xref: /openbmc/linux/kernel/bpf/btf.c (revision a2cab953)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/kobject.h>
26 #include <linux/sysfs.h>
27 #include <net/sock.h>
28 #include "../tools/lib/bpf/relo_core.h"
29 
30 /* BTF (BPF Type Format) is the meta data format which describes
31  * the data types of BPF program/map.  Hence, it basically focus
32  * on the C programming language which the modern BPF is primary
33  * using.
34  *
35  * ELF Section:
36  * ~~~~~~~~~~~
37  * The BTF data is stored under the ".BTF" ELF section
38  *
39  * struct btf_type:
40  * ~~~~~~~~~~~~~~~
41  * Each 'struct btf_type' object describes a C data type.
42  * Depending on the type it is describing, a 'struct btf_type'
43  * object may be followed by more data.  F.e.
44  * To describe an array, 'struct btf_type' is followed by
45  * 'struct btf_array'.
46  *
47  * 'struct btf_type' and any extra data following it are
48  * 4 bytes aligned.
49  *
50  * Type section:
51  * ~~~~~~~~~~~~~
52  * The BTF type section contains a list of 'struct btf_type' objects.
53  * Each one describes a C type.  Recall from the above section
54  * that a 'struct btf_type' object could be immediately followed by extra
55  * data in order to describe some particular C types.
56  *
57  * type_id:
58  * ~~~~~~~
59  * Each btf_type object is identified by a type_id.  The type_id
60  * is implicitly implied by the location of the btf_type object in
61  * the BTF type section.  The first one has type_id 1.  The second
62  * one has type_id 2...etc.  Hence, an earlier btf_type has
63  * a smaller type_id.
64  *
65  * A btf_type object may refer to another btf_type object by using
66  * type_id (i.e. the "type" in the "struct btf_type").
67  *
68  * NOTE that we cannot assume any reference-order.
69  * A btf_type object can refer to an earlier btf_type object
70  * but it can also refer to a later btf_type object.
71  *
72  * For example, to describe "const void *".  A btf_type
73  * object describing "const" may refer to another btf_type
74  * object describing "void *".  This type-reference is done
75  * by specifying type_id:
76  *
77  * [1] CONST (anon) type_id=2
78  * [2] PTR (anon) type_id=0
79  *
80  * The above is the btf_verifier debug log:
81  *   - Each line started with "[?]" is a btf_type object
82  *   - [?] is the type_id of the btf_type object.
83  *   - CONST/PTR is the BTF_KIND_XXX
84  *   - "(anon)" is the name of the type.  It just
85  *     happens that CONST and PTR has no name.
86  *   - type_id=XXX is the 'u32 type' in btf_type
87  *
88  * NOTE: "void" has type_id 0
89  *
90  * String section:
91  * ~~~~~~~~~~~~~~
92  * The BTF string section contains the names used by the type section.
93  * Each string is referred by an "offset" from the beginning of the
94  * string section.
95  *
96  * Each string is '\0' terminated.
97  *
98  * The first character in the string section must be '\0'
99  * which is used to mean 'anonymous'. Some btf_type may not
100  * have a name.
101  */
102 
103 /* BTF verification:
104  *
105  * To verify BTF data, two passes are needed.
106  *
107  * Pass #1
108  * ~~~~~~~
109  * The first pass is to collect all btf_type objects to
110  * an array: "btf->types".
111  *
112  * Depending on the C type that a btf_type is describing,
113  * a btf_type may be followed by extra data.  We don't know
114  * how many btf_type is there, and more importantly we don't
115  * know where each btf_type is located in the type section.
116  *
117  * Without knowing the location of each type_id, most verifications
118  * cannot be done.  e.g. an earlier btf_type may refer to a later
119  * btf_type (recall the "const void *" above), so we cannot
120  * check this type-reference in the first pass.
121  *
122  * In the first pass, it still does some verifications (e.g.
123  * checking the name is a valid offset to the string section).
124  *
125  * Pass #2
126  * ~~~~~~~
127  * The main focus is to resolve a btf_type that is referring
128  * to another type.
129  *
130  * We have to ensure the referring type:
131  * 1) does exist in the BTF (i.e. in btf->types[])
132  * 2) does not cause a loop:
133  *	struct A {
134  *		struct B b;
135  *	};
136  *
137  *	struct B {
138  *		struct A a;
139  *	};
140  *
141  * btf_type_needs_resolve() decides if a btf_type needs
142  * to be resolved.
143  *
144  * The needs_resolve type implements the "resolve()" ops which
145  * essentially does a DFS and detects backedge.
146  *
147  * During resolve (or DFS), different C types have different
148  * "RESOLVED" conditions.
149  *
150  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
151  * members because a member is always referring to another
152  * type.  A struct's member can be treated as "RESOLVED" if
153  * it is referring to a BTF_KIND_PTR.  Otherwise, the
154  * following valid C struct would be rejected:
155  *
156  *	struct A {
157  *		int m;
158  *		struct A *a;
159  *	};
160  *
161  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
162  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
163  * detect a pointer loop, e.g.:
164  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
165  *                        ^                                         |
166  *                        +-----------------------------------------+
167  *
168  */
169 
170 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
171 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
172 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
173 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
174 #define BITS_ROUNDUP_BYTES(bits) \
175 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
176 
177 #define BTF_INFO_MASK 0x9f00ffff
178 #define BTF_INT_MASK 0x0fffffff
179 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
180 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
181 
182 /* 16MB for 64k structs and each has 16 members and
183  * a few MB spaces for the string section.
184  * The hard limit is S32_MAX.
185  */
186 #define BTF_MAX_SIZE (16 * 1024 * 1024)
187 
188 #define for_each_member_from(i, from, struct_type, member)		\
189 	for (i = from, member = btf_type_member(struct_type) + from;	\
190 	     i < btf_type_vlen(struct_type);				\
191 	     i++, member++)
192 
193 #define for_each_vsi_from(i, from, struct_type, member)				\
194 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
195 	     i < btf_type_vlen(struct_type);					\
196 	     i++, member++)
197 
198 DEFINE_IDR(btf_idr);
199 DEFINE_SPINLOCK(btf_idr_lock);
200 
201 enum btf_kfunc_hook {
202 	BTF_KFUNC_HOOK_XDP,
203 	BTF_KFUNC_HOOK_TC,
204 	BTF_KFUNC_HOOK_STRUCT_OPS,
205 	BTF_KFUNC_HOOK_TRACING,
206 	BTF_KFUNC_HOOK_SYSCALL,
207 	BTF_KFUNC_HOOK_MAX,
208 };
209 
210 enum {
211 	BTF_KFUNC_SET_MAX_CNT = 256,
212 	BTF_DTOR_KFUNC_MAX_CNT = 256,
213 };
214 
215 struct btf_kfunc_set_tab {
216 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
217 };
218 
219 struct btf_id_dtor_kfunc_tab {
220 	u32 cnt;
221 	struct btf_id_dtor_kfunc dtors[];
222 };
223 
224 struct btf {
225 	void *data;
226 	struct btf_type **types;
227 	u32 *resolved_ids;
228 	u32 *resolved_sizes;
229 	const char *strings;
230 	void *nohdr_data;
231 	struct btf_header hdr;
232 	u32 nr_types; /* includes VOID for base BTF */
233 	u32 types_size;
234 	u32 data_size;
235 	refcount_t refcnt;
236 	u32 id;
237 	struct rcu_head rcu;
238 	struct btf_kfunc_set_tab *kfunc_set_tab;
239 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
240 
241 	/* split BTF support */
242 	struct btf *base_btf;
243 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
244 	u32 start_str_off; /* first string offset (0 for base BTF) */
245 	char name[MODULE_NAME_LEN];
246 	bool kernel_btf;
247 };
248 
249 enum verifier_phase {
250 	CHECK_META,
251 	CHECK_TYPE,
252 };
253 
254 struct resolve_vertex {
255 	const struct btf_type *t;
256 	u32 type_id;
257 	u16 next_member;
258 };
259 
260 enum visit_state {
261 	NOT_VISITED,
262 	VISITED,
263 	RESOLVED,
264 };
265 
266 enum resolve_mode {
267 	RESOLVE_TBD,	/* To Be Determined */
268 	RESOLVE_PTR,	/* Resolving for Pointer */
269 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
270 					 * or array
271 					 */
272 };
273 
274 #define MAX_RESOLVE_DEPTH 32
275 
276 struct btf_sec_info {
277 	u32 off;
278 	u32 len;
279 };
280 
281 struct btf_verifier_env {
282 	struct btf *btf;
283 	u8 *visit_states;
284 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
285 	struct bpf_verifier_log log;
286 	u32 log_type_id;
287 	u32 top_stack;
288 	enum verifier_phase phase;
289 	enum resolve_mode resolve_mode;
290 };
291 
292 static const char * const btf_kind_str[NR_BTF_KINDS] = {
293 	[BTF_KIND_UNKN]		= "UNKNOWN",
294 	[BTF_KIND_INT]		= "INT",
295 	[BTF_KIND_PTR]		= "PTR",
296 	[BTF_KIND_ARRAY]	= "ARRAY",
297 	[BTF_KIND_STRUCT]	= "STRUCT",
298 	[BTF_KIND_UNION]	= "UNION",
299 	[BTF_KIND_ENUM]		= "ENUM",
300 	[BTF_KIND_FWD]		= "FWD",
301 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
302 	[BTF_KIND_VOLATILE]	= "VOLATILE",
303 	[BTF_KIND_CONST]	= "CONST",
304 	[BTF_KIND_RESTRICT]	= "RESTRICT",
305 	[BTF_KIND_FUNC]		= "FUNC",
306 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
307 	[BTF_KIND_VAR]		= "VAR",
308 	[BTF_KIND_DATASEC]	= "DATASEC",
309 	[BTF_KIND_FLOAT]	= "FLOAT",
310 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
311 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
312 	[BTF_KIND_ENUM64]	= "ENUM64",
313 };
314 
315 const char *btf_type_str(const struct btf_type *t)
316 {
317 	return btf_kind_str[BTF_INFO_KIND(t->info)];
318 }
319 
320 /* Chunk size we use in safe copy of data to be shown. */
321 #define BTF_SHOW_OBJ_SAFE_SIZE		32
322 
323 /*
324  * This is the maximum size of a base type value (equivalent to a
325  * 128-bit int); if we are at the end of our safe buffer and have
326  * less than 16 bytes space we can't be assured of being able
327  * to copy the next type safely, so in such cases we will initiate
328  * a new copy.
329  */
330 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
331 
332 /* Type name size */
333 #define BTF_SHOW_NAME_SIZE		80
334 
335 /*
336  * Common data to all BTF show operations. Private show functions can add
337  * their own data to a structure containing a struct btf_show and consult it
338  * in the show callback.  See btf_type_show() below.
339  *
340  * One challenge with showing nested data is we want to skip 0-valued
341  * data, but in order to figure out whether a nested object is all zeros
342  * we need to walk through it.  As a result, we need to make two passes
343  * when handling structs, unions and arrays; the first path simply looks
344  * for nonzero data, while the second actually does the display.  The first
345  * pass is signalled by show->state.depth_check being set, and if we
346  * encounter a non-zero value we set show->state.depth_to_show to
347  * the depth at which we encountered it.  When we have completed the
348  * first pass, we will know if anything needs to be displayed if
349  * depth_to_show > depth.  See btf_[struct,array]_show() for the
350  * implementation of this.
351  *
352  * Another problem is we want to ensure the data for display is safe to
353  * access.  To support this, the anonymous "struct {} obj" tracks the data
354  * object and our safe copy of it.  We copy portions of the data needed
355  * to the object "copy" buffer, but because its size is limited to
356  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
357  * traverse larger objects for display.
358  *
359  * The various data type show functions all start with a call to
360  * btf_show_start_type() which returns a pointer to the safe copy
361  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
362  * raw data itself).  btf_show_obj_safe() is responsible for
363  * using copy_from_kernel_nofault() to update the safe data if necessary
364  * as we traverse the object's data.  skbuff-like semantics are
365  * used:
366  *
367  * - obj.head points to the start of the toplevel object for display
368  * - obj.size is the size of the toplevel object
369  * - obj.data points to the current point in the original data at
370  *   which our safe data starts.  obj.data will advance as we copy
371  *   portions of the data.
372  *
373  * In most cases a single copy will suffice, but larger data structures
374  * such as "struct task_struct" will require many copies.  The logic in
375  * btf_show_obj_safe() handles the logic that determines if a new
376  * copy_from_kernel_nofault() is needed.
377  */
378 struct btf_show {
379 	u64 flags;
380 	void *target;	/* target of show operation (seq file, buffer) */
381 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
382 	const struct btf *btf;
383 	/* below are used during iteration */
384 	struct {
385 		u8 depth;
386 		u8 depth_to_show;
387 		u8 depth_check;
388 		u8 array_member:1,
389 		   array_terminated:1;
390 		u16 array_encoding;
391 		u32 type_id;
392 		int status;			/* non-zero for error */
393 		const struct btf_type *type;
394 		const struct btf_member *member;
395 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
396 	} state;
397 	struct {
398 		u32 size;
399 		void *head;
400 		void *data;
401 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
402 	} obj;
403 };
404 
405 struct btf_kind_operations {
406 	s32 (*check_meta)(struct btf_verifier_env *env,
407 			  const struct btf_type *t,
408 			  u32 meta_left);
409 	int (*resolve)(struct btf_verifier_env *env,
410 		       const struct resolve_vertex *v);
411 	int (*check_member)(struct btf_verifier_env *env,
412 			    const struct btf_type *struct_type,
413 			    const struct btf_member *member,
414 			    const struct btf_type *member_type);
415 	int (*check_kflag_member)(struct btf_verifier_env *env,
416 				  const struct btf_type *struct_type,
417 				  const struct btf_member *member,
418 				  const struct btf_type *member_type);
419 	void (*log_details)(struct btf_verifier_env *env,
420 			    const struct btf_type *t);
421 	void (*show)(const struct btf *btf, const struct btf_type *t,
422 			 u32 type_id, void *data, u8 bits_offsets,
423 			 struct btf_show *show);
424 };
425 
426 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
427 static struct btf_type btf_void;
428 
429 static int btf_resolve(struct btf_verifier_env *env,
430 		       const struct btf_type *t, u32 type_id);
431 
432 static int btf_func_check(struct btf_verifier_env *env,
433 			  const struct btf_type *t);
434 
435 static bool btf_type_is_modifier(const struct btf_type *t)
436 {
437 	/* Some of them is not strictly a C modifier
438 	 * but they are grouped into the same bucket
439 	 * for BTF concern:
440 	 *   A type (t) that refers to another
441 	 *   type through t->type AND its size cannot
442 	 *   be determined without following the t->type.
443 	 *
444 	 * ptr does not fall into this bucket
445 	 * because its size is always sizeof(void *).
446 	 */
447 	switch (BTF_INFO_KIND(t->info)) {
448 	case BTF_KIND_TYPEDEF:
449 	case BTF_KIND_VOLATILE:
450 	case BTF_KIND_CONST:
451 	case BTF_KIND_RESTRICT:
452 	case BTF_KIND_TYPE_TAG:
453 		return true;
454 	}
455 
456 	return false;
457 }
458 
459 bool btf_type_is_void(const struct btf_type *t)
460 {
461 	return t == &btf_void;
462 }
463 
464 static bool btf_type_is_fwd(const struct btf_type *t)
465 {
466 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
467 }
468 
469 static bool btf_type_nosize(const struct btf_type *t)
470 {
471 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
472 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
473 }
474 
475 static bool btf_type_nosize_or_null(const struct btf_type *t)
476 {
477 	return !t || btf_type_nosize(t);
478 }
479 
480 static bool __btf_type_is_struct(const struct btf_type *t)
481 {
482 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
483 }
484 
485 static bool btf_type_is_array(const struct btf_type *t)
486 {
487 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
488 }
489 
490 static bool btf_type_is_datasec(const struct btf_type *t)
491 {
492 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
493 }
494 
495 static bool btf_type_is_decl_tag(const struct btf_type *t)
496 {
497 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
498 }
499 
500 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
501 {
502 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
503 	       btf_type_is_var(t) || btf_type_is_typedef(t);
504 }
505 
506 u32 btf_nr_types(const struct btf *btf)
507 {
508 	u32 total = 0;
509 
510 	while (btf) {
511 		total += btf->nr_types;
512 		btf = btf->base_btf;
513 	}
514 
515 	return total;
516 }
517 
518 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
519 {
520 	const struct btf_type *t;
521 	const char *tname;
522 	u32 i, total;
523 
524 	total = btf_nr_types(btf);
525 	for (i = 1; i < total; i++) {
526 		t = btf_type_by_id(btf, i);
527 		if (BTF_INFO_KIND(t->info) != kind)
528 			continue;
529 
530 		tname = btf_name_by_offset(btf, t->name_off);
531 		if (!strcmp(tname, name))
532 			return i;
533 	}
534 
535 	return -ENOENT;
536 }
537 
538 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
539 {
540 	struct btf *btf;
541 	s32 ret;
542 	int id;
543 
544 	btf = bpf_get_btf_vmlinux();
545 	if (IS_ERR(btf))
546 		return PTR_ERR(btf);
547 	if (!btf)
548 		return -EINVAL;
549 
550 	ret = btf_find_by_name_kind(btf, name, kind);
551 	/* ret is never zero, since btf_find_by_name_kind returns
552 	 * positive btf_id or negative error.
553 	 */
554 	if (ret > 0) {
555 		btf_get(btf);
556 		*btf_p = btf;
557 		return ret;
558 	}
559 
560 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
561 	spin_lock_bh(&btf_idr_lock);
562 	idr_for_each_entry(&btf_idr, btf, id) {
563 		if (!btf_is_module(btf))
564 			continue;
565 		/* linear search could be slow hence unlock/lock
566 		 * the IDR to avoiding holding it for too long
567 		 */
568 		btf_get(btf);
569 		spin_unlock_bh(&btf_idr_lock);
570 		ret = btf_find_by_name_kind(btf, name, kind);
571 		if (ret > 0) {
572 			*btf_p = btf;
573 			return ret;
574 		}
575 		spin_lock_bh(&btf_idr_lock);
576 		btf_put(btf);
577 	}
578 	spin_unlock_bh(&btf_idr_lock);
579 	return ret;
580 }
581 
582 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
583 					       u32 id, u32 *res_id)
584 {
585 	const struct btf_type *t = btf_type_by_id(btf, id);
586 
587 	while (btf_type_is_modifier(t)) {
588 		id = t->type;
589 		t = btf_type_by_id(btf, t->type);
590 	}
591 
592 	if (res_id)
593 		*res_id = id;
594 
595 	return t;
596 }
597 
598 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
599 					    u32 id, u32 *res_id)
600 {
601 	const struct btf_type *t;
602 
603 	t = btf_type_skip_modifiers(btf, id, NULL);
604 	if (!btf_type_is_ptr(t))
605 		return NULL;
606 
607 	return btf_type_skip_modifiers(btf, t->type, res_id);
608 }
609 
610 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
611 						 u32 id, u32 *res_id)
612 {
613 	const struct btf_type *ptype;
614 
615 	ptype = btf_type_resolve_ptr(btf, id, res_id);
616 	if (ptype && btf_type_is_func_proto(ptype))
617 		return ptype;
618 
619 	return NULL;
620 }
621 
622 /* Types that act only as a source, not sink or intermediate
623  * type when resolving.
624  */
625 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
626 {
627 	return btf_type_is_var(t) ||
628 	       btf_type_is_decl_tag(t) ||
629 	       btf_type_is_datasec(t);
630 }
631 
632 /* What types need to be resolved?
633  *
634  * btf_type_is_modifier() is an obvious one.
635  *
636  * btf_type_is_struct() because its member refers to
637  * another type (through member->type).
638  *
639  * btf_type_is_var() because the variable refers to
640  * another type. btf_type_is_datasec() holds multiple
641  * btf_type_is_var() types that need resolving.
642  *
643  * btf_type_is_array() because its element (array->type)
644  * refers to another type.  Array can be thought of a
645  * special case of struct while array just has the same
646  * member-type repeated by array->nelems of times.
647  */
648 static bool btf_type_needs_resolve(const struct btf_type *t)
649 {
650 	return btf_type_is_modifier(t) ||
651 	       btf_type_is_ptr(t) ||
652 	       btf_type_is_struct(t) ||
653 	       btf_type_is_array(t) ||
654 	       btf_type_is_var(t) ||
655 	       btf_type_is_func(t) ||
656 	       btf_type_is_decl_tag(t) ||
657 	       btf_type_is_datasec(t);
658 }
659 
660 /* t->size can be used */
661 static bool btf_type_has_size(const struct btf_type *t)
662 {
663 	switch (BTF_INFO_KIND(t->info)) {
664 	case BTF_KIND_INT:
665 	case BTF_KIND_STRUCT:
666 	case BTF_KIND_UNION:
667 	case BTF_KIND_ENUM:
668 	case BTF_KIND_DATASEC:
669 	case BTF_KIND_FLOAT:
670 	case BTF_KIND_ENUM64:
671 		return true;
672 	}
673 
674 	return false;
675 }
676 
677 static const char *btf_int_encoding_str(u8 encoding)
678 {
679 	if (encoding == 0)
680 		return "(none)";
681 	else if (encoding == BTF_INT_SIGNED)
682 		return "SIGNED";
683 	else if (encoding == BTF_INT_CHAR)
684 		return "CHAR";
685 	else if (encoding == BTF_INT_BOOL)
686 		return "BOOL";
687 	else
688 		return "UNKN";
689 }
690 
691 static u32 btf_type_int(const struct btf_type *t)
692 {
693 	return *(u32 *)(t + 1);
694 }
695 
696 static const struct btf_array *btf_type_array(const struct btf_type *t)
697 {
698 	return (const struct btf_array *)(t + 1);
699 }
700 
701 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
702 {
703 	return (const struct btf_enum *)(t + 1);
704 }
705 
706 static const struct btf_var *btf_type_var(const struct btf_type *t)
707 {
708 	return (const struct btf_var *)(t + 1);
709 }
710 
711 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
712 {
713 	return (const struct btf_decl_tag *)(t + 1);
714 }
715 
716 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
717 {
718 	return (const struct btf_enum64 *)(t + 1);
719 }
720 
721 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
722 {
723 	return kind_ops[BTF_INFO_KIND(t->info)];
724 }
725 
726 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
727 {
728 	if (!BTF_STR_OFFSET_VALID(offset))
729 		return false;
730 
731 	while (offset < btf->start_str_off)
732 		btf = btf->base_btf;
733 
734 	offset -= btf->start_str_off;
735 	return offset < btf->hdr.str_len;
736 }
737 
738 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
739 {
740 	if ((first ? !isalpha(c) :
741 		     !isalnum(c)) &&
742 	    c != '_' &&
743 	    ((c == '.' && !dot_ok) ||
744 	      c != '.'))
745 		return false;
746 	return true;
747 }
748 
749 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
750 {
751 	while (offset < btf->start_str_off)
752 		btf = btf->base_btf;
753 
754 	offset -= btf->start_str_off;
755 	if (offset < btf->hdr.str_len)
756 		return &btf->strings[offset];
757 
758 	return NULL;
759 }
760 
761 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
762 {
763 	/* offset must be valid */
764 	const char *src = btf_str_by_offset(btf, offset);
765 	const char *src_limit;
766 
767 	if (!__btf_name_char_ok(*src, true, dot_ok))
768 		return false;
769 
770 	/* set a limit on identifier length */
771 	src_limit = src + KSYM_NAME_LEN;
772 	src++;
773 	while (*src && src < src_limit) {
774 		if (!__btf_name_char_ok(*src, false, dot_ok))
775 			return false;
776 		src++;
777 	}
778 
779 	return !*src;
780 }
781 
782 /* Only C-style identifier is permitted. This can be relaxed if
783  * necessary.
784  */
785 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
786 {
787 	return __btf_name_valid(btf, offset, false);
788 }
789 
790 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
791 {
792 	return __btf_name_valid(btf, offset, true);
793 }
794 
795 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
796 {
797 	const char *name;
798 
799 	if (!offset)
800 		return "(anon)";
801 
802 	name = btf_str_by_offset(btf, offset);
803 	return name ?: "(invalid-name-offset)";
804 }
805 
806 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
807 {
808 	return btf_str_by_offset(btf, offset);
809 }
810 
811 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
812 {
813 	while (type_id < btf->start_id)
814 		btf = btf->base_btf;
815 
816 	type_id -= btf->start_id;
817 	if (type_id >= btf->nr_types)
818 		return NULL;
819 	return btf->types[type_id];
820 }
821 EXPORT_SYMBOL_GPL(btf_type_by_id);
822 
823 /*
824  * Regular int is not a bit field and it must be either
825  * u8/u16/u32/u64 or __int128.
826  */
827 static bool btf_type_int_is_regular(const struct btf_type *t)
828 {
829 	u8 nr_bits, nr_bytes;
830 	u32 int_data;
831 
832 	int_data = btf_type_int(t);
833 	nr_bits = BTF_INT_BITS(int_data);
834 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
835 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
836 	    BTF_INT_OFFSET(int_data) ||
837 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
838 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
839 	     nr_bytes != (2 * sizeof(u64)))) {
840 		return false;
841 	}
842 
843 	return true;
844 }
845 
846 /*
847  * Check that given struct member is a regular int with expected
848  * offset and size.
849  */
850 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
851 			   const struct btf_member *m,
852 			   u32 expected_offset, u32 expected_size)
853 {
854 	const struct btf_type *t;
855 	u32 id, int_data;
856 	u8 nr_bits;
857 
858 	id = m->type;
859 	t = btf_type_id_size(btf, &id, NULL);
860 	if (!t || !btf_type_is_int(t))
861 		return false;
862 
863 	int_data = btf_type_int(t);
864 	nr_bits = BTF_INT_BITS(int_data);
865 	if (btf_type_kflag(s)) {
866 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
867 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
868 
869 		/* if kflag set, int should be a regular int and
870 		 * bit offset should be at byte boundary.
871 		 */
872 		return !bitfield_size &&
873 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
874 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
875 	}
876 
877 	if (BTF_INT_OFFSET(int_data) ||
878 	    BITS_PER_BYTE_MASKED(m->offset) ||
879 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
880 	    BITS_PER_BYTE_MASKED(nr_bits) ||
881 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
882 		return false;
883 
884 	return true;
885 }
886 
887 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
888 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
889 						       u32 id)
890 {
891 	const struct btf_type *t = btf_type_by_id(btf, id);
892 
893 	while (btf_type_is_modifier(t) &&
894 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
895 		t = btf_type_by_id(btf, t->type);
896 	}
897 
898 	return t;
899 }
900 
901 #define BTF_SHOW_MAX_ITER	10
902 
903 #define BTF_KIND_BIT(kind)	(1ULL << kind)
904 
905 /*
906  * Populate show->state.name with type name information.
907  * Format of type name is
908  *
909  * [.member_name = ] (type_name)
910  */
911 static const char *btf_show_name(struct btf_show *show)
912 {
913 	/* BTF_MAX_ITER array suffixes "[]" */
914 	const char *array_suffixes = "[][][][][][][][][][]";
915 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
916 	/* BTF_MAX_ITER pointer suffixes "*" */
917 	const char *ptr_suffixes = "**********";
918 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
919 	const char *name = NULL, *prefix = "", *parens = "";
920 	const struct btf_member *m = show->state.member;
921 	const struct btf_type *t;
922 	const struct btf_array *array;
923 	u32 id = show->state.type_id;
924 	const char *member = NULL;
925 	bool show_member = false;
926 	u64 kinds = 0;
927 	int i;
928 
929 	show->state.name[0] = '\0';
930 
931 	/*
932 	 * Don't show type name if we're showing an array member;
933 	 * in that case we show the array type so don't need to repeat
934 	 * ourselves for each member.
935 	 */
936 	if (show->state.array_member)
937 		return "";
938 
939 	/* Retrieve member name, if any. */
940 	if (m) {
941 		member = btf_name_by_offset(show->btf, m->name_off);
942 		show_member = strlen(member) > 0;
943 		id = m->type;
944 	}
945 
946 	/*
947 	 * Start with type_id, as we have resolved the struct btf_type *
948 	 * via btf_modifier_show() past the parent typedef to the child
949 	 * struct, int etc it is defined as.  In such cases, the type_id
950 	 * still represents the starting type while the struct btf_type *
951 	 * in our show->state points at the resolved type of the typedef.
952 	 */
953 	t = btf_type_by_id(show->btf, id);
954 	if (!t)
955 		return "";
956 
957 	/*
958 	 * The goal here is to build up the right number of pointer and
959 	 * array suffixes while ensuring the type name for a typedef
960 	 * is represented.  Along the way we accumulate a list of
961 	 * BTF kinds we have encountered, since these will inform later
962 	 * display; for example, pointer types will not require an
963 	 * opening "{" for struct, we will just display the pointer value.
964 	 *
965 	 * We also want to accumulate the right number of pointer or array
966 	 * indices in the format string while iterating until we get to
967 	 * the typedef/pointee/array member target type.
968 	 *
969 	 * We start by pointing at the end of pointer and array suffix
970 	 * strings; as we accumulate pointers and arrays we move the pointer
971 	 * or array string backwards so it will show the expected number of
972 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
973 	 * and/or arrays and typedefs are supported as a precaution.
974 	 *
975 	 * We also want to get typedef name while proceeding to resolve
976 	 * type it points to so that we can add parentheses if it is a
977 	 * "typedef struct" etc.
978 	 */
979 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
980 
981 		switch (BTF_INFO_KIND(t->info)) {
982 		case BTF_KIND_TYPEDEF:
983 			if (!name)
984 				name = btf_name_by_offset(show->btf,
985 							       t->name_off);
986 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
987 			id = t->type;
988 			break;
989 		case BTF_KIND_ARRAY:
990 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
991 			parens = "[";
992 			if (!t)
993 				return "";
994 			array = btf_type_array(t);
995 			if (array_suffix > array_suffixes)
996 				array_suffix -= 2;
997 			id = array->type;
998 			break;
999 		case BTF_KIND_PTR:
1000 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1001 			if (ptr_suffix > ptr_suffixes)
1002 				ptr_suffix -= 1;
1003 			id = t->type;
1004 			break;
1005 		default:
1006 			id = 0;
1007 			break;
1008 		}
1009 		if (!id)
1010 			break;
1011 		t = btf_type_skip_qualifiers(show->btf, id);
1012 	}
1013 	/* We may not be able to represent this type; bail to be safe */
1014 	if (i == BTF_SHOW_MAX_ITER)
1015 		return "";
1016 
1017 	if (!name)
1018 		name = btf_name_by_offset(show->btf, t->name_off);
1019 
1020 	switch (BTF_INFO_KIND(t->info)) {
1021 	case BTF_KIND_STRUCT:
1022 	case BTF_KIND_UNION:
1023 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1024 			 "struct" : "union";
1025 		/* if it's an array of struct/union, parens is already set */
1026 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1027 			parens = "{";
1028 		break;
1029 	case BTF_KIND_ENUM:
1030 	case BTF_KIND_ENUM64:
1031 		prefix = "enum";
1032 		break;
1033 	default:
1034 		break;
1035 	}
1036 
1037 	/* pointer does not require parens */
1038 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1039 		parens = "";
1040 	/* typedef does not require struct/union/enum prefix */
1041 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1042 		prefix = "";
1043 
1044 	if (!name)
1045 		name = "";
1046 
1047 	/* Even if we don't want type name info, we want parentheses etc */
1048 	if (show->flags & BTF_SHOW_NONAME)
1049 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1050 			 parens);
1051 	else
1052 		snprintf(show->state.name, sizeof(show->state.name),
1053 			 "%s%s%s(%s%s%s%s%s%s)%s",
1054 			 /* first 3 strings comprise ".member = " */
1055 			 show_member ? "." : "",
1056 			 show_member ? member : "",
1057 			 show_member ? " = " : "",
1058 			 /* ...next is our prefix (struct, enum, etc) */
1059 			 prefix,
1060 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1061 			 /* ...this is the type name itself */
1062 			 name,
1063 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1064 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1065 			 array_suffix, parens);
1066 
1067 	return show->state.name;
1068 }
1069 
1070 static const char *__btf_show_indent(struct btf_show *show)
1071 {
1072 	const char *indents = "                                ";
1073 	const char *indent = &indents[strlen(indents)];
1074 
1075 	if ((indent - show->state.depth) >= indents)
1076 		return indent - show->state.depth;
1077 	return indents;
1078 }
1079 
1080 static const char *btf_show_indent(struct btf_show *show)
1081 {
1082 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1083 }
1084 
1085 static const char *btf_show_newline(struct btf_show *show)
1086 {
1087 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1088 }
1089 
1090 static const char *btf_show_delim(struct btf_show *show)
1091 {
1092 	if (show->state.depth == 0)
1093 		return "";
1094 
1095 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1096 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1097 		return "|";
1098 
1099 	return ",";
1100 }
1101 
1102 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1103 {
1104 	va_list args;
1105 
1106 	if (!show->state.depth_check) {
1107 		va_start(args, fmt);
1108 		show->showfn(show, fmt, args);
1109 		va_end(args);
1110 	}
1111 }
1112 
1113 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1114  * format specifiers to the format specifier passed in; these do the work of
1115  * adding indentation, delimiters etc while the caller simply has to specify
1116  * the type value(s) in the format specifier + value(s).
1117  */
1118 #define btf_show_type_value(show, fmt, value)				       \
1119 	do {								       \
1120 		if ((value) != (__typeof__(value))0 ||			       \
1121 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1122 		    show->state.depth == 0) {				       \
1123 			btf_show(show, "%s%s" fmt "%s%s",		       \
1124 				 btf_show_indent(show),			       \
1125 				 btf_show_name(show),			       \
1126 				 value, btf_show_delim(show),		       \
1127 				 btf_show_newline(show));		       \
1128 			if (show->state.depth > show->state.depth_to_show)     \
1129 				show->state.depth_to_show = show->state.depth; \
1130 		}							       \
1131 	} while (0)
1132 
1133 #define btf_show_type_values(show, fmt, ...)				       \
1134 	do {								       \
1135 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1136 			 btf_show_name(show),				       \
1137 			 __VA_ARGS__, btf_show_delim(show),		       \
1138 			 btf_show_newline(show));			       \
1139 		if (show->state.depth > show->state.depth_to_show)	       \
1140 			show->state.depth_to_show = show->state.depth;	       \
1141 	} while (0)
1142 
1143 /* How much is left to copy to safe buffer after @data? */
1144 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1145 {
1146 	return show->obj.head + show->obj.size - data;
1147 }
1148 
1149 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1150 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1151 {
1152 	return data >= show->obj.data &&
1153 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1154 }
1155 
1156 /*
1157  * If object pointed to by @data of @size falls within our safe buffer, return
1158  * the equivalent pointer to the same safe data.  Assumes
1159  * copy_from_kernel_nofault() has already happened and our safe buffer is
1160  * populated.
1161  */
1162 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1163 {
1164 	if (btf_show_obj_is_safe(show, data, size))
1165 		return show->obj.safe + (data - show->obj.data);
1166 	return NULL;
1167 }
1168 
1169 /*
1170  * Return a safe-to-access version of data pointed to by @data.
1171  * We do this by copying the relevant amount of information
1172  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1173  *
1174  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1175  * safe copy is needed.
1176  *
1177  * Otherwise we need to determine if we have the required amount
1178  * of data (determined by the @data pointer and the size of the
1179  * largest base type we can encounter (represented by
1180  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1181  * that we will be able to print some of the current object,
1182  * and if more is needed a copy will be triggered.
1183  * Some objects such as structs will not fit into the buffer;
1184  * in such cases additional copies when we iterate over their
1185  * members may be needed.
1186  *
1187  * btf_show_obj_safe() is used to return a safe buffer for
1188  * btf_show_start_type(); this ensures that as we recurse into
1189  * nested types we always have safe data for the given type.
1190  * This approach is somewhat wasteful; it's possible for example
1191  * that when iterating over a large union we'll end up copying the
1192  * same data repeatedly, but the goal is safety not performance.
1193  * We use stack data as opposed to per-CPU buffers because the
1194  * iteration over a type can take some time, and preemption handling
1195  * would greatly complicate use of the safe buffer.
1196  */
1197 static void *btf_show_obj_safe(struct btf_show *show,
1198 			       const struct btf_type *t,
1199 			       void *data)
1200 {
1201 	const struct btf_type *rt;
1202 	int size_left, size;
1203 	void *safe = NULL;
1204 
1205 	if (show->flags & BTF_SHOW_UNSAFE)
1206 		return data;
1207 
1208 	rt = btf_resolve_size(show->btf, t, &size);
1209 	if (IS_ERR(rt)) {
1210 		show->state.status = PTR_ERR(rt);
1211 		return NULL;
1212 	}
1213 
1214 	/*
1215 	 * Is this toplevel object? If so, set total object size and
1216 	 * initialize pointers.  Otherwise check if we still fall within
1217 	 * our safe object data.
1218 	 */
1219 	if (show->state.depth == 0) {
1220 		show->obj.size = size;
1221 		show->obj.head = data;
1222 	} else {
1223 		/*
1224 		 * If the size of the current object is > our remaining
1225 		 * safe buffer we _may_ need to do a new copy.  However
1226 		 * consider the case of a nested struct; it's size pushes
1227 		 * us over the safe buffer limit, but showing any individual
1228 		 * struct members does not.  In such cases, we don't need
1229 		 * to initiate a fresh copy yet; however we definitely need
1230 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1231 		 * in our buffer, regardless of the current object size.
1232 		 * The logic here is that as we resolve types we will
1233 		 * hit a base type at some point, and we need to be sure
1234 		 * the next chunk of data is safely available to display
1235 		 * that type info safely.  We cannot rely on the size of
1236 		 * the current object here because it may be much larger
1237 		 * than our current buffer (e.g. task_struct is 8k).
1238 		 * All we want to do here is ensure that we can print the
1239 		 * next basic type, which we can if either
1240 		 * - the current type size is within the safe buffer; or
1241 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1242 		 *   the safe buffer.
1243 		 */
1244 		safe = __btf_show_obj_safe(show, data,
1245 					   min(size,
1246 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1247 	}
1248 
1249 	/*
1250 	 * We need a new copy to our safe object, either because we haven't
1251 	 * yet copied and are initializing safe data, or because the data
1252 	 * we want falls outside the boundaries of the safe object.
1253 	 */
1254 	if (!safe) {
1255 		size_left = btf_show_obj_size_left(show, data);
1256 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1257 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1258 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1259 							      data, size_left);
1260 		if (!show->state.status) {
1261 			show->obj.data = data;
1262 			safe = show->obj.safe;
1263 		}
1264 	}
1265 
1266 	return safe;
1267 }
1268 
1269 /*
1270  * Set the type we are starting to show and return a safe data pointer
1271  * to be used for showing the associated data.
1272  */
1273 static void *btf_show_start_type(struct btf_show *show,
1274 				 const struct btf_type *t,
1275 				 u32 type_id, void *data)
1276 {
1277 	show->state.type = t;
1278 	show->state.type_id = type_id;
1279 	show->state.name[0] = '\0';
1280 
1281 	return btf_show_obj_safe(show, t, data);
1282 }
1283 
1284 static void btf_show_end_type(struct btf_show *show)
1285 {
1286 	show->state.type = NULL;
1287 	show->state.type_id = 0;
1288 	show->state.name[0] = '\0';
1289 }
1290 
1291 static void *btf_show_start_aggr_type(struct btf_show *show,
1292 				      const struct btf_type *t,
1293 				      u32 type_id, void *data)
1294 {
1295 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1296 
1297 	if (!safe_data)
1298 		return safe_data;
1299 
1300 	btf_show(show, "%s%s%s", btf_show_indent(show),
1301 		 btf_show_name(show),
1302 		 btf_show_newline(show));
1303 	show->state.depth++;
1304 	return safe_data;
1305 }
1306 
1307 static void btf_show_end_aggr_type(struct btf_show *show,
1308 				   const char *suffix)
1309 {
1310 	show->state.depth--;
1311 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1312 		 btf_show_delim(show), btf_show_newline(show));
1313 	btf_show_end_type(show);
1314 }
1315 
1316 static void btf_show_start_member(struct btf_show *show,
1317 				  const struct btf_member *m)
1318 {
1319 	show->state.member = m;
1320 }
1321 
1322 static void btf_show_start_array_member(struct btf_show *show)
1323 {
1324 	show->state.array_member = 1;
1325 	btf_show_start_member(show, NULL);
1326 }
1327 
1328 static void btf_show_end_member(struct btf_show *show)
1329 {
1330 	show->state.member = NULL;
1331 }
1332 
1333 static void btf_show_end_array_member(struct btf_show *show)
1334 {
1335 	show->state.array_member = 0;
1336 	btf_show_end_member(show);
1337 }
1338 
1339 static void *btf_show_start_array_type(struct btf_show *show,
1340 				       const struct btf_type *t,
1341 				       u32 type_id,
1342 				       u16 array_encoding,
1343 				       void *data)
1344 {
1345 	show->state.array_encoding = array_encoding;
1346 	show->state.array_terminated = 0;
1347 	return btf_show_start_aggr_type(show, t, type_id, data);
1348 }
1349 
1350 static void btf_show_end_array_type(struct btf_show *show)
1351 {
1352 	show->state.array_encoding = 0;
1353 	show->state.array_terminated = 0;
1354 	btf_show_end_aggr_type(show, "]");
1355 }
1356 
1357 static void *btf_show_start_struct_type(struct btf_show *show,
1358 					const struct btf_type *t,
1359 					u32 type_id,
1360 					void *data)
1361 {
1362 	return btf_show_start_aggr_type(show, t, type_id, data);
1363 }
1364 
1365 static void btf_show_end_struct_type(struct btf_show *show)
1366 {
1367 	btf_show_end_aggr_type(show, "}");
1368 }
1369 
1370 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1371 					      const char *fmt, ...)
1372 {
1373 	va_list args;
1374 
1375 	va_start(args, fmt);
1376 	bpf_verifier_vlog(log, fmt, args);
1377 	va_end(args);
1378 }
1379 
1380 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1381 					    const char *fmt, ...)
1382 {
1383 	struct bpf_verifier_log *log = &env->log;
1384 	va_list args;
1385 
1386 	if (!bpf_verifier_log_needed(log))
1387 		return;
1388 
1389 	va_start(args, fmt);
1390 	bpf_verifier_vlog(log, fmt, args);
1391 	va_end(args);
1392 }
1393 
1394 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1395 						   const struct btf_type *t,
1396 						   bool log_details,
1397 						   const char *fmt, ...)
1398 {
1399 	struct bpf_verifier_log *log = &env->log;
1400 	struct btf *btf = env->btf;
1401 	va_list args;
1402 
1403 	if (!bpf_verifier_log_needed(log))
1404 		return;
1405 
1406 	/* btf verifier prints all types it is processing via
1407 	 * btf_verifier_log_type(..., fmt = NULL).
1408 	 * Skip those prints for in-kernel BTF verification.
1409 	 */
1410 	if (log->level == BPF_LOG_KERNEL && !fmt)
1411 		return;
1412 
1413 	__btf_verifier_log(log, "[%u] %s %s%s",
1414 			   env->log_type_id,
1415 			   btf_type_str(t),
1416 			   __btf_name_by_offset(btf, t->name_off),
1417 			   log_details ? " " : "");
1418 
1419 	if (log_details)
1420 		btf_type_ops(t)->log_details(env, t);
1421 
1422 	if (fmt && *fmt) {
1423 		__btf_verifier_log(log, " ");
1424 		va_start(args, fmt);
1425 		bpf_verifier_vlog(log, fmt, args);
1426 		va_end(args);
1427 	}
1428 
1429 	__btf_verifier_log(log, "\n");
1430 }
1431 
1432 #define btf_verifier_log_type(env, t, ...) \
1433 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1434 #define btf_verifier_log_basic(env, t, ...) \
1435 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1436 
1437 __printf(4, 5)
1438 static void btf_verifier_log_member(struct btf_verifier_env *env,
1439 				    const struct btf_type *struct_type,
1440 				    const struct btf_member *member,
1441 				    const char *fmt, ...)
1442 {
1443 	struct bpf_verifier_log *log = &env->log;
1444 	struct btf *btf = env->btf;
1445 	va_list args;
1446 
1447 	if (!bpf_verifier_log_needed(log))
1448 		return;
1449 
1450 	if (log->level == BPF_LOG_KERNEL && !fmt)
1451 		return;
1452 	/* The CHECK_META phase already did a btf dump.
1453 	 *
1454 	 * If member is logged again, it must hit an error in
1455 	 * parsing this member.  It is useful to print out which
1456 	 * struct this member belongs to.
1457 	 */
1458 	if (env->phase != CHECK_META)
1459 		btf_verifier_log_type(env, struct_type, NULL);
1460 
1461 	if (btf_type_kflag(struct_type))
1462 		__btf_verifier_log(log,
1463 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1464 				   __btf_name_by_offset(btf, member->name_off),
1465 				   member->type,
1466 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1467 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1468 	else
1469 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1470 				   __btf_name_by_offset(btf, member->name_off),
1471 				   member->type, member->offset);
1472 
1473 	if (fmt && *fmt) {
1474 		__btf_verifier_log(log, " ");
1475 		va_start(args, fmt);
1476 		bpf_verifier_vlog(log, fmt, args);
1477 		va_end(args);
1478 	}
1479 
1480 	__btf_verifier_log(log, "\n");
1481 }
1482 
1483 __printf(4, 5)
1484 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1485 				 const struct btf_type *datasec_type,
1486 				 const struct btf_var_secinfo *vsi,
1487 				 const char *fmt, ...)
1488 {
1489 	struct bpf_verifier_log *log = &env->log;
1490 	va_list args;
1491 
1492 	if (!bpf_verifier_log_needed(log))
1493 		return;
1494 	if (log->level == BPF_LOG_KERNEL && !fmt)
1495 		return;
1496 	if (env->phase != CHECK_META)
1497 		btf_verifier_log_type(env, datasec_type, NULL);
1498 
1499 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1500 			   vsi->type, vsi->offset, vsi->size);
1501 	if (fmt && *fmt) {
1502 		__btf_verifier_log(log, " ");
1503 		va_start(args, fmt);
1504 		bpf_verifier_vlog(log, fmt, args);
1505 		va_end(args);
1506 	}
1507 
1508 	__btf_verifier_log(log, "\n");
1509 }
1510 
1511 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1512 				 u32 btf_data_size)
1513 {
1514 	struct bpf_verifier_log *log = &env->log;
1515 	const struct btf *btf = env->btf;
1516 	const struct btf_header *hdr;
1517 
1518 	if (!bpf_verifier_log_needed(log))
1519 		return;
1520 
1521 	if (log->level == BPF_LOG_KERNEL)
1522 		return;
1523 	hdr = &btf->hdr;
1524 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1525 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1526 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1527 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1528 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1529 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1530 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1531 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1532 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1533 }
1534 
1535 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1536 {
1537 	struct btf *btf = env->btf;
1538 
1539 	if (btf->types_size == btf->nr_types) {
1540 		/* Expand 'types' array */
1541 
1542 		struct btf_type **new_types;
1543 		u32 expand_by, new_size;
1544 
1545 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1546 			btf_verifier_log(env, "Exceeded max num of types");
1547 			return -E2BIG;
1548 		}
1549 
1550 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1551 		new_size = min_t(u32, BTF_MAX_TYPE,
1552 				 btf->types_size + expand_by);
1553 
1554 		new_types = kvcalloc(new_size, sizeof(*new_types),
1555 				     GFP_KERNEL | __GFP_NOWARN);
1556 		if (!new_types)
1557 			return -ENOMEM;
1558 
1559 		if (btf->nr_types == 0) {
1560 			if (!btf->base_btf) {
1561 				/* lazily init VOID type */
1562 				new_types[0] = &btf_void;
1563 				btf->nr_types++;
1564 			}
1565 		} else {
1566 			memcpy(new_types, btf->types,
1567 			       sizeof(*btf->types) * btf->nr_types);
1568 		}
1569 
1570 		kvfree(btf->types);
1571 		btf->types = new_types;
1572 		btf->types_size = new_size;
1573 	}
1574 
1575 	btf->types[btf->nr_types++] = t;
1576 
1577 	return 0;
1578 }
1579 
1580 static int btf_alloc_id(struct btf *btf)
1581 {
1582 	int id;
1583 
1584 	idr_preload(GFP_KERNEL);
1585 	spin_lock_bh(&btf_idr_lock);
1586 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1587 	if (id > 0)
1588 		btf->id = id;
1589 	spin_unlock_bh(&btf_idr_lock);
1590 	idr_preload_end();
1591 
1592 	if (WARN_ON_ONCE(!id))
1593 		return -ENOSPC;
1594 
1595 	return id > 0 ? 0 : id;
1596 }
1597 
1598 static void btf_free_id(struct btf *btf)
1599 {
1600 	unsigned long flags;
1601 
1602 	/*
1603 	 * In map-in-map, calling map_delete_elem() on outer
1604 	 * map will call bpf_map_put on the inner map.
1605 	 * It will then eventually call btf_free_id()
1606 	 * on the inner map.  Some of the map_delete_elem()
1607 	 * implementation may have irq disabled, so
1608 	 * we need to use the _irqsave() version instead
1609 	 * of the _bh() version.
1610 	 */
1611 	spin_lock_irqsave(&btf_idr_lock, flags);
1612 	idr_remove(&btf_idr, btf->id);
1613 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1614 }
1615 
1616 static void btf_free_kfunc_set_tab(struct btf *btf)
1617 {
1618 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1619 	int hook;
1620 
1621 	if (!tab)
1622 		return;
1623 	/* For module BTF, we directly assign the sets being registered, so
1624 	 * there is nothing to free except kfunc_set_tab.
1625 	 */
1626 	if (btf_is_module(btf))
1627 		goto free_tab;
1628 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1629 		kfree(tab->sets[hook]);
1630 free_tab:
1631 	kfree(tab);
1632 	btf->kfunc_set_tab = NULL;
1633 }
1634 
1635 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1636 {
1637 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1638 
1639 	if (!tab)
1640 		return;
1641 	kfree(tab);
1642 	btf->dtor_kfunc_tab = NULL;
1643 }
1644 
1645 static void btf_free(struct btf *btf)
1646 {
1647 	btf_free_dtor_kfunc_tab(btf);
1648 	btf_free_kfunc_set_tab(btf);
1649 	kvfree(btf->types);
1650 	kvfree(btf->resolved_sizes);
1651 	kvfree(btf->resolved_ids);
1652 	kvfree(btf->data);
1653 	kfree(btf);
1654 }
1655 
1656 static void btf_free_rcu(struct rcu_head *rcu)
1657 {
1658 	struct btf *btf = container_of(rcu, struct btf, rcu);
1659 
1660 	btf_free(btf);
1661 }
1662 
1663 void btf_get(struct btf *btf)
1664 {
1665 	refcount_inc(&btf->refcnt);
1666 }
1667 
1668 void btf_put(struct btf *btf)
1669 {
1670 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1671 		btf_free_id(btf);
1672 		call_rcu(&btf->rcu, btf_free_rcu);
1673 	}
1674 }
1675 
1676 static int env_resolve_init(struct btf_verifier_env *env)
1677 {
1678 	struct btf *btf = env->btf;
1679 	u32 nr_types = btf->nr_types;
1680 	u32 *resolved_sizes = NULL;
1681 	u32 *resolved_ids = NULL;
1682 	u8 *visit_states = NULL;
1683 
1684 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1685 				  GFP_KERNEL | __GFP_NOWARN);
1686 	if (!resolved_sizes)
1687 		goto nomem;
1688 
1689 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1690 				GFP_KERNEL | __GFP_NOWARN);
1691 	if (!resolved_ids)
1692 		goto nomem;
1693 
1694 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1695 				GFP_KERNEL | __GFP_NOWARN);
1696 	if (!visit_states)
1697 		goto nomem;
1698 
1699 	btf->resolved_sizes = resolved_sizes;
1700 	btf->resolved_ids = resolved_ids;
1701 	env->visit_states = visit_states;
1702 
1703 	return 0;
1704 
1705 nomem:
1706 	kvfree(resolved_sizes);
1707 	kvfree(resolved_ids);
1708 	kvfree(visit_states);
1709 	return -ENOMEM;
1710 }
1711 
1712 static void btf_verifier_env_free(struct btf_verifier_env *env)
1713 {
1714 	kvfree(env->visit_states);
1715 	kfree(env);
1716 }
1717 
1718 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1719 				     const struct btf_type *next_type)
1720 {
1721 	switch (env->resolve_mode) {
1722 	case RESOLVE_TBD:
1723 		/* int, enum or void is a sink */
1724 		return !btf_type_needs_resolve(next_type);
1725 	case RESOLVE_PTR:
1726 		/* int, enum, void, struct, array, func or func_proto is a sink
1727 		 * for ptr
1728 		 */
1729 		return !btf_type_is_modifier(next_type) &&
1730 			!btf_type_is_ptr(next_type);
1731 	case RESOLVE_STRUCT_OR_ARRAY:
1732 		/* int, enum, void, ptr, func or func_proto is a sink
1733 		 * for struct and array
1734 		 */
1735 		return !btf_type_is_modifier(next_type) &&
1736 			!btf_type_is_array(next_type) &&
1737 			!btf_type_is_struct(next_type);
1738 	default:
1739 		BUG();
1740 	}
1741 }
1742 
1743 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1744 				 u32 type_id)
1745 {
1746 	/* base BTF types should be resolved by now */
1747 	if (type_id < env->btf->start_id)
1748 		return true;
1749 
1750 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1751 }
1752 
1753 static int env_stack_push(struct btf_verifier_env *env,
1754 			  const struct btf_type *t, u32 type_id)
1755 {
1756 	const struct btf *btf = env->btf;
1757 	struct resolve_vertex *v;
1758 
1759 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1760 		return -E2BIG;
1761 
1762 	if (type_id < btf->start_id
1763 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1764 		return -EEXIST;
1765 
1766 	env->visit_states[type_id - btf->start_id] = VISITED;
1767 
1768 	v = &env->stack[env->top_stack++];
1769 	v->t = t;
1770 	v->type_id = type_id;
1771 	v->next_member = 0;
1772 
1773 	if (env->resolve_mode == RESOLVE_TBD) {
1774 		if (btf_type_is_ptr(t))
1775 			env->resolve_mode = RESOLVE_PTR;
1776 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1777 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 static void env_stack_set_next_member(struct btf_verifier_env *env,
1784 				      u16 next_member)
1785 {
1786 	env->stack[env->top_stack - 1].next_member = next_member;
1787 }
1788 
1789 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1790 				   u32 resolved_type_id,
1791 				   u32 resolved_size)
1792 {
1793 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1794 	struct btf *btf = env->btf;
1795 
1796 	type_id -= btf->start_id; /* adjust to local type id */
1797 	btf->resolved_sizes[type_id] = resolved_size;
1798 	btf->resolved_ids[type_id] = resolved_type_id;
1799 	env->visit_states[type_id] = RESOLVED;
1800 }
1801 
1802 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1803 {
1804 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1805 }
1806 
1807 /* Resolve the size of a passed-in "type"
1808  *
1809  * type: is an array (e.g. u32 array[x][y])
1810  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1811  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1812  *             corresponds to the return type.
1813  * *elem_type: u32
1814  * *elem_id: id of u32
1815  * *total_nelems: (x * y).  Hence, individual elem size is
1816  *                (*type_size / *total_nelems)
1817  * *type_id: id of type if it's changed within the function, 0 if not
1818  *
1819  * type: is not an array (e.g. const struct X)
1820  * return type: type "struct X"
1821  * *type_size: sizeof(struct X)
1822  * *elem_type: same as return type ("struct X")
1823  * *elem_id: 0
1824  * *total_nelems: 1
1825  * *type_id: id of type if it's changed within the function, 0 if not
1826  */
1827 static const struct btf_type *
1828 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1829 		   u32 *type_size, const struct btf_type **elem_type,
1830 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1831 {
1832 	const struct btf_type *array_type = NULL;
1833 	const struct btf_array *array = NULL;
1834 	u32 i, size, nelems = 1, id = 0;
1835 
1836 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1837 		switch (BTF_INFO_KIND(type->info)) {
1838 		/* type->size can be used */
1839 		case BTF_KIND_INT:
1840 		case BTF_KIND_STRUCT:
1841 		case BTF_KIND_UNION:
1842 		case BTF_KIND_ENUM:
1843 		case BTF_KIND_FLOAT:
1844 		case BTF_KIND_ENUM64:
1845 			size = type->size;
1846 			goto resolved;
1847 
1848 		case BTF_KIND_PTR:
1849 			size = sizeof(void *);
1850 			goto resolved;
1851 
1852 		/* Modifiers */
1853 		case BTF_KIND_TYPEDEF:
1854 		case BTF_KIND_VOLATILE:
1855 		case BTF_KIND_CONST:
1856 		case BTF_KIND_RESTRICT:
1857 		case BTF_KIND_TYPE_TAG:
1858 			id = type->type;
1859 			type = btf_type_by_id(btf, type->type);
1860 			break;
1861 
1862 		case BTF_KIND_ARRAY:
1863 			if (!array_type)
1864 				array_type = type;
1865 			array = btf_type_array(type);
1866 			if (nelems && array->nelems > U32_MAX / nelems)
1867 				return ERR_PTR(-EINVAL);
1868 			nelems *= array->nelems;
1869 			type = btf_type_by_id(btf, array->type);
1870 			break;
1871 
1872 		/* type without size */
1873 		default:
1874 			return ERR_PTR(-EINVAL);
1875 		}
1876 	}
1877 
1878 	return ERR_PTR(-EINVAL);
1879 
1880 resolved:
1881 	if (nelems && size > U32_MAX / nelems)
1882 		return ERR_PTR(-EINVAL);
1883 
1884 	*type_size = nelems * size;
1885 	if (total_nelems)
1886 		*total_nelems = nelems;
1887 	if (elem_type)
1888 		*elem_type = type;
1889 	if (elem_id)
1890 		*elem_id = array ? array->type : 0;
1891 	if (type_id && id)
1892 		*type_id = id;
1893 
1894 	return array_type ? : type;
1895 }
1896 
1897 const struct btf_type *
1898 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1899 		 u32 *type_size)
1900 {
1901 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1902 }
1903 
1904 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1905 {
1906 	while (type_id < btf->start_id)
1907 		btf = btf->base_btf;
1908 
1909 	return btf->resolved_ids[type_id - btf->start_id];
1910 }
1911 
1912 /* The input param "type_id" must point to a needs_resolve type */
1913 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1914 						  u32 *type_id)
1915 {
1916 	*type_id = btf_resolved_type_id(btf, *type_id);
1917 	return btf_type_by_id(btf, *type_id);
1918 }
1919 
1920 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1921 {
1922 	while (type_id < btf->start_id)
1923 		btf = btf->base_btf;
1924 
1925 	return btf->resolved_sizes[type_id - btf->start_id];
1926 }
1927 
1928 const struct btf_type *btf_type_id_size(const struct btf *btf,
1929 					u32 *type_id, u32 *ret_size)
1930 {
1931 	const struct btf_type *size_type;
1932 	u32 size_type_id = *type_id;
1933 	u32 size = 0;
1934 
1935 	size_type = btf_type_by_id(btf, size_type_id);
1936 	if (btf_type_nosize_or_null(size_type))
1937 		return NULL;
1938 
1939 	if (btf_type_has_size(size_type)) {
1940 		size = size_type->size;
1941 	} else if (btf_type_is_array(size_type)) {
1942 		size = btf_resolved_type_size(btf, size_type_id);
1943 	} else if (btf_type_is_ptr(size_type)) {
1944 		size = sizeof(void *);
1945 	} else {
1946 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1947 				 !btf_type_is_var(size_type)))
1948 			return NULL;
1949 
1950 		size_type_id = btf_resolved_type_id(btf, size_type_id);
1951 		size_type = btf_type_by_id(btf, size_type_id);
1952 		if (btf_type_nosize_or_null(size_type))
1953 			return NULL;
1954 		else if (btf_type_has_size(size_type))
1955 			size = size_type->size;
1956 		else if (btf_type_is_array(size_type))
1957 			size = btf_resolved_type_size(btf, size_type_id);
1958 		else if (btf_type_is_ptr(size_type))
1959 			size = sizeof(void *);
1960 		else
1961 			return NULL;
1962 	}
1963 
1964 	*type_id = size_type_id;
1965 	if (ret_size)
1966 		*ret_size = size;
1967 
1968 	return size_type;
1969 }
1970 
1971 static int btf_df_check_member(struct btf_verifier_env *env,
1972 			       const struct btf_type *struct_type,
1973 			       const struct btf_member *member,
1974 			       const struct btf_type *member_type)
1975 {
1976 	btf_verifier_log_basic(env, struct_type,
1977 			       "Unsupported check_member");
1978 	return -EINVAL;
1979 }
1980 
1981 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1982 				     const struct btf_type *struct_type,
1983 				     const struct btf_member *member,
1984 				     const struct btf_type *member_type)
1985 {
1986 	btf_verifier_log_basic(env, struct_type,
1987 			       "Unsupported check_kflag_member");
1988 	return -EINVAL;
1989 }
1990 
1991 /* Used for ptr, array struct/union and float type members.
1992  * int, enum and modifier types have their specific callback functions.
1993  */
1994 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1995 					  const struct btf_type *struct_type,
1996 					  const struct btf_member *member,
1997 					  const struct btf_type *member_type)
1998 {
1999 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2000 		btf_verifier_log_member(env, struct_type, member,
2001 					"Invalid member bitfield_size");
2002 		return -EINVAL;
2003 	}
2004 
2005 	/* bitfield size is 0, so member->offset represents bit offset only.
2006 	 * It is safe to call non kflag check_member variants.
2007 	 */
2008 	return btf_type_ops(member_type)->check_member(env, struct_type,
2009 						       member,
2010 						       member_type);
2011 }
2012 
2013 static int btf_df_resolve(struct btf_verifier_env *env,
2014 			  const struct resolve_vertex *v)
2015 {
2016 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2017 	return -EINVAL;
2018 }
2019 
2020 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2021 			u32 type_id, void *data, u8 bits_offsets,
2022 			struct btf_show *show)
2023 {
2024 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2025 }
2026 
2027 static int btf_int_check_member(struct btf_verifier_env *env,
2028 				const struct btf_type *struct_type,
2029 				const struct btf_member *member,
2030 				const struct btf_type *member_type)
2031 {
2032 	u32 int_data = btf_type_int(member_type);
2033 	u32 struct_bits_off = member->offset;
2034 	u32 struct_size = struct_type->size;
2035 	u32 nr_copy_bits;
2036 	u32 bytes_offset;
2037 
2038 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2039 		btf_verifier_log_member(env, struct_type, member,
2040 					"bits_offset exceeds U32_MAX");
2041 		return -EINVAL;
2042 	}
2043 
2044 	struct_bits_off += BTF_INT_OFFSET(int_data);
2045 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2046 	nr_copy_bits = BTF_INT_BITS(int_data) +
2047 		BITS_PER_BYTE_MASKED(struct_bits_off);
2048 
2049 	if (nr_copy_bits > BITS_PER_U128) {
2050 		btf_verifier_log_member(env, struct_type, member,
2051 					"nr_copy_bits exceeds 128");
2052 		return -EINVAL;
2053 	}
2054 
2055 	if (struct_size < bytes_offset ||
2056 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2057 		btf_verifier_log_member(env, struct_type, member,
2058 					"Member exceeds struct_size");
2059 		return -EINVAL;
2060 	}
2061 
2062 	return 0;
2063 }
2064 
2065 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2066 				      const struct btf_type *struct_type,
2067 				      const struct btf_member *member,
2068 				      const struct btf_type *member_type)
2069 {
2070 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2071 	u32 int_data = btf_type_int(member_type);
2072 	u32 struct_size = struct_type->size;
2073 	u32 nr_copy_bits;
2074 
2075 	/* a regular int type is required for the kflag int member */
2076 	if (!btf_type_int_is_regular(member_type)) {
2077 		btf_verifier_log_member(env, struct_type, member,
2078 					"Invalid member base type");
2079 		return -EINVAL;
2080 	}
2081 
2082 	/* check sanity of bitfield size */
2083 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2084 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2085 	nr_int_data_bits = BTF_INT_BITS(int_data);
2086 	if (!nr_bits) {
2087 		/* Not a bitfield member, member offset must be at byte
2088 		 * boundary.
2089 		 */
2090 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2091 			btf_verifier_log_member(env, struct_type, member,
2092 						"Invalid member offset");
2093 			return -EINVAL;
2094 		}
2095 
2096 		nr_bits = nr_int_data_bits;
2097 	} else if (nr_bits > nr_int_data_bits) {
2098 		btf_verifier_log_member(env, struct_type, member,
2099 					"Invalid member bitfield_size");
2100 		return -EINVAL;
2101 	}
2102 
2103 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2104 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2105 	if (nr_copy_bits > BITS_PER_U128) {
2106 		btf_verifier_log_member(env, struct_type, member,
2107 					"nr_copy_bits exceeds 128");
2108 		return -EINVAL;
2109 	}
2110 
2111 	if (struct_size < bytes_offset ||
2112 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2113 		btf_verifier_log_member(env, struct_type, member,
2114 					"Member exceeds struct_size");
2115 		return -EINVAL;
2116 	}
2117 
2118 	return 0;
2119 }
2120 
2121 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2122 			      const struct btf_type *t,
2123 			      u32 meta_left)
2124 {
2125 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2126 	u16 encoding;
2127 
2128 	if (meta_left < meta_needed) {
2129 		btf_verifier_log_basic(env, t,
2130 				       "meta_left:%u meta_needed:%u",
2131 				       meta_left, meta_needed);
2132 		return -EINVAL;
2133 	}
2134 
2135 	if (btf_type_vlen(t)) {
2136 		btf_verifier_log_type(env, t, "vlen != 0");
2137 		return -EINVAL;
2138 	}
2139 
2140 	if (btf_type_kflag(t)) {
2141 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2142 		return -EINVAL;
2143 	}
2144 
2145 	int_data = btf_type_int(t);
2146 	if (int_data & ~BTF_INT_MASK) {
2147 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2148 				       int_data);
2149 		return -EINVAL;
2150 	}
2151 
2152 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2153 
2154 	if (nr_bits > BITS_PER_U128) {
2155 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2156 				      BITS_PER_U128);
2157 		return -EINVAL;
2158 	}
2159 
2160 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2161 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2162 		return -EINVAL;
2163 	}
2164 
2165 	/*
2166 	 * Only one of the encoding bits is allowed and it
2167 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2168 	 * Multiple bits can be allowed later if it is found
2169 	 * to be insufficient.
2170 	 */
2171 	encoding = BTF_INT_ENCODING(int_data);
2172 	if (encoding &&
2173 	    encoding != BTF_INT_SIGNED &&
2174 	    encoding != BTF_INT_CHAR &&
2175 	    encoding != BTF_INT_BOOL) {
2176 		btf_verifier_log_type(env, t, "Unsupported encoding");
2177 		return -ENOTSUPP;
2178 	}
2179 
2180 	btf_verifier_log_type(env, t, NULL);
2181 
2182 	return meta_needed;
2183 }
2184 
2185 static void btf_int_log(struct btf_verifier_env *env,
2186 			const struct btf_type *t)
2187 {
2188 	int int_data = btf_type_int(t);
2189 
2190 	btf_verifier_log(env,
2191 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2192 			 t->size, BTF_INT_OFFSET(int_data),
2193 			 BTF_INT_BITS(int_data),
2194 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2195 }
2196 
2197 static void btf_int128_print(struct btf_show *show, void *data)
2198 {
2199 	/* data points to a __int128 number.
2200 	 * Suppose
2201 	 *     int128_num = *(__int128 *)data;
2202 	 * The below formulas shows what upper_num and lower_num represents:
2203 	 *     upper_num = int128_num >> 64;
2204 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2205 	 */
2206 	u64 upper_num, lower_num;
2207 
2208 #ifdef __BIG_ENDIAN_BITFIELD
2209 	upper_num = *(u64 *)data;
2210 	lower_num = *(u64 *)(data + 8);
2211 #else
2212 	upper_num = *(u64 *)(data + 8);
2213 	lower_num = *(u64 *)data;
2214 #endif
2215 	if (upper_num == 0)
2216 		btf_show_type_value(show, "0x%llx", lower_num);
2217 	else
2218 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2219 				     lower_num);
2220 }
2221 
2222 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2223 			     u16 right_shift_bits)
2224 {
2225 	u64 upper_num, lower_num;
2226 
2227 #ifdef __BIG_ENDIAN_BITFIELD
2228 	upper_num = print_num[0];
2229 	lower_num = print_num[1];
2230 #else
2231 	upper_num = print_num[1];
2232 	lower_num = print_num[0];
2233 #endif
2234 
2235 	/* shake out un-needed bits by shift/or operations */
2236 	if (left_shift_bits >= 64) {
2237 		upper_num = lower_num << (left_shift_bits - 64);
2238 		lower_num = 0;
2239 	} else {
2240 		upper_num = (upper_num << left_shift_bits) |
2241 			    (lower_num >> (64 - left_shift_bits));
2242 		lower_num = lower_num << left_shift_bits;
2243 	}
2244 
2245 	if (right_shift_bits >= 64) {
2246 		lower_num = upper_num >> (right_shift_bits - 64);
2247 		upper_num = 0;
2248 	} else {
2249 		lower_num = (lower_num >> right_shift_bits) |
2250 			    (upper_num << (64 - right_shift_bits));
2251 		upper_num = upper_num >> right_shift_bits;
2252 	}
2253 
2254 #ifdef __BIG_ENDIAN_BITFIELD
2255 	print_num[0] = upper_num;
2256 	print_num[1] = lower_num;
2257 #else
2258 	print_num[0] = lower_num;
2259 	print_num[1] = upper_num;
2260 #endif
2261 }
2262 
2263 static void btf_bitfield_show(void *data, u8 bits_offset,
2264 			      u8 nr_bits, struct btf_show *show)
2265 {
2266 	u16 left_shift_bits, right_shift_bits;
2267 	u8 nr_copy_bytes;
2268 	u8 nr_copy_bits;
2269 	u64 print_num[2] = {};
2270 
2271 	nr_copy_bits = nr_bits + bits_offset;
2272 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2273 
2274 	memcpy(print_num, data, nr_copy_bytes);
2275 
2276 #ifdef __BIG_ENDIAN_BITFIELD
2277 	left_shift_bits = bits_offset;
2278 #else
2279 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2280 #endif
2281 	right_shift_bits = BITS_PER_U128 - nr_bits;
2282 
2283 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2284 	btf_int128_print(show, print_num);
2285 }
2286 
2287 
2288 static void btf_int_bits_show(const struct btf *btf,
2289 			      const struct btf_type *t,
2290 			      void *data, u8 bits_offset,
2291 			      struct btf_show *show)
2292 {
2293 	u32 int_data = btf_type_int(t);
2294 	u8 nr_bits = BTF_INT_BITS(int_data);
2295 	u8 total_bits_offset;
2296 
2297 	/*
2298 	 * bits_offset is at most 7.
2299 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2300 	 */
2301 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2302 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2303 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2304 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2305 }
2306 
2307 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2308 			 u32 type_id, void *data, u8 bits_offset,
2309 			 struct btf_show *show)
2310 {
2311 	u32 int_data = btf_type_int(t);
2312 	u8 encoding = BTF_INT_ENCODING(int_data);
2313 	bool sign = encoding & BTF_INT_SIGNED;
2314 	u8 nr_bits = BTF_INT_BITS(int_data);
2315 	void *safe_data;
2316 
2317 	safe_data = btf_show_start_type(show, t, type_id, data);
2318 	if (!safe_data)
2319 		return;
2320 
2321 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2322 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2323 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2324 		goto out;
2325 	}
2326 
2327 	switch (nr_bits) {
2328 	case 128:
2329 		btf_int128_print(show, safe_data);
2330 		break;
2331 	case 64:
2332 		if (sign)
2333 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2334 		else
2335 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2336 		break;
2337 	case 32:
2338 		if (sign)
2339 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2340 		else
2341 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2342 		break;
2343 	case 16:
2344 		if (sign)
2345 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2346 		else
2347 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2348 		break;
2349 	case 8:
2350 		if (show->state.array_encoding == BTF_INT_CHAR) {
2351 			/* check for null terminator */
2352 			if (show->state.array_terminated)
2353 				break;
2354 			if (*(char *)data == '\0') {
2355 				show->state.array_terminated = 1;
2356 				break;
2357 			}
2358 			if (isprint(*(char *)data)) {
2359 				btf_show_type_value(show, "'%c'",
2360 						    *(char *)safe_data);
2361 				break;
2362 			}
2363 		}
2364 		if (sign)
2365 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2366 		else
2367 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2368 		break;
2369 	default:
2370 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2371 		break;
2372 	}
2373 out:
2374 	btf_show_end_type(show);
2375 }
2376 
2377 static const struct btf_kind_operations int_ops = {
2378 	.check_meta = btf_int_check_meta,
2379 	.resolve = btf_df_resolve,
2380 	.check_member = btf_int_check_member,
2381 	.check_kflag_member = btf_int_check_kflag_member,
2382 	.log_details = btf_int_log,
2383 	.show = btf_int_show,
2384 };
2385 
2386 static int btf_modifier_check_member(struct btf_verifier_env *env,
2387 				     const struct btf_type *struct_type,
2388 				     const struct btf_member *member,
2389 				     const struct btf_type *member_type)
2390 {
2391 	const struct btf_type *resolved_type;
2392 	u32 resolved_type_id = member->type;
2393 	struct btf_member resolved_member;
2394 	struct btf *btf = env->btf;
2395 
2396 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2397 	if (!resolved_type) {
2398 		btf_verifier_log_member(env, struct_type, member,
2399 					"Invalid member");
2400 		return -EINVAL;
2401 	}
2402 
2403 	resolved_member = *member;
2404 	resolved_member.type = resolved_type_id;
2405 
2406 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2407 							 &resolved_member,
2408 							 resolved_type);
2409 }
2410 
2411 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2412 					   const struct btf_type *struct_type,
2413 					   const struct btf_member *member,
2414 					   const struct btf_type *member_type)
2415 {
2416 	const struct btf_type *resolved_type;
2417 	u32 resolved_type_id = member->type;
2418 	struct btf_member resolved_member;
2419 	struct btf *btf = env->btf;
2420 
2421 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2422 	if (!resolved_type) {
2423 		btf_verifier_log_member(env, struct_type, member,
2424 					"Invalid member");
2425 		return -EINVAL;
2426 	}
2427 
2428 	resolved_member = *member;
2429 	resolved_member.type = resolved_type_id;
2430 
2431 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2432 							       &resolved_member,
2433 							       resolved_type);
2434 }
2435 
2436 static int btf_ptr_check_member(struct btf_verifier_env *env,
2437 				const struct btf_type *struct_type,
2438 				const struct btf_member *member,
2439 				const struct btf_type *member_type)
2440 {
2441 	u32 struct_size, struct_bits_off, bytes_offset;
2442 
2443 	struct_size = struct_type->size;
2444 	struct_bits_off = member->offset;
2445 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2446 
2447 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2448 		btf_verifier_log_member(env, struct_type, member,
2449 					"Member is not byte aligned");
2450 		return -EINVAL;
2451 	}
2452 
2453 	if (struct_size - bytes_offset < sizeof(void *)) {
2454 		btf_verifier_log_member(env, struct_type, member,
2455 					"Member exceeds struct_size");
2456 		return -EINVAL;
2457 	}
2458 
2459 	return 0;
2460 }
2461 
2462 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2463 				   const struct btf_type *t,
2464 				   u32 meta_left)
2465 {
2466 	const char *value;
2467 
2468 	if (btf_type_vlen(t)) {
2469 		btf_verifier_log_type(env, t, "vlen != 0");
2470 		return -EINVAL;
2471 	}
2472 
2473 	if (btf_type_kflag(t)) {
2474 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2475 		return -EINVAL;
2476 	}
2477 
2478 	if (!BTF_TYPE_ID_VALID(t->type)) {
2479 		btf_verifier_log_type(env, t, "Invalid type_id");
2480 		return -EINVAL;
2481 	}
2482 
2483 	/* typedef/type_tag type must have a valid name, and other ref types,
2484 	 * volatile, const, restrict, should have a null name.
2485 	 */
2486 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2487 		if (!t->name_off ||
2488 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2489 			btf_verifier_log_type(env, t, "Invalid name");
2490 			return -EINVAL;
2491 		}
2492 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2493 		value = btf_name_by_offset(env->btf, t->name_off);
2494 		if (!value || !value[0]) {
2495 			btf_verifier_log_type(env, t, "Invalid name");
2496 			return -EINVAL;
2497 		}
2498 	} else {
2499 		if (t->name_off) {
2500 			btf_verifier_log_type(env, t, "Invalid name");
2501 			return -EINVAL;
2502 		}
2503 	}
2504 
2505 	btf_verifier_log_type(env, t, NULL);
2506 
2507 	return 0;
2508 }
2509 
2510 static int btf_modifier_resolve(struct btf_verifier_env *env,
2511 				const struct resolve_vertex *v)
2512 {
2513 	const struct btf_type *t = v->t;
2514 	const struct btf_type *next_type;
2515 	u32 next_type_id = t->type;
2516 	struct btf *btf = env->btf;
2517 
2518 	next_type = btf_type_by_id(btf, next_type_id);
2519 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2520 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2521 		return -EINVAL;
2522 	}
2523 
2524 	if (!env_type_is_resolve_sink(env, next_type) &&
2525 	    !env_type_is_resolved(env, next_type_id))
2526 		return env_stack_push(env, next_type, next_type_id);
2527 
2528 	/* Figure out the resolved next_type_id with size.
2529 	 * They will be stored in the current modifier's
2530 	 * resolved_ids and resolved_sizes such that it can
2531 	 * save us a few type-following when we use it later (e.g. in
2532 	 * pretty print).
2533 	 */
2534 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2535 		if (env_type_is_resolved(env, next_type_id))
2536 			next_type = btf_type_id_resolve(btf, &next_type_id);
2537 
2538 		/* "typedef void new_void", "const void"...etc */
2539 		if (!btf_type_is_void(next_type) &&
2540 		    !btf_type_is_fwd(next_type) &&
2541 		    !btf_type_is_func_proto(next_type)) {
2542 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2543 			return -EINVAL;
2544 		}
2545 	}
2546 
2547 	env_stack_pop_resolved(env, next_type_id, 0);
2548 
2549 	return 0;
2550 }
2551 
2552 static int btf_var_resolve(struct btf_verifier_env *env,
2553 			   const struct resolve_vertex *v)
2554 {
2555 	const struct btf_type *next_type;
2556 	const struct btf_type *t = v->t;
2557 	u32 next_type_id = t->type;
2558 	struct btf *btf = env->btf;
2559 
2560 	next_type = btf_type_by_id(btf, next_type_id);
2561 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2562 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2563 		return -EINVAL;
2564 	}
2565 
2566 	if (!env_type_is_resolve_sink(env, next_type) &&
2567 	    !env_type_is_resolved(env, next_type_id))
2568 		return env_stack_push(env, next_type, next_type_id);
2569 
2570 	if (btf_type_is_modifier(next_type)) {
2571 		const struct btf_type *resolved_type;
2572 		u32 resolved_type_id;
2573 
2574 		resolved_type_id = next_type_id;
2575 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2576 
2577 		if (btf_type_is_ptr(resolved_type) &&
2578 		    !env_type_is_resolve_sink(env, resolved_type) &&
2579 		    !env_type_is_resolved(env, resolved_type_id))
2580 			return env_stack_push(env, resolved_type,
2581 					      resolved_type_id);
2582 	}
2583 
2584 	/* We must resolve to something concrete at this point, no
2585 	 * forward types or similar that would resolve to size of
2586 	 * zero is allowed.
2587 	 */
2588 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2589 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2590 		return -EINVAL;
2591 	}
2592 
2593 	env_stack_pop_resolved(env, next_type_id, 0);
2594 
2595 	return 0;
2596 }
2597 
2598 static int btf_ptr_resolve(struct btf_verifier_env *env,
2599 			   const struct resolve_vertex *v)
2600 {
2601 	const struct btf_type *next_type;
2602 	const struct btf_type *t = v->t;
2603 	u32 next_type_id = t->type;
2604 	struct btf *btf = env->btf;
2605 
2606 	next_type = btf_type_by_id(btf, next_type_id);
2607 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2608 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2609 		return -EINVAL;
2610 	}
2611 
2612 	if (!env_type_is_resolve_sink(env, next_type) &&
2613 	    !env_type_is_resolved(env, next_type_id))
2614 		return env_stack_push(env, next_type, next_type_id);
2615 
2616 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2617 	 * the modifier may have stopped resolving when it was resolved
2618 	 * to a ptr (last-resolved-ptr).
2619 	 *
2620 	 * We now need to continue from the last-resolved-ptr to
2621 	 * ensure the last-resolved-ptr will not referring back to
2622 	 * the current ptr (t).
2623 	 */
2624 	if (btf_type_is_modifier(next_type)) {
2625 		const struct btf_type *resolved_type;
2626 		u32 resolved_type_id;
2627 
2628 		resolved_type_id = next_type_id;
2629 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2630 
2631 		if (btf_type_is_ptr(resolved_type) &&
2632 		    !env_type_is_resolve_sink(env, resolved_type) &&
2633 		    !env_type_is_resolved(env, resolved_type_id))
2634 			return env_stack_push(env, resolved_type,
2635 					      resolved_type_id);
2636 	}
2637 
2638 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2639 		if (env_type_is_resolved(env, next_type_id))
2640 			next_type = btf_type_id_resolve(btf, &next_type_id);
2641 
2642 		if (!btf_type_is_void(next_type) &&
2643 		    !btf_type_is_fwd(next_type) &&
2644 		    !btf_type_is_func_proto(next_type)) {
2645 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2646 			return -EINVAL;
2647 		}
2648 	}
2649 
2650 	env_stack_pop_resolved(env, next_type_id, 0);
2651 
2652 	return 0;
2653 }
2654 
2655 static void btf_modifier_show(const struct btf *btf,
2656 			      const struct btf_type *t,
2657 			      u32 type_id, void *data,
2658 			      u8 bits_offset, struct btf_show *show)
2659 {
2660 	if (btf->resolved_ids)
2661 		t = btf_type_id_resolve(btf, &type_id);
2662 	else
2663 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2664 
2665 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2666 }
2667 
2668 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2669 			 u32 type_id, void *data, u8 bits_offset,
2670 			 struct btf_show *show)
2671 {
2672 	t = btf_type_id_resolve(btf, &type_id);
2673 
2674 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2675 }
2676 
2677 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2678 			 u32 type_id, void *data, u8 bits_offset,
2679 			 struct btf_show *show)
2680 {
2681 	void *safe_data;
2682 
2683 	safe_data = btf_show_start_type(show, t, type_id, data);
2684 	if (!safe_data)
2685 		return;
2686 
2687 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2688 	if (show->flags & BTF_SHOW_PTR_RAW)
2689 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2690 	else
2691 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2692 	btf_show_end_type(show);
2693 }
2694 
2695 static void btf_ref_type_log(struct btf_verifier_env *env,
2696 			     const struct btf_type *t)
2697 {
2698 	btf_verifier_log(env, "type_id=%u", t->type);
2699 }
2700 
2701 static struct btf_kind_operations modifier_ops = {
2702 	.check_meta = btf_ref_type_check_meta,
2703 	.resolve = btf_modifier_resolve,
2704 	.check_member = btf_modifier_check_member,
2705 	.check_kflag_member = btf_modifier_check_kflag_member,
2706 	.log_details = btf_ref_type_log,
2707 	.show = btf_modifier_show,
2708 };
2709 
2710 static struct btf_kind_operations ptr_ops = {
2711 	.check_meta = btf_ref_type_check_meta,
2712 	.resolve = btf_ptr_resolve,
2713 	.check_member = btf_ptr_check_member,
2714 	.check_kflag_member = btf_generic_check_kflag_member,
2715 	.log_details = btf_ref_type_log,
2716 	.show = btf_ptr_show,
2717 };
2718 
2719 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2720 			      const struct btf_type *t,
2721 			      u32 meta_left)
2722 {
2723 	if (btf_type_vlen(t)) {
2724 		btf_verifier_log_type(env, t, "vlen != 0");
2725 		return -EINVAL;
2726 	}
2727 
2728 	if (t->type) {
2729 		btf_verifier_log_type(env, t, "type != 0");
2730 		return -EINVAL;
2731 	}
2732 
2733 	/* fwd type must have a valid name */
2734 	if (!t->name_off ||
2735 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2736 		btf_verifier_log_type(env, t, "Invalid name");
2737 		return -EINVAL;
2738 	}
2739 
2740 	btf_verifier_log_type(env, t, NULL);
2741 
2742 	return 0;
2743 }
2744 
2745 static void btf_fwd_type_log(struct btf_verifier_env *env,
2746 			     const struct btf_type *t)
2747 {
2748 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2749 }
2750 
2751 static struct btf_kind_operations fwd_ops = {
2752 	.check_meta = btf_fwd_check_meta,
2753 	.resolve = btf_df_resolve,
2754 	.check_member = btf_df_check_member,
2755 	.check_kflag_member = btf_df_check_kflag_member,
2756 	.log_details = btf_fwd_type_log,
2757 	.show = btf_df_show,
2758 };
2759 
2760 static int btf_array_check_member(struct btf_verifier_env *env,
2761 				  const struct btf_type *struct_type,
2762 				  const struct btf_member *member,
2763 				  const struct btf_type *member_type)
2764 {
2765 	u32 struct_bits_off = member->offset;
2766 	u32 struct_size, bytes_offset;
2767 	u32 array_type_id, array_size;
2768 	struct btf *btf = env->btf;
2769 
2770 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2771 		btf_verifier_log_member(env, struct_type, member,
2772 					"Member is not byte aligned");
2773 		return -EINVAL;
2774 	}
2775 
2776 	array_type_id = member->type;
2777 	btf_type_id_size(btf, &array_type_id, &array_size);
2778 	struct_size = struct_type->size;
2779 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2780 	if (struct_size - bytes_offset < array_size) {
2781 		btf_verifier_log_member(env, struct_type, member,
2782 					"Member exceeds struct_size");
2783 		return -EINVAL;
2784 	}
2785 
2786 	return 0;
2787 }
2788 
2789 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2790 				const struct btf_type *t,
2791 				u32 meta_left)
2792 {
2793 	const struct btf_array *array = btf_type_array(t);
2794 	u32 meta_needed = sizeof(*array);
2795 
2796 	if (meta_left < meta_needed) {
2797 		btf_verifier_log_basic(env, t,
2798 				       "meta_left:%u meta_needed:%u",
2799 				       meta_left, meta_needed);
2800 		return -EINVAL;
2801 	}
2802 
2803 	/* array type should not have a name */
2804 	if (t->name_off) {
2805 		btf_verifier_log_type(env, t, "Invalid name");
2806 		return -EINVAL;
2807 	}
2808 
2809 	if (btf_type_vlen(t)) {
2810 		btf_verifier_log_type(env, t, "vlen != 0");
2811 		return -EINVAL;
2812 	}
2813 
2814 	if (btf_type_kflag(t)) {
2815 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2816 		return -EINVAL;
2817 	}
2818 
2819 	if (t->size) {
2820 		btf_verifier_log_type(env, t, "size != 0");
2821 		return -EINVAL;
2822 	}
2823 
2824 	/* Array elem type and index type cannot be in type void,
2825 	 * so !array->type and !array->index_type are not allowed.
2826 	 */
2827 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2828 		btf_verifier_log_type(env, t, "Invalid elem");
2829 		return -EINVAL;
2830 	}
2831 
2832 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2833 		btf_verifier_log_type(env, t, "Invalid index");
2834 		return -EINVAL;
2835 	}
2836 
2837 	btf_verifier_log_type(env, t, NULL);
2838 
2839 	return meta_needed;
2840 }
2841 
2842 static int btf_array_resolve(struct btf_verifier_env *env,
2843 			     const struct resolve_vertex *v)
2844 {
2845 	const struct btf_array *array = btf_type_array(v->t);
2846 	const struct btf_type *elem_type, *index_type;
2847 	u32 elem_type_id, index_type_id;
2848 	struct btf *btf = env->btf;
2849 	u32 elem_size;
2850 
2851 	/* Check array->index_type */
2852 	index_type_id = array->index_type;
2853 	index_type = btf_type_by_id(btf, index_type_id);
2854 	if (btf_type_nosize_or_null(index_type) ||
2855 	    btf_type_is_resolve_source_only(index_type)) {
2856 		btf_verifier_log_type(env, v->t, "Invalid index");
2857 		return -EINVAL;
2858 	}
2859 
2860 	if (!env_type_is_resolve_sink(env, index_type) &&
2861 	    !env_type_is_resolved(env, index_type_id))
2862 		return env_stack_push(env, index_type, index_type_id);
2863 
2864 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2865 	if (!index_type || !btf_type_is_int(index_type) ||
2866 	    !btf_type_int_is_regular(index_type)) {
2867 		btf_verifier_log_type(env, v->t, "Invalid index");
2868 		return -EINVAL;
2869 	}
2870 
2871 	/* Check array->type */
2872 	elem_type_id = array->type;
2873 	elem_type = btf_type_by_id(btf, elem_type_id);
2874 	if (btf_type_nosize_or_null(elem_type) ||
2875 	    btf_type_is_resolve_source_only(elem_type)) {
2876 		btf_verifier_log_type(env, v->t,
2877 				      "Invalid elem");
2878 		return -EINVAL;
2879 	}
2880 
2881 	if (!env_type_is_resolve_sink(env, elem_type) &&
2882 	    !env_type_is_resolved(env, elem_type_id))
2883 		return env_stack_push(env, elem_type, elem_type_id);
2884 
2885 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2886 	if (!elem_type) {
2887 		btf_verifier_log_type(env, v->t, "Invalid elem");
2888 		return -EINVAL;
2889 	}
2890 
2891 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2892 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2893 		return -EINVAL;
2894 	}
2895 
2896 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2897 		btf_verifier_log_type(env, v->t,
2898 				      "Array size overflows U32_MAX");
2899 		return -EINVAL;
2900 	}
2901 
2902 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2903 
2904 	return 0;
2905 }
2906 
2907 static void btf_array_log(struct btf_verifier_env *env,
2908 			  const struct btf_type *t)
2909 {
2910 	const struct btf_array *array = btf_type_array(t);
2911 
2912 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2913 			 array->type, array->index_type, array->nelems);
2914 }
2915 
2916 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2917 			     u32 type_id, void *data, u8 bits_offset,
2918 			     struct btf_show *show)
2919 {
2920 	const struct btf_array *array = btf_type_array(t);
2921 	const struct btf_kind_operations *elem_ops;
2922 	const struct btf_type *elem_type;
2923 	u32 i, elem_size = 0, elem_type_id;
2924 	u16 encoding = 0;
2925 
2926 	elem_type_id = array->type;
2927 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2928 	if (elem_type && btf_type_has_size(elem_type))
2929 		elem_size = elem_type->size;
2930 
2931 	if (elem_type && btf_type_is_int(elem_type)) {
2932 		u32 int_type = btf_type_int(elem_type);
2933 
2934 		encoding = BTF_INT_ENCODING(int_type);
2935 
2936 		/*
2937 		 * BTF_INT_CHAR encoding never seems to be set for
2938 		 * char arrays, so if size is 1 and element is
2939 		 * printable as a char, we'll do that.
2940 		 */
2941 		if (elem_size == 1)
2942 			encoding = BTF_INT_CHAR;
2943 	}
2944 
2945 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2946 		return;
2947 
2948 	if (!elem_type)
2949 		goto out;
2950 	elem_ops = btf_type_ops(elem_type);
2951 
2952 	for (i = 0; i < array->nelems; i++) {
2953 
2954 		btf_show_start_array_member(show);
2955 
2956 		elem_ops->show(btf, elem_type, elem_type_id, data,
2957 			       bits_offset, show);
2958 		data += elem_size;
2959 
2960 		btf_show_end_array_member(show);
2961 
2962 		if (show->state.array_terminated)
2963 			break;
2964 	}
2965 out:
2966 	btf_show_end_array_type(show);
2967 }
2968 
2969 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2970 			   u32 type_id, void *data, u8 bits_offset,
2971 			   struct btf_show *show)
2972 {
2973 	const struct btf_member *m = show->state.member;
2974 
2975 	/*
2976 	 * First check if any members would be shown (are non-zero).
2977 	 * See comments above "struct btf_show" definition for more
2978 	 * details on how this works at a high-level.
2979 	 */
2980 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2981 		if (!show->state.depth_check) {
2982 			show->state.depth_check = show->state.depth + 1;
2983 			show->state.depth_to_show = 0;
2984 		}
2985 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
2986 		show->state.member = m;
2987 
2988 		if (show->state.depth_check != show->state.depth + 1)
2989 			return;
2990 		show->state.depth_check = 0;
2991 
2992 		if (show->state.depth_to_show <= show->state.depth)
2993 			return;
2994 		/*
2995 		 * Reaching here indicates we have recursed and found
2996 		 * non-zero array member(s).
2997 		 */
2998 	}
2999 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3000 }
3001 
3002 static struct btf_kind_operations array_ops = {
3003 	.check_meta = btf_array_check_meta,
3004 	.resolve = btf_array_resolve,
3005 	.check_member = btf_array_check_member,
3006 	.check_kflag_member = btf_generic_check_kflag_member,
3007 	.log_details = btf_array_log,
3008 	.show = btf_array_show,
3009 };
3010 
3011 static int btf_struct_check_member(struct btf_verifier_env *env,
3012 				   const struct btf_type *struct_type,
3013 				   const struct btf_member *member,
3014 				   const struct btf_type *member_type)
3015 {
3016 	u32 struct_bits_off = member->offset;
3017 	u32 struct_size, bytes_offset;
3018 
3019 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3020 		btf_verifier_log_member(env, struct_type, member,
3021 					"Member is not byte aligned");
3022 		return -EINVAL;
3023 	}
3024 
3025 	struct_size = struct_type->size;
3026 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3027 	if (struct_size - bytes_offset < member_type->size) {
3028 		btf_verifier_log_member(env, struct_type, member,
3029 					"Member exceeds struct_size");
3030 		return -EINVAL;
3031 	}
3032 
3033 	return 0;
3034 }
3035 
3036 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3037 				 const struct btf_type *t,
3038 				 u32 meta_left)
3039 {
3040 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3041 	const struct btf_member *member;
3042 	u32 meta_needed, last_offset;
3043 	struct btf *btf = env->btf;
3044 	u32 struct_size = t->size;
3045 	u32 offset;
3046 	u16 i;
3047 
3048 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3049 	if (meta_left < meta_needed) {
3050 		btf_verifier_log_basic(env, t,
3051 				       "meta_left:%u meta_needed:%u",
3052 				       meta_left, meta_needed);
3053 		return -EINVAL;
3054 	}
3055 
3056 	/* struct type either no name or a valid one */
3057 	if (t->name_off &&
3058 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3059 		btf_verifier_log_type(env, t, "Invalid name");
3060 		return -EINVAL;
3061 	}
3062 
3063 	btf_verifier_log_type(env, t, NULL);
3064 
3065 	last_offset = 0;
3066 	for_each_member(i, t, member) {
3067 		if (!btf_name_offset_valid(btf, member->name_off)) {
3068 			btf_verifier_log_member(env, t, member,
3069 						"Invalid member name_offset:%u",
3070 						member->name_off);
3071 			return -EINVAL;
3072 		}
3073 
3074 		/* struct member either no name or a valid one */
3075 		if (member->name_off &&
3076 		    !btf_name_valid_identifier(btf, member->name_off)) {
3077 			btf_verifier_log_member(env, t, member, "Invalid name");
3078 			return -EINVAL;
3079 		}
3080 		/* A member cannot be in type void */
3081 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3082 			btf_verifier_log_member(env, t, member,
3083 						"Invalid type_id");
3084 			return -EINVAL;
3085 		}
3086 
3087 		offset = __btf_member_bit_offset(t, member);
3088 		if (is_union && offset) {
3089 			btf_verifier_log_member(env, t, member,
3090 						"Invalid member bits_offset");
3091 			return -EINVAL;
3092 		}
3093 
3094 		/*
3095 		 * ">" instead of ">=" because the last member could be
3096 		 * "char a[0];"
3097 		 */
3098 		if (last_offset > offset) {
3099 			btf_verifier_log_member(env, t, member,
3100 						"Invalid member bits_offset");
3101 			return -EINVAL;
3102 		}
3103 
3104 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3105 			btf_verifier_log_member(env, t, member,
3106 						"Member bits_offset exceeds its struct size");
3107 			return -EINVAL;
3108 		}
3109 
3110 		btf_verifier_log_member(env, t, member, NULL);
3111 		last_offset = offset;
3112 	}
3113 
3114 	return meta_needed;
3115 }
3116 
3117 static int btf_struct_resolve(struct btf_verifier_env *env,
3118 			      const struct resolve_vertex *v)
3119 {
3120 	const struct btf_member *member;
3121 	int err;
3122 	u16 i;
3123 
3124 	/* Before continue resolving the next_member,
3125 	 * ensure the last member is indeed resolved to a
3126 	 * type with size info.
3127 	 */
3128 	if (v->next_member) {
3129 		const struct btf_type *last_member_type;
3130 		const struct btf_member *last_member;
3131 		u32 last_member_type_id;
3132 
3133 		last_member = btf_type_member(v->t) + v->next_member - 1;
3134 		last_member_type_id = last_member->type;
3135 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3136 						       last_member_type_id)))
3137 			return -EINVAL;
3138 
3139 		last_member_type = btf_type_by_id(env->btf,
3140 						  last_member_type_id);
3141 		if (btf_type_kflag(v->t))
3142 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3143 								last_member,
3144 								last_member_type);
3145 		else
3146 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3147 								last_member,
3148 								last_member_type);
3149 		if (err)
3150 			return err;
3151 	}
3152 
3153 	for_each_member_from(i, v->next_member, v->t, member) {
3154 		u32 member_type_id = member->type;
3155 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3156 								member_type_id);
3157 
3158 		if (btf_type_nosize_or_null(member_type) ||
3159 		    btf_type_is_resolve_source_only(member_type)) {
3160 			btf_verifier_log_member(env, v->t, member,
3161 						"Invalid member");
3162 			return -EINVAL;
3163 		}
3164 
3165 		if (!env_type_is_resolve_sink(env, member_type) &&
3166 		    !env_type_is_resolved(env, member_type_id)) {
3167 			env_stack_set_next_member(env, i + 1);
3168 			return env_stack_push(env, member_type, member_type_id);
3169 		}
3170 
3171 		if (btf_type_kflag(v->t))
3172 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3173 									    member,
3174 									    member_type);
3175 		else
3176 			err = btf_type_ops(member_type)->check_member(env, v->t,
3177 								      member,
3178 								      member_type);
3179 		if (err)
3180 			return err;
3181 	}
3182 
3183 	env_stack_pop_resolved(env, 0, 0);
3184 
3185 	return 0;
3186 }
3187 
3188 static void btf_struct_log(struct btf_verifier_env *env,
3189 			   const struct btf_type *t)
3190 {
3191 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3192 }
3193 
3194 enum btf_field_type {
3195 	BTF_FIELD_SPIN_LOCK,
3196 	BTF_FIELD_TIMER,
3197 	BTF_FIELD_KPTR,
3198 };
3199 
3200 enum {
3201 	BTF_FIELD_IGNORE = 0,
3202 	BTF_FIELD_FOUND  = 1,
3203 };
3204 
3205 struct btf_field_info {
3206 	u32 type_id;
3207 	u32 off;
3208 	enum bpf_kptr_type type;
3209 };
3210 
3211 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3212 			   u32 off, int sz, struct btf_field_info *info)
3213 {
3214 	if (!__btf_type_is_struct(t))
3215 		return BTF_FIELD_IGNORE;
3216 	if (t->size != sz)
3217 		return BTF_FIELD_IGNORE;
3218 	info->off = off;
3219 	return BTF_FIELD_FOUND;
3220 }
3221 
3222 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3223 			 u32 off, int sz, struct btf_field_info *info)
3224 {
3225 	enum bpf_kptr_type type;
3226 	u32 res_id;
3227 
3228 	/* For PTR, sz is always == 8 */
3229 	if (!btf_type_is_ptr(t))
3230 		return BTF_FIELD_IGNORE;
3231 	t = btf_type_by_id(btf, t->type);
3232 
3233 	if (!btf_type_is_type_tag(t))
3234 		return BTF_FIELD_IGNORE;
3235 	/* Reject extra tags */
3236 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3237 		return -EINVAL;
3238 	if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3239 		type = BPF_KPTR_UNREF;
3240 	else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off)))
3241 		type = BPF_KPTR_REF;
3242 	else
3243 		return -EINVAL;
3244 
3245 	/* Get the base type */
3246 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3247 	/* Only pointer to struct is allowed */
3248 	if (!__btf_type_is_struct(t))
3249 		return -EINVAL;
3250 
3251 	info->type_id = res_id;
3252 	info->off = off;
3253 	info->type = type;
3254 	return BTF_FIELD_FOUND;
3255 }
3256 
3257 static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
3258 				 const char *name, int sz, int align,
3259 				 enum btf_field_type field_type,
3260 				 struct btf_field_info *info, int info_cnt)
3261 {
3262 	const struct btf_member *member;
3263 	struct btf_field_info tmp;
3264 	int ret, idx = 0;
3265 	u32 i, off;
3266 
3267 	for_each_member(i, t, member) {
3268 		const struct btf_type *member_type = btf_type_by_id(btf,
3269 								    member->type);
3270 
3271 		if (name && strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
3272 			continue;
3273 
3274 		off = __btf_member_bit_offset(t, member);
3275 		if (off % 8)
3276 			/* valid C code cannot generate such BTF */
3277 			return -EINVAL;
3278 		off /= 8;
3279 		if (off % align)
3280 			return -EINVAL;
3281 
3282 		switch (field_type) {
3283 		case BTF_FIELD_SPIN_LOCK:
3284 		case BTF_FIELD_TIMER:
3285 			ret = btf_find_struct(btf, member_type, off, sz,
3286 					      idx < info_cnt ? &info[idx] : &tmp);
3287 			if (ret < 0)
3288 				return ret;
3289 			break;
3290 		case BTF_FIELD_KPTR:
3291 			ret = btf_find_kptr(btf, member_type, off, sz,
3292 					    idx < info_cnt ? &info[idx] : &tmp);
3293 			if (ret < 0)
3294 				return ret;
3295 			break;
3296 		default:
3297 			return -EFAULT;
3298 		}
3299 
3300 		if (ret == BTF_FIELD_IGNORE)
3301 			continue;
3302 		if (idx >= info_cnt)
3303 			return -E2BIG;
3304 		++idx;
3305 	}
3306 	return idx;
3307 }
3308 
3309 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3310 				const char *name, int sz, int align,
3311 				enum btf_field_type field_type,
3312 				struct btf_field_info *info, int info_cnt)
3313 {
3314 	const struct btf_var_secinfo *vsi;
3315 	struct btf_field_info tmp;
3316 	int ret, idx = 0;
3317 	u32 i, off;
3318 
3319 	for_each_vsi(i, t, vsi) {
3320 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3321 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3322 
3323 		off = vsi->offset;
3324 
3325 		if (name && strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
3326 			continue;
3327 		if (vsi->size != sz)
3328 			continue;
3329 		if (off % align)
3330 			return -EINVAL;
3331 
3332 		switch (field_type) {
3333 		case BTF_FIELD_SPIN_LOCK:
3334 		case BTF_FIELD_TIMER:
3335 			ret = btf_find_struct(btf, var_type, off, sz,
3336 					      idx < info_cnt ? &info[idx] : &tmp);
3337 			if (ret < 0)
3338 				return ret;
3339 			break;
3340 		case BTF_FIELD_KPTR:
3341 			ret = btf_find_kptr(btf, var_type, off, sz,
3342 					    idx < info_cnt ? &info[idx] : &tmp);
3343 			if (ret < 0)
3344 				return ret;
3345 			break;
3346 		default:
3347 			return -EFAULT;
3348 		}
3349 
3350 		if (ret == BTF_FIELD_IGNORE)
3351 			continue;
3352 		if (idx >= info_cnt)
3353 			return -E2BIG;
3354 		++idx;
3355 	}
3356 	return idx;
3357 }
3358 
3359 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3360 			  enum btf_field_type field_type,
3361 			  struct btf_field_info *info, int info_cnt)
3362 {
3363 	const char *name;
3364 	int sz, align;
3365 
3366 	switch (field_type) {
3367 	case BTF_FIELD_SPIN_LOCK:
3368 		name = "bpf_spin_lock";
3369 		sz = sizeof(struct bpf_spin_lock);
3370 		align = __alignof__(struct bpf_spin_lock);
3371 		break;
3372 	case BTF_FIELD_TIMER:
3373 		name = "bpf_timer";
3374 		sz = sizeof(struct bpf_timer);
3375 		align = __alignof__(struct bpf_timer);
3376 		break;
3377 	case BTF_FIELD_KPTR:
3378 		name = NULL;
3379 		sz = sizeof(u64);
3380 		align = 8;
3381 		break;
3382 	default:
3383 		return -EFAULT;
3384 	}
3385 
3386 	if (__btf_type_is_struct(t))
3387 		return btf_find_struct_field(btf, t, name, sz, align, field_type, info, info_cnt);
3388 	else if (btf_type_is_datasec(t))
3389 		return btf_find_datasec_var(btf, t, name, sz, align, field_type, info, info_cnt);
3390 	return -EINVAL;
3391 }
3392 
3393 /* find 'struct bpf_spin_lock' in map value.
3394  * return >= 0 offset if found
3395  * and < 0 in case of error
3396  */
3397 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3398 {
3399 	struct btf_field_info info;
3400 	int ret;
3401 
3402 	ret = btf_find_field(btf, t, BTF_FIELD_SPIN_LOCK, &info, 1);
3403 	if (ret < 0)
3404 		return ret;
3405 	if (!ret)
3406 		return -ENOENT;
3407 	return info.off;
3408 }
3409 
3410 int btf_find_timer(const struct btf *btf, const struct btf_type *t)
3411 {
3412 	struct btf_field_info info;
3413 	int ret;
3414 
3415 	ret = btf_find_field(btf, t, BTF_FIELD_TIMER, &info, 1);
3416 	if (ret < 0)
3417 		return ret;
3418 	if (!ret)
3419 		return -ENOENT;
3420 	return info.off;
3421 }
3422 
3423 struct bpf_map_value_off *btf_parse_kptrs(const struct btf *btf,
3424 					  const struct btf_type *t)
3425 {
3426 	struct btf_field_info info_arr[BPF_MAP_VALUE_OFF_MAX];
3427 	struct bpf_map_value_off *tab;
3428 	struct btf *kernel_btf = NULL;
3429 	struct module *mod = NULL;
3430 	int ret, i, nr_off;
3431 
3432 	ret = btf_find_field(btf, t, BTF_FIELD_KPTR, info_arr, ARRAY_SIZE(info_arr));
3433 	if (ret < 0)
3434 		return ERR_PTR(ret);
3435 	if (!ret)
3436 		return NULL;
3437 
3438 	nr_off = ret;
3439 	tab = kzalloc(offsetof(struct bpf_map_value_off, off[nr_off]), GFP_KERNEL | __GFP_NOWARN);
3440 	if (!tab)
3441 		return ERR_PTR(-ENOMEM);
3442 
3443 	for (i = 0; i < nr_off; i++) {
3444 		const struct btf_type *t;
3445 		s32 id;
3446 
3447 		/* Find type in map BTF, and use it to look up the matching type
3448 		 * in vmlinux or module BTFs, by name and kind.
3449 		 */
3450 		t = btf_type_by_id(btf, info_arr[i].type_id);
3451 		id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3452 				     &kernel_btf);
3453 		if (id < 0) {
3454 			ret = id;
3455 			goto end;
3456 		}
3457 
3458 		/* Find and stash the function pointer for the destruction function that
3459 		 * needs to be eventually invoked from the map free path.
3460 		 */
3461 		if (info_arr[i].type == BPF_KPTR_REF) {
3462 			const struct btf_type *dtor_func;
3463 			const char *dtor_func_name;
3464 			unsigned long addr;
3465 			s32 dtor_btf_id;
3466 
3467 			/* This call also serves as a whitelist of allowed objects that
3468 			 * can be used as a referenced pointer and be stored in a map at
3469 			 * the same time.
3470 			 */
3471 			dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
3472 			if (dtor_btf_id < 0) {
3473 				ret = dtor_btf_id;
3474 				goto end_btf;
3475 			}
3476 
3477 			dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
3478 			if (!dtor_func) {
3479 				ret = -ENOENT;
3480 				goto end_btf;
3481 			}
3482 
3483 			if (btf_is_module(kernel_btf)) {
3484 				mod = btf_try_get_module(kernel_btf);
3485 				if (!mod) {
3486 					ret = -ENXIO;
3487 					goto end_btf;
3488 				}
3489 			}
3490 
3491 			/* We already verified dtor_func to be btf_type_is_func
3492 			 * in register_btf_id_dtor_kfuncs.
3493 			 */
3494 			dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
3495 			addr = kallsyms_lookup_name(dtor_func_name);
3496 			if (!addr) {
3497 				ret = -EINVAL;
3498 				goto end_mod;
3499 			}
3500 			tab->off[i].kptr.dtor = (void *)addr;
3501 		}
3502 
3503 		tab->off[i].offset = info_arr[i].off;
3504 		tab->off[i].type = info_arr[i].type;
3505 		tab->off[i].kptr.btf_id = id;
3506 		tab->off[i].kptr.btf = kernel_btf;
3507 		tab->off[i].kptr.module = mod;
3508 	}
3509 	tab->nr_off = nr_off;
3510 	return tab;
3511 end_mod:
3512 	module_put(mod);
3513 end_btf:
3514 	btf_put(kernel_btf);
3515 end:
3516 	while (i--) {
3517 		btf_put(tab->off[i].kptr.btf);
3518 		if (tab->off[i].kptr.module)
3519 			module_put(tab->off[i].kptr.module);
3520 	}
3521 	kfree(tab);
3522 	return ERR_PTR(ret);
3523 }
3524 
3525 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3526 			      u32 type_id, void *data, u8 bits_offset,
3527 			      struct btf_show *show)
3528 {
3529 	const struct btf_member *member;
3530 	void *safe_data;
3531 	u32 i;
3532 
3533 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3534 	if (!safe_data)
3535 		return;
3536 
3537 	for_each_member(i, t, member) {
3538 		const struct btf_type *member_type = btf_type_by_id(btf,
3539 								member->type);
3540 		const struct btf_kind_operations *ops;
3541 		u32 member_offset, bitfield_size;
3542 		u32 bytes_offset;
3543 		u8 bits8_offset;
3544 
3545 		btf_show_start_member(show, member);
3546 
3547 		member_offset = __btf_member_bit_offset(t, member);
3548 		bitfield_size = __btf_member_bitfield_size(t, member);
3549 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3550 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3551 		if (bitfield_size) {
3552 			safe_data = btf_show_start_type(show, member_type,
3553 							member->type,
3554 							data + bytes_offset);
3555 			if (safe_data)
3556 				btf_bitfield_show(safe_data,
3557 						  bits8_offset,
3558 						  bitfield_size, show);
3559 			btf_show_end_type(show);
3560 		} else {
3561 			ops = btf_type_ops(member_type);
3562 			ops->show(btf, member_type, member->type,
3563 				  data + bytes_offset, bits8_offset, show);
3564 		}
3565 
3566 		btf_show_end_member(show);
3567 	}
3568 
3569 	btf_show_end_struct_type(show);
3570 }
3571 
3572 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3573 			    u32 type_id, void *data, u8 bits_offset,
3574 			    struct btf_show *show)
3575 {
3576 	const struct btf_member *m = show->state.member;
3577 
3578 	/*
3579 	 * First check if any members would be shown (are non-zero).
3580 	 * See comments above "struct btf_show" definition for more
3581 	 * details on how this works at a high-level.
3582 	 */
3583 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3584 		if (!show->state.depth_check) {
3585 			show->state.depth_check = show->state.depth + 1;
3586 			show->state.depth_to_show = 0;
3587 		}
3588 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3589 		/* Restore saved member data here */
3590 		show->state.member = m;
3591 		if (show->state.depth_check != show->state.depth + 1)
3592 			return;
3593 		show->state.depth_check = 0;
3594 
3595 		if (show->state.depth_to_show <= show->state.depth)
3596 			return;
3597 		/*
3598 		 * Reaching here indicates we have recursed and found
3599 		 * non-zero child values.
3600 		 */
3601 	}
3602 
3603 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3604 }
3605 
3606 static struct btf_kind_operations struct_ops = {
3607 	.check_meta = btf_struct_check_meta,
3608 	.resolve = btf_struct_resolve,
3609 	.check_member = btf_struct_check_member,
3610 	.check_kflag_member = btf_generic_check_kflag_member,
3611 	.log_details = btf_struct_log,
3612 	.show = btf_struct_show,
3613 };
3614 
3615 static int btf_enum_check_member(struct btf_verifier_env *env,
3616 				 const struct btf_type *struct_type,
3617 				 const struct btf_member *member,
3618 				 const struct btf_type *member_type)
3619 {
3620 	u32 struct_bits_off = member->offset;
3621 	u32 struct_size, bytes_offset;
3622 
3623 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3624 		btf_verifier_log_member(env, struct_type, member,
3625 					"Member is not byte aligned");
3626 		return -EINVAL;
3627 	}
3628 
3629 	struct_size = struct_type->size;
3630 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3631 	if (struct_size - bytes_offset < member_type->size) {
3632 		btf_verifier_log_member(env, struct_type, member,
3633 					"Member exceeds struct_size");
3634 		return -EINVAL;
3635 	}
3636 
3637 	return 0;
3638 }
3639 
3640 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3641 				       const struct btf_type *struct_type,
3642 				       const struct btf_member *member,
3643 				       const struct btf_type *member_type)
3644 {
3645 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3646 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3647 
3648 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3649 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3650 	if (!nr_bits) {
3651 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3652 			btf_verifier_log_member(env, struct_type, member,
3653 						"Member is not byte aligned");
3654 			return -EINVAL;
3655 		}
3656 
3657 		nr_bits = int_bitsize;
3658 	} else if (nr_bits > int_bitsize) {
3659 		btf_verifier_log_member(env, struct_type, member,
3660 					"Invalid member bitfield_size");
3661 		return -EINVAL;
3662 	}
3663 
3664 	struct_size = struct_type->size;
3665 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3666 	if (struct_size < bytes_end) {
3667 		btf_verifier_log_member(env, struct_type, member,
3668 					"Member exceeds struct_size");
3669 		return -EINVAL;
3670 	}
3671 
3672 	return 0;
3673 }
3674 
3675 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3676 			       const struct btf_type *t,
3677 			       u32 meta_left)
3678 {
3679 	const struct btf_enum *enums = btf_type_enum(t);
3680 	struct btf *btf = env->btf;
3681 	const char *fmt_str;
3682 	u16 i, nr_enums;
3683 	u32 meta_needed;
3684 
3685 	nr_enums = btf_type_vlen(t);
3686 	meta_needed = nr_enums * sizeof(*enums);
3687 
3688 	if (meta_left < meta_needed) {
3689 		btf_verifier_log_basic(env, t,
3690 				       "meta_left:%u meta_needed:%u",
3691 				       meta_left, meta_needed);
3692 		return -EINVAL;
3693 	}
3694 
3695 	if (t->size > 8 || !is_power_of_2(t->size)) {
3696 		btf_verifier_log_type(env, t, "Unexpected size");
3697 		return -EINVAL;
3698 	}
3699 
3700 	/* enum type either no name or a valid one */
3701 	if (t->name_off &&
3702 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3703 		btf_verifier_log_type(env, t, "Invalid name");
3704 		return -EINVAL;
3705 	}
3706 
3707 	btf_verifier_log_type(env, t, NULL);
3708 
3709 	for (i = 0; i < nr_enums; i++) {
3710 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3711 			btf_verifier_log(env, "\tInvalid name_offset:%u",
3712 					 enums[i].name_off);
3713 			return -EINVAL;
3714 		}
3715 
3716 		/* enum member must have a valid name */
3717 		if (!enums[i].name_off ||
3718 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3719 			btf_verifier_log_type(env, t, "Invalid name");
3720 			return -EINVAL;
3721 		}
3722 
3723 		if (env->log.level == BPF_LOG_KERNEL)
3724 			continue;
3725 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
3726 		btf_verifier_log(env, fmt_str,
3727 				 __btf_name_by_offset(btf, enums[i].name_off),
3728 				 enums[i].val);
3729 	}
3730 
3731 	return meta_needed;
3732 }
3733 
3734 static void btf_enum_log(struct btf_verifier_env *env,
3735 			 const struct btf_type *t)
3736 {
3737 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3738 }
3739 
3740 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3741 			  u32 type_id, void *data, u8 bits_offset,
3742 			  struct btf_show *show)
3743 {
3744 	const struct btf_enum *enums = btf_type_enum(t);
3745 	u32 i, nr_enums = btf_type_vlen(t);
3746 	void *safe_data;
3747 	int v;
3748 
3749 	safe_data = btf_show_start_type(show, t, type_id, data);
3750 	if (!safe_data)
3751 		return;
3752 
3753 	v = *(int *)safe_data;
3754 
3755 	for (i = 0; i < nr_enums; i++) {
3756 		if (v != enums[i].val)
3757 			continue;
3758 
3759 		btf_show_type_value(show, "%s",
3760 				    __btf_name_by_offset(btf,
3761 							 enums[i].name_off));
3762 
3763 		btf_show_end_type(show);
3764 		return;
3765 	}
3766 
3767 	if (btf_type_kflag(t))
3768 		btf_show_type_value(show, "%d", v);
3769 	else
3770 		btf_show_type_value(show, "%u", v);
3771 	btf_show_end_type(show);
3772 }
3773 
3774 static struct btf_kind_operations enum_ops = {
3775 	.check_meta = btf_enum_check_meta,
3776 	.resolve = btf_df_resolve,
3777 	.check_member = btf_enum_check_member,
3778 	.check_kflag_member = btf_enum_check_kflag_member,
3779 	.log_details = btf_enum_log,
3780 	.show = btf_enum_show,
3781 };
3782 
3783 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
3784 				 const struct btf_type *t,
3785 				 u32 meta_left)
3786 {
3787 	const struct btf_enum64 *enums = btf_type_enum64(t);
3788 	struct btf *btf = env->btf;
3789 	const char *fmt_str;
3790 	u16 i, nr_enums;
3791 	u32 meta_needed;
3792 
3793 	nr_enums = btf_type_vlen(t);
3794 	meta_needed = nr_enums * sizeof(*enums);
3795 
3796 	if (meta_left < meta_needed) {
3797 		btf_verifier_log_basic(env, t,
3798 				       "meta_left:%u meta_needed:%u",
3799 				       meta_left, meta_needed);
3800 		return -EINVAL;
3801 	}
3802 
3803 	if (t->size > 8 || !is_power_of_2(t->size)) {
3804 		btf_verifier_log_type(env, t, "Unexpected size");
3805 		return -EINVAL;
3806 	}
3807 
3808 	/* enum type either no name or a valid one */
3809 	if (t->name_off &&
3810 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3811 		btf_verifier_log_type(env, t, "Invalid name");
3812 		return -EINVAL;
3813 	}
3814 
3815 	btf_verifier_log_type(env, t, NULL);
3816 
3817 	for (i = 0; i < nr_enums; i++) {
3818 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3819 			btf_verifier_log(env, "\tInvalid name_offset:%u",
3820 					 enums[i].name_off);
3821 			return -EINVAL;
3822 		}
3823 
3824 		/* enum member must have a valid name */
3825 		if (!enums[i].name_off ||
3826 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3827 			btf_verifier_log_type(env, t, "Invalid name");
3828 			return -EINVAL;
3829 		}
3830 
3831 		if (env->log.level == BPF_LOG_KERNEL)
3832 			continue;
3833 
3834 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
3835 		btf_verifier_log(env, fmt_str,
3836 				 __btf_name_by_offset(btf, enums[i].name_off),
3837 				 btf_enum64_value(enums + i));
3838 	}
3839 
3840 	return meta_needed;
3841 }
3842 
3843 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
3844 			    u32 type_id, void *data, u8 bits_offset,
3845 			    struct btf_show *show)
3846 {
3847 	const struct btf_enum64 *enums = btf_type_enum64(t);
3848 	u32 i, nr_enums = btf_type_vlen(t);
3849 	void *safe_data;
3850 	s64 v;
3851 
3852 	safe_data = btf_show_start_type(show, t, type_id, data);
3853 	if (!safe_data)
3854 		return;
3855 
3856 	v = *(u64 *)safe_data;
3857 
3858 	for (i = 0; i < nr_enums; i++) {
3859 		if (v != btf_enum64_value(enums + i))
3860 			continue;
3861 
3862 		btf_show_type_value(show, "%s",
3863 				    __btf_name_by_offset(btf,
3864 							 enums[i].name_off));
3865 
3866 		btf_show_end_type(show);
3867 		return;
3868 	}
3869 
3870 	if (btf_type_kflag(t))
3871 		btf_show_type_value(show, "%lld", v);
3872 	else
3873 		btf_show_type_value(show, "%llu", v);
3874 	btf_show_end_type(show);
3875 }
3876 
3877 static struct btf_kind_operations enum64_ops = {
3878 	.check_meta = btf_enum64_check_meta,
3879 	.resolve = btf_df_resolve,
3880 	.check_member = btf_enum_check_member,
3881 	.check_kflag_member = btf_enum_check_kflag_member,
3882 	.log_details = btf_enum_log,
3883 	.show = btf_enum64_show,
3884 };
3885 
3886 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3887 				     const struct btf_type *t,
3888 				     u32 meta_left)
3889 {
3890 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3891 
3892 	if (meta_left < meta_needed) {
3893 		btf_verifier_log_basic(env, t,
3894 				       "meta_left:%u meta_needed:%u",
3895 				       meta_left, meta_needed);
3896 		return -EINVAL;
3897 	}
3898 
3899 	if (t->name_off) {
3900 		btf_verifier_log_type(env, t, "Invalid name");
3901 		return -EINVAL;
3902 	}
3903 
3904 	if (btf_type_kflag(t)) {
3905 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3906 		return -EINVAL;
3907 	}
3908 
3909 	btf_verifier_log_type(env, t, NULL);
3910 
3911 	return meta_needed;
3912 }
3913 
3914 static void btf_func_proto_log(struct btf_verifier_env *env,
3915 			       const struct btf_type *t)
3916 {
3917 	const struct btf_param *args = (const struct btf_param *)(t + 1);
3918 	u16 nr_args = btf_type_vlen(t), i;
3919 
3920 	btf_verifier_log(env, "return=%u args=(", t->type);
3921 	if (!nr_args) {
3922 		btf_verifier_log(env, "void");
3923 		goto done;
3924 	}
3925 
3926 	if (nr_args == 1 && !args[0].type) {
3927 		/* Only one vararg */
3928 		btf_verifier_log(env, "vararg");
3929 		goto done;
3930 	}
3931 
3932 	btf_verifier_log(env, "%u %s", args[0].type,
3933 			 __btf_name_by_offset(env->btf,
3934 					      args[0].name_off));
3935 	for (i = 1; i < nr_args - 1; i++)
3936 		btf_verifier_log(env, ", %u %s", args[i].type,
3937 				 __btf_name_by_offset(env->btf,
3938 						      args[i].name_off));
3939 
3940 	if (nr_args > 1) {
3941 		const struct btf_param *last_arg = &args[nr_args - 1];
3942 
3943 		if (last_arg->type)
3944 			btf_verifier_log(env, ", %u %s", last_arg->type,
3945 					 __btf_name_by_offset(env->btf,
3946 							      last_arg->name_off));
3947 		else
3948 			btf_verifier_log(env, ", vararg");
3949 	}
3950 
3951 done:
3952 	btf_verifier_log(env, ")");
3953 }
3954 
3955 static struct btf_kind_operations func_proto_ops = {
3956 	.check_meta = btf_func_proto_check_meta,
3957 	.resolve = btf_df_resolve,
3958 	/*
3959 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3960 	 * a struct's member.
3961 	 *
3962 	 * It should be a function pointer instead.
3963 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3964 	 *
3965 	 * Hence, there is no btf_func_check_member().
3966 	 */
3967 	.check_member = btf_df_check_member,
3968 	.check_kflag_member = btf_df_check_kflag_member,
3969 	.log_details = btf_func_proto_log,
3970 	.show = btf_df_show,
3971 };
3972 
3973 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3974 			       const struct btf_type *t,
3975 			       u32 meta_left)
3976 {
3977 	if (!t->name_off ||
3978 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3979 		btf_verifier_log_type(env, t, "Invalid name");
3980 		return -EINVAL;
3981 	}
3982 
3983 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3984 		btf_verifier_log_type(env, t, "Invalid func linkage");
3985 		return -EINVAL;
3986 	}
3987 
3988 	if (btf_type_kflag(t)) {
3989 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3990 		return -EINVAL;
3991 	}
3992 
3993 	btf_verifier_log_type(env, t, NULL);
3994 
3995 	return 0;
3996 }
3997 
3998 static int btf_func_resolve(struct btf_verifier_env *env,
3999 			    const struct resolve_vertex *v)
4000 {
4001 	const struct btf_type *t = v->t;
4002 	u32 next_type_id = t->type;
4003 	int err;
4004 
4005 	err = btf_func_check(env, t);
4006 	if (err)
4007 		return err;
4008 
4009 	env_stack_pop_resolved(env, next_type_id, 0);
4010 	return 0;
4011 }
4012 
4013 static struct btf_kind_operations func_ops = {
4014 	.check_meta = btf_func_check_meta,
4015 	.resolve = btf_func_resolve,
4016 	.check_member = btf_df_check_member,
4017 	.check_kflag_member = btf_df_check_kflag_member,
4018 	.log_details = btf_ref_type_log,
4019 	.show = btf_df_show,
4020 };
4021 
4022 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4023 			      const struct btf_type *t,
4024 			      u32 meta_left)
4025 {
4026 	const struct btf_var *var;
4027 	u32 meta_needed = sizeof(*var);
4028 
4029 	if (meta_left < meta_needed) {
4030 		btf_verifier_log_basic(env, t,
4031 				       "meta_left:%u meta_needed:%u",
4032 				       meta_left, meta_needed);
4033 		return -EINVAL;
4034 	}
4035 
4036 	if (btf_type_vlen(t)) {
4037 		btf_verifier_log_type(env, t, "vlen != 0");
4038 		return -EINVAL;
4039 	}
4040 
4041 	if (btf_type_kflag(t)) {
4042 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4043 		return -EINVAL;
4044 	}
4045 
4046 	if (!t->name_off ||
4047 	    !__btf_name_valid(env->btf, t->name_off, true)) {
4048 		btf_verifier_log_type(env, t, "Invalid name");
4049 		return -EINVAL;
4050 	}
4051 
4052 	/* A var cannot be in type void */
4053 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4054 		btf_verifier_log_type(env, t, "Invalid type_id");
4055 		return -EINVAL;
4056 	}
4057 
4058 	var = btf_type_var(t);
4059 	if (var->linkage != BTF_VAR_STATIC &&
4060 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4061 		btf_verifier_log_type(env, t, "Linkage not supported");
4062 		return -EINVAL;
4063 	}
4064 
4065 	btf_verifier_log_type(env, t, NULL);
4066 
4067 	return meta_needed;
4068 }
4069 
4070 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4071 {
4072 	const struct btf_var *var = btf_type_var(t);
4073 
4074 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4075 }
4076 
4077 static const struct btf_kind_operations var_ops = {
4078 	.check_meta		= btf_var_check_meta,
4079 	.resolve		= btf_var_resolve,
4080 	.check_member		= btf_df_check_member,
4081 	.check_kflag_member	= btf_df_check_kflag_member,
4082 	.log_details		= btf_var_log,
4083 	.show			= btf_var_show,
4084 };
4085 
4086 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4087 				  const struct btf_type *t,
4088 				  u32 meta_left)
4089 {
4090 	const struct btf_var_secinfo *vsi;
4091 	u64 last_vsi_end_off = 0, sum = 0;
4092 	u32 i, meta_needed;
4093 
4094 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4095 	if (meta_left < meta_needed) {
4096 		btf_verifier_log_basic(env, t,
4097 				       "meta_left:%u meta_needed:%u",
4098 				       meta_left, meta_needed);
4099 		return -EINVAL;
4100 	}
4101 
4102 	if (!t->size) {
4103 		btf_verifier_log_type(env, t, "size == 0");
4104 		return -EINVAL;
4105 	}
4106 
4107 	if (btf_type_kflag(t)) {
4108 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4109 		return -EINVAL;
4110 	}
4111 
4112 	if (!t->name_off ||
4113 	    !btf_name_valid_section(env->btf, t->name_off)) {
4114 		btf_verifier_log_type(env, t, "Invalid name");
4115 		return -EINVAL;
4116 	}
4117 
4118 	btf_verifier_log_type(env, t, NULL);
4119 
4120 	for_each_vsi(i, t, vsi) {
4121 		/* A var cannot be in type void */
4122 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4123 			btf_verifier_log_vsi(env, t, vsi,
4124 					     "Invalid type_id");
4125 			return -EINVAL;
4126 		}
4127 
4128 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4129 			btf_verifier_log_vsi(env, t, vsi,
4130 					     "Invalid offset");
4131 			return -EINVAL;
4132 		}
4133 
4134 		if (!vsi->size || vsi->size > t->size) {
4135 			btf_verifier_log_vsi(env, t, vsi,
4136 					     "Invalid size");
4137 			return -EINVAL;
4138 		}
4139 
4140 		last_vsi_end_off = vsi->offset + vsi->size;
4141 		if (last_vsi_end_off > t->size) {
4142 			btf_verifier_log_vsi(env, t, vsi,
4143 					     "Invalid offset+size");
4144 			return -EINVAL;
4145 		}
4146 
4147 		btf_verifier_log_vsi(env, t, vsi, NULL);
4148 		sum += vsi->size;
4149 	}
4150 
4151 	if (t->size < sum) {
4152 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4153 		return -EINVAL;
4154 	}
4155 
4156 	return meta_needed;
4157 }
4158 
4159 static int btf_datasec_resolve(struct btf_verifier_env *env,
4160 			       const struct resolve_vertex *v)
4161 {
4162 	const struct btf_var_secinfo *vsi;
4163 	struct btf *btf = env->btf;
4164 	u16 i;
4165 
4166 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4167 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4168 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4169 								 var_type_id);
4170 		if (!var_type || !btf_type_is_var(var_type)) {
4171 			btf_verifier_log_vsi(env, v->t, vsi,
4172 					     "Not a VAR kind member");
4173 			return -EINVAL;
4174 		}
4175 
4176 		if (!env_type_is_resolve_sink(env, var_type) &&
4177 		    !env_type_is_resolved(env, var_type_id)) {
4178 			env_stack_set_next_member(env, i + 1);
4179 			return env_stack_push(env, var_type, var_type_id);
4180 		}
4181 
4182 		type_id = var_type->type;
4183 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4184 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4185 			return -EINVAL;
4186 		}
4187 
4188 		if (vsi->size < type_size) {
4189 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4190 			return -EINVAL;
4191 		}
4192 	}
4193 
4194 	env_stack_pop_resolved(env, 0, 0);
4195 	return 0;
4196 }
4197 
4198 static void btf_datasec_log(struct btf_verifier_env *env,
4199 			    const struct btf_type *t)
4200 {
4201 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4202 }
4203 
4204 static void btf_datasec_show(const struct btf *btf,
4205 			     const struct btf_type *t, u32 type_id,
4206 			     void *data, u8 bits_offset,
4207 			     struct btf_show *show)
4208 {
4209 	const struct btf_var_secinfo *vsi;
4210 	const struct btf_type *var;
4211 	u32 i;
4212 
4213 	if (!btf_show_start_type(show, t, type_id, data))
4214 		return;
4215 
4216 	btf_show_type_value(show, "section (\"%s\") = {",
4217 			    __btf_name_by_offset(btf, t->name_off));
4218 	for_each_vsi(i, t, vsi) {
4219 		var = btf_type_by_id(btf, vsi->type);
4220 		if (i)
4221 			btf_show(show, ",");
4222 		btf_type_ops(var)->show(btf, var, vsi->type,
4223 					data + vsi->offset, bits_offset, show);
4224 	}
4225 	btf_show_end_type(show);
4226 }
4227 
4228 static const struct btf_kind_operations datasec_ops = {
4229 	.check_meta		= btf_datasec_check_meta,
4230 	.resolve		= btf_datasec_resolve,
4231 	.check_member		= btf_df_check_member,
4232 	.check_kflag_member	= btf_df_check_kflag_member,
4233 	.log_details		= btf_datasec_log,
4234 	.show			= btf_datasec_show,
4235 };
4236 
4237 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4238 				const struct btf_type *t,
4239 				u32 meta_left)
4240 {
4241 	if (btf_type_vlen(t)) {
4242 		btf_verifier_log_type(env, t, "vlen != 0");
4243 		return -EINVAL;
4244 	}
4245 
4246 	if (btf_type_kflag(t)) {
4247 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4248 		return -EINVAL;
4249 	}
4250 
4251 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4252 	    t->size != 16) {
4253 		btf_verifier_log_type(env, t, "Invalid type_size");
4254 		return -EINVAL;
4255 	}
4256 
4257 	btf_verifier_log_type(env, t, NULL);
4258 
4259 	return 0;
4260 }
4261 
4262 static int btf_float_check_member(struct btf_verifier_env *env,
4263 				  const struct btf_type *struct_type,
4264 				  const struct btf_member *member,
4265 				  const struct btf_type *member_type)
4266 {
4267 	u64 start_offset_bytes;
4268 	u64 end_offset_bytes;
4269 	u64 misalign_bits;
4270 	u64 align_bytes;
4271 	u64 align_bits;
4272 
4273 	/* Different architectures have different alignment requirements, so
4274 	 * here we check only for the reasonable minimum. This way we ensure
4275 	 * that types after CO-RE can pass the kernel BTF verifier.
4276 	 */
4277 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4278 	align_bits = align_bytes * BITS_PER_BYTE;
4279 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4280 	if (misalign_bits) {
4281 		btf_verifier_log_member(env, struct_type, member,
4282 					"Member is not properly aligned");
4283 		return -EINVAL;
4284 	}
4285 
4286 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4287 	end_offset_bytes = start_offset_bytes + member_type->size;
4288 	if (end_offset_bytes > struct_type->size) {
4289 		btf_verifier_log_member(env, struct_type, member,
4290 					"Member exceeds struct_size");
4291 		return -EINVAL;
4292 	}
4293 
4294 	return 0;
4295 }
4296 
4297 static void btf_float_log(struct btf_verifier_env *env,
4298 			  const struct btf_type *t)
4299 {
4300 	btf_verifier_log(env, "size=%u", t->size);
4301 }
4302 
4303 static const struct btf_kind_operations float_ops = {
4304 	.check_meta = btf_float_check_meta,
4305 	.resolve = btf_df_resolve,
4306 	.check_member = btf_float_check_member,
4307 	.check_kflag_member = btf_generic_check_kflag_member,
4308 	.log_details = btf_float_log,
4309 	.show = btf_df_show,
4310 };
4311 
4312 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4313 			      const struct btf_type *t,
4314 			      u32 meta_left)
4315 {
4316 	const struct btf_decl_tag *tag;
4317 	u32 meta_needed = sizeof(*tag);
4318 	s32 component_idx;
4319 	const char *value;
4320 
4321 	if (meta_left < meta_needed) {
4322 		btf_verifier_log_basic(env, t,
4323 				       "meta_left:%u meta_needed:%u",
4324 				       meta_left, meta_needed);
4325 		return -EINVAL;
4326 	}
4327 
4328 	value = btf_name_by_offset(env->btf, t->name_off);
4329 	if (!value || !value[0]) {
4330 		btf_verifier_log_type(env, t, "Invalid value");
4331 		return -EINVAL;
4332 	}
4333 
4334 	if (btf_type_vlen(t)) {
4335 		btf_verifier_log_type(env, t, "vlen != 0");
4336 		return -EINVAL;
4337 	}
4338 
4339 	if (btf_type_kflag(t)) {
4340 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4341 		return -EINVAL;
4342 	}
4343 
4344 	component_idx = btf_type_decl_tag(t)->component_idx;
4345 	if (component_idx < -1) {
4346 		btf_verifier_log_type(env, t, "Invalid component_idx");
4347 		return -EINVAL;
4348 	}
4349 
4350 	btf_verifier_log_type(env, t, NULL);
4351 
4352 	return meta_needed;
4353 }
4354 
4355 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4356 			   const struct resolve_vertex *v)
4357 {
4358 	const struct btf_type *next_type;
4359 	const struct btf_type *t = v->t;
4360 	u32 next_type_id = t->type;
4361 	struct btf *btf = env->btf;
4362 	s32 component_idx;
4363 	u32 vlen;
4364 
4365 	next_type = btf_type_by_id(btf, next_type_id);
4366 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4367 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4368 		return -EINVAL;
4369 	}
4370 
4371 	if (!env_type_is_resolve_sink(env, next_type) &&
4372 	    !env_type_is_resolved(env, next_type_id))
4373 		return env_stack_push(env, next_type, next_type_id);
4374 
4375 	component_idx = btf_type_decl_tag(t)->component_idx;
4376 	if (component_idx != -1) {
4377 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4378 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4379 			return -EINVAL;
4380 		}
4381 
4382 		if (btf_type_is_struct(next_type)) {
4383 			vlen = btf_type_vlen(next_type);
4384 		} else {
4385 			/* next_type should be a function */
4386 			next_type = btf_type_by_id(btf, next_type->type);
4387 			vlen = btf_type_vlen(next_type);
4388 		}
4389 
4390 		if ((u32)component_idx >= vlen) {
4391 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4392 			return -EINVAL;
4393 		}
4394 	}
4395 
4396 	env_stack_pop_resolved(env, next_type_id, 0);
4397 
4398 	return 0;
4399 }
4400 
4401 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4402 {
4403 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4404 			 btf_type_decl_tag(t)->component_idx);
4405 }
4406 
4407 static const struct btf_kind_operations decl_tag_ops = {
4408 	.check_meta = btf_decl_tag_check_meta,
4409 	.resolve = btf_decl_tag_resolve,
4410 	.check_member = btf_df_check_member,
4411 	.check_kflag_member = btf_df_check_kflag_member,
4412 	.log_details = btf_decl_tag_log,
4413 	.show = btf_df_show,
4414 };
4415 
4416 static int btf_func_proto_check(struct btf_verifier_env *env,
4417 				const struct btf_type *t)
4418 {
4419 	const struct btf_type *ret_type;
4420 	const struct btf_param *args;
4421 	const struct btf *btf;
4422 	u16 nr_args, i;
4423 	int err;
4424 
4425 	btf = env->btf;
4426 	args = (const struct btf_param *)(t + 1);
4427 	nr_args = btf_type_vlen(t);
4428 
4429 	/* Check func return type which could be "void" (t->type == 0) */
4430 	if (t->type) {
4431 		u32 ret_type_id = t->type;
4432 
4433 		ret_type = btf_type_by_id(btf, ret_type_id);
4434 		if (!ret_type) {
4435 			btf_verifier_log_type(env, t, "Invalid return type");
4436 			return -EINVAL;
4437 		}
4438 
4439 		if (btf_type_is_resolve_source_only(ret_type)) {
4440 			btf_verifier_log_type(env, t, "Invalid return type");
4441 			return -EINVAL;
4442 		}
4443 
4444 		if (btf_type_needs_resolve(ret_type) &&
4445 		    !env_type_is_resolved(env, ret_type_id)) {
4446 			err = btf_resolve(env, ret_type, ret_type_id);
4447 			if (err)
4448 				return err;
4449 		}
4450 
4451 		/* Ensure the return type is a type that has a size */
4452 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4453 			btf_verifier_log_type(env, t, "Invalid return type");
4454 			return -EINVAL;
4455 		}
4456 	}
4457 
4458 	if (!nr_args)
4459 		return 0;
4460 
4461 	/* Last func arg type_id could be 0 if it is a vararg */
4462 	if (!args[nr_args - 1].type) {
4463 		if (args[nr_args - 1].name_off) {
4464 			btf_verifier_log_type(env, t, "Invalid arg#%u",
4465 					      nr_args);
4466 			return -EINVAL;
4467 		}
4468 		nr_args--;
4469 	}
4470 
4471 	err = 0;
4472 	for (i = 0; i < nr_args; i++) {
4473 		const struct btf_type *arg_type;
4474 		u32 arg_type_id;
4475 
4476 		arg_type_id = args[i].type;
4477 		arg_type = btf_type_by_id(btf, arg_type_id);
4478 		if (!arg_type) {
4479 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4480 			err = -EINVAL;
4481 			break;
4482 		}
4483 
4484 		if (args[i].name_off &&
4485 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4486 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4487 			btf_verifier_log_type(env, t,
4488 					      "Invalid arg#%u", i + 1);
4489 			err = -EINVAL;
4490 			break;
4491 		}
4492 
4493 		if (btf_type_needs_resolve(arg_type) &&
4494 		    !env_type_is_resolved(env, arg_type_id)) {
4495 			err = btf_resolve(env, arg_type, arg_type_id);
4496 			if (err)
4497 				break;
4498 		}
4499 
4500 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4501 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4502 			err = -EINVAL;
4503 			break;
4504 		}
4505 	}
4506 
4507 	return err;
4508 }
4509 
4510 static int btf_func_check(struct btf_verifier_env *env,
4511 			  const struct btf_type *t)
4512 {
4513 	const struct btf_type *proto_type;
4514 	const struct btf_param *args;
4515 	const struct btf *btf;
4516 	u16 nr_args, i;
4517 
4518 	btf = env->btf;
4519 	proto_type = btf_type_by_id(btf, t->type);
4520 
4521 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4522 		btf_verifier_log_type(env, t, "Invalid type_id");
4523 		return -EINVAL;
4524 	}
4525 
4526 	args = (const struct btf_param *)(proto_type + 1);
4527 	nr_args = btf_type_vlen(proto_type);
4528 	for (i = 0; i < nr_args; i++) {
4529 		if (!args[i].name_off && args[i].type) {
4530 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4531 			return -EINVAL;
4532 		}
4533 	}
4534 
4535 	return 0;
4536 }
4537 
4538 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4539 	[BTF_KIND_INT] = &int_ops,
4540 	[BTF_KIND_PTR] = &ptr_ops,
4541 	[BTF_KIND_ARRAY] = &array_ops,
4542 	[BTF_KIND_STRUCT] = &struct_ops,
4543 	[BTF_KIND_UNION] = &struct_ops,
4544 	[BTF_KIND_ENUM] = &enum_ops,
4545 	[BTF_KIND_FWD] = &fwd_ops,
4546 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4547 	[BTF_KIND_VOLATILE] = &modifier_ops,
4548 	[BTF_KIND_CONST] = &modifier_ops,
4549 	[BTF_KIND_RESTRICT] = &modifier_ops,
4550 	[BTF_KIND_FUNC] = &func_ops,
4551 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4552 	[BTF_KIND_VAR] = &var_ops,
4553 	[BTF_KIND_DATASEC] = &datasec_ops,
4554 	[BTF_KIND_FLOAT] = &float_ops,
4555 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4556 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4557 	[BTF_KIND_ENUM64] = &enum64_ops,
4558 };
4559 
4560 static s32 btf_check_meta(struct btf_verifier_env *env,
4561 			  const struct btf_type *t,
4562 			  u32 meta_left)
4563 {
4564 	u32 saved_meta_left = meta_left;
4565 	s32 var_meta_size;
4566 
4567 	if (meta_left < sizeof(*t)) {
4568 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4569 				 env->log_type_id, meta_left, sizeof(*t));
4570 		return -EINVAL;
4571 	}
4572 	meta_left -= sizeof(*t);
4573 
4574 	if (t->info & ~BTF_INFO_MASK) {
4575 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4576 				 env->log_type_id, t->info);
4577 		return -EINVAL;
4578 	}
4579 
4580 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4581 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4582 		btf_verifier_log(env, "[%u] Invalid kind:%u",
4583 				 env->log_type_id, BTF_INFO_KIND(t->info));
4584 		return -EINVAL;
4585 	}
4586 
4587 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
4588 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4589 				 env->log_type_id, t->name_off);
4590 		return -EINVAL;
4591 	}
4592 
4593 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4594 	if (var_meta_size < 0)
4595 		return var_meta_size;
4596 
4597 	meta_left -= var_meta_size;
4598 
4599 	return saved_meta_left - meta_left;
4600 }
4601 
4602 static int btf_check_all_metas(struct btf_verifier_env *env)
4603 {
4604 	struct btf *btf = env->btf;
4605 	struct btf_header *hdr;
4606 	void *cur, *end;
4607 
4608 	hdr = &btf->hdr;
4609 	cur = btf->nohdr_data + hdr->type_off;
4610 	end = cur + hdr->type_len;
4611 
4612 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
4613 	while (cur < end) {
4614 		struct btf_type *t = cur;
4615 		s32 meta_size;
4616 
4617 		meta_size = btf_check_meta(env, t, end - cur);
4618 		if (meta_size < 0)
4619 			return meta_size;
4620 
4621 		btf_add_type(env, t);
4622 		cur += meta_size;
4623 		env->log_type_id++;
4624 	}
4625 
4626 	return 0;
4627 }
4628 
4629 static bool btf_resolve_valid(struct btf_verifier_env *env,
4630 			      const struct btf_type *t,
4631 			      u32 type_id)
4632 {
4633 	struct btf *btf = env->btf;
4634 
4635 	if (!env_type_is_resolved(env, type_id))
4636 		return false;
4637 
4638 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
4639 		return !btf_resolved_type_id(btf, type_id) &&
4640 		       !btf_resolved_type_size(btf, type_id);
4641 
4642 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
4643 		return btf_resolved_type_id(btf, type_id) &&
4644 		       !btf_resolved_type_size(btf, type_id);
4645 
4646 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4647 	    btf_type_is_var(t)) {
4648 		t = btf_type_id_resolve(btf, &type_id);
4649 		return t &&
4650 		       !btf_type_is_modifier(t) &&
4651 		       !btf_type_is_var(t) &&
4652 		       !btf_type_is_datasec(t);
4653 	}
4654 
4655 	if (btf_type_is_array(t)) {
4656 		const struct btf_array *array = btf_type_array(t);
4657 		const struct btf_type *elem_type;
4658 		u32 elem_type_id = array->type;
4659 		u32 elem_size;
4660 
4661 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4662 		return elem_type && !btf_type_is_modifier(elem_type) &&
4663 			(array->nelems * elem_size ==
4664 			 btf_resolved_type_size(btf, type_id));
4665 	}
4666 
4667 	return false;
4668 }
4669 
4670 static int btf_resolve(struct btf_verifier_env *env,
4671 		       const struct btf_type *t, u32 type_id)
4672 {
4673 	u32 save_log_type_id = env->log_type_id;
4674 	const struct resolve_vertex *v;
4675 	int err = 0;
4676 
4677 	env->resolve_mode = RESOLVE_TBD;
4678 	env_stack_push(env, t, type_id);
4679 	while (!err && (v = env_stack_peak(env))) {
4680 		env->log_type_id = v->type_id;
4681 		err = btf_type_ops(v->t)->resolve(env, v);
4682 	}
4683 
4684 	env->log_type_id = type_id;
4685 	if (err == -E2BIG) {
4686 		btf_verifier_log_type(env, t,
4687 				      "Exceeded max resolving depth:%u",
4688 				      MAX_RESOLVE_DEPTH);
4689 	} else if (err == -EEXIST) {
4690 		btf_verifier_log_type(env, t, "Loop detected");
4691 	}
4692 
4693 	/* Final sanity check */
4694 	if (!err && !btf_resolve_valid(env, t, type_id)) {
4695 		btf_verifier_log_type(env, t, "Invalid resolve state");
4696 		err = -EINVAL;
4697 	}
4698 
4699 	env->log_type_id = save_log_type_id;
4700 	return err;
4701 }
4702 
4703 static int btf_check_all_types(struct btf_verifier_env *env)
4704 {
4705 	struct btf *btf = env->btf;
4706 	const struct btf_type *t;
4707 	u32 type_id, i;
4708 	int err;
4709 
4710 	err = env_resolve_init(env);
4711 	if (err)
4712 		return err;
4713 
4714 	env->phase++;
4715 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4716 		type_id = btf->start_id + i;
4717 		t = btf_type_by_id(btf, type_id);
4718 
4719 		env->log_type_id = type_id;
4720 		if (btf_type_needs_resolve(t) &&
4721 		    !env_type_is_resolved(env, type_id)) {
4722 			err = btf_resolve(env, t, type_id);
4723 			if (err)
4724 				return err;
4725 		}
4726 
4727 		if (btf_type_is_func_proto(t)) {
4728 			err = btf_func_proto_check(env, t);
4729 			if (err)
4730 				return err;
4731 		}
4732 	}
4733 
4734 	return 0;
4735 }
4736 
4737 static int btf_parse_type_sec(struct btf_verifier_env *env)
4738 {
4739 	const struct btf_header *hdr = &env->btf->hdr;
4740 	int err;
4741 
4742 	/* Type section must align to 4 bytes */
4743 	if (hdr->type_off & (sizeof(u32) - 1)) {
4744 		btf_verifier_log(env, "Unaligned type_off");
4745 		return -EINVAL;
4746 	}
4747 
4748 	if (!env->btf->base_btf && !hdr->type_len) {
4749 		btf_verifier_log(env, "No type found");
4750 		return -EINVAL;
4751 	}
4752 
4753 	err = btf_check_all_metas(env);
4754 	if (err)
4755 		return err;
4756 
4757 	return btf_check_all_types(env);
4758 }
4759 
4760 static int btf_parse_str_sec(struct btf_verifier_env *env)
4761 {
4762 	const struct btf_header *hdr;
4763 	struct btf *btf = env->btf;
4764 	const char *start, *end;
4765 
4766 	hdr = &btf->hdr;
4767 	start = btf->nohdr_data + hdr->str_off;
4768 	end = start + hdr->str_len;
4769 
4770 	if (end != btf->data + btf->data_size) {
4771 		btf_verifier_log(env, "String section is not at the end");
4772 		return -EINVAL;
4773 	}
4774 
4775 	btf->strings = start;
4776 
4777 	if (btf->base_btf && !hdr->str_len)
4778 		return 0;
4779 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4780 		btf_verifier_log(env, "Invalid string section");
4781 		return -EINVAL;
4782 	}
4783 	if (!btf->base_btf && start[0]) {
4784 		btf_verifier_log(env, "Invalid string section");
4785 		return -EINVAL;
4786 	}
4787 
4788 	return 0;
4789 }
4790 
4791 static const size_t btf_sec_info_offset[] = {
4792 	offsetof(struct btf_header, type_off),
4793 	offsetof(struct btf_header, str_off),
4794 };
4795 
4796 static int btf_sec_info_cmp(const void *a, const void *b)
4797 {
4798 	const struct btf_sec_info *x = a;
4799 	const struct btf_sec_info *y = b;
4800 
4801 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4802 }
4803 
4804 static int btf_check_sec_info(struct btf_verifier_env *env,
4805 			      u32 btf_data_size)
4806 {
4807 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4808 	u32 total, expected_total, i;
4809 	const struct btf_header *hdr;
4810 	const struct btf *btf;
4811 
4812 	btf = env->btf;
4813 	hdr = &btf->hdr;
4814 
4815 	/* Populate the secs from hdr */
4816 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4817 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
4818 						   btf_sec_info_offset[i]);
4819 
4820 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4821 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4822 
4823 	/* Check for gaps and overlap among sections */
4824 	total = 0;
4825 	expected_total = btf_data_size - hdr->hdr_len;
4826 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4827 		if (expected_total < secs[i].off) {
4828 			btf_verifier_log(env, "Invalid section offset");
4829 			return -EINVAL;
4830 		}
4831 		if (total < secs[i].off) {
4832 			/* gap */
4833 			btf_verifier_log(env, "Unsupported section found");
4834 			return -EINVAL;
4835 		}
4836 		if (total > secs[i].off) {
4837 			btf_verifier_log(env, "Section overlap found");
4838 			return -EINVAL;
4839 		}
4840 		if (expected_total - total < secs[i].len) {
4841 			btf_verifier_log(env,
4842 					 "Total section length too long");
4843 			return -EINVAL;
4844 		}
4845 		total += secs[i].len;
4846 	}
4847 
4848 	/* There is data other than hdr and known sections */
4849 	if (expected_total != total) {
4850 		btf_verifier_log(env, "Unsupported section found");
4851 		return -EINVAL;
4852 	}
4853 
4854 	return 0;
4855 }
4856 
4857 static int btf_parse_hdr(struct btf_verifier_env *env)
4858 {
4859 	u32 hdr_len, hdr_copy, btf_data_size;
4860 	const struct btf_header *hdr;
4861 	struct btf *btf;
4862 
4863 	btf = env->btf;
4864 	btf_data_size = btf->data_size;
4865 
4866 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
4867 		btf_verifier_log(env, "hdr_len not found");
4868 		return -EINVAL;
4869 	}
4870 
4871 	hdr = btf->data;
4872 	hdr_len = hdr->hdr_len;
4873 	if (btf_data_size < hdr_len) {
4874 		btf_verifier_log(env, "btf_header not found");
4875 		return -EINVAL;
4876 	}
4877 
4878 	/* Ensure the unsupported header fields are zero */
4879 	if (hdr_len > sizeof(btf->hdr)) {
4880 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
4881 		u8 *end = btf->data + hdr_len;
4882 
4883 		for (; expected_zero < end; expected_zero++) {
4884 			if (*expected_zero) {
4885 				btf_verifier_log(env, "Unsupported btf_header");
4886 				return -E2BIG;
4887 			}
4888 		}
4889 	}
4890 
4891 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4892 	memcpy(&btf->hdr, btf->data, hdr_copy);
4893 
4894 	hdr = &btf->hdr;
4895 
4896 	btf_verifier_log_hdr(env, btf_data_size);
4897 
4898 	if (hdr->magic != BTF_MAGIC) {
4899 		btf_verifier_log(env, "Invalid magic");
4900 		return -EINVAL;
4901 	}
4902 
4903 	if (hdr->version != BTF_VERSION) {
4904 		btf_verifier_log(env, "Unsupported version");
4905 		return -ENOTSUPP;
4906 	}
4907 
4908 	if (hdr->flags) {
4909 		btf_verifier_log(env, "Unsupported flags");
4910 		return -ENOTSUPP;
4911 	}
4912 
4913 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4914 		btf_verifier_log(env, "No data");
4915 		return -EINVAL;
4916 	}
4917 
4918 	return btf_check_sec_info(env, btf_data_size);
4919 }
4920 
4921 static int btf_check_type_tags(struct btf_verifier_env *env,
4922 			       struct btf *btf, int start_id)
4923 {
4924 	int i, n, good_id = start_id - 1;
4925 	bool in_tags;
4926 
4927 	n = btf_nr_types(btf);
4928 	for (i = start_id; i < n; i++) {
4929 		const struct btf_type *t;
4930 		int chain_limit = 32;
4931 		u32 cur_id = i;
4932 
4933 		t = btf_type_by_id(btf, i);
4934 		if (!t)
4935 			return -EINVAL;
4936 		if (!btf_type_is_modifier(t))
4937 			continue;
4938 
4939 		cond_resched();
4940 
4941 		in_tags = btf_type_is_type_tag(t);
4942 		while (btf_type_is_modifier(t)) {
4943 			if (!chain_limit--) {
4944 				btf_verifier_log(env, "Max chain length or cycle detected");
4945 				return -ELOOP;
4946 			}
4947 			if (btf_type_is_type_tag(t)) {
4948 				if (!in_tags) {
4949 					btf_verifier_log(env, "Type tags don't precede modifiers");
4950 					return -EINVAL;
4951 				}
4952 			} else if (in_tags) {
4953 				in_tags = false;
4954 			}
4955 			if (cur_id <= good_id)
4956 				break;
4957 			/* Move to next type */
4958 			cur_id = t->type;
4959 			t = btf_type_by_id(btf, cur_id);
4960 			if (!t)
4961 				return -EINVAL;
4962 		}
4963 		good_id = i;
4964 	}
4965 	return 0;
4966 }
4967 
4968 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
4969 			     u32 log_level, char __user *log_ubuf, u32 log_size)
4970 {
4971 	struct btf_verifier_env *env = NULL;
4972 	struct bpf_verifier_log *log;
4973 	struct btf *btf = NULL;
4974 	u8 *data;
4975 	int err;
4976 
4977 	if (btf_data_size > BTF_MAX_SIZE)
4978 		return ERR_PTR(-E2BIG);
4979 
4980 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4981 	if (!env)
4982 		return ERR_PTR(-ENOMEM);
4983 
4984 	log = &env->log;
4985 	if (log_level || log_ubuf || log_size) {
4986 		/* user requested verbose verifier output
4987 		 * and supplied buffer to store the verification trace
4988 		 */
4989 		log->level = log_level;
4990 		log->ubuf = log_ubuf;
4991 		log->len_total = log_size;
4992 
4993 		/* log attributes have to be sane */
4994 		if (!bpf_verifier_log_attr_valid(log)) {
4995 			err = -EINVAL;
4996 			goto errout;
4997 		}
4998 	}
4999 
5000 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5001 	if (!btf) {
5002 		err = -ENOMEM;
5003 		goto errout;
5004 	}
5005 	env->btf = btf;
5006 
5007 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
5008 	if (!data) {
5009 		err = -ENOMEM;
5010 		goto errout;
5011 	}
5012 
5013 	btf->data = data;
5014 	btf->data_size = btf_data_size;
5015 
5016 	if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
5017 		err = -EFAULT;
5018 		goto errout;
5019 	}
5020 
5021 	err = btf_parse_hdr(env);
5022 	if (err)
5023 		goto errout;
5024 
5025 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5026 
5027 	err = btf_parse_str_sec(env);
5028 	if (err)
5029 		goto errout;
5030 
5031 	err = btf_parse_type_sec(env);
5032 	if (err)
5033 		goto errout;
5034 
5035 	err = btf_check_type_tags(env, btf, 1);
5036 	if (err)
5037 		goto errout;
5038 
5039 	if (log->level && bpf_verifier_log_full(log)) {
5040 		err = -ENOSPC;
5041 		goto errout;
5042 	}
5043 
5044 	btf_verifier_env_free(env);
5045 	refcount_set(&btf->refcnt, 1);
5046 	return btf;
5047 
5048 errout:
5049 	btf_verifier_env_free(env);
5050 	if (btf)
5051 		btf_free(btf);
5052 	return ERR_PTR(err);
5053 }
5054 
5055 extern char __weak __start_BTF[];
5056 extern char __weak __stop_BTF[];
5057 extern struct btf *btf_vmlinux;
5058 
5059 #define BPF_MAP_TYPE(_id, _ops)
5060 #define BPF_LINK_TYPE(_id, _name)
5061 static union {
5062 	struct bpf_ctx_convert {
5063 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5064 	prog_ctx_type _id##_prog; \
5065 	kern_ctx_type _id##_kern;
5066 #include <linux/bpf_types.h>
5067 #undef BPF_PROG_TYPE
5068 	} *__t;
5069 	/* 't' is written once under lock. Read many times. */
5070 	const struct btf_type *t;
5071 } bpf_ctx_convert;
5072 enum {
5073 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5074 	__ctx_convert##_id,
5075 #include <linux/bpf_types.h>
5076 #undef BPF_PROG_TYPE
5077 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5078 };
5079 static u8 bpf_ctx_convert_map[] = {
5080 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5081 	[_id] = __ctx_convert##_id,
5082 #include <linux/bpf_types.h>
5083 #undef BPF_PROG_TYPE
5084 	0, /* avoid empty array */
5085 };
5086 #undef BPF_MAP_TYPE
5087 #undef BPF_LINK_TYPE
5088 
5089 static const struct btf_member *
5090 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5091 		      const struct btf_type *t, enum bpf_prog_type prog_type,
5092 		      int arg)
5093 {
5094 	const struct btf_type *conv_struct;
5095 	const struct btf_type *ctx_struct;
5096 	const struct btf_member *ctx_type;
5097 	const char *tname, *ctx_tname;
5098 
5099 	conv_struct = bpf_ctx_convert.t;
5100 	if (!conv_struct) {
5101 		bpf_log(log, "btf_vmlinux is malformed\n");
5102 		return NULL;
5103 	}
5104 	t = btf_type_by_id(btf, t->type);
5105 	while (btf_type_is_modifier(t))
5106 		t = btf_type_by_id(btf, t->type);
5107 	if (!btf_type_is_struct(t)) {
5108 		/* Only pointer to struct is supported for now.
5109 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5110 		 * is not supported yet.
5111 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5112 		 */
5113 		return NULL;
5114 	}
5115 	tname = btf_name_by_offset(btf, t->name_off);
5116 	if (!tname) {
5117 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5118 		return NULL;
5119 	}
5120 	/* prog_type is valid bpf program type. No need for bounds check. */
5121 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5122 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5123 	 * Like 'struct __sk_buff'
5124 	 */
5125 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5126 	if (!ctx_struct)
5127 		/* should not happen */
5128 		return NULL;
5129 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5130 	if (!ctx_tname) {
5131 		/* should not happen */
5132 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5133 		return NULL;
5134 	}
5135 	/* only compare that prog's ctx type name is the same as
5136 	 * kernel expects. No need to compare field by field.
5137 	 * It's ok for bpf prog to do:
5138 	 * struct __sk_buff {};
5139 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5140 	 * { // no fields of skb are ever used }
5141 	 */
5142 	if (strcmp(ctx_tname, tname))
5143 		return NULL;
5144 	return ctx_type;
5145 }
5146 
5147 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5148 				     struct btf *btf,
5149 				     const struct btf_type *t,
5150 				     enum bpf_prog_type prog_type,
5151 				     int arg)
5152 {
5153 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
5154 
5155 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5156 	if (!prog_ctx_type)
5157 		return -ENOENT;
5158 	kern_ctx_type = prog_ctx_type + 1;
5159 	return kern_ctx_type->type;
5160 }
5161 
5162 BTF_ID_LIST(bpf_ctx_convert_btf_id)
5163 BTF_ID(struct, bpf_ctx_convert)
5164 
5165 struct btf *btf_parse_vmlinux(void)
5166 {
5167 	struct btf_verifier_env *env = NULL;
5168 	struct bpf_verifier_log *log;
5169 	struct btf *btf = NULL;
5170 	int err;
5171 
5172 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5173 	if (!env)
5174 		return ERR_PTR(-ENOMEM);
5175 
5176 	log = &env->log;
5177 	log->level = BPF_LOG_KERNEL;
5178 
5179 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5180 	if (!btf) {
5181 		err = -ENOMEM;
5182 		goto errout;
5183 	}
5184 	env->btf = btf;
5185 
5186 	btf->data = __start_BTF;
5187 	btf->data_size = __stop_BTF - __start_BTF;
5188 	btf->kernel_btf = true;
5189 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
5190 
5191 	err = btf_parse_hdr(env);
5192 	if (err)
5193 		goto errout;
5194 
5195 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5196 
5197 	err = btf_parse_str_sec(env);
5198 	if (err)
5199 		goto errout;
5200 
5201 	err = btf_check_all_metas(env);
5202 	if (err)
5203 		goto errout;
5204 
5205 	err = btf_check_type_tags(env, btf, 1);
5206 	if (err)
5207 		goto errout;
5208 
5209 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
5210 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5211 
5212 	bpf_struct_ops_init(btf, log);
5213 
5214 	refcount_set(&btf->refcnt, 1);
5215 
5216 	err = btf_alloc_id(btf);
5217 	if (err)
5218 		goto errout;
5219 
5220 	btf_verifier_env_free(env);
5221 	return btf;
5222 
5223 errout:
5224 	btf_verifier_env_free(env);
5225 	if (btf) {
5226 		kvfree(btf->types);
5227 		kfree(btf);
5228 	}
5229 	return ERR_PTR(err);
5230 }
5231 
5232 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5233 
5234 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5235 {
5236 	struct btf_verifier_env *env = NULL;
5237 	struct bpf_verifier_log *log;
5238 	struct btf *btf = NULL, *base_btf;
5239 	int err;
5240 
5241 	base_btf = bpf_get_btf_vmlinux();
5242 	if (IS_ERR(base_btf))
5243 		return base_btf;
5244 	if (!base_btf)
5245 		return ERR_PTR(-EINVAL);
5246 
5247 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5248 	if (!env)
5249 		return ERR_PTR(-ENOMEM);
5250 
5251 	log = &env->log;
5252 	log->level = BPF_LOG_KERNEL;
5253 
5254 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5255 	if (!btf) {
5256 		err = -ENOMEM;
5257 		goto errout;
5258 	}
5259 	env->btf = btf;
5260 
5261 	btf->base_btf = base_btf;
5262 	btf->start_id = base_btf->nr_types;
5263 	btf->start_str_off = base_btf->hdr.str_len;
5264 	btf->kernel_btf = true;
5265 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5266 
5267 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5268 	if (!btf->data) {
5269 		err = -ENOMEM;
5270 		goto errout;
5271 	}
5272 	memcpy(btf->data, data, data_size);
5273 	btf->data_size = data_size;
5274 
5275 	err = btf_parse_hdr(env);
5276 	if (err)
5277 		goto errout;
5278 
5279 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5280 
5281 	err = btf_parse_str_sec(env);
5282 	if (err)
5283 		goto errout;
5284 
5285 	err = btf_check_all_metas(env);
5286 	if (err)
5287 		goto errout;
5288 
5289 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5290 	if (err)
5291 		goto errout;
5292 
5293 	btf_verifier_env_free(env);
5294 	refcount_set(&btf->refcnt, 1);
5295 	return btf;
5296 
5297 errout:
5298 	btf_verifier_env_free(env);
5299 	if (btf) {
5300 		kvfree(btf->data);
5301 		kvfree(btf->types);
5302 		kfree(btf);
5303 	}
5304 	return ERR_PTR(err);
5305 }
5306 
5307 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5308 
5309 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5310 {
5311 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5312 
5313 	if (tgt_prog)
5314 		return tgt_prog->aux->btf;
5315 	else
5316 		return prog->aux->attach_btf;
5317 }
5318 
5319 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
5320 {
5321 	/* t comes in already as a pointer */
5322 	t = btf_type_by_id(btf, t->type);
5323 
5324 	/* allow const */
5325 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
5326 		t = btf_type_by_id(btf, t->type);
5327 
5328 	return btf_type_is_int(t);
5329 }
5330 
5331 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5332 			   int off)
5333 {
5334 	const struct btf_param *args;
5335 	const struct btf_type *t;
5336 	u32 offset = 0, nr_args;
5337 	int i;
5338 
5339 	if (!func_proto)
5340 		return off / 8;
5341 
5342 	nr_args = btf_type_vlen(func_proto);
5343 	args = (const struct btf_param *)(func_proto + 1);
5344 	for (i = 0; i < nr_args; i++) {
5345 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5346 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5347 		if (off < offset)
5348 			return i;
5349 	}
5350 
5351 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5352 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5353 	if (off < offset)
5354 		return nr_args;
5355 
5356 	return nr_args + 1;
5357 }
5358 
5359 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5360 		    const struct bpf_prog *prog,
5361 		    struct bpf_insn_access_aux *info)
5362 {
5363 	const struct btf_type *t = prog->aux->attach_func_proto;
5364 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5365 	struct btf *btf = bpf_prog_get_target_btf(prog);
5366 	const char *tname = prog->aux->attach_func_name;
5367 	struct bpf_verifier_log *log = info->log;
5368 	const struct btf_param *args;
5369 	const char *tag_value;
5370 	u32 nr_args, arg;
5371 	int i, ret;
5372 
5373 	if (off % 8) {
5374 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
5375 			tname, off);
5376 		return false;
5377 	}
5378 	arg = get_ctx_arg_idx(btf, t, off);
5379 	args = (const struct btf_param *)(t + 1);
5380 	/* if (t == NULL) Fall back to default BPF prog with
5381 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5382 	 */
5383 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
5384 	if (prog->aux->attach_btf_trace) {
5385 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
5386 		args++;
5387 		nr_args--;
5388 	}
5389 
5390 	if (arg > nr_args) {
5391 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5392 			tname, arg + 1);
5393 		return false;
5394 	}
5395 
5396 	if (arg == nr_args) {
5397 		switch (prog->expected_attach_type) {
5398 		case BPF_LSM_CGROUP:
5399 		case BPF_LSM_MAC:
5400 		case BPF_TRACE_FEXIT:
5401 			/* When LSM programs are attached to void LSM hooks
5402 			 * they use FEXIT trampolines and when attached to
5403 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
5404 			 *
5405 			 * While the LSM programs are BPF_MODIFY_RETURN-like
5406 			 * the check:
5407 			 *
5408 			 *	if (ret_type != 'int')
5409 			 *		return -EINVAL;
5410 			 *
5411 			 * is _not_ done here. This is still safe as LSM hooks
5412 			 * have only void and int return types.
5413 			 */
5414 			if (!t)
5415 				return true;
5416 			t = btf_type_by_id(btf, t->type);
5417 			break;
5418 		case BPF_MODIFY_RETURN:
5419 			/* For now the BPF_MODIFY_RETURN can only be attached to
5420 			 * functions that return an int.
5421 			 */
5422 			if (!t)
5423 				return false;
5424 
5425 			t = btf_type_skip_modifiers(btf, t->type, NULL);
5426 			if (!btf_type_is_small_int(t)) {
5427 				bpf_log(log,
5428 					"ret type %s not allowed for fmod_ret\n",
5429 					btf_type_str(t));
5430 				return false;
5431 			}
5432 			break;
5433 		default:
5434 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5435 				tname, arg + 1);
5436 			return false;
5437 		}
5438 	} else {
5439 		if (!t)
5440 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
5441 			return true;
5442 		t = btf_type_by_id(btf, args[arg].type);
5443 	}
5444 
5445 	/* skip modifiers */
5446 	while (btf_type_is_modifier(t))
5447 		t = btf_type_by_id(btf, t->type);
5448 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
5449 		/* accessing a scalar */
5450 		return true;
5451 	if (!btf_type_is_ptr(t)) {
5452 		bpf_log(log,
5453 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
5454 			tname, arg,
5455 			__btf_name_by_offset(btf, t->name_off),
5456 			btf_type_str(t));
5457 		return false;
5458 	}
5459 
5460 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
5461 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5462 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5463 		u32 type, flag;
5464 
5465 		type = base_type(ctx_arg_info->reg_type);
5466 		flag = type_flag(ctx_arg_info->reg_type);
5467 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
5468 		    (flag & PTR_MAYBE_NULL)) {
5469 			info->reg_type = ctx_arg_info->reg_type;
5470 			return true;
5471 		}
5472 	}
5473 
5474 	if (t->type == 0)
5475 		/* This is a pointer to void.
5476 		 * It is the same as scalar from the verifier safety pov.
5477 		 * No further pointer walking is allowed.
5478 		 */
5479 		return true;
5480 
5481 	if (is_int_ptr(btf, t))
5482 		return true;
5483 
5484 	/* this is a pointer to another type */
5485 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5486 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5487 
5488 		if (ctx_arg_info->offset == off) {
5489 			if (!ctx_arg_info->btf_id) {
5490 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
5491 				return false;
5492 			}
5493 
5494 			info->reg_type = ctx_arg_info->reg_type;
5495 			info->btf = btf_vmlinux;
5496 			info->btf_id = ctx_arg_info->btf_id;
5497 			return true;
5498 		}
5499 	}
5500 
5501 	info->reg_type = PTR_TO_BTF_ID;
5502 	if (tgt_prog) {
5503 		enum bpf_prog_type tgt_type;
5504 
5505 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
5506 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
5507 		else
5508 			tgt_type = tgt_prog->type;
5509 
5510 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5511 		if (ret > 0) {
5512 			info->btf = btf_vmlinux;
5513 			info->btf_id = ret;
5514 			return true;
5515 		} else {
5516 			return false;
5517 		}
5518 	}
5519 
5520 	info->btf = btf;
5521 	info->btf_id = t->type;
5522 	t = btf_type_by_id(btf, t->type);
5523 
5524 	if (btf_type_is_type_tag(t)) {
5525 		tag_value = __btf_name_by_offset(btf, t->name_off);
5526 		if (strcmp(tag_value, "user") == 0)
5527 			info->reg_type |= MEM_USER;
5528 		if (strcmp(tag_value, "percpu") == 0)
5529 			info->reg_type |= MEM_PERCPU;
5530 	}
5531 
5532 	/* skip modifiers */
5533 	while (btf_type_is_modifier(t)) {
5534 		info->btf_id = t->type;
5535 		t = btf_type_by_id(btf, t->type);
5536 	}
5537 	if (!btf_type_is_struct(t)) {
5538 		bpf_log(log,
5539 			"func '%s' arg%d type %s is not a struct\n",
5540 			tname, arg, btf_type_str(t));
5541 		return false;
5542 	}
5543 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
5544 		tname, arg, info->btf_id, btf_type_str(t),
5545 		__btf_name_by_offset(btf, t->name_off));
5546 	return true;
5547 }
5548 
5549 enum bpf_struct_walk_result {
5550 	/* < 0 error */
5551 	WALK_SCALAR = 0,
5552 	WALK_PTR,
5553 	WALK_STRUCT,
5554 };
5555 
5556 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
5557 			   const struct btf_type *t, int off, int size,
5558 			   u32 *next_btf_id, enum bpf_type_flag *flag)
5559 {
5560 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
5561 	const struct btf_type *mtype, *elem_type = NULL;
5562 	const struct btf_member *member;
5563 	const char *tname, *mname, *tag_value;
5564 	u32 vlen, elem_id, mid;
5565 
5566 again:
5567 	tname = __btf_name_by_offset(btf, t->name_off);
5568 	if (!btf_type_is_struct(t)) {
5569 		bpf_log(log, "Type '%s' is not a struct\n", tname);
5570 		return -EINVAL;
5571 	}
5572 
5573 	vlen = btf_type_vlen(t);
5574 	if (off + size > t->size) {
5575 		/* If the last element is a variable size array, we may
5576 		 * need to relax the rule.
5577 		 */
5578 		struct btf_array *array_elem;
5579 
5580 		if (vlen == 0)
5581 			goto error;
5582 
5583 		member = btf_type_member(t) + vlen - 1;
5584 		mtype = btf_type_skip_modifiers(btf, member->type,
5585 						NULL);
5586 		if (!btf_type_is_array(mtype))
5587 			goto error;
5588 
5589 		array_elem = (struct btf_array *)(mtype + 1);
5590 		if (array_elem->nelems != 0)
5591 			goto error;
5592 
5593 		moff = __btf_member_bit_offset(t, member) / 8;
5594 		if (off < moff)
5595 			goto error;
5596 
5597 		/* Only allow structure for now, can be relaxed for
5598 		 * other types later.
5599 		 */
5600 		t = btf_type_skip_modifiers(btf, array_elem->type,
5601 					    NULL);
5602 		if (!btf_type_is_struct(t))
5603 			goto error;
5604 
5605 		off = (off - moff) % t->size;
5606 		goto again;
5607 
5608 error:
5609 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
5610 			tname, off, size);
5611 		return -EACCES;
5612 	}
5613 
5614 	for_each_member(i, t, member) {
5615 		/* offset of the field in bytes */
5616 		moff = __btf_member_bit_offset(t, member) / 8;
5617 		if (off + size <= moff)
5618 			/* won't find anything, field is already too far */
5619 			break;
5620 
5621 		if (__btf_member_bitfield_size(t, member)) {
5622 			u32 end_bit = __btf_member_bit_offset(t, member) +
5623 				__btf_member_bitfield_size(t, member);
5624 
5625 			/* off <= moff instead of off == moff because clang
5626 			 * does not generate a BTF member for anonymous
5627 			 * bitfield like the ":16" here:
5628 			 * struct {
5629 			 *	int :16;
5630 			 *	int x:8;
5631 			 * };
5632 			 */
5633 			if (off <= moff &&
5634 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
5635 				return WALK_SCALAR;
5636 
5637 			/* off may be accessing a following member
5638 			 *
5639 			 * or
5640 			 *
5641 			 * Doing partial access at either end of this
5642 			 * bitfield.  Continue on this case also to
5643 			 * treat it as not accessing this bitfield
5644 			 * and eventually error out as field not
5645 			 * found to keep it simple.
5646 			 * It could be relaxed if there was a legit
5647 			 * partial access case later.
5648 			 */
5649 			continue;
5650 		}
5651 
5652 		/* In case of "off" is pointing to holes of a struct */
5653 		if (off < moff)
5654 			break;
5655 
5656 		/* type of the field */
5657 		mid = member->type;
5658 		mtype = btf_type_by_id(btf, member->type);
5659 		mname = __btf_name_by_offset(btf, member->name_off);
5660 
5661 		mtype = __btf_resolve_size(btf, mtype, &msize,
5662 					   &elem_type, &elem_id, &total_nelems,
5663 					   &mid);
5664 		if (IS_ERR(mtype)) {
5665 			bpf_log(log, "field %s doesn't have size\n", mname);
5666 			return -EFAULT;
5667 		}
5668 
5669 		mtrue_end = moff + msize;
5670 		if (off >= mtrue_end)
5671 			/* no overlap with member, keep iterating */
5672 			continue;
5673 
5674 		if (btf_type_is_array(mtype)) {
5675 			u32 elem_idx;
5676 
5677 			/* __btf_resolve_size() above helps to
5678 			 * linearize a multi-dimensional array.
5679 			 *
5680 			 * The logic here is treating an array
5681 			 * in a struct as the following way:
5682 			 *
5683 			 * struct outer {
5684 			 *	struct inner array[2][2];
5685 			 * };
5686 			 *
5687 			 * looks like:
5688 			 *
5689 			 * struct outer {
5690 			 *	struct inner array_elem0;
5691 			 *	struct inner array_elem1;
5692 			 *	struct inner array_elem2;
5693 			 *	struct inner array_elem3;
5694 			 * };
5695 			 *
5696 			 * When accessing outer->array[1][0], it moves
5697 			 * moff to "array_elem2", set mtype to
5698 			 * "struct inner", and msize also becomes
5699 			 * sizeof(struct inner).  Then most of the
5700 			 * remaining logic will fall through without
5701 			 * caring the current member is an array or
5702 			 * not.
5703 			 *
5704 			 * Unlike mtype/msize/moff, mtrue_end does not
5705 			 * change.  The naming difference ("_true") tells
5706 			 * that it is not always corresponding to
5707 			 * the current mtype/msize/moff.
5708 			 * It is the true end of the current
5709 			 * member (i.e. array in this case).  That
5710 			 * will allow an int array to be accessed like
5711 			 * a scratch space,
5712 			 * i.e. allow access beyond the size of
5713 			 *      the array's element as long as it is
5714 			 *      within the mtrue_end boundary.
5715 			 */
5716 
5717 			/* skip empty array */
5718 			if (moff == mtrue_end)
5719 				continue;
5720 
5721 			msize /= total_nelems;
5722 			elem_idx = (off - moff) / msize;
5723 			moff += elem_idx * msize;
5724 			mtype = elem_type;
5725 			mid = elem_id;
5726 		}
5727 
5728 		/* the 'off' we're looking for is either equal to start
5729 		 * of this field or inside of this struct
5730 		 */
5731 		if (btf_type_is_struct(mtype)) {
5732 			/* our field must be inside that union or struct */
5733 			t = mtype;
5734 
5735 			/* return if the offset matches the member offset */
5736 			if (off == moff) {
5737 				*next_btf_id = mid;
5738 				return WALK_STRUCT;
5739 			}
5740 
5741 			/* adjust offset we're looking for */
5742 			off -= moff;
5743 			goto again;
5744 		}
5745 
5746 		if (btf_type_is_ptr(mtype)) {
5747 			const struct btf_type *stype, *t;
5748 			enum bpf_type_flag tmp_flag = 0;
5749 			u32 id;
5750 
5751 			if (msize != size || off != moff) {
5752 				bpf_log(log,
5753 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5754 					mname, moff, tname, off, size);
5755 				return -EACCES;
5756 			}
5757 
5758 			/* check type tag */
5759 			t = btf_type_by_id(btf, mtype->type);
5760 			if (btf_type_is_type_tag(t)) {
5761 				tag_value = __btf_name_by_offset(btf, t->name_off);
5762 				/* check __user tag */
5763 				if (strcmp(tag_value, "user") == 0)
5764 					tmp_flag = MEM_USER;
5765 				/* check __percpu tag */
5766 				if (strcmp(tag_value, "percpu") == 0)
5767 					tmp_flag = MEM_PERCPU;
5768 			}
5769 
5770 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
5771 			if (btf_type_is_struct(stype)) {
5772 				*next_btf_id = id;
5773 				*flag = tmp_flag;
5774 				return WALK_PTR;
5775 			}
5776 		}
5777 
5778 		/* Allow more flexible access within an int as long as
5779 		 * it is within mtrue_end.
5780 		 * Since mtrue_end could be the end of an array,
5781 		 * that also allows using an array of int as a scratch
5782 		 * space. e.g. skb->cb[].
5783 		 */
5784 		if (off + size > mtrue_end) {
5785 			bpf_log(log,
5786 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5787 				mname, mtrue_end, tname, off, size);
5788 			return -EACCES;
5789 		}
5790 
5791 		return WALK_SCALAR;
5792 	}
5793 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5794 	return -EINVAL;
5795 }
5796 
5797 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
5798 		      const struct btf_type *t, int off, int size,
5799 		      enum bpf_access_type atype __maybe_unused,
5800 		      u32 *next_btf_id, enum bpf_type_flag *flag)
5801 {
5802 	enum bpf_type_flag tmp_flag = 0;
5803 	int err;
5804 	u32 id;
5805 
5806 	do {
5807 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
5808 
5809 		switch (err) {
5810 		case WALK_PTR:
5811 			/* If we found the pointer or scalar on t+off,
5812 			 * we're done.
5813 			 */
5814 			*next_btf_id = id;
5815 			*flag = tmp_flag;
5816 			return PTR_TO_BTF_ID;
5817 		case WALK_SCALAR:
5818 			return SCALAR_VALUE;
5819 		case WALK_STRUCT:
5820 			/* We found nested struct, so continue the search
5821 			 * by diving in it. At this point the offset is
5822 			 * aligned with the new type, so set it to 0.
5823 			 */
5824 			t = btf_type_by_id(btf, id);
5825 			off = 0;
5826 			break;
5827 		default:
5828 			/* It's either error or unknown return value..
5829 			 * scream and leave.
5830 			 */
5831 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5832 				return -EINVAL;
5833 			return err;
5834 		}
5835 	} while (t);
5836 
5837 	return -EINVAL;
5838 }
5839 
5840 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5841  * the same. Trivial ID check is not enough due to module BTFs, because we can
5842  * end up with two different module BTFs, but IDs point to the common type in
5843  * vmlinux BTF.
5844  */
5845 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5846 			       const struct btf *btf2, u32 id2)
5847 {
5848 	if (id1 != id2)
5849 		return false;
5850 	if (btf1 == btf2)
5851 		return true;
5852 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5853 }
5854 
5855 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5856 			  const struct btf *btf, u32 id, int off,
5857 			  const struct btf *need_btf, u32 need_type_id,
5858 			  bool strict)
5859 {
5860 	const struct btf_type *type;
5861 	enum bpf_type_flag flag;
5862 	int err;
5863 
5864 	/* Are we already done? */
5865 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5866 		return true;
5867 	/* In case of strict type match, we do not walk struct, the top level
5868 	 * type match must succeed. When strict is true, off should have already
5869 	 * been 0.
5870 	 */
5871 	if (strict)
5872 		return false;
5873 again:
5874 	type = btf_type_by_id(btf, id);
5875 	if (!type)
5876 		return false;
5877 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
5878 	if (err != WALK_STRUCT)
5879 		return false;
5880 
5881 	/* We found nested struct object. If it matches
5882 	 * the requested ID, we're done. Otherwise let's
5883 	 * continue the search with offset 0 in the new
5884 	 * type.
5885 	 */
5886 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5887 		off = 0;
5888 		goto again;
5889 	}
5890 
5891 	return true;
5892 }
5893 
5894 static int __get_type_size(struct btf *btf, u32 btf_id,
5895 			   const struct btf_type **ret_type)
5896 {
5897 	const struct btf_type *t;
5898 
5899 	*ret_type = btf_type_by_id(btf, 0);
5900 	if (!btf_id)
5901 		/* void */
5902 		return 0;
5903 	t = btf_type_by_id(btf, btf_id);
5904 	while (t && btf_type_is_modifier(t))
5905 		t = btf_type_by_id(btf, t->type);
5906 	if (!t)
5907 		return -EINVAL;
5908 	*ret_type = t;
5909 	if (btf_type_is_ptr(t))
5910 		/* kernel size of pointer. Not BPF's size of pointer*/
5911 		return sizeof(void *);
5912 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
5913 		return t->size;
5914 	return -EINVAL;
5915 }
5916 
5917 int btf_distill_func_proto(struct bpf_verifier_log *log,
5918 			   struct btf *btf,
5919 			   const struct btf_type *func,
5920 			   const char *tname,
5921 			   struct btf_func_model *m)
5922 {
5923 	const struct btf_param *args;
5924 	const struct btf_type *t;
5925 	u32 i, nargs;
5926 	int ret;
5927 
5928 	if (!func) {
5929 		/* BTF function prototype doesn't match the verifier types.
5930 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5931 		 */
5932 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
5933 			m->arg_size[i] = 8;
5934 			m->arg_flags[i] = 0;
5935 		}
5936 		m->ret_size = 8;
5937 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5938 		return 0;
5939 	}
5940 	args = (const struct btf_param *)(func + 1);
5941 	nargs = btf_type_vlen(func);
5942 	if (nargs > MAX_BPF_FUNC_ARGS) {
5943 		bpf_log(log,
5944 			"The function %s has %d arguments. Too many.\n",
5945 			tname, nargs);
5946 		return -EINVAL;
5947 	}
5948 	ret = __get_type_size(btf, func->type, &t);
5949 	if (ret < 0 || __btf_type_is_struct(t)) {
5950 		bpf_log(log,
5951 			"The function %s return type %s is unsupported.\n",
5952 			tname, btf_type_str(t));
5953 		return -EINVAL;
5954 	}
5955 	m->ret_size = ret;
5956 
5957 	for (i = 0; i < nargs; i++) {
5958 		if (i == nargs - 1 && args[i].type == 0) {
5959 			bpf_log(log,
5960 				"The function %s with variable args is unsupported.\n",
5961 				tname);
5962 			return -EINVAL;
5963 		}
5964 		ret = __get_type_size(btf, args[i].type, &t);
5965 
5966 		/* No support of struct argument size greater than 16 bytes */
5967 		if (ret < 0 || ret > 16) {
5968 			bpf_log(log,
5969 				"The function %s arg%d type %s is unsupported.\n",
5970 				tname, i, btf_type_str(t));
5971 			return -EINVAL;
5972 		}
5973 		if (ret == 0) {
5974 			bpf_log(log,
5975 				"The function %s has malformed void argument.\n",
5976 				tname);
5977 			return -EINVAL;
5978 		}
5979 		m->arg_size[i] = ret;
5980 		m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0;
5981 	}
5982 	m->nr_args = nargs;
5983 	return 0;
5984 }
5985 
5986 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5987  * t1 points to BTF_KIND_FUNC in btf1
5988  * t2 points to BTF_KIND_FUNC in btf2
5989  * Returns:
5990  * EINVAL - function prototype mismatch
5991  * EFAULT - verifier bug
5992  * 0 - 99% match. The last 1% is validated by the verifier.
5993  */
5994 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5995 				     struct btf *btf1, const struct btf_type *t1,
5996 				     struct btf *btf2, const struct btf_type *t2)
5997 {
5998 	const struct btf_param *args1, *args2;
5999 	const char *fn1, *fn2, *s1, *s2;
6000 	u32 nargs1, nargs2, i;
6001 
6002 	fn1 = btf_name_by_offset(btf1, t1->name_off);
6003 	fn2 = btf_name_by_offset(btf2, t2->name_off);
6004 
6005 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6006 		bpf_log(log, "%s() is not a global function\n", fn1);
6007 		return -EINVAL;
6008 	}
6009 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6010 		bpf_log(log, "%s() is not a global function\n", fn2);
6011 		return -EINVAL;
6012 	}
6013 
6014 	t1 = btf_type_by_id(btf1, t1->type);
6015 	if (!t1 || !btf_type_is_func_proto(t1))
6016 		return -EFAULT;
6017 	t2 = btf_type_by_id(btf2, t2->type);
6018 	if (!t2 || !btf_type_is_func_proto(t2))
6019 		return -EFAULT;
6020 
6021 	args1 = (const struct btf_param *)(t1 + 1);
6022 	nargs1 = btf_type_vlen(t1);
6023 	args2 = (const struct btf_param *)(t2 + 1);
6024 	nargs2 = btf_type_vlen(t2);
6025 
6026 	if (nargs1 != nargs2) {
6027 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
6028 			fn1, nargs1, fn2, nargs2);
6029 		return -EINVAL;
6030 	}
6031 
6032 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6033 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6034 	if (t1->info != t2->info) {
6035 		bpf_log(log,
6036 			"Return type %s of %s() doesn't match type %s of %s()\n",
6037 			btf_type_str(t1), fn1,
6038 			btf_type_str(t2), fn2);
6039 		return -EINVAL;
6040 	}
6041 
6042 	for (i = 0; i < nargs1; i++) {
6043 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6044 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6045 
6046 		if (t1->info != t2->info) {
6047 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6048 				i, fn1, btf_type_str(t1),
6049 				fn2, btf_type_str(t2));
6050 			return -EINVAL;
6051 		}
6052 		if (btf_type_has_size(t1) && t1->size != t2->size) {
6053 			bpf_log(log,
6054 				"arg%d in %s() has size %d while %s() has %d\n",
6055 				i, fn1, t1->size,
6056 				fn2, t2->size);
6057 			return -EINVAL;
6058 		}
6059 
6060 		/* global functions are validated with scalars and pointers
6061 		 * to context only. And only global functions can be replaced.
6062 		 * Hence type check only those types.
6063 		 */
6064 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6065 			continue;
6066 		if (!btf_type_is_ptr(t1)) {
6067 			bpf_log(log,
6068 				"arg%d in %s() has unrecognized type\n",
6069 				i, fn1);
6070 			return -EINVAL;
6071 		}
6072 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6073 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6074 		if (!btf_type_is_struct(t1)) {
6075 			bpf_log(log,
6076 				"arg%d in %s() is not a pointer to context\n",
6077 				i, fn1);
6078 			return -EINVAL;
6079 		}
6080 		if (!btf_type_is_struct(t2)) {
6081 			bpf_log(log,
6082 				"arg%d in %s() is not a pointer to context\n",
6083 				i, fn2);
6084 			return -EINVAL;
6085 		}
6086 		/* This is an optional check to make program writing easier.
6087 		 * Compare names of structs and report an error to the user.
6088 		 * btf_prepare_func_args() already checked that t2 struct
6089 		 * is a context type. btf_prepare_func_args() will check
6090 		 * later that t1 struct is a context type as well.
6091 		 */
6092 		s1 = btf_name_by_offset(btf1, t1->name_off);
6093 		s2 = btf_name_by_offset(btf2, t2->name_off);
6094 		if (strcmp(s1, s2)) {
6095 			bpf_log(log,
6096 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6097 				i, fn1, s1, fn2, s2);
6098 			return -EINVAL;
6099 		}
6100 	}
6101 	return 0;
6102 }
6103 
6104 /* Compare BTFs of given program with BTF of target program */
6105 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6106 			 struct btf *btf2, const struct btf_type *t2)
6107 {
6108 	struct btf *btf1 = prog->aux->btf;
6109 	const struct btf_type *t1;
6110 	u32 btf_id = 0;
6111 
6112 	if (!prog->aux->func_info) {
6113 		bpf_log(log, "Program extension requires BTF\n");
6114 		return -EINVAL;
6115 	}
6116 
6117 	btf_id = prog->aux->func_info[0].type_id;
6118 	if (!btf_id)
6119 		return -EFAULT;
6120 
6121 	t1 = btf_type_by_id(btf1, btf_id);
6122 	if (!t1 || !btf_type_is_func(t1))
6123 		return -EFAULT;
6124 
6125 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6126 }
6127 
6128 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
6129 #ifdef CONFIG_NET
6130 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
6131 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
6132 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
6133 #endif
6134 };
6135 
6136 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
6137 static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log,
6138 					const struct btf *btf,
6139 					const struct btf_type *t, int rec)
6140 {
6141 	const struct btf_type *member_type;
6142 	const struct btf_member *member;
6143 	u32 i;
6144 
6145 	if (!btf_type_is_struct(t))
6146 		return false;
6147 
6148 	for_each_member(i, t, member) {
6149 		const struct btf_array *array;
6150 
6151 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
6152 		if (btf_type_is_struct(member_type)) {
6153 			if (rec >= 3) {
6154 				bpf_log(log, "max struct nesting depth exceeded\n");
6155 				return false;
6156 			}
6157 			if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1))
6158 				return false;
6159 			continue;
6160 		}
6161 		if (btf_type_is_array(member_type)) {
6162 			array = btf_type_array(member_type);
6163 			if (!array->nelems)
6164 				return false;
6165 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
6166 			if (!btf_type_is_scalar(member_type))
6167 				return false;
6168 			continue;
6169 		}
6170 		if (!btf_type_is_scalar(member_type))
6171 			return false;
6172 	}
6173 	return true;
6174 }
6175 
6176 static bool is_kfunc_arg_mem_size(const struct btf *btf,
6177 				  const struct btf_param *arg,
6178 				  const struct bpf_reg_state *reg)
6179 {
6180 	int len, sfx_len = sizeof("__sz") - 1;
6181 	const struct btf_type *t;
6182 	const char *param_name;
6183 
6184 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
6185 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
6186 		return false;
6187 
6188 	/* In the future, this can be ported to use BTF tagging */
6189 	param_name = btf_name_by_offset(btf, arg->name_off);
6190 	if (str_is_empty(param_name))
6191 		return false;
6192 	len = strlen(param_name);
6193 	if (len < sfx_len)
6194 		return false;
6195 	param_name += len - sfx_len;
6196 	if (strncmp(param_name, "__sz", sfx_len))
6197 		return false;
6198 
6199 	return true;
6200 }
6201 
6202 static bool btf_is_kfunc_arg_mem_size(const struct btf *btf,
6203 				      const struct btf_param *arg,
6204 				      const struct bpf_reg_state *reg,
6205 				      const char *name)
6206 {
6207 	int len, target_len = strlen(name);
6208 	const struct btf_type *t;
6209 	const char *param_name;
6210 
6211 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
6212 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
6213 		return false;
6214 
6215 	param_name = btf_name_by_offset(btf, arg->name_off);
6216 	if (str_is_empty(param_name))
6217 		return false;
6218 	len = strlen(param_name);
6219 	if (len != target_len)
6220 		return false;
6221 	if (strcmp(param_name, name))
6222 		return false;
6223 
6224 	return true;
6225 }
6226 
6227 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6228 				    const struct btf *btf, u32 func_id,
6229 				    struct bpf_reg_state *regs,
6230 				    bool ptr_to_mem_ok,
6231 				    struct bpf_kfunc_arg_meta *kfunc_meta,
6232 				    bool processing_call)
6233 {
6234 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6235 	bool rel = false, kptr_get = false, trusted_args = false;
6236 	bool sleepable = false;
6237 	struct bpf_verifier_log *log = &env->log;
6238 	u32 i, nargs, ref_id, ref_obj_id = 0;
6239 	bool is_kfunc = btf_is_kernel(btf);
6240 	const char *func_name, *ref_tname;
6241 	const struct btf_type *t, *ref_t;
6242 	const struct btf_param *args;
6243 	int ref_regno = 0, ret;
6244 
6245 	t = btf_type_by_id(btf, func_id);
6246 	if (!t || !btf_type_is_func(t)) {
6247 		/* These checks were already done by the verifier while loading
6248 		 * struct bpf_func_info or in add_kfunc_call().
6249 		 */
6250 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6251 			func_id);
6252 		return -EFAULT;
6253 	}
6254 	func_name = btf_name_by_offset(btf, t->name_off);
6255 
6256 	t = btf_type_by_id(btf, t->type);
6257 	if (!t || !btf_type_is_func_proto(t)) {
6258 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
6259 		return -EFAULT;
6260 	}
6261 	args = (const struct btf_param *)(t + 1);
6262 	nargs = btf_type_vlen(t);
6263 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6264 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
6265 			MAX_BPF_FUNC_REG_ARGS);
6266 		return -EINVAL;
6267 	}
6268 
6269 	if (is_kfunc && kfunc_meta) {
6270 		/* Only kfunc can be release func */
6271 		rel = kfunc_meta->flags & KF_RELEASE;
6272 		kptr_get = kfunc_meta->flags & KF_KPTR_GET;
6273 		trusted_args = kfunc_meta->flags & KF_TRUSTED_ARGS;
6274 		sleepable = kfunc_meta->flags & KF_SLEEPABLE;
6275 	}
6276 
6277 	/* check that BTF function arguments match actual types that the
6278 	 * verifier sees.
6279 	 */
6280 	for (i = 0; i < nargs; i++) {
6281 		enum bpf_arg_type arg_type = ARG_DONTCARE;
6282 		u32 regno = i + 1;
6283 		struct bpf_reg_state *reg = &regs[regno];
6284 		bool obj_ptr = false;
6285 
6286 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6287 		if (btf_type_is_scalar(t)) {
6288 			if (is_kfunc && kfunc_meta) {
6289 				bool is_buf_size = false;
6290 
6291 				/* check for any const scalar parameter of name "rdonly_buf_size"
6292 				 * or "rdwr_buf_size"
6293 				 */
6294 				if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg,
6295 							      "rdonly_buf_size")) {
6296 					kfunc_meta->r0_rdonly = true;
6297 					is_buf_size = true;
6298 				} else if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg,
6299 								     "rdwr_buf_size"))
6300 					is_buf_size = true;
6301 
6302 				if (is_buf_size) {
6303 					if (kfunc_meta->r0_size) {
6304 						bpf_log(log, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
6305 						return -EINVAL;
6306 					}
6307 
6308 					if (!tnum_is_const(reg->var_off)) {
6309 						bpf_log(log, "R%d is not a const\n", regno);
6310 						return -EINVAL;
6311 					}
6312 
6313 					kfunc_meta->r0_size = reg->var_off.value;
6314 					ret = mark_chain_precision(env, regno);
6315 					if (ret)
6316 						return ret;
6317 				}
6318 			}
6319 
6320 			if (reg->type == SCALAR_VALUE)
6321 				continue;
6322 			bpf_log(log, "R%d is not a scalar\n", regno);
6323 			return -EINVAL;
6324 		}
6325 
6326 		if (!btf_type_is_ptr(t)) {
6327 			bpf_log(log, "Unrecognized arg#%d type %s\n",
6328 				i, btf_type_str(t));
6329 			return -EINVAL;
6330 		}
6331 
6332 		/* These register types have special constraints wrt ref_obj_id
6333 		 * and offset checks. The rest of trusted args don't.
6334 		 */
6335 		obj_ptr = reg->type == PTR_TO_CTX || reg->type == PTR_TO_BTF_ID ||
6336 			  reg2btf_ids[base_type(reg->type)];
6337 
6338 		/* Check if argument must be a referenced pointer, args + i has
6339 		 * been verified to be a pointer (after skipping modifiers).
6340 		 * PTR_TO_CTX is ok without having non-zero ref_obj_id.
6341 		 */
6342 		if (is_kfunc && trusted_args && (obj_ptr && reg->type != PTR_TO_CTX) && !reg->ref_obj_id) {
6343 			bpf_log(log, "R%d must be referenced\n", regno);
6344 			return -EINVAL;
6345 		}
6346 
6347 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
6348 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6349 
6350 		/* Trusted args have the same offset checks as release arguments */
6351 		if ((trusted_args && obj_ptr) || (rel && reg->ref_obj_id))
6352 			arg_type |= OBJ_RELEASE;
6353 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
6354 		if (ret < 0)
6355 			return ret;
6356 
6357 		if (is_kfunc && reg->ref_obj_id) {
6358 			/* Ensure only one argument is referenced PTR_TO_BTF_ID */
6359 			if (ref_obj_id) {
6360 				bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
6361 					regno, reg->ref_obj_id, ref_obj_id);
6362 				return -EFAULT;
6363 			}
6364 			ref_regno = regno;
6365 			ref_obj_id = reg->ref_obj_id;
6366 		}
6367 
6368 		/* kptr_get is only true for kfunc */
6369 		if (i == 0 && kptr_get) {
6370 			struct bpf_map_value_off_desc *off_desc;
6371 
6372 			if (reg->type != PTR_TO_MAP_VALUE) {
6373 				bpf_log(log, "arg#0 expected pointer to map value\n");
6374 				return -EINVAL;
6375 			}
6376 
6377 			/* check_func_arg_reg_off allows var_off for
6378 			 * PTR_TO_MAP_VALUE, but we need fixed offset to find
6379 			 * off_desc.
6380 			 */
6381 			if (!tnum_is_const(reg->var_off)) {
6382 				bpf_log(log, "arg#0 must have constant offset\n");
6383 				return -EINVAL;
6384 			}
6385 
6386 			off_desc = bpf_map_kptr_off_contains(reg->map_ptr, reg->off + reg->var_off.value);
6387 			if (!off_desc || off_desc->type != BPF_KPTR_REF) {
6388 				bpf_log(log, "arg#0 no referenced kptr at map value offset=%llu\n",
6389 					reg->off + reg->var_off.value);
6390 				return -EINVAL;
6391 			}
6392 
6393 			if (!btf_type_is_ptr(ref_t)) {
6394 				bpf_log(log, "arg#0 BTF type must be a double pointer\n");
6395 				return -EINVAL;
6396 			}
6397 
6398 			ref_t = btf_type_skip_modifiers(btf, ref_t->type, &ref_id);
6399 			ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6400 
6401 			if (!btf_type_is_struct(ref_t)) {
6402 				bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
6403 					func_name, i, btf_type_str(ref_t), ref_tname);
6404 				return -EINVAL;
6405 			}
6406 			if (!btf_struct_ids_match(log, btf, ref_id, 0, off_desc->kptr.btf,
6407 						  off_desc->kptr.btf_id, true)) {
6408 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s\n",
6409 					func_name, i, btf_type_str(ref_t), ref_tname);
6410 				return -EINVAL;
6411 			}
6412 			/* rest of the arguments can be anything, like normal kfunc */
6413 		} else if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6414 			/* If function expects ctx type in BTF check that caller
6415 			 * is passing PTR_TO_CTX.
6416 			 */
6417 			if (reg->type != PTR_TO_CTX) {
6418 				bpf_log(log,
6419 					"arg#%d expected pointer to ctx, but got %s\n",
6420 					i, btf_type_str(t));
6421 				return -EINVAL;
6422 			}
6423 		} else if (is_kfunc && (reg->type == PTR_TO_BTF_ID ||
6424 			   (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) {
6425 			const struct btf_type *reg_ref_t;
6426 			const struct btf *reg_btf;
6427 			const char *reg_ref_tname;
6428 			u32 reg_ref_id;
6429 
6430 			if (!btf_type_is_struct(ref_t)) {
6431 				bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
6432 					func_name, i, btf_type_str(ref_t),
6433 					ref_tname);
6434 				return -EINVAL;
6435 			}
6436 
6437 			if (reg->type == PTR_TO_BTF_ID) {
6438 				reg_btf = reg->btf;
6439 				reg_ref_id = reg->btf_id;
6440 			} else {
6441 				reg_btf = btf_vmlinux;
6442 				reg_ref_id = *reg2btf_ids[base_type(reg->type)];
6443 			}
6444 
6445 			reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
6446 							    &reg_ref_id);
6447 			reg_ref_tname = btf_name_by_offset(reg_btf,
6448 							   reg_ref_t->name_off);
6449 			if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
6450 						  reg->off, btf, ref_id,
6451 						  trusted_args || (rel && reg->ref_obj_id))) {
6452 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
6453 					func_name, i,
6454 					btf_type_str(ref_t), ref_tname,
6455 					regno, btf_type_str(reg_ref_t),
6456 					reg_ref_tname);
6457 				return -EINVAL;
6458 			}
6459 		} else if (ptr_to_mem_ok && processing_call) {
6460 			const struct btf_type *resolve_ret;
6461 			u32 type_size;
6462 
6463 			if (is_kfunc) {
6464 				bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], &regs[regno + 1]);
6465 				bool arg_dynptr = btf_type_is_struct(ref_t) &&
6466 						  !strcmp(ref_tname,
6467 							  stringify_struct(bpf_dynptr_kern));
6468 
6469 				/* Permit pointer to mem, but only when argument
6470 				 * type is pointer to scalar, or struct composed
6471 				 * (recursively) of scalars.
6472 				 * When arg_mem_size is true, the pointer can be
6473 				 * void *.
6474 				 * Also permit initialized local dynamic pointers.
6475 				 */
6476 				if (!btf_type_is_scalar(ref_t) &&
6477 				    !__btf_type_is_scalar_struct(log, btf, ref_t, 0) &&
6478 				    !arg_dynptr &&
6479 				    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
6480 					bpf_log(log,
6481 						"arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
6482 						i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
6483 					return -EINVAL;
6484 				}
6485 
6486 				if (arg_dynptr) {
6487 					if (reg->type != PTR_TO_STACK) {
6488 						bpf_log(log, "arg#%d pointer type %s %s not to stack\n",
6489 							i, btf_type_str(ref_t),
6490 							ref_tname);
6491 						return -EINVAL;
6492 					}
6493 
6494 					if (!is_dynptr_reg_valid_init(env, reg)) {
6495 						bpf_log(log,
6496 							"arg#%d pointer type %s %s must be valid and initialized\n",
6497 							i, btf_type_str(ref_t),
6498 							ref_tname);
6499 						return -EINVAL;
6500 					}
6501 
6502 					if (!is_dynptr_type_expected(env, reg,
6503 							ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL)) {
6504 						bpf_log(log,
6505 							"arg#%d pointer type %s %s points to unsupported dynamic pointer type\n",
6506 							i, btf_type_str(ref_t),
6507 							ref_tname);
6508 						return -EINVAL;
6509 					}
6510 
6511 					continue;
6512 				}
6513 
6514 				/* Check for mem, len pair */
6515 				if (arg_mem_size) {
6516 					if (check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1)) {
6517 						bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n",
6518 							i, i + 1);
6519 						return -EINVAL;
6520 					}
6521 					i++;
6522 					continue;
6523 				}
6524 			}
6525 
6526 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6527 			if (IS_ERR(resolve_ret)) {
6528 				bpf_log(log,
6529 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6530 					i, btf_type_str(ref_t), ref_tname,
6531 					PTR_ERR(resolve_ret));
6532 				return -EINVAL;
6533 			}
6534 
6535 			if (check_mem_reg(env, reg, regno, type_size))
6536 				return -EINVAL;
6537 		} else {
6538 			bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i,
6539 				is_kfunc ? "kernel " : "", func_name, func_id);
6540 			return -EINVAL;
6541 		}
6542 	}
6543 
6544 	/* Either both are set, or neither */
6545 	WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno));
6546 	/* We already made sure ref_obj_id is set only for one argument. We do
6547 	 * allow (!rel && ref_obj_id), so that passing such referenced
6548 	 * PTR_TO_BTF_ID to other kfuncs works. Note that rel is only true when
6549 	 * is_kfunc is true.
6550 	 */
6551 	if (rel && !ref_obj_id) {
6552 		bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
6553 			func_name);
6554 		return -EINVAL;
6555 	}
6556 
6557 	if (sleepable && !env->prog->aux->sleepable) {
6558 		bpf_log(log, "kernel function %s is sleepable but the program is not\n",
6559 			func_name);
6560 		return -EINVAL;
6561 	}
6562 
6563 	if (kfunc_meta && ref_obj_id)
6564 		kfunc_meta->ref_obj_id = ref_obj_id;
6565 
6566 	/* returns argument register number > 0 in case of reference release kfunc */
6567 	return rel ? ref_regno : 0;
6568 }
6569 
6570 /* Compare BTF of a function declaration with given bpf_reg_state.
6571  * Returns:
6572  * EFAULT - there is a verifier bug. Abort verification.
6573  * EINVAL - there is a type mismatch or BTF is not available.
6574  * 0 - BTF matches with what bpf_reg_state expects.
6575  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6576  */
6577 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6578 				struct bpf_reg_state *regs)
6579 {
6580 	struct bpf_prog *prog = env->prog;
6581 	struct btf *btf = prog->aux->btf;
6582 	bool is_global;
6583 	u32 btf_id;
6584 	int err;
6585 
6586 	if (!prog->aux->func_info)
6587 		return -EINVAL;
6588 
6589 	btf_id = prog->aux->func_info[subprog].type_id;
6590 	if (!btf_id)
6591 		return -EFAULT;
6592 
6593 	if (prog->aux->func_info_aux[subprog].unreliable)
6594 		return -EINVAL;
6595 
6596 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6597 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, false);
6598 
6599 	/* Compiler optimizations can remove arguments from static functions
6600 	 * or mismatched type can be passed into a global function.
6601 	 * In such cases mark the function as unreliable from BTF point of view.
6602 	 */
6603 	if (err)
6604 		prog->aux->func_info_aux[subprog].unreliable = true;
6605 	return err;
6606 }
6607 
6608 /* Compare BTF of a function call with given bpf_reg_state.
6609  * Returns:
6610  * EFAULT - there is a verifier bug. Abort verification.
6611  * EINVAL - there is a type mismatch or BTF is not available.
6612  * 0 - BTF matches with what bpf_reg_state expects.
6613  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6614  *
6615  * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6616  * because btf_check_func_arg_match() is still doing both. Once that
6617  * function is split in 2, we can call from here btf_check_subprog_arg_match()
6618  * first, and then treat the calling part in a new code path.
6619  */
6620 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6621 			   struct bpf_reg_state *regs)
6622 {
6623 	struct bpf_prog *prog = env->prog;
6624 	struct btf *btf = prog->aux->btf;
6625 	bool is_global;
6626 	u32 btf_id;
6627 	int err;
6628 
6629 	if (!prog->aux->func_info)
6630 		return -EINVAL;
6631 
6632 	btf_id = prog->aux->func_info[subprog].type_id;
6633 	if (!btf_id)
6634 		return -EFAULT;
6635 
6636 	if (prog->aux->func_info_aux[subprog].unreliable)
6637 		return -EINVAL;
6638 
6639 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6640 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, true);
6641 
6642 	/* Compiler optimizations can remove arguments from static functions
6643 	 * or mismatched type can be passed into a global function.
6644 	 * In such cases mark the function as unreliable from BTF point of view.
6645 	 */
6646 	if (err)
6647 		prog->aux->func_info_aux[subprog].unreliable = true;
6648 	return err;
6649 }
6650 
6651 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
6652 			      const struct btf *btf, u32 func_id,
6653 			      struct bpf_reg_state *regs,
6654 			      struct bpf_kfunc_arg_meta *meta)
6655 {
6656 	return btf_check_func_arg_match(env, btf, func_id, regs, true, meta, true);
6657 }
6658 
6659 /* Convert BTF of a function into bpf_reg_state if possible
6660  * Returns:
6661  * EFAULT - there is a verifier bug. Abort verification.
6662  * EINVAL - cannot convert BTF.
6663  * 0 - Successfully converted BTF into bpf_reg_state
6664  * (either PTR_TO_CTX or SCALAR_VALUE).
6665  */
6666 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6667 			  struct bpf_reg_state *regs)
6668 {
6669 	struct bpf_verifier_log *log = &env->log;
6670 	struct bpf_prog *prog = env->prog;
6671 	enum bpf_prog_type prog_type = prog->type;
6672 	struct btf *btf = prog->aux->btf;
6673 	const struct btf_param *args;
6674 	const struct btf_type *t, *ref_t;
6675 	u32 i, nargs, btf_id;
6676 	const char *tname;
6677 
6678 	if (!prog->aux->func_info ||
6679 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6680 		bpf_log(log, "Verifier bug\n");
6681 		return -EFAULT;
6682 	}
6683 
6684 	btf_id = prog->aux->func_info[subprog].type_id;
6685 	if (!btf_id) {
6686 		bpf_log(log, "Global functions need valid BTF\n");
6687 		return -EFAULT;
6688 	}
6689 
6690 	t = btf_type_by_id(btf, btf_id);
6691 	if (!t || !btf_type_is_func(t)) {
6692 		/* These checks were already done by the verifier while loading
6693 		 * struct bpf_func_info
6694 		 */
6695 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6696 			subprog);
6697 		return -EFAULT;
6698 	}
6699 	tname = btf_name_by_offset(btf, t->name_off);
6700 
6701 	if (log->level & BPF_LOG_LEVEL)
6702 		bpf_log(log, "Validating %s() func#%d...\n",
6703 			tname, subprog);
6704 
6705 	if (prog->aux->func_info_aux[subprog].unreliable) {
6706 		bpf_log(log, "Verifier bug in function %s()\n", tname);
6707 		return -EFAULT;
6708 	}
6709 	if (prog_type == BPF_PROG_TYPE_EXT)
6710 		prog_type = prog->aux->dst_prog->type;
6711 
6712 	t = btf_type_by_id(btf, t->type);
6713 	if (!t || !btf_type_is_func_proto(t)) {
6714 		bpf_log(log, "Invalid type of function %s()\n", tname);
6715 		return -EFAULT;
6716 	}
6717 	args = (const struct btf_param *)(t + 1);
6718 	nargs = btf_type_vlen(t);
6719 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6720 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
6721 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
6722 		return -EINVAL;
6723 	}
6724 	/* check that function returns int */
6725 	t = btf_type_by_id(btf, t->type);
6726 	while (btf_type_is_modifier(t))
6727 		t = btf_type_by_id(btf, t->type);
6728 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
6729 		bpf_log(log,
6730 			"Global function %s() doesn't return scalar. Only those are supported.\n",
6731 			tname);
6732 		return -EINVAL;
6733 	}
6734 	/* Convert BTF function arguments into verifier types.
6735 	 * Only PTR_TO_CTX and SCALAR are supported atm.
6736 	 */
6737 	for (i = 0; i < nargs; i++) {
6738 		struct bpf_reg_state *reg = &regs[i + 1];
6739 
6740 		t = btf_type_by_id(btf, args[i].type);
6741 		while (btf_type_is_modifier(t))
6742 			t = btf_type_by_id(btf, t->type);
6743 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
6744 			reg->type = SCALAR_VALUE;
6745 			continue;
6746 		}
6747 		if (btf_type_is_ptr(t)) {
6748 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6749 				reg->type = PTR_TO_CTX;
6750 				continue;
6751 			}
6752 
6753 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6754 
6755 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
6756 			if (IS_ERR(ref_t)) {
6757 				bpf_log(log,
6758 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6759 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
6760 					PTR_ERR(ref_t));
6761 				return -EINVAL;
6762 			}
6763 
6764 			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
6765 			reg->id = ++env->id_gen;
6766 
6767 			continue;
6768 		}
6769 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
6770 			i, btf_type_str(t), tname);
6771 		return -EINVAL;
6772 	}
6773 	return 0;
6774 }
6775 
6776 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
6777 			  struct btf_show *show)
6778 {
6779 	const struct btf_type *t = btf_type_by_id(btf, type_id);
6780 
6781 	show->btf = btf;
6782 	memset(&show->state, 0, sizeof(show->state));
6783 	memset(&show->obj, 0, sizeof(show->obj));
6784 
6785 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
6786 }
6787 
6788 static void btf_seq_show(struct btf_show *show, const char *fmt,
6789 			 va_list args)
6790 {
6791 	seq_vprintf((struct seq_file *)show->target, fmt, args);
6792 }
6793 
6794 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
6795 			    void *obj, struct seq_file *m, u64 flags)
6796 {
6797 	struct btf_show sseq;
6798 
6799 	sseq.target = m;
6800 	sseq.showfn = btf_seq_show;
6801 	sseq.flags = flags;
6802 
6803 	btf_type_show(btf, type_id, obj, &sseq);
6804 
6805 	return sseq.state.status;
6806 }
6807 
6808 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
6809 		       struct seq_file *m)
6810 {
6811 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
6812 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
6813 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
6814 }
6815 
6816 struct btf_show_snprintf {
6817 	struct btf_show show;
6818 	int len_left;		/* space left in string */
6819 	int len;		/* length we would have written */
6820 };
6821 
6822 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
6823 			      va_list args)
6824 {
6825 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
6826 	int len;
6827 
6828 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
6829 
6830 	if (len < 0) {
6831 		ssnprintf->len_left = 0;
6832 		ssnprintf->len = len;
6833 	} else if (len >= ssnprintf->len_left) {
6834 		/* no space, drive on to get length we would have written */
6835 		ssnprintf->len_left = 0;
6836 		ssnprintf->len += len;
6837 	} else {
6838 		ssnprintf->len_left -= len;
6839 		ssnprintf->len += len;
6840 		show->target += len;
6841 	}
6842 }
6843 
6844 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
6845 			   char *buf, int len, u64 flags)
6846 {
6847 	struct btf_show_snprintf ssnprintf;
6848 
6849 	ssnprintf.show.target = buf;
6850 	ssnprintf.show.flags = flags;
6851 	ssnprintf.show.showfn = btf_snprintf_show;
6852 	ssnprintf.len_left = len;
6853 	ssnprintf.len = 0;
6854 
6855 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
6856 
6857 	/* If we encountered an error, return it. */
6858 	if (ssnprintf.show.state.status)
6859 		return ssnprintf.show.state.status;
6860 
6861 	/* Otherwise return length we would have written */
6862 	return ssnprintf.len;
6863 }
6864 
6865 #ifdef CONFIG_PROC_FS
6866 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
6867 {
6868 	const struct btf *btf = filp->private_data;
6869 
6870 	seq_printf(m, "btf_id:\t%u\n", btf->id);
6871 }
6872 #endif
6873 
6874 static int btf_release(struct inode *inode, struct file *filp)
6875 {
6876 	btf_put(filp->private_data);
6877 	return 0;
6878 }
6879 
6880 const struct file_operations btf_fops = {
6881 #ifdef CONFIG_PROC_FS
6882 	.show_fdinfo	= bpf_btf_show_fdinfo,
6883 #endif
6884 	.release	= btf_release,
6885 };
6886 
6887 static int __btf_new_fd(struct btf *btf)
6888 {
6889 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
6890 }
6891 
6892 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
6893 {
6894 	struct btf *btf;
6895 	int ret;
6896 
6897 	btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
6898 			attr->btf_size, attr->btf_log_level,
6899 			u64_to_user_ptr(attr->btf_log_buf),
6900 			attr->btf_log_size);
6901 	if (IS_ERR(btf))
6902 		return PTR_ERR(btf);
6903 
6904 	ret = btf_alloc_id(btf);
6905 	if (ret) {
6906 		btf_free(btf);
6907 		return ret;
6908 	}
6909 
6910 	/*
6911 	 * The BTF ID is published to the userspace.
6912 	 * All BTF free must go through call_rcu() from
6913 	 * now on (i.e. free by calling btf_put()).
6914 	 */
6915 
6916 	ret = __btf_new_fd(btf);
6917 	if (ret < 0)
6918 		btf_put(btf);
6919 
6920 	return ret;
6921 }
6922 
6923 struct btf *btf_get_by_fd(int fd)
6924 {
6925 	struct btf *btf;
6926 	struct fd f;
6927 
6928 	f = fdget(fd);
6929 
6930 	if (!f.file)
6931 		return ERR_PTR(-EBADF);
6932 
6933 	if (f.file->f_op != &btf_fops) {
6934 		fdput(f);
6935 		return ERR_PTR(-EINVAL);
6936 	}
6937 
6938 	btf = f.file->private_data;
6939 	refcount_inc(&btf->refcnt);
6940 	fdput(f);
6941 
6942 	return btf;
6943 }
6944 
6945 int btf_get_info_by_fd(const struct btf *btf,
6946 		       const union bpf_attr *attr,
6947 		       union bpf_attr __user *uattr)
6948 {
6949 	struct bpf_btf_info __user *uinfo;
6950 	struct bpf_btf_info info;
6951 	u32 info_copy, btf_copy;
6952 	void __user *ubtf;
6953 	char __user *uname;
6954 	u32 uinfo_len, uname_len, name_len;
6955 	int ret = 0;
6956 
6957 	uinfo = u64_to_user_ptr(attr->info.info);
6958 	uinfo_len = attr->info.info_len;
6959 
6960 	info_copy = min_t(u32, uinfo_len, sizeof(info));
6961 	memset(&info, 0, sizeof(info));
6962 	if (copy_from_user(&info, uinfo, info_copy))
6963 		return -EFAULT;
6964 
6965 	info.id = btf->id;
6966 	ubtf = u64_to_user_ptr(info.btf);
6967 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
6968 	if (copy_to_user(ubtf, btf->data, btf_copy))
6969 		return -EFAULT;
6970 	info.btf_size = btf->data_size;
6971 
6972 	info.kernel_btf = btf->kernel_btf;
6973 
6974 	uname = u64_to_user_ptr(info.name);
6975 	uname_len = info.name_len;
6976 	if (!uname ^ !uname_len)
6977 		return -EINVAL;
6978 
6979 	name_len = strlen(btf->name);
6980 	info.name_len = name_len;
6981 
6982 	if (uname) {
6983 		if (uname_len >= name_len + 1) {
6984 			if (copy_to_user(uname, btf->name, name_len + 1))
6985 				return -EFAULT;
6986 		} else {
6987 			char zero = '\0';
6988 
6989 			if (copy_to_user(uname, btf->name, uname_len - 1))
6990 				return -EFAULT;
6991 			if (put_user(zero, uname + uname_len - 1))
6992 				return -EFAULT;
6993 			/* let user-space know about too short buffer */
6994 			ret = -ENOSPC;
6995 		}
6996 	}
6997 
6998 	if (copy_to_user(uinfo, &info, info_copy) ||
6999 	    put_user(info_copy, &uattr->info.info_len))
7000 		return -EFAULT;
7001 
7002 	return ret;
7003 }
7004 
7005 int btf_get_fd_by_id(u32 id)
7006 {
7007 	struct btf *btf;
7008 	int fd;
7009 
7010 	rcu_read_lock();
7011 	btf = idr_find(&btf_idr, id);
7012 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7013 		btf = ERR_PTR(-ENOENT);
7014 	rcu_read_unlock();
7015 
7016 	if (IS_ERR(btf))
7017 		return PTR_ERR(btf);
7018 
7019 	fd = __btf_new_fd(btf);
7020 	if (fd < 0)
7021 		btf_put(btf);
7022 
7023 	return fd;
7024 }
7025 
7026 u32 btf_obj_id(const struct btf *btf)
7027 {
7028 	return btf->id;
7029 }
7030 
7031 bool btf_is_kernel(const struct btf *btf)
7032 {
7033 	return btf->kernel_btf;
7034 }
7035 
7036 bool btf_is_module(const struct btf *btf)
7037 {
7038 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7039 }
7040 
7041 static int btf_id_cmp_func(const void *a, const void *b)
7042 {
7043 	const int *pa = a, *pb = b;
7044 
7045 	return *pa - *pb;
7046 }
7047 
7048 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
7049 {
7050 	return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
7051 }
7052 
7053 static void *btf_id_set8_contains(const struct btf_id_set8 *set, u32 id)
7054 {
7055 	return bsearch(&id, set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func);
7056 }
7057 
7058 enum {
7059 	BTF_MODULE_F_LIVE = (1 << 0),
7060 };
7061 
7062 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7063 struct btf_module {
7064 	struct list_head list;
7065 	struct module *module;
7066 	struct btf *btf;
7067 	struct bin_attribute *sysfs_attr;
7068 	int flags;
7069 };
7070 
7071 static LIST_HEAD(btf_modules);
7072 static DEFINE_MUTEX(btf_module_mutex);
7073 
7074 static ssize_t
7075 btf_module_read(struct file *file, struct kobject *kobj,
7076 		struct bin_attribute *bin_attr,
7077 		char *buf, loff_t off, size_t len)
7078 {
7079 	const struct btf *btf = bin_attr->private;
7080 
7081 	memcpy(buf, btf->data + off, len);
7082 	return len;
7083 }
7084 
7085 static void purge_cand_cache(struct btf *btf);
7086 
7087 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7088 			     void *module)
7089 {
7090 	struct btf_module *btf_mod, *tmp;
7091 	struct module *mod = module;
7092 	struct btf *btf;
7093 	int err = 0;
7094 
7095 	if (mod->btf_data_size == 0 ||
7096 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7097 	     op != MODULE_STATE_GOING))
7098 		goto out;
7099 
7100 	switch (op) {
7101 	case MODULE_STATE_COMING:
7102 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7103 		if (!btf_mod) {
7104 			err = -ENOMEM;
7105 			goto out;
7106 		}
7107 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7108 		if (IS_ERR(btf)) {
7109 			pr_warn("failed to validate module [%s] BTF: %ld\n",
7110 				mod->name, PTR_ERR(btf));
7111 			kfree(btf_mod);
7112 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
7113 				err = PTR_ERR(btf);
7114 			goto out;
7115 		}
7116 		err = btf_alloc_id(btf);
7117 		if (err) {
7118 			btf_free(btf);
7119 			kfree(btf_mod);
7120 			goto out;
7121 		}
7122 
7123 		purge_cand_cache(NULL);
7124 		mutex_lock(&btf_module_mutex);
7125 		btf_mod->module = module;
7126 		btf_mod->btf = btf;
7127 		list_add(&btf_mod->list, &btf_modules);
7128 		mutex_unlock(&btf_module_mutex);
7129 
7130 		if (IS_ENABLED(CONFIG_SYSFS)) {
7131 			struct bin_attribute *attr;
7132 
7133 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7134 			if (!attr)
7135 				goto out;
7136 
7137 			sysfs_bin_attr_init(attr);
7138 			attr->attr.name = btf->name;
7139 			attr->attr.mode = 0444;
7140 			attr->size = btf->data_size;
7141 			attr->private = btf;
7142 			attr->read = btf_module_read;
7143 
7144 			err = sysfs_create_bin_file(btf_kobj, attr);
7145 			if (err) {
7146 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7147 					mod->name, err);
7148 				kfree(attr);
7149 				err = 0;
7150 				goto out;
7151 			}
7152 
7153 			btf_mod->sysfs_attr = attr;
7154 		}
7155 
7156 		break;
7157 	case MODULE_STATE_LIVE:
7158 		mutex_lock(&btf_module_mutex);
7159 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7160 			if (btf_mod->module != module)
7161 				continue;
7162 
7163 			btf_mod->flags |= BTF_MODULE_F_LIVE;
7164 			break;
7165 		}
7166 		mutex_unlock(&btf_module_mutex);
7167 		break;
7168 	case MODULE_STATE_GOING:
7169 		mutex_lock(&btf_module_mutex);
7170 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7171 			if (btf_mod->module != module)
7172 				continue;
7173 
7174 			list_del(&btf_mod->list);
7175 			if (btf_mod->sysfs_attr)
7176 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7177 			purge_cand_cache(btf_mod->btf);
7178 			btf_put(btf_mod->btf);
7179 			kfree(btf_mod->sysfs_attr);
7180 			kfree(btf_mod);
7181 			break;
7182 		}
7183 		mutex_unlock(&btf_module_mutex);
7184 		break;
7185 	}
7186 out:
7187 	return notifier_from_errno(err);
7188 }
7189 
7190 static struct notifier_block btf_module_nb = {
7191 	.notifier_call = btf_module_notify,
7192 };
7193 
7194 static int __init btf_module_init(void)
7195 {
7196 	register_module_notifier(&btf_module_nb);
7197 	return 0;
7198 }
7199 
7200 fs_initcall(btf_module_init);
7201 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7202 
7203 struct module *btf_try_get_module(const struct btf *btf)
7204 {
7205 	struct module *res = NULL;
7206 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7207 	struct btf_module *btf_mod, *tmp;
7208 
7209 	mutex_lock(&btf_module_mutex);
7210 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7211 		if (btf_mod->btf != btf)
7212 			continue;
7213 
7214 		/* We must only consider module whose __init routine has
7215 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7216 		 * which is set from the notifier callback for
7217 		 * MODULE_STATE_LIVE.
7218 		 */
7219 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7220 			res = btf_mod->module;
7221 
7222 		break;
7223 	}
7224 	mutex_unlock(&btf_module_mutex);
7225 #endif
7226 
7227 	return res;
7228 }
7229 
7230 /* Returns struct btf corresponding to the struct module.
7231  * This function can return NULL or ERR_PTR.
7232  */
7233 static struct btf *btf_get_module_btf(const struct module *module)
7234 {
7235 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7236 	struct btf_module *btf_mod, *tmp;
7237 #endif
7238 	struct btf *btf = NULL;
7239 
7240 	if (!module) {
7241 		btf = bpf_get_btf_vmlinux();
7242 		if (!IS_ERR_OR_NULL(btf))
7243 			btf_get(btf);
7244 		return btf;
7245 	}
7246 
7247 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7248 	mutex_lock(&btf_module_mutex);
7249 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7250 		if (btf_mod->module != module)
7251 			continue;
7252 
7253 		btf_get(btf_mod->btf);
7254 		btf = btf_mod->btf;
7255 		break;
7256 	}
7257 	mutex_unlock(&btf_module_mutex);
7258 #endif
7259 
7260 	return btf;
7261 }
7262 
7263 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7264 {
7265 	struct btf *btf = NULL;
7266 	int btf_obj_fd = 0;
7267 	long ret;
7268 
7269 	if (flags)
7270 		return -EINVAL;
7271 
7272 	if (name_sz <= 1 || name[name_sz - 1])
7273 		return -EINVAL;
7274 
7275 	ret = bpf_find_btf_id(name, kind, &btf);
7276 	if (ret > 0 && btf_is_module(btf)) {
7277 		btf_obj_fd = __btf_new_fd(btf);
7278 		if (btf_obj_fd < 0) {
7279 			btf_put(btf);
7280 			return btf_obj_fd;
7281 		}
7282 		return ret | (((u64)btf_obj_fd) << 32);
7283 	}
7284 	if (ret > 0)
7285 		btf_put(btf);
7286 	return ret;
7287 }
7288 
7289 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7290 	.func		= bpf_btf_find_by_name_kind,
7291 	.gpl_only	= false,
7292 	.ret_type	= RET_INTEGER,
7293 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7294 	.arg2_type	= ARG_CONST_SIZE,
7295 	.arg3_type	= ARG_ANYTHING,
7296 	.arg4_type	= ARG_ANYTHING,
7297 };
7298 
7299 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7300 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7301 BTF_TRACING_TYPE_xxx
7302 #undef BTF_TRACING_TYPE
7303 
7304 /* Kernel Function (kfunc) BTF ID set registration API */
7305 
7306 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7307 				  struct btf_id_set8 *add_set)
7308 {
7309 	bool vmlinux_set = !btf_is_module(btf);
7310 	struct btf_kfunc_set_tab *tab;
7311 	struct btf_id_set8 *set;
7312 	u32 set_cnt;
7313 	int ret;
7314 
7315 	if (hook >= BTF_KFUNC_HOOK_MAX) {
7316 		ret = -EINVAL;
7317 		goto end;
7318 	}
7319 
7320 	if (!add_set->cnt)
7321 		return 0;
7322 
7323 	tab = btf->kfunc_set_tab;
7324 	if (!tab) {
7325 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7326 		if (!tab)
7327 			return -ENOMEM;
7328 		btf->kfunc_set_tab = tab;
7329 	}
7330 
7331 	set = tab->sets[hook];
7332 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
7333 	 * for module sets.
7334 	 */
7335 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
7336 		ret = -EINVAL;
7337 		goto end;
7338 	}
7339 
7340 	/* We don't need to allocate, concatenate, and sort module sets, because
7341 	 * only one is allowed per hook. Hence, we can directly assign the
7342 	 * pointer and return.
7343 	 */
7344 	if (!vmlinux_set) {
7345 		tab->sets[hook] = add_set;
7346 		return 0;
7347 	}
7348 
7349 	/* In case of vmlinux sets, there may be more than one set being
7350 	 * registered per hook. To create a unified set, we allocate a new set
7351 	 * and concatenate all individual sets being registered. While each set
7352 	 * is individually sorted, they may become unsorted when concatenated,
7353 	 * hence re-sorting the final set again is required to make binary
7354 	 * searching the set using btf_id_set8_contains function work.
7355 	 */
7356 	set_cnt = set ? set->cnt : 0;
7357 
7358 	if (set_cnt > U32_MAX - add_set->cnt) {
7359 		ret = -EOVERFLOW;
7360 		goto end;
7361 	}
7362 
7363 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7364 		ret = -E2BIG;
7365 		goto end;
7366 	}
7367 
7368 	/* Grow set */
7369 	set = krealloc(tab->sets[hook],
7370 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7371 		       GFP_KERNEL | __GFP_NOWARN);
7372 	if (!set) {
7373 		ret = -ENOMEM;
7374 		goto end;
7375 	}
7376 
7377 	/* For newly allocated set, initialize set->cnt to 0 */
7378 	if (!tab->sets[hook])
7379 		set->cnt = 0;
7380 	tab->sets[hook] = set;
7381 
7382 	/* Concatenate the two sets */
7383 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7384 	set->cnt += add_set->cnt;
7385 
7386 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
7387 
7388 	return 0;
7389 end:
7390 	btf_free_kfunc_set_tab(btf);
7391 	return ret;
7392 }
7393 
7394 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7395 					enum btf_kfunc_hook hook,
7396 					u32 kfunc_btf_id)
7397 {
7398 	struct btf_id_set8 *set;
7399 	u32 *id;
7400 
7401 	if (hook >= BTF_KFUNC_HOOK_MAX)
7402 		return NULL;
7403 	if (!btf->kfunc_set_tab)
7404 		return NULL;
7405 	set = btf->kfunc_set_tab->sets[hook];
7406 	if (!set)
7407 		return NULL;
7408 	id = btf_id_set8_contains(set, kfunc_btf_id);
7409 	if (!id)
7410 		return NULL;
7411 	/* The flags for BTF ID are located next to it */
7412 	return id + 1;
7413 }
7414 
7415 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7416 {
7417 	switch (prog_type) {
7418 	case BPF_PROG_TYPE_XDP:
7419 		return BTF_KFUNC_HOOK_XDP;
7420 	case BPF_PROG_TYPE_SCHED_CLS:
7421 		return BTF_KFUNC_HOOK_TC;
7422 	case BPF_PROG_TYPE_STRUCT_OPS:
7423 		return BTF_KFUNC_HOOK_STRUCT_OPS;
7424 	case BPF_PROG_TYPE_TRACING:
7425 	case BPF_PROG_TYPE_LSM:
7426 		return BTF_KFUNC_HOOK_TRACING;
7427 	case BPF_PROG_TYPE_SYSCALL:
7428 		return BTF_KFUNC_HOOK_SYSCALL;
7429 	default:
7430 		return BTF_KFUNC_HOOK_MAX;
7431 	}
7432 }
7433 
7434 /* Caution:
7435  * Reference to the module (obtained using btf_try_get_module) corresponding to
7436  * the struct btf *MUST* be held when calling this function from verifier
7437  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7438  * keeping the reference for the duration of the call provides the necessary
7439  * protection for looking up a well-formed btf->kfunc_set_tab.
7440  */
7441 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7442 			       enum bpf_prog_type prog_type,
7443 			       u32 kfunc_btf_id)
7444 {
7445 	enum btf_kfunc_hook hook;
7446 
7447 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7448 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
7449 }
7450 
7451 /* This function must be invoked only from initcalls/module init functions */
7452 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7453 			      const struct btf_kfunc_id_set *kset)
7454 {
7455 	enum btf_kfunc_hook hook;
7456 	struct btf *btf;
7457 	int ret;
7458 
7459 	btf = btf_get_module_btf(kset->owner);
7460 	if (!btf) {
7461 		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7462 			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7463 			return -ENOENT;
7464 		}
7465 		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7466 			pr_err("missing module BTF, cannot register kfuncs\n");
7467 			return -ENOENT;
7468 		}
7469 		return 0;
7470 	}
7471 	if (IS_ERR(btf))
7472 		return PTR_ERR(btf);
7473 
7474 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7475 	ret = btf_populate_kfunc_set(btf, hook, kset->set);
7476 	btf_put(btf);
7477 	return ret;
7478 }
7479 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7480 
7481 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7482 {
7483 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7484 	struct btf_id_dtor_kfunc *dtor;
7485 
7486 	if (!tab)
7487 		return -ENOENT;
7488 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7489 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7490 	 */
7491 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7492 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7493 	if (!dtor)
7494 		return -ENOENT;
7495 	return dtor->kfunc_btf_id;
7496 }
7497 
7498 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7499 {
7500 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
7501 	const struct btf_param *args;
7502 	s32 dtor_btf_id;
7503 	u32 nr_args, i;
7504 
7505 	for (i = 0; i < cnt; i++) {
7506 		dtor_btf_id = dtors[i].kfunc_btf_id;
7507 
7508 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
7509 		if (!dtor_func || !btf_type_is_func(dtor_func))
7510 			return -EINVAL;
7511 
7512 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7513 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7514 			return -EINVAL;
7515 
7516 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7517 		t = btf_type_by_id(btf, dtor_func_proto->type);
7518 		if (!t || !btf_type_is_void(t))
7519 			return -EINVAL;
7520 
7521 		nr_args = btf_type_vlen(dtor_func_proto);
7522 		if (nr_args != 1)
7523 			return -EINVAL;
7524 		args = btf_params(dtor_func_proto);
7525 		t = btf_type_by_id(btf, args[0].type);
7526 		/* Allow any pointer type, as width on targets Linux supports
7527 		 * will be same for all pointer types (i.e. sizeof(void *))
7528 		 */
7529 		if (!t || !btf_type_is_ptr(t))
7530 			return -EINVAL;
7531 	}
7532 	return 0;
7533 }
7534 
7535 /* This function must be invoked only from initcalls/module init functions */
7536 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7537 				struct module *owner)
7538 {
7539 	struct btf_id_dtor_kfunc_tab *tab;
7540 	struct btf *btf;
7541 	u32 tab_cnt;
7542 	int ret;
7543 
7544 	btf = btf_get_module_btf(owner);
7545 	if (!btf) {
7546 		if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7547 			pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
7548 			return -ENOENT;
7549 		}
7550 		if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7551 			pr_err("missing module BTF, cannot register dtor kfuncs\n");
7552 			return -ENOENT;
7553 		}
7554 		return 0;
7555 	}
7556 	if (IS_ERR(btf))
7557 		return PTR_ERR(btf);
7558 
7559 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7560 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7561 		ret = -E2BIG;
7562 		goto end;
7563 	}
7564 
7565 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
7566 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
7567 	if (ret < 0)
7568 		goto end;
7569 
7570 	tab = btf->dtor_kfunc_tab;
7571 	/* Only one call allowed for modules */
7572 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
7573 		ret = -EINVAL;
7574 		goto end;
7575 	}
7576 
7577 	tab_cnt = tab ? tab->cnt : 0;
7578 	if (tab_cnt > U32_MAX - add_cnt) {
7579 		ret = -EOVERFLOW;
7580 		goto end;
7581 	}
7582 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7583 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7584 		ret = -E2BIG;
7585 		goto end;
7586 	}
7587 
7588 	tab = krealloc(btf->dtor_kfunc_tab,
7589 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
7590 		       GFP_KERNEL | __GFP_NOWARN);
7591 	if (!tab) {
7592 		ret = -ENOMEM;
7593 		goto end;
7594 	}
7595 
7596 	if (!btf->dtor_kfunc_tab)
7597 		tab->cnt = 0;
7598 	btf->dtor_kfunc_tab = tab;
7599 
7600 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
7601 	tab->cnt += add_cnt;
7602 
7603 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
7604 
7605 	return 0;
7606 end:
7607 	btf_free_dtor_kfunc_tab(btf);
7608 	btf_put(btf);
7609 	return ret;
7610 }
7611 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
7612 
7613 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
7614 
7615 /* Check local and target types for compatibility. This check is used for
7616  * type-based CO-RE relocations and follow slightly different rules than
7617  * field-based relocations. This function assumes that root types were already
7618  * checked for name match. Beyond that initial root-level name check, names
7619  * are completely ignored. Compatibility rules are as follows:
7620  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
7621  *     kind should match for local and target types (i.e., STRUCT is not
7622  *     compatible with UNION);
7623  *   - for ENUMs/ENUM64s, the size is ignored;
7624  *   - for INT, size and signedness are ignored;
7625  *   - for ARRAY, dimensionality is ignored, element types are checked for
7626  *     compatibility recursively;
7627  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
7628  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
7629  *   - FUNC_PROTOs are compatible if they have compatible signature: same
7630  *     number of input args and compatible return and argument types.
7631  * These rules are not set in stone and probably will be adjusted as we get
7632  * more experience with using BPF CO-RE relocations.
7633  */
7634 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
7635 			      const struct btf *targ_btf, __u32 targ_id)
7636 {
7637 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
7638 					   MAX_TYPES_ARE_COMPAT_DEPTH);
7639 }
7640 
7641 #define MAX_TYPES_MATCH_DEPTH 2
7642 
7643 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
7644 			 const struct btf *targ_btf, u32 targ_id)
7645 {
7646 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
7647 				      MAX_TYPES_MATCH_DEPTH);
7648 }
7649 
7650 static bool bpf_core_is_flavor_sep(const char *s)
7651 {
7652 	/* check X___Y name pattern, where X and Y are not underscores */
7653 	return s[0] != '_' &&				      /* X */
7654 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
7655 	       s[4] != '_';				      /* Y */
7656 }
7657 
7658 size_t bpf_core_essential_name_len(const char *name)
7659 {
7660 	size_t n = strlen(name);
7661 	int i;
7662 
7663 	for (i = n - 5; i >= 0; i--) {
7664 		if (bpf_core_is_flavor_sep(name + i))
7665 			return i + 1;
7666 	}
7667 	return n;
7668 }
7669 
7670 struct bpf_cand_cache {
7671 	const char *name;
7672 	u32 name_len;
7673 	u16 kind;
7674 	u16 cnt;
7675 	struct {
7676 		const struct btf *btf;
7677 		u32 id;
7678 	} cands[];
7679 };
7680 
7681 static void bpf_free_cands(struct bpf_cand_cache *cands)
7682 {
7683 	if (!cands->cnt)
7684 		/* empty candidate array was allocated on stack */
7685 		return;
7686 	kfree(cands);
7687 }
7688 
7689 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
7690 {
7691 	kfree(cands->name);
7692 	kfree(cands);
7693 }
7694 
7695 #define VMLINUX_CAND_CACHE_SIZE 31
7696 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
7697 
7698 #define MODULE_CAND_CACHE_SIZE 31
7699 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
7700 
7701 static DEFINE_MUTEX(cand_cache_mutex);
7702 
7703 static void __print_cand_cache(struct bpf_verifier_log *log,
7704 			       struct bpf_cand_cache **cache,
7705 			       int cache_size)
7706 {
7707 	struct bpf_cand_cache *cc;
7708 	int i, j;
7709 
7710 	for (i = 0; i < cache_size; i++) {
7711 		cc = cache[i];
7712 		if (!cc)
7713 			continue;
7714 		bpf_log(log, "[%d]%s(", i, cc->name);
7715 		for (j = 0; j < cc->cnt; j++) {
7716 			bpf_log(log, "%d", cc->cands[j].id);
7717 			if (j < cc->cnt - 1)
7718 				bpf_log(log, " ");
7719 		}
7720 		bpf_log(log, "), ");
7721 	}
7722 }
7723 
7724 static void print_cand_cache(struct bpf_verifier_log *log)
7725 {
7726 	mutex_lock(&cand_cache_mutex);
7727 	bpf_log(log, "vmlinux_cand_cache:");
7728 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7729 	bpf_log(log, "\nmodule_cand_cache:");
7730 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7731 	bpf_log(log, "\n");
7732 	mutex_unlock(&cand_cache_mutex);
7733 }
7734 
7735 static u32 hash_cands(struct bpf_cand_cache *cands)
7736 {
7737 	return jhash(cands->name, cands->name_len, 0);
7738 }
7739 
7740 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
7741 					       struct bpf_cand_cache **cache,
7742 					       int cache_size)
7743 {
7744 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
7745 
7746 	if (cc && cc->name_len == cands->name_len &&
7747 	    !strncmp(cc->name, cands->name, cands->name_len))
7748 		return cc;
7749 	return NULL;
7750 }
7751 
7752 static size_t sizeof_cands(int cnt)
7753 {
7754 	return offsetof(struct bpf_cand_cache, cands[cnt]);
7755 }
7756 
7757 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
7758 						  struct bpf_cand_cache **cache,
7759 						  int cache_size)
7760 {
7761 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
7762 
7763 	if (*cc) {
7764 		bpf_free_cands_from_cache(*cc);
7765 		*cc = NULL;
7766 	}
7767 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
7768 	if (!new_cands) {
7769 		bpf_free_cands(cands);
7770 		return ERR_PTR(-ENOMEM);
7771 	}
7772 	/* strdup the name, since it will stay in cache.
7773 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
7774 	 */
7775 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
7776 	bpf_free_cands(cands);
7777 	if (!new_cands->name) {
7778 		kfree(new_cands);
7779 		return ERR_PTR(-ENOMEM);
7780 	}
7781 	*cc = new_cands;
7782 	return new_cands;
7783 }
7784 
7785 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7786 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
7787 			       int cache_size)
7788 {
7789 	struct bpf_cand_cache *cc;
7790 	int i, j;
7791 
7792 	for (i = 0; i < cache_size; i++) {
7793 		cc = cache[i];
7794 		if (!cc)
7795 			continue;
7796 		if (!btf) {
7797 			/* when new module is loaded purge all of module_cand_cache,
7798 			 * since new module might have candidates with the name
7799 			 * that matches cached cands.
7800 			 */
7801 			bpf_free_cands_from_cache(cc);
7802 			cache[i] = NULL;
7803 			continue;
7804 		}
7805 		/* when module is unloaded purge cache entries
7806 		 * that match module's btf
7807 		 */
7808 		for (j = 0; j < cc->cnt; j++)
7809 			if (cc->cands[j].btf == btf) {
7810 				bpf_free_cands_from_cache(cc);
7811 				cache[i] = NULL;
7812 				break;
7813 			}
7814 	}
7815 
7816 }
7817 
7818 static void purge_cand_cache(struct btf *btf)
7819 {
7820 	mutex_lock(&cand_cache_mutex);
7821 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7822 	mutex_unlock(&cand_cache_mutex);
7823 }
7824 #endif
7825 
7826 static struct bpf_cand_cache *
7827 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
7828 		   int targ_start_id)
7829 {
7830 	struct bpf_cand_cache *new_cands;
7831 	const struct btf_type *t;
7832 	const char *targ_name;
7833 	size_t targ_essent_len;
7834 	int n, i;
7835 
7836 	n = btf_nr_types(targ_btf);
7837 	for (i = targ_start_id; i < n; i++) {
7838 		t = btf_type_by_id(targ_btf, i);
7839 		if (btf_kind(t) != cands->kind)
7840 			continue;
7841 
7842 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
7843 		if (!targ_name)
7844 			continue;
7845 
7846 		/* the resched point is before strncmp to make sure that search
7847 		 * for non-existing name will have a chance to schedule().
7848 		 */
7849 		cond_resched();
7850 
7851 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
7852 			continue;
7853 
7854 		targ_essent_len = bpf_core_essential_name_len(targ_name);
7855 		if (targ_essent_len != cands->name_len)
7856 			continue;
7857 
7858 		/* most of the time there is only one candidate for a given kind+name pair */
7859 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
7860 		if (!new_cands) {
7861 			bpf_free_cands(cands);
7862 			return ERR_PTR(-ENOMEM);
7863 		}
7864 
7865 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
7866 		bpf_free_cands(cands);
7867 		cands = new_cands;
7868 		cands->cands[cands->cnt].btf = targ_btf;
7869 		cands->cands[cands->cnt].id = i;
7870 		cands->cnt++;
7871 	}
7872 	return cands;
7873 }
7874 
7875 static struct bpf_cand_cache *
7876 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
7877 {
7878 	struct bpf_cand_cache *cands, *cc, local_cand = {};
7879 	const struct btf *local_btf = ctx->btf;
7880 	const struct btf_type *local_type;
7881 	const struct btf *main_btf;
7882 	size_t local_essent_len;
7883 	struct btf *mod_btf;
7884 	const char *name;
7885 	int id;
7886 
7887 	main_btf = bpf_get_btf_vmlinux();
7888 	if (IS_ERR(main_btf))
7889 		return ERR_CAST(main_btf);
7890 	if (!main_btf)
7891 		return ERR_PTR(-EINVAL);
7892 
7893 	local_type = btf_type_by_id(local_btf, local_type_id);
7894 	if (!local_type)
7895 		return ERR_PTR(-EINVAL);
7896 
7897 	name = btf_name_by_offset(local_btf, local_type->name_off);
7898 	if (str_is_empty(name))
7899 		return ERR_PTR(-EINVAL);
7900 	local_essent_len = bpf_core_essential_name_len(name);
7901 
7902 	cands = &local_cand;
7903 	cands->name = name;
7904 	cands->kind = btf_kind(local_type);
7905 	cands->name_len = local_essent_len;
7906 
7907 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7908 	/* cands is a pointer to stack here */
7909 	if (cc) {
7910 		if (cc->cnt)
7911 			return cc;
7912 		goto check_modules;
7913 	}
7914 
7915 	/* Attempt to find target candidates in vmlinux BTF first */
7916 	cands = bpf_core_add_cands(cands, main_btf, 1);
7917 	if (IS_ERR(cands))
7918 		return ERR_CAST(cands);
7919 
7920 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
7921 
7922 	/* populate cache even when cands->cnt == 0 */
7923 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7924 	if (IS_ERR(cc))
7925 		return ERR_CAST(cc);
7926 
7927 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
7928 	if (cc->cnt)
7929 		return cc;
7930 
7931 check_modules:
7932 	/* cands is a pointer to stack here and cands->cnt == 0 */
7933 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7934 	if (cc)
7935 		/* if cache has it return it even if cc->cnt == 0 */
7936 		return cc;
7937 
7938 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
7939 	spin_lock_bh(&btf_idr_lock);
7940 	idr_for_each_entry(&btf_idr, mod_btf, id) {
7941 		if (!btf_is_module(mod_btf))
7942 			continue;
7943 		/* linear search could be slow hence unlock/lock
7944 		 * the IDR to avoiding holding it for too long
7945 		 */
7946 		btf_get(mod_btf);
7947 		spin_unlock_bh(&btf_idr_lock);
7948 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
7949 		if (IS_ERR(cands)) {
7950 			btf_put(mod_btf);
7951 			return ERR_CAST(cands);
7952 		}
7953 		spin_lock_bh(&btf_idr_lock);
7954 		btf_put(mod_btf);
7955 	}
7956 	spin_unlock_bh(&btf_idr_lock);
7957 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
7958 	 * or pointer to stack if cands->cnd == 0.
7959 	 * Copy it into the cache even when cands->cnt == 0 and
7960 	 * return the result.
7961 	 */
7962 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7963 }
7964 
7965 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
7966 		   int relo_idx, void *insn)
7967 {
7968 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
7969 	struct bpf_core_cand_list cands = {};
7970 	struct bpf_core_relo_res targ_res;
7971 	struct bpf_core_spec *specs;
7972 	int err;
7973 
7974 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
7975 	 * into arrays of btf_ids of struct fields and array indices.
7976 	 */
7977 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
7978 	if (!specs)
7979 		return -ENOMEM;
7980 
7981 	if (need_cands) {
7982 		struct bpf_cand_cache *cc;
7983 		int i;
7984 
7985 		mutex_lock(&cand_cache_mutex);
7986 		cc = bpf_core_find_cands(ctx, relo->type_id);
7987 		if (IS_ERR(cc)) {
7988 			bpf_log(ctx->log, "target candidate search failed for %d\n",
7989 				relo->type_id);
7990 			err = PTR_ERR(cc);
7991 			goto out;
7992 		}
7993 		if (cc->cnt) {
7994 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
7995 			if (!cands.cands) {
7996 				err = -ENOMEM;
7997 				goto out;
7998 			}
7999 		}
8000 		for (i = 0; i < cc->cnt; i++) {
8001 			bpf_log(ctx->log,
8002 				"CO-RE relocating %s %s: found target candidate [%d]\n",
8003 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8004 			cands.cands[i].btf = cc->cands[i].btf;
8005 			cands.cands[i].id = cc->cands[i].id;
8006 		}
8007 		cands.len = cc->cnt;
8008 		/* cand_cache_mutex needs to span the cache lookup and
8009 		 * copy of btf pointer into bpf_core_cand_list,
8010 		 * since module can be unloaded while bpf_core_calc_relo_insn
8011 		 * is working with module's btf.
8012 		 */
8013 	}
8014 
8015 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8016 				      &targ_res);
8017 	if (err)
8018 		goto out;
8019 
8020 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8021 				  &targ_res);
8022 
8023 out:
8024 	kfree(specs);
8025 	if (need_cands) {
8026 		kfree(cands.cands);
8027 		mutex_unlock(&cand_cache_mutex);
8028 		if (ctx->log->level & BPF_LOG_LEVEL2)
8029 			print_cand_cache(ctx->log);
8030 	}
8031 	return err;
8032 }
8033