1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf_lsm.h> 23 #include <linux/skmsg.h> 24 #include <linux/perf_event.h> 25 #include <linux/bsearch.h> 26 #include <linux/kobject.h> 27 #include <linux/sysfs.h> 28 #include <net/sock.h> 29 #include "../tools/lib/bpf/relo_core.h" 30 31 /* BTF (BPF Type Format) is the meta data format which describes 32 * the data types of BPF program/map. Hence, it basically focus 33 * on the C programming language which the modern BPF is primary 34 * using. 35 * 36 * ELF Section: 37 * ~~~~~~~~~~~ 38 * The BTF data is stored under the ".BTF" ELF section 39 * 40 * struct btf_type: 41 * ~~~~~~~~~~~~~~~ 42 * Each 'struct btf_type' object describes a C data type. 43 * Depending on the type it is describing, a 'struct btf_type' 44 * object may be followed by more data. F.e. 45 * To describe an array, 'struct btf_type' is followed by 46 * 'struct btf_array'. 47 * 48 * 'struct btf_type' and any extra data following it are 49 * 4 bytes aligned. 50 * 51 * Type section: 52 * ~~~~~~~~~~~~~ 53 * The BTF type section contains a list of 'struct btf_type' objects. 54 * Each one describes a C type. Recall from the above section 55 * that a 'struct btf_type' object could be immediately followed by extra 56 * data in order to describe some particular C types. 57 * 58 * type_id: 59 * ~~~~~~~ 60 * Each btf_type object is identified by a type_id. The type_id 61 * is implicitly implied by the location of the btf_type object in 62 * the BTF type section. The first one has type_id 1. The second 63 * one has type_id 2...etc. Hence, an earlier btf_type has 64 * a smaller type_id. 65 * 66 * A btf_type object may refer to another btf_type object by using 67 * type_id (i.e. the "type" in the "struct btf_type"). 68 * 69 * NOTE that we cannot assume any reference-order. 70 * A btf_type object can refer to an earlier btf_type object 71 * but it can also refer to a later btf_type object. 72 * 73 * For example, to describe "const void *". A btf_type 74 * object describing "const" may refer to another btf_type 75 * object describing "void *". This type-reference is done 76 * by specifying type_id: 77 * 78 * [1] CONST (anon) type_id=2 79 * [2] PTR (anon) type_id=0 80 * 81 * The above is the btf_verifier debug log: 82 * - Each line started with "[?]" is a btf_type object 83 * - [?] is the type_id of the btf_type object. 84 * - CONST/PTR is the BTF_KIND_XXX 85 * - "(anon)" is the name of the type. It just 86 * happens that CONST and PTR has no name. 87 * - type_id=XXX is the 'u32 type' in btf_type 88 * 89 * NOTE: "void" has type_id 0 90 * 91 * String section: 92 * ~~~~~~~~~~~~~~ 93 * The BTF string section contains the names used by the type section. 94 * Each string is referred by an "offset" from the beginning of the 95 * string section. 96 * 97 * Each string is '\0' terminated. 98 * 99 * The first character in the string section must be '\0' 100 * which is used to mean 'anonymous'. Some btf_type may not 101 * have a name. 102 */ 103 104 /* BTF verification: 105 * 106 * To verify BTF data, two passes are needed. 107 * 108 * Pass #1 109 * ~~~~~~~ 110 * The first pass is to collect all btf_type objects to 111 * an array: "btf->types". 112 * 113 * Depending on the C type that a btf_type is describing, 114 * a btf_type may be followed by extra data. We don't know 115 * how many btf_type is there, and more importantly we don't 116 * know where each btf_type is located in the type section. 117 * 118 * Without knowing the location of each type_id, most verifications 119 * cannot be done. e.g. an earlier btf_type may refer to a later 120 * btf_type (recall the "const void *" above), so we cannot 121 * check this type-reference in the first pass. 122 * 123 * In the first pass, it still does some verifications (e.g. 124 * checking the name is a valid offset to the string section). 125 * 126 * Pass #2 127 * ~~~~~~~ 128 * The main focus is to resolve a btf_type that is referring 129 * to another type. 130 * 131 * We have to ensure the referring type: 132 * 1) does exist in the BTF (i.e. in btf->types[]) 133 * 2) does not cause a loop: 134 * struct A { 135 * struct B b; 136 * }; 137 * 138 * struct B { 139 * struct A a; 140 * }; 141 * 142 * btf_type_needs_resolve() decides if a btf_type needs 143 * to be resolved. 144 * 145 * The needs_resolve type implements the "resolve()" ops which 146 * essentially does a DFS and detects backedge. 147 * 148 * During resolve (or DFS), different C types have different 149 * "RESOLVED" conditions. 150 * 151 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 152 * members because a member is always referring to another 153 * type. A struct's member can be treated as "RESOLVED" if 154 * it is referring to a BTF_KIND_PTR. Otherwise, the 155 * following valid C struct would be rejected: 156 * 157 * struct A { 158 * int m; 159 * struct A *a; 160 * }; 161 * 162 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 163 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 164 * detect a pointer loop, e.g.: 165 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 166 * ^ | 167 * +-----------------------------------------+ 168 * 169 */ 170 171 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 172 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 173 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 174 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 175 #define BITS_ROUNDUP_BYTES(bits) \ 176 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 177 178 #define BTF_INFO_MASK 0x9f00ffff 179 #define BTF_INT_MASK 0x0fffffff 180 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 181 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 182 183 /* 16MB for 64k structs and each has 16 members and 184 * a few MB spaces for the string section. 185 * The hard limit is S32_MAX. 186 */ 187 #define BTF_MAX_SIZE (16 * 1024 * 1024) 188 189 #define for_each_member_from(i, from, struct_type, member) \ 190 for (i = from, member = btf_type_member(struct_type) + from; \ 191 i < btf_type_vlen(struct_type); \ 192 i++, member++) 193 194 #define for_each_vsi_from(i, from, struct_type, member) \ 195 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 196 i < btf_type_vlen(struct_type); \ 197 i++, member++) 198 199 DEFINE_IDR(btf_idr); 200 DEFINE_SPINLOCK(btf_idr_lock); 201 202 enum btf_kfunc_hook { 203 BTF_KFUNC_HOOK_COMMON, 204 BTF_KFUNC_HOOK_XDP, 205 BTF_KFUNC_HOOK_TC, 206 BTF_KFUNC_HOOK_STRUCT_OPS, 207 BTF_KFUNC_HOOK_TRACING, 208 BTF_KFUNC_HOOK_SYSCALL, 209 BTF_KFUNC_HOOK_FMODRET, 210 BTF_KFUNC_HOOK_MAX, 211 }; 212 213 enum { 214 BTF_KFUNC_SET_MAX_CNT = 256, 215 BTF_DTOR_KFUNC_MAX_CNT = 256, 216 }; 217 218 struct btf_kfunc_set_tab { 219 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 220 }; 221 222 struct btf_id_dtor_kfunc_tab { 223 u32 cnt; 224 struct btf_id_dtor_kfunc dtors[]; 225 }; 226 227 struct btf { 228 void *data; 229 struct btf_type **types; 230 u32 *resolved_ids; 231 u32 *resolved_sizes; 232 const char *strings; 233 void *nohdr_data; 234 struct btf_header hdr; 235 u32 nr_types; /* includes VOID for base BTF */ 236 u32 types_size; 237 u32 data_size; 238 refcount_t refcnt; 239 u32 id; 240 struct rcu_head rcu; 241 struct btf_kfunc_set_tab *kfunc_set_tab; 242 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 243 struct btf_struct_metas *struct_meta_tab; 244 245 /* split BTF support */ 246 struct btf *base_btf; 247 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 248 u32 start_str_off; /* first string offset (0 for base BTF) */ 249 char name[MODULE_NAME_LEN]; 250 bool kernel_btf; 251 }; 252 253 enum verifier_phase { 254 CHECK_META, 255 CHECK_TYPE, 256 }; 257 258 struct resolve_vertex { 259 const struct btf_type *t; 260 u32 type_id; 261 u16 next_member; 262 }; 263 264 enum visit_state { 265 NOT_VISITED, 266 VISITED, 267 RESOLVED, 268 }; 269 270 enum resolve_mode { 271 RESOLVE_TBD, /* To Be Determined */ 272 RESOLVE_PTR, /* Resolving for Pointer */ 273 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 274 * or array 275 */ 276 }; 277 278 #define MAX_RESOLVE_DEPTH 32 279 280 struct btf_sec_info { 281 u32 off; 282 u32 len; 283 }; 284 285 struct btf_verifier_env { 286 struct btf *btf; 287 u8 *visit_states; 288 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 289 struct bpf_verifier_log log; 290 u32 log_type_id; 291 u32 top_stack; 292 enum verifier_phase phase; 293 enum resolve_mode resolve_mode; 294 }; 295 296 static const char * const btf_kind_str[NR_BTF_KINDS] = { 297 [BTF_KIND_UNKN] = "UNKNOWN", 298 [BTF_KIND_INT] = "INT", 299 [BTF_KIND_PTR] = "PTR", 300 [BTF_KIND_ARRAY] = "ARRAY", 301 [BTF_KIND_STRUCT] = "STRUCT", 302 [BTF_KIND_UNION] = "UNION", 303 [BTF_KIND_ENUM] = "ENUM", 304 [BTF_KIND_FWD] = "FWD", 305 [BTF_KIND_TYPEDEF] = "TYPEDEF", 306 [BTF_KIND_VOLATILE] = "VOLATILE", 307 [BTF_KIND_CONST] = "CONST", 308 [BTF_KIND_RESTRICT] = "RESTRICT", 309 [BTF_KIND_FUNC] = "FUNC", 310 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 311 [BTF_KIND_VAR] = "VAR", 312 [BTF_KIND_DATASEC] = "DATASEC", 313 [BTF_KIND_FLOAT] = "FLOAT", 314 [BTF_KIND_DECL_TAG] = "DECL_TAG", 315 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 316 [BTF_KIND_ENUM64] = "ENUM64", 317 }; 318 319 const char *btf_type_str(const struct btf_type *t) 320 { 321 return btf_kind_str[BTF_INFO_KIND(t->info)]; 322 } 323 324 /* Chunk size we use in safe copy of data to be shown. */ 325 #define BTF_SHOW_OBJ_SAFE_SIZE 32 326 327 /* 328 * This is the maximum size of a base type value (equivalent to a 329 * 128-bit int); if we are at the end of our safe buffer and have 330 * less than 16 bytes space we can't be assured of being able 331 * to copy the next type safely, so in such cases we will initiate 332 * a new copy. 333 */ 334 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 335 336 /* Type name size */ 337 #define BTF_SHOW_NAME_SIZE 80 338 339 /* 340 * The suffix of a type that indicates it cannot alias another type when 341 * comparing BTF IDs for kfunc invocations. 342 */ 343 #define NOCAST_ALIAS_SUFFIX "___init" 344 345 /* 346 * Common data to all BTF show operations. Private show functions can add 347 * their own data to a structure containing a struct btf_show and consult it 348 * in the show callback. See btf_type_show() below. 349 * 350 * One challenge with showing nested data is we want to skip 0-valued 351 * data, but in order to figure out whether a nested object is all zeros 352 * we need to walk through it. As a result, we need to make two passes 353 * when handling structs, unions and arrays; the first path simply looks 354 * for nonzero data, while the second actually does the display. The first 355 * pass is signalled by show->state.depth_check being set, and if we 356 * encounter a non-zero value we set show->state.depth_to_show to 357 * the depth at which we encountered it. When we have completed the 358 * first pass, we will know if anything needs to be displayed if 359 * depth_to_show > depth. See btf_[struct,array]_show() for the 360 * implementation of this. 361 * 362 * Another problem is we want to ensure the data for display is safe to 363 * access. To support this, the anonymous "struct {} obj" tracks the data 364 * object and our safe copy of it. We copy portions of the data needed 365 * to the object "copy" buffer, but because its size is limited to 366 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 367 * traverse larger objects for display. 368 * 369 * The various data type show functions all start with a call to 370 * btf_show_start_type() which returns a pointer to the safe copy 371 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 372 * raw data itself). btf_show_obj_safe() is responsible for 373 * using copy_from_kernel_nofault() to update the safe data if necessary 374 * as we traverse the object's data. skbuff-like semantics are 375 * used: 376 * 377 * - obj.head points to the start of the toplevel object for display 378 * - obj.size is the size of the toplevel object 379 * - obj.data points to the current point in the original data at 380 * which our safe data starts. obj.data will advance as we copy 381 * portions of the data. 382 * 383 * In most cases a single copy will suffice, but larger data structures 384 * such as "struct task_struct" will require many copies. The logic in 385 * btf_show_obj_safe() handles the logic that determines if a new 386 * copy_from_kernel_nofault() is needed. 387 */ 388 struct btf_show { 389 u64 flags; 390 void *target; /* target of show operation (seq file, buffer) */ 391 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 392 const struct btf *btf; 393 /* below are used during iteration */ 394 struct { 395 u8 depth; 396 u8 depth_to_show; 397 u8 depth_check; 398 u8 array_member:1, 399 array_terminated:1; 400 u16 array_encoding; 401 u32 type_id; 402 int status; /* non-zero for error */ 403 const struct btf_type *type; 404 const struct btf_member *member; 405 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 406 } state; 407 struct { 408 u32 size; 409 void *head; 410 void *data; 411 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 412 } obj; 413 }; 414 415 struct btf_kind_operations { 416 s32 (*check_meta)(struct btf_verifier_env *env, 417 const struct btf_type *t, 418 u32 meta_left); 419 int (*resolve)(struct btf_verifier_env *env, 420 const struct resolve_vertex *v); 421 int (*check_member)(struct btf_verifier_env *env, 422 const struct btf_type *struct_type, 423 const struct btf_member *member, 424 const struct btf_type *member_type); 425 int (*check_kflag_member)(struct btf_verifier_env *env, 426 const struct btf_type *struct_type, 427 const struct btf_member *member, 428 const struct btf_type *member_type); 429 void (*log_details)(struct btf_verifier_env *env, 430 const struct btf_type *t); 431 void (*show)(const struct btf *btf, const struct btf_type *t, 432 u32 type_id, void *data, u8 bits_offsets, 433 struct btf_show *show); 434 }; 435 436 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 437 static struct btf_type btf_void; 438 439 static int btf_resolve(struct btf_verifier_env *env, 440 const struct btf_type *t, u32 type_id); 441 442 static int btf_func_check(struct btf_verifier_env *env, 443 const struct btf_type *t); 444 445 static bool btf_type_is_modifier(const struct btf_type *t) 446 { 447 /* Some of them is not strictly a C modifier 448 * but they are grouped into the same bucket 449 * for BTF concern: 450 * A type (t) that refers to another 451 * type through t->type AND its size cannot 452 * be determined without following the t->type. 453 * 454 * ptr does not fall into this bucket 455 * because its size is always sizeof(void *). 456 */ 457 switch (BTF_INFO_KIND(t->info)) { 458 case BTF_KIND_TYPEDEF: 459 case BTF_KIND_VOLATILE: 460 case BTF_KIND_CONST: 461 case BTF_KIND_RESTRICT: 462 case BTF_KIND_TYPE_TAG: 463 return true; 464 } 465 466 return false; 467 } 468 469 bool btf_type_is_void(const struct btf_type *t) 470 { 471 return t == &btf_void; 472 } 473 474 static bool btf_type_is_fwd(const struct btf_type *t) 475 { 476 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 477 } 478 479 static bool btf_type_nosize(const struct btf_type *t) 480 { 481 return btf_type_is_void(t) || btf_type_is_fwd(t) || 482 btf_type_is_func(t) || btf_type_is_func_proto(t); 483 } 484 485 static bool btf_type_nosize_or_null(const struct btf_type *t) 486 { 487 return !t || btf_type_nosize(t); 488 } 489 490 static bool btf_type_is_datasec(const struct btf_type *t) 491 { 492 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 493 } 494 495 static bool btf_type_is_decl_tag(const struct btf_type *t) 496 { 497 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 498 } 499 500 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 501 { 502 return btf_type_is_func(t) || btf_type_is_struct(t) || 503 btf_type_is_var(t) || btf_type_is_typedef(t); 504 } 505 506 u32 btf_nr_types(const struct btf *btf) 507 { 508 u32 total = 0; 509 510 while (btf) { 511 total += btf->nr_types; 512 btf = btf->base_btf; 513 } 514 515 return total; 516 } 517 518 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 519 { 520 const struct btf_type *t; 521 const char *tname; 522 u32 i, total; 523 524 total = btf_nr_types(btf); 525 for (i = 1; i < total; i++) { 526 t = btf_type_by_id(btf, i); 527 if (BTF_INFO_KIND(t->info) != kind) 528 continue; 529 530 tname = btf_name_by_offset(btf, t->name_off); 531 if (!strcmp(tname, name)) 532 return i; 533 } 534 535 return -ENOENT; 536 } 537 538 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 539 { 540 struct btf *btf; 541 s32 ret; 542 int id; 543 544 btf = bpf_get_btf_vmlinux(); 545 if (IS_ERR(btf)) 546 return PTR_ERR(btf); 547 if (!btf) 548 return -EINVAL; 549 550 ret = btf_find_by_name_kind(btf, name, kind); 551 /* ret is never zero, since btf_find_by_name_kind returns 552 * positive btf_id or negative error. 553 */ 554 if (ret > 0) { 555 btf_get(btf); 556 *btf_p = btf; 557 return ret; 558 } 559 560 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 561 spin_lock_bh(&btf_idr_lock); 562 idr_for_each_entry(&btf_idr, btf, id) { 563 if (!btf_is_module(btf)) 564 continue; 565 /* linear search could be slow hence unlock/lock 566 * the IDR to avoiding holding it for too long 567 */ 568 btf_get(btf); 569 spin_unlock_bh(&btf_idr_lock); 570 ret = btf_find_by_name_kind(btf, name, kind); 571 if (ret > 0) { 572 *btf_p = btf; 573 return ret; 574 } 575 spin_lock_bh(&btf_idr_lock); 576 btf_put(btf); 577 } 578 spin_unlock_bh(&btf_idr_lock); 579 return ret; 580 } 581 582 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 583 u32 id, u32 *res_id) 584 { 585 const struct btf_type *t = btf_type_by_id(btf, id); 586 587 while (btf_type_is_modifier(t)) { 588 id = t->type; 589 t = btf_type_by_id(btf, t->type); 590 } 591 592 if (res_id) 593 *res_id = id; 594 595 return t; 596 } 597 598 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 599 u32 id, u32 *res_id) 600 { 601 const struct btf_type *t; 602 603 t = btf_type_skip_modifiers(btf, id, NULL); 604 if (!btf_type_is_ptr(t)) 605 return NULL; 606 607 return btf_type_skip_modifiers(btf, t->type, res_id); 608 } 609 610 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 611 u32 id, u32 *res_id) 612 { 613 const struct btf_type *ptype; 614 615 ptype = btf_type_resolve_ptr(btf, id, res_id); 616 if (ptype && btf_type_is_func_proto(ptype)) 617 return ptype; 618 619 return NULL; 620 } 621 622 /* Types that act only as a source, not sink or intermediate 623 * type when resolving. 624 */ 625 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 626 { 627 return btf_type_is_var(t) || 628 btf_type_is_decl_tag(t) || 629 btf_type_is_datasec(t); 630 } 631 632 /* What types need to be resolved? 633 * 634 * btf_type_is_modifier() is an obvious one. 635 * 636 * btf_type_is_struct() because its member refers to 637 * another type (through member->type). 638 * 639 * btf_type_is_var() because the variable refers to 640 * another type. btf_type_is_datasec() holds multiple 641 * btf_type_is_var() types that need resolving. 642 * 643 * btf_type_is_array() because its element (array->type) 644 * refers to another type. Array can be thought of a 645 * special case of struct while array just has the same 646 * member-type repeated by array->nelems of times. 647 */ 648 static bool btf_type_needs_resolve(const struct btf_type *t) 649 { 650 return btf_type_is_modifier(t) || 651 btf_type_is_ptr(t) || 652 btf_type_is_struct(t) || 653 btf_type_is_array(t) || 654 btf_type_is_var(t) || 655 btf_type_is_func(t) || 656 btf_type_is_decl_tag(t) || 657 btf_type_is_datasec(t); 658 } 659 660 /* t->size can be used */ 661 static bool btf_type_has_size(const struct btf_type *t) 662 { 663 switch (BTF_INFO_KIND(t->info)) { 664 case BTF_KIND_INT: 665 case BTF_KIND_STRUCT: 666 case BTF_KIND_UNION: 667 case BTF_KIND_ENUM: 668 case BTF_KIND_DATASEC: 669 case BTF_KIND_FLOAT: 670 case BTF_KIND_ENUM64: 671 return true; 672 } 673 674 return false; 675 } 676 677 static const char *btf_int_encoding_str(u8 encoding) 678 { 679 if (encoding == 0) 680 return "(none)"; 681 else if (encoding == BTF_INT_SIGNED) 682 return "SIGNED"; 683 else if (encoding == BTF_INT_CHAR) 684 return "CHAR"; 685 else if (encoding == BTF_INT_BOOL) 686 return "BOOL"; 687 else 688 return "UNKN"; 689 } 690 691 static u32 btf_type_int(const struct btf_type *t) 692 { 693 return *(u32 *)(t + 1); 694 } 695 696 static const struct btf_array *btf_type_array(const struct btf_type *t) 697 { 698 return (const struct btf_array *)(t + 1); 699 } 700 701 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 702 { 703 return (const struct btf_enum *)(t + 1); 704 } 705 706 static const struct btf_var *btf_type_var(const struct btf_type *t) 707 { 708 return (const struct btf_var *)(t + 1); 709 } 710 711 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 712 { 713 return (const struct btf_decl_tag *)(t + 1); 714 } 715 716 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 717 { 718 return (const struct btf_enum64 *)(t + 1); 719 } 720 721 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 722 { 723 return kind_ops[BTF_INFO_KIND(t->info)]; 724 } 725 726 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 727 { 728 if (!BTF_STR_OFFSET_VALID(offset)) 729 return false; 730 731 while (offset < btf->start_str_off) 732 btf = btf->base_btf; 733 734 offset -= btf->start_str_off; 735 return offset < btf->hdr.str_len; 736 } 737 738 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 739 { 740 if ((first ? !isalpha(c) : 741 !isalnum(c)) && 742 c != '_' && 743 ((c == '.' && !dot_ok) || 744 c != '.')) 745 return false; 746 return true; 747 } 748 749 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 750 { 751 while (offset < btf->start_str_off) 752 btf = btf->base_btf; 753 754 offset -= btf->start_str_off; 755 if (offset < btf->hdr.str_len) 756 return &btf->strings[offset]; 757 758 return NULL; 759 } 760 761 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 762 { 763 /* offset must be valid */ 764 const char *src = btf_str_by_offset(btf, offset); 765 const char *src_limit; 766 767 if (!__btf_name_char_ok(*src, true, dot_ok)) 768 return false; 769 770 /* set a limit on identifier length */ 771 src_limit = src + KSYM_NAME_LEN; 772 src++; 773 while (*src && src < src_limit) { 774 if (!__btf_name_char_ok(*src, false, dot_ok)) 775 return false; 776 src++; 777 } 778 779 return !*src; 780 } 781 782 /* Only C-style identifier is permitted. This can be relaxed if 783 * necessary. 784 */ 785 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 786 { 787 return __btf_name_valid(btf, offset, false); 788 } 789 790 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 791 { 792 return __btf_name_valid(btf, offset, true); 793 } 794 795 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 796 { 797 const char *name; 798 799 if (!offset) 800 return "(anon)"; 801 802 name = btf_str_by_offset(btf, offset); 803 return name ?: "(invalid-name-offset)"; 804 } 805 806 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 807 { 808 return btf_str_by_offset(btf, offset); 809 } 810 811 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 812 { 813 while (type_id < btf->start_id) 814 btf = btf->base_btf; 815 816 type_id -= btf->start_id; 817 if (type_id >= btf->nr_types) 818 return NULL; 819 return btf->types[type_id]; 820 } 821 EXPORT_SYMBOL_GPL(btf_type_by_id); 822 823 /* 824 * Regular int is not a bit field and it must be either 825 * u8/u16/u32/u64 or __int128. 826 */ 827 static bool btf_type_int_is_regular(const struct btf_type *t) 828 { 829 u8 nr_bits, nr_bytes; 830 u32 int_data; 831 832 int_data = btf_type_int(t); 833 nr_bits = BTF_INT_BITS(int_data); 834 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 835 if (BITS_PER_BYTE_MASKED(nr_bits) || 836 BTF_INT_OFFSET(int_data) || 837 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 838 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 839 nr_bytes != (2 * sizeof(u64)))) { 840 return false; 841 } 842 843 return true; 844 } 845 846 /* 847 * Check that given struct member is a regular int with expected 848 * offset and size. 849 */ 850 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 851 const struct btf_member *m, 852 u32 expected_offset, u32 expected_size) 853 { 854 const struct btf_type *t; 855 u32 id, int_data; 856 u8 nr_bits; 857 858 id = m->type; 859 t = btf_type_id_size(btf, &id, NULL); 860 if (!t || !btf_type_is_int(t)) 861 return false; 862 863 int_data = btf_type_int(t); 864 nr_bits = BTF_INT_BITS(int_data); 865 if (btf_type_kflag(s)) { 866 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 867 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 868 869 /* if kflag set, int should be a regular int and 870 * bit offset should be at byte boundary. 871 */ 872 return !bitfield_size && 873 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 874 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 875 } 876 877 if (BTF_INT_OFFSET(int_data) || 878 BITS_PER_BYTE_MASKED(m->offset) || 879 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 880 BITS_PER_BYTE_MASKED(nr_bits) || 881 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 882 return false; 883 884 return true; 885 } 886 887 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 888 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 889 u32 id) 890 { 891 const struct btf_type *t = btf_type_by_id(btf, id); 892 893 while (btf_type_is_modifier(t) && 894 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 895 t = btf_type_by_id(btf, t->type); 896 } 897 898 return t; 899 } 900 901 #define BTF_SHOW_MAX_ITER 10 902 903 #define BTF_KIND_BIT(kind) (1ULL << kind) 904 905 /* 906 * Populate show->state.name with type name information. 907 * Format of type name is 908 * 909 * [.member_name = ] (type_name) 910 */ 911 static const char *btf_show_name(struct btf_show *show) 912 { 913 /* BTF_MAX_ITER array suffixes "[]" */ 914 const char *array_suffixes = "[][][][][][][][][][]"; 915 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 916 /* BTF_MAX_ITER pointer suffixes "*" */ 917 const char *ptr_suffixes = "**********"; 918 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 919 const char *name = NULL, *prefix = "", *parens = ""; 920 const struct btf_member *m = show->state.member; 921 const struct btf_type *t; 922 const struct btf_array *array; 923 u32 id = show->state.type_id; 924 const char *member = NULL; 925 bool show_member = false; 926 u64 kinds = 0; 927 int i; 928 929 show->state.name[0] = '\0'; 930 931 /* 932 * Don't show type name if we're showing an array member; 933 * in that case we show the array type so don't need to repeat 934 * ourselves for each member. 935 */ 936 if (show->state.array_member) 937 return ""; 938 939 /* Retrieve member name, if any. */ 940 if (m) { 941 member = btf_name_by_offset(show->btf, m->name_off); 942 show_member = strlen(member) > 0; 943 id = m->type; 944 } 945 946 /* 947 * Start with type_id, as we have resolved the struct btf_type * 948 * via btf_modifier_show() past the parent typedef to the child 949 * struct, int etc it is defined as. In such cases, the type_id 950 * still represents the starting type while the struct btf_type * 951 * in our show->state points at the resolved type of the typedef. 952 */ 953 t = btf_type_by_id(show->btf, id); 954 if (!t) 955 return ""; 956 957 /* 958 * The goal here is to build up the right number of pointer and 959 * array suffixes while ensuring the type name for a typedef 960 * is represented. Along the way we accumulate a list of 961 * BTF kinds we have encountered, since these will inform later 962 * display; for example, pointer types will not require an 963 * opening "{" for struct, we will just display the pointer value. 964 * 965 * We also want to accumulate the right number of pointer or array 966 * indices in the format string while iterating until we get to 967 * the typedef/pointee/array member target type. 968 * 969 * We start by pointing at the end of pointer and array suffix 970 * strings; as we accumulate pointers and arrays we move the pointer 971 * or array string backwards so it will show the expected number of 972 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 973 * and/or arrays and typedefs are supported as a precaution. 974 * 975 * We also want to get typedef name while proceeding to resolve 976 * type it points to so that we can add parentheses if it is a 977 * "typedef struct" etc. 978 */ 979 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 980 981 switch (BTF_INFO_KIND(t->info)) { 982 case BTF_KIND_TYPEDEF: 983 if (!name) 984 name = btf_name_by_offset(show->btf, 985 t->name_off); 986 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 987 id = t->type; 988 break; 989 case BTF_KIND_ARRAY: 990 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 991 parens = "["; 992 if (!t) 993 return ""; 994 array = btf_type_array(t); 995 if (array_suffix > array_suffixes) 996 array_suffix -= 2; 997 id = array->type; 998 break; 999 case BTF_KIND_PTR: 1000 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1001 if (ptr_suffix > ptr_suffixes) 1002 ptr_suffix -= 1; 1003 id = t->type; 1004 break; 1005 default: 1006 id = 0; 1007 break; 1008 } 1009 if (!id) 1010 break; 1011 t = btf_type_skip_qualifiers(show->btf, id); 1012 } 1013 /* We may not be able to represent this type; bail to be safe */ 1014 if (i == BTF_SHOW_MAX_ITER) 1015 return ""; 1016 1017 if (!name) 1018 name = btf_name_by_offset(show->btf, t->name_off); 1019 1020 switch (BTF_INFO_KIND(t->info)) { 1021 case BTF_KIND_STRUCT: 1022 case BTF_KIND_UNION: 1023 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1024 "struct" : "union"; 1025 /* if it's an array of struct/union, parens is already set */ 1026 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1027 parens = "{"; 1028 break; 1029 case BTF_KIND_ENUM: 1030 case BTF_KIND_ENUM64: 1031 prefix = "enum"; 1032 break; 1033 default: 1034 break; 1035 } 1036 1037 /* pointer does not require parens */ 1038 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1039 parens = ""; 1040 /* typedef does not require struct/union/enum prefix */ 1041 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1042 prefix = ""; 1043 1044 if (!name) 1045 name = ""; 1046 1047 /* Even if we don't want type name info, we want parentheses etc */ 1048 if (show->flags & BTF_SHOW_NONAME) 1049 snprintf(show->state.name, sizeof(show->state.name), "%s", 1050 parens); 1051 else 1052 snprintf(show->state.name, sizeof(show->state.name), 1053 "%s%s%s(%s%s%s%s%s%s)%s", 1054 /* first 3 strings comprise ".member = " */ 1055 show_member ? "." : "", 1056 show_member ? member : "", 1057 show_member ? " = " : "", 1058 /* ...next is our prefix (struct, enum, etc) */ 1059 prefix, 1060 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1061 /* ...this is the type name itself */ 1062 name, 1063 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1064 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1065 array_suffix, parens); 1066 1067 return show->state.name; 1068 } 1069 1070 static const char *__btf_show_indent(struct btf_show *show) 1071 { 1072 const char *indents = " "; 1073 const char *indent = &indents[strlen(indents)]; 1074 1075 if ((indent - show->state.depth) >= indents) 1076 return indent - show->state.depth; 1077 return indents; 1078 } 1079 1080 static const char *btf_show_indent(struct btf_show *show) 1081 { 1082 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1083 } 1084 1085 static const char *btf_show_newline(struct btf_show *show) 1086 { 1087 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1088 } 1089 1090 static const char *btf_show_delim(struct btf_show *show) 1091 { 1092 if (show->state.depth == 0) 1093 return ""; 1094 1095 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1096 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1097 return "|"; 1098 1099 return ","; 1100 } 1101 1102 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1103 { 1104 va_list args; 1105 1106 if (!show->state.depth_check) { 1107 va_start(args, fmt); 1108 show->showfn(show, fmt, args); 1109 va_end(args); 1110 } 1111 } 1112 1113 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1114 * format specifiers to the format specifier passed in; these do the work of 1115 * adding indentation, delimiters etc while the caller simply has to specify 1116 * the type value(s) in the format specifier + value(s). 1117 */ 1118 #define btf_show_type_value(show, fmt, value) \ 1119 do { \ 1120 if ((value) != (__typeof__(value))0 || \ 1121 (show->flags & BTF_SHOW_ZERO) || \ 1122 show->state.depth == 0) { \ 1123 btf_show(show, "%s%s" fmt "%s%s", \ 1124 btf_show_indent(show), \ 1125 btf_show_name(show), \ 1126 value, btf_show_delim(show), \ 1127 btf_show_newline(show)); \ 1128 if (show->state.depth > show->state.depth_to_show) \ 1129 show->state.depth_to_show = show->state.depth; \ 1130 } \ 1131 } while (0) 1132 1133 #define btf_show_type_values(show, fmt, ...) \ 1134 do { \ 1135 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1136 btf_show_name(show), \ 1137 __VA_ARGS__, btf_show_delim(show), \ 1138 btf_show_newline(show)); \ 1139 if (show->state.depth > show->state.depth_to_show) \ 1140 show->state.depth_to_show = show->state.depth; \ 1141 } while (0) 1142 1143 /* How much is left to copy to safe buffer after @data? */ 1144 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1145 { 1146 return show->obj.head + show->obj.size - data; 1147 } 1148 1149 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1150 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1151 { 1152 return data >= show->obj.data && 1153 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1154 } 1155 1156 /* 1157 * If object pointed to by @data of @size falls within our safe buffer, return 1158 * the equivalent pointer to the same safe data. Assumes 1159 * copy_from_kernel_nofault() has already happened and our safe buffer is 1160 * populated. 1161 */ 1162 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1163 { 1164 if (btf_show_obj_is_safe(show, data, size)) 1165 return show->obj.safe + (data - show->obj.data); 1166 return NULL; 1167 } 1168 1169 /* 1170 * Return a safe-to-access version of data pointed to by @data. 1171 * We do this by copying the relevant amount of information 1172 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1173 * 1174 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1175 * safe copy is needed. 1176 * 1177 * Otherwise we need to determine if we have the required amount 1178 * of data (determined by the @data pointer and the size of the 1179 * largest base type we can encounter (represented by 1180 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1181 * that we will be able to print some of the current object, 1182 * and if more is needed a copy will be triggered. 1183 * Some objects such as structs will not fit into the buffer; 1184 * in such cases additional copies when we iterate over their 1185 * members may be needed. 1186 * 1187 * btf_show_obj_safe() is used to return a safe buffer for 1188 * btf_show_start_type(); this ensures that as we recurse into 1189 * nested types we always have safe data for the given type. 1190 * This approach is somewhat wasteful; it's possible for example 1191 * that when iterating over a large union we'll end up copying the 1192 * same data repeatedly, but the goal is safety not performance. 1193 * We use stack data as opposed to per-CPU buffers because the 1194 * iteration over a type can take some time, and preemption handling 1195 * would greatly complicate use of the safe buffer. 1196 */ 1197 static void *btf_show_obj_safe(struct btf_show *show, 1198 const struct btf_type *t, 1199 void *data) 1200 { 1201 const struct btf_type *rt; 1202 int size_left, size; 1203 void *safe = NULL; 1204 1205 if (show->flags & BTF_SHOW_UNSAFE) 1206 return data; 1207 1208 rt = btf_resolve_size(show->btf, t, &size); 1209 if (IS_ERR(rt)) { 1210 show->state.status = PTR_ERR(rt); 1211 return NULL; 1212 } 1213 1214 /* 1215 * Is this toplevel object? If so, set total object size and 1216 * initialize pointers. Otherwise check if we still fall within 1217 * our safe object data. 1218 */ 1219 if (show->state.depth == 0) { 1220 show->obj.size = size; 1221 show->obj.head = data; 1222 } else { 1223 /* 1224 * If the size of the current object is > our remaining 1225 * safe buffer we _may_ need to do a new copy. However 1226 * consider the case of a nested struct; it's size pushes 1227 * us over the safe buffer limit, but showing any individual 1228 * struct members does not. In such cases, we don't need 1229 * to initiate a fresh copy yet; however we definitely need 1230 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1231 * in our buffer, regardless of the current object size. 1232 * The logic here is that as we resolve types we will 1233 * hit a base type at some point, and we need to be sure 1234 * the next chunk of data is safely available to display 1235 * that type info safely. We cannot rely on the size of 1236 * the current object here because it may be much larger 1237 * than our current buffer (e.g. task_struct is 8k). 1238 * All we want to do here is ensure that we can print the 1239 * next basic type, which we can if either 1240 * - the current type size is within the safe buffer; or 1241 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1242 * the safe buffer. 1243 */ 1244 safe = __btf_show_obj_safe(show, data, 1245 min(size, 1246 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1247 } 1248 1249 /* 1250 * We need a new copy to our safe object, either because we haven't 1251 * yet copied and are initializing safe data, or because the data 1252 * we want falls outside the boundaries of the safe object. 1253 */ 1254 if (!safe) { 1255 size_left = btf_show_obj_size_left(show, data); 1256 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1257 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1258 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1259 data, size_left); 1260 if (!show->state.status) { 1261 show->obj.data = data; 1262 safe = show->obj.safe; 1263 } 1264 } 1265 1266 return safe; 1267 } 1268 1269 /* 1270 * Set the type we are starting to show and return a safe data pointer 1271 * to be used for showing the associated data. 1272 */ 1273 static void *btf_show_start_type(struct btf_show *show, 1274 const struct btf_type *t, 1275 u32 type_id, void *data) 1276 { 1277 show->state.type = t; 1278 show->state.type_id = type_id; 1279 show->state.name[0] = '\0'; 1280 1281 return btf_show_obj_safe(show, t, data); 1282 } 1283 1284 static void btf_show_end_type(struct btf_show *show) 1285 { 1286 show->state.type = NULL; 1287 show->state.type_id = 0; 1288 show->state.name[0] = '\0'; 1289 } 1290 1291 static void *btf_show_start_aggr_type(struct btf_show *show, 1292 const struct btf_type *t, 1293 u32 type_id, void *data) 1294 { 1295 void *safe_data = btf_show_start_type(show, t, type_id, data); 1296 1297 if (!safe_data) 1298 return safe_data; 1299 1300 btf_show(show, "%s%s%s", btf_show_indent(show), 1301 btf_show_name(show), 1302 btf_show_newline(show)); 1303 show->state.depth++; 1304 return safe_data; 1305 } 1306 1307 static void btf_show_end_aggr_type(struct btf_show *show, 1308 const char *suffix) 1309 { 1310 show->state.depth--; 1311 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1312 btf_show_delim(show), btf_show_newline(show)); 1313 btf_show_end_type(show); 1314 } 1315 1316 static void btf_show_start_member(struct btf_show *show, 1317 const struct btf_member *m) 1318 { 1319 show->state.member = m; 1320 } 1321 1322 static void btf_show_start_array_member(struct btf_show *show) 1323 { 1324 show->state.array_member = 1; 1325 btf_show_start_member(show, NULL); 1326 } 1327 1328 static void btf_show_end_member(struct btf_show *show) 1329 { 1330 show->state.member = NULL; 1331 } 1332 1333 static void btf_show_end_array_member(struct btf_show *show) 1334 { 1335 show->state.array_member = 0; 1336 btf_show_end_member(show); 1337 } 1338 1339 static void *btf_show_start_array_type(struct btf_show *show, 1340 const struct btf_type *t, 1341 u32 type_id, 1342 u16 array_encoding, 1343 void *data) 1344 { 1345 show->state.array_encoding = array_encoding; 1346 show->state.array_terminated = 0; 1347 return btf_show_start_aggr_type(show, t, type_id, data); 1348 } 1349 1350 static void btf_show_end_array_type(struct btf_show *show) 1351 { 1352 show->state.array_encoding = 0; 1353 show->state.array_terminated = 0; 1354 btf_show_end_aggr_type(show, "]"); 1355 } 1356 1357 static void *btf_show_start_struct_type(struct btf_show *show, 1358 const struct btf_type *t, 1359 u32 type_id, 1360 void *data) 1361 { 1362 return btf_show_start_aggr_type(show, t, type_id, data); 1363 } 1364 1365 static void btf_show_end_struct_type(struct btf_show *show) 1366 { 1367 btf_show_end_aggr_type(show, "}"); 1368 } 1369 1370 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1371 const char *fmt, ...) 1372 { 1373 va_list args; 1374 1375 va_start(args, fmt); 1376 bpf_verifier_vlog(log, fmt, args); 1377 va_end(args); 1378 } 1379 1380 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1381 const char *fmt, ...) 1382 { 1383 struct bpf_verifier_log *log = &env->log; 1384 va_list args; 1385 1386 if (!bpf_verifier_log_needed(log)) 1387 return; 1388 1389 va_start(args, fmt); 1390 bpf_verifier_vlog(log, fmt, args); 1391 va_end(args); 1392 } 1393 1394 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1395 const struct btf_type *t, 1396 bool log_details, 1397 const char *fmt, ...) 1398 { 1399 struct bpf_verifier_log *log = &env->log; 1400 struct btf *btf = env->btf; 1401 va_list args; 1402 1403 if (!bpf_verifier_log_needed(log)) 1404 return; 1405 1406 if (log->level == BPF_LOG_KERNEL) { 1407 /* btf verifier prints all types it is processing via 1408 * btf_verifier_log_type(..., fmt = NULL). 1409 * Skip those prints for in-kernel BTF verification. 1410 */ 1411 if (!fmt) 1412 return; 1413 1414 /* Skip logging when loading module BTF with mismatches permitted */ 1415 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1416 return; 1417 } 1418 1419 __btf_verifier_log(log, "[%u] %s %s%s", 1420 env->log_type_id, 1421 btf_type_str(t), 1422 __btf_name_by_offset(btf, t->name_off), 1423 log_details ? " " : ""); 1424 1425 if (log_details) 1426 btf_type_ops(t)->log_details(env, t); 1427 1428 if (fmt && *fmt) { 1429 __btf_verifier_log(log, " "); 1430 va_start(args, fmt); 1431 bpf_verifier_vlog(log, fmt, args); 1432 va_end(args); 1433 } 1434 1435 __btf_verifier_log(log, "\n"); 1436 } 1437 1438 #define btf_verifier_log_type(env, t, ...) \ 1439 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1440 #define btf_verifier_log_basic(env, t, ...) \ 1441 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1442 1443 __printf(4, 5) 1444 static void btf_verifier_log_member(struct btf_verifier_env *env, 1445 const struct btf_type *struct_type, 1446 const struct btf_member *member, 1447 const char *fmt, ...) 1448 { 1449 struct bpf_verifier_log *log = &env->log; 1450 struct btf *btf = env->btf; 1451 va_list args; 1452 1453 if (!bpf_verifier_log_needed(log)) 1454 return; 1455 1456 if (log->level == BPF_LOG_KERNEL) { 1457 if (!fmt) 1458 return; 1459 1460 /* Skip logging when loading module BTF with mismatches permitted */ 1461 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1462 return; 1463 } 1464 1465 /* The CHECK_META phase already did a btf dump. 1466 * 1467 * If member is logged again, it must hit an error in 1468 * parsing this member. It is useful to print out which 1469 * struct this member belongs to. 1470 */ 1471 if (env->phase != CHECK_META) 1472 btf_verifier_log_type(env, struct_type, NULL); 1473 1474 if (btf_type_kflag(struct_type)) 1475 __btf_verifier_log(log, 1476 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1477 __btf_name_by_offset(btf, member->name_off), 1478 member->type, 1479 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1480 BTF_MEMBER_BIT_OFFSET(member->offset)); 1481 else 1482 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1483 __btf_name_by_offset(btf, member->name_off), 1484 member->type, member->offset); 1485 1486 if (fmt && *fmt) { 1487 __btf_verifier_log(log, " "); 1488 va_start(args, fmt); 1489 bpf_verifier_vlog(log, fmt, args); 1490 va_end(args); 1491 } 1492 1493 __btf_verifier_log(log, "\n"); 1494 } 1495 1496 __printf(4, 5) 1497 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1498 const struct btf_type *datasec_type, 1499 const struct btf_var_secinfo *vsi, 1500 const char *fmt, ...) 1501 { 1502 struct bpf_verifier_log *log = &env->log; 1503 va_list args; 1504 1505 if (!bpf_verifier_log_needed(log)) 1506 return; 1507 if (log->level == BPF_LOG_KERNEL && !fmt) 1508 return; 1509 if (env->phase != CHECK_META) 1510 btf_verifier_log_type(env, datasec_type, NULL); 1511 1512 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1513 vsi->type, vsi->offset, vsi->size); 1514 if (fmt && *fmt) { 1515 __btf_verifier_log(log, " "); 1516 va_start(args, fmt); 1517 bpf_verifier_vlog(log, fmt, args); 1518 va_end(args); 1519 } 1520 1521 __btf_verifier_log(log, "\n"); 1522 } 1523 1524 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1525 u32 btf_data_size) 1526 { 1527 struct bpf_verifier_log *log = &env->log; 1528 const struct btf *btf = env->btf; 1529 const struct btf_header *hdr; 1530 1531 if (!bpf_verifier_log_needed(log)) 1532 return; 1533 1534 if (log->level == BPF_LOG_KERNEL) 1535 return; 1536 hdr = &btf->hdr; 1537 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1538 __btf_verifier_log(log, "version: %u\n", hdr->version); 1539 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1540 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1541 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1542 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1543 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1544 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1545 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1546 } 1547 1548 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1549 { 1550 struct btf *btf = env->btf; 1551 1552 if (btf->types_size == btf->nr_types) { 1553 /* Expand 'types' array */ 1554 1555 struct btf_type **new_types; 1556 u32 expand_by, new_size; 1557 1558 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1559 btf_verifier_log(env, "Exceeded max num of types"); 1560 return -E2BIG; 1561 } 1562 1563 expand_by = max_t(u32, btf->types_size >> 2, 16); 1564 new_size = min_t(u32, BTF_MAX_TYPE, 1565 btf->types_size + expand_by); 1566 1567 new_types = kvcalloc(new_size, sizeof(*new_types), 1568 GFP_KERNEL | __GFP_NOWARN); 1569 if (!new_types) 1570 return -ENOMEM; 1571 1572 if (btf->nr_types == 0) { 1573 if (!btf->base_btf) { 1574 /* lazily init VOID type */ 1575 new_types[0] = &btf_void; 1576 btf->nr_types++; 1577 } 1578 } else { 1579 memcpy(new_types, btf->types, 1580 sizeof(*btf->types) * btf->nr_types); 1581 } 1582 1583 kvfree(btf->types); 1584 btf->types = new_types; 1585 btf->types_size = new_size; 1586 } 1587 1588 btf->types[btf->nr_types++] = t; 1589 1590 return 0; 1591 } 1592 1593 static int btf_alloc_id(struct btf *btf) 1594 { 1595 int id; 1596 1597 idr_preload(GFP_KERNEL); 1598 spin_lock_bh(&btf_idr_lock); 1599 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1600 if (id > 0) 1601 btf->id = id; 1602 spin_unlock_bh(&btf_idr_lock); 1603 idr_preload_end(); 1604 1605 if (WARN_ON_ONCE(!id)) 1606 return -ENOSPC; 1607 1608 return id > 0 ? 0 : id; 1609 } 1610 1611 static void btf_free_id(struct btf *btf) 1612 { 1613 unsigned long flags; 1614 1615 /* 1616 * In map-in-map, calling map_delete_elem() on outer 1617 * map will call bpf_map_put on the inner map. 1618 * It will then eventually call btf_free_id() 1619 * on the inner map. Some of the map_delete_elem() 1620 * implementation may have irq disabled, so 1621 * we need to use the _irqsave() version instead 1622 * of the _bh() version. 1623 */ 1624 spin_lock_irqsave(&btf_idr_lock, flags); 1625 idr_remove(&btf_idr, btf->id); 1626 spin_unlock_irqrestore(&btf_idr_lock, flags); 1627 } 1628 1629 static void btf_free_kfunc_set_tab(struct btf *btf) 1630 { 1631 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1632 int hook; 1633 1634 if (!tab) 1635 return; 1636 /* For module BTF, we directly assign the sets being registered, so 1637 * there is nothing to free except kfunc_set_tab. 1638 */ 1639 if (btf_is_module(btf)) 1640 goto free_tab; 1641 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1642 kfree(tab->sets[hook]); 1643 free_tab: 1644 kfree(tab); 1645 btf->kfunc_set_tab = NULL; 1646 } 1647 1648 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1649 { 1650 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1651 1652 if (!tab) 1653 return; 1654 kfree(tab); 1655 btf->dtor_kfunc_tab = NULL; 1656 } 1657 1658 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1659 { 1660 int i; 1661 1662 if (!tab) 1663 return; 1664 for (i = 0; i < tab->cnt; i++) { 1665 btf_record_free(tab->types[i].record); 1666 kfree(tab->types[i].field_offs); 1667 } 1668 kfree(tab); 1669 } 1670 1671 static void btf_free_struct_meta_tab(struct btf *btf) 1672 { 1673 struct btf_struct_metas *tab = btf->struct_meta_tab; 1674 1675 btf_struct_metas_free(tab); 1676 btf->struct_meta_tab = NULL; 1677 } 1678 1679 static void btf_free(struct btf *btf) 1680 { 1681 btf_free_struct_meta_tab(btf); 1682 btf_free_dtor_kfunc_tab(btf); 1683 btf_free_kfunc_set_tab(btf); 1684 kvfree(btf->types); 1685 kvfree(btf->resolved_sizes); 1686 kvfree(btf->resolved_ids); 1687 kvfree(btf->data); 1688 kfree(btf); 1689 } 1690 1691 static void btf_free_rcu(struct rcu_head *rcu) 1692 { 1693 struct btf *btf = container_of(rcu, struct btf, rcu); 1694 1695 btf_free(btf); 1696 } 1697 1698 void btf_get(struct btf *btf) 1699 { 1700 refcount_inc(&btf->refcnt); 1701 } 1702 1703 void btf_put(struct btf *btf) 1704 { 1705 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1706 btf_free_id(btf); 1707 call_rcu(&btf->rcu, btf_free_rcu); 1708 } 1709 } 1710 1711 static int env_resolve_init(struct btf_verifier_env *env) 1712 { 1713 struct btf *btf = env->btf; 1714 u32 nr_types = btf->nr_types; 1715 u32 *resolved_sizes = NULL; 1716 u32 *resolved_ids = NULL; 1717 u8 *visit_states = NULL; 1718 1719 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1720 GFP_KERNEL | __GFP_NOWARN); 1721 if (!resolved_sizes) 1722 goto nomem; 1723 1724 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1725 GFP_KERNEL | __GFP_NOWARN); 1726 if (!resolved_ids) 1727 goto nomem; 1728 1729 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1730 GFP_KERNEL | __GFP_NOWARN); 1731 if (!visit_states) 1732 goto nomem; 1733 1734 btf->resolved_sizes = resolved_sizes; 1735 btf->resolved_ids = resolved_ids; 1736 env->visit_states = visit_states; 1737 1738 return 0; 1739 1740 nomem: 1741 kvfree(resolved_sizes); 1742 kvfree(resolved_ids); 1743 kvfree(visit_states); 1744 return -ENOMEM; 1745 } 1746 1747 static void btf_verifier_env_free(struct btf_verifier_env *env) 1748 { 1749 kvfree(env->visit_states); 1750 kfree(env); 1751 } 1752 1753 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1754 const struct btf_type *next_type) 1755 { 1756 switch (env->resolve_mode) { 1757 case RESOLVE_TBD: 1758 /* int, enum or void is a sink */ 1759 return !btf_type_needs_resolve(next_type); 1760 case RESOLVE_PTR: 1761 /* int, enum, void, struct, array, func or func_proto is a sink 1762 * for ptr 1763 */ 1764 return !btf_type_is_modifier(next_type) && 1765 !btf_type_is_ptr(next_type); 1766 case RESOLVE_STRUCT_OR_ARRAY: 1767 /* int, enum, void, ptr, func or func_proto is a sink 1768 * for struct and array 1769 */ 1770 return !btf_type_is_modifier(next_type) && 1771 !btf_type_is_array(next_type) && 1772 !btf_type_is_struct(next_type); 1773 default: 1774 BUG(); 1775 } 1776 } 1777 1778 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1779 u32 type_id) 1780 { 1781 /* base BTF types should be resolved by now */ 1782 if (type_id < env->btf->start_id) 1783 return true; 1784 1785 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1786 } 1787 1788 static int env_stack_push(struct btf_verifier_env *env, 1789 const struct btf_type *t, u32 type_id) 1790 { 1791 const struct btf *btf = env->btf; 1792 struct resolve_vertex *v; 1793 1794 if (env->top_stack == MAX_RESOLVE_DEPTH) 1795 return -E2BIG; 1796 1797 if (type_id < btf->start_id 1798 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1799 return -EEXIST; 1800 1801 env->visit_states[type_id - btf->start_id] = VISITED; 1802 1803 v = &env->stack[env->top_stack++]; 1804 v->t = t; 1805 v->type_id = type_id; 1806 v->next_member = 0; 1807 1808 if (env->resolve_mode == RESOLVE_TBD) { 1809 if (btf_type_is_ptr(t)) 1810 env->resolve_mode = RESOLVE_PTR; 1811 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1812 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1813 } 1814 1815 return 0; 1816 } 1817 1818 static void env_stack_set_next_member(struct btf_verifier_env *env, 1819 u16 next_member) 1820 { 1821 env->stack[env->top_stack - 1].next_member = next_member; 1822 } 1823 1824 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1825 u32 resolved_type_id, 1826 u32 resolved_size) 1827 { 1828 u32 type_id = env->stack[--(env->top_stack)].type_id; 1829 struct btf *btf = env->btf; 1830 1831 type_id -= btf->start_id; /* adjust to local type id */ 1832 btf->resolved_sizes[type_id] = resolved_size; 1833 btf->resolved_ids[type_id] = resolved_type_id; 1834 env->visit_states[type_id] = RESOLVED; 1835 } 1836 1837 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1838 { 1839 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1840 } 1841 1842 /* Resolve the size of a passed-in "type" 1843 * 1844 * type: is an array (e.g. u32 array[x][y]) 1845 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1846 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1847 * corresponds to the return type. 1848 * *elem_type: u32 1849 * *elem_id: id of u32 1850 * *total_nelems: (x * y). Hence, individual elem size is 1851 * (*type_size / *total_nelems) 1852 * *type_id: id of type if it's changed within the function, 0 if not 1853 * 1854 * type: is not an array (e.g. const struct X) 1855 * return type: type "struct X" 1856 * *type_size: sizeof(struct X) 1857 * *elem_type: same as return type ("struct X") 1858 * *elem_id: 0 1859 * *total_nelems: 1 1860 * *type_id: id of type if it's changed within the function, 0 if not 1861 */ 1862 static const struct btf_type * 1863 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1864 u32 *type_size, const struct btf_type **elem_type, 1865 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1866 { 1867 const struct btf_type *array_type = NULL; 1868 const struct btf_array *array = NULL; 1869 u32 i, size, nelems = 1, id = 0; 1870 1871 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1872 switch (BTF_INFO_KIND(type->info)) { 1873 /* type->size can be used */ 1874 case BTF_KIND_INT: 1875 case BTF_KIND_STRUCT: 1876 case BTF_KIND_UNION: 1877 case BTF_KIND_ENUM: 1878 case BTF_KIND_FLOAT: 1879 case BTF_KIND_ENUM64: 1880 size = type->size; 1881 goto resolved; 1882 1883 case BTF_KIND_PTR: 1884 size = sizeof(void *); 1885 goto resolved; 1886 1887 /* Modifiers */ 1888 case BTF_KIND_TYPEDEF: 1889 case BTF_KIND_VOLATILE: 1890 case BTF_KIND_CONST: 1891 case BTF_KIND_RESTRICT: 1892 case BTF_KIND_TYPE_TAG: 1893 id = type->type; 1894 type = btf_type_by_id(btf, type->type); 1895 break; 1896 1897 case BTF_KIND_ARRAY: 1898 if (!array_type) 1899 array_type = type; 1900 array = btf_type_array(type); 1901 if (nelems && array->nelems > U32_MAX / nelems) 1902 return ERR_PTR(-EINVAL); 1903 nelems *= array->nelems; 1904 type = btf_type_by_id(btf, array->type); 1905 break; 1906 1907 /* type without size */ 1908 default: 1909 return ERR_PTR(-EINVAL); 1910 } 1911 } 1912 1913 return ERR_PTR(-EINVAL); 1914 1915 resolved: 1916 if (nelems && size > U32_MAX / nelems) 1917 return ERR_PTR(-EINVAL); 1918 1919 *type_size = nelems * size; 1920 if (total_nelems) 1921 *total_nelems = nelems; 1922 if (elem_type) 1923 *elem_type = type; 1924 if (elem_id) 1925 *elem_id = array ? array->type : 0; 1926 if (type_id && id) 1927 *type_id = id; 1928 1929 return array_type ? : type; 1930 } 1931 1932 const struct btf_type * 1933 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1934 u32 *type_size) 1935 { 1936 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1937 } 1938 1939 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1940 { 1941 while (type_id < btf->start_id) 1942 btf = btf->base_btf; 1943 1944 return btf->resolved_ids[type_id - btf->start_id]; 1945 } 1946 1947 /* The input param "type_id" must point to a needs_resolve type */ 1948 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1949 u32 *type_id) 1950 { 1951 *type_id = btf_resolved_type_id(btf, *type_id); 1952 return btf_type_by_id(btf, *type_id); 1953 } 1954 1955 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1956 { 1957 while (type_id < btf->start_id) 1958 btf = btf->base_btf; 1959 1960 return btf->resolved_sizes[type_id - btf->start_id]; 1961 } 1962 1963 const struct btf_type *btf_type_id_size(const struct btf *btf, 1964 u32 *type_id, u32 *ret_size) 1965 { 1966 const struct btf_type *size_type; 1967 u32 size_type_id = *type_id; 1968 u32 size = 0; 1969 1970 size_type = btf_type_by_id(btf, size_type_id); 1971 if (btf_type_nosize_or_null(size_type)) 1972 return NULL; 1973 1974 if (btf_type_has_size(size_type)) { 1975 size = size_type->size; 1976 } else if (btf_type_is_array(size_type)) { 1977 size = btf_resolved_type_size(btf, size_type_id); 1978 } else if (btf_type_is_ptr(size_type)) { 1979 size = sizeof(void *); 1980 } else { 1981 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1982 !btf_type_is_var(size_type))) 1983 return NULL; 1984 1985 size_type_id = btf_resolved_type_id(btf, size_type_id); 1986 size_type = btf_type_by_id(btf, size_type_id); 1987 if (btf_type_nosize_or_null(size_type)) 1988 return NULL; 1989 else if (btf_type_has_size(size_type)) 1990 size = size_type->size; 1991 else if (btf_type_is_array(size_type)) 1992 size = btf_resolved_type_size(btf, size_type_id); 1993 else if (btf_type_is_ptr(size_type)) 1994 size = sizeof(void *); 1995 else 1996 return NULL; 1997 } 1998 1999 *type_id = size_type_id; 2000 if (ret_size) 2001 *ret_size = size; 2002 2003 return size_type; 2004 } 2005 2006 static int btf_df_check_member(struct btf_verifier_env *env, 2007 const struct btf_type *struct_type, 2008 const struct btf_member *member, 2009 const struct btf_type *member_type) 2010 { 2011 btf_verifier_log_basic(env, struct_type, 2012 "Unsupported check_member"); 2013 return -EINVAL; 2014 } 2015 2016 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2017 const struct btf_type *struct_type, 2018 const struct btf_member *member, 2019 const struct btf_type *member_type) 2020 { 2021 btf_verifier_log_basic(env, struct_type, 2022 "Unsupported check_kflag_member"); 2023 return -EINVAL; 2024 } 2025 2026 /* Used for ptr, array struct/union and float type members. 2027 * int, enum and modifier types have their specific callback functions. 2028 */ 2029 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2030 const struct btf_type *struct_type, 2031 const struct btf_member *member, 2032 const struct btf_type *member_type) 2033 { 2034 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2035 btf_verifier_log_member(env, struct_type, member, 2036 "Invalid member bitfield_size"); 2037 return -EINVAL; 2038 } 2039 2040 /* bitfield size is 0, so member->offset represents bit offset only. 2041 * It is safe to call non kflag check_member variants. 2042 */ 2043 return btf_type_ops(member_type)->check_member(env, struct_type, 2044 member, 2045 member_type); 2046 } 2047 2048 static int btf_df_resolve(struct btf_verifier_env *env, 2049 const struct resolve_vertex *v) 2050 { 2051 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2052 return -EINVAL; 2053 } 2054 2055 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2056 u32 type_id, void *data, u8 bits_offsets, 2057 struct btf_show *show) 2058 { 2059 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2060 } 2061 2062 static int btf_int_check_member(struct btf_verifier_env *env, 2063 const struct btf_type *struct_type, 2064 const struct btf_member *member, 2065 const struct btf_type *member_type) 2066 { 2067 u32 int_data = btf_type_int(member_type); 2068 u32 struct_bits_off = member->offset; 2069 u32 struct_size = struct_type->size; 2070 u32 nr_copy_bits; 2071 u32 bytes_offset; 2072 2073 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2074 btf_verifier_log_member(env, struct_type, member, 2075 "bits_offset exceeds U32_MAX"); 2076 return -EINVAL; 2077 } 2078 2079 struct_bits_off += BTF_INT_OFFSET(int_data); 2080 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2081 nr_copy_bits = BTF_INT_BITS(int_data) + 2082 BITS_PER_BYTE_MASKED(struct_bits_off); 2083 2084 if (nr_copy_bits > BITS_PER_U128) { 2085 btf_verifier_log_member(env, struct_type, member, 2086 "nr_copy_bits exceeds 128"); 2087 return -EINVAL; 2088 } 2089 2090 if (struct_size < bytes_offset || 2091 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2092 btf_verifier_log_member(env, struct_type, member, 2093 "Member exceeds struct_size"); 2094 return -EINVAL; 2095 } 2096 2097 return 0; 2098 } 2099 2100 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2101 const struct btf_type *struct_type, 2102 const struct btf_member *member, 2103 const struct btf_type *member_type) 2104 { 2105 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2106 u32 int_data = btf_type_int(member_type); 2107 u32 struct_size = struct_type->size; 2108 u32 nr_copy_bits; 2109 2110 /* a regular int type is required for the kflag int member */ 2111 if (!btf_type_int_is_regular(member_type)) { 2112 btf_verifier_log_member(env, struct_type, member, 2113 "Invalid member base type"); 2114 return -EINVAL; 2115 } 2116 2117 /* check sanity of bitfield size */ 2118 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2119 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2120 nr_int_data_bits = BTF_INT_BITS(int_data); 2121 if (!nr_bits) { 2122 /* Not a bitfield member, member offset must be at byte 2123 * boundary. 2124 */ 2125 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2126 btf_verifier_log_member(env, struct_type, member, 2127 "Invalid member offset"); 2128 return -EINVAL; 2129 } 2130 2131 nr_bits = nr_int_data_bits; 2132 } else if (nr_bits > nr_int_data_bits) { 2133 btf_verifier_log_member(env, struct_type, member, 2134 "Invalid member bitfield_size"); 2135 return -EINVAL; 2136 } 2137 2138 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2139 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2140 if (nr_copy_bits > BITS_PER_U128) { 2141 btf_verifier_log_member(env, struct_type, member, 2142 "nr_copy_bits exceeds 128"); 2143 return -EINVAL; 2144 } 2145 2146 if (struct_size < bytes_offset || 2147 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2148 btf_verifier_log_member(env, struct_type, member, 2149 "Member exceeds struct_size"); 2150 return -EINVAL; 2151 } 2152 2153 return 0; 2154 } 2155 2156 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2157 const struct btf_type *t, 2158 u32 meta_left) 2159 { 2160 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2161 u16 encoding; 2162 2163 if (meta_left < meta_needed) { 2164 btf_verifier_log_basic(env, t, 2165 "meta_left:%u meta_needed:%u", 2166 meta_left, meta_needed); 2167 return -EINVAL; 2168 } 2169 2170 if (btf_type_vlen(t)) { 2171 btf_verifier_log_type(env, t, "vlen != 0"); 2172 return -EINVAL; 2173 } 2174 2175 if (btf_type_kflag(t)) { 2176 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2177 return -EINVAL; 2178 } 2179 2180 int_data = btf_type_int(t); 2181 if (int_data & ~BTF_INT_MASK) { 2182 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2183 int_data); 2184 return -EINVAL; 2185 } 2186 2187 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2188 2189 if (nr_bits > BITS_PER_U128) { 2190 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2191 BITS_PER_U128); 2192 return -EINVAL; 2193 } 2194 2195 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2196 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2197 return -EINVAL; 2198 } 2199 2200 /* 2201 * Only one of the encoding bits is allowed and it 2202 * should be sufficient for the pretty print purpose (i.e. decoding). 2203 * Multiple bits can be allowed later if it is found 2204 * to be insufficient. 2205 */ 2206 encoding = BTF_INT_ENCODING(int_data); 2207 if (encoding && 2208 encoding != BTF_INT_SIGNED && 2209 encoding != BTF_INT_CHAR && 2210 encoding != BTF_INT_BOOL) { 2211 btf_verifier_log_type(env, t, "Unsupported encoding"); 2212 return -ENOTSUPP; 2213 } 2214 2215 btf_verifier_log_type(env, t, NULL); 2216 2217 return meta_needed; 2218 } 2219 2220 static void btf_int_log(struct btf_verifier_env *env, 2221 const struct btf_type *t) 2222 { 2223 int int_data = btf_type_int(t); 2224 2225 btf_verifier_log(env, 2226 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2227 t->size, BTF_INT_OFFSET(int_data), 2228 BTF_INT_BITS(int_data), 2229 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2230 } 2231 2232 static void btf_int128_print(struct btf_show *show, void *data) 2233 { 2234 /* data points to a __int128 number. 2235 * Suppose 2236 * int128_num = *(__int128 *)data; 2237 * The below formulas shows what upper_num and lower_num represents: 2238 * upper_num = int128_num >> 64; 2239 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2240 */ 2241 u64 upper_num, lower_num; 2242 2243 #ifdef __BIG_ENDIAN_BITFIELD 2244 upper_num = *(u64 *)data; 2245 lower_num = *(u64 *)(data + 8); 2246 #else 2247 upper_num = *(u64 *)(data + 8); 2248 lower_num = *(u64 *)data; 2249 #endif 2250 if (upper_num == 0) 2251 btf_show_type_value(show, "0x%llx", lower_num); 2252 else 2253 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2254 lower_num); 2255 } 2256 2257 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2258 u16 right_shift_bits) 2259 { 2260 u64 upper_num, lower_num; 2261 2262 #ifdef __BIG_ENDIAN_BITFIELD 2263 upper_num = print_num[0]; 2264 lower_num = print_num[1]; 2265 #else 2266 upper_num = print_num[1]; 2267 lower_num = print_num[0]; 2268 #endif 2269 2270 /* shake out un-needed bits by shift/or operations */ 2271 if (left_shift_bits >= 64) { 2272 upper_num = lower_num << (left_shift_bits - 64); 2273 lower_num = 0; 2274 } else { 2275 upper_num = (upper_num << left_shift_bits) | 2276 (lower_num >> (64 - left_shift_bits)); 2277 lower_num = lower_num << left_shift_bits; 2278 } 2279 2280 if (right_shift_bits >= 64) { 2281 lower_num = upper_num >> (right_shift_bits - 64); 2282 upper_num = 0; 2283 } else { 2284 lower_num = (lower_num >> right_shift_bits) | 2285 (upper_num << (64 - right_shift_bits)); 2286 upper_num = upper_num >> right_shift_bits; 2287 } 2288 2289 #ifdef __BIG_ENDIAN_BITFIELD 2290 print_num[0] = upper_num; 2291 print_num[1] = lower_num; 2292 #else 2293 print_num[0] = lower_num; 2294 print_num[1] = upper_num; 2295 #endif 2296 } 2297 2298 static void btf_bitfield_show(void *data, u8 bits_offset, 2299 u8 nr_bits, struct btf_show *show) 2300 { 2301 u16 left_shift_bits, right_shift_bits; 2302 u8 nr_copy_bytes; 2303 u8 nr_copy_bits; 2304 u64 print_num[2] = {}; 2305 2306 nr_copy_bits = nr_bits + bits_offset; 2307 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2308 2309 memcpy(print_num, data, nr_copy_bytes); 2310 2311 #ifdef __BIG_ENDIAN_BITFIELD 2312 left_shift_bits = bits_offset; 2313 #else 2314 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2315 #endif 2316 right_shift_bits = BITS_PER_U128 - nr_bits; 2317 2318 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2319 btf_int128_print(show, print_num); 2320 } 2321 2322 2323 static void btf_int_bits_show(const struct btf *btf, 2324 const struct btf_type *t, 2325 void *data, u8 bits_offset, 2326 struct btf_show *show) 2327 { 2328 u32 int_data = btf_type_int(t); 2329 u8 nr_bits = BTF_INT_BITS(int_data); 2330 u8 total_bits_offset; 2331 2332 /* 2333 * bits_offset is at most 7. 2334 * BTF_INT_OFFSET() cannot exceed 128 bits. 2335 */ 2336 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2337 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2338 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2339 btf_bitfield_show(data, bits_offset, nr_bits, show); 2340 } 2341 2342 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2343 u32 type_id, void *data, u8 bits_offset, 2344 struct btf_show *show) 2345 { 2346 u32 int_data = btf_type_int(t); 2347 u8 encoding = BTF_INT_ENCODING(int_data); 2348 bool sign = encoding & BTF_INT_SIGNED; 2349 u8 nr_bits = BTF_INT_BITS(int_data); 2350 void *safe_data; 2351 2352 safe_data = btf_show_start_type(show, t, type_id, data); 2353 if (!safe_data) 2354 return; 2355 2356 if (bits_offset || BTF_INT_OFFSET(int_data) || 2357 BITS_PER_BYTE_MASKED(nr_bits)) { 2358 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2359 goto out; 2360 } 2361 2362 switch (nr_bits) { 2363 case 128: 2364 btf_int128_print(show, safe_data); 2365 break; 2366 case 64: 2367 if (sign) 2368 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2369 else 2370 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2371 break; 2372 case 32: 2373 if (sign) 2374 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2375 else 2376 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2377 break; 2378 case 16: 2379 if (sign) 2380 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2381 else 2382 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2383 break; 2384 case 8: 2385 if (show->state.array_encoding == BTF_INT_CHAR) { 2386 /* check for null terminator */ 2387 if (show->state.array_terminated) 2388 break; 2389 if (*(char *)data == '\0') { 2390 show->state.array_terminated = 1; 2391 break; 2392 } 2393 if (isprint(*(char *)data)) { 2394 btf_show_type_value(show, "'%c'", 2395 *(char *)safe_data); 2396 break; 2397 } 2398 } 2399 if (sign) 2400 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2401 else 2402 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2403 break; 2404 default: 2405 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2406 break; 2407 } 2408 out: 2409 btf_show_end_type(show); 2410 } 2411 2412 static const struct btf_kind_operations int_ops = { 2413 .check_meta = btf_int_check_meta, 2414 .resolve = btf_df_resolve, 2415 .check_member = btf_int_check_member, 2416 .check_kflag_member = btf_int_check_kflag_member, 2417 .log_details = btf_int_log, 2418 .show = btf_int_show, 2419 }; 2420 2421 static int btf_modifier_check_member(struct btf_verifier_env *env, 2422 const struct btf_type *struct_type, 2423 const struct btf_member *member, 2424 const struct btf_type *member_type) 2425 { 2426 const struct btf_type *resolved_type; 2427 u32 resolved_type_id = member->type; 2428 struct btf_member resolved_member; 2429 struct btf *btf = env->btf; 2430 2431 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2432 if (!resolved_type) { 2433 btf_verifier_log_member(env, struct_type, member, 2434 "Invalid member"); 2435 return -EINVAL; 2436 } 2437 2438 resolved_member = *member; 2439 resolved_member.type = resolved_type_id; 2440 2441 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2442 &resolved_member, 2443 resolved_type); 2444 } 2445 2446 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2447 const struct btf_type *struct_type, 2448 const struct btf_member *member, 2449 const struct btf_type *member_type) 2450 { 2451 const struct btf_type *resolved_type; 2452 u32 resolved_type_id = member->type; 2453 struct btf_member resolved_member; 2454 struct btf *btf = env->btf; 2455 2456 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2457 if (!resolved_type) { 2458 btf_verifier_log_member(env, struct_type, member, 2459 "Invalid member"); 2460 return -EINVAL; 2461 } 2462 2463 resolved_member = *member; 2464 resolved_member.type = resolved_type_id; 2465 2466 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2467 &resolved_member, 2468 resolved_type); 2469 } 2470 2471 static int btf_ptr_check_member(struct btf_verifier_env *env, 2472 const struct btf_type *struct_type, 2473 const struct btf_member *member, 2474 const struct btf_type *member_type) 2475 { 2476 u32 struct_size, struct_bits_off, bytes_offset; 2477 2478 struct_size = struct_type->size; 2479 struct_bits_off = member->offset; 2480 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2481 2482 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2483 btf_verifier_log_member(env, struct_type, member, 2484 "Member is not byte aligned"); 2485 return -EINVAL; 2486 } 2487 2488 if (struct_size - bytes_offset < sizeof(void *)) { 2489 btf_verifier_log_member(env, struct_type, member, 2490 "Member exceeds struct_size"); 2491 return -EINVAL; 2492 } 2493 2494 return 0; 2495 } 2496 2497 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2498 const struct btf_type *t, 2499 u32 meta_left) 2500 { 2501 const char *value; 2502 2503 if (btf_type_vlen(t)) { 2504 btf_verifier_log_type(env, t, "vlen != 0"); 2505 return -EINVAL; 2506 } 2507 2508 if (btf_type_kflag(t)) { 2509 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2510 return -EINVAL; 2511 } 2512 2513 if (!BTF_TYPE_ID_VALID(t->type)) { 2514 btf_verifier_log_type(env, t, "Invalid type_id"); 2515 return -EINVAL; 2516 } 2517 2518 /* typedef/type_tag type must have a valid name, and other ref types, 2519 * volatile, const, restrict, should have a null name. 2520 */ 2521 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2522 if (!t->name_off || 2523 !btf_name_valid_identifier(env->btf, t->name_off)) { 2524 btf_verifier_log_type(env, t, "Invalid name"); 2525 return -EINVAL; 2526 } 2527 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2528 value = btf_name_by_offset(env->btf, t->name_off); 2529 if (!value || !value[0]) { 2530 btf_verifier_log_type(env, t, "Invalid name"); 2531 return -EINVAL; 2532 } 2533 } else { 2534 if (t->name_off) { 2535 btf_verifier_log_type(env, t, "Invalid name"); 2536 return -EINVAL; 2537 } 2538 } 2539 2540 btf_verifier_log_type(env, t, NULL); 2541 2542 return 0; 2543 } 2544 2545 static int btf_modifier_resolve(struct btf_verifier_env *env, 2546 const struct resolve_vertex *v) 2547 { 2548 const struct btf_type *t = v->t; 2549 const struct btf_type *next_type; 2550 u32 next_type_id = t->type; 2551 struct btf *btf = env->btf; 2552 2553 next_type = btf_type_by_id(btf, next_type_id); 2554 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2555 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2556 return -EINVAL; 2557 } 2558 2559 if (!env_type_is_resolve_sink(env, next_type) && 2560 !env_type_is_resolved(env, next_type_id)) 2561 return env_stack_push(env, next_type, next_type_id); 2562 2563 /* Figure out the resolved next_type_id with size. 2564 * They will be stored in the current modifier's 2565 * resolved_ids and resolved_sizes such that it can 2566 * save us a few type-following when we use it later (e.g. in 2567 * pretty print). 2568 */ 2569 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2570 if (env_type_is_resolved(env, next_type_id)) 2571 next_type = btf_type_id_resolve(btf, &next_type_id); 2572 2573 /* "typedef void new_void", "const void"...etc */ 2574 if (!btf_type_is_void(next_type) && 2575 !btf_type_is_fwd(next_type) && 2576 !btf_type_is_func_proto(next_type)) { 2577 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2578 return -EINVAL; 2579 } 2580 } 2581 2582 env_stack_pop_resolved(env, next_type_id, 0); 2583 2584 return 0; 2585 } 2586 2587 static int btf_var_resolve(struct btf_verifier_env *env, 2588 const struct resolve_vertex *v) 2589 { 2590 const struct btf_type *next_type; 2591 const struct btf_type *t = v->t; 2592 u32 next_type_id = t->type; 2593 struct btf *btf = env->btf; 2594 2595 next_type = btf_type_by_id(btf, next_type_id); 2596 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2597 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2598 return -EINVAL; 2599 } 2600 2601 if (!env_type_is_resolve_sink(env, next_type) && 2602 !env_type_is_resolved(env, next_type_id)) 2603 return env_stack_push(env, next_type, next_type_id); 2604 2605 if (btf_type_is_modifier(next_type)) { 2606 const struct btf_type *resolved_type; 2607 u32 resolved_type_id; 2608 2609 resolved_type_id = next_type_id; 2610 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2611 2612 if (btf_type_is_ptr(resolved_type) && 2613 !env_type_is_resolve_sink(env, resolved_type) && 2614 !env_type_is_resolved(env, resolved_type_id)) 2615 return env_stack_push(env, resolved_type, 2616 resolved_type_id); 2617 } 2618 2619 /* We must resolve to something concrete at this point, no 2620 * forward types or similar that would resolve to size of 2621 * zero is allowed. 2622 */ 2623 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2624 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2625 return -EINVAL; 2626 } 2627 2628 env_stack_pop_resolved(env, next_type_id, 0); 2629 2630 return 0; 2631 } 2632 2633 static int btf_ptr_resolve(struct btf_verifier_env *env, 2634 const struct resolve_vertex *v) 2635 { 2636 const struct btf_type *next_type; 2637 const struct btf_type *t = v->t; 2638 u32 next_type_id = t->type; 2639 struct btf *btf = env->btf; 2640 2641 next_type = btf_type_by_id(btf, next_type_id); 2642 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2643 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2644 return -EINVAL; 2645 } 2646 2647 if (!env_type_is_resolve_sink(env, next_type) && 2648 !env_type_is_resolved(env, next_type_id)) 2649 return env_stack_push(env, next_type, next_type_id); 2650 2651 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2652 * the modifier may have stopped resolving when it was resolved 2653 * to a ptr (last-resolved-ptr). 2654 * 2655 * We now need to continue from the last-resolved-ptr to 2656 * ensure the last-resolved-ptr will not referring back to 2657 * the current ptr (t). 2658 */ 2659 if (btf_type_is_modifier(next_type)) { 2660 const struct btf_type *resolved_type; 2661 u32 resolved_type_id; 2662 2663 resolved_type_id = next_type_id; 2664 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2665 2666 if (btf_type_is_ptr(resolved_type) && 2667 !env_type_is_resolve_sink(env, resolved_type) && 2668 !env_type_is_resolved(env, resolved_type_id)) 2669 return env_stack_push(env, resolved_type, 2670 resolved_type_id); 2671 } 2672 2673 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2674 if (env_type_is_resolved(env, next_type_id)) 2675 next_type = btf_type_id_resolve(btf, &next_type_id); 2676 2677 if (!btf_type_is_void(next_type) && 2678 !btf_type_is_fwd(next_type) && 2679 !btf_type_is_func_proto(next_type)) { 2680 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2681 return -EINVAL; 2682 } 2683 } 2684 2685 env_stack_pop_resolved(env, next_type_id, 0); 2686 2687 return 0; 2688 } 2689 2690 static void btf_modifier_show(const struct btf *btf, 2691 const struct btf_type *t, 2692 u32 type_id, void *data, 2693 u8 bits_offset, struct btf_show *show) 2694 { 2695 if (btf->resolved_ids) 2696 t = btf_type_id_resolve(btf, &type_id); 2697 else 2698 t = btf_type_skip_modifiers(btf, type_id, NULL); 2699 2700 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2701 } 2702 2703 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2704 u32 type_id, void *data, u8 bits_offset, 2705 struct btf_show *show) 2706 { 2707 t = btf_type_id_resolve(btf, &type_id); 2708 2709 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2710 } 2711 2712 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2713 u32 type_id, void *data, u8 bits_offset, 2714 struct btf_show *show) 2715 { 2716 void *safe_data; 2717 2718 safe_data = btf_show_start_type(show, t, type_id, data); 2719 if (!safe_data) 2720 return; 2721 2722 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2723 if (show->flags & BTF_SHOW_PTR_RAW) 2724 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2725 else 2726 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2727 btf_show_end_type(show); 2728 } 2729 2730 static void btf_ref_type_log(struct btf_verifier_env *env, 2731 const struct btf_type *t) 2732 { 2733 btf_verifier_log(env, "type_id=%u", t->type); 2734 } 2735 2736 static struct btf_kind_operations modifier_ops = { 2737 .check_meta = btf_ref_type_check_meta, 2738 .resolve = btf_modifier_resolve, 2739 .check_member = btf_modifier_check_member, 2740 .check_kflag_member = btf_modifier_check_kflag_member, 2741 .log_details = btf_ref_type_log, 2742 .show = btf_modifier_show, 2743 }; 2744 2745 static struct btf_kind_operations ptr_ops = { 2746 .check_meta = btf_ref_type_check_meta, 2747 .resolve = btf_ptr_resolve, 2748 .check_member = btf_ptr_check_member, 2749 .check_kflag_member = btf_generic_check_kflag_member, 2750 .log_details = btf_ref_type_log, 2751 .show = btf_ptr_show, 2752 }; 2753 2754 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2755 const struct btf_type *t, 2756 u32 meta_left) 2757 { 2758 if (btf_type_vlen(t)) { 2759 btf_verifier_log_type(env, t, "vlen != 0"); 2760 return -EINVAL; 2761 } 2762 2763 if (t->type) { 2764 btf_verifier_log_type(env, t, "type != 0"); 2765 return -EINVAL; 2766 } 2767 2768 /* fwd type must have a valid name */ 2769 if (!t->name_off || 2770 !btf_name_valid_identifier(env->btf, t->name_off)) { 2771 btf_verifier_log_type(env, t, "Invalid name"); 2772 return -EINVAL; 2773 } 2774 2775 btf_verifier_log_type(env, t, NULL); 2776 2777 return 0; 2778 } 2779 2780 static void btf_fwd_type_log(struct btf_verifier_env *env, 2781 const struct btf_type *t) 2782 { 2783 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2784 } 2785 2786 static struct btf_kind_operations fwd_ops = { 2787 .check_meta = btf_fwd_check_meta, 2788 .resolve = btf_df_resolve, 2789 .check_member = btf_df_check_member, 2790 .check_kflag_member = btf_df_check_kflag_member, 2791 .log_details = btf_fwd_type_log, 2792 .show = btf_df_show, 2793 }; 2794 2795 static int btf_array_check_member(struct btf_verifier_env *env, 2796 const struct btf_type *struct_type, 2797 const struct btf_member *member, 2798 const struct btf_type *member_type) 2799 { 2800 u32 struct_bits_off = member->offset; 2801 u32 struct_size, bytes_offset; 2802 u32 array_type_id, array_size; 2803 struct btf *btf = env->btf; 2804 2805 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2806 btf_verifier_log_member(env, struct_type, member, 2807 "Member is not byte aligned"); 2808 return -EINVAL; 2809 } 2810 2811 array_type_id = member->type; 2812 btf_type_id_size(btf, &array_type_id, &array_size); 2813 struct_size = struct_type->size; 2814 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2815 if (struct_size - bytes_offset < array_size) { 2816 btf_verifier_log_member(env, struct_type, member, 2817 "Member exceeds struct_size"); 2818 return -EINVAL; 2819 } 2820 2821 return 0; 2822 } 2823 2824 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2825 const struct btf_type *t, 2826 u32 meta_left) 2827 { 2828 const struct btf_array *array = btf_type_array(t); 2829 u32 meta_needed = sizeof(*array); 2830 2831 if (meta_left < meta_needed) { 2832 btf_verifier_log_basic(env, t, 2833 "meta_left:%u meta_needed:%u", 2834 meta_left, meta_needed); 2835 return -EINVAL; 2836 } 2837 2838 /* array type should not have a name */ 2839 if (t->name_off) { 2840 btf_verifier_log_type(env, t, "Invalid name"); 2841 return -EINVAL; 2842 } 2843 2844 if (btf_type_vlen(t)) { 2845 btf_verifier_log_type(env, t, "vlen != 0"); 2846 return -EINVAL; 2847 } 2848 2849 if (btf_type_kflag(t)) { 2850 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2851 return -EINVAL; 2852 } 2853 2854 if (t->size) { 2855 btf_verifier_log_type(env, t, "size != 0"); 2856 return -EINVAL; 2857 } 2858 2859 /* Array elem type and index type cannot be in type void, 2860 * so !array->type and !array->index_type are not allowed. 2861 */ 2862 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2863 btf_verifier_log_type(env, t, "Invalid elem"); 2864 return -EINVAL; 2865 } 2866 2867 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2868 btf_verifier_log_type(env, t, "Invalid index"); 2869 return -EINVAL; 2870 } 2871 2872 btf_verifier_log_type(env, t, NULL); 2873 2874 return meta_needed; 2875 } 2876 2877 static int btf_array_resolve(struct btf_verifier_env *env, 2878 const struct resolve_vertex *v) 2879 { 2880 const struct btf_array *array = btf_type_array(v->t); 2881 const struct btf_type *elem_type, *index_type; 2882 u32 elem_type_id, index_type_id; 2883 struct btf *btf = env->btf; 2884 u32 elem_size; 2885 2886 /* Check array->index_type */ 2887 index_type_id = array->index_type; 2888 index_type = btf_type_by_id(btf, index_type_id); 2889 if (btf_type_nosize_or_null(index_type) || 2890 btf_type_is_resolve_source_only(index_type)) { 2891 btf_verifier_log_type(env, v->t, "Invalid index"); 2892 return -EINVAL; 2893 } 2894 2895 if (!env_type_is_resolve_sink(env, index_type) && 2896 !env_type_is_resolved(env, index_type_id)) 2897 return env_stack_push(env, index_type, index_type_id); 2898 2899 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2900 if (!index_type || !btf_type_is_int(index_type) || 2901 !btf_type_int_is_regular(index_type)) { 2902 btf_verifier_log_type(env, v->t, "Invalid index"); 2903 return -EINVAL; 2904 } 2905 2906 /* Check array->type */ 2907 elem_type_id = array->type; 2908 elem_type = btf_type_by_id(btf, elem_type_id); 2909 if (btf_type_nosize_or_null(elem_type) || 2910 btf_type_is_resolve_source_only(elem_type)) { 2911 btf_verifier_log_type(env, v->t, 2912 "Invalid elem"); 2913 return -EINVAL; 2914 } 2915 2916 if (!env_type_is_resolve_sink(env, elem_type) && 2917 !env_type_is_resolved(env, elem_type_id)) 2918 return env_stack_push(env, elem_type, elem_type_id); 2919 2920 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2921 if (!elem_type) { 2922 btf_verifier_log_type(env, v->t, "Invalid elem"); 2923 return -EINVAL; 2924 } 2925 2926 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2927 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2928 return -EINVAL; 2929 } 2930 2931 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2932 btf_verifier_log_type(env, v->t, 2933 "Array size overflows U32_MAX"); 2934 return -EINVAL; 2935 } 2936 2937 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2938 2939 return 0; 2940 } 2941 2942 static void btf_array_log(struct btf_verifier_env *env, 2943 const struct btf_type *t) 2944 { 2945 const struct btf_array *array = btf_type_array(t); 2946 2947 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2948 array->type, array->index_type, array->nelems); 2949 } 2950 2951 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2952 u32 type_id, void *data, u8 bits_offset, 2953 struct btf_show *show) 2954 { 2955 const struct btf_array *array = btf_type_array(t); 2956 const struct btf_kind_operations *elem_ops; 2957 const struct btf_type *elem_type; 2958 u32 i, elem_size = 0, elem_type_id; 2959 u16 encoding = 0; 2960 2961 elem_type_id = array->type; 2962 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2963 if (elem_type && btf_type_has_size(elem_type)) 2964 elem_size = elem_type->size; 2965 2966 if (elem_type && btf_type_is_int(elem_type)) { 2967 u32 int_type = btf_type_int(elem_type); 2968 2969 encoding = BTF_INT_ENCODING(int_type); 2970 2971 /* 2972 * BTF_INT_CHAR encoding never seems to be set for 2973 * char arrays, so if size is 1 and element is 2974 * printable as a char, we'll do that. 2975 */ 2976 if (elem_size == 1) 2977 encoding = BTF_INT_CHAR; 2978 } 2979 2980 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2981 return; 2982 2983 if (!elem_type) 2984 goto out; 2985 elem_ops = btf_type_ops(elem_type); 2986 2987 for (i = 0; i < array->nelems; i++) { 2988 2989 btf_show_start_array_member(show); 2990 2991 elem_ops->show(btf, elem_type, elem_type_id, data, 2992 bits_offset, show); 2993 data += elem_size; 2994 2995 btf_show_end_array_member(show); 2996 2997 if (show->state.array_terminated) 2998 break; 2999 } 3000 out: 3001 btf_show_end_array_type(show); 3002 } 3003 3004 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3005 u32 type_id, void *data, u8 bits_offset, 3006 struct btf_show *show) 3007 { 3008 const struct btf_member *m = show->state.member; 3009 3010 /* 3011 * First check if any members would be shown (are non-zero). 3012 * See comments above "struct btf_show" definition for more 3013 * details on how this works at a high-level. 3014 */ 3015 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3016 if (!show->state.depth_check) { 3017 show->state.depth_check = show->state.depth + 1; 3018 show->state.depth_to_show = 0; 3019 } 3020 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3021 show->state.member = m; 3022 3023 if (show->state.depth_check != show->state.depth + 1) 3024 return; 3025 show->state.depth_check = 0; 3026 3027 if (show->state.depth_to_show <= show->state.depth) 3028 return; 3029 /* 3030 * Reaching here indicates we have recursed and found 3031 * non-zero array member(s). 3032 */ 3033 } 3034 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3035 } 3036 3037 static struct btf_kind_operations array_ops = { 3038 .check_meta = btf_array_check_meta, 3039 .resolve = btf_array_resolve, 3040 .check_member = btf_array_check_member, 3041 .check_kflag_member = btf_generic_check_kflag_member, 3042 .log_details = btf_array_log, 3043 .show = btf_array_show, 3044 }; 3045 3046 static int btf_struct_check_member(struct btf_verifier_env *env, 3047 const struct btf_type *struct_type, 3048 const struct btf_member *member, 3049 const struct btf_type *member_type) 3050 { 3051 u32 struct_bits_off = member->offset; 3052 u32 struct_size, bytes_offset; 3053 3054 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3055 btf_verifier_log_member(env, struct_type, member, 3056 "Member is not byte aligned"); 3057 return -EINVAL; 3058 } 3059 3060 struct_size = struct_type->size; 3061 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3062 if (struct_size - bytes_offset < member_type->size) { 3063 btf_verifier_log_member(env, struct_type, member, 3064 "Member exceeds struct_size"); 3065 return -EINVAL; 3066 } 3067 3068 return 0; 3069 } 3070 3071 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3072 const struct btf_type *t, 3073 u32 meta_left) 3074 { 3075 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3076 const struct btf_member *member; 3077 u32 meta_needed, last_offset; 3078 struct btf *btf = env->btf; 3079 u32 struct_size = t->size; 3080 u32 offset; 3081 u16 i; 3082 3083 meta_needed = btf_type_vlen(t) * sizeof(*member); 3084 if (meta_left < meta_needed) { 3085 btf_verifier_log_basic(env, t, 3086 "meta_left:%u meta_needed:%u", 3087 meta_left, meta_needed); 3088 return -EINVAL; 3089 } 3090 3091 /* struct type either no name or a valid one */ 3092 if (t->name_off && 3093 !btf_name_valid_identifier(env->btf, t->name_off)) { 3094 btf_verifier_log_type(env, t, "Invalid name"); 3095 return -EINVAL; 3096 } 3097 3098 btf_verifier_log_type(env, t, NULL); 3099 3100 last_offset = 0; 3101 for_each_member(i, t, member) { 3102 if (!btf_name_offset_valid(btf, member->name_off)) { 3103 btf_verifier_log_member(env, t, member, 3104 "Invalid member name_offset:%u", 3105 member->name_off); 3106 return -EINVAL; 3107 } 3108 3109 /* struct member either no name or a valid one */ 3110 if (member->name_off && 3111 !btf_name_valid_identifier(btf, member->name_off)) { 3112 btf_verifier_log_member(env, t, member, "Invalid name"); 3113 return -EINVAL; 3114 } 3115 /* A member cannot be in type void */ 3116 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3117 btf_verifier_log_member(env, t, member, 3118 "Invalid type_id"); 3119 return -EINVAL; 3120 } 3121 3122 offset = __btf_member_bit_offset(t, member); 3123 if (is_union && offset) { 3124 btf_verifier_log_member(env, t, member, 3125 "Invalid member bits_offset"); 3126 return -EINVAL; 3127 } 3128 3129 /* 3130 * ">" instead of ">=" because the last member could be 3131 * "char a[0];" 3132 */ 3133 if (last_offset > offset) { 3134 btf_verifier_log_member(env, t, member, 3135 "Invalid member bits_offset"); 3136 return -EINVAL; 3137 } 3138 3139 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3140 btf_verifier_log_member(env, t, member, 3141 "Member bits_offset exceeds its struct size"); 3142 return -EINVAL; 3143 } 3144 3145 btf_verifier_log_member(env, t, member, NULL); 3146 last_offset = offset; 3147 } 3148 3149 return meta_needed; 3150 } 3151 3152 static int btf_struct_resolve(struct btf_verifier_env *env, 3153 const struct resolve_vertex *v) 3154 { 3155 const struct btf_member *member; 3156 int err; 3157 u16 i; 3158 3159 /* Before continue resolving the next_member, 3160 * ensure the last member is indeed resolved to a 3161 * type with size info. 3162 */ 3163 if (v->next_member) { 3164 const struct btf_type *last_member_type; 3165 const struct btf_member *last_member; 3166 u32 last_member_type_id; 3167 3168 last_member = btf_type_member(v->t) + v->next_member - 1; 3169 last_member_type_id = last_member->type; 3170 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3171 last_member_type_id))) 3172 return -EINVAL; 3173 3174 last_member_type = btf_type_by_id(env->btf, 3175 last_member_type_id); 3176 if (btf_type_kflag(v->t)) 3177 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3178 last_member, 3179 last_member_type); 3180 else 3181 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3182 last_member, 3183 last_member_type); 3184 if (err) 3185 return err; 3186 } 3187 3188 for_each_member_from(i, v->next_member, v->t, member) { 3189 u32 member_type_id = member->type; 3190 const struct btf_type *member_type = btf_type_by_id(env->btf, 3191 member_type_id); 3192 3193 if (btf_type_nosize_or_null(member_type) || 3194 btf_type_is_resolve_source_only(member_type)) { 3195 btf_verifier_log_member(env, v->t, member, 3196 "Invalid member"); 3197 return -EINVAL; 3198 } 3199 3200 if (!env_type_is_resolve_sink(env, member_type) && 3201 !env_type_is_resolved(env, member_type_id)) { 3202 env_stack_set_next_member(env, i + 1); 3203 return env_stack_push(env, member_type, member_type_id); 3204 } 3205 3206 if (btf_type_kflag(v->t)) 3207 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3208 member, 3209 member_type); 3210 else 3211 err = btf_type_ops(member_type)->check_member(env, v->t, 3212 member, 3213 member_type); 3214 if (err) 3215 return err; 3216 } 3217 3218 env_stack_pop_resolved(env, 0, 0); 3219 3220 return 0; 3221 } 3222 3223 static void btf_struct_log(struct btf_verifier_env *env, 3224 const struct btf_type *t) 3225 { 3226 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3227 } 3228 3229 enum btf_field_info_type { 3230 BTF_FIELD_SPIN_LOCK, 3231 BTF_FIELD_TIMER, 3232 BTF_FIELD_KPTR, 3233 }; 3234 3235 enum { 3236 BTF_FIELD_IGNORE = 0, 3237 BTF_FIELD_FOUND = 1, 3238 }; 3239 3240 struct btf_field_info { 3241 enum btf_field_type type; 3242 u32 off; 3243 union { 3244 struct { 3245 u32 type_id; 3246 } kptr; 3247 struct { 3248 const char *node_name; 3249 u32 value_btf_id; 3250 } graph_root; 3251 }; 3252 }; 3253 3254 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3255 u32 off, int sz, enum btf_field_type field_type, 3256 struct btf_field_info *info) 3257 { 3258 if (!__btf_type_is_struct(t)) 3259 return BTF_FIELD_IGNORE; 3260 if (t->size != sz) 3261 return BTF_FIELD_IGNORE; 3262 info->type = field_type; 3263 info->off = off; 3264 return BTF_FIELD_FOUND; 3265 } 3266 3267 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3268 u32 off, int sz, struct btf_field_info *info) 3269 { 3270 enum btf_field_type type; 3271 u32 res_id; 3272 3273 /* Permit modifiers on the pointer itself */ 3274 if (btf_type_is_volatile(t)) 3275 t = btf_type_by_id(btf, t->type); 3276 /* For PTR, sz is always == 8 */ 3277 if (!btf_type_is_ptr(t)) 3278 return BTF_FIELD_IGNORE; 3279 t = btf_type_by_id(btf, t->type); 3280 3281 if (!btf_type_is_type_tag(t)) 3282 return BTF_FIELD_IGNORE; 3283 /* Reject extra tags */ 3284 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3285 return -EINVAL; 3286 if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3287 type = BPF_KPTR_UNREF; 3288 else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off))) 3289 type = BPF_KPTR_REF; 3290 else 3291 return -EINVAL; 3292 3293 /* Get the base type */ 3294 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3295 /* Only pointer to struct is allowed */ 3296 if (!__btf_type_is_struct(t)) 3297 return -EINVAL; 3298 3299 info->type = type; 3300 info->off = off; 3301 info->kptr.type_id = res_id; 3302 return BTF_FIELD_FOUND; 3303 } 3304 3305 static const char *btf_find_decl_tag_value(const struct btf *btf, 3306 const struct btf_type *pt, 3307 int comp_idx, const char *tag_key) 3308 { 3309 int i; 3310 3311 for (i = 1; i < btf_nr_types(btf); i++) { 3312 const struct btf_type *t = btf_type_by_id(btf, i); 3313 int len = strlen(tag_key); 3314 3315 if (!btf_type_is_decl_tag(t)) 3316 continue; 3317 if (pt != btf_type_by_id(btf, t->type) || 3318 btf_type_decl_tag(t)->component_idx != comp_idx) 3319 continue; 3320 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3321 continue; 3322 return __btf_name_by_offset(btf, t->name_off) + len; 3323 } 3324 return NULL; 3325 } 3326 3327 static int btf_find_list_head(const struct btf *btf, const struct btf_type *pt, 3328 const struct btf_type *t, int comp_idx, 3329 u32 off, int sz, struct btf_field_info *info) 3330 { 3331 const char *value_type; 3332 const char *list_node; 3333 s32 id; 3334 3335 if (!__btf_type_is_struct(t)) 3336 return BTF_FIELD_IGNORE; 3337 if (t->size != sz) 3338 return BTF_FIELD_IGNORE; 3339 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3340 if (!value_type) 3341 return -EINVAL; 3342 list_node = strstr(value_type, ":"); 3343 if (!list_node) 3344 return -EINVAL; 3345 value_type = kstrndup(value_type, list_node - value_type, GFP_KERNEL | __GFP_NOWARN); 3346 if (!value_type) 3347 return -ENOMEM; 3348 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3349 kfree(value_type); 3350 if (id < 0) 3351 return id; 3352 list_node++; 3353 if (str_is_empty(list_node)) 3354 return -EINVAL; 3355 info->type = BPF_LIST_HEAD; 3356 info->off = off; 3357 info->graph_root.value_btf_id = id; 3358 info->graph_root.node_name = list_node; 3359 return BTF_FIELD_FOUND; 3360 } 3361 3362 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask, 3363 int *align, int *sz) 3364 { 3365 int type = 0; 3366 3367 if (field_mask & BPF_SPIN_LOCK) { 3368 if (!strcmp(name, "bpf_spin_lock")) { 3369 if (*seen_mask & BPF_SPIN_LOCK) 3370 return -E2BIG; 3371 *seen_mask |= BPF_SPIN_LOCK; 3372 type = BPF_SPIN_LOCK; 3373 goto end; 3374 } 3375 } 3376 if (field_mask & BPF_TIMER) { 3377 if (!strcmp(name, "bpf_timer")) { 3378 if (*seen_mask & BPF_TIMER) 3379 return -E2BIG; 3380 *seen_mask |= BPF_TIMER; 3381 type = BPF_TIMER; 3382 goto end; 3383 } 3384 } 3385 if (field_mask & BPF_LIST_HEAD) { 3386 if (!strcmp(name, "bpf_list_head")) { 3387 type = BPF_LIST_HEAD; 3388 goto end; 3389 } 3390 } 3391 if (field_mask & BPF_LIST_NODE) { 3392 if (!strcmp(name, "bpf_list_node")) { 3393 type = BPF_LIST_NODE; 3394 goto end; 3395 } 3396 } 3397 /* Only return BPF_KPTR when all other types with matchable names fail */ 3398 if (field_mask & BPF_KPTR) { 3399 type = BPF_KPTR_REF; 3400 goto end; 3401 } 3402 return 0; 3403 end: 3404 *sz = btf_field_type_size(type); 3405 *align = btf_field_type_align(type); 3406 return type; 3407 } 3408 3409 static int btf_find_struct_field(const struct btf *btf, 3410 const struct btf_type *t, u32 field_mask, 3411 struct btf_field_info *info, int info_cnt) 3412 { 3413 int ret, idx = 0, align, sz, field_type; 3414 const struct btf_member *member; 3415 struct btf_field_info tmp; 3416 u32 i, off, seen_mask = 0; 3417 3418 for_each_member(i, t, member) { 3419 const struct btf_type *member_type = btf_type_by_id(btf, 3420 member->type); 3421 3422 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off), 3423 field_mask, &seen_mask, &align, &sz); 3424 if (field_type == 0) 3425 continue; 3426 if (field_type < 0) 3427 return field_type; 3428 3429 off = __btf_member_bit_offset(t, member); 3430 if (off % 8) 3431 /* valid C code cannot generate such BTF */ 3432 return -EINVAL; 3433 off /= 8; 3434 if (off % align) 3435 continue; 3436 3437 switch (field_type) { 3438 case BPF_SPIN_LOCK: 3439 case BPF_TIMER: 3440 case BPF_LIST_NODE: 3441 ret = btf_find_struct(btf, member_type, off, sz, field_type, 3442 idx < info_cnt ? &info[idx] : &tmp); 3443 if (ret < 0) 3444 return ret; 3445 break; 3446 case BPF_KPTR_UNREF: 3447 case BPF_KPTR_REF: 3448 ret = btf_find_kptr(btf, member_type, off, sz, 3449 idx < info_cnt ? &info[idx] : &tmp); 3450 if (ret < 0) 3451 return ret; 3452 break; 3453 case BPF_LIST_HEAD: 3454 ret = btf_find_list_head(btf, t, member_type, i, off, sz, 3455 idx < info_cnt ? &info[idx] : &tmp); 3456 if (ret < 0) 3457 return ret; 3458 break; 3459 default: 3460 return -EFAULT; 3461 } 3462 3463 if (ret == BTF_FIELD_IGNORE) 3464 continue; 3465 if (idx >= info_cnt) 3466 return -E2BIG; 3467 ++idx; 3468 } 3469 return idx; 3470 } 3471 3472 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3473 u32 field_mask, struct btf_field_info *info, 3474 int info_cnt) 3475 { 3476 int ret, idx = 0, align, sz, field_type; 3477 const struct btf_var_secinfo *vsi; 3478 struct btf_field_info tmp; 3479 u32 i, off, seen_mask = 0; 3480 3481 for_each_vsi(i, t, vsi) { 3482 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3483 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3484 3485 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off), 3486 field_mask, &seen_mask, &align, &sz); 3487 if (field_type == 0) 3488 continue; 3489 if (field_type < 0) 3490 return field_type; 3491 3492 off = vsi->offset; 3493 if (vsi->size != sz) 3494 continue; 3495 if (off % align) 3496 continue; 3497 3498 switch (field_type) { 3499 case BPF_SPIN_LOCK: 3500 case BPF_TIMER: 3501 case BPF_LIST_NODE: 3502 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3503 idx < info_cnt ? &info[idx] : &tmp); 3504 if (ret < 0) 3505 return ret; 3506 break; 3507 case BPF_KPTR_UNREF: 3508 case BPF_KPTR_REF: 3509 ret = btf_find_kptr(btf, var_type, off, sz, 3510 idx < info_cnt ? &info[idx] : &tmp); 3511 if (ret < 0) 3512 return ret; 3513 break; 3514 case BPF_LIST_HEAD: 3515 ret = btf_find_list_head(btf, var, var_type, -1, off, sz, 3516 idx < info_cnt ? &info[idx] : &tmp); 3517 if (ret < 0) 3518 return ret; 3519 break; 3520 default: 3521 return -EFAULT; 3522 } 3523 3524 if (ret == BTF_FIELD_IGNORE) 3525 continue; 3526 if (idx >= info_cnt) 3527 return -E2BIG; 3528 ++idx; 3529 } 3530 return idx; 3531 } 3532 3533 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3534 u32 field_mask, struct btf_field_info *info, 3535 int info_cnt) 3536 { 3537 if (__btf_type_is_struct(t)) 3538 return btf_find_struct_field(btf, t, field_mask, info, info_cnt); 3539 else if (btf_type_is_datasec(t)) 3540 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt); 3541 return -EINVAL; 3542 } 3543 3544 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3545 struct btf_field_info *info) 3546 { 3547 struct module *mod = NULL; 3548 const struct btf_type *t; 3549 struct btf *kernel_btf; 3550 int ret; 3551 s32 id; 3552 3553 /* Find type in map BTF, and use it to look up the matching type 3554 * in vmlinux or module BTFs, by name and kind. 3555 */ 3556 t = btf_type_by_id(btf, info->kptr.type_id); 3557 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3558 &kernel_btf); 3559 if (id < 0) 3560 return id; 3561 3562 /* Find and stash the function pointer for the destruction function that 3563 * needs to be eventually invoked from the map free path. 3564 */ 3565 if (info->type == BPF_KPTR_REF) { 3566 const struct btf_type *dtor_func; 3567 const char *dtor_func_name; 3568 unsigned long addr; 3569 s32 dtor_btf_id; 3570 3571 /* This call also serves as a whitelist of allowed objects that 3572 * can be used as a referenced pointer and be stored in a map at 3573 * the same time. 3574 */ 3575 dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id); 3576 if (dtor_btf_id < 0) { 3577 ret = dtor_btf_id; 3578 goto end_btf; 3579 } 3580 3581 dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id); 3582 if (!dtor_func) { 3583 ret = -ENOENT; 3584 goto end_btf; 3585 } 3586 3587 if (btf_is_module(kernel_btf)) { 3588 mod = btf_try_get_module(kernel_btf); 3589 if (!mod) { 3590 ret = -ENXIO; 3591 goto end_btf; 3592 } 3593 } 3594 3595 /* We already verified dtor_func to be btf_type_is_func 3596 * in register_btf_id_dtor_kfuncs. 3597 */ 3598 dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off); 3599 addr = kallsyms_lookup_name(dtor_func_name); 3600 if (!addr) { 3601 ret = -EINVAL; 3602 goto end_mod; 3603 } 3604 field->kptr.dtor = (void *)addr; 3605 } 3606 3607 field->kptr.btf_id = id; 3608 field->kptr.btf = kernel_btf; 3609 field->kptr.module = mod; 3610 return 0; 3611 end_mod: 3612 module_put(mod); 3613 end_btf: 3614 btf_put(kernel_btf); 3615 return ret; 3616 } 3617 3618 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3619 struct btf_field_info *info) 3620 { 3621 const struct btf_type *t, *n = NULL; 3622 const struct btf_member *member; 3623 u32 offset; 3624 int i; 3625 3626 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3627 /* We've already checked that value_btf_id is a struct type. We 3628 * just need to figure out the offset of the list_node, and 3629 * verify its type. 3630 */ 3631 for_each_member(i, t, member) { 3632 if (strcmp(info->graph_root.node_name, 3633 __btf_name_by_offset(btf, member->name_off))) 3634 continue; 3635 /* Invalid BTF, two members with same name */ 3636 if (n) 3637 return -EINVAL; 3638 n = btf_type_by_id(btf, member->type); 3639 if (!__btf_type_is_struct(n)) 3640 return -EINVAL; 3641 if (strcmp("bpf_list_node", __btf_name_by_offset(btf, n->name_off))) 3642 return -EINVAL; 3643 offset = __btf_member_bit_offset(n, member); 3644 if (offset % 8) 3645 return -EINVAL; 3646 offset /= 8; 3647 if (offset % __alignof__(struct bpf_list_node)) 3648 return -EINVAL; 3649 3650 field->graph_root.btf = (struct btf *)btf; 3651 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3652 field->graph_root.node_offset = offset; 3653 } 3654 if (!n) 3655 return -ENOENT; 3656 return 0; 3657 } 3658 3659 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3660 u32 field_mask, u32 value_size) 3661 { 3662 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3663 struct btf_record *rec; 3664 u32 next_off = 0; 3665 int ret, i, cnt; 3666 3667 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3668 if (ret < 0) 3669 return ERR_PTR(ret); 3670 if (!ret) 3671 return NULL; 3672 3673 cnt = ret; 3674 /* This needs to be kzalloc to zero out padding and unused fields, see 3675 * comment in btf_record_equal. 3676 */ 3677 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3678 if (!rec) 3679 return ERR_PTR(-ENOMEM); 3680 3681 rec->spin_lock_off = -EINVAL; 3682 rec->timer_off = -EINVAL; 3683 for (i = 0; i < cnt; i++) { 3684 if (info_arr[i].off + btf_field_type_size(info_arr[i].type) > value_size) { 3685 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3686 ret = -EFAULT; 3687 goto end; 3688 } 3689 if (info_arr[i].off < next_off) { 3690 ret = -EEXIST; 3691 goto end; 3692 } 3693 next_off = info_arr[i].off + btf_field_type_size(info_arr[i].type); 3694 3695 rec->field_mask |= info_arr[i].type; 3696 rec->fields[i].offset = info_arr[i].off; 3697 rec->fields[i].type = info_arr[i].type; 3698 3699 switch (info_arr[i].type) { 3700 case BPF_SPIN_LOCK: 3701 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3702 /* Cache offset for faster lookup at runtime */ 3703 rec->spin_lock_off = rec->fields[i].offset; 3704 break; 3705 case BPF_TIMER: 3706 WARN_ON_ONCE(rec->timer_off >= 0); 3707 /* Cache offset for faster lookup at runtime */ 3708 rec->timer_off = rec->fields[i].offset; 3709 break; 3710 case BPF_KPTR_UNREF: 3711 case BPF_KPTR_REF: 3712 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 3713 if (ret < 0) 3714 goto end; 3715 break; 3716 case BPF_LIST_HEAD: 3717 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 3718 if (ret < 0) 3719 goto end; 3720 break; 3721 case BPF_LIST_NODE: 3722 break; 3723 default: 3724 ret = -EFAULT; 3725 goto end; 3726 } 3727 rec->cnt++; 3728 } 3729 3730 /* bpf_list_head requires bpf_spin_lock */ 3731 if (btf_record_has_field(rec, BPF_LIST_HEAD) && rec->spin_lock_off < 0) { 3732 ret = -EINVAL; 3733 goto end; 3734 } 3735 3736 return rec; 3737 end: 3738 btf_record_free(rec); 3739 return ERR_PTR(ret); 3740 } 3741 3742 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 3743 { 3744 int i; 3745 3746 /* There are two owning types, kptr_ref and bpf_list_head. The former 3747 * only supports storing kernel types, which can never store references 3748 * to program allocated local types, atleast not yet. Hence we only need 3749 * to ensure that bpf_list_head ownership does not form cycles. 3750 */ 3751 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_LIST_HEAD)) 3752 return 0; 3753 for (i = 0; i < rec->cnt; i++) { 3754 struct btf_struct_meta *meta; 3755 u32 btf_id; 3756 3757 if (!(rec->fields[i].type & BPF_LIST_HEAD)) 3758 continue; 3759 btf_id = rec->fields[i].graph_root.value_btf_id; 3760 meta = btf_find_struct_meta(btf, btf_id); 3761 if (!meta) 3762 return -EFAULT; 3763 rec->fields[i].graph_root.value_rec = meta->record; 3764 3765 if (!(rec->field_mask & BPF_LIST_NODE)) 3766 continue; 3767 3768 /* We need to ensure ownership acyclicity among all types. The 3769 * proper way to do it would be to topologically sort all BTF 3770 * IDs based on the ownership edges, since there can be multiple 3771 * bpf_list_head in a type. Instead, we use the following 3772 * reasoning: 3773 * 3774 * - A type can only be owned by another type in user BTF if it 3775 * has a bpf_list_node. 3776 * - A type can only _own_ another type in user BTF if it has a 3777 * bpf_list_head. 3778 * 3779 * We ensure that if a type has both bpf_list_head and 3780 * bpf_list_node, its element types cannot be owning types. 3781 * 3782 * To ensure acyclicity: 3783 * 3784 * When A only has bpf_list_head, ownership chain can be: 3785 * A -> B -> C 3786 * Where: 3787 * - B has both bpf_list_head and bpf_list_node. 3788 * - C only has bpf_list_node. 3789 * 3790 * When A has both bpf_list_head and bpf_list_node, some other 3791 * type already owns it in the BTF domain, hence it can not own 3792 * another owning type through any of the bpf_list_head edges. 3793 * A -> B 3794 * Where: 3795 * - B only has bpf_list_node. 3796 */ 3797 if (meta->record->field_mask & BPF_LIST_HEAD) 3798 return -ELOOP; 3799 } 3800 return 0; 3801 } 3802 3803 static int btf_field_offs_cmp(const void *_a, const void *_b, const void *priv) 3804 { 3805 const u32 a = *(const u32 *)_a; 3806 const u32 b = *(const u32 *)_b; 3807 3808 if (a < b) 3809 return -1; 3810 else if (a > b) 3811 return 1; 3812 return 0; 3813 } 3814 3815 static void btf_field_offs_swap(void *_a, void *_b, int size, const void *priv) 3816 { 3817 struct btf_field_offs *foffs = (void *)priv; 3818 u32 *off_base = foffs->field_off; 3819 u32 *a = _a, *b = _b; 3820 u8 *sz_a, *sz_b; 3821 3822 sz_a = foffs->field_sz + (a - off_base); 3823 sz_b = foffs->field_sz + (b - off_base); 3824 3825 swap(*a, *b); 3826 swap(*sz_a, *sz_b); 3827 } 3828 3829 struct btf_field_offs *btf_parse_field_offs(struct btf_record *rec) 3830 { 3831 struct btf_field_offs *foffs; 3832 u32 i, *off; 3833 u8 *sz; 3834 3835 BUILD_BUG_ON(ARRAY_SIZE(foffs->field_off) != ARRAY_SIZE(foffs->field_sz)); 3836 if (IS_ERR_OR_NULL(rec)) 3837 return NULL; 3838 3839 foffs = kzalloc(sizeof(*foffs), GFP_KERNEL | __GFP_NOWARN); 3840 if (!foffs) 3841 return ERR_PTR(-ENOMEM); 3842 3843 off = foffs->field_off; 3844 sz = foffs->field_sz; 3845 for (i = 0; i < rec->cnt; i++) { 3846 off[i] = rec->fields[i].offset; 3847 sz[i] = btf_field_type_size(rec->fields[i].type); 3848 } 3849 foffs->cnt = rec->cnt; 3850 3851 if (foffs->cnt == 1) 3852 return foffs; 3853 sort_r(foffs->field_off, foffs->cnt, sizeof(foffs->field_off[0]), 3854 btf_field_offs_cmp, btf_field_offs_swap, foffs); 3855 return foffs; 3856 } 3857 3858 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3859 u32 type_id, void *data, u8 bits_offset, 3860 struct btf_show *show) 3861 { 3862 const struct btf_member *member; 3863 void *safe_data; 3864 u32 i; 3865 3866 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3867 if (!safe_data) 3868 return; 3869 3870 for_each_member(i, t, member) { 3871 const struct btf_type *member_type = btf_type_by_id(btf, 3872 member->type); 3873 const struct btf_kind_operations *ops; 3874 u32 member_offset, bitfield_size; 3875 u32 bytes_offset; 3876 u8 bits8_offset; 3877 3878 btf_show_start_member(show, member); 3879 3880 member_offset = __btf_member_bit_offset(t, member); 3881 bitfield_size = __btf_member_bitfield_size(t, member); 3882 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3883 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3884 if (bitfield_size) { 3885 safe_data = btf_show_start_type(show, member_type, 3886 member->type, 3887 data + bytes_offset); 3888 if (safe_data) 3889 btf_bitfield_show(safe_data, 3890 bits8_offset, 3891 bitfield_size, show); 3892 btf_show_end_type(show); 3893 } else { 3894 ops = btf_type_ops(member_type); 3895 ops->show(btf, member_type, member->type, 3896 data + bytes_offset, bits8_offset, show); 3897 } 3898 3899 btf_show_end_member(show); 3900 } 3901 3902 btf_show_end_struct_type(show); 3903 } 3904 3905 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3906 u32 type_id, void *data, u8 bits_offset, 3907 struct btf_show *show) 3908 { 3909 const struct btf_member *m = show->state.member; 3910 3911 /* 3912 * First check if any members would be shown (are non-zero). 3913 * See comments above "struct btf_show" definition for more 3914 * details on how this works at a high-level. 3915 */ 3916 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3917 if (!show->state.depth_check) { 3918 show->state.depth_check = show->state.depth + 1; 3919 show->state.depth_to_show = 0; 3920 } 3921 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3922 /* Restore saved member data here */ 3923 show->state.member = m; 3924 if (show->state.depth_check != show->state.depth + 1) 3925 return; 3926 show->state.depth_check = 0; 3927 3928 if (show->state.depth_to_show <= show->state.depth) 3929 return; 3930 /* 3931 * Reaching here indicates we have recursed and found 3932 * non-zero child values. 3933 */ 3934 } 3935 3936 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3937 } 3938 3939 static struct btf_kind_operations struct_ops = { 3940 .check_meta = btf_struct_check_meta, 3941 .resolve = btf_struct_resolve, 3942 .check_member = btf_struct_check_member, 3943 .check_kflag_member = btf_generic_check_kflag_member, 3944 .log_details = btf_struct_log, 3945 .show = btf_struct_show, 3946 }; 3947 3948 static int btf_enum_check_member(struct btf_verifier_env *env, 3949 const struct btf_type *struct_type, 3950 const struct btf_member *member, 3951 const struct btf_type *member_type) 3952 { 3953 u32 struct_bits_off = member->offset; 3954 u32 struct_size, bytes_offset; 3955 3956 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3957 btf_verifier_log_member(env, struct_type, member, 3958 "Member is not byte aligned"); 3959 return -EINVAL; 3960 } 3961 3962 struct_size = struct_type->size; 3963 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3964 if (struct_size - bytes_offset < member_type->size) { 3965 btf_verifier_log_member(env, struct_type, member, 3966 "Member exceeds struct_size"); 3967 return -EINVAL; 3968 } 3969 3970 return 0; 3971 } 3972 3973 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 3974 const struct btf_type *struct_type, 3975 const struct btf_member *member, 3976 const struct btf_type *member_type) 3977 { 3978 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 3979 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 3980 3981 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 3982 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 3983 if (!nr_bits) { 3984 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3985 btf_verifier_log_member(env, struct_type, member, 3986 "Member is not byte aligned"); 3987 return -EINVAL; 3988 } 3989 3990 nr_bits = int_bitsize; 3991 } else if (nr_bits > int_bitsize) { 3992 btf_verifier_log_member(env, struct_type, member, 3993 "Invalid member bitfield_size"); 3994 return -EINVAL; 3995 } 3996 3997 struct_size = struct_type->size; 3998 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 3999 if (struct_size < bytes_end) { 4000 btf_verifier_log_member(env, struct_type, member, 4001 "Member exceeds struct_size"); 4002 return -EINVAL; 4003 } 4004 4005 return 0; 4006 } 4007 4008 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4009 const struct btf_type *t, 4010 u32 meta_left) 4011 { 4012 const struct btf_enum *enums = btf_type_enum(t); 4013 struct btf *btf = env->btf; 4014 const char *fmt_str; 4015 u16 i, nr_enums; 4016 u32 meta_needed; 4017 4018 nr_enums = btf_type_vlen(t); 4019 meta_needed = nr_enums * sizeof(*enums); 4020 4021 if (meta_left < meta_needed) { 4022 btf_verifier_log_basic(env, t, 4023 "meta_left:%u meta_needed:%u", 4024 meta_left, meta_needed); 4025 return -EINVAL; 4026 } 4027 4028 if (t->size > 8 || !is_power_of_2(t->size)) { 4029 btf_verifier_log_type(env, t, "Unexpected size"); 4030 return -EINVAL; 4031 } 4032 4033 /* enum type either no name or a valid one */ 4034 if (t->name_off && 4035 !btf_name_valid_identifier(env->btf, t->name_off)) { 4036 btf_verifier_log_type(env, t, "Invalid name"); 4037 return -EINVAL; 4038 } 4039 4040 btf_verifier_log_type(env, t, NULL); 4041 4042 for (i = 0; i < nr_enums; i++) { 4043 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4044 btf_verifier_log(env, "\tInvalid name_offset:%u", 4045 enums[i].name_off); 4046 return -EINVAL; 4047 } 4048 4049 /* enum member must have a valid name */ 4050 if (!enums[i].name_off || 4051 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4052 btf_verifier_log_type(env, t, "Invalid name"); 4053 return -EINVAL; 4054 } 4055 4056 if (env->log.level == BPF_LOG_KERNEL) 4057 continue; 4058 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4059 btf_verifier_log(env, fmt_str, 4060 __btf_name_by_offset(btf, enums[i].name_off), 4061 enums[i].val); 4062 } 4063 4064 return meta_needed; 4065 } 4066 4067 static void btf_enum_log(struct btf_verifier_env *env, 4068 const struct btf_type *t) 4069 { 4070 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4071 } 4072 4073 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4074 u32 type_id, void *data, u8 bits_offset, 4075 struct btf_show *show) 4076 { 4077 const struct btf_enum *enums = btf_type_enum(t); 4078 u32 i, nr_enums = btf_type_vlen(t); 4079 void *safe_data; 4080 int v; 4081 4082 safe_data = btf_show_start_type(show, t, type_id, data); 4083 if (!safe_data) 4084 return; 4085 4086 v = *(int *)safe_data; 4087 4088 for (i = 0; i < nr_enums; i++) { 4089 if (v != enums[i].val) 4090 continue; 4091 4092 btf_show_type_value(show, "%s", 4093 __btf_name_by_offset(btf, 4094 enums[i].name_off)); 4095 4096 btf_show_end_type(show); 4097 return; 4098 } 4099 4100 if (btf_type_kflag(t)) 4101 btf_show_type_value(show, "%d", v); 4102 else 4103 btf_show_type_value(show, "%u", v); 4104 btf_show_end_type(show); 4105 } 4106 4107 static struct btf_kind_operations enum_ops = { 4108 .check_meta = btf_enum_check_meta, 4109 .resolve = btf_df_resolve, 4110 .check_member = btf_enum_check_member, 4111 .check_kflag_member = btf_enum_check_kflag_member, 4112 .log_details = btf_enum_log, 4113 .show = btf_enum_show, 4114 }; 4115 4116 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4117 const struct btf_type *t, 4118 u32 meta_left) 4119 { 4120 const struct btf_enum64 *enums = btf_type_enum64(t); 4121 struct btf *btf = env->btf; 4122 const char *fmt_str; 4123 u16 i, nr_enums; 4124 u32 meta_needed; 4125 4126 nr_enums = btf_type_vlen(t); 4127 meta_needed = nr_enums * sizeof(*enums); 4128 4129 if (meta_left < meta_needed) { 4130 btf_verifier_log_basic(env, t, 4131 "meta_left:%u meta_needed:%u", 4132 meta_left, meta_needed); 4133 return -EINVAL; 4134 } 4135 4136 if (t->size > 8 || !is_power_of_2(t->size)) { 4137 btf_verifier_log_type(env, t, "Unexpected size"); 4138 return -EINVAL; 4139 } 4140 4141 /* enum type either no name or a valid one */ 4142 if (t->name_off && 4143 !btf_name_valid_identifier(env->btf, t->name_off)) { 4144 btf_verifier_log_type(env, t, "Invalid name"); 4145 return -EINVAL; 4146 } 4147 4148 btf_verifier_log_type(env, t, NULL); 4149 4150 for (i = 0; i < nr_enums; i++) { 4151 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4152 btf_verifier_log(env, "\tInvalid name_offset:%u", 4153 enums[i].name_off); 4154 return -EINVAL; 4155 } 4156 4157 /* enum member must have a valid name */ 4158 if (!enums[i].name_off || 4159 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4160 btf_verifier_log_type(env, t, "Invalid name"); 4161 return -EINVAL; 4162 } 4163 4164 if (env->log.level == BPF_LOG_KERNEL) 4165 continue; 4166 4167 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4168 btf_verifier_log(env, fmt_str, 4169 __btf_name_by_offset(btf, enums[i].name_off), 4170 btf_enum64_value(enums + i)); 4171 } 4172 4173 return meta_needed; 4174 } 4175 4176 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4177 u32 type_id, void *data, u8 bits_offset, 4178 struct btf_show *show) 4179 { 4180 const struct btf_enum64 *enums = btf_type_enum64(t); 4181 u32 i, nr_enums = btf_type_vlen(t); 4182 void *safe_data; 4183 s64 v; 4184 4185 safe_data = btf_show_start_type(show, t, type_id, data); 4186 if (!safe_data) 4187 return; 4188 4189 v = *(u64 *)safe_data; 4190 4191 for (i = 0; i < nr_enums; i++) { 4192 if (v != btf_enum64_value(enums + i)) 4193 continue; 4194 4195 btf_show_type_value(show, "%s", 4196 __btf_name_by_offset(btf, 4197 enums[i].name_off)); 4198 4199 btf_show_end_type(show); 4200 return; 4201 } 4202 4203 if (btf_type_kflag(t)) 4204 btf_show_type_value(show, "%lld", v); 4205 else 4206 btf_show_type_value(show, "%llu", v); 4207 btf_show_end_type(show); 4208 } 4209 4210 static struct btf_kind_operations enum64_ops = { 4211 .check_meta = btf_enum64_check_meta, 4212 .resolve = btf_df_resolve, 4213 .check_member = btf_enum_check_member, 4214 .check_kflag_member = btf_enum_check_kflag_member, 4215 .log_details = btf_enum_log, 4216 .show = btf_enum64_show, 4217 }; 4218 4219 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4220 const struct btf_type *t, 4221 u32 meta_left) 4222 { 4223 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4224 4225 if (meta_left < meta_needed) { 4226 btf_verifier_log_basic(env, t, 4227 "meta_left:%u meta_needed:%u", 4228 meta_left, meta_needed); 4229 return -EINVAL; 4230 } 4231 4232 if (t->name_off) { 4233 btf_verifier_log_type(env, t, "Invalid name"); 4234 return -EINVAL; 4235 } 4236 4237 if (btf_type_kflag(t)) { 4238 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4239 return -EINVAL; 4240 } 4241 4242 btf_verifier_log_type(env, t, NULL); 4243 4244 return meta_needed; 4245 } 4246 4247 static void btf_func_proto_log(struct btf_verifier_env *env, 4248 const struct btf_type *t) 4249 { 4250 const struct btf_param *args = (const struct btf_param *)(t + 1); 4251 u16 nr_args = btf_type_vlen(t), i; 4252 4253 btf_verifier_log(env, "return=%u args=(", t->type); 4254 if (!nr_args) { 4255 btf_verifier_log(env, "void"); 4256 goto done; 4257 } 4258 4259 if (nr_args == 1 && !args[0].type) { 4260 /* Only one vararg */ 4261 btf_verifier_log(env, "vararg"); 4262 goto done; 4263 } 4264 4265 btf_verifier_log(env, "%u %s", args[0].type, 4266 __btf_name_by_offset(env->btf, 4267 args[0].name_off)); 4268 for (i = 1; i < nr_args - 1; i++) 4269 btf_verifier_log(env, ", %u %s", args[i].type, 4270 __btf_name_by_offset(env->btf, 4271 args[i].name_off)); 4272 4273 if (nr_args > 1) { 4274 const struct btf_param *last_arg = &args[nr_args - 1]; 4275 4276 if (last_arg->type) 4277 btf_verifier_log(env, ", %u %s", last_arg->type, 4278 __btf_name_by_offset(env->btf, 4279 last_arg->name_off)); 4280 else 4281 btf_verifier_log(env, ", vararg"); 4282 } 4283 4284 done: 4285 btf_verifier_log(env, ")"); 4286 } 4287 4288 static struct btf_kind_operations func_proto_ops = { 4289 .check_meta = btf_func_proto_check_meta, 4290 .resolve = btf_df_resolve, 4291 /* 4292 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4293 * a struct's member. 4294 * 4295 * It should be a function pointer instead. 4296 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4297 * 4298 * Hence, there is no btf_func_check_member(). 4299 */ 4300 .check_member = btf_df_check_member, 4301 .check_kflag_member = btf_df_check_kflag_member, 4302 .log_details = btf_func_proto_log, 4303 .show = btf_df_show, 4304 }; 4305 4306 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4307 const struct btf_type *t, 4308 u32 meta_left) 4309 { 4310 if (!t->name_off || 4311 !btf_name_valid_identifier(env->btf, t->name_off)) { 4312 btf_verifier_log_type(env, t, "Invalid name"); 4313 return -EINVAL; 4314 } 4315 4316 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4317 btf_verifier_log_type(env, t, "Invalid func linkage"); 4318 return -EINVAL; 4319 } 4320 4321 if (btf_type_kflag(t)) { 4322 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4323 return -EINVAL; 4324 } 4325 4326 btf_verifier_log_type(env, t, NULL); 4327 4328 return 0; 4329 } 4330 4331 static int btf_func_resolve(struct btf_verifier_env *env, 4332 const struct resolve_vertex *v) 4333 { 4334 const struct btf_type *t = v->t; 4335 u32 next_type_id = t->type; 4336 int err; 4337 4338 err = btf_func_check(env, t); 4339 if (err) 4340 return err; 4341 4342 env_stack_pop_resolved(env, next_type_id, 0); 4343 return 0; 4344 } 4345 4346 static struct btf_kind_operations func_ops = { 4347 .check_meta = btf_func_check_meta, 4348 .resolve = btf_func_resolve, 4349 .check_member = btf_df_check_member, 4350 .check_kflag_member = btf_df_check_kflag_member, 4351 .log_details = btf_ref_type_log, 4352 .show = btf_df_show, 4353 }; 4354 4355 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4356 const struct btf_type *t, 4357 u32 meta_left) 4358 { 4359 const struct btf_var *var; 4360 u32 meta_needed = sizeof(*var); 4361 4362 if (meta_left < meta_needed) { 4363 btf_verifier_log_basic(env, t, 4364 "meta_left:%u meta_needed:%u", 4365 meta_left, meta_needed); 4366 return -EINVAL; 4367 } 4368 4369 if (btf_type_vlen(t)) { 4370 btf_verifier_log_type(env, t, "vlen != 0"); 4371 return -EINVAL; 4372 } 4373 4374 if (btf_type_kflag(t)) { 4375 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4376 return -EINVAL; 4377 } 4378 4379 if (!t->name_off || 4380 !__btf_name_valid(env->btf, t->name_off, true)) { 4381 btf_verifier_log_type(env, t, "Invalid name"); 4382 return -EINVAL; 4383 } 4384 4385 /* A var cannot be in type void */ 4386 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4387 btf_verifier_log_type(env, t, "Invalid type_id"); 4388 return -EINVAL; 4389 } 4390 4391 var = btf_type_var(t); 4392 if (var->linkage != BTF_VAR_STATIC && 4393 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4394 btf_verifier_log_type(env, t, "Linkage not supported"); 4395 return -EINVAL; 4396 } 4397 4398 btf_verifier_log_type(env, t, NULL); 4399 4400 return meta_needed; 4401 } 4402 4403 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4404 { 4405 const struct btf_var *var = btf_type_var(t); 4406 4407 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4408 } 4409 4410 static const struct btf_kind_operations var_ops = { 4411 .check_meta = btf_var_check_meta, 4412 .resolve = btf_var_resolve, 4413 .check_member = btf_df_check_member, 4414 .check_kflag_member = btf_df_check_kflag_member, 4415 .log_details = btf_var_log, 4416 .show = btf_var_show, 4417 }; 4418 4419 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4420 const struct btf_type *t, 4421 u32 meta_left) 4422 { 4423 const struct btf_var_secinfo *vsi; 4424 u64 last_vsi_end_off = 0, sum = 0; 4425 u32 i, meta_needed; 4426 4427 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4428 if (meta_left < meta_needed) { 4429 btf_verifier_log_basic(env, t, 4430 "meta_left:%u meta_needed:%u", 4431 meta_left, meta_needed); 4432 return -EINVAL; 4433 } 4434 4435 if (!t->size) { 4436 btf_verifier_log_type(env, t, "size == 0"); 4437 return -EINVAL; 4438 } 4439 4440 if (btf_type_kflag(t)) { 4441 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4442 return -EINVAL; 4443 } 4444 4445 if (!t->name_off || 4446 !btf_name_valid_section(env->btf, t->name_off)) { 4447 btf_verifier_log_type(env, t, "Invalid name"); 4448 return -EINVAL; 4449 } 4450 4451 btf_verifier_log_type(env, t, NULL); 4452 4453 for_each_vsi(i, t, vsi) { 4454 /* A var cannot be in type void */ 4455 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4456 btf_verifier_log_vsi(env, t, vsi, 4457 "Invalid type_id"); 4458 return -EINVAL; 4459 } 4460 4461 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4462 btf_verifier_log_vsi(env, t, vsi, 4463 "Invalid offset"); 4464 return -EINVAL; 4465 } 4466 4467 if (!vsi->size || vsi->size > t->size) { 4468 btf_verifier_log_vsi(env, t, vsi, 4469 "Invalid size"); 4470 return -EINVAL; 4471 } 4472 4473 last_vsi_end_off = vsi->offset + vsi->size; 4474 if (last_vsi_end_off > t->size) { 4475 btf_verifier_log_vsi(env, t, vsi, 4476 "Invalid offset+size"); 4477 return -EINVAL; 4478 } 4479 4480 btf_verifier_log_vsi(env, t, vsi, NULL); 4481 sum += vsi->size; 4482 } 4483 4484 if (t->size < sum) { 4485 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4486 return -EINVAL; 4487 } 4488 4489 return meta_needed; 4490 } 4491 4492 static int btf_datasec_resolve(struct btf_verifier_env *env, 4493 const struct resolve_vertex *v) 4494 { 4495 const struct btf_var_secinfo *vsi; 4496 struct btf *btf = env->btf; 4497 u16 i; 4498 4499 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4500 u32 var_type_id = vsi->type, type_id, type_size = 0; 4501 const struct btf_type *var_type = btf_type_by_id(env->btf, 4502 var_type_id); 4503 if (!var_type || !btf_type_is_var(var_type)) { 4504 btf_verifier_log_vsi(env, v->t, vsi, 4505 "Not a VAR kind member"); 4506 return -EINVAL; 4507 } 4508 4509 if (!env_type_is_resolve_sink(env, var_type) && 4510 !env_type_is_resolved(env, var_type_id)) { 4511 env_stack_set_next_member(env, i + 1); 4512 return env_stack_push(env, var_type, var_type_id); 4513 } 4514 4515 type_id = var_type->type; 4516 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4517 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4518 return -EINVAL; 4519 } 4520 4521 if (vsi->size < type_size) { 4522 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4523 return -EINVAL; 4524 } 4525 } 4526 4527 env_stack_pop_resolved(env, 0, 0); 4528 return 0; 4529 } 4530 4531 static void btf_datasec_log(struct btf_verifier_env *env, 4532 const struct btf_type *t) 4533 { 4534 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4535 } 4536 4537 static void btf_datasec_show(const struct btf *btf, 4538 const struct btf_type *t, u32 type_id, 4539 void *data, u8 bits_offset, 4540 struct btf_show *show) 4541 { 4542 const struct btf_var_secinfo *vsi; 4543 const struct btf_type *var; 4544 u32 i; 4545 4546 if (!btf_show_start_type(show, t, type_id, data)) 4547 return; 4548 4549 btf_show_type_value(show, "section (\"%s\") = {", 4550 __btf_name_by_offset(btf, t->name_off)); 4551 for_each_vsi(i, t, vsi) { 4552 var = btf_type_by_id(btf, vsi->type); 4553 if (i) 4554 btf_show(show, ","); 4555 btf_type_ops(var)->show(btf, var, vsi->type, 4556 data + vsi->offset, bits_offset, show); 4557 } 4558 btf_show_end_type(show); 4559 } 4560 4561 static const struct btf_kind_operations datasec_ops = { 4562 .check_meta = btf_datasec_check_meta, 4563 .resolve = btf_datasec_resolve, 4564 .check_member = btf_df_check_member, 4565 .check_kflag_member = btf_df_check_kflag_member, 4566 .log_details = btf_datasec_log, 4567 .show = btf_datasec_show, 4568 }; 4569 4570 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4571 const struct btf_type *t, 4572 u32 meta_left) 4573 { 4574 if (btf_type_vlen(t)) { 4575 btf_verifier_log_type(env, t, "vlen != 0"); 4576 return -EINVAL; 4577 } 4578 4579 if (btf_type_kflag(t)) { 4580 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4581 return -EINVAL; 4582 } 4583 4584 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4585 t->size != 16) { 4586 btf_verifier_log_type(env, t, "Invalid type_size"); 4587 return -EINVAL; 4588 } 4589 4590 btf_verifier_log_type(env, t, NULL); 4591 4592 return 0; 4593 } 4594 4595 static int btf_float_check_member(struct btf_verifier_env *env, 4596 const struct btf_type *struct_type, 4597 const struct btf_member *member, 4598 const struct btf_type *member_type) 4599 { 4600 u64 start_offset_bytes; 4601 u64 end_offset_bytes; 4602 u64 misalign_bits; 4603 u64 align_bytes; 4604 u64 align_bits; 4605 4606 /* Different architectures have different alignment requirements, so 4607 * here we check only for the reasonable minimum. This way we ensure 4608 * that types after CO-RE can pass the kernel BTF verifier. 4609 */ 4610 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4611 align_bits = align_bytes * BITS_PER_BYTE; 4612 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4613 if (misalign_bits) { 4614 btf_verifier_log_member(env, struct_type, member, 4615 "Member is not properly aligned"); 4616 return -EINVAL; 4617 } 4618 4619 start_offset_bytes = member->offset / BITS_PER_BYTE; 4620 end_offset_bytes = start_offset_bytes + member_type->size; 4621 if (end_offset_bytes > struct_type->size) { 4622 btf_verifier_log_member(env, struct_type, member, 4623 "Member exceeds struct_size"); 4624 return -EINVAL; 4625 } 4626 4627 return 0; 4628 } 4629 4630 static void btf_float_log(struct btf_verifier_env *env, 4631 const struct btf_type *t) 4632 { 4633 btf_verifier_log(env, "size=%u", t->size); 4634 } 4635 4636 static const struct btf_kind_operations float_ops = { 4637 .check_meta = btf_float_check_meta, 4638 .resolve = btf_df_resolve, 4639 .check_member = btf_float_check_member, 4640 .check_kflag_member = btf_generic_check_kflag_member, 4641 .log_details = btf_float_log, 4642 .show = btf_df_show, 4643 }; 4644 4645 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4646 const struct btf_type *t, 4647 u32 meta_left) 4648 { 4649 const struct btf_decl_tag *tag; 4650 u32 meta_needed = sizeof(*tag); 4651 s32 component_idx; 4652 const char *value; 4653 4654 if (meta_left < meta_needed) { 4655 btf_verifier_log_basic(env, t, 4656 "meta_left:%u meta_needed:%u", 4657 meta_left, meta_needed); 4658 return -EINVAL; 4659 } 4660 4661 value = btf_name_by_offset(env->btf, t->name_off); 4662 if (!value || !value[0]) { 4663 btf_verifier_log_type(env, t, "Invalid value"); 4664 return -EINVAL; 4665 } 4666 4667 if (btf_type_vlen(t)) { 4668 btf_verifier_log_type(env, t, "vlen != 0"); 4669 return -EINVAL; 4670 } 4671 4672 if (btf_type_kflag(t)) { 4673 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4674 return -EINVAL; 4675 } 4676 4677 component_idx = btf_type_decl_tag(t)->component_idx; 4678 if (component_idx < -1) { 4679 btf_verifier_log_type(env, t, "Invalid component_idx"); 4680 return -EINVAL; 4681 } 4682 4683 btf_verifier_log_type(env, t, NULL); 4684 4685 return meta_needed; 4686 } 4687 4688 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4689 const struct resolve_vertex *v) 4690 { 4691 const struct btf_type *next_type; 4692 const struct btf_type *t = v->t; 4693 u32 next_type_id = t->type; 4694 struct btf *btf = env->btf; 4695 s32 component_idx; 4696 u32 vlen; 4697 4698 next_type = btf_type_by_id(btf, next_type_id); 4699 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4700 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4701 return -EINVAL; 4702 } 4703 4704 if (!env_type_is_resolve_sink(env, next_type) && 4705 !env_type_is_resolved(env, next_type_id)) 4706 return env_stack_push(env, next_type, next_type_id); 4707 4708 component_idx = btf_type_decl_tag(t)->component_idx; 4709 if (component_idx != -1) { 4710 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4711 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4712 return -EINVAL; 4713 } 4714 4715 if (btf_type_is_struct(next_type)) { 4716 vlen = btf_type_vlen(next_type); 4717 } else { 4718 /* next_type should be a function */ 4719 next_type = btf_type_by_id(btf, next_type->type); 4720 vlen = btf_type_vlen(next_type); 4721 } 4722 4723 if ((u32)component_idx >= vlen) { 4724 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4725 return -EINVAL; 4726 } 4727 } 4728 4729 env_stack_pop_resolved(env, next_type_id, 0); 4730 4731 return 0; 4732 } 4733 4734 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4735 { 4736 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4737 btf_type_decl_tag(t)->component_idx); 4738 } 4739 4740 static const struct btf_kind_operations decl_tag_ops = { 4741 .check_meta = btf_decl_tag_check_meta, 4742 .resolve = btf_decl_tag_resolve, 4743 .check_member = btf_df_check_member, 4744 .check_kflag_member = btf_df_check_kflag_member, 4745 .log_details = btf_decl_tag_log, 4746 .show = btf_df_show, 4747 }; 4748 4749 static int btf_func_proto_check(struct btf_verifier_env *env, 4750 const struct btf_type *t) 4751 { 4752 const struct btf_type *ret_type; 4753 const struct btf_param *args; 4754 const struct btf *btf; 4755 u16 nr_args, i; 4756 int err; 4757 4758 btf = env->btf; 4759 args = (const struct btf_param *)(t + 1); 4760 nr_args = btf_type_vlen(t); 4761 4762 /* Check func return type which could be "void" (t->type == 0) */ 4763 if (t->type) { 4764 u32 ret_type_id = t->type; 4765 4766 ret_type = btf_type_by_id(btf, ret_type_id); 4767 if (!ret_type) { 4768 btf_verifier_log_type(env, t, "Invalid return type"); 4769 return -EINVAL; 4770 } 4771 4772 if (btf_type_is_resolve_source_only(ret_type)) { 4773 btf_verifier_log_type(env, t, "Invalid return type"); 4774 return -EINVAL; 4775 } 4776 4777 if (btf_type_needs_resolve(ret_type) && 4778 !env_type_is_resolved(env, ret_type_id)) { 4779 err = btf_resolve(env, ret_type, ret_type_id); 4780 if (err) 4781 return err; 4782 } 4783 4784 /* Ensure the return type is a type that has a size */ 4785 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 4786 btf_verifier_log_type(env, t, "Invalid return type"); 4787 return -EINVAL; 4788 } 4789 } 4790 4791 if (!nr_args) 4792 return 0; 4793 4794 /* Last func arg type_id could be 0 if it is a vararg */ 4795 if (!args[nr_args - 1].type) { 4796 if (args[nr_args - 1].name_off) { 4797 btf_verifier_log_type(env, t, "Invalid arg#%u", 4798 nr_args); 4799 return -EINVAL; 4800 } 4801 nr_args--; 4802 } 4803 4804 for (i = 0; i < nr_args; i++) { 4805 const struct btf_type *arg_type; 4806 u32 arg_type_id; 4807 4808 arg_type_id = args[i].type; 4809 arg_type = btf_type_by_id(btf, arg_type_id); 4810 if (!arg_type) { 4811 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4812 return -EINVAL; 4813 } 4814 4815 if (btf_type_is_resolve_source_only(arg_type)) { 4816 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4817 return -EINVAL; 4818 } 4819 4820 if (args[i].name_off && 4821 (!btf_name_offset_valid(btf, args[i].name_off) || 4822 !btf_name_valid_identifier(btf, args[i].name_off))) { 4823 btf_verifier_log_type(env, t, 4824 "Invalid arg#%u", i + 1); 4825 return -EINVAL; 4826 } 4827 4828 if (btf_type_needs_resolve(arg_type) && 4829 !env_type_is_resolved(env, arg_type_id)) { 4830 err = btf_resolve(env, arg_type, arg_type_id); 4831 if (err) 4832 return err; 4833 } 4834 4835 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 4836 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4837 return -EINVAL; 4838 } 4839 } 4840 4841 return 0; 4842 } 4843 4844 static int btf_func_check(struct btf_verifier_env *env, 4845 const struct btf_type *t) 4846 { 4847 const struct btf_type *proto_type; 4848 const struct btf_param *args; 4849 const struct btf *btf; 4850 u16 nr_args, i; 4851 4852 btf = env->btf; 4853 proto_type = btf_type_by_id(btf, t->type); 4854 4855 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 4856 btf_verifier_log_type(env, t, "Invalid type_id"); 4857 return -EINVAL; 4858 } 4859 4860 args = (const struct btf_param *)(proto_type + 1); 4861 nr_args = btf_type_vlen(proto_type); 4862 for (i = 0; i < nr_args; i++) { 4863 if (!args[i].name_off && args[i].type) { 4864 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4865 return -EINVAL; 4866 } 4867 } 4868 4869 return 0; 4870 } 4871 4872 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 4873 [BTF_KIND_INT] = &int_ops, 4874 [BTF_KIND_PTR] = &ptr_ops, 4875 [BTF_KIND_ARRAY] = &array_ops, 4876 [BTF_KIND_STRUCT] = &struct_ops, 4877 [BTF_KIND_UNION] = &struct_ops, 4878 [BTF_KIND_ENUM] = &enum_ops, 4879 [BTF_KIND_FWD] = &fwd_ops, 4880 [BTF_KIND_TYPEDEF] = &modifier_ops, 4881 [BTF_KIND_VOLATILE] = &modifier_ops, 4882 [BTF_KIND_CONST] = &modifier_ops, 4883 [BTF_KIND_RESTRICT] = &modifier_ops, 4884 [BTF_KIND_FUNC] = &func_ops, 4885 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 4886 [BTF_KIND_VAR] = &var_ops, 4887 [BTF_KIND_DATASEC] = &datasec_ops, 4888 [BTF_KIND_FLOAT] = &float_ops, 4889 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 4890 [BTF_KIND_TYPE_TAG] = &modifier_ops, 4891 [BTF_KIND_ENUM64] = &enum64_ops, 4892 }; 4893 4894 static s32 btf_check_meta(struct btf_verifier_env *env, 4895 const struct btf_type *t, 4896 u32 meta_left) 4897 { 4898 u32 saved_meta_left = meta_left; 4899 s32 var_meta_size; 4900 4901 if (meta_left < sizeof(*t)) { 4902 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 4903 env->log_type_id, meta_left, sizeof(*t)); 4904 return -EINVAL; 4905 } 4906 meta_left -= sizeof(*t); 4907 4908 if (t->info & ~BTF_INFO_MASK) { 4909 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 4910 env->log_type_id, t->info); 4911 return -EINVAL; 4912 } 4913 4914 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 4915 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 4916 btf_verifier_log(env, "[%u] Invalid kind:%u", 4917 env->log_type_id, BTF_INFO_KIND(t->info)); 4918 return -EINVAL; 4919 } 4920 4921 if (!btf_name_offset_valid(env->btf, t->name_off)) { 4922 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 4923 env->log_type_id, t->name_off); 4924 return -EINVAL; 4925 } 4926 4927 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 4928 if (var_meta_size < 0) 4929 return var_meta_size; 4930 4931 meta_left -= var_meta_size; 4932 4933 return saved_meta_left - meta_left; 4934 } 4935 4936 static int btf_check_all_metas(struct btf_verifier_env *env) 4937 { 4938 struct btf *btf = env->btf; 4939 struct btf_header *hdr; 4940 void *cur, *end; 4941 4942 hdr = &btf->hdr; 4943 cur = btf->nohdr_data + hdr->type_off; 4944 end = cur + hdr->type_len; 4945 4946 env->log_type_id = btf->base_btf ? btf->start_id : 1; 4947 while (cur < end) { 4948 struct btf_type *t = cur; 4949 s32 meta_size; 4950 4951 meta_size = btf_check_meta(env, t, end - cur); 4952 if (meta_size < 0) 4953 return meta_size; 4954 4955 btf_add_type(env, t); 4956 cur += meta_size; 4957 env->log_type_id++; 4958 } 4959 4960 return 0; 4961 } 4962 4963 static bool btf_resolve_valid(struct btf_verifier_env *env, 4964 const struct btf_type *t, 4965 u32 type_id) 4966 { 4967 struct btf *btf = env->btf; 4968 4969 if (!env_type_is_resolved(env, type_id)) 4970 return false; 4971 4972 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 4973 return !btf_resolved_type_id(btf, type_id) && 4974 !btf_resolved_type_size(btf, type_id); 4975 4976 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 4977 return btf_resolved_type_id(btf, type_id) && 4978 !btf_resolved_type_size(btf, type_id); 4979 4980 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 4981 btf_type_is_var(t)) { 4982 t = btf_type_id_resolve(btf, &type_id); 4983 return t && 4984 !btf_type_is_modifier(t) && 4985 !btf_type_is_var(t) && 4986 !btf_type_is_datasec(t); 4987 } 4988 4989 if (btf_type_is_array(t)) { 4990 const struct btf_array *array = btf_type_array(t); 4991 const struct btf_type *elem_type; 4992 u32 elem_type_id = array->type; 4993 u32 elem_size; 4994 4995 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 4996 return elem_type && !btf_type_is_modifier(elem_type) && 4997 (array->nelems * elem_size == 4998 btf_resolved_type_size(btf, type_id)); 4999 } 5000 5001 return false; 5002 } 5003 5004 static int btf_resolve(struct btf_verifier_env *env, 5005 const struct btf_type *t, u32 type_id) 5006 { 5007 u32 save_log_type_id = env->log_type_id; 5008 const struct resolve_vertex *v; 5009 int err = 0; 5010 5011 env->resolve_mode = RESOLVE_TBD; 5012 env_stack_push(env, t, type_id); 5013 while (!err && (v = env_stack_peak(env))) { 5014 env->log_type_id = v->type_id; 5015 err = btf_type_ops(v->t)->resolve(env, v); 5016 } 5017 5018 env->log_type_id = type_id; 5019 if (err == -E2BIG) { 5020 btf_verifier_log_type(env, t, 5021 "Exceeded max resolving depth:%u", 5022 MAX_RESOLVE_DEPTH); 5023 } else if (err == -EEXIST) { 5024 btf_verifier_log_type(env, t, "Loop detected"); 5025 } 5026 5027 /* Final sanity check */ 5028 if (!err && !btf_resolve_valid(env, t, type_id)) { 5029 btf_verifier_log_type(env, t, "Invalid resolve state"); 5030 err = -EINVAL; 5031 } 5032 5033 env->log_type_id = save_log_type_id; 5034 return err; 5035 } 5036 5037 static int btf_check_all_types(struct btf_verifier_env *env) 5038 { 5039 struct btf *btf = env->btf; 5040 const struct btf_type *t; 5041 u32 type_id, i; 5042 int err; 5043 5044 err = env_resolve_init(env); 5045 if (err) 5046 return err; 5047 5048 env->phase++; 5049 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5050 type_id = btf->start_id + i; 5051 t = btf_type_by_id(btf, type_id); 5052 5053 env->log_type_id = type_id; 5054 if (btf_type_needs_resolve(t) && 5055 !env_type_is_resolved(env, type_id)) { 5056 err = btf_resolve(env, t, type_id); 5057 if (err) 5058 return err; 5059 } 5060 5061 if (btf_type_is_func_proto(t)) { 5062 err = btf_func_proto_check(env, t); 5063 if (err) 5064 return err; 5065 } 5066 } 5067 5068 return 0; 5069 } 5070 5071 static int btf_parse_type_sec(struct btf_verifier_env *env) 5072 { 5073 const struct btf_header *hdr = &env->btf->hdr; 5074 int err; 5075 5076 /* Type section must align to 4 bytes */ 5077 if (hdr->type_off & (sizeof(u32) - 1)) { 5078 btf_verifier_log(env, "Unaligned type_off"); 5079 return -EINVAL; 5080 } 5081 5082 if (!env->btf->base_btf && !hdr->type_len) { 5083 btf_verifier_log(env, "No type found"); 5084 return -EINVAL; 5085 } 5086 5087 err = btf_check_all_metas(env); 5088 if (err) 5089 return err; 5090 5091 return btf_check_all_types(env); 5092 } 5093 5094 static int btf_parse_str_sec(struct btf_verifier_env *env) 5095 { 5096 const struct btf_header *hdr; 5097 struct btf *btf = env->btf; 5098 const char *start, *end; 5099 5100 hdr = &btf->hdr; 5101 start = btf->nohdr_data + hdr->str_off; 5102 end = start + hdr->str_len; 5103 5104 if (end != btf->data + btf->data_size) { 5105 btf_verifier_log(env, "String section is not at the end"); 5106 return -EINVAL; 5107 } 5108 5109 btf->strings = start; 5110 5111 if (btf->base_btf && !hdr->str_len) 5112 return 0; 5113 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5114 btf_verifier_log(env, "Invalid string section"); 5115 return -EINVAL; 5116 } 5117 if (!btf->base_btf && start[0]) { 5118 btf_verifier_log(env, "Invalid string section"); 5119 return -EINVAL; 5120 } 5121 5122 return 0; 5123 } 5124 5125 static const size_t btf_sec_info_offset[] = { 5126 offsetof(struct btf_header, type_off), 5127 offsetof(struct btf_header, str_off), 5128 }; 5129 5130 static int btf_sec_info_cmp(const void *a, const void *b) 5131 { 5132 const struct btf_sec_info *x = a; 5133 const struct btf_sec_info *y = b; 5134 5135 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5136 } 5137 5138 static int btf_check_sec_info(struct btf_verifier_env *env, 5139 u32 btf_data_size) 5140 { 5141 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5142 u32 total, expected_total, i; 5143 const struct btf_header *hdr; 5144 const struct btf *btf; 5145 5146 btf = env->btf; 5147 hdr = &btf->hdr; 5148 5149 /* Populate the secs from hdr */ 5150 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5151 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5152 btf_sec_info_offset[i]); 5153 5154 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5155 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5156 5157 /* Check for gaps and overlap among sections */ 5158 total = 0; 5159 expected_total = btf_data_size - hdr->hdr_len; 5160 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5161 if (expected_total < secs[i].off) { 5162 btf_verifier_log(env, "Invalid section offset"); 5163 return -EINVAL; 5164 } 5165 if (total < secs[i].off) { 5166 /* gap */ 5167 btf_verifier_log(env, "Unsupported section found"); 5168 return -EINVAL; 5169 } 5170 if (total > secs[i].off) { 5171 btf_verifier_log(env, "Section overlap found"); 5172 return -EINVAL; 5173 } 5174 if (expected_total - total < secs[i].len) { 5175 btf_verifier_log(env, 5176 "Total section length too long"); 5177 return -EINVAL; 5178 } 5179 total += secs[i].len; 5180 } 5181 5182 /* There is data other than hdr and known sections */ 5183 if (expected_total != total) { 5184 btf_verifier_log(env, "Unsupported section found"); 5185 return -EINVAL; 5186 } 5187 5188 return 0; 5189 } 5190 5191 static int btf_parse_hdr(struct btf_verifier_env *env) 5192 { 5193 u32 hdr_len, hdr_copy, btf_data_size; 5194 const struct btf_header *hdr; 5195 struct btf *btf; 5196 5197 btf = env->btf; 5198 btf_data_size = btf->data_size; 5199 5200 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5201 btf_verifier_log(env, "hdr_len not found"); 5202 return -EINVAL; 5203 } 5204 5205 hdr = btf->data; 5206 hdr_len = hdr->hdr_len; 5207 if (btf_data_size < hdr_len) { 5208 btf_verifier_log(env, "btf_header not found"); 5209 return -EINVAL; 5210 } 5211 5212 /* Ensure the unsupported header fields are zero */ 5213 if (hdr_len > sizeof(btf->hdr)) { 5214 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5215 u8 *end = btf->data + hdr_len; 5216 5217 for (; expected_zero < end; expected_zero++) { 5218 if (*expected_zero) { 5219 btf_verifier_log(env, "Unsupported btf_header"); 5220 return -E2BIG; 5221 } 5222 } 5223 } 5224 5225 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5226 memcpy(&btf->hdr, btf->data, hdr_copy); 5227 5228 hdr = &btf->hdr; 5229 5230 btf_verifier_log_hdr(env, btf_data_size); 5231 5232 if (hdr->magic != BTF_MAGIC) { 5233 btf_verifier_log(env, "Invalid magic"); 5234 return -EINVAL; 5235 } 5236 5237 if (hdr->version != BTF_VERSION) { 5238 btf_verifier_log(env, "Unsupported version"); 5239 return -ENOTSUPP; 5240 } 5241 5242 if (hdr->flags) { 5243 btf_verifier_log(env, "Unsupported flags"); 5244 return -ENOTSUPP; 5245 } 5246 5247 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5248 btf_verifier_log(env, "No data"); 5249 return -EINVAL; 5250 } 5251 5252 return btf_check_sec_info(env, btf_data_size); 5253 } 5254 5255 static const char *alloc_obj_fields[] = { 5256 "bpf_spin_lock", 5257 "bpf_list_head", 5258 "bpf_list_node", 5259 }; 5260 5261 static struct btf_struct_metas * 5262 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5263 { 5264 union { 5265 struct btf_id_set set; 5266 struct { 5267 u32 _cnt; 5268 u32 _ids[ARRAY_SIZE(alloc_obj_fields)]; 5269 } _arr; 5270 } aof; 5271 struct btf_struct_metas *tab = NULL; 5272 int i, n, id, ret; 5273 5274 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5275 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5276 5277 memset(&aof, 0, sizeof(aof)); 5278 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5279 /* Try to find whether this special type exists in user BTF, and 5280 * if so remember its ID so we can easily find it among members 5281 * of structs that we iterate in the next loop. 5282 */ 5283 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5284 if (id < 0) 5285 continue; 5286 aof.set.ids[aof.set.cnt++] = id; 5287 } 5288 5289 if (!aof.set.cnt) 5290 return NULL; 5291 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL); 5292 5293 n = btf_nr_types(btf); 5294 for (i = 1; i < n; i++) { 5295 struct btf_struct_metas *new_tab; 5296 const struct btf_member *member; 5297 struct btf_field_offs *foffs; 5298 struct btf_struct_meta *type; 5299 struct btf_record *record; 5300 const struct btf_type *t; 5301 int j, tab_cnt; 5302 5303 t = btf_type_by_id(btf, i); 5304 if (!t) { 5305 ret = -EINVAL; 5306 goto free; 5307 } 5308 if (!__btf_type_is_struct(t)) 5309 continue; 5310 5311 cond_resched(); 5312 5313 for_each_member(j, t, member) { 5314 if (btf_id_set_contains(&aof.set, member->type)) 5315 goto parse; 5316 } 5317 continue; 5318 parse: 5319 tab_cnt = tab ? tab->cnt : 0; 5320 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5321 GFP_KERNEL | __GFP_NOWARN); 5322 if (!new_tab) { 5323 ret = -ENOMEM; 5324 goto free; 5325 } 5326 if (!tab) 5327 new_tab->cnt = 0; 5328 tab = new_tab; 5329 5330 type = &tab->types[tab->cnt]; 5331 type->btf_id = i; 5332 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE, t->size); 5333 /* The record cannot be unset, treat it as an error if so */ 5334 if (IS_ERR_OR_NULL(record)) { 5335 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5336 goto free; 5337 } 5338 foffs = btf_parse_field_offs(record); 5339 /* We need the field_offs to be valid for a valid record, 5340 * either both should be set or both should be unset. 5341 */ 5342 if (IS_ERR_OR_NULL(foffs)) { 5343 btf_record_free(record); 5344 ret = -EFAULT; 5345 goto free; 5346 } 5347 type->record = record; 5348 type->field_offs = foffs; 5349 tab->cnt++; 5350 } 5351 return tab; 5352 free: 5353 btf_struct_metas_free(tab); 5354 return ERR_PTR(ret); 5355 } 5356 5357 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5358 { 5359 struct btf_struct_metas *tab; 5360 5361 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5362 tab = btf->struct_meta_tab; 5363 if (!tab) 5364 return NULL; 5365 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5366 } 5367 5368 static int btf_check_type_tags(struct btf_verifier_env *env, 5369 struct btf *btf, int start_id) 5370 { 5371 int i, n, good_id = start_id - 1; 5372 bool in_tags; 5373 5374 n = btf_nr_types(btf); 5375 for (i = start_id; i < n; i++) { 5376 const struct btf_type *t; 5377 int chain_limit = 32; 5378 u32 cur_id = i; 5379 5380 t = btf_type_by_id(btf, i); 5381 if (!t) 5382 return -EINVAL; 5383 if (!btf_type_is_modifier(t)) 5384 continue; 5385 5386 cond_resched(); 5387 5388 in_tags = btf_type_is_type_tag(t); 5389 while (btf_type_is_modifier(t)) { 5390 if (!chain_limit--) { 5391 btf_verifier_log(env, "Max chain length or cycle detected"); 5392 return -ELOOP; 5393 } 5394 if (btf_type_is_type_tag(t)) { 5395 if (!in_tags) { 5396 btf_verifier_log(env, "Type tags don't precede modifiers"); 5397 return -EINVAL; 5398 } 5399 } else if (in_tags) { 5400 in_tags = false; 5401 } 5402 if (cur_id <= good_id) 5403 break; 5404 /* Move to next type */ 5405 cur_id = t->type; 5406 t = btf_type_by_id(btf, cur_id); 5407 if (!t) 5408 return -EINVAL; 5409 } 5410 good_id = i; 5411 } 5412 return 0; 5413 } 5414 5415 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size, 5416 u32 log_level, char __user *log_ubuf, u32 log_size) 5417 { 5418 struct btf_struct_metas *struct_meta_tab; 5419 struct btf_verifier_env *env = NULL; 5420 struct bpf_verifier_log *log; 5421 struct btf *btf = NULL; 5422 u8 *data; 5423 int err; 5424 5425 if (btf_data_size > BTF_MAX_SIZE) 5426 return ERR_PTR(-E2BIG); 5427 5428 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5429 if (!env) 5430 return ERR_PTR(-ENOMEM); 5431 5432 log = &env->log; 5433 if (log_level || log_ubuf || log_size) { 5434 /* user requested verbose verifier output 5435 * and supplied buffer to store the verification trace 5436 */ 5437 log->level = log_level; 5438 log->ubuf = log_ubuf; 5439 log->len_total = log_size; 5440 5441 /* log attributes have to be sane */ 5442 if (!bpf_verifier_log_attr_valid(log)) { 5443 err = -EINVAL; 5444 goto errout; 5445 } 5446 } 5447 5448 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5449 if (!btf) { 5450 err = -ENOMEM; 5451 goto errout; 5452 } 5453 env->btf = btf; 5454 5455 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 5456 if (!data) { 5457 err = -ENOMEM; 5458 goto errout; 5459 } 5460 5461 btf->data = data; 5462 btf->data_size = btf_data_size; 5463 5464 if (copy_from_bpfptr(data, btf_data, btf_data_size)) { 5465 err = -EFAULT; 5466 goto errout; 5467 } 5468 5469 err = btf_parse_hdr(env); 5470 if (err) 5471 goto errout; 5472 5473 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5474 5475 err = btf_parse_str_sec(env); 5476 if (err) 5477 goto errout; 5478 5479 err = btf_parse_type_sec(env); 5480 if (err) 5481 goto errout; 5482 5483 err = btf_check_type_tags(env, btf, 1); 5484 if (err) 5485 goto errout; 5486 5487 struct_meta_tab = btf_parse_struct_metas(log, btf); 5488 if (IS_ERR(struct_meta_tab)) { 5489 err = PTR_ERR(struct_meta_tab); 5490 goto errout; 5491 } 5492 btf->struct_meta_tab = struct_meta_tab; 5493 5494 if (struct_meta_tab) { 5495 int i; 5496 5497 for (i = 0; i < struct_meta_tab->cnt; i++) { 5498 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5499 if (err < 0) 5500 goto errout_meta; 5501 } 5502 } 5503 5504 if (log->level && bpf_verifier_log_full(log)) { 5505 err = -ENOSPC; 5506 goto errout_meta; 5507 } 5508 5509 btf_verifier_env_free(env); 5510 refcount_set(&btf->refcnt, 1); 5511 return btf; 5512 5513 errout_meta: 5514 btf_free_struct_meta_tab(btf); 5515 errout: 5516 btf_verifier_env_free(env); 5517 if (btf) 5518 btf_free(btf); 5519 return ERR_PTR(err); 5520 } 5521 5522 extern char __weak __start_BTF[]; 5523 extern char __weak __stop_BTF[]; 5524 extern struct btf *btf_vmlinux; 5525 5526 #define BPF_MAP_TYPE(_id, _ops) 5527 #define BPF_LINK_TYPE(_id, _name) 5528 static union { 5529 struct bpf_ctx_convert { 5530 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5531 prog_ctx_type _id##_prog; \ 5532 kern_ctx_type _id##_kern; 5533 #include <linux/bpf_types.h> 5534 #undef BPF_PROG_TYPE 5535 } *__t; 5536 /* 't' is written once under lock. Read many times. */ 5537 const struct btf_type *t; 5538 } bpf_ctx_convert; 5539 enum { 5540 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5541 __ctx_convert##_id, 5542 #include <linux/bpf_types.h> 5543 #undef BPF_PROG_TYPE 5544 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5545 }; 5546 static u8 bpf_ctx_convert_map[] = { 5547 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5548 [_id] = __ctx_convert##_id, 5549 #include <linux/bpf_types.h> 5550 #undef BPF_PROG_TYPE 5551 0, /* avoid empty array */ 5552 }; 5553 #undef BPF_MAP_TYPE 5554 #undef BPF_LINK_TYPE 5555 5556 const struct btf_member * 5557 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5558 const struct btf_type *t, enum bpf_prog_type prog_type, 5559 int arg) 5560 { 5561 const struct btf_type *conv_struct; 5562 const struct btf_type *ctx_struct; 5563 const struct btf_member *ctx_type; 5564 const char *tname, *ctx_tname; 5565 5566 conv_struct = bpf_ctx_convert.t; 5567 if (!conv_struct) { 5568 bpf_log(log, "btf_vmlinux is malformed\n"); 5569 return NULL; 5570 } 5571 t = btf_type_by_id(btf, t->type); 5572 while (btf_type_is_modifier(t)) 5573 t = btf_type_by_id(btf, t->type); 5574 if (!btf_type_is_struct(t)) { 5575 /* Only pointer to struct is supported for now. 5576 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5577 * is not supported yet. 5578 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5579 */ 5580 return NULL; 5581 } 5582 tname = btf_name_by_offset(btf, t->name_off); 5583 if (!tname) { 5584 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5585 return NULL; 5586 } 5587 /* prog_type is valid bpf program type. No need for bounds check. */ 5588 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5589 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 5590 * Like 'struct __sk_buff' 5591 */ 5592 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 5593 if (!ctx_struct) 5594 /* should not happen */ 5595 return NULL; 5596 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 5597 if (!ctx_tname) { 5598 /* should not happen */ 5599 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5600 return NULL; 5601 } 5602 /* only compare that prog's ctx type name is the same as 5603 * kernel expects. No need to compare field by field. 5604 * It's ok for bpf prog to do: 5605 * struct __sk_buff {}; 5606 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5607 * { // no fields of skb are ever used } 5608 */ 5609 if (strcmp(ctx_tname, tname)) 5610 return NULL; 5611 return ctx_type; 5612 } 5613 5614 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 5615 struct btf *btf, 5616 const struct btf_type *t, 5617 enum bpf_prog_type prog_type, 5618 int arg) 5619 { 5620 const struct btf_member *prog_ctx_type, *kern_ctx_type; 5621 5622 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 5623 if (!prog_ctx_type) 5624 return -ENOENT; 5625 kern_ctx_type = prog_ctx_type + 1; 5626 return kern_ctx_type->type; 5627 } 5628 5629 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 5630 { 5631 const struct btf_member *kctx_member; 5632 const struct btf_type *conv_struct; 5633 const struct btf_type *kctx_type; 5634 u32 kctx_type_id; 5635 5636 conv_struct = bpf_ctx_convert.t; 5637 /* get member for kernel ctx type */ 5638 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5639 kctx_type_id = kctx_member->type; 5640 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 5641 if (!btf_type_is_struct(kctx_type)) { 5642 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 5643 return -EINVAL; 5644 } 5645 5646 return kctx_type_id; 5647 } 5648 5649 BTF_ID_LIST(bpf_ctx_convert_btf_id) 5650 BTF_ID(struct, bpf_ctx_convert) 5651 5652 struct btf *btf_parse_vmlinux(void) 5653 { 5654 struct btf_verifier_env *env = NULL; 5655 struct bpf_verifier_log *log; 5656 struct btf *btf = NULL; 5657 int err; 5658 5659 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5660 if (!env) 5661 return ERR_PTR(-ENOMEM); 5662 5663 log = &env->log; 5664 log->level = BPF_LOG_KERNEL; 5665 5666 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5667 if (!btf) { 5668 err = -ENOMEM; 5669 goto errout; 5670 } 5671 env->btf = btf; 5672 5673 btf->data = __start_BTF; 5674 btf->data_size = __stop_BTF - __start_BTF; 5675 btf->kernel_btf = true; 5676 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 5677 5678 err = btf_parse_hdr(env); 5679 if (err) 5680 goto errout; 5681 5682 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5683 5684 err = btf_parse_str_sec(env); 5685 if (err) 5686 goto errout; 5687 5688 err = btf_check_all_metas(env); 5689 if (err) 5690 goto errout; 5691 5692 err = btf_check_type_tags(env, btf, 1); 5693 if (err) 5694 goto errout; 5695 5696 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 5697 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 5698 5699 bpf_struct_ops_init(btf, log); 5700 5701 refcount_set(&btf->refcnt, 1); 5702 5703 err = btf_alloc_id(btf); 5704 if (err) 5705 goto errout; 5706 5707 btf_verifier_env_free(env); 5708 return btf; 5709 5710 errout: 5711 btf_verifier_env_free(env); 5712 if (btf) { 5713 kvfree(btf->types); 5714 kfree(btf); 5715 } 5716 return ERR_PTR(err); 5717 } 5718 5719 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 5720 5721 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 5722 { 5723 struct btf_verifier_env *env = NULL; 5724 struct bpf_verifier_log *log; 5725 struct btf *btf = NULL, *base_btf; 5726 int err; 5727 5728 base_btf = bpf_get_btf_vmlinux(); 5729 if (IS_ERR(base_btf)) 5730 return base_btf; 5731 if (!base_btf) 5732 return ERR_PTR(-EINVAL); 5733 5734 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5735 if (!env) 5736 return ERR_PTR(-ENOMEM); 5737 5738 log = &env->log; 5739 log->level = BPF_LOG_KERNEL; 5740 5741 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5742 if (!btf) { 5743 err = -ENOMEM; 5744 goto errout; 5745 } 5746 env->btf = btf; 5747 5748 btf->base_btf = base_btf; 5749 btf->start_id = base_btf->nr_types; 5750 btf->start_str_off = base_btf->hdr.str_len; 5751 btf->kernel_btf = true; 5752 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 5753 5754 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 5755 if (!btf->data) { 5756 err = -ENOMEM; 5757 goto errout; 5758 } 5759 memcpy(btf->data, data, data_size); 5760 btf->data_size = data_size; 5761 5762 err = btf_parse_hdr(env); 5763 if (err) 5764 goto errout; 5765 5766 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5767 5768 err = btf_parse_str_sec(env); 5769 if (err) 5770 goto errout; 5771 5772 err = btf_check_all_metas(env); 5773 if (err) 5774 goto errout; 5775 5776 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 5777 if (err) 5778 goto errout; 5779 5780 btf_verifier_env_free(env); 5781 refcount_set(&btf->refcnt, 1); 5782 return btf; 5783 5784 errout: 5785 btf_verifier_env_free(env); 5786 if (btf) { 5787 kvfree(btf->data); 5788 kvfree(btf->types); 5789 kfree(btf); 5790 } 5791 return ERR_PTR(err); 5792 } 5793 5794 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 5795 5796 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 5797 { 5798 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5799 5800 if (tgt_prog) 5801 return tgt_prog->aux->btf; 5802 else 5803 return prog->aux->attach_btf; 5804 } 5805 5806 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 5807 { 5808 /* t comes in already as a pointer */ 5809 t = btf_type_by_id(btf, t->type); 5810 5811 /* allow const */ 5812 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) 5813 t = btf_type_by_id(btf, t->type); 5814 5815 return btf_type_is_int(t); 5816 } 5817 5818 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 5819 int off) 5820 { 5821 const struct btf_param *args; 5822 const struct btf_type *t; 5823 u32 offset = 0, nr_args; 5824 int i; 5825 5826 if (!func_proto) 5827 return off / 8; 5828 5829 nr_args = btf_type_vlen(func_proto); 5830 args = (const struct btf_param *)(func_proto + 1); 5831 for (i = 0; i < nr_args; i++) { 5832 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 5833 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5834 if (off < offset) 5835 return i; 5836 } 5837 5838 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 5839 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5840 if (off < offset) 5841 return nr_args; 5842 5843 return nr_args + 1; 5844 } 5845 5846 static bool prog_args_trusted(const struct bpf_prog *prog) 5847 { 5848 enum bpf_attach_type atype = prog->expected_attach_type; 5849 5850 switch (prog->type) { 5851 case BPF_PROG_TYPE_TRACING: 5852 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 5853 case BPF_PROG_TYPE_LSM: 5854 return bpf_lsm_is_trusted(prog); 5855 case BPF_PROG_TYPE_STRUCT_OPS: 5856 return true; 5857 default: 5858 return false; 5859 } 5860 } 5861 5862 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 5863 const struct bpf_prog *prog, 5864 struct bpf_insn_access_aux *info) 5865 { 5866 const struct btf_type *t = prog->aux->attach_func_proto; 5867 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5868 struct btf *btf = bpf_prog_get_target_btf(prog); 5869 const char *tname = prog->aux->attach_func_name; 5870 struct bpf_verifier_log *log = info->log; 5871 const struct btf_param *args; 5872 const char *tag_value; 5873 u32 nr_args, arg; 5874 int i, ret; 5875 5876 if (off % 8) { 5877 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 5878 tname, off); 5879 return false; 5880 } 5881 arg = get_ctx_arg_idx(btf, t, off); 5882 args = (const struct btf_param *)(t + 1); 5883 /* if (t == NULL) Fall back to default BPF prog with 5884 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 5885 */ 5886 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 5887 if (prog->aux->attach_btf_trace) { 5888 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 5889 args++; 5890 nr_args--; 5891 } 5892 5893 if (arg > nr_args) { 5894 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5895 tname, arg + 1); 5896 return false; 5897 } 5898 5899 if (arg == nr_args) { 5900 switch (prog->expected_attach_type) { 5901 case BPF_LSM_CGROUP: 5902 case BPF_LSM_MAC: 5903 case BPF_TRACE_FEXIT: 5904 /* When LSM programs are attached to void LSM hooks 5905 * they use FEXIT trampolines and when attached to 5906 * int LSM hooks, they use MODIFY_RETURN trampolines. 5907 * 5908 * While the LSM programs are BPF_MODIFY_RETURN-like 5909 * the check: 5910 * 5911 * if (ret_type != 'int') 5912 * return -EINVAL; 5913 * 5914 * is _not_ done here. This is still safe as LSM hooks 5915 * have only void and int return types. 5916 */ 5917 if (!t) 5918 return true; 5919 t = btf_type_by_id(btf, t->type); 5920 break; 5921 case BPF_MODIFY_RETURN: 5922 /* For now the BPF_MODIFY_RETURN can only be attached to 5923 * functions that return an int. 5924 */ 5925 if (!t) 5926 return false; 5927 5928 t = btf_type_skip_modifiers(btf, t->type, NULL); 5929 if (!btf_type_is_small_int(t)) { 5930 bpf_log(log, 5931 "ret type %s not allowed for fmod_ret\n", 5932 btf_type_str(t)); 5933 return false; 5934 } 5935 break; 5936 default: 5937 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5938 tname, arg + 1); 5939 return false; 5940 } 5941 } else { 5942 if (!t) 5943 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 5944 return true; 5945 t = btf_type_by_id(btf, args[arg].type); 5946 } 5947 5948 /* skip modifiers */ 5949 while (btf_type_is_modifier(t)) 5950 t = btf_type_by_id(btf, t->type); 5951 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 5952 /* accessing a scalar */ 5953 return true; 5954 if (!btf_type_is_ptr(t)) { 5955 bpf_log(log, 5956 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 5957 tname, arg, 5958 __btf_name_by_offset(btf, t->name_off), 5959 btf_type_str(t)); 5960 return false; 5961 } 5962 5963 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 5964 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 5965 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 5966 u32 type, flag; 5967 5968 type = base_type(ctx_arg_info->reg_type); 5969 flag = type_flag(ctx_arg_info->reg_type); 5970 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 5971 (flag & PTR_MAYBE_NULL)) { 5972 info->reg_type = ctx_arg_info->reg_type; 5973 return true; 5974 } 5975 } 5976 5977 if (t->type == 0) 5978 /* This is a pointer to void. 5979 * It is the same as scalar from the verifier safety pov. 5980 * No further pointer walking is allowed. 5981 */ 5982 return true; 5983 5984 if (is_int_ptr(btf, t)) 5985 return true; 5986 5987 /* this is a pointer to another type */ 5988 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 5989 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 5990 5991 if (ctx_arg_info->offset == off) { 5992 if (!ctx_arg_info->btf_id) { 5993 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 5994 return false; 5995 } 5996 5997 info->reg_type = ctx_arg_info->reg_type; 5998 info->btf = btf_vmlinux; 5999 info->btf_id = ctx_arg_info->btf_id; 6000 return true; 6001 } 6002 } 6003 6004 info->reg_type = PTR_TO_BTF_ID; 6005 if (prog_args_trusted(prog)) 6006 info->reg_type |= PTR_TRUSTED; 6007 6008 if (tgt_prog) { 6009 enum bpf_prog_type tgt_type; 6010 6011 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6012 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6013 else 6014 tgt_type = tgt_prog->type; 6015 6016 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6017 if (ret > 0) { 6018 info->btf = btf_vmlinux; 6019 info->btf_id = ret; 6020 return true; 6021 } else { 6022 return false; 6023 } 6024 } 6025 6026 info->btf = btf; 6027 info->btf_id = t->type; 6028 t = btf_type_by_id(btf, t->type); 6029 6030 if (btf_type_is_type_tag(t)) { 6031 tag_value = __btf_name_by_offset(btf, t->name_off); 6032 if (strcmp(tag_value, "user") == 0) 6033 info->reg_type |= MEM_USER; 6034 if (strcmp(tag_value, "percpu") == 0) 6035 info->reg_type |= MEM_PERCPU; 6036 } 6037 6038 /* skip modifiers */ 6039 while (btf_type_is_modifier(t)) { 6040 info->btf_id = t->type; 6041 t = btf_type_by_id(btf, t->type); 6042 } 6043 if (!btf_type_is_struct(t)) { 6044 bpf_log(log, 6045 "func '%s' arg%d type %s is not a struct\n", 6046 tname, arg, btf_type_str(t)); 6047 return false; 6048 } 6049 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6050 tname, arg, info->btf_id, btf_type_str(t), 6051 __btf_name_by_offset(btf, t->name_off)); 6052 return true; 6053 } 6054 6055 enum bpf_struct_walk_result { 6056 /* < 0 error */ 6057 WALK_SCALAR = 0, 6058 WALK_PTR, 6059 WALK_STRUCT, 6060 }; 6061 6062 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6063 const struct btf_type *t, int off, int size, 6064 u32 *next_btf_id, enum bpf_type_flag *flag) 6065 { 6066 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6067 const struct btf_type *mtype, *elem_type = NULL; 6068 const struct btf_member *member; 6069 const char *tname, *mname, *tag_value; 6070 u32 vlen, elem_id, mid; 6071 6072 again: 6073 tname = __btf_name_by_offset(btf, t->name_off); 6074 if (!btf_type_is_struct(t)) { 6075 bpf_log(log, "Type '%s' is not a struct\n", tname); 6076 return -EINVAL; 6077 } 6078 6079 vlen = btf_type_vlen(t); 6080 if (off + size > t->size) { 6081 /* If the last element is a variable size array, we may 6082 * need to relax the rule. 6083 */ 6084 struct btf_array *array_elem; 6085 6086 if (vlen == 0) 6087 goto error; 6088 6089 member = btf_type_member(t) + vlen - 1; 6090 mtype = btf_type_skip_modifiers(btf, member->type, 6091 NULL); 6092 if (!btf_type_is_array(mtype)) 6093 goto error; 6094 6095 array_elem = (struct btf_array *)(mtype + 1); 6096 if (array_elem->nelems != 0) 6097 goto error; 6098 6099 moff = __btf_member_bit_offset(t, member) / 8; 6100 if (off < moff) 6101 goto error; 6102 6103 /* Only allow structure for now, can be relaxed for 6104 * other types later. 6105 */ 6106 t = btf_type_skip_modifiers(btf, array_elem->type, 6107 NULL); 6108 if (!btf_type_is_struct(t)) 6109 goto error; 6110 6111 off = (off - moff) % t->size; 6112 goto again; 6113 6114 error: 6115 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6116 tname, off, size); 6117 return -EACCES; 6118 } 6119 6120 for_each_member(i, t, member) { 6121 /* offset of the field in bytes */ 6122 moff = __btf_member_bit_offset(t, member) / 8; 6123 if (off + size <= moff) 6124 /* won't find anything, field is already too far */ 6125 break; 6126 6127 if (__btf_member_bitfield_size(t, member)) { 6128 u32 end_bit = __btf_member_bit_offset(t, member) + 6129 __btf_member_bitfield_size(t, member); 6130 6131 /* off <= moff instead of off == moff because clang 6132 * does not generate a BTF member for anonymous 6133 * bitfield like the ":16" here: 6134 * struct { 6135 * int :16; 6136 * int x:8; 6137 * }; 6138 */ 6139 if (off <= moff && 6140 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6141 return WALK_SCALAR; 6142 6143 /* off may be accessing a following member 6144 * 6145 * or 6146 * 6147 * Doing partial access at either end of this 6148 * bitfield. Continue on this case also to 6149 * treat it as not accessing this bitfield 6150 * and eventually error out as field not 6151 * found to keep it simple. 6152 * It could be relaxed if there was a legit 6153 * partial access case later. 6154 */ 6155 continue; 6156 } 6157 6158 /* In case of "off" is pointing to holes of a struct */ 6159 if (off < moff) 6160 break; 6161 6162 /* type of the field */ 6163 mid = member->type; 6164 mtype = btf_type_by_id(btf, member->type); 6165 mname = __btf_name_by_offset(btf, member->name_off); 6166 6167 mtype = __btf_resolve_size(btf, mtype, &msize, 6168 &elem_type, &elem_id, &total_nelems, 6169 &mid); 6170 if (IS_ERR(mtype)) { 6171 bpf_log(log, "field %s doesn't have size\n", mname); 6172 return -EFAULT; 6173 } 6174 6175 mtrue_end = moff + msize; 6176 if (off >= mtrue_end) 6177 /* no overlap with member, keep iterating */ 6178 continue; 6179 6180 if (btf_type_is_array(mtype)) { 6181 u32 elem_idx; 6182 6183 /* __btf_resolve_size() above helps to 6184 * linearize a multi-dimensional array. 6185 * 6186 * The logic here is treating an array 6187 * in a struct as the following way: 6188 * 6189 * struct outer { 6190 * struct inner array[2][2]; 6191 * }; 6192 * 6193 * looks like: 6194 * 6195 * struct outer { 6196 * struct inner array_elem0; 6197 * struct inner array_elem1; 6198 * struct inner array_elem2; 6199 * struct inner array_elem3; 6200 * }; 6201 * 6202 * When accessing outer->array[1][0], it moves 6203 * moff to "array_elem2", set mtype to 6204 * "struct inner", and msize also becomes 6205 * sizeof(struct inner). Then most of the 6206 * remaining logic will fall through without 6207 * caring the current member is an array or 6208 * not. 6209 * 6210 * Unlike mtype/msize/moff, mtrue_end does not 6211 * change. The naming difference ("_true") tells 6212 * that it is not always corresponding to 6213 * the current mtype/msize/moff. 6214 * It is the true end of the current 6215 * member (i.e. array in this case). That 6216 * will allow an int array to be accessed like 6217 * a scratch space, 6218 * i.e. allow access beyond the size of 6219 * the array's element as long as it is 6220 * within the mtrue_end boundary. 6221 */ 6222 6223 /* skip empty array */ 6224 if (moff == mtrue_end) 6225 continue; 6226 6227 msize /= total_nelems; 6228 elem_idx = (off - moff) / msize; 6229 moff += elem_idx * msize; 6230 mtype = elem_type; 6231 mid = elem_id; 6232 } 6233 6234 /* the 'off' we're looking for is either equal to start 6235 * of this field or inside of this struct 6236 */ 6237 if (btf_type_is_struct(mtype)) { 6238 /* our field must be inside that union or struct */ 6239 t = mtype; 6240 6241 /* return if the offset matches the member offset */ 6242 if (off == moff) { 6243 *next_btf_id = mid; 6244 return WALK_STRUCT; 6245 } 6246 6247 /* adjust offset we're looking for */ 6248 off -= moff; 6249 goto again; 6250 } 6251 6252 if (btf_type_is_ptr(mtype)) { 6253 const struct btf_type *stype, *t; 6254 enum bpf_type_flag tmp_flag = 0; 6255 u32 id; 6256 6257 if (msize != size || off != moff) { 6258 bpf_log(log, 6259 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 6260 mname, moff, tname, off, size); 6261 return -EACCES; 6262 } 6263 6264 /* check type tag */ 6265 t = btf_type_by_id(btf, mtype->type); 6266 if (btf_type_is_type_tag(t)) { 6267 tag_value = __btf_name_by_offset(btf, t->name_off); 6268 /* check __user tag */ 6269 if (strcmp(tag_value, "user") == 0) 6270 tmp_flag = MEM_USER; 6271 /* check __percpu tag */ 6272 if (strcmp(tag_value, "percpu") == 0) 6273 tmp_flag = MEM_PERCPU; 6274 /* check __rcu tag */ 6275 if (strcmp(tag_value, "rcu") == 0) 6276 tmp_flag = MEM_RCU; 6277 } 6278 6279 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 6280 if (btf_type_is_struct(stype)) { 6281 *next_btf_id = id; 6282 *flag = tmp_flag; 6283 return WALK_PTR; 6284 } 6285 } 6286 6287 /* Allow more flexible access within an int as long as 6288 * it is within mtrue_end. 6289 * Since mtrue_end could be the end of an array, 6290 * that also allows using an array of int as a scratch 6291 * space. e.g. skb->cb[]. 6292 */ 6293 if (off + size > mtrue_end) { 6294 bpf_log(log, 6295 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 6296 mname, mtrue_end, tname, off, size); 6297 return -EACCES; 6298 } 6299 6300 return WALK_SCALAR; 6301 } 6302 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 6303 return -EINVAL; 6304 } 6305 6306 int btf_struct_access(struct bpf_verifier_log *log, 6307 const struct bpf_reg_state *reg, 6308 int off, int size, enum bpf_access_type atype __maybe_unused, 6309 u32 *next_btf_id, enum bpf_type_flag *flag) 6310 { 6311 const struct btf *btf = reg->btf; 6312 enum bpf_type_flag tmp_flag = 0; 6313 const struct btf_type *t; 6314 u32 id = reg->btf_id; 6315 int err; 6316 6317 while (type_is_alloc(reg->type)) { 6318 struct btf_struct_meta *meta; 6319 struct btf_record *rec; 6320 int i; 6321 6322 meta = btf_find_struct_meta(btf, id); 6323 if (!meta) 6324 break; 6325 rec = meta->record; 6326 for (i = 0; i < rec->cnt; i++) { 6327 struct btf_field *field = &rec->fields[i]; 6328 u32 offset = field->offset; 6329 if (off < offset + btf_field_type_size(field->type) && offset < off + size) { 6330 bpf_log(log, 6331 "direct access to %s is disallowed\n", 6332 btf_field_type_name(field->type)); 6333 return -EACCES; 6334 } 6335 } 6336 break; 6337 } 6338 6339 t = btf_type_by_id(btf, id); 6340 do { 6341 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag); 6342 6343 switch (err) { 6344 case WALK_PTR: 6345 /* For local types, the destination register cannot 6346 * become a pointer again. 6347 */ 6348 if (type_is_alloc(reg->type)) 6349 return SCALAR_VALUE; 6350 /* If we found the pointer or scalar on t+off, 6351 * we're done. 6352 */ 6353 *next_btf_id = id; 6354 *flag = tmp_flag; 6355 return PTR_TO_BTF_ID; 6356 case WALK_SCALAR: 6357 return SCALAR_VALUE; 6358 case WALK_STRUCT: 6359 /* We found nested struct, so continue the search 6360 * by diving in it. At this point the offset is 6361 * aligned with the new type, so set it to 0. 6362 */ 6363 t = btf_type_by_id(btf, id); 6364 off = 0; 6365 break; 6366 default: 6367 /* It's either error or unknown return value.. 6368 * scream and leave. 6369 */ 6370 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 6371 return -EINVAL; 6372 return err; 6373 } 6374 } while (t); 6375 6376 return -EINVAL; 6377 } 6378 6379 /* Check that two BTF types, each specified as an BTF object + id, are exactly 6380 * the same. Trivial ID check is not enough due to module BTFs, because we can 6381 * end up with two different module BTFs, but IDs point to the common type in 6382 * vmlinux BTF. 6383 */ 6384 bool btf_types_are_same(const struct btf *btf1, u32 id1, 6385 const struct btf *btf2, u32 id2) 6386 { 6387 if (id1 != id2) 6388 return false; 6389 if (btf1 == btf2) 6390 return true; 6391 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 6392 } 6393 6394 bool btf_struct_ids_match(struct bpf_verifier_log *log, 6395 const struct btf *btf, u32 id, int off, 6396 const struct btf *need_btf, u32 need_type_id, 6397 bool strict) 6398 { 6399 const struct btf_type *type; 6400 enum bpf_type_flag flag; 6401 int err; 6402 6403 /* Are we already done? */ 6404 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 6405 return true; 6406 /* In case of strict type match, we do not walk struct, the top level 6407 * type match must succeed. When strict is true, off should have already 6408 * been 0. 6409 */ 6410 if (strict) 6411 return false; 6412 again: 6413 type = btf_type_by_id(btf, id); 6414 if (!type) 6415 return false; 6416 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag); 6417 if (err != WALK_STRUCT) 6418 return false; 6419 6420 /* We found nested struct object. If it matches 6421 * the requested ID, we're done. Otherwise let's 6422 * continue the search with offset 0 in the new 6423 * type. 6424 */ 6425 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 6426 off = 0; 6427 goto again; 6428 } 6429 6430 return true; 6431 } 6432 6433 static int __get_type_size(struct btf *btf, u32 btf_id, 6434 const struct btf_type **ret_type) 6435 { 6436 const struct btf_type *t; 6437 6438 *ret_type = btf_type_by_id(btf, 0); 6439 if (!btf_id) 6440 /* void */ 6441 return 0; 6442 t = btf_type_by_id(btf, btf_id); 6443 while (t && btf_type_is_modifier(t)) 6444 t = btf_type_by_id(btf, t->type); 6445 if (!t) 6446 return -EINVAL; 6447 *ret_type = t; 6448 if (btf_type_is_ptr(t)) 6449 /* kernel size of pointer. Not BPF's size of pointer*/ 6450 return sizeof(void *); 6451 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6452 return t->size; 6453 return -EINVAL; 6454 } 6455 6456 int btf_distill_func_proto(struct bpf_verifier_log *log, 6457 struct btf *btf, 6458 const struct btf_type *func, 6459 const char *tname, 6460 struct btf_func_model *m) 6461 { 6462 const struct btf_param *args; 6463 const struct btf_type *t; 6464 u32 i, nargs; 6465 int ret; 6466 6467 if (!func) { 6468 /* BTF function prototype doesn't match the verifier types. 6469 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 6470 */ 6471 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6472 m->arg_size[i] = 8; 6473 m->arg_flags[i] = 0; 6474 } 6475 m->ret_size = 8; 6476 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 6477 return 0; 6478 } 6479 args = (const struct btf_param *)(func + 1); 6480 nargs = btf_type_vlen(func); 6481 if (nargs > MAX_BPF_FUNC_ARGS) { 6482 bpf_log(log, 6483 "The function %s has %d arguments. Too many.\n", 6484 tname, nargs); 6485 return -EINVAL; 6486 } 6487 ret = __get_type_size(btf, func->type, &t); 6488 if (ret < 0 || __btf_type_is_struct(t)) { 6489 bpf_log(log, 6490 "The function %s return type %s is unsupported.\n", 6491 tname, btf_type_str(t)); 6492 return -EINVAL; 6493 } 6494 m->ret_size = ret; 6495 6496 for (i = 0; i < nargs; i++) { 6497 if (i == nargs - 1 && args[i].type == 0) { 6498 bpf_log(log, 6499 "The function %s with variable args is unsupported.\n", 6500 tname); 6501 return -EINVAL; 6502 } 6503 ret = __get_type_size(btf, args[i].type, &t); 6504 6505 /* No support of struct argument size greater than 16 bytes */ 6506 if (ret < 0 || ret > 16) { 6507 bpf_log(log, 6508 "The function %s arg%d type %s is unsupported.\n", 6509 tname, i, btf_type_str(t)); 6510 return -EINVAL; 6511 } 6512 if (ret == 0) { 6513 bpf_log(log, 6514 "The function %s has malformed void argument.\n", 6515 tname); 6516 return -EINVAL; 6517 } 6518 m->arg_size[i] = ret; 6519 m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0; 6520 } 6521 m->nr_args = nargs; 6522 return 0; 6523 } 6524 6525 /* Compare BTFs of two functions assuming only scalars and pointers to context. 6526 * t1 points to BTF_KIND_FUNC in btf1 6527 * t2 points to BTF_KIND_FUNC in btf2 6528 * Returns: 6529 * EINVAL - function prototype mismatch 6530 * EFAULT - verifier bug 6531 * 0 - 99% match. The last 1% is validated by the verifier. 6532 */ 6533 static int btf_check_func_type_match(struct bpf_verifier_log *log, 6534 struct btf *btf1, const struct btf_type *t1, 6535 struct btf *btf2, const struct btf_type *t2) 6536 { 6537 const struct btf_param *args1, *args2; 6538 const char *fn1, *fn2, *s1, *s2; 6539 u32 nargs1, nargs2, i; 6540 6541 fn1 = btf_name_by_offset(btf1, t1->name_off); 6542 fn2 = btf_name_by_offset(btf2, t2->name_off); 6543 6544 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 6545 bpf_log(log, "%s() is not a global function\n", fn1); 6546 return -EINVAL; 6547 } 6548 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 6549 bpf_log(log, "%s() is not a global function\n", fn2); 6550 return -EINVAL; 6551 } 6552 6553 t1 = btf_type_by_id(btf1, t1->type); 6554 if (!t1 || !btf_type_is_func_proto(t1)) 6555 return -EFAULT; 6556 t2 = btf_type_by_id(btf2, t2->type); 6557 if (!t2 || !btf_type_is_func_proto(t2)) 6558 return -EFAULT; 6559 6560 args1 = (const struct btf_param *)(t1 + 1); 6561 nargs1 = btf_type_vlen(t1); 6562 args2 = (const struct btf_param *)(t2 + 1); 6563 nargs2 = btf_type_vlen(t2); 6564 6565 if (nargs1 != nargs2) { 6566 bpf_log(log, "%s() has %d args while %s() has %d args\n", 6567 fn1, nargs1, fn2, nargs2); 6568 return -EINVAL; 6569 } 6570 6571 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6572 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6573 if (t1->info != t2->info) { 6574 bpf_log(log, 6575 "Return type %s of %s() doesn't match type %s of %s()\n", 6576 btf_type_str(t1), fn1, 6577 btf_type_str(t2), fn2); 6578 return -EINVAL; 6579 } 6580 6581 for (i = 0; i < nargs1; i++) { 6582 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 6583 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 6584 6585 if (t1->info != t2->info) { 6586 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 6587 i, fn1, btf_type_str(t1), 6588 fn2, btf_type_str(t2)); 6589 return -EINVAL; 6590 } 6591 if (btf_type_has_size(t1) && t1->size != t2->size) { 6592 bpf_log(log, 6593 "arg%d in %s() has size %d while %s() has %d\n", 6594 i, fn1, t1->size, 6595 fn2, t2->size); 6596 return -EINVAL; 6597 } 6598 6599 /* global functions are validated with scalars and pointers 6600 * to context only. And only global functions can be replaced. 6601 * Hence type check only those types. 6602 */ 6603 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 6604 continue; 6605 if (!btf_type_is_ptr(t1)) { 6606 bpf_log(log, 6607 "arg%d in %s() has unrecognized type\n", 6608 i, fn1); 6609 return -EINVAL; 6610 } 6611 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6612 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6613 if (!btf_type_is_struct(t1)) { 6614 bpf_log(log, 6615 "arg%d in %s() is not a pointer to context\n", 6616 i, fn1); 6617 return -EINVAL; 6618 } 6619 if (!btf_type_is_struct(t2)) { 6620 bpf_log(log, 6621 "arg%d in %s() is not a pointer to context\n", 6622 i, fn2); 6623 return -EINVAL; 6624 } 6625 /* This is an optional check to make program writing easier. 6626 * Compare names of structs and report an error to the user. 6627 * btf_prepare_func_args() already checked that t2 struct 6628 * is a context type. btf_prepare_func_args() will check 6629 * later that t1 struct is a context type as well. 6630 */ 6631 s1 = btf_name_by_offset(btf1, t1->name_off); 6632 s2 = btf_name_by_offset(btf2, t2->name_off); 6633 if (strcmp(s1, s2)) { 6634 bpf_log(log, 6635 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 6636 i, fn1, s1, fn2, s2); 6637 return -EINVAL; 6638 } 6639 } 6640 return 0; 6641 } 6642 6643 /* Compare BTFs of given program with BTF of target program */ 6644 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 6645 struct btf *btf2, const struct btf_type *t2) 6646 { 6647 struct btf *btf1 = prog->aux->btf; 6648 const struct btf_type *t1; 6649 u32 btf_id = 0; 6650 6651 if (!prog->aux->func_info) { 6652 bpf_log(log, "Program extension requires BTF\n"); 6653 return -EINVAL; 6654 } 6655 6656 btf_id = prog->aux->func_info[0].type_id; 6657 if (!btf_id) 6658 return -EFAULT; 6659 6660 t1 = btf_type_by_id(btf1, btf_id); 6661 if (!t1 || !btf_type_is_func(t1)) 6662 return -EFAULT; 6663 6664 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 6665 } 6666 6667 static int btf_check_func_arg_match(struct bpf_verifier_env *env, 6668 const struct btf *btf, u32 func_id, 6669 struct bpf_reg_state *regs, 6670 bool ptr_to_mem_ok, 6671 bool processing_call) 6672 { 6673 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6674 struct bpf_verifier_log *log = &env->log; 6675 const char *func_name, *ref_tname; 6676 const struct btf_type *t, *ref_t; 6677 const struct btf_param *args; 6678 u32 i, nargs, ref_id; 6679 int ret; 6680 6681 t = btf_type_by_id(btf, func_id); 6682 if (!t || !btf_type_is_func(t)) { 6683 /* These checks were already done by the verifier while loading 6684 * struct bpf_func_info or in add_kfunc_call(). 6685 */ 6686 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", 6687 func_id); 6688 return -EFAULT; 6689 } 6690 func_name = btf_name_by_offset(btf, t->name_off); 6691 6692 t = btf_type_by_id(btf, t->type); 6693 if (!t || !btf_type_is_func_proto(t)) { 6694 bpf_log(log, "Invalid BTF of func %s\n", func_name); 6695 return -EFAULT; 6696 } 6697 args = (const struct btf_param *)(t + 1); 6698 nargs = btf_type_vlen(t); 6699 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6700 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, 6701 MAX_BPF_FUNC_REG_ARGS); 6702 return -EINVAL; 6703 } 6704 6705 /* check that BTF function arguments match actual types that the 6706 * verifier sees. 6707 */ 6708 for (i = 0; i < nargs; i++) { 6709 enum bpf_arg_type arg_type = ARG_DONTCARE; 6710 u32 regno = i + 1; 6711 struct bpf_reg_state *reg = ®s[regno]; 6712 6713 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6714 if (btf_type_is_scalar(t)) { 6715 if (reg->type == SCALAR_VALUE) 6716 continue; 6717 bpf_log(log, "R%d is not a scalar\n", regno); 6718 return -EINVAL; 6719 } 6720 6721 if (!btf_type_is_ptr(t)) { 6722 bpf_log(log, "Unrecognized arg#%d type %s\n", 6723 i, btf_type_str(t)); 6724 return -EINVAL; 6725 } 6726 6727 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 6728 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 6729 6730 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 6731 if (ret < 0) 6732 return ret; 6733 6734 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6735 /* If function expects ctx type in BTF check that caller 6736 * is passing PTR_TO_CTX. 6737 */ 6738 if (reg->type != PTR_TO_CTX) { 6739 bpf_log(log, 6740 "arg#%d expected pointer to ctx, but got %s\n", 6741 i, btf_type_str(t)); 6742 return -EINVAL; 6743 } 6744 } else if (ptr_to_mem_ok && processing_call) { 6745 const struct btf_type *resolve_ret; 6746 u32 type_size; 6747 6748 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 6749 if (IS_ERR(resolve_ret)) { 6750 bpf_log(log, 6751 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6752 i, btf_type_str(ref_t), ref_tname, 6753 PTR_ERR(resolve_ret)); 6754 return -EINVAL; 6755 } 6756 6757 if (check_mem_reg(env, reg, regno, type_size)) 6758 return -EINVAL; 6759 } else { 6760 bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i, 6761 func_name, func_id); 6762 return -EINVAL; 6763 } 6764 } 6765 6766 return 0; 6767 } 6768 6769 /* Compare BTF of a function declaration with given bpf_reg_state. 6770 * Returns: 6771 * EFAULT - there is a verifier bug. Abort verification. 6772 * EINVAL - there is a type mismatch or BTF is not available. 6773 * 0 - BTF matches with what bpf_reg_state expects. 6774 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6775 */ 6776 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 6777 struct bpf_reg_state *regs) 6778 { 6779 struct bpf_prog *prog = env->prog; 6780 struct btf *btf = prog->aux->btf; 6781 bool is_global; 6782 u32 btf_id; 6783 int err; 6784 6785 if (!prog->aux->func_info) 6786 return -EINVAL; 6787 6788 btf_id = prog->aux->func_info[subprog].type_id; 6789 if (!btf_id) 6790 return -EFAULT; 6791 6792 if (prog->aux->func_info_aux[subprog].unreliable) 6793 return -EINVAL; 6794 6795 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6796 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false); 6797 6798 /* Compiler optimizations can remove arguments from static functions 6799 * or mismatched type can be passed into a global function. 6800 * In such cases mark the function as unreliable from BTF point of view. 6801 */ 6802 if (err) 6803 prog->aux->func_info_aux[subprog].unreliable = true; 6804 return err; 6805 } 6806 6807 /* Compare BTF of a function call with given bpf_reg_state. 6808 * Returns: 6809 * EFAULT - there is a verifier bug. Abort verification. 6810 * EINVAL - there is a type mismatch or BTF is not available. 6811 * 0 - BTF matches with what bpf_reg_state expects. 6812 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6813 * 6814 * NOTE: the code is duplicated from btf_check_subprog_arg_match() 6815 * because btf_check_func_arg_match() is still doing both. Once that 6816 * function is split in 2, we can call from here btf_check_subprog_arg_match() 6817 * first, and then treat the calling part in a new code path. 6818 */ 6819 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 6820 struct bpf_reg_state *regs) 6821 { 6822 struct bpf_prog *prog = env->prog; 6823 struct btf *btf = prog->aux->btf; 6824 bool is_global; 6825 u32 btf_id; 6826 int err; 6827 6828 if (!prog->aux->func_info) 6829 return -EINVAL; 6830 6831 btf_id = prog->aux->func_info[subprog].type_id; 6832 if (!btf_id) 6833 return -EFAULT; 6834 6835 if (prog->aux->func_info_aux[subprog].unreliable) 6836 return -EINVAL; 6837 6838 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6839 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true); 6840 6841 /* Compiler optimizations can remove arguments from static functions 6842 * or mismatched type can be passed into a global function. 6843 * In such cases mark the function as unreliable from BTF point of view. 6844 */ 6845 if (err) 6846 prog->aux->func_info_aux[subprog].unreliable = true; 6847 return err; 6848 } 6849 6850 /* Convert BTF of a function into bpf_reg_state if possible 6851 * Returns: 6852 * EFAULT - there is a verifier bug. Abort verification. 6853 * EINVAL - cannot convert BTF. 6854 * 0 - Successfully converted BTF into bpf_reg_state 6855 * (either PTR_TO_CTX or SCALAR_VALUE). 6856 */ 6857 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 6858 struct bpf_reg_state *regs) 6859 { 6860 struct bpf_verifier_log *log = &env->log; 6861 struct bpf_prog *prog = env->prog; 6862 enum bpf_prog_type prog_type = prog->type; 6863 struct btf *btf = prog->aux->btf; 6864 const struct btf_param *args; 6865 const struct btf_type *t, *ref_t; 6866 u32 i, nargs, btf_id; 6867 const char *tname; 6868 6869 if (!prog->aux->func_info || 6870 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 6871 bpf_log(log, "Verifier bug\n"); 6872 return -EFAULT; 6873 } 6874 6875 btf_id = prog->aux->func_info[subprog].type_id; 6876 if (!btf_id) { 6877 bpf_log(log, "Global functions need valid BTF\n"); 6878 return -EFAULT; 6879 } 6880 6881 t = btf_type_by_id(btf, btf_id); 6882 if (!t || !btf_type_is_func(t)) { 6883 /* These checks were already done by the verifier while loading 6884 * struct bpf_func_info 6885 */ 6886 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 6887 subprog); 6888 return -EFAULT; 6889 } 6890 tname = btf_name_by_offset(btf, t->name_off); 6891 6892 if (log->level & BPF_LOG_LEVEL) 6893 bpf_log(log, "Validating %s() func#%d...\n", 6894 tname, subprog); 6895 6896 if (prog->aux->func_info_aux[subprog].unreliable) { 6897 bpf_log(log, "Verifier bug in function %s()\n", tname); 6898 return -EFAULT; 6899 } 6900 if (prog_type == BPF_PROG_TYPE_EXT) 6901 prog_type = prog->aux->dst_prog->type; 6902 6903 t = btf_type_by_id(btf, t->type); 6904 if (!t || !btf_type_is_func_proto(t)) { 6905 bpf_log(log, "Invalid type of function %s()\n", tname); 6906 return -EFAULT; 6907 } 6908 args = (const struct btf_param *)(t + 1); 6909 nargs = btf_type_vlen(t); 6910 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6911 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 6912 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 6913 return -EINVAL; 6914 } 6915 /* check that function returns int */ 6916 t = btf_type_by_id(btf, t->type); 6917 while (btf_type_is_modifier(t)) 6918 t = btf_type_by_id(btf, t->type); 6919 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 6920 bpf_log(log, 6921 "Global function %s() doesn't return scalar. Only those are supported.\n", 6922 tname); 6923 return -EINVAL; 6924 } 6925 /* Convert BTF function arguments into verifier types. 6926 * Only PTR_TO_CTX and SCALAR are supported atm. 6927 */ 6928 for (i = 0; i < nargs; i++) { 6929 struct bpf_reg_state *reg = ®s[i + 1]; 6930 6931 t = btf_type_by_id(btf, args[i].type); 6932 while (btf_type_is_modifier(t)) 6933 t = btf_type_by_id(btf, t->type); 6934 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 6935 reg->type = SCALAR_VALUE; 6936 continue; 6937 } 6938 if (btf_type_is_ptr(t)) { 6939 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6940 reg->type = PTR_TO_CTX; 6941 continue; 6942 } 6943 6944 t = btf_type_skip_modifiers(btf, t->type, NULL); 6945 6946 ref_t = btf_resolve_size(btf, t, ®->mem_size); 6947 if (IS_ERR(ref_t)) { 6948 bpf_log(log, 6949 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6950 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 6951 PTR_ERR(ref_t)); 6952 return -EINVAL; 6953 } 6954 6955 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 6956 reg->id = ++env->id_gen; 6957 6958 continue; 6959 } 6960 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 6961 i, btf_type_str(t), tname); 6962 return -EINVAL; 6963 } 6964 return 0; 6965 } 6966 6967 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 6968 struct btf_show *show) 6969 { 6970 const struct btf_type *t = btf_type_by_id(btf, type_id); 6971 6972 show->btf = btf; 6973 memset(&show->state, 0, sizeof(show->state)); 6974 memset(&show->obj, 0, sizeof(show->obj)); 6975 6976 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 6977 } 6978 6979 static void btf_seq_show(struct btf_show *show, const char *fmt, 6980 va_list args) 6981 { 6982 seq_vprintf((struct seq_file *)show->target, fmt, args); 6983 } 6984 6985 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 6986 void *obj, struct seq_file *m, u64 flags) 6987 { 6988 struct btf_show sseq; 6989 6990 sseq.target = m; 6991 sseq.showfn = btf_seq_show; 6992 sseq.flags = flags; 6993 6994 btf_type_show(btf, type_id, obj, &sseq); 6995 6996 return sseq.state.status; 6997 } 6998 6999 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7000 struct seq_file *m) 7001 { 7002 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7003 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7004 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7005 } 7006 7007 struct btf_show_snprintf { 7008 struct btf_show show; 7009 int len_left; /* space left in string */ 7010 int len; /* length we would have written */ 7011 }; 7012 7013 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7014 va_list args) 7015 { 7016 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7017 int len; 7018 7019 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7020 7021 if (len < 0) { 7022 ssnprintf->len_left = 0; 7023 ssnprintf->len = len; 7024 } else if (len >= ssnprintf->len_left) { 7025 /* no space, drive on to get length we would have written */ 7026 ssnprintf->len_left = 0; 7027 ssnprintf->len += len; 7028 } else { 7029 ssnprintf->len_left -= len; 7030 ssnprintf->len += len; 7031 show->target += len; 7032 } 7033 } 7034 7035 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7036 char *buf, int len, u64 flags) 7037 { 7038 struct btf_show_snprintf ssnprintf; 7039 7040 ssnprintf.show.target = buf; 7041 ssnprintf.show.flags = flags; 7042 ssnprintf.show.showfn = btf_snprintf_show; 7043 ssnprintf.len_left = len; 7044 ssnprintf.len = 0; 7045 7046 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7047 7048 /* If we encountered an error, return it. */ 7049 if (ssnprintf.show.state.status) 7050 return ssnprintf.show.state.status; 7051 7052 /* Otherwise return length we would have written */ 7053 return ssnprintf.len; 7054 } 7055 7056 #ifdef CONFIG_PROC_FS 7057 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7058 { 7059 const struct btf *btf = filp->private_data; 7060 7061 seq_printf(m, "btf_id:\t%u\n", btf->id); 7062 } 7063 #endif 7064 7065 static int btf_release(struct inode *inode, struct file *filp) 7066 { 7067 btf_put(filp->private_data); 7068 return 0; 7069 } 7070 7071 const struct file_operations btf_fops = { 7072 #ifdef CONFIG_PROC_FS 7073 .show_fdinfo = bpf_btf_show_fdinfo, 7074 #endif 7075 .release = btf_release, 7076 }; 7077 7078 static int __btf_new_fd(struct btf *btf) 7079 { 7080 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7081 } 7082 7083 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr) 7084 { 7085 struct btf *btf; 7086 int ret; 7087 7088 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel), 7089 attr->btf_size, attr->btf_log_level, 7090 u64_to_user_ptr(attr->btf_log_buf), 7091 attr->btf_log_size); 7092 if (IS_ERR(btf)) 7093 return PTR_ERR(btf); 7094 7095 ret = btf_alloc_id(btf); 7096 if (ret) { 7097 btf_free(btf); 7098 return ret; 7099 } 7100 7101 /* 7102 * The BTF ID is published to the userspace. 7103 * All BTF free must go through call_rcu() from 7104 * now on (i.e. free by calling btf_put()). 7105 */ 7106 7107 ret = __btf_new_fd(btf); 7108 if (ret < 0) 7109 btf_put(btf); 7110 7111 return ret; 7112 } 7113 7114 struct btf *btf_get_by_fd(int fd) 7115 { 7116 struct btf *btf; 7117 struct fd f; 7118 7119 f = fdget(fd); 7120 7121 if (!f.file) 7122 return ERR_PTR(-EBADF); 7123 7124 if (f.file->f_op != &btf_fops) { 7125 fdput(f); 7126 return ERR_PTR(-EINVAL); 7127 } 7128 7129 btf = f.file->private_data; 7130 refcount_inc(&btf->refcnt); 7131 fdput(f); 7132 7133 return btf; 7134 } 7135 7136 int btf_get_info_by_fd(const struct btf *btf, 7137 const union bpf_attr *attr, 7138 union bpf_attr __user *uattr) 7139 { 7140 struct bpf_btf_info __user *uinfo; 7141 struct bpf_btf_info info; 7142 u32 info_copy, btf_copy; 7143 void __user *ubtf; 7144 char __user *uname; 7145 u32 uinfo_len, uname_len, name_len; 7146 int ret = 0; 7147 7148 uinfo = u64_to_user_ptr(attr->info.info); 7149 uinfo_len = attr->info.info_len; 7150 7151 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7152 memset(&info, 0, sizeof(info)); 7153 if (copy_from_user(&info, uinfo, info_copy)) 7154 return -EFAULT; 7155 7156 info.id = btf->id; 7157 ubtf = u64_to_user_ptr(info.btf); 7158 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7159 if (copy_to_user(ubtf, btf->data, btf_copy)) 7160 return -EFAULT; 7161 info.btf_size = btf->data_size; 7162 7163 info.kernel_btf = btf->kernel_btf; 7164 7165 uname = u64_to_user_ptr(info.name); 7166 uname_len = info.name_len; 7167 if (!uname ^ !uname_len) 7168 return -EINVAL; 7169 7170 name_len = strlen(btf->name); 7171 info.name_len = name_len; 7172 7173 if (uname) { 7174 if (uname_len >= name_len + 1) { 7175 if (copy_to_user(uname, btf->name, name_len + 1)) 7176 return -EFAULT; 7177 } else { 7178 char zero = '\0'; 7179 7180 if (copy_to_user(uname, btf->name, uname_len - 1)) 7181 return -EFAULT; 7182 if (put_user(zero, uname + uname_len - 1)) 7183 return -EFAULT; 7184 /* let user-space know about too short buffer */ 7185 ret = -ENOSPC; 7186 } 7187 } 7188 7189 if (copy_to_user(uinfo, &info, info_copy) || 7190 put_user(info_copy, &uattr->info.info_len)) 7191 return -EFAULT; 7192 7193 return ret; 7194 } 7195 7196 int btf_get_fd_by_id(u32 id) 7197 { 7198 struct btf *btf; 7199 int fd; 7200 7201 rcu_read_lock(); 7202 btf = idr_find(&btf_idr, id); 7203 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7204 btf = ERR_PTR(-ENOENT); 7205 rcu_read_unlock(); 7206 7207 if (IS_ERR(btf)) 7208 return PTR_ERR(btf); 7209 7210 fd = __btf_new_fd(btf); 7211 if (fd < 0) 7212 btf_put(btf); 7213 7214 return fd; 7215 } 7216 7217 u32 btf_obj_id(const struct btf *btf) 7218 { 7219 return btf->id; 7220 } 7221 7222 bool btf_is_kernel(const struct btf *btf) 7223 { 7224 return btf->kernel_btf; 7225 } 7226 7227 bool btf_is_module(const struct btf *btf) 7228 { 7229 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7230 } 7231 7232 enum { 7233 BTF_MODULE_F_LIVE = (1 << 0), 7234 }; 7235 7236 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7237 struct btf_module { 7238 struct list_head list; 7239 struct module *module; 7240 struct btf *btf; 7241 struct bin_attribute *sysfs_attr; 7242 int flags; 7243 }; 7244 7245 static LIST_HEAD(btf_modules); 7246 static DEFINE_MUTEX(btf_module_mutex); 7247 7248 static ssize_t 7249 btf_module_read(struct file *file, struct kobject *kobj, 7250 struct bin_attribute *bin_attr, 7251 char *buf, loff_t off, size_t len) 7252 { 7253 const struct btf *btf = bin_attr->private; 7254 7255 memcpy(buf, btf->data + off, len); 7256 return len; 7257 } 7258 7259 static void purge_cand_cache(struct btf *btf); 7260 7261 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 7262 void *module) 7263 { 7264 struct btf_module *btf_mod, *tmp; 7265 struct module *mod = module; 7266 struct btf *btf; 7267 int err = 0; 7268 7269 if (mod->btf_data_size == 0 || 7270 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 7271 op != MODULE_STATE_GOING)) 7272 goto out; 7273 7274 switch (op) { 7275 case MODULE_STATE_COMING: 7276 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 7277 if (!btf_mod) { 7278 err = -ENOMEM; 7279 goto out; 7280 } 7281 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 7282 if (IS_ERR(btf)) { 7283 kfree(btf_mod); 7284 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 7285 pr_warn("failed to validate module [%s] BTF: %ld\n", 7286 mod->name, PTR_ERR(btf)); 7287 err = PTR_ERR(btf); 7288 } else { 7289 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 7290 } 7291 goto out; 7292 } 7293 err = btf_alloc_id(btf); 7294 if (err) { 7295 btf_free(btf); 7296 kfree(btf_mod); 7297 goto out; 7298 } 7299 7300 purge_cand_cache(NULL); 7301 mutex_lock(&btf_module_mutex); 7302 btf_mod->module = module; 7303 btf_mod->btf = btf; 7304 list_add(&btf_mod->list, &btf_modules); 7305 mutex_unlock(&btf_module_mutex); 7306 7307 if (IS_ENABLED(CONFIG_SYSFS)) { 7308 struct bin_attribute *attr; 7309 7310 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 7311 if (!attr) 7312 goto out; 7313 7314 sysfs_bin_attr_init(attr); 7315 attr->attr.name = btf->name; 7316 attr->attr.mode = 0444; 7317 attr->size = btf->data_size; 7318 attr->private = btf; 7319 attr->read = btf_module_read; 7320 7321 err = sysfs_create_bin_file(btf_kobj, attr); 7322 if (err) { 7323 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 7324 mod->name, err); 7325 kfree(attr); 7326 err = 0; 7327 goto out; 7328 } 7329 7330 btf_mod->sysfs_attr = attr; 7331 } 7332 7333 break; 7334 case MODULE_STATE_LIVE: 7335 mutex_lock(&btf_module_mutex); 7336 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7337 if (btf_mod->module != module) 7338 continue; 7339 7340 btf_mod->flags |= BTF_MODULE_F_LIVE; 7341 break; 7342 } 7343 mutex_unlock(&btf_module_mutex); 7344 break; 7345 case MODULE_STATE_GOING: 7346 mutex_lock(&btf_module_mutex); 7347 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7348 if (btf_mod->module != module) 7349 continue; 7350 7351 list_del(&btf_mod->list); 7352 if (btf_mod->sysfs_attr) 7353 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 7354 purge_cand_cache(btf_mod->btf); 7355 btf_put(btf_mod->btf); 7356 kfree(btf_mod->sysfs_attr); 7357 kfree(btf_mod); 7358 break; 7359 } 7360 mutex_unlock(&btf_module_mutex); 7361 break; 7362 } 7363 out: 7364 return notifier_from_errno(err); 7365 } 7366 7367 static struct notifier_block btf_module_nb = { 7368 .notifier_call = btf_module_notify, 7369 }; 7370 7371 static int __init btf_module_init(void) 7372 { 7373 register_module_notifier(&btf_module_nb); 7374 return 0; 7375 } 7376 7377 fs_initcall(btf_module_init); 7378 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 7379 7380 struct module *btf_try_get_module(const struct btf *btf) 7381 { 7382 struct module *res = NULL; 7383 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7384 struct btf_module *btf_mod, *tmp; 7385 7386 mutex_lock(&btf_module_mutex); 7387 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7388 if (btf_mod->btf != btf) 7389 continue; 7390 7391 /* We must only consider module whose __init routine has 7392 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 7393 * which is set from the notifier callback for 7394 * MODULE_STATE_LIVE. 7395 */ 7396 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 7397 res = btf_mod->module; 7398 7399 break; 7400 } 7401 mutex_unlock(&btf_module_mutex); 7402 #endif 7403 7404 return res; 7405 } 7406 7407 /* Returns struct btf corresponding to the struct module. 7408 * This function can return NULL or ERR_PTR. 7409 */ 7410 static struct btf *btf_get_module_btf(const struct module *module) 7411 { 7412 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7413 struct btf_module *btf_mod, *tmp; 7414 #endif 7415 struct btf *btf = NULL; 7416 7417 if (!module) { 7418 btf = bpf_get_btf_vmlinux(); 7419 if (!IS_ERR_OR_NULL(btf)) 7420 btf_get(btf); 7421 return btf; 7422 } 7423 7424 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7425 mutex_lock(&btf_module_mutex); 7426 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7427 if (btf_mod->module != module) 7428 continue; 7429 7430 btf_get(btf_mod->btf); 7431 btf = btf_mod->btf; 7432 break; 7433 } 7434 mutex_unlock(&btf_module_mutex); 7435 #endif 7436 7437 return btf; 7438 } 7439 7440 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 7441 { 7442 struct btf *btf = NULL; 7443 int btf_obj_fd = 0; 7444 long ret; 7445 7446 if (flags) 7447 return -EINVAL; 7448 7449 if (name_sz <= 1 || name[name_sz - 1]) 7450 return -EINVAL; 7451 7452 ret = bpf_find_btf_id(name, kind, &btf); 7453 if (ret > 0 && btf_is_module(btf)) { 7454 btf_obj_fd = __btf_new_fd(btf); 7455 if (btf_obj_fd < 0) { 7456 btf_put(btf); 7457 return btf_obj_fd; 7458 } 7459 return ret | (((u64)btf_obj_fd) << 32); 7460 } 7461 if (ret > 0) 7462 btf_put(btf); 7463 return ret; 7464 } 7465 7466 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 7467 .func = bpf_btf_find_by_name_kind, 7468 .gpl_only = false, 7469 .ret_type = RET_INTEGER, 7470 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7471 .arg2_type = ARG_CONST_SIZE, 7472 .arg3_type = ARG_ANYTHING, 7473 .arg4_type = ARG_ANYTHING, 7474 }; 7475 7476 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 7477 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 7478 BTF_TRACING_TYPE_xxx 7479 #undef BTF_TRACING_TYPE 7480 7481 /* Kernel Function (kfunc) BTF ID set registration API */ 7482 7483 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 7484 struct btf_id_set8 *add_set) 7485 { 7486 bool vmlinux_set = !btf_is_module(btf); 7487 struct btf_kfunc_set_tab *tab; 7488 struct btf_id_set8 *set; 7489 u32 set_cnt; 7490 int ret; 7491 7492 if (hook >= BTF_KFUNC_HOOK_MAX) { 7493 ret = -EINVAL; 7494 goto end; 7495 } 7496 7497 if (!add_set->cnt) 7498 return 0; 7499 7500 tab = btf->kfunc_set_tab; 7501 if (!tab) { 7502 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 7503 if (!tab) 7504 return -ENOMEM; 7505 btf->kfunc_set_tab = tab; 7506 } 7507 7508 set = tab->sets[hook]; 7509 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 7510 * for module sets. 7511 */ 7512 if (WARN_ON_ONCE(set && !vmlinux_set)) { 7513 ret = -EINVAL; 7514 goto end; 7515 } 7516 7517 /* We don't need to allocate, concatenate, and sort module sets, because 7518 * only one is allowed per hook. Hence, we can directly assign the 7519 * pointer and return. 7520 */ 7521 if (!vmlinux_set) { 7522 tab->sets[hook] = add_set; 7523 return 0; 7524 } 7525 7526 /* In case of vmlinux sets, there may be more than one set being 7527 * registered per hook. To create a unified set, we allocate a new set 7528 * and concatenate all individual sets being registered. While each set 7529 * is individually sorted, they may become unsorted when concatenated, 7530 * hence re-sorting the final set again is required to make binary 7531 * searching the set using btf_id_set8_contains function work. 7532 */ 7533 set_cnt = set ? set->cnt : 0; 7534 7535 if (set_cnt > U32_MAX - add_set->cnt) { 7536 ret = -EOVERFLOW; 7537 goto end; 7538 } 7539 7540 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 7541 ret = -E2BIG; 7542 goto end; 7543 } 7544 7545 /* Grow set */ 7546 set = krealloc(tab->sets[hook], 7547 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 7548 GFP_KERNEL | __GFP_NOWARN); 7549 if (!set) { 7550 ret = -ENOMEM; 7551 goto end; 7552 } 7553 7554 /* For newly allocated set, initialize set->cnt to 0 */ 7555 if (!tab->sets[hook]) 7556 set->cnt = 0; 7557 tab->sets[hook] = set; 7558 7559 /* Concatenate the two sets */ 7560 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 7561 set->cnt += add_set->cnt; 7562 7563 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 7564 7565 return 0; 7566 end: 7567 btf_free_kfunc_set_tab(btf); 7568 return ret; 7569 } 7570 7571 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 7572 enum btf_kfunc_hook hook, 7573 u32 kfunc_btf_id) 7574 { 7575 struct btf_id_set8 *set; 7576 u32 *id; 7577 7578 if (hook >= BTF_KFUNC_HOOK_MAX) 7579 return NULL; 7580 if (!btf->kfunc_set_tab) 7581 return NULL; 7582 set = btf->kfunc_set_tab->sets[hook]; 7583 if (!set) 7584 return NULL; 7585 id = btf_id_set8_contains(set, kfunc_btf_id); 7586 if (!id) 7587 return NULL; 7588 /* The flags for BTF ID are located next to it */ 7589 return id + 1; 7590 } 7591 7592 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 7593 { 7594 switch (prog_type) { 7595 case BPF_PROG_TYPE_UNSPEC: 7596 return BTF_KFUNC_HOOK_COMMON; 7597 case BPF_PROG_TYPE_XDP: 7598 return BTF_KFUNC_HOOK_XDP; 7599 case BPF_PROG_TYPE_SCHED_CLS: 7600 return BTF_KFUNC_HOOK_TC; 7601 case BPF_PROG_TYPE_STRUCT_OPS: 7602 return BTF_KFUNC_HOOK_STRUCT_OPS; 7603 case BPF_PROG_TYPE_TRACING: 7604 case BPF_PROG_TYPE_LSM: 7605 return BTF_KFUNC_HOOK_TRACING; 7606 case BPF_PROG_TYPE_SYSCALL: 7607 return BTF_KFUNC_HOOK_SYSCALL; 7608 default: 7609 return BTF_KFUNC_HOOK_MAX; 7610 } 7611 } 7612 7613 /* Caution: 7614 * Reference to the module (obtained using btf_try_get_module) corresponding to 7615 * the struct btf *MUST* be held when calling this function from verifier 7616 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 7617 * keeping the reference for the duration of the call provides the necessary 7618 * protection for looking up a well-formed btf->kfunc_set_tab. 7619 */ 7620 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 7621 enum bpf_prog_type prog_type, 7622 u32 kfunc_btf_id) 7623 { 7624 enum btf_kfunc_hook hook; 7625 u32 *kfunc_flags; 7626 7627 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id); 7628 if (kfunc_flags) 7629 return kfunc_flags; 7630 7631 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7632 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id); 7633 } 7634 7635 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id) 7636 { 7637 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id); 7638 } 7639 7640 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 7641 const struct btf_kfunc_id_set *kset) 7642 { 7643 struct btf *btf; 7644 int ret; 7645 7646 btf = btf_get_module_btf(kset->owner); 7647 if (!btf) { 7648 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7649 pr_err("missing vmlinux BTF, cannot register kfuncs\n"); 7650 return -ENOENT; 7651 } 7652 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7653 pr_err("missing module BTF, cannot register kfuncs\n"); 7654 return -ENOENT; 7655 } 7656 return 0; 7657 } 7658 if (IS_ERR(btf)) 7659 return PTR_ERR(btf); 7660 7661 ret = btf_populate_kfunc_set(btf, hook, kset->set); 7662 btf_put(btf); 7663 return ret; 7664 } 7665 7666 /* This function must be invoked only from initcalls/module init functions */ 7667 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 7668 const struct btf_kfunc_id_set *kset) 7669 { 7670 enum btf_kfunc_hook hook; 7671 7672 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7673 return __register_btf_kfunc_id_set(hook, kset); 7674 } 7675 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 7676 7677 /* This function must be invoked only from initcalls/module init functions */ 7678 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 7679 { 7680 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 7681 } 7682 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 7683 7684 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 7685 { 7686 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 7687 struct btf_id_dtor_kfunc *dtor; 7688 7689 if (!tab) 7690 return -ENOENT; 7691 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 7692 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 7693 */ 7694 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 7695 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 7696 if (!dtor) 7697 return -ENOENT; 7698 return dtor->kfunc_btf_id; 7699 } 7700 7701 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 7702 { 7703 const struct btf_type *dtor_func, *dtor_func_proto, *t; 7704 const struct btf_param *args; 7705 s32 dtor_btf_id; 7706 u32 nr_args, i; 7707 7708 for (i = 0; i < cnt; i++) { 7709 dtor_btf_id = dtors[i].kfunc_btf_id; 7710 7711 dtor_func = btf_type_by_id(btf, dtor_btf_id); 7712 if (!dtor_func || !btf_type_is_func(dtor_func)) 7713 return -EINVAL; 7714 7715 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 7716 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 7717 return -EINVAL; 7718 7719 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 7720 t = btf_type_by_id(btf, dtor_func_proto->type); 7721 if (!t || !btf_type_is_void(t)) 7722 return -EINVAL; 7723 7724 nr_args = btf_type_vlen(dtor_func_proto); 7725 if (nr_args != 1) 7726 return -EINVAL; 7727 args = btf_params(dtor_func_proto); 7728 t = btf_type_by_id(btf, args[0].type); 7729 /* Allow any pointer type, as width on targets Linux supports 7730 * will be same for all pointer types (i.e. sizeof(void *)) 7731 */ 7732 if (!t || !btf_type_is_ptr(t)) 7733 return -EINVAL; 7734 } 7735 return 0; 7736 } 7737 7738 /* This function must be invoked only from initcalls/module init functions */ 7739 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 7740 struct module *owner) 7741 { 7742 struct btf_id_dtor_kfunc_tab *tab; 7743 struct btf *btf; 7744 u32 tab_cnt; 7745 int ret; 7746 7747 btf = btf_get_module_btf(owner); 7748 if (!btf) { 7749 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7750 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n"); 7751 return -ENOENT; 7752 } 7753 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7754 pr_err("missing module BTF, cannot register dtor kfuncs\n"); 7755 return -ENOENT; 7756 } 7757 return 0; 7758 } 7759 if (IS_ERR(btf)) 7760 return PTR_ERR(btf); 7761 7762 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 7763 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 7764 ret = -E2BIG; 7765 goto end; 7766 } 7767 7768 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 7769 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 7770 if (ret < 0) 7771 goto end; 7772 7773 tab = btf->dtor_kfunc_tab; 7774 /* Only one call allowed for modules */ 7775 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 7776 ret = -EINVAL; 7777 goto end; 7778 } 7779 7780 tab_cnt = tab ? tab->cnt : 0; 7781 if (tab_cnt > U32_MAX - add_cnt) { 7782 ret = -EOVERFLOW; 7783 goto end; 7784 } 7785 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 7786 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 7787 ret = -E2BIG; 7788 goto end; 7789 } 7790 7791 tab = krealloc(btf->dtor_kfunc_tab, 7792 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 7793 GFP_KERNEL | __GFP_NOWARN); 7794 if (!tab) { 7795 ret = -ENOMEM; 7796 goto end; 7797 } 7798 7799 if (!btf->dtor_kfunc_tab) 7800 tab->cnt = 0; 7801 btf->dtor_kfunc_tab = tab; 7802 7803 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 7804 tab->cnt += add_cnt; 7805 7806 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 7807 7808 return 0; 7809 end: 7810 btf_free_dtor_kfunc_tab(btf); 7811 btf_put(btf); 7812 return ret; 7813 } 7814 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 7815 7816 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 7817 7818 /* Check local and target types for compatibility. This check is used for 7819 * type-based CO-RE relocations and follow slightly different rules than 7820 * field-based relocations. This function assumes that root types were already 7821 * checked for name match. Beyond that initial root-level name check, names 7822 * are completely ignored. Compatibility rules are as follows: 7823 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 7824 * kind should match for local and target types (i.e., STRUCT is not 7825 * compatible with UNION); 7826 * - for ENUMs/ENUM64s, the size is ignored; 7827 * - for INT, size and signedness are ignored; 7828 * - for ARRAY, dimensionality is ignored, element types are checked for 7829 * compatibility recursively; 7830 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 7831 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 7832 * - FUNC_PROTOs are compatible if they have compatible signature: same 7833 * number of input args and compatible return and argument types. 7834 * These rules are not set in stone and probably will be adjusted as we get 7835 * more experience with using BPF CO-RE relocations. 7836 */ 7837 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 7838 const struct btf *targ_btf, __u32 targ_id) 7839 { 7840 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 7841 MAX_TYPES_ARE_COMPAT_DEPTH); 7842 } 7843 7844 #define MAX_TYPES_MATCH_DEPTH 2 7845 7846 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 7847 const struct btf *targ_btf, u32 targ_id) 7848 { 7849 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 7850 MAX_TYPES_MATCH_DEPTH); 7851 } 7852 7853 static bool bpf_core_is_flavor_sep(const char *s) 7854 { 7855 /* check X___Y name pattern, where X and Y are not underscores */ 7856 return s[0] != '_' && /* X */ 7857 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 7858 s[4] != '_'; /* Y */ 7859 } 7860 7861 size_t bpf_core_essential_name_len(const char *name) 7862 { 7863 size_t n = strlen(name); 7864 int i; 7865 7866 for (i = n - 5; i >= 0; i--) { 7867 if (bpf_core_is_flavor_sep(name + i)) 7868 return i + 1; 7869 } 7870 return n; 7871 } 7872 7873 struct bpf_cand_cache { 7874 const char *name; 7875 u32 name_len; 7876 u16 kind; 7877 u16 cnt; 7878 struct { 7879 const struct btf *btf; 7880 u32 id; 7881 } cands[]; 7882 }; 7883 7884 static void bpf_free_cands(struct bpf_cand_cache *cands) 7885 { 7886 if (!cands->cnt) 7887 /* empty candidate array was allocated on stack */ 7888 return; 7889 kfree(cands); 7890 } 7891 7892 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 7893 { 7894 kfree(cands->name); 7895 kfree(cands); 7896 } 7897 7898 #define VMLINUX_CAND_CACHE_SIZE 31 7899 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 7900 7901 #define MODULE_CAND_CACHE_SIZE 31 7902 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 7903 7904 static DEFINE_MUTEX(cand_cache_mutex); 7905 7906 static void __print_cand_cache(struct bpf_verifier_log *log, 7907 struct bpf_cand_cache **cache, 7908 int cache_size) 7909 { 7910 struct bpf_cand_cache *cc; 7911 int i, j; 7912 7913 for (i = 0; i < cache_size; i++) { 7914 cc = cache[i]; 7915 if (!cc) 7916 continue; 7917 bpf_log(log, "[%d]%s(", i, cc->name); 7918 for (j = 0; j < cc->cnt; j++) { 7919 bpf_log(log, "%d", cc->cands[j].id); 7920 if (j < cc->cnt - 1) 7921 bpf_log(log, " "); 7922 } 7923 bpf_log(log, "), "); 7924 } 7925 } 7926 7927 static void print_cand_cache(struct bpf_verifier_log *log) 7928 { 7929 mutex_lock(&cand_cache_mutex); 7930 bpf_log(log, "vmlinux_cand_cache:"); 7931 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 7932 bpf_log(log, "\nmodule_cand_cache:"); 7933 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 7934 bpf_log(log, "\n"); 7935 mutex_unlock(&cand_cache_mutex); 7936 } 7937 7938 static u32 hash_cands(struct bpf_cand_cache *cands) 7939 { 7940 return jhash(cands->name, cands->name_len, 0); 7941 } 7942 7943 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 7944 struct bpf_cand_cache **cache, 7945 int cache_size) 7946 { 7947 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 7948 7949 if (cc && cc->name_len == cands->name_len && 7950 !strncmp(cc->name, cands->name, cands->name_len)) 7951 return cc; 7952 return NULL; 7953 } 7954 7955 static size_t sizeof_cands(int cnt) 7956 { 7957 return offsetof(struct bpf_cand_cache, cands[cnt]); 7958 } 7959 7960 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 7961 struct bpf_cand_cache **cache, 7962 int cache_size) 7963 { 7964 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 7965 7966 if (*cc) { 7967 bpf_free_cands_from_cache(*cc); 7968 *cc = NULL; 7969 } 7970 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 7971 if (!new_cands) { 7972 bpf_free_cands(cands); 7973 return ERR_PTR(-ENOMEM); 7974 } 7975 /* strdup the name, since it will stay in cache. 7976 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 7977 */ 7978 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 7979 bpf_free_cands(cands); 7980 if (!new_cands->name) { 7981 kfree(new_cands); 7982 return ERR_PTR(-ENOMEM); 7983 } 7984 *cc = new_cands; 7985 return new_cands; 7986 } 7987 7988 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7989 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 7990 int cache_size) 7991 { 7992 struct bpf_cand_cache *cc; 7993 int i, j; 7994 7995 for (i = 0; i < cache_size; i++) { 7996 cc = cache[i]; 7997 if (!cc) 7998 continue; 7999 if (!btf) { 8000 /* when new module is loaded purge all of module_cand_cache, 8001 * since new module might have candidates with the name 8002 * that matches cached cands. 8003 */ 8004 bpf_free_cands_from_cache(cc); 8005 cache[i] = NULL; 8006 continue; 8007 } 8008 /* when module is unloaded purge cache entries 8009 * that match module's btf 8010 */ 8011 for (j = 0; j < cc->cnt; j++) 8012 if (cc->cands[j].btf == btf) { 8013 bpf_free_cands_from_cache(cc); 8014 cache[i] = NULL; 8015 break; 8016 } 8017 } 8018 8019 } 8020 8021 static void purge_cand_cache(struct btf *btf) 8022 { 8023 mutex_lock(&cand_cache_mutex); 8024 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8025 mutex_unlock(&cand_cache_mutex); 8026 } 8027 #endif 8028 8029 static struct bpf_cand_cache * 8030 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8031 int targ_start_id) 8032 { 8033 struct bpf_cand_cache *new_cands; 8034 const struct btf_type *t; 8035 const char *targ_name; 8036 size_t targ_essent_len; 8037 int n, i; 8038 8039 n = btf_nr_types(targ_btf); 8040 for (i = targ_start_id; i < n; i++) { 8041 t = btf_type_by_id(targ_btf, i); 8042 if (btf_kind(t) != cands->kind) 8043 continue; 8044 8045 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8046 if (!targ_name) 8047 continue; 8048 8049 /* the resched point is before strncmp to make sure that search 8050 * for non-existing name will have a chance to schedule(). 8051 */ 8052 cond_resched(); 8053 8054 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 8055 continue; 8056 8057 targ_essent_len = bpf_core_essential_name_len(targ_name); 8058 if (targ_essent_len != cands->name_len) 8059 continue; 8060 8061 /* most of the time there is only one candidate for a given kind+name pair */ 8062 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 8063 if (!new_cands) { 8064 bpf_free_cands(cands); 8065 return ERR_PTR(-ENOMEM); 8066 } 8067 8068 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 8069 bpf_free_cands(cands); 8070 cands = new_cands; 8071 cands->cands[cands->cnt].btf = targ_btf; 8072 cands->cands[cands->cnt].id = i; 8073 cands->cnt++; 8074 } 8075 return cands; 8076 } 8077 8078 static struct bpf_cand_cache * 8079 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 8080 { 8081 struct bpf_cand_cache *cands, *cc, local_cand = {}; 8082 const struct btf *local_btf = ctx->btf; 8083 const struct btf_type *local_type; 8084 const struct btf *main_btf; 8085 size_t local_essent_len; 8086 struct btf *mod_btf; 8087 const char *name; 8088 int id; 8089 8090 main_btf = bpf_get_btf_vmlinux(); 8091 if (IS_ERR(main_btf)) 8092 return ERR_CAST(main_btf); 8093 if (!main_btf) 8094 return ERR_PTR(-EINVAL); 8095 8096 local_type = btf_type_by_id(local_btf, local_type_id); 8097 if (!local_type) 8098 return ERR_PTR(-EINVAL); 8099 8100 name = btf_name_by_offset(local_btf, local_type->name_off); 8101 if (str_is_empty(name)) 8102 return ERR_PTR(-EINVAL); 8103 local_essent_len = bpf_core_essential_name_len(name); 8104 8105 cands = &local_cand; 8106 cands->name = name; 8107 cands->kind = btf_kind(local_type); 8108 cands->name_len = local_essent_len; 8109 8110 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8111 /* cands is a pointer to stack here */ 8112 if (cc) { 8113 if (cc->cnt) 8114 return cc; 8115 goto check_modules; 8116 } 8117 8118 /* Attempt to find target candidates in vmlinux BTF first */ 8119 cands = bpf_core_add_cands(cands, main_btf, 1); 8120 if (IS_ERR(cands)) 8121 return ERR_CAST(cands); 8122 8123 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 8124 8125 /* populate cache even when cands->cnt == 0 */ 8126 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8127 if (IS_ERR(cc)) 8128 return ERR_CAST(cc); 8129 8130 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 8131 if (cc->cnt) 8132 return cc; 8133 8134 check_modules: 8135 /* cands is a pointer to stack here and cands->cnt == 0 */ 8136 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8137 if (cc) 8138 /* if cache has it return it even if cc->cnt == 0 */ 8139 return cc; 8140 8141 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 8142 spin_lock_bh(&btf_idr_lock); 8143 idr_for_each_entry(&btf_idr, mod_btf, id) { 8144 if (!btf_is_module(mod_btf)) 8145 continue; 8146 /* linear search could be slow hence unlock/lock 8147 * the IDR to avoiding holding it for too long 8148 */ 8149 btf_get(mod_btf); 8150 spin_unlock_bh(&btf_idr_lock); 8151 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 8152 if (IS_ERR(cands)) { 8153 btf_put(mod_btf); 8154 return ERR_CAST(cands); 8155 } 8156 spin_lock_bh(&btf_idr_lock); 8157 btf_put(mod_btf); 8158 } 8159 spin_unlock_bh(&btf_idr_lock); 8160 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 8161 * or pointer to stack if cands->cnd == 0. 8162 * Copy it into the cache even when cands->cnt == 0 and 8163 * return the result. 8164 */ 8165 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8166 } 8167 8168 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 8169 int relo_idx, void *insn) 8170 { 8171 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 8172 struct bpf_core_cand_list cands = {}; 8173 struct bpf_core_relo_res targ_res; 8174 struct bpf_core_spec *specs; 8175 int err; 8176 8177 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 8178 * into arrays of btf_ids of struct fields and array indices. 8179 */ 8180 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 8181 if (!specs) 8182 return -ENOMEM; 8183 8184 if (need_cands) { 8185 struct bpf_cand_cache *cc; 8186 int i; 8187 8188 mutex_lock(&cand_cache_mutex); 8189 cc = bpf_core_find_cands(ctx, relo->type_id); 8190 if (IS_ERR(cc)) { 8191 bpf_log(ctx->log, "target candidate search failed for %d\n", 8192 relo->type_id); 8193 err = PTR_ERR(cc); 8194 goto out; 8195 } 8196 if (cc->cnt) { 8197 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 8198 if (!cands.cands) { 8199 err = -ENOMEM; 8200 goto out; 8201 } 8202 } 8203 for (i = 0; i < cc->cnt; i++) { 8204 bpf_log(ctx->log, 8205 "CO-RE relocating %s %s: found target candidate [%d]\n", 8206 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 8207 cands.cands[i].btf = cc->cands[i].btf; 8208 cands.cands[i].id = cc->cands[i].id; 8209 } 8210 cands.len = cc->cnt; 8211 /* cand_cache_mutex needs to span the cache lookup and 8212 * copy of btf pointer into bpf_core_cand_list, 8213 * since module can be unloaded while bpf_core_calc_relo_insn 8214 * is working with module's btf. 8215 */ 8216 } 8217 8218 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 8219 &targ_res); 8220 if (err) 8221 goto out; 8222 8223 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 8224 &targ_res); 8225 8226 out: 8227 kfree(specs); 8228 if (need_cands) { 8229 kfree(cands.cands); 8230 mutex_unlock(&cand_cache_mutex); 8231 if (ctx->log->level & BPF_LOG_LEVEL2) 8232 print_cand_cache(ctx->log); 8233 } 8234 return err; 8235 } 8236 8237 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 8238 const struct bpf_reg_state *reg, 8239 int off) 8240 { 8241 struct btf *btf = reg->btf; 8242 const struct btf_type *walk_type, *safe_type; 8243 const char *tname; 8244 char safe_tname[64]; 8245 long ret, safe_id; 8246 const struct btf_member *member, *m_walk = NULL; 8247 u32 i; 8248 const char *walk_name; 8249 8250 walk_type = btf_type_by_id(btf, reg->btf_id); 8251 if (!walk_type) 8252 return false; 8253 8254 tname = btf_name_by_offset(btf, walk_type->name_off); 8255 8256 ret = snprintf(safe_tname, sizeof(safe_tname), "%s__safe_fields", tname); 8257 if (ret < 0) 8258 return false; 8259 8260 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 8261 if (safe_id < 0) 8262 return false; 8263 8264 safe_type = btf_type_by_id(btf, safe_id); 8265 if (!safe_type) 8266 return false; 8267 8268 for_each_member(i, walk_type, member) { 8269 u32 moff; 8270 8271 /* We're looking for the PTR_TO_BTF_ID member in the struct 8272 * type we're walking which matches the specified offset. 8273 * Below, we'll iterate over the fields in the safe variant of 8274 * the struct and see if any of them has a matching type / 8275 * name. 8276 */ 8277 moff = __btf_member_bit_offset(walk_type, member) / 8; 8278 if (off == moff) { 8279 m_walk = member; 8280 break; 8281 } 8282 } 8283 if (m_walk == NULL) 8284 return false; 8285 8286 walk_name = __btf_name_by_offset(btf, m_walk->name_off); 8287 for_each_member(i, safe_type, member) { 8288 const char *m_name = __btf_name_by_offset(btf, member->name_off); 8289 8290 /* If we match on both type and name, the field is considered trusted. */ 8291 if (m_walk->type == member->type && !strcmp(walk_name, m_name)) 8292 return true; 8293 } 8294 8295 return false; 8296 } 8297 8298 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 8299 const struct btf *reg_btf, u32 reg_id, 8300 const struct btf *arg_btf, u32 arg_id) 8301 { 8302 const char *reg_name, *arg_name, *search_needle; 8303 const struct btf_type *reg_type, *arg_type; 8304 int reg_len, arg_len, cmp_len; 8305 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 8306 8307 reg_type = btf_type_by_id(reg_btf, reg_id); 8308 if (!reg_type) 8309 return false; 8310 8311 arg_type = btf_type_by_id(arg_btf, arg_id); 8312 if (!arg_type) 8313 return false; 8314 8315 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 8316 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 8317 8318 reg_len = strlen(reg_name); 8319 arg_len = strlen(arg_name); 8320 8321 /* Exactly one of the two type names may be suffixed with ___init, so 8322 * if the strings are the same size, they can't possibly be no-cast 8323 * aliases of one another. If you have two of the same type names, e.g. 8324 * they're both nf_conn___init, it would be improper to return true 8325 * because they are _not_ no-cast aliases, they are the same type. 8326 */ 8327 if (reg_len == arg_len) 8328 return false; 8329 8330 /* Either of the two names must be the other name, suffixed with ___init. */ 8331 if ((reg_len != arg_len + pattern_len) && 8332 (arg_len != reg_len + pattern_len)) 8333 return false; 8334 8335 if (reg_len < arg_len) { 8336 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 8337 cmp_len = reg_len; 8338 } else { 8339 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 8340 cmp_len = arg_len; 8341 } 8342 8343 if (!search_needle) 8344 return false; 8345 8346 /* ___init suffix must come at the end of the name */ 8347 if (*(search_needle + pattern_len) != '\0') 8348 return false; 8349 8350 return !strncmp(reg_name, arg_name, cmp_len); 8351 } 8352