xref: /openbmc/linux/kernel/bpf/btf.c (revision a17922de)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/errno.h>
9 #include <linux/slab.h>
10 #include <linux/anon_inodes.h>
11 #include <linux/file.h>
12 #include <linux/uaccess.h>
13 #include <linux/kernel.h>
14 #include <linux/idr.h>
15 #include <linux/sort.h>
16 #include <linux/bpf_verifier.h>
17 #include <linux/btf.h>
18 
19 /* BTF (BPF Type Format) is the meta data format which describes
20  * the data types of BPF program/map.  Hence, it basically focus
21  * on the C programming language which the modern BPF is primary
22  * using.
23  *
24  * ELF Section:
25  * ~~~~~~~~~~~
26  * The BTF data is stored under the ".BTF" ELF section
27  *
28  * struct btf_type:
29  * ~~~~~~~~~~~~~~~
30  * Each 'struct btf_type' object describes a C data type.
31  * Depending on the type it is describing, a 'struct btf_type'
32  * object may be followed by more data.  F.e.
33  * To describe an array, 'struct btf_type' is followed by
34  * 'struct btf_array'.
35  *
36  * 'struct btf_type' and any extra data following it are
37  * 4 bytes aligned.
38  *
39  * Type section:
40  * ~~~~~~~~~~~~~
41  * The BTF type section contains a list of 'struct btf_type' objects.
42  * Each one describes a C type.  Recall from the above section
43  * that a 'struct btf_type' object could be immediately followed by extra
44  * data in order to desribe some particular C types.
45  *
46  * type_id:
47  * ~~~~~~~
48  * Each btf_type object is identified by a type_id.  The type_id
49  * is implicitly implied by the location of the btf_type object in
50  * the BTF type section.  The first one has type_id 1.  The second
51  * one has type_id 2...etc.  Hence, an earlier btf_type has
52  * a smaller type_id.
53  *
54  * A btf_type object may refer to another btf_type object by using
55  * type_id (i.e. the "type" in the "struct btf_type").
56  *
57  * NOTE that we cannot assume any reference-order.
58  * A btf_type object can refer to an earlier btf_type object
59  * but it can also refer to a later btf_type object.
60  *
61  * For example, to describe "const void *".  A btf_type
62  * object describing "const" may refer to another btf_type
63  * object describing "void *".  This type-reference is done
64  * by specifying type_id:
65  *
66  * [1] CONST (anon) type_id=2
67  * [2] PTR (anon) type_id=0
68  *
69  * The above is the btf_verifier debug log:
70  *   - Each line started with "[?]" is a btf_type object
71  *   - [?] is the type_id of the btf_type object.
72  *   - CONST/PTR is the BTF_KIND_XXX
73  *   - "(anon)" is the name of the type.  It just
74  *     happens that CONST and PTR has no name.
75  *   - type_id=XXX is the 'u32 type' in btf_type
76  *
77  * NOTE: "void" has type_id 0
78  *
79  * String section:
80  * ~~~~~~~~~~~~~~
81  * The BTF string section contains the names used by the type section.
82  * Each string is referred by an "offset" from the beginning of the
83  * string section.
84  *
85  * Each string is '\0' terminated.
86  *
87  * The first character in the string section must be '\0'
88  * which is used to mean 'anonymous'. Some btf_type may not
89  * have a name.
90  */
91 
92 /* BTF verification:
93  *
94  * To verify BTF data, two passes are needed.
95  *
96  * Pass #1
97  * ~~~~~~~
98  * The first pass is to collect all btf_type objects to
99  * an array: "btf->types".
100  *
101  * Depending on the C type that a btf_type is describing,
102  * a btf_type may be followed by extra data.  We don't know
103  * how many btf_type is there, and more importantly we don't
104  * know where each btf_type is located in the type section.
105  *
106  * Without knowing the location of each type_id, most verifications
107  * cannot be done.  e.g. an earlier btf_type may refer to a later
108  * btf_type (recall the "const void *" above), so we cannot
109  * check this type-reference in the first pass.
110  *
111  * In the first pass, it still does some verifications (e.g.
112  * checking the name is a valid offset to the string section).
113  *
114  * Pass #2
115  * ~~~~~~~
116  * The main focus is to resolve a btf_type that is referring
117  * to another type.
118  *
119  * We have to ensure the referring type:
120  * 1) does exist in the BTF (i.e. in btf->types[])
121  * 2) does not cause a loop:
122  *	struct A {
123  *		struct B b;
124  *	};
125  *
126  *	struct B {
127  *		struct A a;
128  *	};
129  *
130  * btf_type_needs_resolve() decides if a btf_type needs
131  * to be resolved.
132  *
133  * The needs_resolve type implements the "resolve()" ops which
134  * essentially does a DFS and detects backedge.
135  *
136  * During resolve (or DFS), different C types have different
137  * "RESOLVED" conditions.
138  *
139  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
140  * members because a member is always referring to another
141  * type.  A struct's member can be treated as "RESOLVED" if
142  * it is referring to a BTF_KIND_PTR.  Otherwise, the
143  * following valid C struct would be rejected:
144  *
145  *	struct A {
146  *		int m;
147  *		struct A *a;
148  *	};
149  *
150  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
151  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
152  * detect a pointer loop, e.g.:
153  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
154  *                        ^                                         |
155  *                        +-----------------------------------------+
156  *
157  */
158 
159 #define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE)
160 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
161 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
162 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
163 #define BITS_ROUNDUP_BYTES(bits) \
164 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
165 
166 #define BTF_INFO_MASK 0x0f00ffff
167 #define BTF_INT_MASK 0x0fffffff
168 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
169 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
170 
171 /* 16MB for 64k structs and each has 16 members and
172  * a few MB spaces for the string section.
173  * The hard limit is S32_MAX.
174  */
175 #define BTF_MAX_SIZE (16 * 1024 * 1024)
176 
177 #define for_each_member(i, struct_type, member)			\
178 	for (i = 0, member = btf_type_member(struct_type);	\
179 	     i < btf_type_vlen(struct_type);			\
180 	     i++, member++)
181 
182 #define for_each_member_from(i, from, struct_type, member)		\
183 	for (i = from, member = btf_type_member(struct_type) + from;	\
184 	     i < btf_type_vlen(struct_type);				\
185 	     i++, member++)
186 
187 static DEFINE_IDR(btf_idr);
188 static DEFINE_SPINLOCK(btf_idr_lock);
189 
190 struct btf {
191 	void *data;
192 	struct btf_type **types;
193 	u32 *resolved_ids;
194 	u32 *resolved_sizes;
195 	const char *strings;
196 	void *nohdr_data;
197 	struct btf_header hdr;
198 	u32 nr_types;
199 	u32 types_size;
200 	u32 data_size;
201 	refcount_t refcnt;
202 	u32 id;
203 	struct rcu_head rcu;
204 };
205 
206 enum verifier_phase {
207 	CHECK_META,
208 	CHECK_TYPE,
209 };
210 
211 struct resolve_vertex {
212 	const struct btf_type *t;
213 	u32 type_id;
214 	u16 next_member;
215 };
216 
217 enum visit_state {
218 	NOT_VISITED,
219 	VISITED,
220 	RESOLVED,
221 };
222 
223 enum resolve_mode {
224 	RESOLVE_TBD,	/* To Be Determined */
225 	RESOLVE_PTR,	/* Resolving for Pointer */
226 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
227 					 * or array
228 					 */
229 };
230 
231 #define MAX_RESOLVE_DEPTH 32
232 
233 struct btf_sec_info {
234 	u32 off;
235 	u32 len;
236 };
237 
238 struct btf_verifier_env {
239 	struct btf *btf;
240 	u8 *visit_states;
241 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
242 	struct bpf_verifier_log log;
243 	u32 log_type_id;
244 	u32 top_stack;
245 	enum verifier_phase phase;
246 	enum resolve_mode resolve_mode;
247 };
248 
249 static const char * const btf_kind_str[NR_BTF_KINDS] = {
250 	[BTF_KIND_UNKN]		= "UNKNOWN",
251 	[BTF_KIND_INT]		= "INT",
252 	[BTF_KIND_PTR]		= "PTR",
253 	[BTF_KIND_ARRAY]	= "ARRAY",
254 	[BTF_KIND_STRUCT]	= "STRUCT",
255 	[BTF_KIND_UNION]	= "UNION",
256 	[BTF_KIND_ENUM]		= "ENUM",
257 	[BTF_KIND_FWD]		= "FWD",
258 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
259 	[BTF_KIND_VOLATILE]	= "VOLATILE",
260 	[BTF_KIND_CONST]	= "CONST",
261 	[BTF_KIND_RESTRICT]	= "RESTRICT",
262 };
263 
264 struct btf_kind_operations {
265 	s32 (*check_meta)(struct btf_verifier_env *env,
266 			  const struct btf_type *t,
267 			  u32 meta_left);
268 	int (*resolve)(struct btf_verifier_env *env,
269 		       const struct resolve_vertex *v);
270 	int (*check_member)(struct btf_verifier_env *env,
271 			    const struct btf_type *struct_type,
272 			    const struct btf_member *member,
273 			    const struct btf_type *member_type);
274 	void (*log_details)(struct btf_verifier_env *env,
275 			    const struct btf_type *t);
276 	void (*seq_show)(const struct btf *btf, const struct btf_type *t,
277 			 u32 type_id, void *data, u8 bits_offsets,
278 			 struct seq_file *m);
279 };
280 
281 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
282 static struct btf_type btf_void;
283 
284 static bool btf_type_is_modifier(const struct btf_type *t)
285 {
286 	/* Some of them is not strictly a C modifier
287 	 * but they are grouped into the same bucket
288 	 * for BTF concern:
289 	 *   A type (t) that refers to another
290 	 *   type through t->type AND its size cannot
291 	 *   be determined without following the t->type.
292 	 *
293 	 * ptr does not fall into this bucket
294 	 * because its size is always sizeof(void *).
295 	 */
296 	switch (BTF_INFO_KIND(t->info)) {
297 	case BTF_KIND_TYPEDEF:
298 	case BTF_KIND_VOLATILE:
299 	case BTF_KIND_CONST:
300 	case BTF_KIND_RESTRICT:
301 		return true;
302 	}
303 
304 	return false;
305 }
306 
307 static bool btf_type_is_void(const struct btf_type *t)
308 {
309 	/* void => no type and size info.
310 	 * Hence, FWD is also treated as void.
311 	 */
312 	return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
313 }
314 
315 static bool btf_type_is_void_or_null(const struct btf_type *t)
316 {
317 	return !t || btf_type_is_void(t);
318 }
319 
320 /* union is only a special case of struct:
321  * all its offsetof(member) == 0
322  */
323 static bool btf_type_is_struct(const struct btf_type *t)
324 {
325 	u8 kind = BTF_INFO_KIND(t->info);
326 
327 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
328 }
329 
330 static bool btf_type_is_array(const struct btf_type *t)
331 {
332 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
333 }
334 
335 static bool btf_type_is_ptr(const struct btf_type *t)
336 {
337 	return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
338 }
339 
340 static bool btf_type_is_int(const struct btf_type *t)
341 {
342 	return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
343 }
344 
345 /* What types need to be resolved?
346  *
347  * btf_type_is_modifier() is an obvious one.
348  *
349  * btf_type_is_struct() because its member refers to
350  * another type (through member->type).
351 
352  * btf_type_is_array() because its element (array->type)
353  * refers to another type.  Array can be thought of a
354  * special case of struct while array just has the same
355  * member-type repeated by array->nelems of times.
356  */
357 static bool btf_type_needs_resolve(const struct btf_type *t)
358 {
359 	return btf_type_is_modifier(t) ||
360 		btf_type_is_ptr(t) ||
361 		btf_type_is_struct(t) ||
362 		btf_type_is_array(t);
363 }
364 
365 /* t->size can be used */
366 static bool btf_type_has_size(const struct btf_type *t)
367 {
368 	switch (BTF_INFO_KIND(t->info)) {
369 	case BTF_KIND_INT:
370 	case BTF_KIND_STRUCT:
371 	case BTF_KIND_UNION:
372 	case BTF_KIND_ENUM:
373 		return true;
374 	}
375 
376 	return false;
377 }
378 
379 static const char *btf_int_encoding_str(u8 encoding)
380 {
381 	if (encoding == 0)
382 		return "(none)";
383 	else if (encoding == BTF_INT_SIGNED)
384 		return "SIGNED";
385 	else if (encoding == BTF_INT_CHAR)
386 		return "CHAR";
387 	else if (encoding == BTF_INT_BOOL)
388 		return "BOOL";
389 	else
390 		return "UNKN";
391 }
392 
393 static u16 btf_type_vlen(const struct btf_type *t)
394 {
395 	return BTF_INFO_VLEN(t->info);
396 }
397 
398 static u32 btf_type_int(const struct btf_type *t)
399 {
400 	return *(u32 *)(t + 1);
401 }
402 
403 static const struct btf_array *btf_type_array(const struct btf_type *t)
404 {
405 	return (const struct btf_array *)(t + 1);
406 }
407 
408 static const struct btf_member *btf_type_member(const struct btf_type *t)
409 {
410 	return (const struct btf_member *)(t + 1);
411 }
412 
413 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
414 {
415 	return (const struct btf_enum *)(t + 1);
416 }
417 
418 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
419 {
420 	return kind_ops[BTF_INFO_KIND(t->info)];
421 }
422 
423 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
424 {
425 	return BTF_STR_OFFSET_VALID(offset) &&
426 		offset < btf->hdr.str_len;
427 }
428 
429 static const char *btf_name_by_offset(const struct btf *btf, u32 offset)
430 {
431 	if (!offset)
432 		return "(anon)";
433 	else if (offset < btf->hdr.str_len)
434 		return &btf->strings[offset];
435 	else
436 		return "(invalid-name-offset)";
437 }
438 
439 static const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
440 {
441 	if (type_id > btf->nr_types)
442 		return NULL;
443 
444 	return btf->types[type_id];
445 }
446 
447 /*
448  * Regular int is not a bit field and it must be either
449  * u8/u16/u32/u64.
450  */
451 static bool btf_type_int_is_regular(const struct btf_type *t)
452 {
453 	u16 nr_bits, nr_bytes;
454 	u32 int_data;
455 
456 	int_data = btf_type_int(t);
457 	nr_bits = BTF_INT_BITS(int_data);
458 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
459 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
460 	    BTF_INT_OFFSET(int_data) ||
461 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
462 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) {
463 		return false;
464 	}
465 
466 	return true;
467 }
468 
469 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
470 					      const char *fmt, ...)
471 {
472 	va_list args;
473 
474 	va_start(args, fmt);
475 	bpf_verifier_vlog(log, fmt, args);
476 	va_end(args);
477 }
478 
479 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
480 					    const char *fmt, ...)
481 {
482 	struct bpf_verifier_log *log = &env->log;
483 	va_list args;
484 
485 	if (!bpf_verifier_log_needed(log))
486 		return;
487 
488 	va_start(args, fmt);
489 	bpf_verifier_vlog(log, fmt, args);
490 	va_end(args);
491 }
492 
493 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
494 						   const struct btf_type *t,
495 						   bool log_details,
496 						   const char *fmt, ...)
497 {
498 	struct bpf_verifier_log *log = &env->log;
499 	u8 kind = BTF_INFO_KIND(t->info);
500 	struct btf *btf = env->btf;
501 	va_list args;
502 
503 	if (!bpf_verifier_log_needed(log))
504 		return;
505 
506 	__btf_verifier_log(log, "[%u] %s %s%s",
507 			   env->log_type_id,
508 			   btf_kind_str[kind],
509 			   btf_name_by_offset(btf, t->name_off),
510 			   log_details ? " " : "");
511 
512 	if (log_details)
513 		btf_type_ops(t)->log_details(env, t);
514 
515 	if (fmt && *fmt) {
516 		__btf_verifier_log(log, " ");
517 		va_start(args, fmt);
518 		bpf_verifier_vlog(log, fmt, args);
519 		va_end(args);
520 	}
521 
522 	__btf_verifier_log(log, "\n");
523 }
524 
525 #define btf_verifier_log_type(env, t, ...) \
526 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
527 #define btf_verifier_log_basic(env, t, ...) \
528 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
529 
530 __printf(4, 5)
531 static void btf_verifier_log_member(struct btf_verifier_env *env,
532 				    const struct btf_type *struct_type,
533 				    const struct btf_member *member,
534 				    const char *fmt, ...)
535 {
536 	struct bpf_verifier_log *log = &env->log;
537 	struct btf *btf = env->btf;
538 	va_list args;
539 
540 	if (!bpf_verifier_log_needed(log))
541 		return;
542 
543 	/* The CHECK_META phase already did a btf dump.
544 	 *
545 	 * If member is logged again, it must hit an error in
546 	 * parsing this member.  It is useful to print out which
547 	 * struct this member belongs to.
548 	 */
549 	if (env->phase != CHECK_META)
550 		btf_verifier_log_type(env, struct_type, NULL);
551 
552 	__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
553 			   btf_name_by_offset(btf, member->name_off),
554 			   member->type, member->offset);
555 
556 	if (fmt && *fmt) {
557 		__btf_verifier_log(log, " ");
558 		va_start(args, fmt);
559 		bpf_verifier_vlog(log, fmt, args);
560 		va_end(args);
561 	}
562 
563 	__btf_verifier_log(log, "\n");
564 }
565 
566 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
567 				 u32 btf_data_size)
568 {
569 	struct bpf_verifier_log *log = &env->log;
570 	const struct btf *btf = env->btf;
571 	const struct btf_header *hdr;
572 
573 	if (!bpf_verifier_log_needed(log))
574 		return;
575 
576 	hdr = &btf->hdr;
577 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
578 	__btf_verifier_log(log, "version: %u\n", hdr->version);
579 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
580 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
581 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
582 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
583 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
584 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
585 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
586 }
587 
588 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
589 {
590 	struct btf *btf = env->btf;
591 
592 	/* < 2 because +1 for btf_void which is always in btf->types[0].
593 	 * btf_void is not accounted in btf->nr_types because btf_void
594 	 * does not come from the BTF file.
595 	 */
596 	if (btf->types_size - btf->nr_types < 2) {
597 		/* Expand 'types' array */
598 
599 		struct btf_type **new_types;
600 		u32 expand_by, new_size;
601 
602 		if (btf->types_size == BTF_MAX_TYPE) {
603 			btf_verifier_log(env, "Exceeded max num of types");
604 			return -E2BIG;
605 		}
606 
607 		expand_by = max_t(u32, btf->types_size >> 2, 16);
608 		new_size = min_t(u32, BTF_MAX_TYPE,
609 				 btf->types_size + expand_by);
610 
611 		new_types = kvcalloc(new_size, sizeof(*new_types),
612 				     GFP_KERNEL | __GFP_NOWARN);
613 		if (!new_types)
614 			return -ENOMEM;
615 
616 		if (btf->nr_types == 0)
617 			new_types[0] = &btf_void;
618 		else
619 			memcpy(new_types, btf->types,
620 			       sizeof(*btf->types) * (btf->nr_types + 1));
621 
622 		kvfree(btf->types);
623 		btf->types = new_types;
624 		btf->types_size = new_size;
625 	}
626 
627 	btf->types[++(btf->nr_types)] = t;
628 
629 	return 0;
630 }
631 
632 static int btf_alloc_id(struct btf *btf)
633 {
634 	int id;
635 
636 	idr_preload(GFP_KERNEL);
637 	spin_lock_bh(&btf_idr_lock);
638 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
639 	if (id > 0)
640 		btf->id = id;
641 	spin_unlock_bh(&btf_idr_lock);
642 	idr_preload_end();
643 
644 	if (WARN_ON_ONCE(!id))
645 		return -ENOSPC;
646 
647 	return id > 0 ? 0 : id;
648 }
649 
650 static void btf_free_id(struct btf *btf)
651 {
652 	unsigned long flags;
653 
654 	/*
655 	 * In map-in-map, calling map_delete_elem() on outer
656 	 * map will call bpf_map_put on the inner map.
657 	 * It will then eventually call btf_free_id()
658 	 * on the inner map.  Some of the map_delete_elem()
659 	 * implementation may have irq disabled, so
660 	 * we need to use the _irqsave() version instead
661 	 * of the _bh() version.
662 	 */
663 	spin_lock_irqsave(&btf_idr_lock, flags);
664 	idr_remove(&btf_idr, btf->id);
665 	spin_unlock_irqrestore(&btf_idr_lock, flags);
666 }
667 
668 static void btf_free(struct btf *btf)
669 {
670 	kvfree(btf->types);
671 	kvfree(btf->resolved_sizes);
672 	kvfree(btf->resolved_ids);
673 	kvfree(btf->data);
674 	kfree(btf);
675 }
676 
677 static void btf_free_rcu(struct rcu_head *rcu)
678 {
679 	struct btf *btf = container_of(rcu, struct btf, rcu);
680 
681 	btf_free(btf);
682 }
683 
684 void btf_put(struct btf *btf)
685 {
686 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
687 		btf_free_id(btf);
688 		call_rcu(&btf->rcu, btf_free_rcu);
689 	}
690 }
691 
692 static int env_resolve_init(struct btf_verifier_env *env)
693 {
694 	struct btf *btf = env->btf;
695 	u32 nr_types = btf->nr_types;
696 	u32 *resolved_sizes = NULL;
697 	u32 *resolved_ids = NULL;
698 	u8 *visit_states = NULL;
699 
700 	/* +1 for btf_void */
701 	resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
702 				  GFP_KERNEL | __GFP_NOWARN);
703 	if (!resolved_sizes)
704 		goto nomem;
705 
706 	resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
707 				GFP_KERNEL | __GFP_NOWARN);
708 	if (!resolved_ids)
709 		goto nomem;
710 
711 	visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
712 				GFP_KERNEL | __GFP_NOWARN);
713 	if (!visit_states)
714 		goto nomem;
715 
716 	btf->resolved_sizes = resolved_sizes;
717 	btf->resolved_ids = resolved_ids;
718 	env->visit_states = visit_states;
719 
720 	return 0;
721 
722 nomem:
723 	kvfree(resolved_sizes);
724 	kvfree(resolved_ids);
725 	kvfree(visit_states);
726 	return -ENOMEM;
727 }
728 
729 static void btf_verifier_env_free(struct btf_verifier_env *env)
730 {
731 	kvfree(env->visit_states);
732 	kfree(env);
733 }
734 
735 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
736 				     const struct btf_type *next_type)
737 {
738 	switch (env->resolve_mode) {
739 	case RESOLVE_TBD:
740 		/* int, enum or void is a sink */
741 		return !btf_type_needs_resolve(next_type);
742 	case RESOLVE_PTR:
743 		/* int, enum, void, struct or array is a sink for ptr */
744 		return !btf_type_is_modifier(next_type) &&
745 			!btf_type_is_ptr(next_type);
746 	case RESOLVE_STRUCT_OR_ARRAY:
747 		/* int, enum, void or ptr is a sink for struct and array */
748 		return !btf_type_is_modifier(next_type) &&
749 			!btf_type_is_array(next_type) &&
750 			!btf_type_is_struct(next_type);
751 	default:
752 		BUG();
753 	}
754 }
755 
756 static bool env_type_is_resolved(const struct btf_verifier_env *env,
757 				 u32 type_id)
758 {
759 	return env->visit_states[type_id] == RESOLVED;
760 }
761 
762 static int env_stack_push(struct btf_verifier_env *env,
763 			  const struct btf_type *t, u32 type_id)
764 {
765 	struct resolve_vertex *v;
766 
767 	if (env->top_stack == MAX_RESOLVE_DEPTH)
768 		return -E2BIG;
769 
770 	if (env->visit_states[type_id] != NOT_VISITED)
771 		return -EEXIST;
772 
773 	env->visit_states[type_id] = VISITED;
774 
775 	v = &env->stack[env->top_stack++];
776 	v->t = t;
777 	v->type_id = type_id;
778 	v->next_member = 0;
779 
780 	if (env->resolve_mode == RESOLVE_TBD) {
781 		if (btf_type_is_ptr(t))
782 			env->resolve_mode = RESOLVE_PTR;
783 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
784 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
785 	}
786 
787 	return 0;
788 }
789 
790 static void env_stack_set_next_member(struct btf_verifier_env *env,
791 				      u16 next_member)
792 {
793 	env->stack[env->top_stack - 1].next_member = next_member;
794 }
795 
796 static void env_stack_pop_resolved(struct btf_verifier_env *env,
797 				   u32 resolved_type_id,
798 				   u32 resolved_size)
799 {
800 	u32 type_id = env->stack[--(env->top_stack)].type_id;
801 	struct btf *btf = env->btf;
802 
803 	btf->resolved_sizes[type_id] = resolved_size;
804 	btf->resolved_ids[type_id] = resolved_type_id;
805 	env->visit_states[type_id] = RESOLVED;
806 }
807 
808 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
809 {
810 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
811 }
812 
813 /* The input param "type_id" must point to a needs_resolve type */
814 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
815 						  u32 *type_id)
816 {
817 	*type_id = btf->resolved_ids[*type_id];
818 	return btf_type_by_id(btf, *type_id);
819 }
820 
821 const struct btf_type *btf_type_id_size(const struct btf *btf,
822 					u32 *type_id, u32 *ret_size)
823 {
824 	const struct btf_type *size_type;
825 	u32 size_type_id = *type_id;
826 	u32 size = 0;
827 
828 	size_type = btf_type_by_id(btf, size_type_id);
829 	if (btf_type_is_void_or_null(size_type))
830 		return NULL;
831 
832 	if (btf_type_has_size(size_type)) {
833 		size = size_type->size;
834 	} else if (btf_type_is_array(size_type)) {
835 		size = btf->resolved_sizes[size_type_id];
836 	} else if (btf_type_is_ptr(size_type)) {
837 		size = sizeof(void *);
838 	} else {
839 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type)))
840 			return NULL;
841 
842 		size = btf->resolved_sizes[size_type_id];
843 		size_type_id = btf->resolved_ids[size_type_id];
844 		size_type = btf_type_by_id(btf, size_type_id);
845 		if (btf_type_is_void(size_type))
846 			return NULL;
847 	}
848 
849 	*type_id = size_type_id;
850 	if (ret_size)
851 		*ret_size = size;
852 
853 	return size_type;
854 }
855 
856 static int btf_df_check_member(struct btf_verifier_env *env,
857 			       const struct btf_type *struct_type,
858 			       const struct btf_member *member,
859 			       const struct btf_type *member_type)
860 {
861 	btf_verifier_log_basic(env, struct_type,
862 			       "Unsupported check_member");
863 	return -EINVAL;
864 }
865 
866 static int btf_df_resolve(struct btf_verifier_env *env,
867 			  const struct resolve_vertex *v)
868 {
869 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
870 	return -EINVAL;
871 }
872 
873 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
874 			    u32 type_id, void *data, u8 bits_offsets,
875 			    struct seq_file *m)
876 {
877 	seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
878 }
879 
880 static int btf_int_check_member(struct btf_verifier_env *env,
881 				const struct btf_type *struct_type,
882 				const struct btf_member *member,
883 				const struct btf_type *member_type)
884 {
885 	u32 int_data = btf_type_int(member_type);
886 	u32 struct_bits_off = member->offset;
887 	u32 struct_size = struct_type->size;
888 	u32 nr_copy_bits;
889 	u32 bytes_offset;
890 
891 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
892 		btf_verifier_log_member(env, struct_type, member,
893 					"bits_offset exceeds U32_MAX");
894 		return -EINVAL;
895 	}
896 
897 	struct_bits_off += BTF_INT_OFFSET(int_data);
898 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
899 	nr_copy_bits = BTF_INT_BITS(int_data) +
900 		BITS_PER_BYTE_MASKED(struct_bits_off);
901 
902 	if (nr_copy_bits > BITS_PER_U64) {
903 		btf_verifier_log_member(env, struct_type, member,
904 					"nr_copy_bits exceeds 64");
905 		return -EINVAL;
906 	}
907 
908 	if (struct_size < bytes_offset ||
909 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
910 		btf_verifier_log_member(env, struct_type, member,
911 					"Member exceeds struct_size");
912 		return -EINVAL;
913 	}
914 
915 	return 0;
916 }
917 
918 static s32 btf_int_check_meta(struct btf_verifier_env *env,
919 			      const struct btf_type *t,
920 			      u32 meta_left)
921 {
922 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
923 	u16 encoding;
924 
925 	if (meta_left < meta_needed) {
926 		btf_verifier_log_basic(env, t,
927 				       "meta_left:%u meta_needed:%u",
928 				       meta_left, meta_needed);
929 		return -EINVAL;
930 	}
931 
932 	if (btf_type_vlen(t)) {
933 		btf_verifier_log_type(env, t, "vlen != 0");
934 		return -EINVAL;
935 	}
936 
937 	int_data = btf_type_int(t);
938 	if (int_data & ~BTF_INT_MASK) {
939 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
940 				       int_data);
941 		return -EINVAL;
942 	}
943 
944 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
945 
946 	if (nr_bits > BITS_PER_U64) {
947 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
948 				      BITS_PER_U64);
949 		return -EINVAL;
950 	}
951 
952 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
953 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
954 		return -EINVAL;
955 	}
956 
957 	/*
958 	 * Only one of the encoding bits is allowed and it
959 	 * should be sufficient for the pretty print purpose (i.e. decoding).
960 	 * Multiple bits can be allowed later if it is found
961 	 * to be insufficient.
962 	 */
963 	encoding = BTF_INT_ENCODING(int_data);
964 	if (encoding &&
965 	    encoding != BTF_INT_SIGNED &&
966 	    encoding != BTF_INT_CHAR &&
967 	    encoding != BTF_INT_BOOL) {
968 		btf_verifier_log_type(env, t, "Unsupported encoding");
969 		return -ENOTSUPP;
970 	}
971 
972 	btf_verifier_log_type(env, t, NULL);
973 
974 	return meta_needed;
975 }
976 
977 static void btf_int_log(struct btf_verifier_env *env,
978 			const struct btf_type *t)
979 {
980 	int int_data = btf_type_int(t);
981 
982 	btf_verifier_log(env,
983 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
984 			 t->size, BTF_INT_OFFSET(int_data),
985 			 BTF_INT_BITS(int_data),
986 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
987 }
988 
989 static void btf_int_bits_seq_show(const struct btf *btf,
990 				  const struct btf_type *t,
991 				  void *data, u8 bits_offset,
992 				  struct seq_file *m)
993 {
994 	u16 left_shift_bits, right_shift_bits;
995 	u32 int_data = btf_type_int(t);
996 	u16 nr_bits = BTF_INT_BITS(int_data);
997 	u16 total_bits_offset;
998 	u16 nr_copy_bytes;
999 	u16 nr_copy_bits;
1000 	u64 print_num;
1001 
1002 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1003 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1004 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1005 	nr_copy_bits = nr_bits + bits_offset;
1006 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1007 
1008 	print_num = 0;
1009 	memcpy(&print_num, data, nr_copy_bytes);
1010 
1011 #ifdef __BIG_ENDIAN_BITFIELD
1012 	left_shift_bits = bits_offset;
1013 #else
1014 	left_shift_bits = BITS_PER_U64 - nr_copy_bits;
1015 #endif
1016 	right_shift_bits = BITS_PER_U64 - nr_bits;
1017 
1018 	print_num <<= left_shift_bits;
1019 	print_num >>= right_shift_bits;
1020 
1021 	seq_printf(m, "0x%llx", print_num);
1022 }
1023 
1024 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1025 			     u32 type_id, void *data, u8 bits_offset,
1026 			     struct seq_file *m)
1027 {
1028 	u32 int_data = btf_type_int(t);
1029 	u8 encoding = BTF_INT_ENCODING(int_data);
1030 	bool sign = encoding & BTF_INT_SIGNED;
1031 	u32 nr_bits = BTF_INT_BITS(int_data);
1032 
1033 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
1034 	    BITS_PER_BYTE_MASKED(nr_bits)) {
1035 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1036 		return;
1037 	}
1038 
1039 	switch (nr_bits) {
1040 	case 64:
1041 		if (sign)
1042 			seq_printf(m, "%lld", *(s64 *)data);
1043 		else
1044 			seq_printf(m, "%llu", *(u64 *)data);
1045 		break;
1046 	case 32:
1047 		if (sign)
1048 			seq_printf(m, "%d", *(s32 *)data);
1049 		else
1050 			seq_printf(m, "%u", *(u32 *)data);
1051 		break;
1052 	case 16:
1053 		if (sign)
1054 			seq_printf(m, "%d", *(s16 *)data);
1055 		else
1056 			seq_printf(m, "%u", *(u16 *)data);
1057 		break;
1058 	case 8:
1059 		if (sign)
1060 			seq_printf(m, "%d", *(s8 *)data);
1061 		else
1062 			seq_printf(m, "%u", *(u8 *)data);
1063 		break;
1064 	default:
1065 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1066 	}
1067 }
1068 
1069 static const struct btf_kind_operations int_ops = {
1070 	.check_meta = btf_int_check_meta,
1071 	.resolve = btf_df_resolve,
1072 	.check_member = btf_int_check_member,
1073 	.log_details = btf_int_log,
1074 	.seq_show = btf_int_seq_show,
1075 };
1076 
1077 static int btf_modifier_check_member(struct btf_verifier_env *env,
1078 				     const struct btf_type *struct_type,
1079 				     const struct btf_member *member,
1080 				     const struct btf_type *member_type)
1081 {
1082 	const struct btf_type *resolved_type;
1083 	u32 resolved_type_id = member->type;
1084 	struct btf_member resolved_member;
1085 	struct btf *btf = env->btf;
1086 
1087 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1088 	if (!resolved_type) {
1089 		btf_verifier_log_member(env, struct_type, member,
1090 					"Invalid member");
1091 		return -EINVAL;
1092 	}
1093 
1094 	resolved_member = *member;
1095 	resolved_member.type = resolved_type_id;
1096 
1097 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
1098 							 &resolved_member,
1099 							 resolved_type);
1100 }
1101 
1102 static int btf_ptr_check_member(struct btf_verifier_env *env,
1103 				const struct btf_type *struct_type,
1104 				const struct btf_member *member,
1105 				const struct btf_type *member_type)
1106 {
1107 	u32 struct_size, struct_bits_off, bytes_offset;
1108 
1109 	struct_size = struct_type->size;
1110 	struct_bits_off = member->offset;
1111 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1112 
1113 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1114 		btf_verifier_log_member(env, struct_type, member,
1115 					"Member is not byte aligned");
1116 		return -EINVAL;
1117 	}
1118 
1119 	if (struct_size - bytes_offset < sizeof(void *)) {
1120 		btf_verifier_log_member(env, struct_type, member,
1121 					"Member exceeds struct_size");
1122 		return -EINVAL;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1129 				   const struct btf_type *t,
1130 				   u32 meta_left)
1131 {
1132 	if (btf_type_vlen(t)) {
1133 		btf_verifier_log_type(env, t, "vlen != 0");
1134 		return -EINVAL;
1135 	}
1136 
1137 	if (!BTF_TYPE_ID_VALID(t->type)) {
1138 		btf_verifier_log_type(env, t, "Invalid type_id");
1139 		return -EINVAL;
1140 	}
1141 
1142 	btf_verifier_log_type(env, t, NULL);
1143 
1144 	return 0;
1145 }
1146 
1147 static int btf_modifier_resolve(struct btf_verifier_env *env,
1148 				const struct resolve_vertex *v)
1149 {
1150 	const struct btf_type *t = v->t;
1151 	const struct btf_type *next_type;
1152 	u32 next_type_id = t->type;
1153 	struct btf *btf = env->btf;
1154 	u32 next_type_size = 0;
1155 
1156 	next_type = btf_type_by_id(btf, next_type_id);
1157 	if (!next_type) {
1158 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1159 		return -EINVAL;
1160 	}
1161 
1162 	/* "typedef void new_void", "const void"...etc */
1163 	if (btf_type_is_void(next_type))
1164 		goto resolved;
1165 
1166 	if (!env_type_is_resolve_sink(env, next_type) &&
1167 	    !env_type_is_resolved(env, next_type_id))
1168 		return env_stack_push(env, next_type, next_type_id);
1169 
1170 	/* Figure out the resolved next_type_id with size.
1171 	 * They will be stored in the current modifier's
1172 	 * resolved_ids and resolved_sizes such that it can
1173 	 * save us a few type-following when we use it later (e.g. in
1174 	 * pretty print).
1175 	 */
1176 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size) &&
1177 	    !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) {
1178 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1179 		return -EINVAL;
1180 	}
1181 
1182 resolved:
1183 	env_stack_pop_resolved(env, next_type_id, next_type_size);
1184 
1185 	return 0;
1186 }
1187 
1188 static int btf_ptr_resolve(struct btf_verifier_env *env,
1189 			   const struct resolve_vertex *v)
1190 {
1191 	const struct btf_type *next_type;
1192 	const struct btf_type *t = v->t;
1193 	u32 next_type_id = t->type;
1194 	struct btf *btf = env->btf;
1195 	u32 next_type_size = 0;
1196 
1197 	next_type = btf_type_by_id(btf, next_type_id);
1198 	if (!next_type) {
1199 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1200 		return -EINVAL;
1201 	}
1202 
1203 	/* "void *" */
1204 	if (btf_type_is_void(next_type))
1205 		goto resolved;
1206 
1207 	if (!env_type_is_resolve_sink(env, next_type) &&
1208 	    !env_type_is_resolved(env, next_type_id))
1209 		return env_stack_push(env, next_type, next_type_id);
1210 
1211 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1212 	 * the modifier may have stopped resolving when it was resolved
1213 	 * to a ptr (last-resolved-ptr).
1214 	 *
1215 	 * We now need to continue from the last-resolved-ptr to
1216 	 * ensure the last-resolved-ptr will not referring back to
1217 	 * the currenct ptr (t).
1218 	 */
1219 	if (btf_type_is_modifier(next_type)) {
1220 		const struct btf_type *resolved_type;
1221 		u32 resolved_type_id;
1222 
1223 		resolved_type_id = next_type_id;
1224 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1225 
1226 		if (btf_type_is_ptr(resolved_type) &&
1227 		    !env_type_is_resolve_sink(env, resolved_type) &&
1228 		    !env_type_is_resolved(env, resolved_type_id))
1229 			return env_stack_push(env, resolved_type,
1230 					      resolved_type_id);
1231 	}
1232 
1233 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size) &&
1234 	    !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) {
1235 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1236 		return -EINVAL;
1237 	}
1238 
1239 resolved:
1240 	env_stack_pop_resolved(env, next_type_id, 0);
1241 
1242 	return 0;
1243 }
1244 
1245 static void btf_modifier_seq_show(const struct btf *btf,
1246 				  const struct btf_type *t,
1247 				  u32 type_id, void *data,
1248 				  u8 bits_offset, struct seq_file *m)
1249 {
1250 	t = btf_type_id_resolve(btf, &type_id);
1251 
1252 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1253 }
1254 
1255 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1256 			     u32 type_id, void *data, u8 bits_offset,
1257 			     struct seq_file *m)
1258 {
1259 	/* It is a hashed value */
1260 	seq_printf(m, "%p", *(void **)data);
1261 }
1262 
1263 static void btf_ref_type_log(struct btf_verifier_env *env,
1264 			     const struct btf_type *t)
1265 {
1266 	btf_verifier_log(env, "type_id=%u", t->type);
1267 }
1268 
1269 static struct btf_kind_operations modifier_ops = {
1270 	.check_meta = btf_ref_type_check_meta,
1271 	.resolve = btf_modifier_resolve,
1272 	.check_member = btf_modifier_check_member,
1273 	.log_details = btf_ref_type_log,
1274 	.seq_show = btf_modifier_seq_show,
1275 };
1276 
1277 static struct btf_kind_operations ptr_ops = {
1278 	.check_meta = btf_ref_type_check_meta,
1279 	.resolve = btf_ptr_resolve,
1280 	.check_member = btf_ptr_check_member,
1281 	.log_details = btf_ref_type_log,
1282 	.seq_show = btf_ptr_seq_show,
1283 };
1284 
1285 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1286 			      const struct btf_type *t,
1287 			      u32 meta_left)
1288 {
1289 	if (btf_type_vlen(t)) {
1290 		btf_verifier_log_type(env, t, "vlen != 0");
1291 		return -EINVAL;
1292 	}
1293 
1294 	if (t->type) {
1295 		btf_verifier_log_type(env, t, "type != 0");
1296 		return -EINVAL;
1297 	}
1298 
1299 	btf_verifier_log_type(env, t, NULL);
1300 
1301 	return 0;
1302 }
1303 
1304 static struct btf_kind_operations fwd_ops = {
1305 	.check_meta = btf_fwd_check_meta,
1306 	.resolve = btf_df_resolve,
1307 	.check_member = btf_df_check_member,
1308 	.log_details = btf_ref_type_log,
1309 	.seq_show = btf_df_seq_show,
1310 };
1311 
1312 static int btf_array_check_member(struct btf_verifier_env *env,
1313 				  const struct btf_type *struct_type,
1314 				  const struct btf_member *member,
1315 				  const struct btf_type *member_type)
1316 {
1317 	u32 struct_bits_off = member->offset;
1318 	u32 struct_size, bytes_offset;
1319 	u32 array_type_id, array_size;
1320 	struct btf *btf = env->btf;
1321 
1322 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1323 		btf_verifier_log_member(env, struct_type, member,
1324 					"Member is not byte aligned");
1325 		return -EINVAL;
1326 	}
1327 
1328 	array_type_id = member->type;
1329 	btf_type_id_size(btf, &array_type_id, &array_size);
1330 	struct_size = struct_type->size;
1331 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1332 	if (struct_size - bytes_offset < array_size) {
1333 		btf_verifier_log_member(env, struct_type, member,
1334 					"Member exceeds struct_size");
1335 		return -EINVAL;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1342 				const struct btf_type *t,
1343 				u32 meta_left)
1344 {
1345 	const struct btf_array *array = btf_type_array(t);
1346 	u32 meta_needed = sizeof(*array);
1347 
1348 	if (meta_left < meta_needed) {
1349 		btf_verifier_log_basic(env, t,
1350 				       "meta_left:%u meta_needed:%u",
1351 				       meta_left, meta_needed);
1352 		return -EINVAL;
1353 	}
1354 
1355 	if (btf_type_vlen(t)) {
1356 		btf_verifier_log_type(env, t, "vlen != 0");
1357 		return -EINVAL;
1358 	}
1359 
1360 	if (t->size) {
1361 		btf_verifier_log_type(env, t, "size != 0");
1362 		return -EINVAL;
1363 	}
1364 
1365 	/* Array elem type and index type cannot be in type void,
1366 	 * so !array->type and !array->index_type are not allowed.
1367 	 */
1368 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1369 		btf_verifier_log_type(env, t, "Invalid elem");
1370 		return -EINVAL;
1371 	}
1372 
1373 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1374 		btf_verifier_log_type(env, t, "Invalid index");
1375 		return -EINVAL;
1376 	}
1377 
1378 	btf_verifier_log_type(env, t, NULL);
1379 
1380 	return meta_needed;
1381 }
1382 
1383 static int btf_array_resolve(struct btf_verifier_env *env,
1384 			     const struct resolve_vertex *v)
1385 {
1386 	const struct btf_array *array = btf_type_array(v->t);
1387 	const struct btf_type *elem_type, *index_type;
1388 	u32 elem_type_id, index_type_id;
1389 	struct btf *btf = env->btf;
1390 	u32 elem_size;
1391 
1392 	/* Check array->index_type */
1393 	index_type_id = array->index_type;
1394 	index_type = btf_type_by_id(btf, index_type_id);
1395 	if (btf_type_is_void_or_null(index_type)) {
1396 		btf_verifier_log_type(env, v->t, "Invalid index");
1397 		return -EINVAL;
1398 	}
1399 
1400 	if (!env_type_is_resolve_sink(env, index_type) &&
1401 	    !env_type_is_resolved(env, index_type_id))
1402 		return env_stack_push(env, index_type, index_type_id);
1403 
1404 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
1405 	if (!index_type || !btf_type_is_int(index_type) ||
1406 	    !btf_type_int_is_regular(index_type)) {
1407 		btf_verifier_log_type(env, v->t, "Invalid index");
1408 		return -EINVAL;
1409 	}
1410 
1411 	/* Check array->type */
1412 	elem_type_id = array->type;
1413 	elem_type = btf_type_by_id(btf, elem_type_id);
1414 	if (btf_type_is_void_or_null(elem_type)) {
1415 		btf_verifier_log_type(env, v->t,
1416 				      "Invalid elem");
1417 		return -EINVAL;
1418 	}
1419 
1420 	if (!env_type_is_resolve_sink(env, elem_type) &&
1421 	    !env_type_is_resolved(env, elem_type_id))
1422 		return env_stack_push(env, elem_type, elem_type_id);
1423 
1424 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1425 	if (!elem_type) {
1426 		btf_verifier_log_type(env, v->t, "Invalid elem");
1427 		return -EINVAL;
1428 	}
1429 
1430 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
1431 		btf_verifier_log_type(env, v->t, "Invalid array of int");
1432 		return -EINVAL;
1433 	}
1434 
1435 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
1436 		btf_verifier_log_type(env, v->t,
1437 				      "Array size overflows U32_MAX");
1438 		return -EINVAL;
1439 	}
1440 
1441 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1442 
1443 	return 0;
1444 }
1445 
1446 static void btf_array_log(struct btf_verifier_env *env,
1447 			  const struct btf_type *t)
1448 {
1449 	const struct btf_array *array = btf_type_array(t);
1450 
1451 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1452 			 array->type, array->index_type, array->nelems);
1453 }
1454 
1455 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1456 			       u32 type_id, void *data, u8 bits_offset,
1457 			       struct seq_file *m)
1458 {
1459 	const struct btf_array *array = btf_type_array(t);
1460 	const struct btf_kind_operations *elem_ops;
1461 	const struct btf_type *elem_type;
1462 	u32 i, elem_size, elem_type_id;
1463 
1464 	elem_type_id = array->type;
1465 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1466 	elem_ops = btf_type_ops(elem_type);
1467 	seq_puts(m, "[");
1468 	for (i = 0; i < array->nelems; i++) {
1469 		if (i)
1470 			seq_puts(m, ",");
1471 
1472 		elem_ops->seq_show(btf, elem_type, elem_type_id, data,
1473 				   bits_offset, m);
1474 		data += elem_size;
1475 	}
1476 	seq_puts(m, "]");
1477 }
1478 
1479 static struct btf_kind_operations array_ops = {
1480 	.check_meta = btf_array_check_meta,
1481 	.resolve = btf_array_resolve,
1482 	.check_member = btf_array_check_member,
1483 	.log_details = btf_array_log,
1484 	.seq_show = btf_array_seq_show,
1485 };
1486 
1487 static int btf_struct_check_member(struct btf_verifier_env *env,
1488 				   const struct btf_type *struct_type,
1489 				   const struct btf_member *member,
1490 				   const struct btf_type *member_type)
1491 {
1492 	u32 struct_bits_off = member->offset;
1493 	u32 struct_size, bytes_offset;
1494 
1495 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1496 		btf_verifier_log_member(env, struct_type, member,
1497 					"Member is not byte aligned");
1498 		return -EINVAL;
1499 	}
1500 
1501 	struct_size = struct_type->size;
1502 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1503 	if (struct_size - bytes_offset < member_type->size) {
1504 		btf_verifier_log_member(env, struct_type, member,
1505 					"Member exceeds struct_size");
1506 		return -EINVAL;
1507 	}
1508 
1509 	return 0;
1510 }
1511 
1512 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
1513 				 const struct btf_type *t,
1514 				 u32 meta_left)
1515 {
1516 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
1517 	const struct btf_member *member;
1518 	struct btf *btf = env->btf;
1519 	u32 struct_size = t->size;
1520 	u32 meta_needed;
1521 	u16 i;
1522 
1523 	meta_needed = btf_type_vlen(t) * sizeof(*member);
1524 	if (meta_left < meta_needed) {
1525 		btf_verifier_log_basic(env, t,
1526 				       "meta_left:%u meta_needed:%u",
1527 				       meta_left, meta_needed);
1528 		return -EINVAL;
1529 	}
1530 
1531 	btf_verifier_log_type(env, t, NULL);
1532 
1533 	for_each_member(i, t, member) {
1534 		if (!btf_name_offset_valid(btf, member->name_off)) {
1535 			btf_verifier_log_member(env, t, member,
1536 						"Invalid member name_offset:%u",
1537 						member->name_off);
1538 			return -EINVAL;
1539 		}
1540 
1541 		/* A member cannot be in type void */
1542 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
1543 			btf_verifier_log_member(env, t, member,
1544 						"Invalid type_id");
1545 			return -EINVAL;
1546 		}
1547 
1548 		if (is_union && member->offset) {
1549 			btf_verifier_log_member(env, t, member,
1550 						"Invalid member bits_offset");
1551 			return -EINVAL;
1552 		}
1553 
1554 		if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) {
1555 			btf_verifier_log_member(env, t, member,
1556 						"Memmber bits_offset exceeds its struct size");
1557 			return -EINVAL;
1558 		}
1559 
1560 		btf_verifier_log_member(env, t, member, NULL);
1561 	}
1562 
1563 	return meta_needed;
1564 }
1565 
1566 static int btf_struct_resolve(struct btf_verifier_env *env,
1567 			      const struct resolve_vertex *v)
1568 {
1569 	const struct btf_member *member;
1570 	int err;
1571 	u16 i;
1572 
1573 	/* Before continue resolving the next_member,
1574 	 * ensure the last member is indeed resolved to a
1575 	 * type with size info.
1576 	 */
1577 	if (v->next_member) {
1578 		const struct btf_type *last_member_type;
1579 		const struct btf_member *last_member;
1580 		u16 last_member_type_id;
1581 
1582 		last_member = btf_type_member(v->t) + v->next_member - 1;
1583 		last_member_type_id = last_member->type;
1584 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
1585 						       last_member_type_id)))
1586 			return -EINVAL;
1587 
1588 		last_member_type = btf_type_by_id(env->btf,
1589 						  last_member_type_id);
1590 		err = btf_type_ops(last_member_type)->check_member(env, v->t,
1591 							last_member,
1592 							last_member_type);
1593 		if (err)
1594 			return err;
1595 	}
1596 
1597 	for_each_member_from(i, v->next_member, v->t, member) {
1598 		u32 member_type_id = member->type;
1599 		const struct btf_type *member_type = btf_type_by_id(env->btf,
1600 								member_type_id);
1601 
1602 		if (btf_type_is_void_or_null(member_type)) {
1603 			btf_verifier_log_member(env, v->t, member,
1604 						"Invalid member");
1605 			return -EINVAL;
1606 		}
1607 
1608 		if (!env_type_is_resolve_sink(env, member_type) &&
1609 		    !env_type_is_resolved(env, member_type_id)) {
1610 			env_stack_set_next_member(env, i + 1);
1611 			return env_stack_push(env, member_type, member_type_id);
1612 		}
1613 
1614 		err = btf_type_ops(member_type)->check_member(env, v->t,
1615 							      member,
1616 							      member_type);
1617 		if (err)
1618 			return err;
1619 	}
1620 
1621 	env_stack_pop_resolved(env, 0, 0);
1622 
1623 	return 0;
1624 }
1625 
1626 static void btf_struct_log(struct btf_verifier_env *env,
1627 			   const struct btf_type *t)
1628 {
1629 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1630 }
1631 
1632 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
1633 				u32 type_id, void *data, u8 bits_offset,
1634 				struct seq_file *m)
1635 {
1636 	const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
1637 	const struct btf_member *member;
1638 	u32 i;
1639 
1640 	seq_puts(m, "{");
1641 	for_each_member(i, t, member) {
1642 		const struct btf_type *member_type = btf_type_by_id(btf,
1643 								member->type);
1644 		u32 member_offset = member->offset;
1645 		u32 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
1646 		u8 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
1647 		const struct btf_kind_operations *ops;
1648 
1649 		if (i)
1650 			seq_puts(m, seq);
1651 
1652 		ops = btf_type_ops(member_type);
1653 		ops->seq_show(btf, member_type, member->type,
1654 			      data + bytes_offset, bits8_offset, m);
1655 	}
1656 	seq_puts(m, "}");
1657 }
1658 
1659 static struct btf_kind_operations struct_ops = {
1660 	.check_meta = btf_struct_check_meta,
1661 	.resolve = btf_struct_resolve,
1662 	.check_member = btf_struct_check_member,
1663 	.log_details = btf_struct_log,
1664 	.seq_show = btf_struct_seq_show,
1665 };
1666 
1667 static int btf_enum_check_member(struct btf_verifier_env *env,
1668 				 const struct btf_type *struct_type,
1669 				 const struct btf_member *member,
1670 				 const struct btf_type *member_type)
1671 {
1672 	u32 struct_bits_off = member->offset;
1673 	u32 struct_size, bytes_offset;
1674 
1675 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1676 		btf_verifier_log_member(env, struct_type, member,
1677 					"Member is not byte aligned");
1678 		return -EINVAL;
1679 	}
1680 
1681 	struct_size = struct_type->size;
1682 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1683 	if (struct_size - bytes_offset < sizeof(int)) {
1684 		btf_verifier_log_member(env, struct_type, member,
1685 					"Member exceeds struct_size");
1686 		return -EINVAL;
1687 	}
1688 
1689 	return 0;
1690 }
1691 
1692 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
1693 			       const struct btf_type *t,
1694 			       u32 meta_left)
1695 {
1696 	const struct btf_enum *enums = btf_type_enum(t);
1697 	struct btf *btf = env->btf;
1698 	u16 i, nr_enums;
1699 	u32 meta_needed;
1700 
1701 	nr_enums = btf_type_vlen(t);
1702 	meta_needed = nr_enums * sizeof(*enums);
1703 
1704 	if (meta_left < meta_needed) {
1705 		btf_verifier_log_basic(env, t,
1706 				       "meta_left:%u meta_needed:%u",
1707 				       meta_left, meta_needed);
1708 		return -EINVAL;
1709 	}
1710 
1711 	if (t->size != sizeof(int)) {
1712 		btf_verifier_log_type(env, t, "Expected size:%zu",
1713 				      sizeof(int));
1714 		return -EINVAL;
1715 	}
1716 
1717 	btf_verifier_log_type(env, t, NULL);
1718 
1719 	for (i = 0; i < nr_enums; i++) {
1720 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
1721 			btf_verifier_log(env, "\tInvalid name_offset:%u",
1722 					 enums[i].name_off);
1723 			return -EINVAL;
1724 		}
1725 
1726 		btf_verifier_log(env, "\t%s val=%d\n",
1727 				 btf_name_by_offset(btf, enums[i].name_off),
1728 				 enums[i].val);
1729 	}
1730 
1731 	return meta_needed;
1732 }
1733 
1734 static void btf_enum_log(struct btf_verifier_env *env,
1735 			 const struct btf_type *t)
1736 {
1737 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1738 }
1739 
1740 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
1741 			      u32 type_id, void *data, u8 bits_offset,
1742 			      struct seq_file *m)
1743 {
1744 	const struct btf_enum *enums = btf_type_enum(t);
1745 	u32 i, nr_enums = btf_type_vlen(t);
1746 	int v = *(int *)data;
1747 
1748 	for (i = 0; i < nr_enums; i++) {
1749 		if (v == enums[i].val) {
1750 			seq_printf(m, "%s",
1751 				   btf_name_by_offset(btf, enums[i].name_off));
1752 			return;
1753 		}
1754 	}
1755 
1756 	seq_printf(m, "%d", v);
1757 }
1758 
1759 static struct btf_kind_operations enum_ops = {
1760 	.check_meta = btf_enum_check_meta,
1761 	.resolve = btf_df_resolve,
1762 	.check_member = btf_enum_check_member,
1763 	.log_details = btf_enum_log,
1764 	.seq_show = btf_enum_seq_show,
1765 };
1766 
1767 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
1768 	[BTF_KIND_INT] = &int_ops,
1769 	[BTF_KIND_PTR] = &ptr_ops,
1770 	[BTF_KIND_ARRAY] = &array_ops,
1771 	[BTF_KIND_STRUCT] = &struct_ops,
1772 	[BTF_KIND_UNION] = &struct_ops,
1773 	[BTF_KIND_ENUM] = &enum_ops,
1774 	[BTF_KIND_FWD] = &fwd_ops,
1775 	[BTF_KIND_TYPEDEF] = &modifier_ops,
1776 	[BTF_KIND_VOLATILE] = &modifier_ops,
1777 	[BTF_KIND_CONST] = &modifier_ops,
1778 	[BTF_KIND_RESTRICT] = &modifier_ops,
1779 };
1780 
1781 static s32 btf_check_meta(struct btf_verifier_env *env,
1782 			  const struct btf_type *t,
1783 			  u32 meta_left)
1784 {
1785 	u32 saved_meta_left = meta_left;
1786 	s32 var_meta_size;
1787 
1788 	if (meta_left < sizeof(*t)) {
1789 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
1790 				 env->log_type_id, meta_left, sizeof(*t));
1791 		return -EINVAL;
1792 	}
1793 	meta_left -= sizeof(*t);
1794 
1795 	if (t->info & ~BTF_INFO_MASK) {
1796 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
1797 				 env->log_type_id, t->info);
1798 		return -EINVAL;
1799 	}
1800 
1801 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
1802 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
1803 		btf_verifier_log(env, "[%u] Invalid kind:%u",
1804 				 env->log_type_id, BTF_INFO_KIND(t->info));
1805 		return -EINVAL;
1806 	}
1807 
1808 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
1809 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
1810 				 env->log_type_id, t->name_off);
1811 		return -EINVAL;
1812 	}
1813 
1814 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
1815 	if (var_meta_size < 0)
1816 		return var_meta_size;
1817 
1818 	meta_left -= var_meta_size;
1819 
1820 	return saved_meta_left - meta_left;
1821 }
1822 
1823 static int btf_check_all_metas(struct btf_verifier_env *env)
1824 {
1825 	struct btf *btf = env->btf;
1826 	struct btf_header *hdr;
1827 	void *cur, *end;
1828 
1829 	hdr = &btf->hdr;
1830 	cur = btf->nohdr_data + hdr->type_off;
1831 	end = btf->nohdr_data + hdr->type_len;
1832 
1833 	env->log_type_id = 1;
1834 	while (cur < end) {
1835 		struct btf_type *t = cur;
1836 		s32 meta_size;
1837 
1838 		meta_size = btf_check_meta(env, t, end - cur);
1839 		if (meta_size < 0)
1840 			return meta_size;
1841 
1842 		btf_add_type(env, t);
1843 		cur += meta_size;
1844 		env->log_type_id++;
1845 	}
1846 
1847 	return 0;
1848 }
1849 
1850 static int btf_resolve(struct btf_verifier_env *env,
1851 		       const struct btf_type *t, u32 type_id)
1852 {
1853 	const struct resolve_vertex *v;
1854 	int err = 0;
1855 
1856 	env->resolve_mode = RESOLVE_TBD;
1857 	env_stack_push(env, t, type_id);
1858 	while (!err && (v = env_stack_peak(env))) {
1859 		env->log_type_id = v->type_id;
1860 		err = btf_type_ops(v->t)->resolve(env, v);
1861 	}
1862 
1863 	env->log_type_id = type_id;
1864 	if (err == -E2BIG)
1865 		btf_verifier_log_type(env, t,
1866 				      "Exceeded max resolving depth:%u",
1867 				      MAX_RESOLVE_DEPTH);
1868 	else if (err == -EEXIST)
1869 		btf_verifier_log_type(env, t, "Loop detected");
1870 
1871 	return err;
1872 }
1873 
1874 static bool btf_resolve_valid(struct btf_verifier_env *env,
1875 			      const struct btf_type *t,
1876 			      u32 type_id)
1877 {
1878 	struct btf *btf = env->btf;
1879 
1880 	if (!env_type_is_resolved(env, type_id))
1881 		return false;
1882 
1883 	if (btf_type_is_struct(t))
1884 		return !btf->resolved_ids[type_id] &&
1885 			!btf->resolved_sizes[type_id];
1886 
1887 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) {
1888 		t = btf_type_id_resolve(btf, &type_id);
1889 		return t && !btf_type_is_modifier(t);
1890 	}
1891 
1892 	if (btf_type_is_array(t)) {
1893 		const struct btf_array *array = btf_type_array(t);
1894 		const struct btf_type *elem_type;
1895 		u32 elem_type_id = array->type;
1896 		u32 elem_size;
1897 
1898 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1899 		return elem_type && !btf_type_is_modifier(elem_type) &&
1900 			(array->nelems * elem_size ==
1901 			 btf->resolved_sizes[type_id]);
1902 	}
1903 
1904 	return false;
1905 }
1906 
1907 static int btf_check_all_types(struct btf_verifier_env *env)
1908 {
1909 	struct btf *btf = env->btf;
1910 	u32 type_id;
1911 	int err;
1912 
1913 	err = env_resolve_init(env);
1914 	if (err)
1915 		return err;
1916 
1917 	env->phase++;
1918 	for (type_id = 1; type_id <= btf->nr_types; type_id++) {
1919 		const struct btf_type *t = btf_type_by_id(btf, type_id);
1920 
1921 		env->log_type_id = type_id;
1922 		if (btf_type_needs_resolve(t) &&
1923 		    !env_type_is_resolved(env, type_id)) {
1924 			err = btf_resolve(env, t, type_id);
1925 			if (err)
1926 				return err;
1927 		}
1928 
1929 		if (btf_type_needs_resolve(t) &&
1930 		    !btf_resolve_valid(env, t, type_id)) {
1931 			btf_verifier_log_type(env, t, "Invalid resolve state");
1932 			return -EINVAL;
1933 		}
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 static int btf_parse_type_sec(struct btf_verifier_env *env)
1940 {
1941 	const struct btf_header *hdr = &env->btf->hdr;
1942 	int err;
1943 
1944 	/* Type section must align to 4 bytes */
1945 	if (hdr->type_off & (sizeof(u32) - 1)) {
1946 		btf_verifier_log(env, "Unaligned type_off");
1947 		return -EINVAL;
1948 	}
1949 
1950 	if (!hdr->type_len) {
1951 		btf_verifier_log(env, "No type found");
1952 		return -EINVAL;
1953 	}
1954 
1955 	err = btf_check_all_metas(env);
1956 	if (err)
1957 		return err;
1958 
1959 	return btf_check_all_types(env);
1960 }
1961 
1962 static int btf_parse_str_sec(struct btf_verifier_env *env)
1963 {
1964 	const struct btf_header *hdr;
1965 	struct btf *btf = env->btf;
1966 	const char *start, *end;
1967 
1968 	hdr = &btf->hdr;
1969 	start = btf->nohdr_data + hdr->str_off;
1970 	end = start + hdr->str_len;
1971 
1972 	if (end != btf->data + btf->data_size) {
1973 		btf_verifier_log(env, "String section is not at the end");
1974 		return -EINVAL;
1975 	}
1976 
1977 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
1978 	    start[0] || end[-1]) {
1979 		btf_verifier_log(env, "Invalid string section");
1980 		return -EINVAL;
1981 	}
1982 
1983 	btf->strings = start;
1984 
1985 	return 0;
1986 }
1987 
1988 static const size_t btf_sec_info_offset[] = {
1989 	offsetof(struct btf_header, type_off),
1990 	offsetof(struct btf_header, str_off),
1991 };
1992 
1993 static int btf_sec_info_cmp(const void *a, const void *b)
1994 {
1995 	const struct btf_sec_info *x = a;
1996 	const struct btf_sec_info *y = b;
1997 
1998 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
1999 }
2000 
2001 static int btf_check_sec_info(struct btf_verifier_env *env,
2002 			      u32 btf_data_size)
2003 {
2004 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
2005 	u32 total, expected_total, i;
2006 	const struct btf_header *hdr;
2007 	const struct btf *btf;
2008 
2009 	btf = env->btf;
2010 	hdr = &btf->hdr;
2011 
2012 	/* Populate the secs from hdr */
2013 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
2014 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
2015 						   btf_sec_info_offset[i]);
2016 
2017 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
2018 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
2019 
2020 	/* Check for gaps and overlap among sections */
2021 	total = 0;
2022 	expected_total = btf_data_size - hdr->hdr_len;
2023 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
2024 		if (expected_total < secs[i].off) {
2025 			btf_verifier_log(env, "Invalid section offset");
2026 			return -EINVAL;
2027 		}
2028 		if (total < secs[i].off) {
2029 			/* gap */
2030 			btf_verifier_log(env, "Unsupported section found");
2031 			return -EINVAL;
2032 		}
2033 		if (total > secs[i].off) {
2034 			btf_verifier_log(env, "Section overlap found");
2035 			return -EINVAL;
2036 		}
2037 		if (expected_total - total < secs[i].len) {
2038 			btf_verifier_log(env,
2039 					 "Total section length too long");
2040 			return -EINVAL;
2041 		}
2042 		total += secs[i].len;
2043 	}
2044 
2045 	/* There is data other than hdr and known sections */
2046 	if (expected_total != total) {
2047 		btf_verifier_log(env, "Unsupported section found");
2048 		return -EINVAL;
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 static int btf_parse_hdr(struct btf_verifier_env *env, void __user *btf_data,
2055 			 u32 btf_data_size)
2056 {
2057 	const struct btf_header *hdr;
2058 	u32 hdr_len, hdr_copy;
2059 	/*
2060 	 * Minimal part of the "struct btf_header" that
2061 	 * contains the hdr_len.
2062 	 */
2063 	struct btf_min_header {
2064 		u16	magic;
2065 		u8	version;
2066 		u8	flags;
2067 		u32	hdr_len;
2068 	} __user *min_hdr;
2069 	struct btf *btf;
2070 	int err;
2071 
2072 	btf = env->btf;
2073 	min_hdr = btf_data;
2074 
2075 	if (btf_data_size < sizeof(*min_hdr)) {
2076 		btf_verifier_log(env, "hdr_len not found");
2077 		return -EINVAL;
2078 	}
2079 
2080 	if (get_user(hdr_len, &min_hdr->hdr_len))
2081 		return -EFAULT;
2082 
2083 	if (btf_data_size < hdr_len) {
2084 		btf_verifier_log(env, "btf_header not found");
2085 		return -EINVAL;
2086 	}
2087 
2088 	err = bpf_check_uarg_tail_zero(btf_data, sizeof(btf->hdr), hdr_len);
2089 	if (err) {
2090 		if (err == -E2BIG)
2091 			btf_verifier_log(env, "Unsupported btf_header");
2092 		return err;
2093 	}
2094 
2095 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
2096 	if (copy_from_user(&btf->hdr, btf_data, hdr_copy))
2097 		return -EFAULT;
2098 
2099 	hdr = &btf->hdr;
2100 
2101 	btf_verifier_log_hdr(env, btf_data_size);
2102 
2103 	if (hdr->magic != BTF_MAGIC) {
2104 		btf_verifier_log(env, "Invalid magic");
2105 		return -EINVAL;
2106 	}
2107 
2108 	if (hdr->version != BTF_VERSION) {
2109 		btf_verifier_log(env, "Unsupported version");
2110 		return -ENOTSUPP;
2111 	}
2112 
2113 	if (hdr->flags) {
2114 		btf_verifier_log(env, "Unsupported flags");
2115 		return -ENOTSUPP;
2116 	}
2117 
2118 	if (btf_data_size == hdr->hdr_len) {
2119 		btf_verifier_log(env, "No data");
2120 		return -EINVAL;
2121 	}
2122 
2123 	err = btf_check_sec_info(env, btf_data_size);
2124 	if (err)
2125 		return err;
2126 
2127 	return 0;
2128 }
2129 
2130 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
2131 			     u32 log_level, char __user *log_ubuf, u32 log_size)
2132 {
2133 	struct btf_verifier_env *env = NULL;
2134 	struct bpf_verifier_log *log;
2135 	struct btf *btf = NULL;
2136 	u8 *data;
2137 	int err;
2138 
2139 	if (btf_data_size > BTF_MAX_SIZE)
2140 		return ERR_PTR(-E2BIG);
2141 
2142 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
2143 	if (!env)
2144 		return ERR_PTR(-ENOMEM);
2145 
2146 	log = &env->log;
2147 	if (log_level || log_ubuf || log_size) {
2148 		/* user requested verbose verifier output
2149 		 * and supplied buffer to store the verification trace
2150 		 */
2151 		log->level = log_level;
2152 		log->ubuf = log_ubuf;
2153 		log->len_total = log_size;
2154 
2155 		/* log attributes have to be sane */
2156 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
2157 		    !log->level || !log->ubuf) {
2158 			err = -EINVAL;
2159 			goto errout;
2160 		}
2161 	}
2162 
2163 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
2164 	if (!btf) {
2165 		err = -ENOMEM;
2166 		goto errout;
2167 	}
2168 	env->btf = btf;
2169 
2170 	err = btf_parse_hdr(env, btf_data, btf_data_size);
2171 	if (err)
2172 		goto errout;
2173 
2174 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
2175 	if (!data) {
2176 		err = -ENOMEM;
2177 		goto errout;
2178 	}
2179 
2180 	btf->data = data;
2181 	btf->data_size = btf_data_size;
2182 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
2183 
2184 	if (copy_from_user(data, btf_data, btf_data_size)) {
2185 		err = -EFAULT;
2186 		goto errout;
2187 	}
2188 
2189 	err = btf_parse_str_sec(env);
2190 	if (err)
2191 		goto errout;
2192 
2193 	err = btf_parse_type_sec(env);
2194 	if (err)
2195 		goto errout;
2196 
2197 	if (log->level && bpf_verifier_log_full(log)) {
2198 		err = -ENOSPC;
2199 		goto errout;
2200 	}
2201 
2202 	btf_verifier_env_free(env);
2203 	refcount_set(&btf->refcnt, 1);
2204 	return btf;
2205 
2206 errout:
2207 	btf_verifier_env_free(env);
2208 	if (btf)
2209 		btf_free(btf);
2210 	return ERR_PTR(err);
2211 }
2212 
2213 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
2214 		       struct seq_file *m)
2215 {
2216 	const struct btf_type *t = btf_type_by_id(btf, type_id);
2217 
2218 	btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
2219 }
2220 
2221 static int btf_release(struct inode *inode, struct file *filp)
2222 {
2223 	btf_put(filp->private_data);
2224 	return 0;
2225 }
2226 
2227 const struct file_operations btf_fops = {
2228 	.release	= btf_release,
2229 };
2230 
2231 static int __btf_new_fd(struct btf *btf)
2232 {
2233 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
2234 }
2235 
2236 int btf_new_fd(const union bpf_attr *attr)
2237 {
2238 	struct btf *btf;
2239 	int ret;
2240 
2241 	btf = btf_parse(u64_to_user_ptr(attr->btf),
2242 			attr->btf_size, attr->btf_log_level,
2243 			u64_to_user_ptr(attr->btf_log_buf),
2244 			attr->btf_log_size);
2245 	if (IS_ERR(btf))
2246 		return PTR_ERR(btf);
2247 
2248 	ret = btf_alloc_id(btf);
2249 	if (ret) {
2250 		btf_free(btf);
2251 		return ret;
2252 	}
2253 
2254 	/*
2255 	 * The BTF ID is published to the userspace.
2256 	 * All BTF free must go through call_rcu() from
2257 	 * now on (i.e. free by calling btf_put()).
2258 	 */
2259 
2260 	ret = __btf_new_fd(btf);
2261 	if (ret < 0)
2262 		btf_put(btf);
2263 
2264 	return ret;
2265 }
2266 
2267 struct btf *btf_get_by_fd(int fd)
2268 {
2269 	struct btf *btf;
2270 	struct fd f;
2271 
2272 	f = fdget(fd);
2273 
2274 	if (!f.file)
2275 		return ERR_PTR(-EBADF);
2276 
2277 	if (f.file->f_op != &btf_fops) {
2278 		fdput(f);
2279 		return ERR_PTR(-EINVAL);
2280 	}
2281 
2282 	btf = f.file->private_data;
2283 	refcount_inc(&btf->refcnt);
2284 	fdput(f);
2285 
2286 	return btf;
2287 }
2288 
2289 int btf_get_info_by_fd(const struct btf *btf,
2290 		       const union bpf_attr *attr,
2291 		       union bpf_attr __user *uattr)
2292 {
2293 	struct bpf_btf_info __user *uinfo;
2294 	struct bpf_btf_info info = {};
2295 	u32 info_copy, btf_copy;
2296 	void __user *ubtf;
2297 	u32 uinfo_len;
2298 
2299 	uinfo = u64_to_user_ptr(attr->info.info);
2300 	uinfo_len = attr->info.info_len;
2301 
2302 	info_copy = min_t(u32, uinfo_len, sizeof(info));
2303 	if (copy_from_user(&info, uinfo, info_copy))
2304 		return -EFAULT;
2305 
2306 	info.id = btf->id;
2307 	ubtf = u64_to_user_ptr(info.btf);
2308 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
2309 	if (copy_to_user(ubtf, btf->data, btf_copy))
2310 		return -EFAULT;
2311 	info.btf_size = btf->data_size;
2312 
2313 	if (copy_to_user(uinfo, &info, info_copy) ||
2314 	    put_user(info_copy, &uattr->info.info_len))
2315 		return -EFAULT;
2316 
2317 	return 0;
2318 }
2319 
2320 int btf_get_fd_by_id(u32 id)
2321 {
2322 	struct btf *btf;
2323 	int fd;
2324 
2325 	rcu_read_lock();
2326 	btf = idr_find(&btf_idr, id);
2327 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
2328 		btf = ERR_PTR(-ENOENT);
2329 	rcu_read_unlock();
2330 
2331 	if (IS_ERR(btf))
2332 		return PTR_ERR(btf);
2333 
2334 	fd = __btf_new_fd(btf);
2335 	if (fd < 0)
2336 		btf_put(btf);
2337 
2338 	return fd;
2339 }
2340 
2341 u32 btf_id(const struct btf *btf)
2342 {
2343 	return btf->id;
2344 }
2345