 */ 5866 if (strict) 5867 return false; 5868 again: 5869 type = btf_type_by_id(btf, id); 5870 if (!type) 5871 return false; 5872 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag); 5873 if (err != WALK_STRUCT) 5874 return false; 5875 5876 /* We found nested struct object. If it matches 5877 * the requested ID, we're done. Otherwise let's 5878 * continue the search with offset 0 in the new 5879 * type. 5880 */ 5881 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 5882 off = 0; 5883 goto again; 5884 } 5885 5886 return true; 5887 } 5888 5889 static int __get_type_size(struct btf *btf, u32 btf_id, 5890 const struct btf_type **ret_type) 5891 { 5892 const struct btf_type *t; 5893 5894 *ret_type = btf_type_by_id(btf, 0); 5895 if (!btf_id) 5896 /* void */ 5897 return 0; 5898 t = btf_type_by_id(btf, btf_id); 5899 while (t && btf_type_is_modifier(t)) 5900 t = btf_type_by_id(btf, t->type); 5901 if (!t) 5902 return -EINVAL; 5903 *ret_type = t; 5904 if (btf_type_is_ptr(t)) 5905 /* kernel size of pointer. Not BPF's size of pointer*/ 5906 return sizeof(void *); 5907 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 5908 return t->size; 5909 return -EINVAL; 5910 } 5911 5912 int btf_distill_func_proto(struct bpf_verifier_log *log, 5913 struct btf *btf, 5914 const struct btf_type *func, 5915 const char *tname, 5916 struct btf_func_model *m) 5917 { 5918 const struct btf_param *args; 5919 const struct btf_type *t; 5920 u32 i, nargs; 5921 int ret; 5922 5923 if (!func) { 5924 /* BTF function prototype doesn't match the verifier types. 5925 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 5926 */ 5927 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 5928 m->arg_size[i] = 8; 5929 m->arg_flags[i] = 0; 5930 } 5931 m->ret_size = 8; 5932 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 5933 return 0; 5934 } 5935 args = (const struct btf_param *)(func + 1); 5936 nargs = btf_type_vlen(func); 5937 if (nargs > MAX_BPF_FUNC_ARGS) { 5938 bpf_log(log, 5939 "The function %s has %d arguments. Too many.\n", 5940 tname, nargs); 5941 return -EINVAL; 5942 } 5943 ret = __get_type_size(btf, func->type, &t); 5944 if (ret < 0 || __btf_type_is_struct(t)) { 5945 bpf_log(log, 5946 "The function %s return type %s is unsupported.\n", 5947 tname, btf_type_str(t)); 5948 return -EINVAL; 5949 } 5950 m->ret_size = ret; 5951 5952 for (i = 0; i < nargs; i++) { 5953 if (i == nargs - 1 && args[i].type == 0) { 5954 bpf_log(log, 5955 "The function %s with variable args is unsupported.\n", 5956 tname); 5957 return -EINVAL; 5958 } 5959 ret = __get_type_size(btf, args[i].type, &t); 5960 5961 /* No support of struct argument size greater than 16 bytes */ 5962 if (ret < 0 || ret > 16) { 5963 bpf_log(log, 5964 "The function %s arg%d type %s is unsupported.\n", 5965 tname, i, btf_type_str(t)); 5966 return -EINVAL; 5967 } 5968 if (ret == 0) { 5969 bpf_log(log, 5970 "The function %s has malformed void argument.\n", 5971 tname); 5972 return -EINVAL; 5973 } 5974 m->arg_size[i] = ret; 5975 m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0; 5976 } 5977 m->nr_args = nargs; 5978 return 0; 5979 } 5980 5981 /* Compare BTFs of two functions assuming only scalars and pointers to context. 5982 * t1 points to BTF_KIND_FUNC in btf1 5983 * t2 points to BTF_KIND_FUNC in btf2 5984 * Returns: 5985 * EINVAL - function prototype mismatch 5986 * EFAULT - verifier bug 5987 * 0 - 99% match. The last 1% is validated by the verifier. 5988 */ 5989 static int btf_check_func_type_match(struct bpf_verifier_log *log, 5990 struct btf *btf1, const struct btf_type *t1, 5991 struct btf *btf2, const struct btf_type *t2) 5992 { 5993 const struct btf_param *args1, *args2; 5994 const char *fn1, *fn2, *s1, *s2; 5995 u32 nargs1, nargs2, i; 5996 5997 fn1 = btf_name_by_offset(btf1, t1->name_off); 5998 fn2 = btf_name_by_offset(btf2, t2->name_off); 5999 6000 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 6001 bpf_log(log, "%s() is not a global function\n", fn1); 6002 return -EINVAL; 6003 } 6004 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 6005 bpf_log(log, "%s() is not a global function\n", fn2); 6006 return -EINVAL; 6007 } 6008 6009 t1 = btf_type_by_id(btf1, t1->type); 6010 if (!t1 || !btf_type_is_func_proto(t1)) 6011 return -EFAULT; 6012 t2 = btf_type_by_id(btf2, t2->type); 6013 if (!t2 || !btf_type_is_func_proto(t2)) 6014 return -EFAULT; 6015 6016 args1 = (const struct btf_param *)(t1 + 1); 6017 nargs1 = btf_type_vlen(t1); 6018 args2 = (const struct btf_param *)(t2 + 1); 6019 nargs2 = btf_type_vlen(t2); 6020 6021 if (nargs1 != nargs2) { 6022 bpf_log(log, "%s() has %d args while %s() has %d args\n", 6023 fn1, nargs1, fn2, nargs2); 6024 return -EINVAL; 6025 } 6026 6027 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6028 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6029 if (t1->info != t2->info) { 6030 bpf_log(log, 6031 "Return type %s of %s() doesn't match type %s of %s()\n", 6032 btf_type_str(t1), fn1, 6033 btf_type_str(t2), fn2); 6034 return -EINVAL; 6035 } 6036 6037 for (i = 0; i < nargs1; i++) { 6038 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 6039 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 6040 6041 if (t1->info != t2->info) { 6042 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 6043 i, fn1, btf_type_str(t1), 6044 fn2, btf_type_str(t2)); 6045 return -EINVAL; 6046 } 6047 if (btf_type_has_size(t1) && t1->size != t2->size) { 6048 bpf_log(log, 6049 "arg%d in %s() has size %d while %s() has %d\n", 6050 i, fn1, t1->size, 6051 fn2, t2->size); 6052 return -EINVAL; 6053 } 6054 6055 /* global functions are validated with scalars and pointers 6056 * to context only. And only global functions can be replaced. 6057 * Hence type check only those types. 6058 */ 6059 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 6060 continue; 6061 if (!btf_type_is_ptr(t1)) { 6062 bpf_log(log, 6063 "arg%d in %s() has unrecognized type\n", 6064 i, fn1); 6065 return -EINVAL; 6066 } 6067 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6068 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6069 if (!btf_type_is_struct(t1)) { 6070 bpf_log(log, 6071 "arg%d in %s() is not a pointer to context\n", 6072 i, fn1); 6073 return -EINVAL; 6074 } 6075 if (!btf_type_is_struct(t2)) { 6076 bpf_log(log, 6077 "arg%d in %s() is not a pointer to context\n", 6078 i, fn2); 6079 return -EINVAL; 6080 } 6081 /* This is an optional check to make program writing easier. 6082 * Compare names of structs and report an error to the user. 6083 * btf_prepare_func_args() already checked that t2 struct 6084 * is a context type. btf_prepare_func_args() will check 6085 * later that t1 struct is a context type as well. 6086 */ 6087 s1 = btf_name_by_offset(btf1, t1->name_off); 6088 s2 = btf_name_by_offset(btf2, t2->name_off); 6089 if (strcmp(s1, s2)) { 6090 bpf_log(log, 6091 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 6092 i, fn1, s1, fn2, s2); 6093 return -EINVAL; 6094 } 6095 } 6096 return 0; 6097 } 6098 6099 /* Compare BTFs of given program with BTF of target program */ 6100 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 6101 struct btf *btf2, const struct btf_type *t2) 6102 { 6103 struct btf *btf1 = prog->aux->btf; 6104 const struct btf_type *t1; 6105 u32 btf_id = 0; 6106 6107 if (!prog->aux->func_info) { 6108 bpf_log(log, "Program extension requires BTF\n"); 6109 return -EINVAL; 6110 } 6111 6112 btf_id = prog->aux->func_info[0].type_id; 6113 if (!btf_id) 6114 return -EFAULT; 6115 6116 t1 = btf_type_by_id(btf1, btf_id); 6117 if (!t1 || !btf_type_is_func(t1)) 6118 return -EFAULT; 6119 6120 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 6121 } 6122 6123 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 6124 #ifdef CONFIG_NET 6125 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 6126 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6127 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 6128 #endif 6129 }; 6130 6131 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 6132 static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log, 6133 const struct btf *btf, 6134 const struct btf_type *t, int rec) 6135 { 6136 const struct btf_type *member_type; 6137 const struct btf_member *member; 6138 u32 i; 6139 6140 if (!btf_type_is_struct(t)) 6141 return false; 6142 6143 for_each_member(i, t, member) { 6144 const struct btf_array *array; 6145 6146 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 6147 if (btf_type_is_struct(member_type)) { 6148 if (rec >= 3) { 6149 bpf_log(log, "max struct nesting depth exceeded\n"); 6150 return false; 6151 } 6152 if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1)) 6153 return false; 6154 continue; 6155 } 6156 if (btf_type_is_array(member_type)) { 6157 array = btf_type_array(member_type); 6158 if (!array->nelems) 6159 return false; 6160 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 6161 if (!btf_type_is_scalar(member_type)) 6162 return false; 6163 continue; 6164 } 6165 if (!btf_type_is_scalar(member_type)) 6166 return false; 6167 } 6168 return true; 6169 } 6170 6171 static bool is_kfunc_arg_mem_size(const struct btf *btf, 6172 const struct btf_param *arg, 6173 const struct bpf_reg_state *reg) 6174 { 6175 int len, sfx_len = sizeof("__sz") - 1; 6176 const struct btf_type *t; 6177 const char *param_name; 6178 6179 t = btf_type_skip_modifiers(btf, arg->type, NULL); 6180 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 6181 return false; 6182 6183 /* In the future, this can be ported to use BTF tagging */ 6184 param_name = btf_name_by_offset(btf, arg->name_off); 6185 if (str_is_empty(param_name)) 6186 return false; 6187 len = strlen(param_name); 6188 if (len < sfx_len) 6189 return false; 6190 param_name += len - sfx_len; 6191 if (strncmp(param_name, "__sz", sfx_len)) 6192 return false; 6193 6194 return true; 6195 } 6196 6197 static bool btf_is_kfunc_arg_mem_size(const struct btf *btf, 6198 const struct btf_param *arg, 6199 const struct bpf_reg_state *reg, 6200 const char *name) 6201 { 6202 int len, target_len = strlen(name); 6203 const struct btf_type *t; 6204 const char *param_name; 6205 6206 t = btf_type_skip_modifiers(btf, arg->type, NULL); 6207 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 6208 return false; 6209 6210 param_name = btf_name_by_offset(btf, arg->name_off); 6211 if (str_is_empty(param_name)) 6212 return false; 6213 len = strlen(param_name); 6214 if (len != target_len) 6215 return false; 6216 if (strcmp(param_name, name)) 6217 return false; 6218 6219 return true; 6220 } 6221 6222 static int btf_check_func_arg_match(struct bpf_verifier_env *env, 6223 const struct btf *btf, u32 func_id, 6224 struct bpf_reg_state *regs, 6225 bool ptr_to_mem_ok, 6226 struct bpf_kfunc_arg_meta *kfunc_meta, 6227 bool processing_call) 6228 { 6229 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6230 bool rel = false, kptr_get = false, trusted_args = false; 6231 bool sleepable = false; 6232 struct bpf_verifier_log *log = &env->log; 6233 u32 i, nargs, ref_id, ref_obj_id = 0; 6234 bool is_kfunc = btf_is_kernel(btf); 6235 const char *func_name, *ref_tname; 6236 const struct btf_type *t, *ref_t; 6237 const struct btf_param *args; 6238 int ref_regno = 0, ret; 6239 6240 t = btf_type_by_id(btf, func_id); 6241 if (!t || !btf_type_is_func(t)) { 6242 /* These checks were already done by the verifier while loading 6243 * struct bpf_func_info or in add_kfunc_call(). 6244 */ 6245 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", 6246 func_id); 6247 return -EFAULT; 6248 } 6249 func_name = btf_name_by_offset(btf, t->name_off); 6250 6251 t = btf_type_by_id(btf, t->type); 6252 if (!t || !btf_type_is_func_proto(t)) { 6253 bpf_log(log, "Invalid BTF of func %s\n", func_name); 6254 return -EFAULT; 6255 } 6256 args = (const struct btf_param *)(t + 1); 6257 nargs = btf_type_vlen(t); 6258 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6259 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, 6260 MAX_BPF_FUNC_REG_ARGS); 6261 return -EINVAL; 6262 } 6263 6264 if (is_kfunc && kfunc_meta) { 6265 /* Only kfunc can be release func */ 6266 rel = kfunc_meta->flags & KF_RELEASE; 6267 kptr_get = kfunc_meta->flags & KF_KPTR_GET; 6268 trusted_args = kfunc_meta->flags & KF_TRUSTED_ARGS; 6269 sleepable = kfunc_meta->flags & KF_SLEEPABLE; 6270 } 6271 6272 /* check that BTF function arguments match actual types that the 6273 * verifier sees. 6274 */ 6275 for (i = 0; i < nargs; i++) { 6276 enum bpf_arg_type arg_type = ARG_DONTCARE; 6277 u32 regno = i + 1; 6278 struct bpf_reg_state *reg = ®s[regno]; 6279 bool obj_ptr = false; 6280 6281 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6282 if (btf_type_is_scalar(t)) { 6283 if (is_kfunc && kfunc_meta) { 6284 bool is_buf_size = false; 6285 6286 /* check for any const scalar parameter of name "rdonly_buf_size" 6287 * or "rdwr_buf_size" 6288 */ 6289 if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg, 6290 "rdonly_buf_size")) { 6291 kfunc_meta->r0_rdonly = true; 6292 is_buf_size = true; 6293 } else if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg, 6294 "rdwr_buf_size")) 6295 is_buf_size = true; 6296 6297 if (is_buf_size) { 6298 if (kfunc_meta->r0_size) { 6299 bpf_log(log, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 6300 return -EINVAL; 6301 } 6302 6303 if (!tnum_is_const(reg->var_off)) { 6304 bpf_log(log, "R%d is not a const\n", regno); 6305 return -EINVAL; 6306 } 6307 6308 kfunc_meta->r0_size = reg->var_off.value; 6309 ret = mark_chain_precision(env, regno); 6310 if (ret) 6311 return ret; 6312 } 6313 } 6314 6315 if (reg->type == SCALAR_VALUE) 6316 continue; 6317 bpf_log(log, "R%d is not a scalar\n", regno); 6318 return -EINVAL; 6319 } 6320 6321 if (!btf_type_is_ptr(t)) { 6322 bpf_log(log, "Unrecognized arg#%d type %s\n", 6323 i, btf_type_str(t)); 6324 return -EINVAL; 6325 } 6326 6327 /* These register types have special constraints wrt ref_obj_id 6328 * and offset checks. The rest of trusted args don't. 6329 */ 6330 obj_ptr = reg->type == PTR_TO_CTX || reg->type == PTR_TO_BTF_ID || 6331 reg2btf_ids[base_type(reg->type)]; 6332 6333 /* Check if argument must be a referenced pointer, args + i has 6334 * been verified to be a pointer (after skipping modifiers). 6335 * PTR_TO_CTX is ok without having non-zero ref_obj_id. 6336 */ 6337 if (is_kfunc && trusted_args && (obj_ptr && reg->type != PTR_TO_CTX) && !reg->ref_obj_id) { 6338 bpf_log(log, "R%d must be referenced\n", regno); 6339 return -EINVAL; 6340 } 6341 6342 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 6343 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 6344 6345 /* Trusted args have the same offset checks as release arguments */ 6346 if ((trusted_args && obj_ptr) || (rel && reg->ref_obj_id)) 6347 arg_type |= OBJ_RELEASE; 6348 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 6349 if (ret < 0) 6350 return ret; 6351 6352 if (is_kfunc && reg->ref_obj_id) { 6353 /* Ensure only one argument is referenced PTR_TO_BTF_ID */ 6354 if (ref_obj_id) { 6355 bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 6356 regno, reg->ref_obj_id, ref_obj_id); 6357 return -EFAULT; 6358 } 6359 ref_regno = regno; 6360 ref_obj_id = reg->ref_obj_id; 6361 } 6362 6363 /* kptr_get is only true for kfunc */ 6364 if (i == 0 && kptr_get) { 6365 struct bpf_map_value_off_desc *off_desc; 6366 6367 if (reg->type != PTR_TO_MAP_VALUE) { 6368 bpf_log(log, "arg#0 expected pointer to map value\n"); 6369 return -EINVAL; 6370 } 6371 6372 /* check_func_arg_reg_off allows var_off for 6373 * PTR_TO_MAP_VALUE, but we need fixed offset to find 6374 * off_desc. 6375 */ 6376 if (!tnum_is_const(reg->var_off)) { 6377 bpf_log(log, "arg#0 must have constant offset\n"); 6378 return -EINVAL; 6379 } 6380 6381 off_desc = bpf_map_kptr_off_contains(reg->map_ptr, reg->off + reg->var_off.value); 6382 if (!off_desc || off_desc->type != BPF_KPTR_REF) { 6383 bpf_log(log, "arg#0 no referenced kptr at map value offset=%llu\n", 6384 reg->off + reg->var_off.value); 6385 return -EINVAL; 6386 } 6387 6388 if (!btf_type_is_ptr(ref_t)) { 6389 bpf_log(log, "arg#0 BTF type must be a double pointer\n"); 6390 return -EINVAL; 6391 } 6392 6393 ref_t = btf_type_skip_modifiers(btf, ref_t->type, &ref_id); 6394 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 6395 6396 if (!btf_type_is_struct(ref_t)) { 6397 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n", 6398 func_name, i, btf_type_str(ref_t), ref_tname); 6399 return -EINVAL; 6400 } 6401 if (!btf_struct_ids_match(log, btf, ref_id, 0, off_desc->kptr.btf, 6402 off_desc->kptr.btf_id, true)) { 6403 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s\n", 6404 func_name, i, btf_type_str(ref_t), ref_tname); 6405 return -EINVAL; 6406 } 6407 /* rest of the arguments can be anything, like normal kfunc */ 6408 } else if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6409 /* If function expects ctx type in BTF check that caller 6410 * is passing PTR_TO_CTX. 6411 */ 6412 if (reg->type != PTR_TO_CTX) { 6413 bpf_log(log, 6414 "arg#%d expected pointer to ctx, but got %s\n", 6415 i, btf_type_str(t)); 6416 return -EINVAL; 6417 } 6418 } else if (is_kfunc && (reg->type == PTR_TO_BTF_ID || 6419 (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) { 6420 const struct btf_type *reg_ref_t; 6421 const struct btf *reg_btf; 6422 const char *reg_ref_tname; 6423 u32 reg_ref_id; 6424 6425 if (!btf_type_is_struct(ref_t)) { 6426 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n", 6427 func_name, i, btf_type_str(ref_t), 6428 ref_tname); 6429 return -EINVAL; 6430 } 6431 6432 if (reg->type == PTR_TO_BTF_ID) { 6433 reg_btf = reg->btf; 6434 reg_ref_id = reg->btf_id; 6435 } else { 6436 reg_btf = btf_vmlinux; 6437 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 6438 } 6439 6440 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, 6441 ®_ref_id); 6442 reg_ref_tname = btf_name_by_offset(reg_btf, 6443 reg_ref_t->name_off); 6444 if (!btf_struct_ids_match(log, reg_btf, reg_ref_id, 6445 reg->off, btf, ref_id, 6446 trusted_args || (rel && reg->ref_obj_id))) { 6447 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 6448 func_name, i, 6449 btf_type_str(ref_t), ref_tname, 6450 regno, btf_type_str(reg_ref_t), 6451 reg_ref_tname); 6452 return -EINVAL; 6453 } 6454 } else if (ptr_to_mem_ok && processing_call) { 6455 const struct btf_type *resolve_ret; 6456 u32 type_size; 6457 6458 if (is_kfunc) { 6459 bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], ®s[regno + 1]); 6460 bool arg_dynptr = btf_type_is_struct(ref_t) && 6461 !strcmp(ref_tname, 6462 stringify_struct(bpf_dynptr_kern)); 6463 6464 /* Permit pointer to mem, but only when argument 6465 * type is pointer to scalar, or struct composed 6466 * (recursively) of scalars. 6467 * When arg_mem_size is true, the pointer can be 6468 * void *. 6469 * Also permit initialized local dynamic pointers. 6470 */ 6471 if (!btf_type_is_scalar(ref_t) && 6472 !__btf_type_is_scalar_struct(log, btf, ref_t, 0) && 6473 !arg_dynptr && 6474 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 6475 bpf_log(log, 6476 "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 6477 i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 6478 return -EINVAL; 6479 } 6480 6481 if (arg_dynptr) { 6482 if (reg->type != PTR_TO_STACK) { 6483 bpf_log(log, "arg#%d pointer type %s %s not to stack\n", 6484 i, btf_type_str(ref_t), 6485 ref_tname); 6486 return -EINVAL; 6487 } 6488 6489 if (!is_dynptr_reg_valid_init(env, reg)) { 6490 bpf_log(log, 6491 "arg#%d pointer type %s %s must be valid and initialized\n", 6492 i, btf_type_str(ref_t), 6493 ref_tname); 6494 return -EINVAL; 6495 } 6496 6497 if (!is_dynptr_type_expected(env, reg, 6498 ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL)) { 6499 bpf_log(log, 6500 "arg#%d pointer type %s %s points to unsupported dynamic pointer type\n", 6501 i, btf_type_str(ref_t), 6502 ref_tname); 6503 return -EINVAL; 6504 } 6505 6506 continue; 6507 } 6508 6509 /* Check for mem, len pair */ 6510 if (arg_mem_size) { 6511 if (check_kfunc_mem_size_reg(env, ®s[regno + 1], regno + 1)) { 6512 bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", 6513 i, i + 1); 6514 return -EINVAL; 6515 } 6516 i++; 6517 continue; 6518 } 6519 } 6520 6521 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 6522 if (IS_ERR(resolve_ret)) { 6523 bpf_log(log, 6524 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6525 i, btf_type_str(ref_t), ref_tname, 6526 PTR_ERR(resolve_ret)); 6527 return -EINVAL; 6528 } 6529 6530 if (check_mem_reg(env, reg, regno, type_size)) 6531 return -EINVAL; 6532 } else { 6533 bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i, 6534 is_kfunc ? "kernel " : "", func_name, func_id); 6535 return -EINVAL; 6536 } 6537 } 6538 6539 /* Either both are set, or neither */ 6540 WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno)); 6541 /* We already made sure ref_obj_id is set only for one argument. We do 6542 * allow (!rel && ref_obj_id), so that passing such referenced 6543 * PTR_TO_BTF_ID to other kfuncs works. Note that rel is only true when 6544 * is_kfunc is true. 6545 */ 6546 if (rel && !ref_obj_id) { 6547 bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 6548 func_name); 6549 return -EINVAL; 6550 } 6551 6552 if (sleepable && !env->prog->aux->sleepable) { 6553 bpf_log(log, "kernel function %s is sleepable but the program is not\n", 6554 func_name); 6555 return -EINVAL; 6556 } 6557 6558 if (kfunc_meta && ref_obj_id) 6559 kfunc_meta->ref_obj_id = ref_obj_id; 6560 6561 /* returns argument register number > 0 in case of reference release kfunc */ 6562 return rel ? ref_regno : 0; 6563 } 6564 6565 /* Compare BTF of a function declaration with given bpf_reg_state. 6566 * Returns: 6567 * EFAULT - there is a verifier bug. Abort verification. 6568 * EINVAL - there is a type mismatch or BTF is not available. 6569 * 0 - BTF matches with what bpf_reg_state expects. 6570 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6571 */ 6572 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 6573 struct bpf_reg_state *regs) 6574 { 6575 struct bpf_prog *prog = env->prog; 6576 struct btf *btf = prog->aux->btf; 6577 bool is_global; 6578 u32 btf_id; 6579 int err; 6580 6581 if (!prog->aux->func_info) 6582 return -EINVAL; 6583 6584 btf_id = prog->aux->func_info[subprog].type_id; 6585 if (!btf_id) 6586 return -EFAULT; 6587 6588 if (prog->aux->func_info_aux[subprog].unreliable) 6589 return -EINVAL; 6590 6591 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6592 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, false); 6593 6594 /* Compiler optimizations can remove arguments from static functions 6595 * or mismatched type can be passed into a global function. 6596 * In such cases mark the function as unreliable from BTF point of view. 6597 */ 6598 if (err) 6599 prog->aux->func_info_aux[subprog].unreliable = true; 6600 return err; 6601 } 6602 6603 /* Compare BTF of a function call with given bpf_reg_state. 6604 * Returns: 6605 * EFAULT - there is a verifier bug. Abort verification. 6606 * EINVAL - there is a type mismatch or BTF is not available. 6607 * 0 - BTF matches with what bpf_reg_state expects. 6608 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6609 * 6610 * NOTE: the code is duplicated from btf_check_subprog_arg_match() 6611 * because btf_check_func_arg_match() is still doing both. Once that 6612 * function is split in 2, we can call from here btf_check_subprog_arg_match() 6613 * first, and then treat the calling part in a new code path. 6614 */ 6615 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 6616 struct bpf_reg_state *regs) 6617 { 6618 struct bpf_prog *prog = env->prog; 6619 struct btf *btf = prog->aux->btf; 6620 bool is_global; 6621 u32 btf_id; 6622 int err; 6623 6624 if (!prog->aux->func_info) 6625 return -EINVAL; 6626 6627 btf_id = prog->aux->func_info[subprog].type_id; 6628 if (!btf_id) 6629 return -EFAULT; 6630 6631 if (prog->aux->func_info_aux[subprog].unreliable) 6632 return -EINVAL; 6633 6634 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6635 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, true); 6636 6637 /* Compiler optimizations can remove arguments from static functions 6638 * or mismatched type can be passed into a global function. 6639 * In such cases mark the function as unreliable from BTF point of view. 6640 */ 6641 if (err) 6642 prog->aux->func_info_aux[subprog].unreliable = true; 6643 return err; 6644 } 6645 6646 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env, 6647 const struct btf *btf, u32 func_id, 6648 struct bpf_reg_state *regs, 6649 struct bpf_kfunc_arg_meta *meta) 6650 { 6651 return btf_check_func_arg_match(env, btf, func_id, regs, true, meta, true); 6652 } 6653 6654 /* Convert BTF of a function into bpf_reg_state if possible 6655 * Returns: 6656 * EFAULT - there is a verifier bug. Abort verification. 6657 * EINVAL - cannot convert BTF. 6658 * 0 - Successfully converted BTF into bpf_reg_state 6659 * (either PTR_TO_CTX or SCALAR_VALUE). 6660 */ 6661 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 6662 struct bpf_reg_state *regs) 6663 { 6664 struct bpf_verifier_log *log = &env->log; 6665 struct bpf_prog *prog = env->prog; 6666 enum bpf_prog_type prog_type = prog->type; 6667 struct btf *btf = prog->aux->btf; 6668 const struct btf_param *args; 6669 const struct btf_type *t, *ref_t; 6670 u32 i, nargs, btf_id; 6671 const char *tname; 6672 6673 if (!prog->aux->func_info || 6674 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 6675 bpf_log(log, "Verifier bug\n"); 6676 return -EFAULT; 6677 } 6678 6679 btf_id = prog->aux->func_info[subprog].type_id; 6680 if (!btf_id) { 6681 bpf_log(log, "Global functions need valid BTF\n"); 6682 return -EFAULT; 6683 } 6684 6685 t = btf_type_by_id(btf, btf_id); 6686 if (!t || !btf_type_is_func(t)) { 6687 /* These checks were already done by the verifier while loading 6688 * struct bpf_func_info 6689 */ 6690 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 6691 subprog); 6692 return -EFAULT; 6693 } 6694 tname = btf_name_by_offset(btf, t->name_off); 6695 6696 if (log->level & BPF_LOG_LEVEL) 6697 bpf_log(log, "Validating %s() func#%d...\n", 6698 tname, subprog); 6699 6700 if (prog->aux->func_info_aux[subprog].unreliable) { 6701 bpf_log(log, "Verifier bug in function %s()\n", tname); 6702 return -EFAULT; 6703 } 6704 if (prog_type == BPF_PROG_TYPE_EXT) 6705 prog_type = prog->aux->dst_prog->type; 6706 6707 t = btf_type_by_id(btf, t->type); 6708 if (!t || !btf_type_is_func_proto(t)) { 6709 bpf_log(log, "Invalid type of function %s()\n", tname); 6710 return -EFAULT; 6711 } 6712 args = (const struct btf_param *)(t + 1); 6713 nargs = btf_type_vlen(t); 6714 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6715 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 6716 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 6717 return -EINVAL; 6718 } 6719 /* check that function returns int */ 6720 t = btf_type_by_id(btf, t->type); 6721 while (btf_type_is_modifier(t)) 6722 t = btf_type_by_id(btf, t->type); 6723 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 6724 bpf_log(log, 6725 "Global function %s() doesn't return scalar. Only those are supported.\n", 6726 tname); 6727 return -EINVAL; 6728 } 6729 /* Convert BTF function arguments into verifier types. 6730 * Only PTR_TO_CTX and SCALAR are supported atm. 6731 */ 6732 for (i = 0; i < nargs; i++) { 6733 struct bpf_reg_state *reg = ®s[i + 1]; 6734 6735 t = btf_type_by_id(btf, args[i].type); 6736 while (btf_type_is_modifier(t)) 6737 t = btf_type_by_id(btf, t->type); 6738 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 6739 reg->type = SCALAR_VALUE; 6740 continue; 6741 } 6742 if (btf_type_is_ptr(t)) { 6743 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6744 reg->type = PTR_TO_CTX; 6745 continue; 6746 } 6747 6748 t = btf_type_skip_modifiers(btf, t->type, NULL); 6749 6750 ref_t = btf_resolve_size(btf, t, ®->mem_size); 6751 if (IS_ERR(ref_t)) { 6752 bpf_log(log, 6753 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6754 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 6755 PTR_ERR(ref_t)); 6756 return -EINVAL; 6757 } 6758 6759 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 6760 reg->id = ++env->id_gen; 6761 6762 continue; 6763 } 6764 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 6765 i, btf_type_str(t), tname); 6766 return -EINVAL; 6767 } 6768 return 0; 6769 } 6770 6771 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 6772 struct btf_show *show) 6773 { 6774 const struct btf_type *t = btf_type_by_id(btf, type_id); 6775 6776 show->btf = btf; 6777 memset(&show->state, 0, sizeof(show->state)); 6778 memset(&show->obj, 0, sizeof(show->obj)); 6779 6780 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 6781 } 6782 6783 static void btf_seq_show(struct btf_show *show, const char *fmt, 6784 va_list args) 6785 { 6786 seq_vprintf((struct seq_file *)show->target, fmt, args); 6787 } 6788 6789 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 6790 void *obj, struct seq_file *m, u64 flags) 6791 { 6792 struct btf_show sseq; 6793 6794 sseq.target = m; 6795 sseq.showfn = btf_seq_show; 6796 sseq.flags = flags; 6797 6798 btf_type_show(btf, type_id, obj, &sseq); 6799 6800 return sseq.state.status; 6801 } 6802 6803 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 6804 struct seq_file *m) 6805 { 6806 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 6807 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 6808 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 6809 } 6810 6811 struct btf_show_snprintf { 6812 struct btf_show show; 6813 int len_left; /* space left in string */ 6814 int len; /* length we would have written */ 6815 }; 6816 6817 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 6818 va_list args) 6819 { 6820 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 6821 int len; 6822 6823 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 6824 6825 if (len < 0) { 6826 ssnprintf->len_left = 0; 6827 ssnprintf->len = len; 6828 } else if (len >= ssnprintf->len_left) { 6829 /* no space, drive on to get length we would have written */ 6830 ssnprintf->len_left = 0; 6831 ssnprintf->len += len; 6832 } else { 6833 ssnprintf->len_left -= len; 6834 ssnprintf->len += len; 6835 show->target += len; 6836 } 6837 } 6838 6839 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 6840 char *buf, int len, u64 flags) 6841 { 6842 struct btf_show_snprintf ssnprintf; 6843 6844 ssnprintf.show.target = buf; 6845 ssnprintf.show.flags = flags; 6846 ssnprintf.show.showfn = btf_snprintf_show; 6847 ssnprintf.len_left = len; 6848 ssnprintf.len = 0; 6849 6850 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 6851 6852 /* If we encountered an error, return it. */ 6853 if (ssnprintf.show.state.status) 6854 return ssnprintf.show.state.status; 6855 6856 /* Otherwise return length we would have written */ 6857 return ssnprintf.len; 6858 } 6859 6860 #ifdef CONFIG_PROC_FS 6861 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 6862 { 6863 const struct btf *btf = filp->private_data; 6864 6865 seq_printf(m, "btf_id:\t%u\n", btf->id); 6866 } 6867 #endif 6868 6869 static int btf_release(struct inode *inode, struct file *filp) 6870 { 6871 btf_put(filp->private_data); 6872 return 0; 6873 } 6874 6875 const struct file_operations btf_fops = { 6876 #ifdef CONFIG_PROC_FS 6877 .show_fdinfo = bpf_btf_show_fdinfo, 6878 #endif 6879 .release = btf_release, 6880 }; 6881 6882 static int __btf_new_fd(struct btf *btf) 6883 { 6884 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 6885 } 6886 6887 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr) 6888 { 6889 struct btf *btf; 6890 int ret; 6891 6892 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel), 6893 attr->btf_size, attr->btf_log_level, 6894 u64_to_user_ptr(attr->btf_log_buf), 6895 attr->btf_log_size); 6896 if (IS_ERR(btf)) 6897 return PTR_ERR(btf); 6898 6899 ret = btf_alloc_id(btf); 6900 if (ret) { 6901 btf_free(btf); 6902 return ret; 6903 } 6904 6905 /* 6906 * The BTF ID is published to the userspace. 6907 * All BTF free must go through call_rcu() from 6908 * now on (i.e. free by calling btf_put()). 6909 */ 6910 6911 ret = __btf_new_fd(btf); 6912 if (ret < 0) 6913 btf_put(btf); 6914 6915 return ret; 6916 } 6917 6918 struct btf *btf_get_by_fd(int fd) 6919 { 6920 struct btf *btf; 6921 struct fd f; 6922 6923 f = fdget(fd); 6924 6925 if (!f.file) 6926 return ERR_PTR(-EBADF); 6927 6928 if (f.file->f_op != &btf_fops) { 6929 fdput(f); 6930 return ERR_PTR(-EINVAL); 6931 } 6932 6933 btf = f.file->private_data; 6934 refcount_inc(&btf->refcnt); 6935 fdput(f); 6936 6937 return btf; 6938 } 6939 6940 int btf_get_info_by_fd(const struct btf *btf, 6941 const union bpf_attr *attr, 6942 union bpf_attr __user *uattr) 6943 { 6944 struct bpf_btf_info __user *uinfo; 6945 struct bpf_btf_info info; 6946 u32 info_copy, btf_copy; 6947 void __user *ubtf; 6948 char __user *uname; 6949 u32 uinfo_len, uname_len, name_len; 6950 int ret = 0; 6951 6952 uinfo = u64_to_user_ptr(attr->info.info); 6953 uinfo_len = attr->info.info_len; 6954 6955 info_copy = min_t(u32, uinfo_len, sizeof(info)); 6956 memset(&info, 0, sizeof(info)); 6957 if (copy_from_user(&info, uinfo, info_copy)) 6958 return -EFAULT; 6959 6960 info.id = btf->id; 6961 ubtf = u64_to_user_ptr(info.btf); 6962 btf_copy = min_t(u32, btf->data_size, info.btf_size); 6963 if (copy_to_user(ubtf, btf->data, btf_copy)) 6964 return -EFAULT; 6965 info.btf_size = btf->data_size; 6966 6967 info.kernel_btf = btf->kernel_btf; 6968 6969 uname = u64_to_user_ptr(info.name); 6970 uname_len = info.name_len; 6971 if (!uname ^ !uname_len) 6972 return -EINVAL; 6973 6974 name_len = strlen(btf->name); 6975 info.name_len = name_len; 6976 6977 if (uname) { 6978 if (uname_len >= name_len + 1) { 6979 if (copy_to_user(uname, btf->name, name_len + 1)) 6980 return -EFAULT; 6981 } else { 6982 char zero = '\0'; 6983 6984 if (copy_to_user(uname, btf->name, uname_len - 1)) 6985 return -EFAULT; 6986 if (put_user(zero, uname + uname_len - 1)) 6987 return -EFAULT; 6988 /* let user-space know about too short buffer */ 6989 ret = -ENOSPC; 6990 } 6991 } 6992 6993 if (copy_to_user(uinfo, &info, info_copy) || 6994 put_user(info_copy, &uattr->info.info_len)) 6995 return -EFAULT; 6996 6997 return ret; 6998 } 6999 7000 int btf_get_fd_by_id(u32 id) 7001 { 7002 struct btf *btf; 7003 int fd; 7004 7005 rcu_read_lock(); 7006 btf = idr_find(&btf_idr, id); 7007 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7008 btf = ERR_PTR(-ENOENT); 7009 rcu_read_unlock(); 7010 7011 if (IS_ERR(btf)) 7012 return PTR_ERR(btf); 7013 7014 fd = __btf_new_fd(btf); 7015 if (fd < 0) 7016 btf_put(btf); 7017 7018 return fd; 7019 } 7020 7021 u32 btf_obj_id(const struct btf *btf) 7022 { 7023 return btf->id; 7024 } 7025 7026 bool btf_is_kernel(const struct btf *btf) 7027 { 7028 return btf->kernel_btf; 7029 } 7030 7031 bool btf_is_module(const struct btf *btf) 7032 { 7033 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7034 } 7035 7036 static int btf_id_cmp_func(const void *a, const void *b) 7037 { 7038 const int *pa = a, *pb = b; 7039 7040 return *pa - *pb; 7041 } 7042 7043 bool btf_id_set_contains(const struct btf_id_set *set, u32 id) 7044 { 7045 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL; 7046 } 7047 7048 static void *btf_id_set8_contains(const struct btf_id_set8 *set, u32 id) 7049 { 7050 return bsearch(&id, set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func); 7051 } 7052 7053 enum { 7054 BTF_MODULE_F_LIVE = (1 << 0), 7055 }; 7056 7057 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7058 struct btf_module { 7059 struct list_head list; 7060 struct module *module; 7061 struct btf *btf; 7062 struct bin_attribute *sysfs_attr; 7063 int flags; 7064 }; 7065 7066 static LIST_HEAD(btf_modules); 7067 static DEFINE_MUTEX(btf_module_mutex); 7068 7069 static ssize_t 7070 btf_module_read(struct file *file, struct kobject *kobj, 7071 struct bin_attribute *bin_attr, 7072 char *buf, loff_t off, size_t len) 7073 { 7074 const struct btf *btf = bin_attr->private; 7075 7076 memcpy(buf, btf->data + off, len); 7077 return len; 7078 } 7079 7080 static void purge_cand_cache(struct btf *btf); 7081 7082 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 7083 void *module) 7084 { 7085 struct btf_module *btf_mod, *tmp; 7086 struct module *mod = module; 7087 struct btf *btf; 7088 int err = 0; 7089 7090 if (mod->btf_data_size == 0 || 7091 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 7092 op != MODULE_STATE_GOING)) 7093 goto out; 7094 7095 switch (op) { 7096 case MODULE_STATE_COMING: 7097 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 7098 if (!btf_mod) { 7099 err = -ENOMEM; 7100 goto out; 7101 } 7102 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 7103 if (IS_ERR(btf)) { 7104 pr_warn("failed to validate module [%s] BTF: %ld\n", 7105 mod->name, PTR_ERR(btf)); 7106 kfree(btf_mod); 7107 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 7108 err = PTR_ERR(btf); 7109 goto out; 7110 } 7111 err = btf_alloc_id(btf); 7112 if (err) { 7113 btf_free(btf); 7114 kfree(btf_mod); 7115 goto out; 7116 } 7117 7118 purge_cand_cache(NULL); 7119 mutex_lock(&btf_module_mutex); 7120 btf_mod->module = module; 7121 btf_mod->btf = btf; 7122 list_add(&btf_mod->list, &btf_modules); 7123 mutex_unlock(&btf_module_mutex); 7124 7125 if (IS_ENABLED(CONFIG_SYSFS)) { 7126 struct bin_attribute *attr; 7127 7128 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 7129 if (!attr) 7130 goto out; 7131 7132 sysfs_bin_attr_init(attr); 7133 attr->attr.name = btf->name; 7134 attr->attr.mode = 0444; 7135 attr->size = btf->data_size; 7136 attr->private = btf; 7137 attr->read = btf_module_read; 7138 7139 err = sysfs_create_bin_file(btf_kobj, attr); 7140 if (err) { 7141 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 7142 mod->name, err); 7143 kfree(attr); 7144 err = 0; 7145 goto out; 7146 } 7147 7148 btf_mod->sysfs_attr = attr; 7149 } 7150 7151 break; 7152 case MODULE_STATE_LIVE: 7153 mutex_lock(&btf_module_mutex); 7154 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7155 if (btf_mod->module != module) 7156 continue; 7157 7158 btf_mod->flags |= BTF_MODULE_F_LIVE; 7159 break; 7160 } 7161 mutex_unlock(&btf_module_mutex); 7162 break; 7163 case MODULE_STATE_GOING: 7164 mutex_lock(&btf_module_mutex); 7165 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7166 if (btf_mod->module != module) 7167 continue; 7168 7169 list_del(&btf_mod->list); 7170 if (btf_mod->sysfs_attr) 7171 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 7172 purge_cand_cache(btf_mod->btf); 7173 btf_put(btf_mod->btf); 7174 kfree(btf_mod->sysfs_attr); 7175 kfree(btf_mod); 7176 break; 7177 } 7178 mutex_unlock(&btf_module_mutex); 7179 break; 7180 } 7181 out: 7182 return notifier_from_errno(err); 7183 } 7184 7185 static struct notifier_block btf_module_nb = { 7186 .notifier_call = btf_module_notify, 7187 }; 7188 7189 static int __init btf_module_init(void) 7190 { 7191 register_module_notifier(&btf_module_nb); 7192 return 0; 7193 } 7194 7195 fs_initcall(btf_module_init); 7196 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 7197 7198 struct module *btf_try_get_module(const struct btf *btf) 7199 { 7200 struct module *res = NULL; 7201 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7202 struct btf_module *btf_mod, *tmp; 7203 7204 mutex_lock(&btf_module_mutex); 7205 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7206 if (btf_mod->btf != btf) 7207 continue; 7208 7209 /* We must only consider module whose __init routine has 7210 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 7211 * which is set from the notifier callback for 7212 * MODULE_STATE_LIVE. 7213 */ 7214 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 7215 res = btf_mod->module; 7216 7217 break; 7218 } 7219 mutex_unlock(&btf_module_mutex); 7220 #endif 7221 7222 return res; 7223 } 7224 7225 /* Returns struct btf corresponding to the struct module. 7226 * This function can return NULL or ERR_PTR. 7227 */ 7228 static struct btf *btf_get_module_btf(const struct module *module) 7229 { 7230 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7231 struct btf_module *btf_mod, *tmp; 7232 #endif 7233 struct btf *btf = NULL; 7234 7235 if (!module) { 7236 btf = bpf_get_btf_vmlinux(); 7237 if (!IS_ERR_OR_NULL(btf)) 7238 btf_get(btf); 7239 return btf; 7240 } 7241 7242 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7243 mutex_lock(&btf_module_mutex); 7244 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7245 if (btf_mod->module != module) 7246 continue; 7247 7248 btf_get(btf_mod->btf); 7249 btf = btf_mod->btf; 7250 break; 7251 } 7252 mutex_unlock(&btf_module_mutex); 7253 #endif 7254 7255 return btf; 7256 } 7257 7258 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 7259 { 7260 struct btf *btf = NULL; 7261 int btf_obj_fd = 0; 7262 long ret; 7263 7264 if (flags) 7265 return -EINVAL; 7266 7267 if (name_sz <= 1 || name[name_sz - 1]) 7268 return -EINVAL; 7269 7270 ret = bpf_find_btf_id(name, kind, &btf); 7271 if (ret > 0 && btf_is_module(btf)) { 7272 btf_obj_fd = __btf_new_fd(btf); 7273 if (btf_obj_fd < 0) { 7274 btf_put(btf); 7275 return btf_obj_fd; 7276 } 7277 return ret | (((u64)btf_obj_fd) << 32); 7278 } 7279 if (ret > 0) 7280 btf_put(btf); 7281 return ret; 7282 } 7283 7284 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 7285 .func = bpf_btf_find_by_name_kind, 7286 .gpl_only = false, 7287 .ret_type = RET_INTEGER, 7288 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7289 .arg2_type = ARG_CONST_SIZE, 7290 .arg3_type = ARG_ANYTHING, 7291 .arg4_type = ARG_ANYTHING, 7292 }; 7293 7294 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 7295 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 7296 BTF_TRACING_TYPE_xxx 7297 #undef BTF_TRACING_TYPE 7298 7299 /* Kernel Function (kfunc) BTF ID set registration API */ 7300 7301 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 7302 struct btf_id_set8 *add_set) 7303 { 7304 bool vmlinux_set = !btf_is_module(btf); 7305 struct btf_kfunc_set_tab *tab; 7306 struct btf_id_set8 *set; 7307 u32 set_cnt; 7308 int ret; 7309 7310 if (hook >= BTF_KFUNC_HOOK_MAX) { 7311 ret = -EINVAL; 7312 goto end; 7313 } 7314 7315 if (!add_set->cnt) 7316 return 0; 7317 7318 tab = btf->kfunc_set_tab; 7319 if (!tab) { 7320 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 7321 if (!tab) 7322 return -ENOMEM; 7323 btf->kfunc_set_tab = tab; 7324 } 7325 7326 set = tab->sets[hook]; 7327 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 7328 * for module sets. 7329 */ 7330 if (WARN_ON_ONCE(set && !vmlinux_set)) { 7331 ret = -EINVAL; 7332 goto end; 7333 } 7334 7335 /* We don't need to allocate, concatenate, and sort module sets, because 7336 * only one is allowed per hook. Hence, we can directly assign the 7337 * pointer and return. 7338 */ 7339 if (!vmlinux_set) { 7340 tab->sets[hook] = add_set; 7341 return 0; 7342 } 7343 7344 /* In case of vmlinux sets, there may be more than one set being 7345 * registered per hook. To create a unified set, we allocate a new set 7346 * and concatenate all individual sets being registered. While each set 7347 * is individually sorted, they may become unsorted when concatenated, 7348 * hence re-sorting the final set again is required to make binary 7349 * searching the set using btf_id_set8_contains function work. 7350 */ 7351 set_cnt = set ? set->cnt : 0; 7352 7353 if (set_cnt > U32_MAX - add_set->cnt) { 7354 ret = -EOVERFLOW; 7355 goto end; 7356 } 7357 7358 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 7359 ret = -E2BIG; 7360 goto end; 7361 } 7362 7363 /* Grow set */ 7364 set = krealloc(tab->sets[hook], 7365 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 7366 GFP_KERNEL | __GFP_NOWARN); 7367 if (!set) { 7368 ret = -ENOMEM; 7369 goto end; 7370 } 7371 7372 /* For newly allocated set, initialize set->cnt to 0 */ 7373 if (!tab->sets[hook]) 7374 set->cnt = 0; 7375 tab->sets[hook] = set; 7376 7377 /* Concatenate the two sets */ 7378 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 7379 set->cnt += add_set->cnt; 7380 7381 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 7382 7383 return 0; 7384 end: 7385 btf_free_kfunc_set_tab(btf); 7386 return ret; 7387 } 7388 7389 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 7390 enum btf_kfunc_hook hook, 7391 u32 kfunc_btf_id) 7392 { 7393 struct btf_id_set8 *set; 7394 u32 *id; 7395 7396 if (hook >= BTF_KFUNC_HOOK_MAX) 7397 return NULL; 7398 if (!btf->kfunc_set_tab) 7399 return NULL; 7400 set = btf->kfunc_set_tab->sets[hook]; 7401 if (!set) 7402 return NULL; 7403 id = btf_id_set8_contains(set, kfunc_btf_id); 7404 if (!id) 7405 return NULL; 7406 /* The flags for BTF ID are located next to it */ 7407 return id + 1; 7408 } 7409 7410 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 7411 { 7412 switch (prog_type) { 7413 case BPF_PROG_TYPE_XDP: 7414 return BTF_KFUNC_HOOK_XDP; 7415 case BPF_PROG_TYPE_SCHED_CLS: 7416 return BTF_KFUNC_HOOK_TC; 7417 case BPF_PROG_TYPE_STRUCT_OPS: 7418 return BTF_KFUNC_HOOK_STRUCT_OPS; 7419 case BPF_PROG_TYPE_TRACING: 7420 case BPF_PROG_TYPE_LSM: 7421 return BTF_KFUNC_HOOK_TRACING; 7422 case BPF_PROG_TYPE_SYSCALL: 7423 return BTF_KFUNC_HOOK_SYSCALL; 7424 default: 7425 return BTF_KFUNC_HOOK_MAX; 7426 } 7427 } 7428 7429 /* Caution: 7430 * Reference to the module (obtained using btf_try_get_module) corresponding to 7431 * the struct btf *MUST* be held when calling this function from verifier 7432 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 7433 * keeping the reference for the duration of the call provides the necessary 7434 * protection for looking up a well-formed btf->kfunc_set_tab. 7435 */ 7436 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 7437 enum bpf_prog_type prog_type, 7438 u32 kfunc_btf_id) 7439 { 7440 enum btf_kfunc_hook hook; 7441 7442 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7443 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id); 7444 } 7445 7446 /* This function must be invoked only from initcalls/module init functions */ 7447 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 7448 const struct btf_kfunc_id_set *kset) 7449 { 7450 enum btf_kfunc_hook hook; 7451 struct btf *btf; 7452 int ret; 7453 7454 btf = btf_get_module_btf(kset->owner); 7455 if (!btf) { 7456 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7457 pr_err("missing vmlinux BTF, cannot register kfuncs\n"); 7458 return -ENOENT; 7459 } 7460 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7461 pr_err("missing module BTF, cannot register kfuncs\n"); 7462 return -ENOENT; 7463 } 7464 return 0; 7465 } 7466 if (IS_ERR(btf)) 7467 return PTR_ERR(btf); 7468 7469 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7470 ret = btf_populate_kfunc_set(btf, hook, kset->set); 7471 btf_put(btf); 7472 return ret; 7473 } 7474 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 7475 7476 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 7477 { 7478 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 7479 struct btf_id_dtor_kfunc *dtor; 7480 7481 if (!tab) 7482 return -ENOENT; 7483 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 7484 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 7485 */ 7486 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 7487 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 7488 if (!dtor) 7489 return -ENOENT; 7490 return dtor->kfunc_btf_id; 7491 } 7492 7493 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 7494 { 7495 const struct btf_type *dtor_func, *dtor_func_proto, *t; 7496 const struct btf_param *args; 7497 s32 dtor_btf_id; 7498 u32 nr_args, i; 7499 7500 for (i = 0; i < cnt; i++) { 7501 dtor_btf_id = dtors[i].kfunc_btf_id; 7502 7503 dtor_func = btf_type_by_id(btf, dtor_btf_id); 7504 if (!dtor_func || !btf_type_is_func(dtor_func)) 7505 return -EINVAL; 7506 7507 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 7508 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 7509 return -EINVAL; 7510 7511 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 7512 t = btf_type_by_id(btf, dtor_func_proto->type); 7513 if (!t || !btf_type_is_void(t)) 7514 return -EINVAL; 7515 7516 nr_args = btf_type_vlen(dtor_func_proto); 7517 if (nr_args != 1) 7518 return -EINVAL; 7519 args = btf_params(dtor_func_proto); 7520 t = btf_type_by_id(btf, args[0].type); 7521 /* Allow any pointer type, as width on targets Linux supports 7522 * will be same for all pointer types (i.e. sizeof(void *)) 7523 */ 7524 if (!t || !btf_type_is_ptr(t)) 7525 return -EINVAL; 7526 } 7527 return 0; 7528 } 7529 7530 /* This function must be invoked only from initcalls/module init functions */ 7531 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 7532 struct module *owner) 7533 { 7534 struct btf_id_dtor_kfunc_tab *tab; 7535 struct btf *btf; 7536 u32 tab_cnt; 7537 int ret; 7538 7539 btf = btf_get_module_btf(owner); 7540 if (!btf) { 7541 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7542 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n"); 7543 return -ENOENT; 7544 } 7545 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7546 pr_err("missing module BTF, cannot register dtor kfuncs\n"); 7547 return -ENOENT; 7548 } 7549 return 0; 7550 } 7551 if (IS_ERR(btf)) 7552 return PTR_ERR(btf); 7553 7554 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 7555 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 7556 ret = -E2BIG; 7557 goto end; 7558 } 7559 7560 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 7561 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 7562 if (ret < 0) 7563 goto end; 7564 7565 tab = btf->dtor_kfunc_tab; 7566 /* Only one call allowed for modules */ 7567 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 7568 ret = -EINVAL; 7569 goto end; 7570 } 7571 7572 tab_cnt = tab ? tab->cnt : 0; 7573 if (tab_cnt > U32_MAX - add_cnt) { 7574 ret = -EOVERFLOW; 7575 goto end; 7576 } 7577 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 7578 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 7579 ret = -E2BIG; 7580 goto end; 7581 } 7582 7583 tab = krealloc(btf->dtor_kfunc_tab, 7584 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 7585 GFP_KERNEL | __GFP_NOWARN); 7586 if (!tab) { 7587 ret = -ENOMEM; 7588 goto end; 7589 } 7590 7591 if (!btf->dtor_kfunc_tab) 7592 tab->cnt = 0; 7593 btf->dtor_kfunc_tab = tab; 7594 7595 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 7596 tab->cnt += add_cnt; 7597 7598 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 7599 7600 return 0; 7601 end: 7602 btf_free_dtor_kfunc_tab(btf); 7603 btf_put(btf); 7604 return ret; 7605 } 7606 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 7607 7608 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 7609 7610 /* Check local and target types for compatibility. This check is used for 7611 * type-based CO-RE relocations and follow slightly different rules than 7612 * field-based relocations. This function assumes that root types were already 7613 * checked for name match. Beyond that initial root-level name check, names 7614 * are completely ignored. Compatibility rules are as follows: 7615 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 7616 * kind should match for local and target types (i.e., STRUCT is not 7617 * compatible with UNION); 7618 * - for ENUMs/ENUM64s, the size is ignored; 7619 * - for INT, size and signedness are ignored; 7620 * - for ARRAY, dimensionality is ignored, element types are checked for 7621 * compatibility recursively; 7622 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 7623 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 7624 * - FUNC_PROTOs are compatible if they have compatible signature: same 7625 * number of input args and compatible return and argument types. 7626 * These rules are not set in stone and probably will be adjusted as we get 7627 * more experience with using BPF CO-RE relocations. 7628 */ 7629 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 7630 const struct btf *targ_btf, __u32 targ_id) 7631 { 7632 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 7633 MAX_TYPES_ARE_COMPAT_DEPTH); 7634 } 7635 7636 #define MAX_TYPES_MATCH_DEPTH 2 7637 7638 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 7639 const struct btf *targ_btf, u32 targ_id) 7640 { 7641 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 7642 MAX_TYPES_MATCH_DEPTH); 7643 } 7644 7645 static bool bpf_core_is_flavor_sep(const char *s) 7646 { 7647 /* check X___Y name pattern, where X and Y are not underscores */ 7648 return s[0] != '_' && /* X */ 7649 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 7650 s[4] != '_'; /* Y */ 7651 } 7652 7653 size_t bpf_core_essential_name_len(const char *name) 7654 { 7655 size_t n = strlen(name); 7656 int i; 7657 7658 for (i = n - 5; i >= 0; i--) { 7659 if (bpf_core_is_flavor_sep(name + i)) 7660 return i + 1; 7661 } 7662 return n; 7663 } 7664 7665 struct bpf_cand_cache { 7666 const char *name; 7667 u32 name_len; 7668 u16 kind; 7669 u16 cnt; 7670 struct { 7671 const struct btf *btf; 7672 u32 id; 7673 } cands[]; 7674 }; 7675 7676 static void bpf_free_cands(struct bpf_cand_cache *cands) 7677 { 7678 if (!cands->cnt) 7679 /* empty candidate array was allocated on stack */ 7680 return; 7681 kfree(cands); 7682 } 7683 7684 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 7685 { 7686 kfree(cands->name); 7687 kfree(cands); 7688 } 7689 7690 #define VMLINUX_CAND_CACHE_SIZE 31 7691 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 7692 7693 #define MODULE_CAND_CACHE_SIZE 31 7694 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 7695 7696 static DEFINE_MUTEX(cand_cache_mutex); 7697 7698 static void __print_cand_cache(struct bpf_verifier_log *log, 7699 struct bpf_cand_cache **cache, 7700 int cache_size) 7701 { 7702 struct bpf_cand_cache *cc; 7703 int i, j; 7704 7705 for (i = 0; i < cache_size; i++) { 7706 cc = cache[i]; 7707 if (!cc) 7708 continue; 7709 bpf_log(log, "[%d]%s(", i, cc->name); 7710 for (j = 0; j < cc->cnt; j++) { 7711 bpf_log(log, "%d", cc->cands[j].id); 7712 if (j < cc->cnt - 1) 7713 bpf_log(log, " "); 7714 } 7715 bpf_log(log, "), "); 7716 } 7717 } 7718 7719 static void print_cand_cache(struct bpf_verifier_log *log) 7720 { 7721 mutex_lock(&cand_cache_mutex); 7722 bpf_log(log, "vmlinux_cand_cache:"); 7723 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 7724 bpf_log(log, "\nmodule_cand_cache:"); 7725 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 7726 bpf_log(log, "\n"); 7727 mutex_unlock(&cand_cache_mutex); 7728 } 7729 7730 static u32 hash_cands(struct bpf_cand_cache *cands) 7731 { 7732 return jhash(cands->name, cands->name_len, 0); 7733 } 7734 7735 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 7736 struct bpf_cand_cache **cache, 7737 int cache_size) 7738 { 7739 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 7740 7741 if (cc && cc->name_len == cands->name_len && 7742 !strncmp(cc->name, cands->name, cands->name_len)) 7743 return cc; 7744 return NULL; 7745 } 7746 7747 static size_t sizeof_cands(int cnt) 7748 { 7749 return offsetof(struct bpf_cand_cache, cands[cnt]); 7750 } 7751 7752 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 7753 struct bpf_cand_cache **cache, 7754 int cache_size) 7755 { 7756 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 7757 7758 if (*cc) { 7759 bpf_free_cands_from_cache(*cc); 7760 *cc = NULL; 7761 } 7762 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 7763 if (!new_cands) { 7764 bpf_free_cands(cands); 7765 return ERR_PTR(-ENOMEM); 7766 } 7767 /* strdup the name, since it will stay in cache. 7768 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 7769 */ 7770 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 7771 bpf_free_cands(cands); 7772 if (!new_cands->name) { 7773 kfree(new_cands); 7774 return ERR_PTR(-ENOMEM); 7775 } 7776 *cc = new_cands; 7777 return new_cands; 7778 } 7779 7780 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7781 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 7782 int cache_size) 7783 { 7784 struct bpf_cand_cache *cc; 7785 int i, j; 7786 7787 for (i = 0; i < cache_size; i++) { 7788 cc = cache[i]; 7789 if (!cc) 7790 continue; 7791 if (!btf) { 7792 /* when new module is loaded purge all of module_cand_cache, 7793 * since new module might have candidates with the name 7794 * that matches cached cands. 7795 */ 7796 bpf_free_cands_from_cache(cc); 7797 cache[i] = NULL; 7798 continue; 7799 } 7800 /* when module is unloaded purge cache entries 7801 * that match module's btf 7802 */ 7803 for (j = 0; j < cc->cnt; j++) 7804 if (cc->cands[j].btf == btf) { 7805 bpf_free_cands_from_cache(cc); 7806 cache[i] = NULL; 7807 break; 7808 } 7809 } 7810 7811 } 7812 7813 static void purge_cand_cache(struct btf *btf) 7814 { 7815 mutex_lock(&cand_cache_mutex); 7816 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 7817 mutex_unlock(&cand_cache_mutex); 7818 } 7819 #endif 7820 7821 static struct bpf_cand_cache * 7822 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 7823 int targ_start_id) 7824 { 7825 struct bpf_cand_cache *new_cands; 7826 const struct btf_type *t; 7827 const char *targ_name; 7828 size_t targ_essent_len; 7829 int n, i; 7830 7831 n = btf_nr_types(targ_btf); 7832 for (i = targ_start_id; i < n; i++) { 7833 t = btf_type_by_id(targ_btf, i); 7834 if (btf_kind(t) != cands->kind) 7835 continue; 7836 7837 targ_name = btf_name_by_offset(targ_btf, t->name_off); 7838 if (!targ_name) 7839 continue; 7840 7841 /* the resched point is before strncmp to make sure that search 7842 * for non-existing name will have a chance to schedule(). 7843 */ 7844 cond_resched(); 7845 7846 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 7847 continue; 7848 7849 targ_essent_len = bpf_core_essential_name_len(targ_name); 7850 if (targ_essent_len != cands->name_len) 7851 continue; 7852 7853 /* most of the time there is only one candidate for a given kind+name pair */ 7854 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 7855 if (!new_cands) { 7856 bpf_free_cands(cands); 7857 return ERR_PTR(-ENOMEM); 7858 } 7859 7860 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 7861 bpf_free_cands(cands); 7862 cands = new_cands; 7863 cands->cands[cands->cnt].btf = targ_btf; 7864 cands->cands[cands->cnt].id = i; 7865 cands->cnt++; 7866 } 7867 return cands; 7868 } 7869 7870 static struct bpf_cand_cache * 7871 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 7872 { 7873 struct bpf_cand_cache *cands, *cc, local_cand = {}; 7874 const struct btf *local_btf = ctx->btf; 7875 const struct btf_type *local_type; 7876 const struct btf *main_btf; 7877 size_t local_essent_len; 7878 struct btf *mod_btf; 7879 const char *name; 7880 int id; 7881 7882 main_btf = bpf_get_btf_vmlinux(); 7883 if (IS_ERR(main_btf)) 7884 return ERR_CAST(main_btf); 7885 if (!main_btf) 7886 return ERR_PTR(-EINVAL); 7887 7888 local_type = btf_type_by_id(local_btf, local_type_id); 7889 if (!local_type) 7890 return ERR_PTR(-EINVAL); 7891 7892 name = btf_name_by_offset(local_btf, local_type->name_off); 7893 if (str_is_empty(name)) 7894 return ERR_PTR(-EINVAL); 7895 local_essent_len = bpf_core_essential_name_len(name); 7896 7897 cands = &local_cand; 7898 cands->name = name; 7899 cands->kind = btf_kind(local_type); 7900 cands->name_len = local_essent_len; 7901 7902 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 7903 /* cands is a pointer to stack here */ 7904 if (cc) { 7905 if (cc->cnt) 7906 return cc; 7907 goto check_modules; 7908 } 7909 7910 /* Attempt to find target candidates in vmlinux BTF first */ 7911 cands = bpf_core_add_cands(cands, main_btf, 1); 7912 if (IS_ERR(cands)) 7913 return ERR_CAST(cands); 7914 7915 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 7916 7917 /* populate cache even when cands->cnt == 0 */ 7918 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 7919 if (IS_ERR(cc)) 7920 return ERR_CAST(cc); 7921 7922 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 7923 if (cc->cnt) 7924 return cc; 7925 7926 check_modules: 7927 /* cands is a pointer to stack here and cands->cnt == 0 */ 7928 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 7929 if (cc) 7930 /* if cache has it return it even if cc->cnt == 0 */ 7931 return cc; 7932 7933 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 7934 spin_lock_bh(&btf_idr_lock); 7935 idr_for_each_entry(&btf_idr, mod_btf, id) { 7936 if (!btf_is_module(mod_btf)) 7937 continue; 7938 /* linear search could be slow hence unlock/lock 7939 * the IDR to avoiding holding it for too long 7940 */ 7941 btf_get(mod_btf); 7942 spin_unlock_bh(&btf_idr_lock); 7943 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 7944 if (IS_ERR(cands)) { 7945 btf_put(mod_btf); 7946 return ERR_CAST(cands); 7947 } 7948 spin_lock_bh(&btf_idr_lock); 7949 btf_put(mod_btf); 7950 } 7951 spin_unlock_bh(&btf_idr_lock); 7952 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 7953 * or pointer to stack if cands->cnd == 0. 7954 * Copy it into the cache even when cands->cnt == 0 and 7955 * return the result. 7956 */ 7957 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 7958 } 7959 7960 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 7961 int relo_idx, void *insn) 7962 { 7963 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 7964 struct bpf_core_cand_list cands = {}; 7965 struct bpf_core_relo_res targ_res; 7966 struct bpf_core_spec *specs; 7967 int err; 7968 7969 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 7970 * into arrays of btf_ids of struct fields and array indices. 7971 */ 7972 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 7973 if (!specs) 7974 return -ENOMEM; 7975 7976 if (need_cands) { 7977 struct bpf_cand_cache *cc; 7978 int i; 7979 7980 mutex_lock(&cand_cache_mutex); 7981 cc = bpf_core_find_cands(ctx, relo->type_id); 7982 if (IS_ERR(cc)) { 7983 bpf_log(ctx->log, "target candidate search failed for %d\n", 7984 relo->type_id); 7985 err = PTR_ERR(cc); 7986 goto out; 7987 } 7988 if (cc->cnt) { 7989 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 7990 if (!cands.cands) { 7991 err = -ENOMEM; 7992 goto out; 7993 } 7994 } 7995 for (i = 0; i < cc->cnt; i++) { 7996 bpf_log(ctx->log, 7997 "CO-RE relocating %s %s: found target candidate [%d]\n", 7998 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 7999 cands.cands[i].btf = cc->cands[i].btf; 8000 cands.cands[i].id = cc->cands[i].id; 8001 } 8002 cands.len = cc->cnt; 8003 /* cand_cache_mutex needs to span the cache lookup and 8004 * copy of btf pointer into bpf_core_cand_list, 8005 * since module can be unloaded while bpf_core_calc_relo_insn 8006 * is working with module's btf. 8007 */ 8008 } 8009 8010 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 8011 &targ_res); 8012 if (err) 8013 goto out; 8014 8015 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 8016 &targ_res); 8017 8018 out: 8019 kfree(specs); 8020 if (need_cands) { 8021 kfree(cands.cands); 8022 mutex_unlock(&cand_cache_mutex); 8023 if (ctx->log->level & BPF_LOG_LEVEL2) 8024 print_cand_cache(ctx->log); 8025 } 8026 return err; 8027 } 8028