xref: /openbmc/linux/kernel/bpf/btf.c (revision a50b854e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/slab.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/uaccess.h>
14 #include <linux/kernel.h>
15 #include <linux/idr.h>
16 #include <linux/sort.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/btf.h>
19 
20 /* BTF (BPF Type Format) is the meta data format which describes
21  * the data types of BPF program/map.  Hence, it basically focus
22  * on the C programming language which the modern BPF is primary
23  * using.
24  *
25  * ELF Section:
26  * ~~~~~~~~~~~
27  * The BTF data is stored under the ".BTF" ELF section
28  *
29  * struct btf_type:
30  * ~~~~~~~~~~~~~~~
31  * Each 'struct btf_type' object describes a C data type.
32  * Depending on the type it is describing, a 'struct btf_type'
33  * object may be followed by more data.  F.e.
34  * To describe an array, 'struct btf_type' is followed by
35  * 'struct btf_array'.
36  *
37  * 'struct btf_type' and any extra data following it are
38  * 4 bytes aligned.
39  *
40  * Type section:
41  * ~~~~~~~~~~~~~
42  * The BTF type section contains a list of 'struct btf_type' objects.
43  * Each one describes a C type.  Recall from the above section
44  * that a 'struct btf_type' object could be immediately followed by extra
45  * data in order to desribe some particular C types.
46  *
47  * type_id:
48  * ~~~~~~~
49  * Each btf_type object is identified by a type_id.  The type_id
50  * is implicitly implied by the location of the btf_type object in
51  * the BTF type section.  The first one has type_id 1.  The second
52  * one has type_id 2...etc.  Hence, an earlier btf_type has
53  * a smaller type_id.
54  *
55  * A btf_type object may refer to another btf_type object by using
56  * type_id (i.e. the "type" in the "struct btf_type").
57  *
58  * NOTE that we cannot assume any reference-order.
59  * A btf_type object can refer to an earlier btf_type object
60  * but it can also refer to a later btf_type object.
61  *
62  * For example, to describe "const void *".  A btf_type
63  * object describing "const" may refer to another btf_type
64  * object describing "void *".  This type-reference is done
65  * by specifying type_id:
66  *
67  * [1] CONST (anon) type_id=2
68  * [2] PTR (anon) type_id=0
69  *
70  * The above is the btf_verifier debug log:
71  *   - Each line started with "[?]" is a btf_type object
72  *   - [?] is the type_id of the btf_type object.
73  *   - CONST/PTR is the BTF_KIND_XXX
74  *   - "(anon)" is the name of the type.  It just
75  *     happens that CONST and PTR has no name.
76  *   - type_id=XXX is the 'u32 type' in btf_type
77  *
78  * NOTE: "void" has type_id 0
79  *
80  * String section:
81  * ~~~~~~~~~~~~~~
82  * The BTF string section contains the names used by the type section.
83  * Each string is referred by an "offset" from the beginning of the
84  * string section.
85  *
86  * Each string is '\0' terminated.
87  *
88  * The first character in the string section must be '\0'
89  * which is used to mean 'anonymous'. Some btf_type may not
90  * have a name.
91  */
92 
93 /* BTF verification:
94  *
95  * To verify BTF data, two passes are needed.
96  *
97  * Pass #1
98  * ~~~~~~~
99  * The first pass is to collect all btf_type objects to
100  * an array: "btf->types".
101  *
102  * Depending on the C type that a btf_type is describing,
103  * a btf_type may be followed by extra data.  We don't know
104  * how many btf_type is there, and more importantly we don't
105  * know where each btf_type is located in the type section.
106  *
107  * Without knowing the location of each type_id, most verifications
108  * cannot be done.  e.g. an earlier btf_type may refer to a later
109  * btf_type (recall the "const void *" above), so we cannot
110  * check this type-reference in the first pass.
111  *
112  * In the first pass, it still does some verifications (e.g.
113  * checking the name is a valid offset to the string section).
114  *
115  * Pass #2
116  * ~~~~~~~
117  * The main focus is to resolve a btf_type that is referring
118  * to another type.
119  *
120  * We have to ensure the referring type:
121  * 1) does exist in the BTF (i.e. in btf->types[])
122  * 2) does not cause a loop:
123  *	struct A {
124  *		struct B b;
125  *	};
126  *
127  *	struct B {
128  *		struct A a;
129  *	};
130  *
131  * btf_type_needs_resolve() decides if a btf_type needs
132  * to be resolved.
133  *
134  * The needs_resolve type implements the "resolve()" ops which
135  * essentially does a DFS and detects backedge.
136  *
137  * During resolve (or DFS), different C types have different
138  * "RESOLVED" conditions.
139  *
140  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
141  * members because a member is always referring to another
142  * type.  A struct's member can be treated as "RESOLVED" if
143  * it is referring to a BTF_KIND_PTR.  Otherwise, the
144  * following valid C struct would be rejected:
145  *
146  *	struct A {
147  *		int m;
148  *		struct A *a;
149  *	};
150  *
151  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
152  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
153  * detect a pointer loop, e.g.:
154  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
155  *                        ^                                         |
156  *                        +-----------------------------------------+
157  *
158  */
159 
160 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
164 #define BITS_ROUNDUP_BYTES(bits) \
165 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
166 
167 #define BTF_INFO_MASK 0x8f00ffff
168 #define BTF_INT_MASK 0x0fffffff
169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
171 
172 /* 16MB for 64k structs and each has 16 members and
173  * a few MB spaces for the string section.
174  * The hard limit is S32_MAX.
175  */
176 #define BTF_MAX_SIZE (16 * 1024 * 1024)
177 
178 #define for_each_member(i, struct_type, member)			\
179 	for (i = 0, member = btf_type_member(struct_type);	\
180 	     i < btf_type_vlen(struct_type);			\
181 	     i++, member++)
182 
183 #define for_each_member_from(i, from, struct_type, member)		\
184 	for (i = from, member = btf_type_member(struct_type) + from;	\
185 	     i < btf_type_vlen(struct_type);				\
186 	     i++, member++)
187 
188 #define for_each_vsi(i, struct_type, member)			\
189 	for (i = 0, member = btf_type_var_secinfo(struct_type);	\
190 	     i < btf_type_vlen(struct_type);			\
191 	     i++, member++)
192 
193 #define for_each_vsi_from(i, from, struct_type, member)				\
194 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
195 	     i < btf_type_vlen(struct_type);					\
196 	     i++, member++)
197 
198 DEFINE_IDR(btf_idr);
199 DEFINE_SPINLOCK(btf_idr_lock);
200 
201 struct btf {
202 	void *data;
203 	struct btf_type **types;
204 	u32 *resolved_ids;
205 	u32 *resolved_sizes;
206 	const char *strings;
207 	void *nohdr_data;
208 	struct btf_header hdr;
209 	u32 nr_types;
210 	u32 types_size;
211 	u32 data_size;
212 	refcount_t refcnt;
213 	u32 id;
214 	struct rcu_head rcu;
215 };
216 
217 enum verifier_phase {
218 	CHECK_META,
219 	CHECK_TYPE,
220 };
221 
222 struct resolve_vertex {
223 	const struct btf_type *t;
224 	u32 type_id;
225 	u16 next_member;
226 };
227 
228 enum visit_state {
229 	NOT_VISITED,
230 	VISITED,
231 	RESOLVED,
232 };
233 
234 enum resolve_mode {
235 	RESOLVE_TBD,	/* To Be Determined */
236 	RESOLVE_PTR,	/* Resolving for Pointer */
237 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
238 					 * or array
239 					 */
240 };
241 
242 #define MAX_RESOLVE_DEPTH 32
243 
244 struct btf_sec_info {
245 	u32 off;
246 	u32 len;
247 };
248 
249 struct btf_verifier_env {
250 	struct btf *btf;
251 	u8 *visit_states;
252 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
253 	struct bpf_verifier_log log;
254 	u32 log_type_id;
255 	u32 top_stack;
256 	enum verifier_phase phase;
257 	enum resolve_mode resolve_mode;
258 };
259 
260 static const char * const btf_kind_str[NR_BTF_KINDS] = {
261 	[BTF_KIND_UNKN]		= "UNKNOWN",
262 	[BTF_KIND_INT]		= "INT",
263 	[BTF_KIND_PTR]		= "PTR",
264 	[BTF_KIND_ARRAY]	= "ARRAY",
265 	[BTF_KIND_STRUCT]	= "STRUCT",
266 	[BTF_KIND_UNION]	= "UNION",
267 	[BTF_KIND_ENUM]		= "ENUM",
268 	[BTF_KIND_FWD]		= "FWD",
269 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
270 	[BTF_KIND_VOLATILE]	= "VOLATILE",
271 	[BTF_KIND_CONST]	= "CONST",
272 	[BTF_KIND_RESTRICT]	= "RESTRICT",
273 	[BTF_KIND_FUNC]		= "FUNC",
274 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
275 	[BTF_KIND_VAR]		= "VAR",
276 	[BTF_KIND_DATASEC]	= "DATASEC",
277 };
278 
279 struct btf_kind_operations {
280 	s32 (*check_meta)(struct btf_verifier_env *env,
281 			  const struct btf_type *t,
282 			  u32 meta_left);
283 	int (*resolve)(struct btf_verifier_env *env,
284 		       const struct resolve_vertex *v);
285 	int (*check_member)(struct btf_verifier_env *env,
286 			    const struct btf_type *struct_type,
287 			    const struct btf_member *member,
288 			    const struct btf_type *member_type);
289 	int (*check_kflag_member)(struct btf_verifier_env *env,
290 				  const struct btf_type *struct_type,
291 				  const struct btf_member *member,
292 				  const struct btf_type *member_type);
293 	void (*log_details)(struct btf_verifier_env *env,
294 			    const struct btf_type *t);
295 	void (*seq_show)(const struct btf *btf, const struct btf_type *t,
296 			 u32 type_id, void *data, u8 bits_offsets,
297 			 struct seq_file *m);
298 };
299 
300 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
301 static struct btf_type btf_void;
302 
303 static int btf_resolve(struct btf_verifier_env *env,
304 		       const struct btf_type *t, u32 type_id);
305 
306 static bool btf_type_is_modifier(const struct btf_type *t)
307 {
308 	/* Some of them is not strictly a C modifier
309 	 * but they are grouped into the same bucket
310 	 * for BTF concern:
311 	 *   A type (t) that refers to another
312 	 *   type through t->type AND its size cannot
313 	 *   be determined without following the t->type.
314 	 *
315 	 * ptr does not fall into this bucket
316 	 * because its size is always sizeof(void *).
317 	 */
318 	switch (BTF_INFO_KIND(t->info)) {
319 	case BTF_KIND_TYPEDEF:
320 	case BTF_KIND_VOLATILE:
321 	case BTF_KIND_CONST:
322 	case BTF_KIND_RESTRICT:
323 		return true;
324 	}
325 
326 	return false;
327 }
328 
329 bool btf_type_is_void(const struct btf_type *t)
330 {
331 	return t == &btf_void;
332 }
333 
334 static bool btf_type_is_fwd(const struct btf_type *t)
335 {
336 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
337 }
338 
339 static bool btf_type_is_func(const struct btf_type *t)
340 {
341 	return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC;
342 }
343 
344 static bool btf_type_is_func_proto(const struct btf_type *t)
345 {
346 	return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO;
347 }
348 
349 static bool btf_type_nosize(const struct btf_type *t)
350 {
351 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
352 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
353 }
354 
355 static bool btf_type_nosize_or_null(const struct btf_type *t)
356 {
357 	return !t || btf_type_nosize(t);
358 }
359 
360 /* union is only a special case of struct:
361  * all its offsetof(member) == 0
362  */
363 static bool btf_type_is_struct(const struct btf_type *t)
364 {
365 	u8 kind = BTF_INFO_KIND(t->info);
366 
367 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
368 }
369 
370 static bool __btf_type_is_struct(const struct btf_type *t)
371 {
372 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
373 }
374 
375 static bool btf_type_is_array(const struct btf_type *t)
376 {
377 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
378 }
379 
380 static bool btf_type_is_ptr(const struct btf_type *t)
381 {
382 	return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
383 }
384 
385 static bool btf_type_is_int(const struct btf_type *t)
386 {
387 	return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
388 }
389 
390 static bool btf_type_is_var(const struct btf_type *t)
391 {
392 	return BTF_INFO_KIND(t->info) == BTF_KIND_VAR;
393 }
394 
395 static bool btf_type_is_datasec(const struct btf_type *t)
396 {
397 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
398 }
399 
400 /* Types that act only as a source, not sink or intermediate
401  * type when resolving.
402  */
403 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
404 {
405 	return btf_type_is_var(t) ||
406 	       btf_type_is_datasec(t);
407 }
408 
409 /* What types need to be resolved?
410  *
411  * btf_type_is_modifier() is an obvious one.
412  *
413  * btf_type_is_struct() because its member refers to
414  * another type (through member->type).
415  *
416  * btf_type_is_var() because the variable refers to
417  * another type. btf_type_is_datasec() holds multiple
418  * btf_type_is_var() types that need resolving.
419  *
420  * btf_type_is_array() because its element (array->type)
421  * refers to another type.  Array can be thought of a
422  * special case of struct while array just has the same
423  * member-type repeated by array->nelems of times.
424  */
425 static bool btf_type_needs_resolve(const struct btf_type *t)
426 {
427 	return btf_type_is_modifier(t) ||
428 	       btf_type_is_ptr(t) ||
429 	       btf_type_is_struct(t) ||
430 	       btf_type_is_array(t) ||
431 	       btf_type_is_var(t) ||
432 	       btf_type_is_datasec(t);
433 }
434 
435 /* t->size can be used */
436 static bool btf_type_has_size(const struct btf_type *t)
437 {
438 	switch (BTF_INFO_KIND(t->info)) {
439 	case BTF_KIND_INT:
440 	case BTF_KIND_STRUCT:
441 	case BTF_KIND_UNION:
442 	case BTF_KIND_ENUM:
443 	case BTF_KIND_DATASEC:
444 		return true;
445 	}
446 
447 	return false;
448 }
449 
450 static const char *btf_int_encoding_str(u8 encoding)
451 {
452 	if (encoding == 0)
453 		return "(none)";
454 	else if (encoding == BTF_INT_SIGNED)
455 		return "SIGNED";
456 	else if (encoding == BTF_INT_CHAR)
457 		return "CHAR";
458 	else if (encoding == BTF_INT_BOOL)
459 		return "BOOL";
460 	else
461 		return "UNKN";
462 }
463 
464 static u16 btf_type_vlen(const struct btf_type *t)
465 {
466 	return BTF_INFO_VLEN(t->info);
467 }
468 
469 static bool btf_type_kflag(const struct btf_type *t)
470 {
471 	return BTF_INFO_KFLAG(t->info);
472 }
473 
474 static u32 btf_member_bit_offset(const struct btf_type *struct_type,
475 			     const struct btf_member *member)
476 {
477 	return btf_type_kflag(struct_type) ? BTF_MEMBER_BIT_OFFSET(member->offset)
478 					   : member->offset;
479 }
480 
481 static u32 btf_member_bitfield_size(const struct btf_type *struct_type,
482 				    const struct btf_member *member)
483 {
484 	return btf_type_kflag(struct_type) ? BTF_MEMBER_BITFIELD_SIZE(member->offset)
485 					   : 0;
486 }
487 
488 static u32 btf_type_int(const struct btf_type *t)
489 {
490 	return *(u32 *)(t + 1);
491 }
492 
493 static const struct btf_array *btf_type_array(const struct btf_type *t)
494 {
495 	return (const struct btf_array *)(t + 1);
496 }
497 
498 static const struct btf_member *btf_type_member(const struct btf_type *t)
499 {
500 	return (const struct btf_member *)(t + 1);
501 }
502 
503 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
504 {
505 	return (const struct btf_enum *)(t + 1);
506 }
507 
508 static const struct btf_var *btf_type_var(const struct btf_type *t)
509 {
510 	return (const struct btf_var *)(t + 1);
511 }
512 
513 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t)
514 {
515 	return (const struct btf_var_secinfo *)(t + 1);
516 }
517 
518 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
519 {
520 	return kind_ops[BTF_INFO_KIND(t->info)];
521 }
522 
523 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
524 {
525 	return BTF_STR_OFFSET_VALID(offset) &&
526 		offset < btf->hdr.str_len;
527 }
528 
529 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
530 {
531 	if ((first ? !isalpha(c) :
532 		     !isalnum(c)) &&
533 	    c != '_' &&
534 	    ((c == '.' && !dot_ok) ||
535 	      c != '.'))
536 		return false;
537 	return true;
538 }
539 
540 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
541 {
542 	/* offset must be valid */
543 	const char *src = &btf->strings[offset];
544 	const char *src_limit;
545 
546 	if (!__btf_name_char_ok(*src, true, dot_ok))
547 		return false;
548 
549 	/* set a limit on identifier length */
550 	src_limit = src + KSYM_NAME_LEN;
551 	src++;
552 	while (*src && src < src_limit) {
553 		if (!__btf_name_char_ok(*src, false, dot_ok))
554 			return false;
555 		src++;
556 	}
557 
558 	return !*src;
559 }
560 
561 /* Only C-style identifier is permitted. This can be relaxed if
562  * necessary.
563  */
564 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
565 {
566 	return __btf_name_valid(btf, offset, false);
567 }
568 
569 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
570 {
571 	return __btf_name_valid(btf, offset, true);
572 }
573 
574 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
575 {
576 	if (!offset)
577 		return "(anon)";
578 	else if (offset < btf->hdr.str_len)
579 		return &btf->strings[offset];
580 	else
581 		return "(invalid-name-offset)";
582 }
583 
584 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
585 {
586 	if (offset < btf->hdr.str_len)
587 		return &btf->strings[offset];
588 
589 	return NULL;
590 }
591 
592 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
593 {
594 	if (type_id > btf->nr_types)
595 		return NULL;
596 
597 	return btf->types[type_id];
598 }
599 
600 /*
601  * Regular int is not a bit field and it must be either
602  * u8/u16/u32/u64 or __int128.
603  */
604 static bool btf_type_int_is_regular(const struct btf_type *t)
605 {
606 	u8 nr_bits, nr_bytes;
607 	u32 int_data;
608 
609 	int_data = btf_type_int(t);
610 	nr_bits = BTF_INT_BITS(int_data);
611 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
612 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
613 	    BTF_INT_OFFSET(int_data) ||
614 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
615 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
616 	     nr_bytes != (2 * sizeof(u64)))) {
617 		return false;
618 	}
619 
620 	return true;
621 }
622 
623 /*
624  * Check that given struct member is a regular int with expected
625  * offset and size.
626  */
627 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
628 			   const struct btf_member *m,
629 			   u32 expected_offset, u32 expected_size)
630 {
631 	const struct btf_type *t;
632 	u32 id, int_data;
633 	u8 nr_bits;
634 
635 	id = m->type;
636 	t = btf_type_id_size(btf, &id, NULL);
637 	if (!t || !btf_type_is_int(t))
638 		return false;
639 
640 	int_data = btf_type_int(t);
641 	nr_bits = BTF_INT_BITS(int_data);
642 	if (btf_type_kflag(s)) {
643 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
644 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
645 
646 		/* if kflag set, int should be a regular int and
647 		 * bit offset should be at byte boundary.
648 		 */
649 		return !bitfield_size &&
650 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
651 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
652 	}
653 
654 	if (BTF_INT_OFFSET(int_data) ||
655 	    BITS_PER_BYTE_MASKED(m->offset) ||
656 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
657 	    BITS_PER_BYTE_MASKED(nr_bits) ||
658 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
659 		return false;
660 
661 	return true;
662 }
663 
664 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
665 					      const char *fmt, ...)
666 {
667 	va_list args;
668 
669 	va_start(args, fmt);
670 	bpf_verifier_vlog(log, fmt, args);
671 	va_end(args);
672 }
673 
674 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
675 					    const char *fmt, ...)
676 {
677 	struct bpf_verifier_log *log = &env->log;
678 	va_list args;
679 
680 	if (!bpf_verifier_log_needed(log))
681 		return;
682 
683 	va_start(args, fmt);
684 	bpf_verifier_vlog(log, fmt, args);
685 	va_end(args);
686 }
687 
688 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
689 						   const struct btf_type *t,
690 						   bool log_details,
691 						   const char *fmt, ...)
692 {
693 	struct bpf_verifier_log *log = &env->log;
694 	u8 kind = BTF_INFO_KIND(t->info);
695 	struct btf *btf = env->btf;
696 	va_list args;
697 
698 	if (!bpf_verifier_log_needed(log))
699 		return;
700 
701 	__btf_verifier_log(log, "[%u] %s %s%s",
702 			   env->log_type_id,
703 			   btf_kind_str[kind],
704 			   __btf_name_by_offset(btf, t->name_off),
705 			   log_details ? " " : "");
706 
707 	if (log_details)
708 		btf_type_ops(t)->log_details(env, t);
709 
710 	if (fmt && *fmt) {
711 		__btf_verifier_log(log, " ");
712 		va_start(args, fmt);
713 		bpf_verifier_vlog(log, fmt, args);
714 		va_end(args);
715 	}
716 
717 	__btf_verifier_log(log, "\n");
718 }
719 
720 #define btf_verifier_log_type(env, t, ...) \
721 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
722 #define btf_verifier_log_basic(env, t, ...) \
723 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
724 
725 __printf(4, 5)
726 static void btf_verifier_log_member(struct btf_verifier_env *env,
727 				    const struct btf_type *struct_type,
728 				    const struct btf_member *member,
729 				    const char *fmt, ...)
730 {
731 	struct bpf_verifier_log *log = &env->log;
732 	struct btf *btf = env->btf;
733 	va_list args;
734 
735 	if (!bpf_verifier_log_needed(log))
736 		return;
737 
738 	/* The CHECK_META phase already did a btf dump.
739 	 *
740 	 * If member is logged again, it must hit an error in
741 	 * parsing this member.  It is useful to print out which
742 	 * struct this member belongs to.
743 	 */
744 	if (env->phase != CHECK_META)
745 		btf_verifier_log_type(env, struct_type, NULL);
746 
747 	if (btf_type_kflag(struct_type))
748 		__btf_verifier_log(log,
749 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
750 				   __btf_name_by_offset(btf, member->name_off),
751 				   member->type,
752 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
753 				   BTF_MEMBER_BIT_OFFSET(member->offset));
754 	else
755 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
756 				   __btf_name_by_offset(btf, member->name_off),
757 				   member->type, member->offset);
758 
759 	if (fmt && *fmt) {
760 		__btf_verifier_log(log, " ");
761 		va_start(args, fmt);
762 		bpf_verifier_vlog(log, fmt, args);
763 		va_end(args);
764 	}
765 
766 	__btf_verifier_log(log, "\n");
767 }
768 
769 __printf(4, 5)
770 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
771 				 const struct btf_type *datasec_type,
772 				 const struct btf_var_secinfo *vsi,
773 				 const char *fmt, ...)
774 {
775 	struct bpf_verifier_log *log = &env->log;
776 	va_list args;
777 
778 	if (!bpf_verifier_log_needed(log))
779 		return;
780 	if (env->phase != CHECK_META)
781 		btf_verifier_log_type(env, datasec_type, NULL);
782 
783 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
784 			   vsi->type, vsi->offset, vsi->size);
785 	if (fmt && *fmt) {
786 		__btf_verifier_log(log, " ");
787 		va_start(args, fmt);
788 		bpf_verifier_vlog(log, fmt, args);
789 		va_end(args);
790 	}
791 
792 	__btf_verifier_log(log, "\n");
793 }
794 
795 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
796 				 u32 btf_data_size)
797 {
798 	struct bpf_verifier_log *log = &env->log;
799 	const struct btf *btf = env->btf;
800 	const struct btf_header *hdr;
801 
802 	if (!bpf_verifier_log_needed(log))
803 		return;
804 
805 	hdr = &btf->hdr;
806 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
807 	__btf_verifier_log(log, "version: %u\n", hdr->version);
808 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
809 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
810 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
811 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
812 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
813 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
814 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
815 }
816 
817 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
818 {
819 	struct btf *btf = env->btf;
820 
821 	/* < 2 because +1 for btf_void which is always in btf->types[0].
822 	 * btf_void is not accounted in btf->nr_types because btf_void
823 	 * does not come from the BTF file.
824 	 */
825 	if (btf->types_size - btf->nr_types < 2) {
826 		/* Expand 'types' array */
827 
828 		struct btf_type **new_types;
829 		u32 expand_by, new_size;
830 
831 		if (btf->types_size == BTF_MAX_TYPE) {
832 			btf_verifier_log(env, "Exceeded max num of types");
833 			return -E2BIG;
834 		}
835 
836 		expand_by = max_t(u32, btf->types_size >> 2, 16);
837 		new_size = min_t(u32, BTF_MAX_TYPE,
838 				 btf->types_size + expand_by);
839 
840 		new_types = kvcalloc(new_size, sizeof(*new_types),
841 				     GFP_KERNEL | __GFP_NOWARN);
842 		if (!new_types)
843 			return -ENOMEM;
844 
845 		if (btf->nr_types == 0)
846 			new_types[0] = &btf_void;
847 		else
848 			memcpy(new_types, btf->types,
849 			       sizeof(*btf->types) * (btf->nr_types + 1));
850 
851 		kvfree(btf->types);
852 		btf->types = new_types;
853 		btf->types_size = new_size;
854 	}
855 
856 	btf->types[++(btf->nr_types)] = t;
857 
858 	return 0;
859 }
860 
861 static int btf_alloc_id(struct btf *btf)
862 {
863 	int id;
864 
865 	idr_preload(GFP_KERNEL);
866 	spin_lock_bh(&btf_idr_lock);
867 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
868 	if (id > 0)
869 		btf->id = id;
870 	spin_unlock_bh(&btf_idr_lock);
871 	idr_preload_end();
872 
873 	if (WARN_ON_ONCE(!id))
874 		return -ENOSPC;
875 
876 	return id > 0 ? 0 : id;
877 }
878 
879 static void btf_free_id(struct btf *btf)
880 {
881 	unsigned long flags;
882 
883 	/*
884 	 * In map-in-map, calling map_delete_elem() on outer
885 	 * map will call bpf_map_put on the inner map.
886 	 * It will then eventually call btf_free_id()
887 	 * on the inner map.  Some of the map_delete_elem()
888 	 * implementation may have irq disabled, so
889 	 * we need to use the _irqsave() version instead
890 	 * of the _bh() version.
891 	 */
892 	spin_lock_irqsave(&btf_idr_lock, flags);
893 	idr_remove(&btf_idr, btf->id);
894 	spin_unlock_irqrestore(&btf_idr_lock, flags);
895 }
896 
897 static void btf_free(struct btf *btf)
898 {
899 	kvfree(btf->types);
900 	kvfree(btf->resolved_sizes);
901 	kvfree(btf->resolved_ids);
902 	kvfree(btf->data);
903 	kfree(btf);
904 }
905 
906 static void btf_free_rcu(struct rcu_head *rcu)
907 {
908 	struct btf *btf = container_of(rcu, struct btf, rcu);
909 
910 	btf_free(btf);
911 }
912 
913 void btf_put(struct btf *btf)
914 {
915 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
916 		btf_free_id(btf);
917 		call_rcu(&btf->rcu, btf_free_rcu);
918 	}
919 }
920 
921 static int env_resolve_init(struct btf_verifier_env *env)
922 {
923 	struct btf *btf = env->btf;
924 	u32 nr_types = btf->nr_types;
925 	u32 *resolved_sizes = NULL;
926 	u32 *resolved_ids = NULL;
927 	u8 *visit_states = NULL;
928 
929 	/* +1 for btf_void */
930 	resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
931 				  GFP_KERNEL | __GFP_NOWARN);
932 	if (!resolved_sizes)
933 		goto nomem;
934 
935 	resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
936 				GFP_KERNEL | __GFP_NOWARN);
937 	if (!resolved_ids)
938 		goto nomem;
939 
940 	visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
941 				GFP_KERNEL | __GFP_NOWARN);
942 	if (!visit_states)
943 		goto nomem;
944 
945 	btf->resolved_sizes = resolved_sizes;
946 	btf->resolved_ids = resolved_ids;
947 	env->visit_states = visit_states;
948 
949 	return 0;
950 
951 nomem:
952 	kvfree(resolved_sizes);
953 	kvfree(resolved_ids);
954 	kvfree(visit_states);
955 	return -ENOMEM;
956 }
957 
958 static void btf_verifier_env_free(struct btf_verifier_env *env)
959 {
960 	kvfree(env->visit_states);
961 	kfree(env);
962 }
963 
964 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
965 				     const struct btf_type *next_type)
966 {
967 	switch (env->resolve_mode) {
968 	case RESOLVE_TBD:
969 		/* int, enum or void is a sink */
970 		return !btf_type_needs_resolve(next_type);
971 	case RESOLVE_PTR:
972 		/* int, enum, void, struct, array, func or func_proto is a sink
973 		 * for ptr
974 		 */
975 		return !btf_type_is_modifier(next_type) &&
976 			!btf_type_is_ptr(next_type);
977 	case RESOLVE_STRUCT_OR_ARRAY:
978 		/* int, enum, void, ptr, func or func_proto is a sink
979 		 * for struct and array
980 		 */
981 		return !btf_type_is_modifier(next_type) &&
982 			!btf_type_is_array(next_type) &&
983 			!btf_type_is_struct(next_type);
984 	default:
985 		BUG();
986 	}
987 }
988 
989 static bool env_type_is_resolved(const struct btf_verifier_env *env,
990 				 u32 type_id)
991 {
992 	return env->visit_states[type_id] == RESOLVED;
993 }
994 
995 static int env_stack_push(struct btf_verifier_env *env,
996 			  const struct btf_type *t, u32 type_id)
997 {
998 	struct resolve_vertex *v;
999 
1000 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1001 		return -E2BIG;
1002 
1003 	if (env->visit_states[type_id] != NOT_VISITED)
1004 		return -EEXIST;
1005 
1006 	env->visit_states[type_id] = VISITED;
1007 
1008 	v = &env->stack[env->top_stack++];
1009 	v->t = t;
1010 	v->type_id = type_id;
1011 	v->next_member = 0;
1012 
1013 	if (env->resolve_mode == RESOLVE_TBD) {
1014 		if (btf_type_is_ptr(t))
1015 			env->resolve_mode = RESOLVE_PTR;
1016 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1017 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static void env_stack_set_next_member(struct btf_verifier_env *env,
1024 				      u16 next_member)
1025 {
1026 	env->stack[env->top_stack - 1].next_member = next_member;
1027 }
1028 
1029 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1030 				   u32 resolved_type_id,
1031 				   u32 resolved_size)
1032 {
1033 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1034 	struct btf *btf = env->btf;
1035 
1036 	btf->resolved_sizes[type_id] = resolved_size;
1037 	btf->resolved_ids[type_id] = resolved_type_id;
1038 	env->visit_states[type_id] = RESOLVED;
1039 }
1040 
1041 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1042 {
1043 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1044 }
1045 
1046 /* The input param "type_id" must point to a needs_resolve type */
1047 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1048 						  u32 *type_id)
1049 {
1050 	*type_id = btf->resolved_ids[*type_id];
1051 	return btf_type_by_id(btf, *type_id);
1052 }
1053 
1054 const struct btf_type *btf_type_id_size(const struct btf *btf,
1055 					u32 *type_id, u32 *ret_size)
1056 {
1057 	const struct btf_type *size_type;
1058 	u32 size_type_id = *type_id;
1059 	u32 size = 0;
1060 
1061 	size_type = btf_type_by_id(btf, size_type_id);
1062 	if (btf_type_nosize_or_null(size_type))
1063 		return NULL;
1064 
1065 	if (btf_type_has_size(size_type)) {
1066 		size = size_type->size;
1067 	} else if (btf_type_is_array(size_type)) {
1068 		size = btf->resolved_sizes[size_type_id];
1069 	} else if (btf_type_is_ptr(size_type)) {
1070 		size = sizeof(void *);
1071 	} else {
1072 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1073 				 !btf_type_is_var(size_type)))
1074 			return NULL;
1075 
1076 		size_type_id = btf->resolved_ids[size_type_id];
1077 		size_type = btf_type_by_id(btf, size_type_id);
1078 		if (btf_type_nosize_or_null(size_type))
1079 			return NULL;
1080 		else if (btf_type_has_size(size_type))
1081 			size = size_type->size;
1082 		else if (btf_type_is_array(size_type))
1083 			size = btf->resolved_sizes[size_type_id];
1084 		else if (btf_type_is_ptr(size_type))
1085 			size = sizeof(void *);
1086 		else
1087 			return NULL;
1088 	}
1089 
1090 	*type_id = size_type_id;
1091 	if (ret_size)
1092 		*ret_size = size;
1093 
1094 	return size_type;
1095 }
1096 
1097 static int btf_df_check_member(struct btf_verifier_env *env,
1098 			       const struct btf_type *struct_type,
1099 			       const struct btf_member *member,
1100 			       const struct btf_type *member_type)
1101 {
1102 	btf_verifier_log_basic(env, struct_type,
1103 			       "Unsupported check_member");
1104 	return -EINVAL;
1105 }
1106 
1107 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1108 				     const struct btf_type *struct_type,
1109 				     const struct btf_member *member,
1110 				     const struct btf_type *member_type)
1111 {
1112 	btf_verifier_log_basic(env, struct_type,
1113 			       "Unsupported check_kflag_member");
1114 	return -EINVAL;
1115 }
1116 
1117 /* Used for ptr, array and struct/union type members.
1118  * int, enum and modifier types have their specific callback functions.
1119  */
1120 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1121 					  const struct btf_type *struct_type,
1122 					  const struct btf_member *member,
1123 					  const struct btf_type *member_type)
1124 {
1125 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1126 		btf_verifier_log_member(env, struct_type, member,
1127 					"Invalid member bitfield_size");
1128 		return -EINVAL;
1129 	}
1130 
1131 	/* bitfield size is 0, so member->offset represents bit offset only.
1132 	 * It is safe to call non kflag check_member variants.
1133 	 */
1134 	return btf_type_ops(member_type)->check_member(env, struct_type,
1135 						       member,
1136 						       member_type);
1137 }
1138 
1139 static int btf_df_resolve(struct btf_verifier_env *env,
1140 			  const struct resolve_vertex *v)
1141 {
1142 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1143 	return -EINVAL;
1144 }
1145 
1146 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1147 			    u32 type_id, void *data, u8 bits_offsets,
1148 			    struct seq_file *m)
1149 {
1150 	seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1151 }
1152 
1153 static int btf_int_check_member(struct btf_verifier_env *env,
1154 				const struct btf_type *struct_type,
1155 				const struct btf_member *member,
1156 				const struct btf_type *member_type)
1157 {
1158 	u32 int_data = btf_type_int(member_type);
1159 	u32 struct_bits_off = member->offset;
1160 	u32 struct_size = struct_type->size;
1161 	u32 nr_copy_bits;
1162 	u32 bytes_offset;
1163 
1164 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1165 		btf_verifier_log_member(env, struct_type, member,
1166 					"bits_offset exceeds U32_MAX");
1167 		return -EINVAL;
1168 	}
1169 
1170 	struct_bits_off += BTF_INT_OFFSET(int_data);
1171 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1172 	nr_copy_bits = BTF_INT_BITS(int_data) +
1173 		BITS_PER_BYTE_MASKED(struct_bits_off);
1174 
1175 	if (nr_copy_bits > BITS_PER_U128) {
1176 		btf_verifier_log_member(env, struct_type, member,
1177 					"nr_copy_bits exceeds 128");
1178 		return -EINVAL;
1179 	}
1180 
1181 	if (struct_size < bytes_offset ||
1182 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1183 		btf_verifier_log_member(env, struct_type, member,
1184 					"Member exceeds struct_size");
1185 		return -EINVAL;
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1192 				      const struct btf_type *struct_type,
1193 				      const struct btf_member *member,
1194 				      const struct btf_type *member_type)
1195 {
1196 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1197 	u32 int_data = btf_type_int(member_type);
1198 	u32 struct_size = struct_type->size;
1199 	u32 nr_copy_bits;
1200 
1201 	/* a regular int type is required for the kflag int member */
1202 	if (!btf_type_int_is_regular(member_type)) {
1203 		btf_verifier_log_member(env, struct_type, member,
1204 					"Invalid member base type");
1205 		return -EINVAL;
1206 	}
1207 
1208 	/* check sanity of bitfield size */
1209 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1210 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1211 	nr_int_data_bits = BTF_INT_BITS(int_data);
1212 	if (!nr_bits) {
1213 		/* Not a bitfield member, member offset must be at byte
1214 		 * boundary.
1215 		 */
1216 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1217 			btf_verifier_log_member(env, struct_type, member,
1218 						"Invalid member offset");
1219 			return -EINVAL;
1220 		}
1221 
1222 		nr_bits = nr_int_data_bits;
1223 	} else if (nr_bits > nr_int_data_bits) {
1224 		btf_verifier_log_member(env, struct_type, member,
1225 					"Invalid member bitfield_size");
1226 		return -EINVAL;
1227 	}
1228 
1229 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1230 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1231 	if (nr_copy_bits > BITS_PER_U128) {
1232 		btf_verifier_log_member(env, struct_type, member,
1233 					"nr_copy_bits exceeds 128");
1234 		return -EINVAL;
1235 	}
1236 
1237 	if (struct_size < bytes_offset ||
1238 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1239 		btf_verifier_log_member(env, struct_type, member,
1240 					"Member exceeds struct_size");
1241 		return -EINVAL;
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1248 			      const struct btf_type *t,
1249 			      u32 meta_left)
1250 {
1251 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1252 	u16 encoding;
1253 
1254 	if (meta_left < meta_needed) {
1255 		btf_verifier_log_basic(env, t,
1256 				       "meta_left:%u meta_needed:%u",
1257 				       meta_left, meta_needed);
1258 		return -EINVAL;
1259 	}
1260 
1261 	if (btf_type_vlen(t)) {
1262 		btf_verifier_log_type(env, t, "vlen != 0");
1263 		return -EINVAL;
1264 	}
1265 
1266 	if (btf_type_kflag(t)) {
1267 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1268 		return -EINVAL;
1269 	}
1270 
1271 	int_data = btf_type_int(t);
1272 	if (int_data & ~BTF_INT_MASK) {
1273 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1274 				       int_data);
1275 		return -EINVAL;
1276 	}
1277 
1278 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1279 
1280 	if (nr_bits > BITS_PER_U128) {
1281 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1282 				      BITS_PER_U128);
1283 		return -EINVAL;
1284 	}
1285 
1286 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1287 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1288 		return -EINVAL;
1289 	}
1290 
1291 	/*
1292 	 * Only one of the encoding bits is allowed and it
1293 	 * should be sufficient for the pretty print purpose (i.e. decoding).
1294 	 * Multiple bits can be allowed later if it is found
1295 	 * to be insufficient.
1296 	 */
1297 	encoding = BTF_INT_ENCODING(int_data);
1298 	if (encoding &&
1299 	    encoding != BTF_INT_SIGNED &&
1300 	    encoding != BTF_INT_CHAR &&
1301 	    encoding != BTF_INT_BOOL) {
1302 		btf_verifier_log_type(env, t, "Unsupported encoding");
1303 		return -ENOTSUPP;
1304 	}
1305 
1306 	btf_verifier_log_type(env, t, NULL);
1307 
1308 	return meta_needed;
1309 }
1310 
1311 static void btf_int_log(struct btf_verifier_env *env,
1312 			const struct btf_type *t)
1313 {
1314 	int int_data = btf_type_int(t);
1315 
1316 	btf_verifier_log(env,
1317 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1318 			 t->size, BTF_INT_OFFSET(int_data),
1319 			 BTF_INT_BITS(int_data),
1320 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1321 }
1322 
1323 static void btf_int128_print(struct seq_file *m, void *data)
1324 {
1325 	/* data points to a __int128 number.
1326 	 * Suppose
1327 	 *     int128_num = *(__int128 *)data;
1328 	 * The below formulas shows what upper_num and lower_num represents:
1329 	 *     upper_num = int128_num >> 64;
1330 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1331 	 */
1332 	u64 upper_num, lower_num;
1333 
1334 #ifdef __BIG_ENDIAN_BITFIELD
1335 	upper_num = *(u64 *)data;
1336 	lower_num = *(u64 *)(data + 8);
1337 #else
1338 	upper_num = *(u64 *)(data + 8);
1339 	lower_num = *(u64 *)data;
1340 #endif
1341 	if (upper_num == 0)
1342 		seq_printf(m, "0x%llx", lower_num);
1343 	else
1344 		seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
1345 }
1346 
1347 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
1348 			     u16 right_shift_bits)
1349 {
1350 	u64 upper_num, lower_num;
1351 
1352 #ifdef __BIG_ENDIAN_BITFIELD
1353 	upper_num = print_num[0];
1354 	lower_num = print_num[1];
1355 #else
1356 	upper_num = print_num[1];
1357 	lower_num = print_num[0];
1358 #endif
1359 
1360 	/* shake out un-needed bits by shift/or operations */
1361 	if (left_shift_bits >= 64) {
1362 		upper_num = lower_num << (left_shift_bits - 64);
1363 		lower_num = 0;
1364 	} else {
1365 		upper_num = (upper_num << left_shift_bits) |
1366 			    (lower_num >> (64 - left_shift_bits));
1367 		lower_num = lower_num << left_shift_bits;
1368 	}
1369 
1370 	if (right_shift_bits >= 64) {
1371 		lower_num = upper_num >> (right_shift_bits - 64);
1372 		upper_num = 0;
1373 	} else {
1374 		lower_num = (lower_num >> right_shift_bits) |
1375 			    (upper_num << (64 - right_shift_bits));
1376 		upper_num = upper_num >> right_shift_bits;
1377 	}
1378 
1379 #ifdef __BIG_ENDIAN_BITFIELD
1380 	print_num[0] = upper_num;
1381 	print_num[1] = lower_num;
1382 #else
1383 	print_num[0] = lower_num;
1384 	print_num[1] = upper_num;
1385 #endif
1386 }
1387 
1388 static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1389 				  u8 nr_bits, struct seq_file *m)
1390 {
1391 	u16 left_shift_bits, right_shift_bits;
1392 	u8 nr_copy_bytes;
1393 	u8 nr_copy_bits;
1394 	u64 print_num[2] = {};
1395 
1396 	nr_copy_bits = nr_bits + bits_offset;
1397 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1398 
1399 	memcpy(print_num, data, nr_copy_bytes);
1400 
1401 #ifdef __BIG_ENDIAN_BITFIELD
1402 	left_shift_bits = bits_offset;
1403 #else
1404 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
1405 #endif
1406 	right_shift_bits = BITS_PER_U128 - nr_bits;
1407 
1408 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
1409 	btf_int128_print(m, print_num);
1410 }
1411 
1412 
1413 static void btf_int_bits_seq_show(const struct btf *btf,
1414 				  const struct btf_type *t,
1415 				  void *data, u8 bits_offset,
1416 				  struct seq_file *m)
1417 {
1418 	u32 int_data = btf_type_int(t);
1419 	u8 nr_bits = BTF_INT_BITS(int_data);
1420 	u8 total_bits_offset;
1421 
1422 	/*
1423 	 * bits_offset is at most 7.
1424 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
1425 	 */
1426 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1427 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1428 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1429 	btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
1430 }
1431 
1432 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1433 			     u32 type_id, void *data, u8 bits_offset,
1434 			     struct seq_file *m)
1435 {
1436 	u32 int_data = btf_type_int(t);
1437 	u8 encoding = BTF_INT_ENCODING(int_data);
1438 	bool sign = encoding & BTF_INT_SIGNED;
1439 	u8 nr_bits = BTF_INT_BITS(int_data);
1440 
1441 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
1442 	    BITS_PER_BYTE_MASKED(nr_bits)) {
1443 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1444 		return;
1445 	}
1446 
1447 	switch (nr_bits) {
1448 	case 128:
1449 		btf_int128_print(m, data);
1450 		break;
1451 	case 64:
1452 		if (sign)
1453 			seq_printf(m, "%lld", *(s64 *)data);
1454 		else
1455 			seq_printf(m, "%llu", *(u64 *)data);
1456 		break;
1457 	case 32:
1458 		if (sign)
1459 			seq_printf(m, "%d", *(s32 *)data);
1460 		else
1461 			seq_printf(m, "%u", *(u32 *)data);
1462 		break;
1463 	case 16:
1464 		if (sign)
1465 			seq_printf(m, "%d", *(s16 *)data);
1466 		else
1467 			seq_printf(m, "%u", *(u16 *)data);
1468 		break;
1469 	case 8:
1470 		if (sign)
1471 			seq_printf(m, "%d", *(s8 *)data);
1472 		else
1473 			seq_printf(m, "%u", *(u8 *)data);
1474 		break;
1475 	default:
1476 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1477 	}
1478 }
1479 
1480 static const struct btf_kind_operations int_ops = {
1481 	.check_meta = btf_int_check_meta,
1482 	.resolve = btf_df_resolve,
1483 	.check_member = btf_int_check_member,
1484 	.check_kflag_member = btf_int_check_kflag_member,
1485 	.log_details = btf_int_log,
1486 	.seq_show = btf_int_seq_show,
1487 };
1488 
1489 static int btf_modifier_check_member(struct btf_verifier_env *env,
1490 				     const struct btf_type *struct_type,
1491 				     const struct btf_member *member,
1492 				     const struct btf_type *member_type)
1493 {
1494 	const struct btf_type *resolved_type;
1495 	u32 resolved_type_id = member->type;
1496 	struct btf_member resolved_member;
1497 	struct btf *btf = env->btf;
1498 
1499 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1500 	if (!resolved_type) {
1501 		btf_verifier_log_member(env, struct_type, member,
1502 					"Invalid member");
1503 		return -EINVAL;
1504 	}
1505 
1506 	resolved_member = *member;
1507 	resolved_member.type = resolved_type_id;
1508 
1509 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
1510 							 &resolved_member,
1511 							 resolved_type);
1512 }
1513 
1514 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1515 					   const struct btf_type *struct_type,
1516 					   const struct btf_member *member,
1517 					   const struct btf_type *member_type)
1518 {
1519 	const struct btf_type *resolved_type;
1520 	u32 resolved_type_id = member->type;
1521 	struct btf_member resolved_member;
1522 	struct btf *btf = env->btf;
1523 
1524 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1525 	if (!resolved_type) {
1526 		btf_verifier_log_member(env, struct_type, member,
1527 					"Invalid member");
1528 		return -EINVAL;
1529 	}
1530 
1531 	resolved_member = *member;
1532 	resolved_member.type = resolved_type_id;
1533 
1534 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1535 							       &resolved_member,
1536 							       resolved_type);
1537 }
1538 
1539 static int btf_ptr_check_member(struct btf_verifier_env *env,
1540 				const struct btf_type *struct_type,
1541 				const struct btf_member *member,
1542 				const struct btf_type *member_type)
1543 {
1544 	u32 struct_size, struct_bits_off, bytes_offset;
1545 
1546 	struct_size = struct_type->size;
1547 	struct_bits_off = member->offset;
1548 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1549 
1550 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1551 		btf_verifier_log_member(env, struct_type, member,
1552 					"Member is not byte aligned");
1553 		return -EINVAL;
1554 	}
1555 
1556 	if (struct_size - bytes_offset < sizeof(void *)) {
1557 		btf_verifier_log_member(env, struct_type, member,
1558 					"Member exceeds struct_size");
1559 		return -EINVAL;
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1566 				   const struct btf_type *t,
1567 				   u32 meta_left)
1568 {
1569 	if (btf_type_vlen(t)) {
1570 		btf_verifier_log_type(env, t, "vlen != 0");
1571 		return -EINVAL;
1572 	}
1573 
1574 	if (btf_type_kflag(t)) {
1575 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1576 		return -EINVAL;
1577 	}
1578 
1579 	if (!BTF_TYPE_ID_VALID(t->type)) {
1580 		btf_verifier_log_type(env, t, "Invalid type_id");
1581 		return -EINVAL;
1582 	}
1583 
1584 	/* typedef type must have a valid name, and other ref types,
1585 	 * volatile, const, restrict, should have a null name.
1586 	 */
1587 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1588 		if (!t->name_off ||
1589 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
1590 			btf_verifier_log_type(env, t, "Invalid name");
1591 			return -EINVAL;
1592 		}
1593 	} else {
1594 		if (t->name_off) {
1595 			btf_verifier_log_type(env, t, "Invalid name");
1596 			return -EINVAL;
1597 		}
1598 	}
1599 
1600 	btf_verifier_log_type(env, t, NULL);
1601 
1602 	return 0;
1603 }
1604 
1605 static int btf_modifier_resolve(struct btf_verifier_env *env,
1606 				const struct resolve_vertex *v)
1607 {
1608 	const struct btf_type *t = v->t;
1609 	const struct btf_type *next_type;
1610 	u32 next_type_id = t->type;
1611 	struct btf *btf = env->btf;
1612 
1613 	next_type = btf_type_by_id(btf, next_type_id);
1614 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1615 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1616 		return -EINVAL;
1617 	}
1618 
1619 	if (!env_type_is_resolve_sink(env, next_type) &&
1620 	    !env_type_is_resolved(env, next_type_id))
1621 		return env_stack_push(env, next_type, next_type_id);
1622 
1623 	/* Figure out the resolved next_type_id with size.
1624 	 * They will be stored in the current modifier's
1625 	 * resolved_ids and resolved_sizes such that it can
1626 	 * save us a few type-following when we use it later (e.g. in
1627 	 * pretty print).
1628 	 */
1629 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1630 		if (env_type_is_resolved(env, next_type_id))
1631 			next_type = btf_type_id_resolve(btf, &next_type_id);
1632 
1633 		/* "typedef void new_void", "const void"...etc */
1634 		if (!btf_type_is_void(next_type) &&
1635 		    !btf_type_is_fwd(next_type) &&
1636 		    !btf_type_is_func_proto(next_type)) {
1637 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1638 			return -EINVAL;
1639 		}
1640 	}
1641 
1642 	env_stack_pop_resolved(env, next_type_id, 0);
1643 
1644 	return 0;
1645 }
1646 
1647 static int btf_var_resolve(struct btf_verifier_env *env,
1648 			   const struct resolve_vertex *v)
1649 {
1650 	const struct btf_type *next_type;
1651 	const struct btf_type *t = v->t;
1652 	u32 next_type_id = t->type;
1653 	struct btf *btf = env->btf;
1654 
1655 	next_type = btf_type_by_id(btf, next_type_id);
1656 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1657 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1658 		return -EINVAL;
1659 	}
1660 
1661 	if (!env_type_is_resolve_sink(env, next_type) &&
1662 	    !env_type_is_resolved(env, next_type_id))
1663 		return env_stack_push(env, next_type, next_type_id);
1664 
1665 	if (btf_type_is_modifier(next_type)) {
1666 		const struct btf_type *resolved_type;
1667 		u32 resolved_type_id;
1668 
1669 		resolved_type_id = next_type_id;
1670 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1671 
1672 		if (btf_type_is_ptr(resolved_type) &&
1673 		    !env_type_is_resolve_sink(env, resolved_type) &&
1674 		    !env_type_is_resolved(env, resolved_type_id))
1675 			return env_stack_push(env, resolved_type,
1676 					      resolved_type_id);
1677 	}
1678 
1679 	/* We must resolve to something concrete at this point, no
1680 	 * forward types or similar that would resolve to size of
1681 	 * zero is allowed.
1682 	 */
1683 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1684 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1685 		return -EINVAL;
1686 	}
1687 
1688 	env_stack_pop_resolved(env, next_type_id, 0);
1689 
1690 	return 0;
1691 }
1692 
1693 static int btf_ptr_resolve(struct btf_verifier_env *env,
1694 			   const struct resolve_vertex *v)
1695 {
1696 	const struct btf_type *next_type;
1697 	const struct btf_type *t = v->t;
1698 	u32 next_type_id = t->type;
1699 	struct btf *btf = env->btf;
1700 
1701 	next_type = btf_type_by_id(btf, next_type_id);
1702 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1703 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1704 		return -EINVAL;
1705 	}
1706 
1707 	if (!env_type_is_resolve_sink(env, next_type) &&
1708 	    !env_type_is_resolved(env, next_type_id))
1709 		return env_stack_push(env, next_type, next_type_id);
1710 
1711 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1712 	 * the modifier may have stopped resolving when it was resolved
1713 	 * to a ptr (last-resolved-ptr).
1714 	 *
1715 	 * We now need to continue from the last-resolved-ptr to
1716 	 * ensure the last-resolved-ptr will not referring back to
1717 	 * the currenct ptr (t).
1718 	 */
1719 	if (btf_type_is_modifier(next_type)) {
1720 		const struct btf_type *resolved_type;
1721 		u32 resolved_type_id;
1722 
1723 		resolved_type_id = next_type_id;
1724 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1725 
1726 		if (btf_type_is_ptr(resolved_type) &&
1727 		    !env_type_is_resolve_sink(env, resolved_type) &&
1728 		    !env_type_is_resolved(env, resolved_type_id))
1729 			return env_stack_push(env, resolved_type,
1730 					      resolved_type_id);
1731 	}
1732 
1733 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1734 		if (env_type_is_resolved(env, next_type_id))
1735 			next_type = btf_type_id_resolve(btf, &next_type_id);
1736 
1737 		if (!btf_type_is_void(next_type) &&
1738 		    !btf_type_is_fwd(next_type) &&
1739 		    !btf_type_is_func_proto(next_type)) {
1740 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1741 			return -EINVAL;
1742 		}
1743 	}
1744 
1745 	env_stack_pop_resolved(env, next_type_id, 0);
1746 
1747 	return 0;
1748 }
1749 
1750 static void btf_modifier_seq_show(const struct btf *btf,
1751 				  const struct btf_type *t,
1752 				  u32 type_id, void *data,
1753 				  u8 bits_offset, struct seq_file *m)
1754 {
1755 	t = btf_type_id_resolve(btf, &type_id);
1756 
1757 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1758 }
1759 
1760 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t,
1761 			     u32 type_id, void *data, u8 bits_offset,
1762 			     struct seq_file *m)
1763 {
1764 	t = btf_type_id_resolve(btf, &type_id);
1765 
1766 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1767 }
1768 
1769 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1770 			     u32 type_id, void *data, u8 bits_offset,
1771 			     struct seq_file *m)
1772 {
1773 	/* It is a hashed value */
1774 	seq_printf(m, "%p", *(void **)data);
1775 }
1776 
1777 static void btf_ref_type_log(struct btf_verifier_env *env,
1778 			     const struct btf_type *t)
1779 {
1780 	btf_verifier_log(env, "type_id=%u", t->type);
1781 }
1782 
1783 static struct btf_kind_operations modifier_ops = {
1784 	.check_meta = btf_ref_type_check_meta,
1785 	.resolve = btf_modifier_resolve,
1786 	.check_member = btf_modifier_check_member,
1787 	.check_kflag_member = btf_modifier_check_kflag_member,
1788 	.log_details = btf_ref_type_log,
1789 	.seq_show = btf_modifier_seq_show,
1790 };
1791 
1792 static struct btf_kind_operations ptr_ops = {
1793 	.check_meta = btf_ref_type_check_meta,
1794 	.resolve = btf_ptr_resolve,
1795 	.check_member = btf_ptr_check_member,
1796 	.check_kflag_member = btf_generic_check_kflag_member,
1797 	.log_details = btf_ref_type_log,
1798 	.seq_show = btf_ptr_seq_show,
1799 };
1800 
1801 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1802 			      const struct btf_type *t,
1803 			      u32 meta_left)
1804 {
1805 	if (btf_type_vlen(t)) {
1806 		btf_verifier_log_type(env, t, "vlen != 0");
1807 		return -EINVAL;
1808 	}
1809 
1810 	if (t->type) {
1811 		btf_verifier_log_type(env, t, "type != 0");
1812 		return -EINVAL;
1813 	}
1814 
1815 	/* fwd type must have a valid name */
1816 	if (!t->name_off ||
1817 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1818 		btf_verifier_log_type(env, t, "Invalid name");
1819 		return -EINVAL;
1820 	}
1821 
1822 	btf_verifier_log_type(env, t, NULL);
1823 
1824 	return 0;
1825 }
1826 
1827 static void btf_fwd_type_log(struct btf_verifier_env *env,
1828 			     const struct btf_type *t)
1829 {
1830 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1831 }
1832 
1833 static struct btf_kind_operations fwd_ops = {
1834 	.check_meta = btf_fwd_check_meta,
1835 	.resolve = btf_df_resolve,
1836 	.check_member = btf_df_check_member,
1837 	.check_kflag_member = btf_df_check_kflag_member,
1838 	.log_details = btf_fwd_type_log,
1839 	.seq_show = btf_df_seq_show,
1840 };
1841 
1842 static int btf_array_check_member(struct btf_verifier_env *env,
1843 				  const struct btf_type *struct_type,
1844 				  const struct btf_member *member,
1845 				  const struct btf_type *member_type)
1846 {
1847 	u32 struct_bits_off = member->offset;
1848 	u32 struct_size, bytes_offset;
1849 	u32 array_type_id, array_size;
1850 	struct btf *btf = env->btf;
1851 
1852 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1853 		btf_verifier_log_member(env, struct_type, member,
1854 					"Member is not byte aligned");
1855 		return -EINVAL;
1856 	}
1857 
1858 	array_type_id = member->type;
1859 	btf_type_id_size(btf, &array_type_id, &array_size);
1860 	struct_size = struct_type->size;
1861 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1862 	if (struct_size - bytes_offset < array_size) {
1863 		btf_verifier_log_member(env, struct_type, member,
1864 					"Member exceeds struct_size");
1865 		return -EINVAL;
1866 	}
1867 
1868 	return 0;
1869 }
1870 
1871 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1872 				const struct btf_type *t,
1873 				u32 meta_left)
1874 {
1875 	const struct btf_array *array = btf_type_array(t);
1876 	u32 meta_needed = sizeof(*array);
1877 
1878 	if (meta_left < meta_needed) {
1879 		btf_verifier_log_basic(env, t,
1880 				       "meta_left:%u meta_needed:%u",
1881 				       meta_left, meta_needed);
1882 		return -EINVAL;
1883 	}
1884 
1885 	/* array type should not have a name */
1886 	if (t->name_off) {
1887 		btf_verifier_log_type(env, t, "Invalid name");
1888 		return -EINVAL;
1889 	}
1890 
1891 	if (btf_type_vlen(t)) {
1892 		btf_verifier_log_type(env, t, "vlen != 0");
1893 		return -EINVAL;
1894 	}
1895 
1896 	if (btf_type_kflag(t)) {
1897 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1898 		return -EINVAL;
1899 	}
1900 
1901 	if (t->size) {
1902 		btf_verifier_log_type(env, t, "size != 0");
1903 		return -EINVAL;
1904 	}
1905 
1906 	/* Array elem type and index type cannot be in type void,
1907 	 * so !array->type and !array->index_type are not allowed.
1908 	 */
1909 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1910 		btf_verifier_log_type(env, t, "Invalid elem");
1911 		return -EINVAL;
1912 	}
1913 
1914 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1915 		btf_verifier_log_type(env, t, "Invalid index");
1916 		return -EINVAL;
1917 	}
1918 
1919 	btf_verifier_log_type(env, t, NULL);
1920 
1921 	return meta_needed;
1922 }
1923 
1924 static int btf_array_resolve(struct btf_verifier_env *env,
1925 			     const struct resolve_vertex *v)
1926 {
1927 	const struct btf_array *array = btf_type_array(v->t);
1928 	const struct btf_type *elem_type, *index_type;
1929 	u32 elem_type_id, index_type_id;
1930 	struct btf *btf = env->btf;
1931 	u32 elem_size;
1932 
1933 	/* Check array->index_type */
1934 	index_type_id = array->index_type;
1935 	index_type = btf_type_by_id(btf, index_type_id);
1936 	if (btf_type_nosize_or_null(index_type) ||
1937 	    btf_type_is_resolve_source_only(index_type)) {
1938 		btf_verifier_log_type(env, v->t, "Invalid index");
1939 		return -EINVAL;
1940 	}
1941 
1942 	if (!env_type_is_resolve_sink(env, index_type) &&
1943 	    !env_type_is_resolved(env, index_type_id))
1944 		return env_stack_push(env, index_type, index_type_id);
1945 
1946 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
1947 	if (!index_type || !btf_type_is_int(index_type) ||
1948 	    !btf_type_int_is_regular(index_type)) {
1949 		btf_verifier_log_type(env, v->t, "Invalid index");
1950 		return -EINVAL;
1951 	}
1952 
1953 	/* Check array->type */
1954 	elem_type_id = array->type;
1955 	elem_type = btf_type_by_id(btf, elem_type_id);
1956 	if (btf_type_nosize_or_null(elem_type) ||
1957 	    btf_type_is_resolve_source_only(elem_type)) {
1958 		btf_verifier_log_type(env, v->t,
1959 				      "Invalid elem");
1960 		return -EINVAL;
1961 	}
1962 
1963 	if (!env_type_is_resolve_sink(env, elem_type) &&
1964 	    !env_type_is_resolved(env, elem_type_id))
1965 		return env_stack_push(env, elem_type, elem_type_id);
1966 
1967 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1968 	if (!elem_type) {
1969 		btf_verifier_log_type(env, v->t, "Invalid elem");
1970 		return -EINVAL;
1971 	}
1972 
1973 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
1974 		btf_verifier_log_type(env, v->t, "Invalid array of int");
1975 		return -EINVAL;
1976 	}
1977 
1978 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
1979 		btf_verifier_log_type(env, v->t,
1980 				      "Array size overflows U32_MAX");
1981 		return -EINVAL;
1982 	}
1983 
1984 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1985 
1986 	return 0;
1987 }
1988 
1989 static void btf_array_log(struct btf_verifier_env *env,
1990 			  const struct btf_type *t)
1991 {
1992 	const struct btf_array *array = btf_type_array(t);
1993 
1994 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1995 			 array->type, array->index_type, array->nelems);
1996 }
1997 
1998 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1999 			       u32 type_id, void *data, u8 bits_offset,
2000 			       struct seq_file *m)
2001 {
2002 	const struct btf_array *array = btf_type_array(t);
2003 	const struct btf_kind_operations *elem_ops;
2004 	const struct btf_type *elem_type;
2005 	u32 i, elem_size, elem_type_id;
2006 
2007 	elem_type_id = array->type;
2008 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2009 	elem_ops = btf_type_ops(elem_type);
2010 	seq_puts(m, "[");
2011 	for (i = 0; i < array->nelems; i++) {
2012 		if (i)
2013 			seq_puts(m, ",");
2014 
2015 		elem_ops->seq_show(btf, elem_type, elem_type_id, data,
2016 				   bits_offset, m);
2017 		data += elem_size;
2018 	}
2019 	seq_puts(m, "]");
2020 }
2021 
2022 static struct btf_kind_operations array_ops = {
2023 	.check_meta = btf_array_check_meta,
2024 	.resolve = btf_array_resolve,
2025 	.check_member = btf_array_check_member,
2026 	.check_kflag_member = btf_generic_check_kflag_member,
2027 	.log_details = btf_array_log,
2028 	.seq_show = btf_array_seq_show,
2029 };
2030 
2031 static int btf_struct_check_member(struct btf_verifier_env *env,
2032 				   const struct btf_type *struct_type,
2033 				   const struct btf_member *member,
2034 				   const struct btf_type *member_type)
2035 {
2036 	u32 struct_bits_off = member->offset;
2037 	u32 struct_size, bytes_offset;
2038 
2039 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2040 		btf_verifier_log_member(env, struct_type, member,
2041 					"Member is not byte aligned");
2042 		return -EINVAL;
2043 	}
2044 
2045 	struct_size = struct_type->size;
2046 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2047 	if (struct_size - bytes_offset < member_type->size) {
2048 		btf_verifier_log_member(env, struct_type, member,
2049 					"Member exceeds struct_size");
2050 		return -EINVAL;
2051 	}
2052 
2053 	return 0;
2054 }
2055 
2056 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2057 				 const struct btf_type *t,
2058 				 u32 meta_left)
2059 {
2060 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2061 	const struct btf_member *member;
2062 	u32 meta_needed, last_offset;
2063 	struct btf *btf = env->btf;
2064 	u32 struct_size = t->size;
2065 	u32 offset;
2066 	u16 i;
2067 
2068 	meta_needed = btf_type_vlen(t) * sizeof(*member);
2069 	if (meta_left < meta_needed) {
2070 		btf_verifier_log_basic(env, t,
2071 				       "meta_left:%u meta_needed:%u",
2072 				       meta_left, meta_needed);
2073 		return -EINVAL;
2074 	}
2075 
2076 	/* struct type either no name or a valid one */
2077 	if (t->name_off &&
2078 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2079 		btf_verifier_log_type(env, t, "Invalid name");
2080 		return -EINVAL;
2081 	}
2082 
2083 	btf_verifier_log_type(env, t, NULL);
2084 
2085 	last_offset = 0;
2086 	for_each_member(i, t, member) {
2087 		if (!btf_name_offset_valid(btf, member->name_off)) {
2088 			btf_verifier_log_member(env, t, member,
2089 						"Invalid member name_offset:%u",
2090 						member->name_off);
2091 			return -EINVAL;
2092 		}
2093 
2094 		/* struct member either no name or a valid one */
2095 		if (member->name_off &&
2096 		    !btf_name_valid_identifier(btf, member->name_off)) {
2097 			btf_verifier_log_member(env, t, member, "Invalid name");
2098 			return -EINVAL;
2099 		}
2100 		/* A member cannot be in type void */
2101 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2102 			btf_verifier_log_member(env, t, member,
2103 						"Invalid type_id");
2104 			return -EINVAL;
2105 		}
2106 
2107 		offset = btf_member_bit_offset(t, member);
2108 		if (is_union && offset) {
2109 			btf_verifier_log_member(env, t, member,
2110 						"Invalid member bits_offset");
2111 			return -EINVAL;
2112 		}
2113 
2114 		/*
2115 		 * ">" instead of ">=" because the last member could be
2116 		 * "char a[0];"
2117 		 */
2118 		if (last_offset > offset) {
2119 			btf_verifier_log_member(env, t, member,
2120 						"Invalid member bits_offset");
2121 			return -EINVAL;
2122 		}
2123 
2124 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2125 			btf_verifier_log_member(env, t, member,
2126 						"Member bits_offset exceeds its struct size");
2127 			return -EINVAL;
2128 		}
2129 
2130 		btf_verifier_log_member(env, t, member, NULL);
2131 		last_offset = offset;
2132 	}
2133 
2134 	return meta_needed;
2135 }
2136 
2137 static int btf_struct_resolve(struct btf_verifier_env *env,
2138 			      const struct resolve_vertex *v)
2139 {
2140 	const struct btf_member *member;
2141 	int err;
2142 	u16 i;
2143 
2144 	/* Before continue resolving the next_member,
2145 	 * ensure the last member is indeed resolved to a
2146 	 * type with size info.
2147 	 */
2148 	if (v->next_member) {
2149 		const struct btf_type *last_member_type;
2150 		const struct btf_member *last_member;
2151 		u16 last_member_type_id;
2152 
2153 		last_member = btf_type_member(v->t) + v->next_member - 1;
2154 		last_member_type_id = last_member->type;
2155 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
2156 						       last_member_type_id)))
2157 			return -EINVAL;
2158 
2159 		last_member_type = btf_type_by_id(env->btf,
2160 						  last_member_type_id);
2161 		if (btf_type_kflag(v->t))
2162 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2163 								last_member,
2164 								last_member_type);
2165 		else
2166 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
2167 								last_member,
2168 								last_member_type);
2169 		if (err)
2170 			return err;
2171 	}
2172 
2173 	for_each_member_from(i, v->next_member, v->t, member) {
2174 		u32 member_type_id = member->type;
2175 		const struct btf_type *member_type = btf_type_by_id(env->btf,
2176 								member_type_id);
2177 
2178 		if (btf_type_nosize_or_null(member_type) ||
2179 		    btf_type_is_resolve_source_only(member_type)) {
2180 			btf_verifier_log_member(env, v->t, member,
2181 						"Invalid member");
2182 			return -EINVAL;
2183 		}
2184 
2185 		if (!env_type_is_resolve_sink(env, member_type) &&
2186 		    !env_type_is_resolved(env, member_type_id)) {
2187 			env_stack_set_next_member(env, i + 1);
2188 			return env_stack_push(env, member_type, member_type_id);
2189 		}
2190 
2191 		if (btf_type_kflag(v->t))
2192 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2193 									    member,
2194 									    member_type);
2195 		else
2196 			err = btf_type_ops(member_type)->check_member(env, v->t,
2197 								      member,
2198 								      member_type);
2199 		if (err)
2200 			return err;
2201 	}
2202 
2203 	env_stack_pop_resolved(env, 0, 0);
2204 
2205 	return 0;
2206 }
2207 
2208 static void btf_struct_log(struct btf_verifier_env *env,
2209 			   const struct btf_type *t)
2210 {
2211 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2212 }
2213 
2214 /* find 'struct bpf_spin_lock' in map value.
2215  * return >= 0 offset if found
2216  * and < 0 in case of error
2217  */
2218 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2219 {
2220 	const struct btf_member *member;
2221 	u32 i, off = -ENOENT;
2222 
2223 	if (!__btf_type_is_struct(t))
2224 		return -EINVAL;
2225 
2226 	for_each_member(i, t, member) {
2227 		const struct btf_type *member_type = btf_type_by_id(btf,
2228 								    member->type);
2229 		if (!__btf_type_is_struct(member_type))
2230 			continue;
2231 		if (member_type->size != sizeof(struct bpf_spin_lock))
2232 			continue;
2233 		if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2234 			   "bpf_spin_lock"))
2235 			continue;
2236 		if (off != -ENOENT)
2237 			/* only one 'struct bpf_spin_lock' is allowed */
2238 			return -E2BIG;
2239 		off = btf_member_bit_offset(t, member);
2240 		if (off % 8)
2241 			/* valid C code cannot generate such BTF */
2242 			return -EINVAL;
2243 		off /= 8;
2244 		if (off % __alignof__(struct bpf_spin_lock))
2245 			/* valid struct bpf_spin_lock will be 4 byte aligned */
2246 			return -EINVAL;
2247 	}
2248 	return off;
2249 }
2250 
2251 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
2252 				u32 type_id, void *data, u8 bits_offset,
2253 				struct seq_file *m)
2254 {
2255 	const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
2256 	const struct btf_member *member;
2257 	u32 i;
2258 
2259 	seq_puts(m, "{");
2260 	for_each_member(i, t, member) {
2261 		const struct btf_type *member_type = btf_type_by_id(btf,
2262 								member->type);
2263 		const struct btf_kind_operations *ops;
2264 		u32 member_offset, bitfield_size;
2265 		u32 bytes_offset;
2266 		u8 bits8_offset;
2267 
2268 		if (i)
2269 			seq_puts(m, seq);
2270 
2271 		member_offset = btf_member_bit_offset(t, member);
2272 		bitfield_size = btf_member_bitfield_size(t, member);
2273 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2274 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2275 		if (bitfield_size) {
2276 			btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
2277 					      bitfield_size, m);
2278 		} else {
2279 			ops = btf_type_ops(member_type);
2280 			ops->seq_show(btf, member_type, member->type,
2281 				      data + bytes_offset, bits8_offset, m);
2282 		}
2283 	}
2284 	seq_puts(m, "}");
2285 }
2286 
2287 static struct btf_kind_operations struct_ops = {
2288 	.check_meta = btf_struct_check_meta,
2289 	.resolve = btf_struct_resolve,
2290 	.check_member = btf_struct_check_member,
2291 	.check_kflag_member = btf_generic_check_kflag_member,
2292 	.log_details = btf_struct_log,
2293 	.seq_show = btf_struct_seq_show,
2294 };
2295 
2296 static int btf_enum_check_member(struct btf_verifier_env *env,
2297 				 const struct btf_type *struct_type,
2298 				 const struct btf_member *member,
2299 				 const struct btf_type *member_type)
2300 {
2301 	u32 struct_bits_off = member->offset;
2302 	u32 struct_size, bytes_offset;
2303 
2304 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2305 		btf_verifier_log_member(env, struct_type, member,
2306 					"Member is not byte aligned");
2307 		return -EINVAL;
2308 	}
2309 
2310 	struct_size = struct_type->size;
2311 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2312 	if (struct_size - bytes_offset < sizeof(int)) {
2313 		btf_verifier_log_member(env, struct_type, member,
2314 					"Member exceeds struct_size");
2315 		return -EINVAL;
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2322 				       const struct btf_type *struct_type,
2323 				       const struct btf_member *member,
2324 				       const struct btf_type *member_type)
2325 {
2326 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2327 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2328 
2329 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2330 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2331 	if (!nr_bits) {
2332 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2333 			btf_verifier_log_member(env, struct_type, member,
2334 						"Member is not byte aligned");
2335 				return -EINVAL;
2336 		}
2337 
2338 		nr_bits = int_bitsize;
2339 	} else if (nr_bits > int_bitsize) {
2340 		btf_verifier_log_member(env, struct_type, member,
2341 					"Invalid member bitfield_size");
2342 		return -EINVAL;
2343 	}
2344 
2345 	struct_size = struct_type->size;
2346 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2347 	if (struct_size < bytes_end) {
2348 		btf_verifier_log_member(env, struct_type, member,
2349 					"Member exceeds struct_size");
2350 		return -EINVAL;
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2357 			       const struct btf_type *t,
2358 			       u32 meta_left)
2359 {
2360 	const struct btf_enum *enums = btf_type_enum(t);
2361 	struct btf *btf = env->btf;
2362 	u16 i, nr_enums;
2363 	u32 meta_needed;
2364 
2365 	nr_enums = btf_type_vlen(t);
2366 	meta_needed = nr_enums * sizeof(*enums);
2367 
2368 	if (meta_left < meta_needed) {
2369 		btf_verifier_log_basic(env, t,
2370 				       "meta_left:%u meta_needed:%u",
2371 				       meta_left, meta_needed);
2372 		return -EINVAL;
2373 	}
2374 
2375 	if (btf_type_kflag(t)) {
2376 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2377 		return -EINVAL;
2378 	}
2379 
2380 	if (t->size != sizeof(int)) {
2381 		btf_verifier_log_type(env, t, "Expected size:%zu",
2382 				      sizeof(int));
2383 		return -EINVAL;
2384 	}
2385 
2386 	/* enum type either no name or a valid one */
2387 	if (t->name_off &&
2388 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2389 		btf_verifier_log_type(env, t, "Invalid name");
2390 		return -EINVAL;
2391 	}
2392 
2393 	btf_verifier_log_type(env, t, NULL);
2394 
2395 	for (i = 0; i < nr_enums; i++) {
2396 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2397 			btf_verifier_log(env, "\tInvalid name_offset:%u",
2398 					 enums[i].name_off);
2399 			return -EINVAL;
2400 		}
2401 
2402 		/* enum member must have a valid name */
2403 		if (!enums[i].name_off ||
2404 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
2405 			btf_verifier_log_type(env, t, "Invalid name");
2406 			return -EINVAL;
2407 		}
2408 
2409 
2410 		btf_verifier_log(env, "\t%s val=%d\n",
2411 				 __btf_name_by_offset(btf, enums[i].name_off),
2412 				 enums[i].val);
2413 	}
2414 
2415 	return meta_needed;
2416 }
2417 
2418 static void btf_enum_log(struct btf_verifier_env *env,
2419 			 const struct btf_type *t)
2420 {
2421 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2422 }
2423 
2424 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2425 			      u32 type_id, void *data, u8 bits_offset,
2426 			      struct seq_file *m)
2427 {
2428 	const struct btf_enum *enums = btf_type_enum(t);
2429 	u32 i, nr_enums = btf_type_vlen(t);
2430 	int v = *(int *)data;
2431 
2432 	for (i = 0; i < nr_enums; i++) {
2433 		if (v == enums[i].val) {
2434 			seq_printf(m, "%s",
2435 				   __btf_name_by_offset(btf,
2436 							enums[i].name_off));
2437 			return;
2438 		}
2439 	}
2440 
2441 	seq_printf(m, "%d", v);
2442 }
2443 
2444 static struct btf_kind_operations enum_ops = {
2445 	.check_meta = btf_enum_check_meta,
2446 	.resolve = btf_df_resolve,
2447 	.check_member = btf_enum_check_member,
2448 	.check_kflag_member = btf_enum_check_kflag_member,
2449 	.log_details = btf_enum_log,
2450 	.seq_show = btf_enum_seq_show,
2451 };
2452 
2453 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2454 				     const struct btf_type *t,
2455 				     u32 meta_left)
2456 {
2457 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2458 
2459 	if (meta_left < meta_needed) {
2460 		btf_verifier_log_basic(env, t,
2461 				       "meta_left:%u meta_needed:%u",
2462 				       meta_left, meta_needed);
2463 		return -EINVAL;
2464 	}
2465 
2466 	if (t->name_off) {
2467 		btf_verifier_log_type(env, t, "Invalid name");
2468 		return -EINVAL;
2469 	}
2470 
2471 	if (btf_type_kflag(t)) {
2472 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2473 		return -EINVAL;
2474 	}
2475 
2476 	btf_verifier_log_type(env, t, NULL);
2477 
2478 	return meta_needed;
2479 }
2480 
2481 static void btf_func_proto_log(struct btf_verifier_env *env,
2482 			       const struct btf_type *t)
2483 {
2484 	const struct btf_param *args = (const struct btf_param *)(t + 1);
2485 	u16 nr_args = btf_type_vlen(t), i;
2486 
2487 	btf_verifier_log(env, "return=%u args=(", t->type);
2488 	if (!nr_args) {
2489 		btf_verifier_log(env, "void");
2490 		goto done;
2491 	}
2492 
2493 	if (nr_args == 1 && !args[0].type) {
2494 		/* Only one vararg */
2495 		btf_verifier_log(env, "vararg");
2496 		goto done;
2497 	}
2498 
2499 	btf_verifier_log(env, "%u %s", args[0].type,
2500 			 __btf_name_by_offset(env->btf,
2501 					      args[0].name_off));
2502 	for (i = 1; i < nr_args - 1; i++)
2503 		btf_verifier_log(env, ", %u %s", args[i].type,
2504 				 __btf_name_by_offset(env->btf,
2505 						      args[i].name_off));
2506 
2507 	if (nr_args > 1) {
2508 		const struct btf_param *last_arg = &args[nr_args - 1];
2509 
2510 		if (last_arg->type)
2511 			btf_verifier_log(env, ", %u %s", last_arg->type,
2512 					 __btf_name_by_offset(env->btf,
2513 							      last_arg->name_off));
2514 		else
2515 			btf_verifier_log(env, ", vararg");
2516 	}
2517 
2518 done:
2519 	btf_verifier_log(env, ")");
2520 }
2521 
2522 static struct btf_kind_operations func_proto_ops = {
2523 	.check_meta = btf_func_proto_check_meta,
2524 	.resolve = btf_df_resolve,
2525 	/*
2526 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
2527 	 * a struct's member.
2528 	 *
2529 	 * It should be a funciton pointer instead.
2530 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2531 	 *
2532 	 * Hence, there is no btf_func_check_member().
2533 	 */
2534 	.check_member = btf_df_check_member,
2535 	.check_kflag_member = btf_df_check_kflag_member,
2536 	.log_details = btf_func_proto_log,
2537 	.seq_show = btf_df_seq_show,
2538 };
2539 
2540 static s32 btf_func_check_meta(struct btf_verifier_env *env,
2541 			       const struct btf_type *t,
2542 			       u32 meta_left)
2543 {
2544 	if (!t->name_off ||
2545 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2546 		btf_verifier_log_type(env, t, "Invalid name");
2547 		return -EINVAL;
2548 	}
2549 
2550 	if (btf_type_vlen(t)) {
2551 		btf_verifier_log_type(env, t, "vlen != 0");
2552 		return -EINVAL;
2553 	}
2554 
2555 	if (btf_type_kflag(t)) {
2556 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2557 		return -EINVAL;
2558 	}
2559 
2560 	btf_verifier_log_type(env, t, NULL);
2561 
2562 	return 0;
2563 }
2564 
2565 static struct btf_kind_operations func_ops = {
2566 	.check_meta = btf_func_check_meta,
2567 	.resolve = btf_df_resolve,
2568 	.check_member = btf_df_check_member,
2569 	.check_kflag_member = btf_df_check_kflag_member,
2570 	.log_details = btf_ref_type_log,
2571 	.seq_show = btf_df_seq_show,
2572 };
2573 
2574 static s32 btf_var_check_meta(struct btf_verifier_env *env,
2575 			      const struct btf_type *t,
2576 			      u32 meta_left)
2577 {
2578 	const struct btf_var *var;
2579 	u32 meta_needed = sizeof(*var);
2580 
2581 	if (meta_left < meta_needed) {
2582 		btf_verifier_log_basic(env, t,
2583 				       "meta_left:%u meta_needed:%u",
2584 				       meta_left, meta_needed);
2585 		return -EINVAL;
2586 	}
2587 
2588 	if (btf_type_vlen(t)) {
2589 		btf_verifier_log_type(env, t, "vlen != 0");
2590 		return -EINVAL;
2591 	}
2592 
2593 	if (btf_type_kflag(t)) {
2594 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2595 		return -EINVAL;
2596 	}
2597 
2598 	if (!t->name_off ||
2599 	    !__btf_name_valid(env->btf, t->name_off, true)) {
2600 		btf_verifier_log_type(env, t, "Invalid name");
2601 		return -EINVAL;
2602 	}
2603 
2604 	/* A var cannot be in type void */
2605 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
2606 		btf_verifier_log_type(env, t, "Invalid type_id");
2607 		return -EINVAL;
2608 	}
2609 
2610 	var = btf_type_var(t);
2611 	if (var->linkage != BTF_VAR_STATIC &&
2612 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2613 		btf_verifier_log_type(env, t, "Linkage not supported");
2614 		return -EINVAL;
2615 	}
2616 
2617 	btf_verifier_log_type(env, t, NULL);
2618 
2619 	return meta_needed;
2620 }
2621 
2622 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
2623 {
2624 	const struct btf_var *var = btf_type_var(t);
2625 
2626 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
2627 }
2628 
2629 static const struct btf_kind_operations var_ops = {
2630 	.check_meta		= btf_var_check_meta,
2631 	.resolve		= btf_var_resolve,
2632 	.check_member		= btf_df_check_member,
2633 	.check_kflag_member	= btf_df_check_kflag_member,
2634 	.log_details		= btf_var_log,
2635 	.seq_show		= btf_var_seq_show,
2636 };
2637 
2638 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
2639 				  const struct btf_type *t,
2640 				  u32 meta_left)
2641 {
2642 	const struct btf_var_secinfo *vsi;
2643 	u64 last_vsi_end_off = 0, sum = 0;
2644 	u32 i, meta_needed;
2645 
2646 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
2647 	if (meta_left < meta_needed) {
2648 		btf_verifier_log_basic(env, t,
2649 				       "meta_left:%u meta_needed:%u",
2650 				       meta_left, meta_needed);
2651 		return -EINVAL;
2652 	}
2653 
2654 	if (!btf_type_vlen(t)) {
2655 		btf_verifier_log_type(env, t, "vlen == 0");
2656 		return -EINVAL;
2657 	}
2658 
2659 	if (!t->size) {
2660 		btf_verifier_log_type(env, t, "size == 0");
2661 		return -EINVAL;
2662 	}
2663 
2664 	if (btf_type_kflag(t)) {
2665 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2666 		return -EINVAL;
2667 	}
2668 
2669 	if (!t->name_off ||
2670 	    !btf_name_valid_section(env->btf, t->name_off)) {
2671 		btf_verifier_log_type(env, t, "Invalid name");
2672 		return -EINVAL;
2673 	}
2674 
2675 	btf_verifier_log_type(env, t, NULL);
2676 
2677 	for_each_vsi(i, t, vsi) {
2678 		/* A var cannot be in type void */
2679 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
2680 			btf_verifier_log_vsi(env, t, vsi,
2681 					     "Invalid type_id");
2682 			return -EINVAL;
2683 		}
2684 
2685 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
2686 			btf_verifier_log_vsi(env, t, vsi,
2687 					     "Invalid offset");
2688 			return -EINVAL;
2689 		}
2690 
2691 		if (!vsi->size || vsi->size > t->size) {
2692 			btf_verifier_log_vsi(env, t, vsi,
2693 					     "Invalid size");
2694 			return -EINVAL;
2695 		}
2696 
2697 		last_vsi_end_off = vsi->offset + vsi->size;
2698 		if (last_vsi_end_off > t->size) {
2699 			btf_verifier_log_vsi(env, t, vsi,
2700 					     "Invalid offset+size");
2701 			return -EINVAL;
2702 		}
2703 
2704 		btf_verifier_log_vsi(env, t, vsi, NULL);
2705 		sum += vsi->size;
2706 	}
2707 
2708 	if (t->size < sum) {
2709 		btf_verifier_log_type(env, t, "Invalid btf_info size");
2710 		return -EINVAL;
2711 	}
2712 
2713 	return meta_needed;
2714 }
2715 
2716 static int btf_datasec_resolve(struct btf_verifier_env *env,
2717 			       const struct resolve_vertex *v)
2718 {
2719 	const struct btf_var_secinfo *vsi;
2720 	struct btf *btf = env->btf;
2721 	u16 i;
2722 
2723 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
2724 		u32 var_type_id = vsi->type, type_id, type_size = 0;
2725 		const struct btf_type *var_type = btf_type_by_id(env->btf,
2726 								 var_type_id);
2727 		if (!var_type || !btf_type_is_var(var_type)) {
2728 			btf_verifier_log_vsi(env, v->t, vsi,
2729 					     "Not a VAR kind member");
2730 			return -EINVAL;
2731 		}
2732 
2733 		if (!env_type_is_resolve_sink(env, var_type) &&
2734 		    !env_type_is_resolved(env, var_type_id)) {
2735 			env_stack_set_next_member(env, i + 1);
2736 			return env_stack_push(env, var_type, var_type_id);
2737 		}
2738 
2739 		type_id = var_type->type;
2740 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
2741 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
2742 			return -EINVAL;
2743 		}
2744 
2745 		if (vsi->size < type_size) {
2746 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
2747 			return -EINVAL;
2748 		}
2749 	}
2750 
2751 	env_stack_pop_resolved(env, 0, 0);
2752 	return 0;
2753 }
2754 
2755 static void btf_datasec_log(struct btf_verifier_env *env,
2756 			    const struct btf_type *t)
2757 {
2758 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2759 }
2760 
2761 static void btf_datasec_seq_show(const struct btf *btf,
2762 				 const struct btf_type *t, u32 type_id,
2763 				 void *data, u8 bits_offset,
2764 				 struct seq_file *m)
2765 {
2766 	const struct btf_var_secinfo *vsi;
2767 	const struct btf_type *var;
2768 	u32 i;
2769 
2770 	seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off));
2771 	for_each_vsi(i, t, vsi) {
2772 		var = btf_type_by_id(btf, vsi->type);
2773 		if (i)
2774 			seq_puts(m, ",");
2775 		btf_type_ops(var)->seq_show(btf, var, vsi->type,
2776 					    data + vsi->offset, bits_offset, m);
2777 	}
2778 	seq_puts(m, "}");
2779 }
2780 
2781 static const struct btf_kind_operations datasec_ops = {
2782 	.check_meta		= btf_datasec_check_meta,
2783 	.resolve		= btf_datasec_resolve,
2784 	.check_member		= btf_df_check_member,
2785 	.check_kflag_member	= btf_df_check_kflag_member,
2786 	.log_details		= btf_datasec_log,
2787 	.seq_show		= btf_datasec_seq_show,
2788 };
2789 
2790 static int btf_func_proto_check(struct btf_verifier_env *env,
2791 				const struct btf_type *t)
2792 {
2793 	const struct btf_type *ret_type;
2794 	const struct btf_param *args;
2795 	const struct btf *btf;
2796 	u16 nr_args, i;
2797 	int err;
2798 
2799 	btf = env->btf;
2800 	args = (const struct btf_param *)(t + 1);
2801 	nr_args = btf_type_vlen(t);
2802 
2803 	/* Check func return type which could be "void" (t->type == 0) */
2804 	if (t->type) {
2805 		u32 ret_type_id = t->type;
2806 
2807 		ret_type = btf_type_by_id(btf, ret_type_id);
2808 		if (!ret_type) {
2809 			btf_verifier_log_type(env, t, "Invalid return type");
2810 			return -EINVAL;
2811 		}
2812 
2813 		if (btf_type_needs_resolve(ret_type) &&
2814 		    !env_type_is_resolved(env, ret_type_id)) {
2815 			err = btf_resolve(env, ret_type, ret_type_id);
2816 			if (err)
2817 				return err;
2818 		}
2819 
2820 		/* Ensure the return type is a type that has a size */
2821 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2822 			btf_verifier_log_type(env, t, "Invalid return type");
2823 			return -EINVAL;
2824 		}
2825 	}
2826 
2827 	if (!nr_args)
2828 		return 0;
2829 
2830 	/* Last func arg type_id could be 0 if it is a vararg */
2831 	if (!args[nr_args - 1].type) {
2832 		if (args[nr_args - 1].name_off) {
2833 			btf_verifier_log_type(env, t, "Invalid arg#%u",
2834 					      nr_args);
2835 			return -EINVAL;
2836 		}
2837 		nr_args--;
2838 	}
2839 
2840 	err = 0;
2841 	for (i = 0; i < nr_args; i++) {
2842 		const struct btf_type *arg_type;
2843 		u32 arg_type_id;
2844 
2845 		arg_type_id = args[i].type;
2846 		arg_type = btf_type_by_id(btf, arg_type_id);
2847 		if (!arg_type) {
2848 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2849 			err = -EINVAL;
2850 			break;
2851 		}
2852 
2853 		if (args[i].name_off &&
2854 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
2855 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
2856 			btf_verifier_log_type(env, t,
2857 					      "Invalid arg#%u", i + 1);
2858 			err = -EINVAL;
2859 			break;
2860 		}
2861 
2862 		if (btf_type_needs_resolve(arg_type) &&
2863 		    !env_type_is_resolved(env, arg_type_id)) {
2864 			err = btf_resolve(env, arg_type, arg_type_id);
2865 			if (err)
2866 				break;
2867 		}
2868 
2869 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2870 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2871 			err = -EINVAL;
2872 			break;
2873 		}
2874 	}
2875 
2876 	return err;
2877 }
2878 
2879 static int btf_func_check(struct btf_verifier_env *env,
2880 			  const struct btf_type *t)
2881 {
2882 	const struct btf_type *proto_type;
2883 	const struct btf_param *args;
2884 	const struct btf *btf;
2885 	u16 nr_args, i;
2886 
2887 	btf = env->btf;
2888 	proto_type = btf_type_by_id(btf, t->type);
2889 
2890 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
2891 		btf_verifier_log_type(env, t, "Invalid type_id");
2892 		return -EINVAL;
2893 	}
2894 
2895 	args = (const struct btf_param *)(proto_type + 1);
2896 	nr_args = btf_type_vlen(proto_type);
2897 	for (i = 0; i < nr_args; i++) {
2898 		if (!args[i].name_off && args[i].type) {
2899 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2900 			return -EINVAL;
2901 		}
2902 	}
2903 
2904 	return 0;
2905 }
2906 
2907 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
2908 	[BTF_KIND_INT] = &int_ops,
2909 	[BTF_KIND_PTR] = &ptr_ops,
2910 	[BTF_KIND_ARRAY] = &array_ops,
2911 	[BTF_KIND_STRUCT] = &struct_ops,
2912 	[BTF_KIND_UNION] = &struct_ops,
2913 	[BTF_KIND_ENUM] = &enum_ops,
2914 	[BTF_KIND_FWD] = &fwd_ops,
2915 	[BTF_KIND_TYPEDEF] = &modifier_ops,
2916 	[BTF_KIND_VOLATILE] = &modifier_ops,
2917 	[BTF_KIND_CONST] = &modifier_ops,
2918 	[BTF_KIND_RESTRICT] = &modifier_ops,
2919 	[BTF_KIND_FUNC] = &func_ops,
2920 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
2921 	[BTF_KIND_VAR] = &var_ops,
2922 	[BTF_KIND_DATASEC] = &datasec_ops,
2923 };
2924 
2925 static s32 btf_check_meta(struct btf_verifier_env *env,
2926 			  const struct btf_type *t,
2927 			  u32 meta_left)
2928 {
2929 	u32 saved_meta_left = meta_left;
2930 	s32 var_meta_size;
2931 
2932 	if (meta_left < sizeof(*t)) {
2933 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
2934 				 env->log_type_id, meta_left, sizeof(*t));
2935 		return -EINVAL;
2936 	}
2937 	meta_left -= sizeof(*t);
2938 
2939 	if (t->info & ~BTF_INFO_MASK) {
2940 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
2941 				 env->log_type_id, t->info);
2942 		return -EINVAL;
2943 	}
2944 
2945 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
2946 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
2947 		btf_verifier_log(env, "[%u] Invalid kind:%u",
2948 				 env->log_type_id, BTF_INFO_KIND(t->info));
2949 		return -EINVAL;
2950 	}
2951 
2952 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
2953 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
2954 				 env->log_type_id, t->name_off);
2955 		return -EINVAL;
2956 	}
2957 
2958 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
2959 	if (var_meta_size < 0)
2960 		return var_meta_size;
2961 
2962 	meta_left -= var_meta_size;
2963 
2964 	return saved_meta_left - meta_left;
2965 }
2966 
2967 static int btf_check_all_metas(struct btf_verifier_env *env)
2968 {
2969 	struct btf *btf = env->btf;
2970 	struct btf_header *hdr;
2971 	void *cur, *end;
2972 
2973 	hdr = &btf->hdr;
2974 	cur = btf->nohdr_data + hdr->type_off;
2975 	end = cur + hdr->type_len;
2976 
2977 	env->log_type_id = 1;
2978 	while (cur < end) {
2979 		struct btf_type *t = cur;
2980 		s32 meta_size;
2981 
2982 		meta_size = btf_check_meta(env, t, end - cur);
2983 		if (meta_size < 0)
2984 			return meta_size;
2985 
2986 		btf_add_type(env, t);
2987 		cur += meta_size;
2988 		env->log_type_id++;
2989 	}
2990 
2991 	return 0;
2992 }
2993 
2994 static bool btf_resolve_valid(struct btf_verifier_env *env,
2995 			      const struct btf_type *t,
2996 			      u32 type_id)
2997 {
2998 	struct btf *btf = env->btf;
2999 
3000 	if (!env_type_is_resolved(env, type_id))
3001 		return false;
3002 
3003 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3004 		return !btf->resolved_ids[type_id] &&
3005 		       !btf->resolved_sizes[type_id];
3006 
3007 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3008 	    btf_type_is_var(t)) {
3009 		t = btf_type_id_resolve(btf, &type_id);
3010 		return t &&
3011 		       !btf_type_is_modifier(t) &&
3012 		       !btf_type_is_var(t) &&
3013 		       !btf_type_is_datasec(t);
3014 	}
3015 
3016 	if (btf_type_is_array(t)) {
3017 		const struct btf_array *array = btf_type_array(t);
3018 		const struct btf_type *elem_type;
3019 		u32 elem_type_id = array->type;
3020 		u32 elem_size;
3021 
3022 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3023 		return elem_type && !btf_type_is_modifier(elem_type) &&
3024 			(array->nelems * elem_size ==
3025 			 btf->resolved_sizes[type_id]);
3026 	}
3027 
3028 	return false;
3029 }
3030 
3031 static int btf_resolve(struct btf_verifier_env *env,
3032 		       const struct btf_type *t, u32 type_id)
3033 {
3034 	u32 save_log_type_id = env->log_type_id;
3035 	const struct resolve_vertex *v;
3036 	int err = 0;
3037 
3038 	env->resolve_mode = RESOLVE_TBD;
3039 	env_stack_push(env, t, type_id);
3040 	while (!err && (v = env_stack_peak(env))) {
3041 		env->log_type_id = v->type_id;
3042 		err = btf_type_ops(v->t)->resolve(env, v);
3043 	}
3044 
3045 	env->log_type_id = type_id;
3046 	if (err == -E2BIG) {
3047 		btf_verifier_log_type(env, t,
3048 				      "Exceeded max resolving depth:%u",
3049 				      MAX_RESOLVE_DEPTH);
3050 	} else if (err == -EEXIST) {
3051 		btf_verifier_log_type(env, t, "Loop detected");
3052 	}
3053 
3054 	/* Final sanity check */
3055 	if (!err && !btf_resolve_valid(env, t, type_id)) {
3056 		btf_verifier_log_type(env, t, "Invalid resolve state");
3057 		err = -EINVAL;
3058 	}
3059 
3060 	env->log_type_id = save_log_type_id;
3061 	return err;
3062 }
3063 
3064 static int btf_check_all_types(struct btf_verifier_env *env)
3065 {
3066 	struct btf *btf = env->btf;
3067 	u32 type_id;
3068 	int err;
3069 
3070 	err = env_resolve_init(env);
3071 	if (err)
3072 		return err;
3073 
3074 	env->phase++;
3075 	for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3076 		const struct btf_type *t = btf_type_by_id(btf, type_id);
3077 
3078 		env->log_type_id = type_id;
3079 		if (btf_type_needs_resolve(t) &&
3080 		    !env_type_is_resolved(env, type_id)) {
3081 			err = btf_resolve(env, t, type_id);
3082 			if (err)
3083 				return err;
3084 		}
3085 
3086 		if (btf_type_is_func_proto(t)) {
3087 			err = btf_func_proto_check(env, t);
3088 			if (err)
3089 				return err;
3090 		}
3091 
3092 		if (btf_type_is_func(t)) {
3093 			err = btf_func_check(env, t);
3094 			if (err)
3095 				return err;
3096 		}
3097 	}
3098 
3099 	return 0;
3100 }
3101 
3102 static int btf_parse_type_sec(struct btf_verifier_env *env)
3103 {
3104 	const struct btf_header *hdr = &env->btf->hdr;
3105 	int err;
3106 
3107 	/* Type section must align to 4 bytes */
3108 	if (hdr->type_off & (sizeof(u32) - 1)) {
3109 		btf_verifier_log(env, "Unaligned type_off");
3110 		return -EINVAL;
3111 	}
3112 
3113 	if (!hdr->type_len) {
3114 		btf_verifier_log(env, "No type found");
3115 		return -EINVAL;
3116 	}
3117 
3118 	err = btf_check_all_metas(env);
3119 	if (err)
3120 		return err;
3121 
3122 	return btf_check_all_types(env);
3123 }
3124 
3125 static int btf_parse_str_sec(struct btf_verifier_env *env)
3126 {
3127 	const struct btf_header *hdr;
3128 	struct btf *btf = env->btf;
3129 	const char *start, *end;
3130 
3131 	hdr = &btf->hdr;
3132 	start = btf->nohdr_data + hdr->str_off;
3133 	end = start + hdr->str_len;
3134 
3135 	if (end != btf->data + btf->data_size) {
3136 		btf_verifier_log(env, "String section is not at the end");
3137 		return -EINVAL;
3138 	}
3139 
3140 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3141 	    start[0] || end[-1]) {
3142 		btf_verifier_log(env, "Invalid string section");
3143 		return -EINVAL;
3144 	}
3145 
3146 	btf->strings = start;
3147 
3148 	return 0;
3149 }
3150 
3151 static const size_t btf_sec_info_offset[] = {
3152 	offsetof(struct btf_header, type_off),
3153 	offsetof(struct btf_header, str_off),
3154 };
3155 
3156 static int btf_sec_info_cmp(const void *a, const void *b)
3157 {
3158 	const struct btf_sec_info *x = a;
3159 	const struct btf_sec_info *y = b;
3160 
3161 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3162 }
3163 
3164 static int btf_check_sec_info(struct btf_verifier_env *env,
3165 			      u32 btf_data_size)
3166 {
3167 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3168 	u32 total, expected_total, i;
3169 	const struct btf_header *hdr;
3170 	const struct btf *btf;
3171 
3172 	btf = env->btf;
3173 	hdr = &btf->hdr;
3174 
3175 	/* Populate the secs from hdr */
3176 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
3177 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
3178 						   btf_sec_info_offset[i]);
3179 
3180 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
3181 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
3182 
3183 	/* Check for gaps and overlap among sections */
3184 	total = 0;
3185 	expected_total = btf_data_size - hdr->hdr_len;
3186 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
3187 		if (expected_total < secs[i].off) {
3188 			btf_verifier_log(env, "Invalid section offset");
3189 			return -EINVAL;
3190 		}
3191 		if (total < secs[i].off) {
3192 			/* gap */
3193 			btf_verifier_log(env, "Unsupported section found");
3194 			return -EINVAL;
3195 		}
3196 		if (total > secs[i].off) {
3197 			btf_verifier_log(env, "Section overlap found");
3198 			return -EINVAL;
3199 		}
3200 		if (expected_total - total < secs[i].len) {
3201 			btf_verifier_log(env,
3202 					 "Total section length too long");
3203 			return -EINVAL;
3204 		}
3205 		total += secs[i].len;
3206 	}
3207 
3208 	/* There is data other than hdr and known sections */
3209 	if (expected_total != total) {
3210 		btf_verifier_log(env, "Unsupported section found");
3211 		return -EINVAL;
3212 	}
3213 
3214 	return 0;
3215 }
3216 
3217 static int btf_parse_hdr(struct btf_verifier_env *env)
3218 {
3219 	u32 hdr_len, hdr_copy, btf_data_size;
3220 	const struct btf_header *hdr;
3221 	struct btf *btf;
3222 	int err;
3223 
3224 	btf = env->btf;
3225 	btf_data_size = btf->data_size;
3226 
3227 	if (btf_data_size <
3228 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
3229 		btf_verifier_log(env, "hdr_len not found");
3230 		return -EINVAL;
3231 	}
3232 
3233 	hdr = btf->data;
3234 	hdr_len = hdr->hdr_len;
3235 	if (btf_data_size < hdr_len) {
3236 		btf_verifier_log(env, "btf_header not found");
3237 		return -EINVAL;
3238 	}
3239 
3240 	/* Ensure the unsupported header fields are zero */
3241 	if (hdr_len > sizeof(btf->hdr)) {
3242 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
3243 		u8 *end = btf->data + hdr_len;
3244 
3245 		for (; expected_zero < end; expected_zero++) {
3246 			if (*expected_zero) {
3247 				btf_verifier_log(env, "Unsupported btf_header");
3248 				return -E2BIG;
3249 			}
3250 		}
3251 	}
3252 
3253 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
3254 	memcpy(&btf->hdr, btf->data, hdr_copy);
3255 
3256 	hdr = &btf->hdr;
3257 
3258 	btf_verifier_log_hdr(env, btf_data_size);
3259 
3260 	if (hdr->magic != BTF_MAGIC) {
3261 		btf_verifier_log(env, "Invalid magic");
3262 		return -EINVAL;
3263 	}
3264 
3265 	if (hdr->version != BTF_VERSION) {
3266 		btf_verifier_log(env, "Unsupported version");
3267 		return -ENOTSUPP;
3268 	}
3269 
3270 	if (hdr->flags) {
3271 		btf_verifier_log(env, "Unsupported flags");
3272 		return -ENOTSUPP;
3273 	}
3274 
3275 	if (btf_data_size == hdr->hdr_len) {
3276 		btf_verifier_log(env, "No data");
3277 		return -EINVAL;
3278 	}
3279 
3280 	err = btf_check_sec_info(env, btf_data_size);
3281 	if (err)
3282 		return err;
3283 
3284 	return 0;
3285 }
3286 
3287 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
3288 			     u32 log_level, char __user *log_ubuf, u32 log_size)
3289 {
3290 	struct btf_verifier_env *env = NULL;
3291 	struct bpf_verifier_log *log;
3292 	struct btf *btf = NULL;
3293 	u8 *data;
3294 	int err;
3295 
3296 	if (btf_data_size > BTF_MAX_SIZE)
3297 		return ERR_PTR(-E2BIG);
3298 
3299 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3300 	if (!env)
3301 		return ERR_PTR(-ENOMEM);
3302 
3303 	log = &env->log;
3304 	if (log_level || log_ubuf || log_size) {
3305 		/* user requested verbose verifier output
3306 		 * and supplied buffer to store the verification trace
3307 		 */
3308 		log->level = log_level;
3309 		log->ubuf = log_ubuf;
3310 		log->len_total = log_size;
3311 
3312 		/* log attributes have to be sane */
3313 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
3314 		    !log->level || !log->ubuf) {
3315 			err = -EINVAL;
3316 			goto errout;
3317 		}
3318 	}
3319 
3320 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3321 	if (!btf) {
3322 		err = -ENOMEM;
3323 		goto errout;
3324 	}
3325 	env->btf = btf;
3326 
3327 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
3328 	if (!data) {
3329 		err = -ENOMEM;
3330 		goto errout;
3331 	}
3332 
3333 	btf->data = data;
3334 	btf->data_size = btf_data_size;
3335 
3336 	if (copy_from_user(data, btf_data, btf_data_size)) {
3337 		err = -EFAULT;
3338 		goto errout;
3339 	}
3340 
3341 	err = btf_parse_hdr(env);
3342 	if (err)
3343 		goto errout;
3344 
3345 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3346 
3347 	err = btf_parse_str_sec(env);
3348 	if (err)
3349 		goto errout;
3350 
3351 	err = btf_parse_type_sec(env);
3352 	if (err)
3353 		goto errout;
3354 
3355 	if (log->level && bpf_verifier_log_full(log)) {
3356 		err = -ENOSPC;
3357 		goto errout;
3358 	}
3359 
3360 	btf_verifier_env_free(env);
3361 	refcount_set(&btf->refcnt, 1);
3362 	return btf;
3363 
3364 errout:
3365 	btf_verifier_env_free(env);
3366 	if (btf)
3367 		btf_free(btf);
3368 	return ERR_PTR(err);
3369 }
3370 
3371 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
3372 		       struct seq_file *m)
3373 {
3374 	const struct btf_type *t = btf_type_by_id(btf, type_id);
3375 
3376 	btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
3377 }
3378 
3379 #ifdef CONFIG_PROC_FS
3380 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
3381 {
3382 	const struct btf *btf = filp->private_data;
3383 
3384 	seq_printf(m, "btf_id:\t%u\n", btf->id);
3385 }
3386 #endif
3387 
3388 static int btf_release(struct inode *inode, struct file *filp)
3389 {
3390 	btf_put(filp->private_data);
3391 	return 0;
3392 }
3393 
3394 const struct file_operations btf_fops = {
3395 #ifdef CONFIG_PROC_FS
3396 	.show_fdinfo	= bpf_btf_show_fdinfo,
3397 #endif
3398 	.release	= btf_release,
3399 };
3400 
3401 static int __btf_new_fd(struct btf *btf)
3402 {
3403 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
3404 }
3405 
3406 int btf_new_fd(const union bpf_attr *attr)
3407 {
3408 	struct btf *btf;
3409 	int ret;
3410 
3411 	btf = btf_parse(u64_to_user_ptr(attr->btf),
3412 			attr->btf_size, attr->btf_log_level,
3413 			u64_to_user_ptr(attr->btf_log_buf),
3414 			attr->btf_log_size);
3415 	if (IS_ERR(btf))
3416 		return PTR_ERR(btf);
3417 
3418 	ret = btf_alloc_id(btf);
3419 	if (ret) {
3420 		btf_free(btf);
3421 		return ret;
3422 	}
3423 
3424 	/*
3425 	 * The BTF ID is published to the userspace.
3426 	 * All BTF free must go through call_rcu() from
3427 	 * now on (i.e. free by calling btf_put()).
3428 	 */
3429 
3430 	ret = __btf_new_fd(btf);
3431 	if (ret < 0)
3432 		btf_put(btf);
3433 
3434 	return ret;
3435 }
3436 
3437 struct btf *btf_get_by_fd(int fd)
3438 {
3439 	struct btf *btf;
3440 	struct fd f;
3441 
3442 	f = fdget(fd);
3443 
3444 	if (!f.file)
3445 		return ERR_PTR(-EBADF);
3446 
3447 	if (f.file->f_op != &btf_fops) {
3448 		fdput(f);
3449 		return ERR_PTR(-EINVAL);
3450 	}
3451 
3452 	btf = f.file->private_data;
3453 	refcount_inc(&btf->refcnt);
3454 	fdput(f);
3455 
3456 	return btf;
3457 }
3458 
3459 int btf_get_info_by_fd(const struct btf *btf,
3460 		       const union bpf_attr *attr,
3461 		       union bpf_attr __user *uattr)
3462 {
3463 	struct bpf_btf_info __user *uinfo;
3464 	struct bpf_btf_info info = {};
3465 	u32 info_copy, btf_copy;
3466 	void __user *ubtf;
3467 	u32 uinfo_len;
3468 
3469 	uinfo = u64_to_user_ptr(attr->info.info);
3470 	uinfo_len = attr->info.info_len;
3471 
3472 	info_copy = min_t(u32, uinfo_len, sizeof(info));
3473 	if (copy_from_user(&info, uinfo, info_copy))
3474 		return -EFAULT;
3475 
3476 	info.id = btf->id;
3477 	ubtf = u64_to_user_ptr(info.btf);
3478 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
3479 	if (copy_to_user(ubtf, btf->data, btf_copy))
3480 		return -EFAULT;
3481 	info.btf_size = btf->data_size;
3482 
3483 	if (copy_to_user(uinfo, &info, info_copy) ||
3484 	    put_user(info_copy, &uattr->info.info_len))
3485 		return -EFAULT;
3486 
3487 	return 0;
3488 }
3489 
3490 int btf_get_fd_by_id(u32 id)
3491 {
3492 	struct btf *btf;
3493 	int fd;
3494 
3495 	rcu_read_lock();
3496 	btf = idr_find(&btf_idr, id);
3497 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
3498 		btf = ERR_PTR(-ENOENT);
3499 	rcu_read_unlock();
3500 
3501 	if (IS_ERR(btf))
3502 		return PTR_ERR(btf);
3503 
3504 	fd = __btf_new_fd(btf);
3505 	if (fd < 0)
3506 		btf_put(btf);
3507 
3508 	return fd;
3509 }
3510 
3511 u32 btf_id(const struct btf *btf)
3512 {
3513 	return btf->id;
3514 }
3515