1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/skmsg.h> 23 #include <linux/perf_event.h> 24 #include <linux/bsearch.h> 25 #include <linux/kobject.h> 26 #include <linux/sysfs.h> 27 #include <net/sock.h> 28 #include "../tools/lib/bpf/relo_core.h" 29 30 /* BTF (BPF Type Format) is the meta data format which describes 31 * the data types of BPF program/map. Hence, it basically focus 32 * on the C programming language which the modern BPF is primary 33 * using. 34 * 35 * ELF Section: 36 * ~~~~~~~~~~~ 37 * The BTF data is stored under the ".BTF" ELF section 38 * 39 * struct btf_type: 40 * ~~~~~~~~~~~~~~~ 41 * Each 'struct btf_type' object describes a C data type. 42 * Depending on the type it is describing, a 'struct btf_type' 43 * object may be followed by more data. F.e. 44 * To describe an array, 'struct btf_type' is followed by 45 * 'struct btf_array'. 46 * 47 * 'struct btf_type' and any extra data following it are 48 * 4 bytes aligned. 49 * 50 * Type section: 51 * ~~~~~~~~~~~~~ 52 * The BTF type section contains a list of 'struct btf_type' objects. 53 * Each one describes a C type. Recall from the above section 54 * that a 'struct btf_type' object could be immediately followed by extra 55 * data in order to describe some particular C types. 56 * 57 * type_id: 58 * ~~~~~~~ 59 * Each btf_type object is identified by a type_id. The type_id 60 * is implicitly implied by the location of the btf_type object in 61 * the BTF type section. The first one has type_id 1. The second 62 * one has type_id 2...etc. Hence, an earlier btf_type has 63 * a smaller type_id. 64 * 65 * A btf_type object may refer to another btf_type object by using 66 * type_id (i.e. the "type" in the "struct btf_type"). 67 * 68 * NOTE that we cannot assume any reference-order. 69 * A btf_type object can refer to an earlier btf_type object 70 * but it can also refer to a later btf_type object. 71 * 72 * For example, to describe "const void *". A btf_type 73 * object describing "const" may refer to another btf_type 74 * object describing "void *". This type-reference is done 75 * by specifying type_id: 76 * 77 * [1] CONST (anon) type_id=2 78 * [2] PTR (anon) type_id=0 79 * 80 * The above is the btf_verifier debug log: 81 * - Each line started with "[?]" is a btf_type object 82 * - [?] is the type_id of the btf_type object. 83 * - CONST/PTR is the BTF_KIND_XXX 84 * - "(anon)" is the name of the type. It just 85 * happens that CONST and PTR has no name. 86 * - type_id=XXX is the 'u32 type' in btf_type 87 * 88 * NOTE: "void" has type_id 0 89 * 90 * String section: 91 * ~~~~~~~~~~~~~~ 92 * The BTF string section contains the names used by the type section. 93 * Each string is referred by an "offset" from the beginning of the 94 * string section. 95 * 96 * Each string is '\0' terminated. 97 * 98 * The first character in the string section must be '\0' 99 * which is used to mean 'anonymous'. Some btf_type may not 100 * have a name. 101 */ 102 103 /* BTF verification: 104 * 105 * To verify BTF data, two passes are needed. 106 * 107 * Pass #1 108 * ~~~~~~~ 109 * The first pass is to collect all btf_type objects to 110 * an array: "btf->types". 111 * 112 * Depending on the C type that a btf_type is describing, 113 * a btf_type may be followed by extra data. We don't know 114 * how many btf_type is there, and more importantly we don't 115 * know where each btf_type is located in the type section. 116 * 117 * Without knowing the location of each type_id, most verifications 118 * cannot be done. e.g. an earlier btf_type may refer to a later 119 * btf_type (recall the "const void *" above), so we cannot 120 * check this type-reference in the first pass. 121 * 122 * In the first pass, it still does some verifications (e.g. 123 * checking the name is a valid offset to the string section). 124 * 125 * Pass #2 126 * ~~~~~~~ 127 * The main focus is to resolve a btf_type that is referring 128 * to another type. 129 * 130 * We have to ensure the referring type: 131 * 1) does exist in the BTF (i.e. in btf->types[]) 132 * 2) does not cause a loop: 133 * struct A { 134 * struct B b; 135 * }; 136 * 137 * struct B { 138 * struct A a; 139 * }; 140 * 141 * btf_type_needs_resolve() decides if a btf_type needs 142 * to be resolved. 143 * 144 * The needs_resolve type implements the "resolve()" ops which 145 * essentially does a DFS and detects backedge. 146 * 147 * During resolve (or DFS), different C types have different 148 * "RESOLVED" conditions. 149 * 150 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 151 * members because a member is always referring to another 152 * type. A struct's member can be treated as "RESOLVED" if 153 * it is referring to a BTF_KIND_PTR. Otherwise, the 154 * following valid C struct would be rejected: 155 * 156 * struct A { 157 * int m; 158 * struct A *a; 159 * }; 160 * 161 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 162 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 163 * detect a pointer loop, e.g.: 164 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 165 * ^ | 166 * +-----------------------------------------+ 167 * 168 */ 169 170 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 171 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 172 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 173 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 174 #define BITS_ROUNDUP_BYTES(bits) \ 175 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 176 177 #define BTF_INFO_MASK 0x9f00ffff 178 #define BTF_INT_MASK 0x0fffffff 179 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 180 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 181 182 /* 16MB for 64k structs and each has 16 members and 183 * a few MB spaces for the string section. 184 * The hard limit is S32_MAX. 185 */ 186 #define BTF_MAX_SIZE (16 * 1024 * 1024) 187 188 #define for_each_member_from(i, from, struct_type, member) \ 189 for (i = from, member = btf_type_member(struct_type) + from; \ 190 i < btf_type_vlen(struct_type); \ 191 i++, member++) 192 193 #define for_each_vsi_from(i, from, struct_type, member) \ 194 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 195 i < btf_type_vlen(struct_type); \ 196 i++, member++) 197 198 DEFINE_IDR(btf_idr); 199 DEFINE_SPINLOCK(btf_idr_lock); 200 201 struct btf { 202 void *data; 203 struct btf_type **types; 204 u32 *resolved_ids; 205 u32 *resolved_sizes; 206 const char *strings; 207 void *nohdr_data; 208 struct btf_header hdr; 209 u32 nr_types; /* includes VOID for base BTF */ 210 u32 types_size; 211 u32 data_size; 212 refcount_t refcnt; 213 u32 id; 214 struct rcu_head rcu; 215 216 /* split BTF support */ 217 struct btf *base_btf; 218 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 219 u32 start_str_off; /* first string offset (0 for base BTF) */ 220 char name[MODULE_NAME_LEN]; 221 bool kernel_btf; 222 }; 223 224 enum verifier_phase { 225 CHECK_META, 226 CHECK_TYPE, 227 }; 228 229 struct resolve_vertex { 230 const struct btf_type *t; 231 u32 type_id; 232 u16 next_member; 233 }; 234 235 enum visit_state { 236 NOT_VISITED, 237 VISITED, 238 RESOLVED, 239 }; 240 241 enum resolve_mode { 242 RESOLVE_TBD, /* To Be Determined */ 243 RESOLVE_PTR, /* Resolving for Pointer */ 244 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 245 * or array 246 */ 247 }; 248 249 #define MAX_RESOLVE_DEPTH 32 250 251 struct btf_sec_info { 252 u32 off; 253 u32 len; 254 }; 255 256 struct btf_verifier_env { 257 struct btf *btf; 258 u8 *visit_states; 259 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 260 struct bpf_verifier_log log; 261 u32 log_type_id; 262 u32 top_stack; 263 enum verifier_phase phase; 264 enum resolve_mode resolve_mode; 265 }; 266 267 static const char * const btf_kind_str[NR_BTF_KINDS] = { 268 [BTF_KIND_UNKN] = "UNKNOWN", 269 [BTF_KIND_INT] = "INT", 270 [BTF_KIND_PTR] = "PTR", 271 [BTF_KIND_ARRAY] = "ARRAY", 272 [BTF_KIND_STRUCT] = "STRUCT", 273 [BTF_KIND_UNION] = "UNION", 274 [BTF_KIND_ENUM] = "ENUM", 275 [BTF_KIND_FWD] = "FWD", 276 [BTF_KIND_TYPEDEF] = "TYPEDEF", 277 [BTF_KIND_VOLATILE] = "VOLATILE", 278 [BTF_KIND_CONST] = "CONST", 279 [BTF_KIND_RESTRICT] = "RESTRICT", 280 [BTF_KIND_FUNC] = "FUNC", 281 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 282 [BTF_KIND_VAR] = "VAR", 283 [BTF_KIND_DATASEC] = "DATASEC", 284 [BTF_KIND_FLOAT] = "FLOAT", 285 [BTF_KIND_DECL_TAG] = "DECL_TAG", 286 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 287 }; 288 289 const char *btf_type_str(const struct btf_type *t) 290 { 291 return btf_kind_str[BTF_INFO_KIND(t->info)]; 292 } 293 294 /* Chunk size we use in safe copy of data to be shown. */ 295 #define BTF_SHOW_OBJ_SAFE_SIZE 32 296 297 /* 298 * This is the maximum size of a base type value (equivalent to a 299 * 128-bit int); if we are at the end of our safe buffer and have 300 * less than 16 bytes space we can't be assured of being able 301 * to copy the next type safely, so in such cases we will initiate 302 * a new copy. 303 */ 304 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 305 306 /* Type name size */ 307 #define BTF_SHOW_NAME_SIZE 80 308 309 /* 310 * Common data to all BTF show operations. Private show functions can add 311 * their own data to a structure containing a struct btf_show and consult it 312 * in the show callback. See btf_type_show() below. 313 * 314 * One challenge with showing nested data is we want to skip 0-valued 315 * data, but in order to figure out whether a nested object is all zeros 316 * we need to walk through it. As a result, we need to make two passes 317 * when handling structs, unions and arrays; the first path simply looks 318 * for nonzero data, while the second actually does the display. The first 319 * pass is signalled by show->state.depth_check being set, and if we 320 * encounter a non-zero value we set show->state.depth_to_show to 321 * the depth at which we encountered it. When we have completed the 322 * first pass, we will know if anything needs to be displayed if 323 * depth_to_show > depth. See btf_[struct,array]_show() for the 324 * implementation of this. 325 * 326 * Another problem is we want to ensure the data for display is safe to 327 * access. To support this, the anonymous "struct {} obj" tracks the data 328 * object and our safe copy of it. We copy portions of the data needed 329 * to the object "copy" buffer, but because its size is limited to 330 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 331 * traverse larger objects for display. 332 * 333 * The various data type show functions all start with a call to 334 * btf_show_start_type() which returns a pointer to the safe copy 335 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 336 * raw data itself). btf_show_obj_safe() is responsible for 337 * using copy_from_kernel_nofault() to update the safe data if necessary 338 * as we traverse the object's data. skbuff-like semantics are 339 * used: 340 * 341 * - obj.head points to the start of the toplevel object for display 342 * - obj.size is the size of the toplevel object 343 * - obj.data points to the current point in the original data at 344 * which our safe data starts. obj.data will advance as we copy 345 * portions of the data. 346 * 347 * In most cases a single copy will suffice, but larger data structures 348 * such as "struct task_struct" will require many copies. The logic in 349 * btf_show_obj_safe() handles the logic that determines if a new 350 * copy_from_kernel_nofault() is needed. 351 */ 352 struct btf_show { 353 u64 flags; 354 void *target; /* target of show operation (seq file, buffer) */ 355 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 356 const struct btf *btf; 357 /* below are used during iteration */ 358 struct { 359 u8 depth; 360 u8 depth_to_show; 361 u8 depth_check; 362 u8 array_member:1, 363 array_terminated:1; 364 u16 array_encoding; 365 u32 type_id; 366 int status; /* non-zero for error */ 367 const struct btf_type *type; 368 const struct btf_member *member; 369 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 370 } state; 371 struct { 372 u32 size; 373 void *head; 374 void *data; 375 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 376 } obj; 377 }; 378 379 struct btf_kind_operations { 380 s32 (*check_meta)(struct btf_verifier_env *env, 381 const struct btf_type *t, 382 u32 meta_left); 383 int (*resolve)(struct btf_verifier_env *env, 384 const struct resolve_vertex *v); 385 int (*check_member)(struct btf_verifier_env *env, 386 const struct btf_type *struct_type, 387 const struct btf_member *member, 388 const struct btf_type *member_type); 389 int (*check_kflag_member)(struct btf_verifier_env *env, 390 const struct btf_type *struct_type, 391 const struct btf_member *member, 392 const struct btf_type *member_type); 393 void (*log_details)(struct btf_verifier_env *env, 394 const struct btf_type *t); 395 void (*show)(const struct btf *btf, const struct btf_type *t, 396 u32 type_id, void *data, u8 bits_offsets, 397 struct btf_show *show); 398 }; 399 400 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 401 static struct btf_type btf_void; 402 403 static int btf_resolve(struct btf_verifier_env *env, 404 const struct btf_type *t, u32 type_id); 405 406 static bool btf_type_is_modifier(const struct btf_type *t) 407 { 408 /* Some of them is not strictly a C modifier 409 * but they are grouped into the same bucket 410 * for BTF concern: 411 * A type (t) that refers to another 412 * type through t->type AND its size cannot 413 * be determined without following the t->type. 414 * 415 * ptr does not fall into this bucket 416 * because its size is always sizeof(void *). 417 */ 418 switch (BTF_INFO_KIND(t->info)) { 419 case BTF_KIND_TYPEDEF: 420 case BTF_KIND_VOLATILE: 421 case BTF_KIND_CONST: 422 case BTF_KIND_RESTRICT: 423 case BTF_KIND_TYPE_TAG: 424 return true; 425 } 426 427 return false; 428 } 429 430 bool btf_type_is_void(const struct btf_type *t) 431 { 432 return t == &btf_void; 433 } 434 435 static bool btf_type_is_fwd(const struct btf_type *t) 436 { 437 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 438 } 439 440 static bool btf_type_nosize(const struct btf_type *t) 441 { 442 return btf_type_is_void(t) || btf_type_is_fwd(t) || 443 btf_type_is_func(t) || btf_type_is_func_proto(t); 444 } 445 446 static bool btf_type_nosize_or_null(const struct btf_type *t) 447 { 448 return !t || btf_type_nosize(t); 449 } 450 451 static bool __btf_type_is_struct(const struct btf_type *t) 452 { 453 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; 454 } 455 456 static bool btf_type_is_array(const struct btf_type *t) 457 { 458 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 459 } 460 461 static bool btf_type_is_datasec(const struct btf_type *t) 462 { 463 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 464 } 465 466 static bool btf_type_is_decl_tag(const struct btf_type *t) 467 { 468 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 469 } 470 471 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 472 { 473 return btf_type_is_func(t) || btf_type_is_struct(t) || 474 btf_type_is_var(t) || btf_type_is_typedef(t); 475 } 476 477 u32 btf_nr_types(const struct btf *btf) 478 { 479 u32 total = 0; 480 481 while (btf) { 482 total += btf->nr_types; 483 btf = btf->base_btf; 484 } 485 486 return total; 487 } 488 489 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 490 { 491 const struct btf_type *t; 492 const char *tname; 493 u32 i, total; 494 495 total = btf_nr_types(btf); 496 for (i = 1; i < total; i++) { 497 t = btf_type_by_id(btf, i); 498 if (BTF_INFO_KIND(t->info) != kind) 499 continue; 500 501 tname = btf_name_by_offset(btf, t->name_off); 502 if (!strcmp(tname, name)) 503 return i; 504 } 505 506 return -ENOENT; 507 } 508 509 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 510 u32 id, u32 *res_id) 511 { 512 const struct btf_type *t = btf_type_by_id(btf, id); 513 514 while (btf_type_is_modifier(t)) { 515 id = t->type; 516 t = btf_type_by_id(btf, t->type); 517 } 518 519 if (res_id) 520 *res_id = id; 521 522 return t; 523 } 524 525 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 526 u32 id, u32 *res_id) 527 { 528 const struct btf_type *t; 529 530 t = btf_type_skip_modifiers(btf, id, NULL); 531 if (!btf_type_is_ptr(t)) 532 return NULL; 533 534 return btf_type_skip_modifiers(btf, t->type, res_id); 535 } 536 537 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 538 u32 id, u32 *res_id) 539 { 540 const struct btf_type *ptype; 541 542 ptype = btf_type_resolve_ptr(btf, id, res_id); 543 if (ptype && btf_type_is_func_proto(ptype)) 544 return ptype; 545 546 return NULL; 547 } 548 549 /* Types that act only as a source, not sink or intermediate 550 * type when resolving. 551 */ 552 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 553 { 554 return btf_type_is_var(t) || 555 btf_type_is_decl_tag(t) || 556 btf_type_is_datasec(t); 557 } 558 559 /* What types need to be resolved? 560 * 561 * btf_type_is_modifier() is an obvious one. 562 * 563 * btf_type_is_struct() because its member refers to 564 * another type (through member->type). 565 * 566 * btf_type_is_var() because the variable refers to 567 * another type. btf_type_is_datasec() holds multiple 568 * btf_type_is_var() types that need resolving. 569 * 570 * btf_type_is_array() because its element (array->type) 571 * refers to another type. Array can be thought of a 572 * special case of struct while array just has the same 573 * member-type repeated by array->nelems of times. 574 */ 575 static bool btf_type_needs_resolve(const struct btf_type *t) 576 { 577 return btf_type_is_modifier(t) || 578 btf_type_is_ptr(t) || 579 btf_type_is_struct(t) || 580 btf_type_is_array(t) || 581 btf_type_is_var(t) || 582 btf_type_is_decl_tag(t) || 583 btf_type_is_datasec(t); 584 } 585 586 /* t->size can be used */ 587 static bool btf_type_has_size(const struct btf_type *t) 588 { 589 switch (BTF_INFO_KIND(t->info)) { 590 case BTF_KIND_INT: 591 case BTF_KIND_STRUCT: 592 case BTF_KIND_UNION: 593 case BTF_KIND_ENUM: 594 case BTF_KIND_DATASEC: 595 case BTF_KIND_FLOAT: 596 return true; 597 } 598 599 return false; 600 } 601 602 static const char *btf_int_encoding_str(u8 encoding) 603 { 604 if (encoding == 0) 605 return "(none)"; 606 else if (encoding == BTF_INT_SIGNED) 607 return "SIGNED"; 608 else if (encoding == BTF_INT_CHAR) 609 return "CHAR"; 610 else if (encoding == BTF_INT_BOOL) 611 return "BOOL"; 612 else 613 return "UNKN"; 614 } 615 616 static u32 btf_type_int(const struct btf_type *t) 617 { 618 return *(u32 *)(t + 1); 619 } 620 621 static const struct btf_array *btf_type_array(const struct btf_type *t) 622 { 623 return (const struct btf_array *)(t + 1); 624 } 625 626 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 627 { 628 return (const struct btf_enum *)(t + 1); 629 } 630 631 static const struct btf_var *btf_type_var(const struct btf_type *t) 632 { 633 return (const struct btf_var *)(t + 1); 634 } 635 636 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 637 { 638 return (const struct btf_decl_tag *)(t + 1); 639 } 640 641 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 642 { 643 return kind_ops[BTF_INFO_KIND(t->info)]; 644 } 645 646 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 647 { 648 if (!BTF_STR_OFFSET_VALID(offset)) 649 return false; 650 651 while (offset < btf->start_str_off) 652 btf = btf->base_btf; 653 654 offset -= btf->start_str_off; 655 return offset < btf->hdr.str_len; 656 } 657 658 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 659 { 660 if ((first ? !isalpha(c) : 661 !isalnum(c)) && 662 c != '_' && 663 ((c == '.' && !dot_ok) || 664 c != '.')) 665 return false; 666 return true; 667 } 668 669 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 670 { 671 while (offset < btf->start_str_off) 672 btf = btf->base_btf; 673 674 offset -= btf->start_str_off; 675 if (offset < btf->hdr.str_len) 676 return &btf->strings[offset]; 677 678 return NULL; 679 } 680 681 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 682 { 683 /* offset must be valid */ 684 const char *src = btf_str_by_offset(btf, offset); 685 const char *src_limit; 686 687 if (!__btf_name_char_ok(*src, true, dot_ok)) 688 return false; 689 690 /* set a limit on identifier length */ 691 src_limit = src + KSYM_NAME_LEN; 692 src++; 693 while (*src && src < src_limit) { 694 if (!__btf_name_char_ok(*src, false, dot_ok)) 695 return false; 696 src++; 697 } 698 699 return !*src; 700 } 701 702 /* Only C-style identifier is permitted. This can be relaxed if 703 * necessary. 704 */ 705 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 706 { 707 return __btf_name_valid(btf, offset, false); 708 } 709 710 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 711 { 712 return __btf_name_valid(btf, offset, true); 713 } 714 715 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 716 { 717 const char *name; 718 719 if (!offset) 720 return "(anon)"; 721 722 name = btf_str_by_offset(btf, offset); 723 return name ?: "(invalid-name-offset)"; 724 } 725 726 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 727 { 728 return btf_str_by_offset(btf, offset); 729 } 730 731 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 732 { 733 while (type_id < btf->start_id) 734 btf = btf->base_btf; 735 736 type_id -= btf->start_id; 737 if (type_id >= btf->nr_types) 738 return NULL; 739 return btf->types[type_id]; 740 } 741 742 /* 743 * Regular int is not a bit field and it must be either 744 * u8/u16/u32/u64 or __int128. 745 */ 746 static bool btf_type_int_is_regular(const struct btf_type *t) 747 { 748 u8 nr_bits, nr_bytes; 749 u32 int_data; 750 751 int_data = btf_type_int(t); 752 nr_bits = BTF_INT_BITS(int_data); 753 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 754 if (BITS_PER_BYTE_MASKED(nr_bits) || 755 BTF_INT_OFFSET(int_data) || 756 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 757 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 758 nr_bytes != (2 * sizeof(u64)))) { 759 return false; 760 } 761 762 return true; 763 } 764 765 /* 766 * Check that given struct member is a regular int with expected 767 * offset and size. 768 */ 769 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 770 const struct btf_member *m, 771 u32 expected_offset, u32 expected_size) 772 { 773 const struct btf_type *t; 774 u32 id, int_data; 775 u8 nr_bits; 776 777 id = m->type; 778 t = btf_type_id_size(btf, &id, NULL); 779 if (!t || !btf_type_is_int(t)) 780 return false; 781 782 int_data = btf_type_int(t); 783 nr_bits = BTF_INT_BITS(int_data); 784 if (btf_type_kflag(s)) { 785 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 786 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 787 788 /* if kflag set, int should be a regular int and 789 * bit offset should be at byte boundary. 790 */ 791 return !bitfield_size && 792 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 793 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 794 } 795 796 if (BTF_INT_OFFSET(int_data) || 797 BITS_PER_BYTE_MASKED(m->offset) || 798 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 799 BITS_PER_BYTE_MASKED(nr_bits) || 800 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 801 return false; 802 803 return true; 804 } 805 806 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 807 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 808 u32 id) 809 { 810 const struct btf_type *t = btf_type_by_id(btf, id); 811 812 while (btf_type_is_modifier(t) && 813 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 814 t = btf_type_by_id(btf, t->type); 815 } 816 817 return t; 818 } 819 820 #define BTF_SHOW_MAX_ITER 10 821 822 #define BTF_KIND_BIT(kind) (1ULL << kind) 823 824 /* 825 * Populate show->state.name with type name information. 826 * Format of type name is 827 * 828 * [.member_name = ] (type_name) 829 */ 830 static const char *btf_show_name(struct btf_show *show) 831 { 832 /* BTF_MAX_ITER array suffixes "[]" */ 833 const char *array_suffixes = "[][][][][][][][][][]"; 834 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 835 /* BTF_MAX_ITER pointer suffixes "*" */ 836 const char *ptr_suffixes = "**********"; 837 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 838 const char *name = NULL, *prefix = "", *parens = ""; 839 const struct btf_member *m = show->state.member; 840 const struct btf_type *t; 841 const struct btf_array *array; 842 u32 id = show->state.type_id; 843 const char *member = NULL; 844 bool show_member = false; 845 u64 kinds = 0; 846 int i; 847 848 show->state.name[0] = '\0'; 849 850 /* 851 * Don't show type name if we're showing an array member; 852 * in that case we show the array type so don't need to repeat 853 * ourselves for each member. 854 */ 855 if (show->state.array_member) 856 return ""; 857 858 /* Retrieve member name, if any. */ 859 if (m) { 860 member = btf_name_by_offset(show->btf, m->name_off); 861 show_member = strlen(member) > 0; 862 id = m->type; 863 } 864 865 /* 866 * Start with type_id, as we have resolved the struct btf_type * 867 * via btf_modifier_show() past the parent typedef to the child 868 * struct, int etc it is defined as. In such cases, the type_id 869 * still represents the starting type while the struct btf_type * 870 * in our show->state points at the resolved type of the typedef. 871 */ 872 t = btf_type_by_id(show->btf, id); 873 if (!t) 874 return ""; 875 876 /* 877 * The goal here is to build up the right number of pointer and 878 * array suffixes while ensuring the type name for a typedef 879 * is represented. Along the way we accumulate a list of 880 * BTF kinds we have encountered, since these will inform later 881 * display; for example, pointer types will not require an 882 * opening "{" for struct, we will just display the pointer value. 883 * 884 * We also want to accumulate the right number of pointer or array 885 * indices in the format string while iterating until we get to 886 * the typedef/pointee/array member target type. 887 * 888 * We start by pointing at the end of pointer and array suffix 889 * strings; as we accumulate pointers and arrays we move the pointer 890 * or array string backwards so it will show the expected number of 891 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 892 * and/or arrays and typedefs are supported as a precaution. 893 * 894 * We also want to get typedef name while proceeding to resolve 895 * type it points to so that we can add parentheses if it is a 896 * "typedef struct" etc. 897 */ 898 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 899 900 switch (BTF_INFO_KIND(t->info)) { 901 case BTF_KIND_TYPEDEF: 902 if (!name) 903 name = btf_name_by_offset(show->btf, 904 t->name_off); 905 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 906 id = t->type; 907 break; 908 case BTF_KIND_ARRAY: 909 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 910 parens = "["; 911 if (!t) 912 return ""; 913 array = btf_type_array(t); 914 if (array_suffix > array_suffixes) 915 array_suffix -= 2; 916 id = array->type; 917 break; 918 case BTF_KIND_PTR: 919 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 920 if (ptr_suffix > ptr_suffixes) 921 ptr_suffix -= 1; 922 id = t->type; 923 break; 924 default: 925 id = 0; 926 break; 927 } 928 if (!id) 929 break; 930 t = btf_type_skip_qualifiers(show->btf, id); 931 } 932 /* We may not be able to represent this type; bail to be safe */ 933 if (i == BTF_SHOW_MAX_ITER) 934 return ""; 935 936 if (!name) 937 name = btf_name_by_offset(show->btf, t->name_off); 938 939 switch (BTF_INFO_KIND(t->info)) { 940 case BTF_KIND_STRUCT: 941 case BTF_KIND_UNION: 942 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 943 "struct" : "union"; 944 /* if it's an array of struct/union, parens is already set */ 945 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 946 parens = "{"; 947 break; 948 case BTF_KIND_ENUM: 949 prefix = "enum"; 950 break; 951 default: 952 break; 953 } 954 955 /* pointer does not require parens */ 956 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 957 parens = ""; 958 /* typedef does not require struct/union/enum prefix */ 959 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 960 prefix = ""; 961 962 if (!name) 963 name = ""; 964 965 /* Even if we don't want type name info, we want parentheses etc */ 966 if (show->flags & BTF_SHOW_NONAME) 967 snprintf(show->state.name, sizeof(show->state.name), "%s", 968 parens); 969 else 970 snprintf(show->state.name, sizeof(show->state.name), 971 "%s%s%s(%s%s%s%s%s%s)%s", 972 /* first 3 strings comprise ".member = " */ 973 show_member ? "." : "", 974 show_member ? member : "", 975 show_member ? " = " : "", 976 /* ...next is our prefix (struct, enum, etc) */ 977 prefix, 978 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 979 /* ...this is the type name itself */ 980 name, 981 /* ...suffixed by the appropriate '*', '[]' suffixes */ 982 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 983 array_suffix, parens); 984 985 return show->state.name; 986 } 987 988 static const char *__btf_show_indent(struct btf_show *show) 989 { 990 const char *indents = " "; 991 const char *indent = &indents[strlen(indents)]; 992 993 if ((indent - show->state.depth) >= indents) 994 return indent - show->state.depth; 995 return indents; 996 } 997 998 static const char *btf_show_indent(struct btf_show *show) 999 { 1000 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1001 } 1002 1003 static const char *btf_show_newline(struct btf_show *show) 1004 { 1005 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1006 } 1007 1008 static const char *btf_show_delim(struct btf_show *show) 1009 { 1010 if (show->state.depth == 0) 1011 return ""; 1012 1013 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1014 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1015 return "|"; 1016 1017 return ","; 1018 } 1019 1020 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1021 { 1022 va_list args; 1023 1024 if (!show->state.depth_check) { 1025 va_start(args, fmt); 1026 show->showfn(show, fmt, args); 1027 va_end(args); 1028 } 1029 } 1030 1031 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1032 * format specifiers to the format specifier passed in; these do the work of 1033 * adding indentation, delimiters etc while the caller simply has to specify 1034 * the type value(s) in the format specifier + value(s). 1035 */ 1036 #define btf_show_type_value(show, fmt, value) \ 1037 do { \ 1038 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \ 1039 show->state.depth == 0) { \ 1040 btf_show(show, "%s%s" fmt "%s%s", \ 1041 btf_show_indent(show), \ 1042 btf_show_name(show), \ 1043 value, btf_show_delim(show), \ 1044 btf_show_newline(show)); \ 1045 if (show->state.depth > show->state.depth_to_show) \ 1046 show->state.depth_to_show = show->state.depth; \ 1047 } \ 1048 } while (0) 1049 1050 #define btf_show_type_values(show, fmt, ...) \ 1051 do { \ 1052 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1053 btf_show_name(show), \ 1054 __VA_ARGS__, btf_show_delim(show), \ 1055 btf_show_newline(show)); \ 1056 if (show->state.depth > show->state.depth_to_show) \ 1057 show->state.depth_to_show = show->state.depth; \ 1058 } while (0) 1059 1060 /* How much is left to copy to safe buffer after @data? */ 1061 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1062 { 1063 return show->obj.head + show->obj.size - data; 1064 } 1065 1066 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1067 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1068 { 1069 return data >= show->obj.data && 1070 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1071 } 1072 1073 /* 1074 * If object pointed to by @data of @size falls within our safe buffer, return 1075 * the equivalent pointer to the same safe data. Assumes 1076 * copy_from_kernel_nofault() has already happened and our safe buffer is 1077 * populated. 1078 */ 1079 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1080 { 1081 if (btf_show_obj_is_safe(show, data, size)) 1082 return show->obj.safe + (data - show->obj.data); 1083 return NULL; 1084 } 1085 1086 /* 1087 * Return a safe-to-access version of data pointed to by @data. 1088 * We do this by copying the relevant amount of information 1089 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1090 * 1091 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1092 * safe copy is needed. 1093 * 1094 * Otherwise we need to determine if we have the required amount 1095 * of data (determined by the @data pointer and the size of the 1096 * largest base type we can encounter (represented by 1097 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1098 * that we will be able to print some of the current object, 1099 * and if more is needed a copy will be triggered. 1100 * Some objects such as structs will not fit into the buffer; 1101 * in such cases additional copies when we iterate over their 1102 * members may be needed. 1103 * 1104 * btf_show_obj_safe() is used to return a safe buffer for 1105 * btf_show_start_type(); this ensures that as we recurse into 1106 * nested types we always have safe data for the given type. 1107 * This approach is somewhat wasteful; it's possible for example 1108 * that when iterating over a large union we'll end up copying the 1109 * same data repeatedly, but the goal is safety not performance. 1110 * We use stack data as opposed to per-CPU buffers because the 1111 * iteration over a type can take some time, and preemption handling 1112 * would greatly complicate use of the safe buffer. 1113 */ 1114 static void *btf_show_obj_safe(struct btf_show *show, 1115 const struct btf_type *t, 1116 void *data) 1117 { 1118 const struct btf_type *rt; 1119 int size_left, size; 1120 void *safe = NULL; 1121 1122 if (show->flags & BTF_SHOW_UNSAFE) 1123 return data; 1124 1125 rt = btf_resolve_size(show->btf, t, &size); 1126 if (IS_ERR(rt)) { 1127 show->state.status = PTR_ERR(rt); 1128 return NULL; 1129 } 1130 1131 /* 1132 * Is this toplevel object? If so, set total object size and 1133 * initialize pointers. Otherwise check if we still fall within 1134 * our safe object data. 1135 */ 1136 if (show->state.depth == 0) { 1137 show->obj.size = size; 1138 show->obj.head = data; 1139 } else { 1140 /* 1141 * If the size of the current object is > our remaining 1142 * safe buffer we _may_ need to do a new copy. However 1143 * consider the case of a nested struct; it's size pushes 1144 * us over the safe buffer limit, but showing any individual 1145 * struct members does not. In such cases, we don't need 1146 * to initiate a fresh copy yet; however we definitely need 1147 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1148 * in our buffer, regardless of the current object size. 1149 * The logic here is that as we resolve types we will 1150 * hit a base type at some point, and we need to be sure 1151 * the next chunk of data is safely available to display 1152 * that type info safely. We cannot rely on the size of 1153 * the current object here because it may be much larger 1154 * than our current buffer (e.g. task_struct is 8k). 1155 * All we want to do here is ensure that we can print the 1156 * next basic type, which we can if either 1157 * - the current type size is within the safe buffer; or 1158 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1159 * the safe buffer. 1160 */ 1161 safe = __btf_show_obj_safe(show, data, 1162 min(size, 1163 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1164 } 1165 1166 /* 1167 * We need a new copy to our safe object, either because we haven't 1168 * yet copied and are initializing safe data, or because the data 1169 * we want falls outside the boundaries of the safe object. 1170 */ 1171 if (!safe) { 1172 size_left = btf_show_obj_size_left(show, data); 1173 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1174 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1175 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1176 data, size_left); 1177 if (!show->state.status) { 1178 show->obj.data = data; 1179 safe = show->obj.safe; 1180 } 1181 } 1182 1183 return safe; 1184 } 1185 1186 /* 1187 * Set the type we are starting to show and return a safe data pointer 1188 * to be used for showing the associated data. 1189 */ 1190 static void *btf_show_start_type(struct btf_show *show, 1191 const struct btf_type *t, 1192 u32 type_id, void *data) 1193 { 1194 show->state.type = t; 1195 show->state.type_id = type_id; 1196 show->state.name[0] = '\0'; 1197 1198 return btf_show_obj_safe(show, t, data); 1199 } 1200 1201 static void btf_show_end_type(struct btf_show *show) 1202 { 1203 show->state.type = NULL; 1204 show->state.type_id = 0; 1205 show->state.name[0] = '\0'; 1206 } 1207 1208 static void *btf_show_start_aggr_type(struct btf_show *show, 1209 const struct btf_type *t, 1210 u32 type_id, void *data) 1211 { 1212 void *safe_data = btf_show_start_type(show, t, type_id, data); 1213 1214 if (!safe_data) 1215 return safe_data; 1216 1217 btf_show(show, "%s%s%s", btf_show_indent(show), 1218 btf_show_name(show), 1219 btf_show_newline(show)); 1220 show->state.depth++; 1221 return safe_data; 1222 } 1223 1224 static void btf_show_end_aggr_type(struct btf_show *show, 1225 const char *suffix) 1226 { 1227 show->state.depth--; 1228 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1229 btf_show_delim(show), btf_show_newline(show)); 1230 btf_show_end_type(show); 1231 } 1232 1233 static void btf_show_start_member(struct btf_show *show, 1234 const struct btf_member *m) 1235 { 1236 show->state.member = m; 1237 } 1238 1239 static void btf_show_start_array_member(struct btf_show *show) 1240 { 1241 show->state.array_member = 1; 1242 btf_show_start_member(show, NULL); 1243 } 1244 1245 static void btf_show_end_member(struct btf_show *show) 1246 { 1247 show->state.member = NULL; 1248 } 1249 1250 static void btf_show_end_array_member(struct btf_show *show) 1251 { 1252 show->state.array_member = 0; 1253 btf_show_end_member(show); 1254 } 1255 1256 static void *btf_show_start_array_type(struct btf_show *show, 1257 const struct btf_type *t, 1258 u32 type_id, 1259 u16 array_encoding, 1260 void *data) 1261 { 1262 show->state.array_encoding = array_encoding; 1263 show->state.array_terminated = 0; 1264 return btf_show_start_aggr_type(show, t, type_id, data); 1265 } 1266 1267 static void btf_show_end_array_type(struct btf_show *show) 1268 { 1269 show->state.array_encoding = 0; 1270 show->state.array_terminated = 0; 1271 btf_show_end_aggr_type(show, "]"); 1272 } 1273 1274 static void *btf_show_start_struct_type(struct btf_show *show, 1275 const struct btf_type *t, 1276 u32 type_id, 1277 void *data) 1278 { 1279 return btf_show_start_aggr_type(show, t, type_id, data); 1280 } 1281 1282 static void btf_show_end_struct_type(struct btf_show *show) 1283 { 1284 btf_show_end_aggr_type(show, "}"); 1285 } 1286 1287 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1288 const char *fmt, ...) 1289 { 1290 va_list args; 1291 1292 va_start(args, fmt); 1293 bpf_verifier_vlog(log, fmt, args); 1294 va_end(args); 1295 } 1296 1297 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1298 const char *fmt, ...) 1299 { 1300 struct bpf_verifier_log *log = &env->log; 1301 va_list args; 1302 1303 if (!bpf_verifier_log_needed(log)) 1304 return; 1305 1306 va_start(args, fmt); 1307 bpf_verifier_vlog(log, fmt, args); 1308 va_end(args); 1309 } 1310 1311 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1312 const struct btf_type *t, 1313 bool log_details, 1314 const char *fmt, ...) 1315 { 1316 struct bpf_verifier_log *log = &env->log; 1317 u8 kind = BTF_INFO_KIND(t->info); 1318 struct btf *btf = env->btf; 1319 va_list args; 1320 1321 if (!bpf_verifier_log_needed(log)) 1322 return; 1323 1324 /* btf verifier prints all types it is processing via 1325 * btf_verifier_log_type(..., fmt = NULL). 1326 * Skip those prints for in-kernel BTF verification. 1327 */ 1328 if (log->level == BPF_LOG_KERNEL && !fmt) 1329 return; 1330 1331 __btf_verifier_log(log, "[%u] %s %s%s", 1332 env->log_type_id, 1333 btf_kind_str[kind], 1334 __btf_name_by_offset(btf, t->name_off), 1335 log_details ? " " : ""); 1336 1337 if (log_details) 1338 btf_type_ops(t)->log_details(env, t); 1339 1340 if (fmt && *fmt) { 1341 __btf_verifier_log(log, " "); 1342 va_start(args, fmt); 1343 bpf_verifier_vlog(log, fmt, args); 1344 va_end(args); 1345 } 1346 1347 __btf_verifier_log(log, "\n"); 1348 } 1349 1350 #define btf_verifier_log_type(env, t, ...) \ 1351 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1352 #define btf_verifier_log_basic(env, t, ...) \ 1353 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1354 1355 __printf(4, 5) 1356 static void btf_verifier_log_member(struct btf_verifier_env *env, 1357 const struct btf_type *struct_type, 1358 const struct btf_member *member, 1359 const char *fmt, ...) 1360 { 1361 struct bpf_verifier_log *log = &env->log; 1362 struct btf *btf = env->btf; 1363 va_list args; 1364 1365 if (!bpf_verifier_log_needed(log)) 1366 return; 1367 1368 if (log->level == BPF_LOG_KERNEL && !fmt) 1369 return; 1370 /* The CHECK_META phase already did a btf dump. 1371 * 1372 * If member is logged again, it must hit an error in 1373 * parsing this member. It is useful to print out which 1374 * struct this member belongs to. 1375 */ 1376 if (env->phase != CHECK_META) 1377 btf_verifier_log_type(env, struct_type, NULL); 1378 1379 if (btf_type_kflag(struct_type)) 1380 __btf_verifier_log(log, 1381 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1382 __btf_name_by_offset(btf, member->name_off), 1383 member->type, 1384 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1385 BTF_MEMBER_BIT_OFFSET(member->offset)); 1386 else 1387 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1388 __btf_name_by_offset(btf, member->name_off), 1389 member->type, member->offset); 1390 1391 if (fmt && *fmt) { 1392 __btf_verifier_log(log, " "); 1393 va_start(args, fmt); 1394 bpf_verifier_vlog(log, fmt, args); 1395 va_end(args); 1396 } 1397 1398 __btf_verifier_log(log, "\n"); 1399 } 1400 1401 __printf(4, 5) 1402 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1403 const struct btf_type *datasec_type, 1404 const struct btf_var_secinfo *vsi, 1405 const char *fmt, ...) 1406 { 1407 struct bpf_verifier_log *log = &env->log; 1408 va_list args; 1409 1410 if (!bpf_verifier_log_needed(log)) 1411 return; 1412 if (log->level == BPF_LOG_KERNEL && !fmt) 1413 return; 1414 if (env->phase != CHECK_META) 1415 btf_verifier_log_type(env, datasec_type, NULL); 1416 1417 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1418 vsi->type, vsi->offset, vsi->size); 1419 if (fmt && *fmt) { 1420 __btf_verifier_log(log, " "); 1421 va_start(args, fmt); 1422 bpf_verifier_vlog(log, fmt, args); 1423 va_end(args); 1424 } 1425 1426 __btf_verifier_log(log, "\n"); 1427 } 1428 1429 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1430 u32 btf_data_size) 1431 { 1432 struct bpf_verifier_log *log = &env->log; 1433 const struct btf *btf = env->btf; 1434 const struct btf_header *hdr; 1435 1436 if (!bpf_verifier_log_needed(log)) 1437 return; 1438 1439 if (log->level == BPF_LOG_KERNEL) 1440 return; 1441 hdr = &btf->hdr; 1442 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1443 __btf_verifier_log(log, "version: %u\n", hdr->version); 1444 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1445 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1446 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1447 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1448 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1449 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1450 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1451 } 1452 1453 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1454 { 1455 struct btf *btf = env->btf; 1456 1457 if (btf->types_size == btf->nr_types) { 1458 /* Expand 'types' array */ 1459 1460 struct btf_type **new_types; 1461 u32 expand_by, new_size; 1462 1463 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1464 btf_verifier_log(env, "Exceeded max num of types"); 1465 return -E2BIG; 1466 } 1467 1468 expand_by = max_t(u32, btf->types_size >> 2, 16); 1469 new_size = min_t(u32, BTF_MAX_TYPE, 1470 btf->types_size + expand_by); 1471 1472 new_types = kvcalloc(new_size, sizeof(*new_types), 1473 GFP_KERNEL | __GFP_NOWARN); 1474 if (!new_types) 1475 return -ENOMEM; 1476 1477 if (btf->nr_types == 0) { 1478 if (!btf->base_btf) { 1479 /* lazily init VOID type */ 1480 new_types[0] = &btf_void; 1481 btf->nr_types++; 1482 } 1483 } else { 1484 memcpy(new_types, btf->types, 1485 sizeof(*btf->types) * btf->nr_types); 1486 } 1487 1488 kvfree(btf->types); 1489 btf->types = new_types; 1490 btf->types_size = new_size; 1491 } 1492 1493 btf->types[btf->nr_types++] = t; 1494 1495 return 0; 1496 } 1497 1498 static int btf_alloc_id(struct btf *btf) 1499 { 1500 int id; 1501 1502 idr_preload(GFP_KERNEL); 1503 spin_lock_bh(&btf_idr_lock); 1504 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1505 if (id > 0) 1506 btf->id = id; 1507 spin_unlock_bh(&btf_idr_lock); 1508 idr_preload_end(); 1509 1510 if (WARN_ON_ONCE(!id)) 1511 return -ENOSPC; 1512 1513 return id > 0 ? 0 : id; 1514 } 1515 1516 static void btf_free_id(struct btf *btf) 1517 { 1518 unsigned long flags; 1519 1520 /* 1521 * In map-in-map, calling map_delete_elem() on outer 1522 * map will call bpf_map_put on the inner map. 1523 * It will then eventually call btf_free_id() 1524 * on the inner map. Some of the map_delete_elem() 1525 * implementation may have irq disabled, so 1526 * we need to use the _irqsave() version instead 1527 * of the _bh() version. 1528 */ 1529 spin_lock_irqsave(&btf_idr_lock, flags); 1530 idr_remove(&btf_idr, btf->id); 1531 spin_unlock_irqrestore(&btf_idr_lock, flags); 1532 } 1533 1534 static void btf_free(struct btf *btf) 1535 { 1536 kvfree(btf->types); 1537 kvfree(btf->resolved_sizes); 1538 kvfree(btf->resolved_ids); 1539 kvfree(btf->data); 1540 kfree(btf); 1541 } 1542 1543 static void btf_free_rcu(struct rcu_head *rcu) 1544 { 1545 struct btf *btf = container_of(rcu, struct btf, rcu); 1546 1547 btf_free(btf); 1548 } 1549 1550 void btf_get(struct btf *btf) 1551 { 1552 refcount_inc(&btf->refcnt); 1553 } 1554 1555 void btf_put(struct btf *btf) 1556 { 1557 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1558 btf_free_id(btf); 1559 call_rcu(&btf->rcu, btf_free_rcu); 1560 } 1561 } 1562 1563 static int env_resolve_init(struct btf_verifier_env *env) 1564 { 1565 struct btf *btf = env->btf; 1566 u32 nr_types = btf->nr_types; 1567 u32 *resolved_sizes = NULL; 1568 u32 *resolved_ids = NULL; 1569 u8 *visit_states = NULL; 1570 1571 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1572 GFP_KERNEL | __GFP_NOWARN); 1573 if (!resolved_sizes) 1574 goto nomem; 1575 1576 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1577 GFP_KERNEL | __GFP_NOWARN); 1578 if (!resolved_ids) 1579 goto nomem; 1580 1581 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1582 GFP_KERNEL | __GFP_NOWARN); 1583 if (!visit_states) 1584 goto nomem; 1585 1586 btf->resolved_sizes = resolved_sizes; 1587 btf->resolved_ids = resolved_ids; 1588 env->visit_states = visit_states; 1589 1590 return 0; 1591 1592 nomem: 1593 kvfree(resolved_sizes); 1594 kvfree(resolved_ids); 1595 kvfree(visit_states); 1596 return -ENOMEM; 1597 } 1598 1599 static void btf_verifier_env_free(struct btf_verifier_env *env) 1600 { 1601 kvfree(env->visit_states); 1602 kfree(env); 1603 } 1604 1605 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1606 const struct btf_type *next_type) 1607 { 1608 switch (env->resolve_mode) { 1609 case RESOLVE_TBD: 1610 /* int, enum or void is a sink */ 1611 return !btf_type_needs_resolve(next_type); 1612 case RESOLVE_PTR: 1613 /* int, enum, void, struct, array, func or func_proto is a sink 1614 * for ptr 1615 */ 1616 return !btf_type_is_modifier(next_type) && 1617 !btf_type_is_ptr(next_type); 1618 case RESOLVE_STRUCT_OR_ARRAY: 1619 /* int, enum, void, ptr, func or func_proto is a sink 1620 * for struct and array 1621 */ 1622 return !btf_type_is_modifier(next_type) && 1623 !btf_type_is_array(next_type) && 1624 !btf_type_is_struct(next_type); 1625 default: 1626 BUG(); 1627 } 1628 } 1629 1630 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1631 u32 type_id) 1632 { 1633 /* base BTF types should be resolved by now */ 1634 if (type_id < env->btf->start_id) 1635 return true; 1636 1637 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1638 } 1639 1640 static int env_stack_push(struct btf_verifier_env *env, 1641 const struct btf_type *t, u32 type_id) 1642 { 1643 const struct btf *btf = env->btf; 1644 struct resolve_vertex *v; 1645 1646 if (env->top_stack == MAX_RESOLVE_DEPTH) 1647 return -E2BIG; 1648 1649 if (type_id < btf->start_id 1650 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1651 return -EEXIST; 1652 1653 env->visit_states[type_id - btf->start_id] = VISITED; 1654 1655 v = &env->stack[env->top_stack++]; 1656 v->t = t; 1657 v->type_id = type_id; 1658 v->next_member = 0; 1659 1660 if (env->resolve_mode == RESOLVE_TBD) { 1661 if (btf_type_is_ptr(t)) 1662 env->resolve_mode = RESOLVE_PTR; 1663 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1664 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1665 } 1666 1667 return 0; 1668 } 1669 1670 static void env_stack_set_next_member(struct btf_verifier_env *env, 1671 u16 next_member) 1672 { 1673 env->stack[env->top_stack - 1].next_member = next_member; 1674 } 1675 1676 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1677 u32 resolved_type_id, 1678 u32 resolved_size) 1679 { 1680 u32 type_id = env->stack[--(env->top_stack)].type_id; 1681 struct btf *btf = env->btf; 1682 1683 type_id -= btf->start_id; /* adjust to local type id */ 1684 btf->resolved_sizes[type_id] = resolved_size; 1685 btf->resolved_ids[type_id] = resolved_type_id; 1686 env->visit_states[type_id] = RESOLVED; 1687 } 1688 1689 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1690 { 1691 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1692 } 1693 1694 /* Resolve the size of a passed-in "type" 1695 * 1696 * type: is an array (e.g. u32 array[x][y]) 1697 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1698 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1699 * corresponds to the return type. 1700 * *elem_type: u32 1701 * *elem_id: id of u32 1702 * *total_nelems: (x * y). Hence, individual elem size is 1703 * (*type_size / *total_nelems) 1704 * *type_id: id of type if it's changed within the function, 0 if not 1705 * 1706 * type: is not an array (e.g. const struct X) 1707 * return type: type "struct X" 1708 * *type_size: sizeof(struct X) 1709 * *elem_type: same as return type ("struct X") 1710 * *elem_id: 0 1711 * *total_nelems: 1 1712 * *type_id: id of type if it's changed within the function, 0 if not 1713 */ 1714 static const struct btf_type * 1715 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1716 u32 *type_size, const struct btf_type **elem_type, 1717 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1718 { 1719 const struct btf_type *array_type = NULL; 1720 const struct btf_array *array = NULL; 1721 u32 i, size, nelems = 1, id = 0; 1722 1723 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1724 switch (BTF_INFO_KIND(type->info)) { 1725 /* type->size can be used */ 1726 case BTF_KIND_INT: 1727 case BTF_KIND_STRUCT: 1728 case BTF_KIND_UNION: 1729 case BTF_KIND_ENUM: 1730 case BTF_KIND_FLOAT: 1731 size = type->size; 1732 goto resolved; 1733 1734 case BTF_KIND_PTR: 1735 size = sizeof(void *); 1736 goto resolved; 1737 1738 /* Modifiers */ 1739 case BTF_KIND_TYPEDEF: 1740 case BTF_KIND_VOLATILE: 1741 case BTF_KIND_CONST: 1742 case BTF_KIND_RESTRICT: 1743 case BTF_KIND_TYPE_TAG: 1744 id = type->type; 1745 type = btf_type_by_id(btf, type->type); 1746 break; 1747 1748 case BTF_KIND_ARRAY: 1749 if (!array_type) 1750 array_type = type; 1751 array = btf_type_array(type); 1752 if (nelems && array->nelems > U32_MAX / nelems) 1753 return ERR_PTR(-EINVAL); 1754 nelems *= array->nelems; 1755 type = btf_type_by_id(btf, array->type); 1756 break; 1757 1758 /* type without size */ 1759 default: 1760 return ERR_PTR(-EINVAL); 1761 } 1762 } 1763 1764 return ERR_PTR(-EINVAL); 1765 1766 resolved: 1767 if (nelems && size > U32_MAX / nelems) 1768 return ERR_PTR(-EINVAL); 1769 1770 *type_size = nelems * size; 1771 if (total_nelems) 1772 *total_nelems = nelems; 1773 if (elem_type) 1774 *elem_type = type; 1775 if (elem_id) 1776 *elem_id = array ? array->type : 0; 1777 if (type_id && id) 1778 *type_id = id; 1779 1780 return array_type ? : type; 1781 } 1782 1783 const struct btf_type * 1784 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1785 u32 *type_size) 1786 { 1787 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1788 } 1789 1790 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1791 { 1792 while (type_id < btf->start_id) 1793 btf = btf->base_btf; 1794 1795 return btf->resolved_ids[type_id - btf->start_id]; 1796 } 1797 1798 /* The input param "type_id" must point to a needs_resolve type */ 1799 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1800 u32 *type_id) 1801 { 1802 *type_id = btf_resolved_type_id(btf, *type_id); 1803 return btf_type_by_id(btf, *type_id); 1804 } 1805 1806 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1807 { 1808 while (type_id < btf->start_id) 1809 btf = btf->base_btf; 1810 1811 return btf->resolved_sizes[type_id - btf->start_id]; 1812 } 1813 1814 const struct btf_type *btf_type_id_size(const struct btf *btf, 1815 u32 *type_id, u32 *ret_size) 1816 { 1817 const struct btf_type *size_type; 1818 u32 size_type_id = *type_id; 1819 u32 size = 0; 1820 1821 size_type = btf_type_by_id(btf, size_type_id); 1822 if (btf_type_nosize_or_null(size_type)) 1823 return NULL; 1824 1825 if (btf_type_has_size(size_type)) { 1826 size = size_type->size; 1827 } else if (btf_type_is_array(size_type)) { 1828 size = btf_resolved_type_size(btf, size_type_id); 1829 } else if (btf_type_is_ptr(size_type)) { 1830 size = sizeof(void *); 1831 } else { 1832 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1833 !btf_type_is_var(size_type))) 1834 return NULL; 1835 1836 size_type_id = btf_resolved_type_id(btf, size_type_id); 1837 size_type = btf_type_by_id(btf, size_type_id); 1838 if (btf_type_nosize_or_null(size_type)) 1839 return NULL; 1840 else if (btf_type_has_size(size_type)) 1841 size = size_type->size; 1842 else if (btf_type_is_array(size_type)) 1843 size = btf_resolved_type_size(btf, size_type_id); 1844 else if (btf_type_is_ptr(size_type)) 1845 size = sizeof(void *); 1846 else 1847 return NULL; 1848 } 1849 1850 *type_id = size_type_id; 1851 if (ret_size) 1852 *ret_size = size; 1853 1854 return size_type; 1855 } 1856 1857 static int btf_df_check_member(struct btf_verifier_env *env, 1858 const struct btf_type *struct_type, 1859 const struct btf_member *member, 1860 const struct btf_type *member_type) 1861 { 1862 btf_verifier_log_basic(env, struct_type, 1863 "Unsupported check_member"); 1864 return -EINVAL; 1865 } 1866 1867 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1868 const struct btf_type *struct_type, 1869 const struct btf_member *member, 1870 const struct btf_type *member_type) 1871 { 1872 btf_verifier_log_basic(env, struct_type, 1873 "Unsupported check_kflag_member"); 1874 return -EINVAL; 1875 } 1876 1877 /* Used for ptr, array struct/union and float type members. 1878 * int, enum and modifier types have their specific callback functions. 1879 */ 1880 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 1881 const struct btf_type *struct_type, 1882 const struct btf_member *member, 1883 const struct btf_type *member_type) 1884 { 1885 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 1886 btf_verifier_log_member(env, struct_type, member, 1887 "Invalid member bitfield_size"); 1888 return -EINVAL; 1889 } 1890 1891 /* bitfield size is 0, so member->offset represents bit offset only. 1892 * It is safe to call non kflag check_member variants. 1893 */ 1894 return btf_type_ops(member_type)->check_member(env, struct_type, 1895 member, 1896 member_type); 1897 } 1898 1899 static int btf_df_resolve(struct btf_verifier_env *env, 1900 const struct resolve_vertex *v) 1901 { 1902 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 1903 return -EINVAL; 1904 } 1905 1906 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 1907 u32 type_id, void *data, u8 bits_offsets, 1908 struct btf_show *show) 1909 { 1910 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 1911 } 1912 1913 static int btf_int_check_member(struct btf_verifier_env *env, 1914 const struct btf_type *struct_type, 1915 const struct btf_member *member, 1916 const struct btf_type *member_type) 1917 { 1918 u32 int_data = btf_type_int(member_type); 1919 u32 struct_bits_off = member->offset; 1920 u32 struct_size = struct_type->size; 1921 u32 nr_copy_bits; 1922 u32 bytes_offset; 1923 1924 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 1925 btf_verifier_log_member(env, struct_type, member, 1926 "bits_offset exceeds U32_MAX"); 1927 return -EINVAL; 1928 } 1929 1930 struct_bits_off += BTF_INT_OFFSET(int_data); 1931 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1932 nr_copy_bits = BTF_INT_BITS(int_data) + 1933 BITS_PER_BYTE_MASKED(struct_bits_off); 1934 1935 if (nr_copy_bits > BITS_PER_U128) { 1936 btf_verifier_log_member(env, struct_type, member, 1937 "nr_copy_bits exceeds 128"); 1938 return -EINVAL; 1939 } 1940 1941 if (struct_size < bytes_offset || 1942 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1943 btf_verifier_log_member(env, struct_type, member, 1944 "Member exceeds struct_size"); 1945 return -EINVAL; 1946 } 1947 1948 return 0; 1949 } 1950 1951 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 1952 const struct btf_type *struct_type, 1953 const struct btf_member *member, 1954 const struct btf_type *member_type) 1955 { 1956 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 1957 u32 int_data = btf_type_int(member_type); 1958 u32 struct_size = struct_type->size; 1959 u32 nr_copy_bits; 1960 1961 /* a regular int type is required for the kflag int member */ 1962 if (!btf_type_int_is_regular(member_type)) { 1963 btf_verifier_log_member(env, struct_type, member, 1964 "Invalid member base type"); 1965 return -EINVAL; 1966 } 1967 1968 /* check sanity of bitfield size */ 1969 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 1970 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 1971 nr_int_data_bits = BTF_INT_BITS(int_data); 1972 if (!nr_bits) { 1973 /* Not a bitfield member, member offset must be at byte 1974 * boundary. 1975 */ 1976 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1977 btf_verifier_log_member(env, struct_type, member, 1978 "Invalid member offset"); 1979 return -EINVAL; 1980 } 1981 1982 nr_bits = nr_int_data_bits; 1983 } else if (nr_bits > nr_int_data_bits) { 1984 btf_verifier_log_member(env, struct_type, member, 1985 "Invalid member bitfield_size"); 1986 return -EINVAL; 1987 } 1988 1989 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1990 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 1991 if (nr_copy_bits > BITS_PER_U128) { 1992 btf_verifier_log_member(env, struct_type, member, 1993 "nr_copy_bits exceeds 128"); 1994 return -EINVAL; 1995 } 1996 1997 if (struct_size < bytes_offset || 1998 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1999 btf_verifier_log_member(env, struct_type, member, 2000 "Member exceeds struct_size"); 2001 return -EINVAL; 2002 } 2003 2004 return 0; 2005 } 2006 2007 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2008 const struct btf_type *t, 2009 u32 meta_left) 2010 { 2011 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2012 u16 encoding; 2013 2014 if (meta_left < meta_needed) { 2015 btf_verifier_log_basic(env, t, 2016 "meta_left:%u meta_needed:%u", 2017 meta_left, meta_needed); 2018 return -EINVAL; 2019 } 2020 2021 if (btf_type_vlen(t)) { 2022 btf_verifier_log_type(env, t, "vlen != 0"); 2023 return -EINVAL; 2024 } 2025 2026 if (btf_type_kflag(t)) { 2027 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2028 return -EINVAL; 2029 } 2030 2031 int_data = btf_type_int(t); 2032 if (int_data & ~BTF_INT_MASK) { 2033 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2034 int_data); 2035 return -EINVAL; 2036 } 2037 2038 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2039 2040 if (nr_bits > BITS_PER_U128) { 2041 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2042 BITS_PER_U128); 2043 return -EINVAL; 2044 } 2045 2046 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2047 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2048 return -EINVAL; 2049 } 2050 2051 /* 2052 * Only one of the encoding bits is allowed and it 2053 * should be sufficient for the pretty print purpose (i.e. decoding). 2054 * Multiple bits can be allowed later if it is found 2055 * to be insufficient. 2056 */ 2057 encoding = BTF_INT_ENCODING(int_data); 2058 if (encoding && 2059 encoding != BTF_INT_SIGNED && 2060 encoding != BTF_INT_CHAR && 2061 encoding != BTF_INT_BOOL) { 2062 btf_verifier_log_type(env, t, "Unsupported encoding"); 2063 return -ENOTSUPP; 2064 } 2065 2066 btf_verifier_log_type(env, t, NULL); 2067 2068 return meta_needed; 2069 } 2070 2071 static void btf_int_log(struct btf_verifier_env *env, 2072 const struct btf_type *t) 2073 { 2074 int int_data = btf_type_int(t); 2075 2076 btf_verifier_log(env, 2077 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2078 t->size, BTF_INT_OFFSET(int_data), 2079 BTF_INT_BITS(int_data), 2080 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2081 } 2082 2083 static void btf_int128_print(struct btf_show *show, void *data) 2084 { 2085 /* data points to a __int128 number. 2086 * Suppose 2087 * int128_num = *(__int128 *)data; 2088 * The below formulas shows what upper_num and lower_num represents: 2089 * upper_num = int128_num >> 64; 2090 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2091 */ 2092 u64 upper_num, lower_num; 2093 2094 #ifdef __BIG_ENDIAN_BITFIELD 2095 upper_num = *(u64 *)data; 2096 lower_num = *(u64 *)(data + 8); 2097 #else 2098 upper_num = *(u64 *)(data + 8); 2099 lower_num = *(u64 *)data; 2100 #endif 2101 if (upper_num == 0) 2102 btf_show_type_value(show, "0x%llx", lower_num); 2103 else 2104 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2105 lower_num); 2106 } 2107 2108 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2109 u16 right_shift_bits) 2110 { 2111 u64 upper_num, lower_num; 2112 2113 #ifdef __BIG_ENDIAN_BITFIELD 2114 upper_num = print_num[0]; 2115 lower_num = print_num[1]; 2116 #else 2117 upper_num = print_num[1]; 2118 lower_num = print_num[0]; 2119 #endif 2120 2121 /* shake out un-needed bits by shift/or operations */ 2122 if (left_shift_bits >= 64) { 2123 upper_num = lower_num << (left_shift_bits - 64); 2124 lower_num = 0; 2125 } else { 2126 upper_num = (upper_num << left_shift_bits) | 2127 (lower_num >> (64 - left_shift_bits)); 2128 lower_num = lower_num << left_shift_bits; 2129 } 2130 2131 if (right_shift_bits >= 64) { 2132 lower_num = upper_num >> (right_shift_bits - 64); 2133 upper_num = 0; 2134 } else { 2135 lower_num = (lower_num >> right_shift_bits) | 2136 (upper_num << (64 - right_shift_bits)); 2137 upper_num = upper_num >> right_shift_bits; 2138 } 2139 2140 #ifdef __BIG_ENDIAN_BITFIELD 2141 print_num[0] = upper_num; 2142 print_num[1] = lower_num; 2143 #else 2144 print_num[0] = lower_num; 2145 print_num[1] = upper_num; 2146 #endif 2147 } 2148 2149 static void btf_bitfield_show(void *data, u8 bits_offset, 2150 u8 nr_bits, struct btf_show *show) 2151 { 2152 u16 left_shift_bits, right_shift_bits; 2153 u8 nr_copy_bytes; 2154 u8 nr_copy_bits; 2155 u64 print_num[2] = {}; 2156 2157 nr_copy_bits = nr_bits + bits_offset; 2158 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2159 2160 memcpy(print_num, data, nr_copy_bytes); 2161 2162 #ifdef __BIG_ENDIAN_BITFIELD 2163 left_shift_bits = bits_offset; 2164 #else 2165 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2166 #endif 2167 right_shift_bits = BITS_PER_U128 - nr_bits; 2168 2169 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2170 btf_int128_print(show, print_num); 2171 } 2172 2173 2174 static void btf_int_bits_show(const struct btf *btf, 2175 const struct btf_type *t, 2176 void *data, u8 bits_offset, 2177 struct btf_show *show) 2178 { 2179 u32 int_data = btf_type_int(t); 2180 u8 nr_bits = BTF_INT_BITS(int_data); 2181 u8 total_bits_offset; 2182 2183 /* 2184 * bits_offset is at most 7. 2185 * BTF_INT_OFFSET() cannot exceed 128 bits. 2186 */ 2187 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2188 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2189 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2190 btf_bitfield_show(data, bits_offset, nr_bits, show); 2191 } 2192 2193 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2194 u32 type_id, void *data, u8 bits_offset, 2195 struct btf_show *show) 2196 { 2197 u32 int_data = btf_type_int(t); 2198 u8 encoding = BTF_INT_ENCODING(int_data); 2199 bool sign = encoding & BTF_INT_SIGNED; 2200 u8 nr_bits = BTF_INT_BITS(int_data); 2201 void *safe_data; 2202 2203 safe_data = btf_show_start_type(show, t, type_id, data); 2204 if (!safe_data) 2205 return; 2206 2207 if (bits_offset || BTF_INT_OFFSET(int_data) || 2208 BITS_PER_BYTE_MASKED(nr_bits)) { 2209 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2210 goto out; 2211 } 2212 2213 switch (nr_bits) { 2214 case 128: 2215 btf_int128_print(show, safe_data); 2216 break; 2217 case 64: 2218 if (sign) 2219 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2220 else 2221 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2222 break; 2223 case 32: 2224 if (sign) 2225 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2226 else 2227 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2228 break; 2229 case 16: 2230 if (sign) 2231 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2232 else 2233 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2234 break; 2235 case 8: 2236 if (show->state.array_encoding == BTF_INT_CHAR) { 2237 /* check for null terminator */ 2238 if (show->state.array_terminated) 2239 break; 2240 if (*(char *)data == '\0') { 2241 show->state.array_terminated = 1; 2242 break; 2243 } 2244 if (isprint(*(char *)data)) { 2245 btf_show_type_value(show, "'%c'", 2246 *(char *)safe_data); 2247 break; 2248 } 2249 } 2250 if (sign) 2251 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2252 else 2253 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2254 break; 2255 default: 2256 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2257 break; 2258 } 2259 out: 2260 btf_show_end_type(show); 2261 } 2262 2263 static const struct btf_kind_operations int_ops = { 2264 .check_meta = btf_int_check_meta, 2265 .resolve = btf_df_resolve, 2266 .check_member = btf_int_check_member, 2267 .check_kflag_member = btf_int_check_kflag_member, 2268 .log_details = btf_int_log, 2269 .show = btf_int_show, 2270 }; 2271 2272 static int btf_modifier_check_member(struct btf_verifier_env *env, 2273 const struct btf_type *struct_type, 2274 const struct btf_member *member, 2275 const struct btf_type *member_type) 2276 { 2277 const struct btf_type *resolved_type; 2278 u32 resolved_type_id = member->type; 2279 struct btf_member resolved_member; 2280 struct btf *btf = env->btf; 2281 2282 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2283 if (!resolved_type) { 2284 btf_verifier_log_member(env, struct_type, member, 2285 "Invalid member"); 2286 return -EINVAL; 2287 } 2288 2289 resolved_member = *member; 2290 resolved_member.type = resolved_type_id; 2291 2292 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2293 &resolved_member, 2294 resolved_type); 2295 } 2296 2297 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2298 const struct btf_type *struct_type, 2299 const struct btf_member *member, 2300 const struct btf_type *member_type) 2301 { 2302 const struct btf_type *resolved_type; 2303 u32 resolved_type_id = member->type; 2304 struct btf_member resolved_member; 2305 struct btf *btf = env->btf; 2306 2307 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2308 if (!resolved_type) { 2309 btf_verifier_log_member(env, struct_type, member, 2310 "Invalid member"); 2311 return -EINVAL; 2312 } 2313 2314 resolved_member = *member; 2315 resolved_member.type = resolved_type_id; 2316 2317 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2318 &resolved_member, 2319 resolved_type); 2320 } 2321 2322 static int btf_ptr_check_member(struct btf_verifier_env *env, 2323 const struct btf_type *struct_type, 2324 const struct btf_member *member, 2325 const struct btf_type *member_type) 2326 { 2327 u32 struct_size, struct_bits_off, bytes_offset; 2328 2329 struct_size = struct_type->size; 2330 struct_bits_off = member->offset; 2331 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2332 2333 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2334 btf_verifier_log_member(env, struct_type, member, 2335 "Member is not byte aligned"); 2336 return -EINVAL; 2337 } 2338 2339 if (struct_size - bytes_offset < sizeof(void *)) { 2340 btf_verifier_log_member(env, struct_type, member, 2341 "Member exceeds struct_size"); 2342 return -EINVAL; 2343 } 2344 2345 return 0; 2346 } 2347 2348 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2349 const struct btf_type *t, 2350 u32 meta_left) 2351 { 2352 const char *value; 2353 2354 if (btf_type_vlen(t)) { 2355 btf_verifier_log_type(env, t, "vlen != 0"); 2356 return -EINVAL; 2357 } 2358 2359 if (btf_type_kflag(t)) { 2360 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2361 return -EINVAL; 2362 } 2363 2364 if (!BTF_TYPE_ID_VALID(t->type)) { 2365 btf_verifier_log_type(env, t, "Invalid type_id"); 2366 return -EINVAL; 2367 } 2368 2369 /* typedef/type_tag type must have a valid name, and other ref types, 2370 * volatile, const, restrict, should have a null name. 2371 */ 2372 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2373 if (!t->name_off || 2374 !btf_name_valid_identifier(env->btf, t->name_off)) { 2375 btf_verifier_log_type(env, t, "Invalid name"); 2376 return -EINVAL; 2377 } 2378 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2379 value = btf_name_by_offset(env->btf, t->name_off); 2380 if (!value || !value[0]) { 2381 btf_verifier_log_type(env, t, "Invalid name"); 2382 return -EINVAL; 2383 } 2384 } else { 2385 if (t->name_off) { 2386 btf_verifier_log_type(env, t, "Invalid name"); 2387 return -EINVAL; 2388 } 2389 } 2390 2391 btf_verifier_log_type(env, t, NULL); 2392 2393 return 0; 2394 } 2395 2396 static int btf_modifier_resolve(struct btf_verifier_env *env, 2397 const struct resolve_vertex *v) 2398 { 2399 const struct btf_type *t = v->t; 2400 const struct btf_type *next_type; 2401 u32 next_type_id = t->type; 2402 struct btf *btf = env->btf; 2403 2404 next_type = btf_type_by_id(btf, next_type_id); 2405 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2406 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2407 return -EINVAL; 2408 } 2409 2410 if (!env_type_is_resolve_sink(env, next_type) && 2411 !env_type_is_resolved(env, next_type_id)) 2412 return env_stack_push(env, next_type, next_type_id); 2413 2414 /* Figure out the resolved next_type_id with size. 2415 * They will be stored in the current modifier's 2416 * resolved_ids and resolved_sizes such that it can 2417 * save us a few type-following when we use it later (e.g. in 2418 * pretty print). 2419 */ 2420 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2421 if (env_type_is_resolved(env, next_type_id)) 2422 next_type = btf_type_id_resolve(btf, &next_type_id); 2423 2424 /* "typedef void new_void", "const void"...etc */ 2425 if (!btf_type_is_void(next_type) && 2426 !btf_type_is_fwd(next_type) && 2427 !btf_type_is_func_proto(next_type)) { 2428 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2429 return -EINVAL; 2430 } 2431 } 2432 2433 env_stack_pop_resolved(env, next_type_id, 0); 2434 2435 return 0; 2436 } 2437 2438 static int btf_var_resolve(struct btf_verifier_env *env, 2439 const struct resolve_vertex *v) 2440 { 2441 const struct btf_type *next_type; 2442 const struct btf_type *t = v->t; 2443 u32 next_type_id = t->type; 2444 struct btf *btf = env->btf; 2445 2446 next_type = btf_type_by_id(btf, next_type_id); 2447 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2448 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2449 return -EINVAL; 2450 } 2451 2452 if (!env_type_is_resolve_sink(env, next_type) && 2453 !env_type_is_resolved(env, next_type_id)) 2454 return env_stack_push(env, next_type, next_type_id); 2455 2456 if (btf_type_is_modifier(next_type)) { 2457 const struct btf_type *resolved_type; 2458 u32 resolved_type_id; 2459 2460 resolved_type_id = next_type_id; 2461 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2462 2463 if (btf_type_is_ptr(resolved_type) && 2464 !env_type_is_resolve_sink(env, resolved_type) && 2465 !env_type_is_resolved(env, resolved_type_id)) 2466 return env_stack_push(env, resolved_type, 2467 resolved_type_id); 2468 } 2469 2470 /* We must resolve to something concrete at this point, no 2471 * forward types or similar that would resolve to size of 2472 * zero is allowed. 2473 */ 2474 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2475 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2476 return -EINVAL; 2477 } 2478 2479 env_stack_pop_resolved(env, next_type_id, 0); 2480 2481 return 0; 2482 } 2483 2484 static int btf_ptr_resolve(struct btf_verifier_env *env, 2485 const struct resolve_vertex *v) 2486 { 2487 const struct btf_type *next_type; 2488 const struct btf_type *t = v->t; 2489 u32 next_type_id = t->type; 2490 struct btf *btf = env->btf; 2491 2492 next_type = btf_type_by_id(btf, next_type_id); 2493 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2494 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2495 return -EINVAL; 2496 } 2497 2498 if (!env_type_is_resolve_sink(env, next_type) && 2499 !env_type_is_resolved(env, next_type_id)) 2500 return env_stack_push(env, next_type, next_type_id); 2501 2502 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2503 * the modifier may have stopped resolving when it was resolved 2504 * to a ptr (last-resolved-ptr). 2505 * 2506 * We now need to continue from the last-resolved-ptr to 2507 * ensure the last-resolved-ptr will not referring back to 2508 * the currenct ptr (t). 2509 */ 2510 if (btf_type_is_modifier(next_type)) { 2511 const struct btf_type *resolved_type; 2512 u32 resolved_type_id; 2513 2514 resolved_type_id = next_type_id; 2515 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2516 2517 if (btf_type_is_ptr(resolved_type) && 2518 !env_type_is_resolve_sink(env, resolved_type) && 2519 !env_type_is_resolved(env, resolved_type_id)) 2520 return env_stack_push(env, resolved_type, 2521 resolved_type_id); 2522 } 2523 2524 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2525 if (env_type_is_resolved(env, next_type_id)) 2526 next_type = btf_type_id_resolve(btf, &next_type_id); 2527 2528 if (!btf_type_is_void(next_type) && 2529 !btf_type_is_fwd(next_type) && 2530 !btf_type_is_func_proto(next_type)) { 2531 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2532 return -EINVAL; 2533 } 2534 } 2535 2536 env_stack_pop_resolved(env, next_type_id, 0); 2537 2538 return 0; 2539 } 2540 2541 static void btf_modifier_show(const struct btf *btf, 2542 const struct btf_type *t, 2543 u32 type_id, void *data, 2544 u8 bits_offset, struct btf_show *show) 2545 { 2546 if (btf->resolved_ids) 2547 t = btf_type_id_resolve(btf, &type_id); 2548 else 2549 t = btf_type_skip_modifiers(btf, type_id, NULL); 2550 2551 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2552 } 2553 2554 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2555 u32 type_id, void *data, u8 bits_offset, 2556 struct btf_show *show) 2557 { 2558 t = btf_type_id_resolve(btf, &type_id); 2559 2560 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2561 } 2562 2563 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2564 u32 type_id, void *data, u8 bits_offset, 2565 struct btf_show *show) 2566 { 2567 void *safe_data; 2568 2569 safe_data = btf_show_start_type(show, t, type_id, data); 2570 if (!safe_data) 2571 return; 2572 2573 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2574 if (show->flags & BTF_SHOW_PTR_RAW) 2575 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2576 else 2577 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2578 btf_show_end_type(show); 2579 } 2580 2581 static void btf_ref_type_log(struct btf_verifier_env *env, 2582 const struct btf_type *t) 2583 { 2584 btf_verifier_log(env, "type_id=%u", t->type); 2585 } 2586 2587 static struct btf_kind_operations modifier_ops = { 2588 .check_meta = btf_ref_type_check_meta, 2589 .resolve = btf_modifier_resolve, 2590 .check_member = btf_modifier_check_member, 2591 .check_kflag_member = btf_modifier_check_kflag_member, 2592 .log_details = btf_ref_type_log, 2593 .show = btf_modifier_show, 2594 }; 2595 2596 static struct btf_kind_operations ptr_ops = { 2597 .check_meta = btf_ref_type_check_meta, 2598 .resolve = btf_ptr_resolve, 2599 .check_member = btf_ptr_check_member, 2600 .check_kflag_member = btf_generic_check_kflag_member, 2601 .log_details = btf_ref_type_log, 2602 .show = btf_ptr_show, 2603 }; 2604 2605 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2606 const struct btf_type *t, 2607 u32 meta_left) 2608 { 2609 if (btf_type_vlen(t)) { 2610 btf_verifier_log_type(env, t, "vlen != 0"); 2611 return -EINVAL; 2612 } 2613 2614 if (t->type) { 2615 btf_verifier_log_type(env, t, "type != 0"); 2616 return -EINVAL; 2617 } 2618 2619 /* fwd type must have a valid name */ 2620 if (!t->name_off || 2621 !btf_name_valid_identifier(env->btf, t->name_off)) { 2622 btf_verifier_log_type(env, t, "Invalid name"); 2623 return -EINVAL; 2624 } 2625 2626 btf_verifier_log_type(env, t, NULL); 2627 2628 return 0; 2629 } 2630 2631 static void btf_fwd_type_log(struct btf_verifier_env *env, 2632 const struct btf_type *t) 2633 { 2634 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2635 } 2636 2637 static struct btf_kind_operations fwd_ops = { 2638 .check_meta = btf_fwd_check_meta, 2639 .resolve = btf_df_resolve, 2640 .check_member = btf_df_check_member, 2641 .check_kflag_member = btf_df_check_kflag_member, 2642 .log_details = btf_fwd_type_log, 2643 .show = btf_df_show, 2644 }; 2645 2646 static int btf_array_check_member(struct btf_verifier_env *env, 2647 const struct btf_type *struct_type, 2648 const struct btf_member *member, 2649 const struct btf_type *member_type) 2650 { 2651 u32 struct_bits_off = member->offset; 2652 u32 struct_size, bytes_offset; 2653 u32 array_type_id, array_size; 2654 struct btf *btf = env->btf; 2655 2656 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2657 btf_verifier_log_member(env, struct_type, member, 2658 "Member is not byte aligned"); 2659 return -EINVAL; 2660 } 2661 2662 array_type_id = member->type; 2663 btf_type_id_size(btf, &array_type_id, &array_size); 2664 struct_size = struct_type->size; 2665 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2666 if (struct_size - bytes_offset < array_size) { 2667 btf_verifier_log_member(env, struct_type, member, 2668 "Member exceeds struct_size"); 2669 return -EINVAL; 2670 } 2671 2672 return 0; 2673 } 2674 2675 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2676 const struct btf_type *t, 2677 u32 meta_left) 2678 { 2679 const struct btf_array *array = btf_type_array(t); 2680 u32 meta_needed = sizeof(*array); 2681 2682 if (meta_left < meta_needed) { 2683 btf_verifier_log_basic(env, t, 2684 "meta_left:%u meta_needed:%u", 2685 meta_left, meta_needed); 2686 return -EINVAL; 2687 } 2688 2689 /* array type should not have a name */ 2690 if (t->name_off) { 2691 btf_verifier_log_type(env, t, "Invalid name"); 2692 return -EINVAL; 2693 } 2694 2695 if (btf_type_vlen(t)) { 2696 btf_verifier_log_type(env, t, "vlen != 0"); 2697 return -EINVAL; 2698 } 2699 2700 if (btf_type_kflag(t)) { 2701 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2702 return -EINVAL; 2703 } 2704 2705 if (t->size) { 2706 btf_verifier_log_type(env, t, "size != 0"); 2707 return -EINVAL; 2708 } 2709 2710 /* Array elem type and index type cannot be in type void, 2711 * so !array->type and !array->index_type are not allowed. 2712 */ 2713 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2714 btf_verifier_log_type(env, t, "Invalid elem"); 2715 return -EINVAL; 2716 } 2717 2718 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2719 btf_verifier_log_type(env, t, "Invalid index"); 2720 return -EINVAL; 2721 } 2722 2723 btf_verifier_log_type(env, t, NULL); 2724 2725 return meta_needed; 2726 } 2727 2728 static int btf_array_resolve(struct btf_verifier_env *env, 2729 const struct resolve_vertex *v) 2730 { 2731 const struct btf_array *array = btf_type_array(v->t); 2732 const struct btf_type *elem_type, *index_type; 2733 u32 elem_type_id, index_type_id; 2734 struct btf *btf = env->btf; 2735 u32 elem_size; 2736 2737 /* Check array->index_type */ 2738 index_type_id = array->index_type; 2739 index_type = btf_type_by_id(btf, index_type_id); 2740 if (btf_type_nosize_or_null(index_type) || 2741 btf_type_is_resolve_source_only(index_type)) { 2742 btf_verifier_log_type(env, v->t, "Invalid index"); 2743 return -EINVAL; 2744 } 2745 2746 if (!env_type_is_resolve_sink(env, index_type) && 2747 !env_type_is_resolved(env, index_type_id)) 2748 return env_stack_push(env, index_type, index_type_id); 2749 2750 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2751 if (!index_type || !btf_type_is_int(index_type) || 2752 !btf_type_int_is_regular(index_type)) { 2753 btf_verifier_log_type(env, v->t, "Invalid index"); 2754 return -EINVAL; 2755 } 2756 2757 /* Check array->type */ 2758 elem_type_id = array->type; 2759 elem_type = btf_type_by_id(btf, elem_type_id); 2760 if (btf_type_nosize_or_null(elem_type) || 2761 btf_type_is_resolve_source_only(elem_type)) { 2762 btf_verifier_log_type(env, v->t, 2763 "Invalid elem"); 2764 return -EINVAL; 2765 } 2766 2767 if (!env_type_is_resolve_sink(env, elem_type) && 2768 !env_type_is_resolved(env, elem_type_id)) 2769 return env_stack_push(env, elem_type, elem_type_id); 2770 2771 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2772 if (!elem_type) { 2773 btf_verifier_log_type(env, v->t, "Invalid elem"); 2774 return -EINVAL; 2775 } 2776 2777 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2778 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2779 return -EINVAL; 2780 } 2781 2782 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2783 btf_verifier_log_type(env, v->t, 2784 "Array size overflows U32_MAX"); 2785 return -EINVAL; 2786 } 2787 2788 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2789 2790 return 0; 2791 } 2792 2793 static void btf_array_log(struct btf_verifier_env *env, 2794 const struct btf_type *t) 2795 { 2796 const struct btf_array *array = btf_type_array(t); 2797 2798 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2799 array->type, array->index_type, array->nelems); 2800 } 2801 2802 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2803 u32 type_id, void *data, u8 bits_offset, 2804 struct btf_show *show) 2805 { 2806 const struct btf_array *array = btf_type_array(t); 2807 const struct btf_kind_operations *elem_ops; 2808 const struct btf_type *elem_type; 2809 u32 i, elem_size = 0, elem_type_id; 2810 u16 encoding = 0; 2811 2812 elem_type_id = array->type; 2813 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2814 if (elem_type && btf_type_has_size(elem_type)) 2815 elem_size = elem_type->size; 2816 2817 if (elem_type && btf_type_is_int(elem_type)) { 2818 u32 int_type = btf_type_int(elem_type); 2819 2820 encoding = BTF_INT_ENCODING(int_type); 2821 2822 /* 2823 * BTF_INT_CHAR encoding never seems to be set for 2824 * char arrays, so if size is 1 and element is 2825 * printable as a char, we'll do that. 2826 */ 2827 if (elem_size == 1) 2828 encoding = BTF_INT_CHAR; 2829 } 2830 2831 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2832 return; 2833 2834 if (!elem_type) 2835 goto out; 2836 elem_ops = btf_type_ops(elem_type); 2837 2838 for (i = 0; i < array->nelems; i++) { 2839 2840 btf_show_start_array_member(show); 2841 2842 elem_ops->show(btf, elem_type, elem_type_id, data, 2843 bits_offset, show); 2844 data += elem_size; 2845 2846 btf_show_end_array_member(show); 2847 2848 if (show->state.array_terminated) 2849 break; 2850 } 2851 out: 2852 btf_show_end_array_type(show); 2853 } 2854 2855 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 2856 u32 type_id, void *data, u8 bits_offset, 2857 struct btf_show *show) 2858 { 2859 const struct btf_member *m = show->state.member; 2860 2861 /* 2862 * First check if any members would be shown (are non-zero). 2863 * See comments above "struct btf_show" definition for more 2864 * details on how this works at a high-level. 2865 */ 2866 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 2867 if (!show->state.depth_check) { 2868 show->state.depth_check = show->state.depth + 1; 2869 show->state.depth_to_show = 0; 2870 } 2871 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2872 show->state.member = m; 2873 2874 if (show->state.depth_check != show->state.depth + 1) 2875 return; 2876 show->state.depth_check = 0; 2877 2878 if (show->state.depth_to_show <= show->state.depth) 2879 return; 2880 /* 2881 * Reaching here indicates we have recursed and found 2882 * non-zero array member(s). 2883 */ 2884 } 2885 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2886 } 2887 2888 static struct btf_kind_operations array_ops = { 2889 .check_meta = btf_array_check_meta, 2890 .resolve = btf_array_resolve, 2891 .check_member = btf_array_check_member, 2892 .check_kflag_member = btf_generic_check_kflag_member, 2893 .log_details = btf_array_log, 2894 .show = btf_array_show, 2895 }; 2896 2897 static int btf_struct_check_member(struct btf_verifier_env *env, 2898 const struct btf_type *struct_type, 2899 const struct btf_member *member, 2900 const struct btf_type *member_type) 2901 { 2902 u32 struct_bits_off = member->offset; 2903 u32 struct_size, bytes_offset; 2904 2905 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2906 btf_verifier_log_member(env, struct_type, member, 2907 "Member is not byte aligned"); 2908 return -EINVAL; 2909 } 2910 2911 struct_size = struct_type->size; 2912 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2913 if (struct_size - bytes_offset < member_type->size) { 2914 btf_verifier_log_member(env, struct_type, member, 2915 "Member exceeds struct_size"); 2916 return -EINVAL; 2917 } 2918 2919 return 0; 2920 } 2921 2922 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 2923 const struct btf_type *t, 2924 u32 meta_left) 2925 { 2926 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 2927 const struct btf_member *member; 2928 u32 meta_needed, last_offset; 2929 struct btf *btf = env->btf; 2930 u32 struct_size = t->size; 2931 u32 offset; 2932 u16 i; 2933 2934 meta_needed = btf_type_vlen(t) * sizeof(*member); 2935 if (meta_left < meta_needed) { 2936 btf_verifier_log_basic(env, t, 2937 "meta_left:%u meta_needed:%u", 2938 meta_left, meta_needed); 2939 return -EINVAL; 2940 } 2941 2942 /* struct type either no name or a valid one */ 2943 if (t->name_off && 2944 !btf_name_valid_identifier(env->btf, t->name_off)) { 2945 btf_verifier_log_type(env, t, "Invalid name"); 2946 return -EINVAL; 2947 } 2948 2949 btf_verifier_log_type(env, t, NULL); 2950 2951 last_offset = 0; 2952 for_each_member(i, t, member) { 2953 if (!btf_name_offset_valid(btf, member->name_off)) { 2954 btf_verifier_log_member(env, t, member, 2955 "Invalid member name_offset:%u", 2956 member->name_off); 2957 return -EINVAL; 2958 } 2959 2960 /* struct member either no name or a valid one */ 2961 if (member->name_off && 2962 !btf_name_valid_identifier(btf, member->name_off)) { 2963 btf_verifier_log_member(env, t, member, "Invalid name"); 2964 return -EINVAL; 2965 } 2966 /* A member cannot be in type void */ 2967 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 2968 btf_verifier_log_member(env, t, member, 2969 "Invalid type_id"); 2970 return -EINVAL; 2971 } 2972 2973 offset = __btf_member_bit_offset(t, member); 2974 if (is_union && offset) { 2975 btf_verifier_log_member(env, t, member, 2976 "Invalid member bits_offset"); 2977 return -EINVAL; 2978 } 2979 2980 /* 2981 * ">" instead of ">=" because the last member could be 2982 * "char a[0];" 2983 */ 2984 if (last_offset > offset) { 2985 btf_verifier_log_member(env, t, member, 2986 "Invalid member bits_offset"); 2987 return -EINVAL; 2988 } 2989 2990 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 2991 btf_verifier_log_member(env, t, member, 2992 "Member bits_offset exceeds its struct size"); 2993 return -EINVAL; 2994 } 2995 2996 btf_verifier_log_member(env, t, member, NULL); 2997 last_offset = offset; 2998 } 2999 3000 return meta_needed; 3001 } 3002 3003 static int btf_struct_resolve(struct btf_verifier_env *env, 3004 const struct resolve_vertex *v) 3005 { 3006 const struct btf_member *member; 3007 int err; 3008 u16 i; 3009 3010 /* Before continue resolving the next_member, 3011 * ensure the last member is indeed resolved to a 3012 * type with size info. 3013 */ 3014 if (v->next_member) { 3015 const struct btf_type *last_member_type; 3016 const struct btf_member *last_member; 3017 u16 last_member_type_id; 3018 3019 last_member = btf_type_member(v->t) + v->next_member - 1; 3020 last_member_type_id = last_member->type; 3021 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3022 last_member_type_id))) 3023 return -EINVAL; 3024 3025 last_member_type = btf_type_by_id(env->btf, 3026 last_member_type_id); 3027 if (btf_type_kflag(v->t)) 3028 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3029 last_member, 3030 last_member_type); 3031 else 3032 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3033 last_member, 3034 last_member_type); 3035 if (err) 3036 return err; 3037 } 3038 3039 for_each_member_from(i, v->next_member, v->t, member) { 3040 u32 member_type_id = member->type; 3041 const struct btf_type *member_type = btf_type_by_id(env->btf, 3042 member_type_id); 3043 3044 if (btf_type_nosize_or_null(member_type) || 3045 btf_type_is_resolve_source_only(member_type)) { 3046 btf_verifier_log_member(env, v->t, member, 3047 "Invalid member"); 3048 return -EINVAL; 3049 } 3050 3051 if (!env_type_is_resolve_sink(env, member_type) && 3052 !env_type_is_resolved(env, member_type_id)) { 3053 env_stack_set_next_member(env, i + 1); 3054 return env_stack_push(env, member_type, member_type_id); 3055 } 3056 3057 if (btf_type_kflag(v->t)) 3058 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3059 member, 3060 member_type); 3061 else 3062 err = btf_type_ops(member_type)->check_member(env, v->t, 3063 member, 3064 member_type); 3065 if (err) 3066 return err; 3067 } 3068 3069 env_stack_pop_resolved(env, 0, 0); 3070 3071 return 0; 3072 } 3073 3074 static void btf_struct_log(struct btf_verifier_env *env, 3075 const struct btf_type *t) 3076 { 3077 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3078 } 3079 3080 static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t, 3081 const char *name, int sz, int align) 3082 { 3083 const struct btf_member *member; 3084 u32 i, off = -ENOENT; 3085 3086 for_each_member(i, t, member) { 3087 const struct btf_type *member_type = btf_type_by_id(btf, 3088 member->type); 3089 if (!__btf_type_is_struct(member_type)) 3090 continue; 3091 if (member_type->size != sz) 3092 continue; 3093 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), name)) 3094 continue; 3095 if (off != -ENOENT) 3096 /* only one such field is allowed */ 3097 return -E2BIG; 3098 off = __btf_member_bit_offset(t, member); 3099 if (off % 8) 3100 /* valid C code cannot generate such BTF */ 3101 return -EINVAL; 3102 off /= 8; 3103 if (off % align) 3104 return -EINVAL; 3105 } 3106 return off; 3107 } 3108 3109 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3110 const char *name, int sz, int align) 3111 { 3112 const struct btf_var_secinfo *vsi; 3113 u32 i, off = -ENOENT; 3114 3115 for_each_vsi(i, t, vsi) { 3116 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3117 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3118 3119 if (!__btf_type_is_struct(var_type)) 3120 continue; 3121 if (var_type->size != sz) 3122 continue; 3123 if (vsi->size != sz) 3124 continue; 3125 if (strcmp(__btf_name_by_offset(btf, var_type->name_off), name)) 3126 continue; 3127 if (off != -ENOENT) 3128 /* only one such field is allowed */ 3129 return -E2BIG; 3130 off = vsi->offset; 3131 if (off % align) 3132 return -EINVAL; 3133 } 3134 return off; 3135 } 3136 3137 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3138 const char *name, int sz, int align) 3139 { 3140 3141 if (__btf_type_is_struct(t)) 3142 return btf_find_struct_field(btf, t, name, sz, align); 3143 else if (btf_type_is_datasec(t)) 3144 return btf_find_datasec_var(btf, t, name, sz, align); 3145 return -EINVAL; 3146 } 3147 3148 /* find 'struct bpf_spin_lock' in map value. 3149 * return >= 0 offset if found 3150 * and < 0 in case of error 3151 */ 3152 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) 3153 { 3154 return btf_find_field(btf, t, "bpf_spin_lock", 3155 sizeof(struct bpf_spin_lock), 3156 __alignof__(struct bpf_spin_lock)); 3157 } 3158 3159 int btf_find_timer(const struct btf *btf, const struct btf_type *t) 3160 { 3161 return btf_find_field(btf, t, "bpf_timer", 3162 sizeof(struct bpf_timer), 3163 __alignof__(struct bpf_timer)); 3164 } 3165 3166 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3167 u32 type_id, void *data, u8 bits_offset, 3168 struct btf_show *show) 3169 { 3170 const struct btf_member *member; 3171 void *safe_data; 3172 u32 i; 3173 3174 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3175 if (!safe_data) 3176 return; 3177 3178 for_each_member(i, t, member) { 3179 const struct btf_type *member_type = btf_type_by_id(btf, 3180 member->type); 3181 const struct btf_kind_operations *ops; 3182 u32 member_offset, bitfield_size; 3183 u32 bytes_offset; 3184 u8 bits8_offset; 3185 3186 btf_show_start_member(show, member); 3187 3188 member_offset = __btf_member_bit_offset(t, member); 3189 bitfield_size = __btf_member_bitfield_size(t, member); 3190 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3191 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3192 if (bitfield_size) { 3193 safe_data = btf_show_start_type(show, member_type, 3194 member->type, 3195 data + bytes_offset); 3196 if (safe_data) 3197 btf_bitfield_show(safe_data, 3198 bits8_offset, 3199 bitfield_size, show); 3200 btf_show_end_type(show); 3201 } else { 3202 ops = btf_type_ops(member_type); 3203 ops->show(btf, member_type, member->type, 3204 data + bytes_offset, bits8_offset, show); 3205 } 3206 3207 btf_show_end_member(show); 3208 } 3209 3210 btf_show_end_struct_type(show); 3211 } 3212 3213 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3214 u32 type_id, void *data, u8 bits_offset, 3215 struct btf_show *show) 3216 { 3217 const struct btf_member *m = show->state.member; 3218 3219 /* 3220 * First check if any members would be shown (are non-zero). 3221 * See comments above "struct btf_show" definition for more 3222 * details on how this works at a high-level. 3223 */ 3224 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3225 if (!show->state.depth_check) { 3226 show->state.depth_check = show->state.depth + 1; 3227 show->state.depth_to_show = 0; 3228 } 3229 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3230 /* Restore saved member data here */ 3231 show->state.member = m; 3232 if (show->state.depth_check != show->state.depth + 1) 3233 return; 3234 show->state.depth_check = 0; 3235 3236 if (show->state.depth_to_show <= show->state.depth) 3237 return; 3238 /* 3239 * Reaching here indicates we have recursed and found 3240 * non-zero child values. 3241 */ 3242 } 3243 3244 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3245 } 3246 3247 static struct btf_kind_operations struct_ops = { 3248 .check_meta = btf_struct_check_meta, 3249 .resolve = btf_struct_resolve, 3250 .check_member = btf_struct_check_member, 3251 .check_kflag_member = btf_generic_check_kflag_member, 3252 .log_details = btf_struct_log, 3253 .show = btf_struct_show, 3254 }; 3255 3256 static int btf_enum_check_member(struct btf_verifier_env *env, 3257 const struct btf_type *struct_type, 3258 const struct btf_member *member, 3259 const struct btf_type *member_type) 3260 { 3261 u32 struct_bits_off = member->offset; 3262 u32 struct_size, bytes_offset; 3263 3264 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3265 btf_verifier_log_member(env, struct_type, member, 3266 "Member is not byte aligned"); 3267 return -EINVAL; 3268 } 3269 3270 struct_size = struct_type->size; 3271 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3272 if (struct_size - bytes_offset < member_type->size) { 3273 btf_verifier_log_member(env, struct_type, member, 3274 "Member exceeds struct_size"); 3275 return -EINVAL; 3276 } 3277 3278 return 0; 3279 } 3280 3281 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 3282 const struct btf_type *struct_type, 3283 const struct btf_member *member, 3284 const struct btf_type *member_type) 3285 { 3286 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 3287 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 3288 3289 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 3290 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 3291 if (!nr_bits) { 3292 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3293 btf_verifier_log_member(env, struct_type, member, 3294 "Member is not byte aligned"); 3295 return -EINVAL; 3296 } 3297 3298 nr_bits = int_bitsize; 3299 } else if (nr_bits > int_bitsize) { 3300 btf_verifier_log_member(env, struct_type, member, 3301 "Invalid member bitfield_size"); 3302 return -EINVAL; 3303 } 3304 3305 struct_size = struct_type->size; 3306 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 3307 if (struct_size < bytes_end) { 3308 btf_verifier_log_member(env, struct_type, member, 3309 "Member exceeds struct_size"); 3310 return -EINVAL; 3311 } 3312 3313 return 0; 3314 } 3315 3316 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 3317 const struct btf_type *t, 3318 u32 meta_left) 3319 { 3320 const struct btf_enum *enums = btf_type_enum(t); 3321 struct btf *btf = env->btf; 3322 u16 i, nr_enums; 3323 u32 meta_needed; 3324 3325 nr_enums = btf_type_vlen(t); 3326 meta_needed = nr_enums * sizeof(*enums); 3327 3328 if (meta_left < meta_needed) { 3329 btf_verifier_log_basic(env, t, 3330 "meta_left:%u meta_needed:%u", 3331 meta_left, meta_needed); 3332 return -EINVAL; 3333 } 3334 3335 if (btf_type_kflag(t)) { 3336 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3337 return -EINVAL; 3338 } 3339 3340 if (t->size > 8 || !is_power_of_2(t->size)) { 3341 btf_verifier_log_type(env, t, "Unexpected size"); 3342 return -EINVAL; 3343 } 3344 3345 /* enum type either no name or a valid one */ 3346 if (t->name_off && 3347 !btf_name_valid_identifier(env->btf, t->name_off)) { 3348 btf_verifier_log_type(env, t, "Invalid name"); 3349 return -EINVAL; 3350 } 3351 3352 btf_verifier_log_type(env, t, NULL); 3353 3354 for (i = 0; i < nr_enums; i++) { 3355 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 3356 btf_verifier_log(env, "\tInvalid name_offset:%u", 3357 enums[i].name_off); 3358 return -EINVAL; 3359 } 3360 3361 /* enum member must have a valid name */ 3362 if (!enums[i].name_off || 3363 !btf_name_valid_identifier(btf, enums[i].name_off)) { 3364 btf_verifier_log_type(env, t, "Invalid name"); 3365 return -EINVAL; 3366 } 3367 3368 if (env->log.level == BPF_LOG_KERNEL) 3369 continue; 3370 btf_verifier_log(env, "\t%s val=%d\n", 3371 __btf_name_by_offset(btf, enums[i].name_off), 3372 enums[i].val); 3373 } 3374 3375 return meta_needed; 3376 } 3377 3378 static void btf_enum_log(struct btf_verifier_env *env, 3379 const struct btf_type *t) 3380 { 3381 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3382 } 3383 3384 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 3385 u32 type_id, void *data, u8 bits_offset, 3386 struct btf_show *show) 3387 { 3388 const struct btf_enum *enums = btf_type_enum(t); 3389 u32 i, nr_enums = btf_type_vlen(t); 3390 void *safe_data; 3391 int v; 3392 3393 safe_data = btf_show_start_type(show, t, type_id, data); 3394 if (!safe_data) 3395 return; 3396 3397 v = *(int *)safe_data; 3398 3399 for (i = 0; i < nr_enums; i++) { 3400 if (v != enums[i].val) 3401 continue; 3402 3403 btf_show_type_value(show, "%s", 3404 __btf_name_by_offset(btf, 3405 enums[i].name_off)); 3406 3407 btf_show_end_type(show); 3408 return; 3409 } 3410 3411 btf_show_type_value(show, "%d", v); 3412 btf_show_end_type(show); 3413 } 3414 3415 static struct btf_kind_operations enum_ops = { 3416 .check_meta = btf_enum_check_meta, 3417 .resolve = btf_df_resolve, 3418 .check_member = btf_enum_check_member, 3419 .check_kflag_member = btf_enum_check_kflag_member, 3420 .log_details = btf_enum_log, 3421 .show = btf_enum_show, 3422 }; 3423 3424 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 3425 const struct btf_type *t, 3426 u32 meta_left) 3427 { 3428 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 3429 3430 if (meta_left < meta_needed) { 3431 btf_verifier_log_basic(env, t, 3432 "meta_left:%u meta_needed:%u", 3433 meta_left, meta_needed); 3434 return -EINVAL; 3435 } 3436 3437 if (t->name_off) { 3438 btf_verifier_log_type(env, t, "Invalid name"); 3439 return -EINVAL; 3440 } 3441 3442 if (btf_type_kflag(t)) { 3443 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3444 return -EINVAL; 3445 } 3446 3447 btf_verifier_log_type(env, t, NULL); 3448 3449 return meta_needed; 3450 } 3451 3452 static void btf_func_proto_log(struct btf_verifier_env *env, 3453 const struct btf_type *t) 3454 { 3455 const struct btf_param *args = (const struct btf_param *)(t + 1); 3456 u16 nr_args = btf_type_vlen(t), i; 3457 3458 btf_verifier_log(env, "return=%u args=(", t->type); 3459 if (!nr_args) { 3460 btf_verifier_log(env, "void"); 3461 goto done; 3462 } 3463 3464 if (nr_args == 1 && !args[0].type) { 3465 /* Only one vararg */ 3466 btf_verifier_log(env, "vararg"); 3467 goto done; 3468 } 3469 3470 btf_verifier_log(env, "%u %s", args[0].type, 3471 __btf_name_by_offset(env->btf, 3472 args[0].name_off)); 3473 for (i = 1; i < nr_args - 1; i++) 3474 btf_verifier_log(env, ", %u %s", args[i].type, 3475 __btf_name_by_offset(env->btf, 3476 args[i].name_off)); 3477 3478 if (nr_args > 1) { 3479 const struct btf_param *last_arg = &args[nr_args - 1]; 3480 3481 if (last_arg->type) 3482 btf_verifier_log(env, ", %u %s", last_arg->type, 3483 __btf_name_by_offset(env->btf, 3484 last_arg->name_off)); 3485 else 3486 btf_verifier_log(env, ", vararg"); 3487 } 3488 3489 done: 3490 btf_verifier_log(env, ")"); 3491 } 3492 3493 static struct btf_kind_operations func_proto_ops = { 3494 .check_meta = btf_func_proto_check_meta, 3495 .resolve = btf_df_resolve, 3496 /* 3497 * BTF_KIND_FUNC_PROTO cannot be directly referred by 3498 * a struct's member. 3499 * 3500 * It should be a function pointer instead. 3501 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 3502 * 3503 * Hence, there is no btf_func_check_member(). 3504 */ 3505 .check_member = btf_df_check_member, 3506 .check_kflag_member = btf_df_check_kflag_member, 3507 .log_details = btf_func_proto_log, 3508 .show = btf_df_show, 3509 }; 3510 3511 static s32 btf_func_check_meta(struct btf_verifier_env *env, 3512 const struct btf_type *t, 3513 u32 meta_left) 3514 { 3515 if (!t->name_off || 3516 !btf_name_valid_identifier(env->btf, t->name_off)) { 3517 btf_verifier_log_type(env, t, "Invalid name"); 3518 return -EINVAL; 3519 } 3520 3521 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 3522 btf_verifier_log_type(env, t, "Invalid func linkage"); 3523 return -EINVAL; 3524 } 3525 3526 if (btf_type_kflag(t)) { 3527 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3528 return -EINVAL; 3529 } 3530 3531 btf_verifier_log_type(env, t, NULL); 3532 3533 return 0; 3534 } 3535 3536 static struct btf_kind_operations func_ops = { 3537 .check_meta = btf_func_check_meta, 3538 .resolve = btf_df_resolve, 3539 .check_member = btf_df_check_member, 3540 .check_kflag_member = btf_df_check_kflag_member, 3541 .log_details = btf_ref_type_log, 3542 .show = btf_df_show, 3543 }; 3544 3545 static s32 btf_var_check_meta(struct btf_verifier_env *env, 3546 const struct btf_type *t, 3547 u32 meta_left) 3548 { 3549 const struct btf_var *var; 3550 u32 meta_needed = sizeof(*var); 3551 3552 if (meta_left < meta_needed) { 3553 btf_verifier_log_basic(env, t, 3554 "meta_left:%u meta_needed:%u", 3555 meta_left, meta_needed); 3556 return -EINVAL; 3557 } 3558 3559 if (btf_type_vlen(t)) { 3560 btf_verifier_log_type(env, t, "vlen != 0"); 3561 return -EINVAL; 3562 } 3563 3564 if (btf_type_kflag(t)) { 3565 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3566 return -EINVAL; 3567 } 3568 3569 if (!t->name_off || 3570 !__btf_name_valid(env->btf, t->name_off, true)) { 3571 btf_verifier_log_type(env, t, "Invalid name"); 3572 return -EINVAL; 3573 } 3574 3575 /* A var cannot be in type void */ 3576 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 3577 btf_verifier_log_type(env, t, "Invalid type_id"); 3578 return -EINVAL; 3579 } 3580 3581 var = btf_type_var(t); 3582 if (var->linkage != BTF_VAR_STATIC && 3583 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 3584 btf_verifier_log_type(env, t, "Linkage not supported"); 3585 return -EINVAL; 3586 } 3587 3588 btf_verifier_log_type(env, t, NULL); 3589 3590 return meta_needed; 3591 } 3592 3593 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 3594 { 3595 const struct btf_var *var = btf_type_var(t); 3596 3597 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 3598 } 3599 3600 static const struct btf_kind_operations var_ops = { 3601 .check_meta = btf_var_check_meta, 3602 .resolve = btf_var_resolve, 3603 .check_member = btf_df_check_member, 3604 .check_kflag_member = btf_df_check_kflag_member, 3605 .log_details = btf_var_log, 3606 .show = btf_var_show, 3607 }; 3608 3609 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 3610 const struct btf_type *t, 3611 u32 meta_left) 3612 { 3613 const struct btf_var_secinfo *vsi; 3614 u64 last_vsi_end_off = 0, sum = 0; 3615 u32 i, meta_needed; 3616 3617 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 3618 if (meta_left < meta_needed) { 3619 btf_verifier_log_basic(env, t, 3620 "meta_left:%u meta_needed:%u", 3621 meta_left, meta_needed); 3622 return -EINVAL; 3623 } 3624 3625 if (!t->size) { 3626 btf_verifier_log_type(env, t, "size == 0"); 3627 return -EINVAL; 3628 } 3629 3630 if (btf_type_kflag(t)) { 3631 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3632 return -EINVAL; 3633 } 3634 3635 if (!t->name_off || 3636 !btf_name_valid_section(env->btf, t->name_off)) { 3637 btf_verifier_log_type(env, t, "Invalid name"); 3638 return -EINVAL; 3639 } 3640 3641 btf_verifier_log_type(env, t, NULL); 3642 3643 for_each_vsi(i, t, vsi) { 3644 /* A var cannot be in type void */ 3645 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 3646 btf_verifier_log_vsi(env, t, vsi, 3647 "Invalid type_id"); 3648 return -EINVAL; 3649 } 3650 3651 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 3652 btf_verifier_log_vsi(env, t, vsi, 3653 "Invalid offset"); 3654 return -EINVAL; 3655 } 3656 3657 if (!vsi->size || vsi->size > t->size) { 3658 btf_verifier_log_vsi(env, t, vsi, 3659 "Invalid size"); 3660 return -EINVAL; 3661 } 3662 3663 last_vsi_end_off = vsi->offset + vsi->size; 3664 if (last_vsi_end_off > t->size) { 3665 btf_verifier_log_vsi(env, t, vsi, 3666 "Invalid offset+size"); 3667 return -EINVAL; 3668 } 3669 3670 btf_verifier_log_vsi(env, t, vsi, NULL); 3671 sum += vsi->size; 3672 } 3673 3674 if (t->size < sum) { 3675 btf_verifier_log_type(env, t, "Invalid btf_info size"); 3676 return -EINVAL; 3677 } 3678 3679 return meta_needed; 3680 } 3681 3682 static int btf_datasec_resolve(struct btf_verifier_env *env, 3683 const struct resolve_vertex *v) 3684 { 3685 const struct btf_var_secinfo *vsi; 3686 struct btf *btf = env->btf; 3687 u16 i; 3688 3689 for_each_vsi_from(i, v->next_member, v->t, vsi) { 3690 u32 var_type_id = vsi->type, type_id, type_size = 0; 3691 const struct btf_type *var_type = btf_type_by_id(env->btf, 3692 var_type_id); 3693 if (!var_type || !btf_type_is_var(var_type)) { 3694 btf_verifier_log_vsi(env, v->t, vsi, 3695 "Not a VAR kind member"); 3696 return -EINVAL; 3697 } 3698 3699 if (!env_type_is_resolve_sink(env, var_type) && 3700 !env_type_is_resolved(env, var_type_id)) { 3701 env_stack_set_next_member(env, i + 1); 3702 return env_stack_push(env, var_type, var_type_id); 3703 } 3704 3705 type_id = var_type->type; 3706 if (!btf_type_id_size(btf, &type_id, &type_size)) { 3707 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 3708 return -EINVAL; 3709 } 3710 3711 if (vsi->size < type_size) { 3712 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 3713 return -EINVAL; 3714 } 3715 } 3716 3717 env_stack_pop_resolved(env, 0, 0); 3718 return 0; 3719 } 3720 3721 static void btf_datasec_log(struct btf_verifier_env *env, 3722 const struct btf_type *t) 3723 { 3724 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3725 } 3726 3727 static void btf_datasec_show(const struct btf *btf, 3728 const struct btf_type *t, u32 type_id, 3729 void *data, u8 bits_offset, 3730 struct btf_show *show) 3731 { 3732 const struct btf_var_secinfo *vsi; 3733 const struct btf_type *var; 3734 u32 i; 3735 3736 if (!btf_show_start_type(show, t, type_id, data)) 3737 return; 3738 3739 btf_show_type_value(show, "section (\"%s\") = {", 3740 __btf_name_by_offset(btf, t->name_off)); 3741 for_each_vsi(i, t, vsi) { 3742 var = btf_type_by_id(btf, vsi->type); 3743 if (i) 3744 btf_show(show, ","); 3745 btf_type_ops(var)->show(btf, var, vsi->type, 3746 data + vsi->offset, bits_offset, show); 3747 } 3748 btf_show_end_type(show); 3749 } 3750 3751 static const struct btf_kind_operations datasec_ops = { 3752 .check_meta = btf_datasec_check_meta, 3753 .resolve = btf_datasec_resolve, 3754 .check_member = btf_df_check_member, 3755 .check_kflag_member = btf_df_check_kflag_member, 3756 .log_details = btf_datasec_log, 3757 .show = btf_datasec_show, 3758 }; 3759 3760 static s32 btf_float_check_meta(struct btf_verifier_env *env, 3761 const struct btf_type *t, 3762 u32 meta_left) 3763 { 3764 if (btf_type_vlen(t)) { 3765 btf_verifier_log_type(env, t, "vlen != 0"); 3766 return -EINVAL; 3767 } 3768 3769 if (btf_type_kflag(t)) { 3770 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3771 return -EINVAL; 3772 } 3773 3774 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 3775 t->size != 16) { 3776 btf_verifier_log_type(env, t, "Invalid type_size"); 3777 return -EINVAL; 3778 } 3779 3780 btf_verifier_log_type(env, t, NULL); 3781 3782 return 0; 3783 } 3784 3785 static int btf_float_check_member(struct btf_verifier_env *env, 3786 const struct btf_type *struct_type, 3787 const struct btf_member *member, 3788 const struct btf_type *member_type) 3789 { 3790 u64 start_offset_bytes; 3791 u64 end_offset_bytes; 3792 u64 misalign_bits; 3793 u64 align_bytes; 3794 u64 align_bits; 3795 3796 /* Different architectures have different alignment requirements, so 3797 * here we check only for the reasonable minimum. This way we ensure 3798 * that types after CO-RE can pass the kernel BTF verifier. 3799 */ 3800 align_bytes = min_t(u64, sizeof(void *), member_type->size); 3801 align_bits = align_bytes * BITS_PER_BYTE; 3802 div64_u64_rem(member->offset, align_bits, &misalign_bits); 3803 if (misalign_bits) { 3804 btf_verifier_log_member(env, struct_type, member, 3805 "Member is not properly aligned"); 3806 return -EINVAL; 3807 } 3808 3809 start_offset_bytes = member->offset / BITS_PER_BYTE; 3810 end_offset_bytes = start_offset_bytes + member_type->size; 3811 if (end_offset_bytes > struct_type->size) { 3812 btf_verifier_log_member(env, struct_type, member, 3813 "Member exceeds struct_size"); 3814 return -EINVAL; 3815 } 3816 3817 return 0; 3818 } 3819 3820 static void btf_float_log(struct btf_verifier_env *env, 3821 const struct btf_type *t) 3822 { 3823 btf_verifier_log(env, "size=%u", t->size); 3824 } 3825 3826 static const struct btf_kind_operations float_ops = { 3827 .check_meta = btf_float_check_meta, 3828 .resolve = btf_df_resolve, 3829 .check_member = btf_float_check_member, 3830 .check_kflag_member = btf_generic_check_kflag_member, 3831 .log_details = btf_float_log, 3832 .show = btf_df_show, 3833 }; 3834 3835 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 3836 const struct btf_type *t, 3837 u32 meta_left) 3838 { 3839 const struct btf_decl_tag *tag; 3840 u32 meta_needed = sizeof(*tag); 3841 s32 component_idx; 3842 const char *value; 3843 3844 if (meta_left < meta_needed) { 3845 btf_verifier_log_basic(env, t, 3846 "meta_left:%u meta_needed:%u", 3847 meta_left, meta_needed); 3848 return -EINVAL; 3849 } 3850 3851 value = btf_name_by_offset(env->btf, t->name_off); 3852 if (!value || !value[0]) { 3853 btf_verifier_log_type(env, t, "Invalid value"); 3854 return -EINVAL; 3855 } 3856 3857 if (btf_type_vlen(t)) { 3858 btf_verifier_log_type(env, t, "vlen != 0"); 3859 return -EINVAL; 3860 } 3861 3862 if (btf_type_kflag(t)) { 3863 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3864 return -EINVAL; 3865 } 3866 3867 component_idx = btf_type_decl_tag(t)->component_idx; 3868 if (component_idx < -1) { 3869 btf_verifier_log_type(env, t, "Invalid component_idx"); 3870 return -EINVAL; 3871 } 3872 3873 btf_verifier_log_type(env, t, NULL); 3874 3875 return meta_needed; 3876 } 3877 3878 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 3879 const struct resolve_vertex *v) 3880 { 3881 const struct btf_type *next_type; 3882 const struct btf_type *t = v->t; 3883 u32 next_type_id = t->type; 3884 struct btf *btf = env->btf; 3885 s32 component_idx; 3886 u32 vlen; 3887 3888 next_type = btf_type_by_id(btf, next_type_id); 3889 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 3890 btf_verifier_log_type(env, v->t, "Invalid type_id"); 3891 return -EINVAL; 3892 } 3893 3894 if (!env_type_is_resolve_sink(env, next_type) && 3895 !env_type_is_resolved(env, next_type_id)) 3896 return env_stack_push(env, next_type, next_type_id); 3897 3898 component_idx = btf_type_decl_tag(t)->component_idx; 3899 if (component_idx != -1) { 3900 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 3901 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 3902 return -EINVAL; 3903 } 3904 3905 if (btf_type_is_struct(next_type)) { 3906 vlen = btf_type_vlen(next_type); 3907 } else { 3908 /* next_type should be a function */ 3909 next_type = btf_type_by_id(btf, next_type->type); 3910 vlen = btf_type_vlen(next_type); 3911 } 3912 3913 if ((u32)component_idx >= vlen) { 3914 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 3915 return -EINVAL; 3916 } 3917 } 3918 3919 env_stack_pop_resolved(env, next_type_id, 0); 3920 3921 return 0; 3922 } 3923 3924 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 3925 { 3926 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 3927 btf_type_decl_tag(t)->component_idx); 3928 } 3929 3930 static const struct btf_kind_operations decl_tag_ops = { 3931 .check_meta = btf_decl_tag_check_meta, 3932 .resolve = btf_decl_tag_resolve, 3933 .check_member = btf_df_check_member, 3934 .check_kflag_member = btf_df_check_kflag_member, 3935 .log_details = btf_decl_tag_log, 3936 .show = btf_df_show, 3937 }; 3938 3939 static int btf_func_proto_check(struct btf_verifier_env *env, 3940 const struct btf_type *t) 3941 { 3942 const struct btf_type *ret_type; 3943 const struct btf_param *args; 3944 const struct btf *btf; 3945 u16 nr_args, i; 3946 int err; 3947 3948 btf = env->btf; 3949 args = (const struct btf_param *)(t + 1); 3950 nr_args = btf_type_vlen(t); 3951 3952 /* Check func return type which could be "void" (t->type == 0) */ 3953 if (t->type) { 3954 u32 ret_type_id = t->type; 3955 3956 ret_type = btf_type_by_id(btf, ret_type_id); 3957 if (!ret_type) { 3958 btf_verifier_log_type(env, t, "Invalid return type"); 3959 return -EINVAL; 3960 } 3961 3962 if (btf_type_needs_resolve(ret_type) && 3963 !env_type_is_resolved(env, ret_type_id)) { 3964 err = btf_resolve(env, ret_type, ret_type_id); 3965 if (err) 3966 return err; 3967 } 3968 3969 /* Ensure the return type is a type that has a size */ 3970 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 3971 btf_verifier_log_type(env, t, "Invalid return type"); 3972 return -EINVAL; 3973 } 3974 } 3975 3976 if (!nr_args) 3977 return 0; 3978 3979 /* Last func arg type_id could be 0 if it is a vararg */ 3980 if (!args[nr_args - 1].type) { 3981 if (args[nr_args - 1].name_off) { 3982 btf_verifier_log_type(env, t, "Invalid arg#%u", 3983 nr_args); 3984 return -EINVAL; 3985 } 3986 nr_args--; 3987 } 3988 3989 err = 0; 3990 for (i = 0; i < nr_args; i++) { 3991 const struct btf_type *arg_type; 3992 u32 arg_type_id; 3993 3994 arg_type_id = args[i].type; 3995 arg_type = btf_type_by_id(btf, arg_type_id); 3996 if (!arg_type) { 3997 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3998 err = -EINVAL; 3999 break; 4000 } 4001 4002 if (args[i].name_off && 4003 (!btf_name_offset_valid(btf, args[i].name_off) || 4004 !btf_name_valid_identifier(btf, args[i].name_off))) { 4005 btf_verifier_log_type(env, t, 4006 "Invalid arg#%u", i + 1); 4007 err = -EINVAL; 4008 break; 4009 } 4010 4011 if (btf_type_needs_resolve(arg_type) && 4012 !env_type_is_resolved(env, arg_type_id)) { 4013 err = btf_resolve(env, arg_type, arg_type_id); 4014 if (err) 4015 break; 4016 } 4017 4018 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 4019 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4020 err = -EINVAL; 4021 break; 4022 } 4023 } 4024 4025 return err; 4026 } 4027 4028 static int btf_func_check(struct btf_verifier_env *env, 4029 const struct btf_type *t) 4030 { 4031 const struct btf_type *proto_type; 4032 const struct btf_param *args; 4033 const struct btf *btf; 4034 u16 nr_args, i; 4035 4036 btf = env->btf; 4037 proto_type = btf_type_by_id(btf, t->type); 4038 4039 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 4040 btf_verifier_log_type(env, t, "Invalid type_id"); 4041 return -EINVAL; 4042 } 4043 4044 args = (const struct btf_param *)(proto_type + 1); 4045 nr_args = btf_type_vlen(proto_type); 4046 for (i = 0; i < nr_args; i++) { 4047 if (!args[i].name_off && args[i].type) { 4048 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4049 return -EINVAL; 4050 } 4051 } 4052 4053 return 0; 4054 } 4055 4056 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 4057 [BTF_KIND_INT] = &int_ops, 4058 [BTF_KIND_PTR] = &ptr_ops, 4059 [BTF_KIND_ARRAY] = &array_ops, 4060 [BTF_KIND_STRUCT] = &struct_ops, 4061 [BTF_KIND_UNION] = &struct_ops, 4062 [BTF_KIND_ENUM] = &enum_ops, 4063 [BTF_KIND_FWD] = &fwd_ops, 4064 [BTF_KIND_TYPEDEF] = &modifier_ops, 4065 [BTF_KIND_VOLATILE] = &modifier_ops, 4066 [BTF_KIND_CONST] = &modifier_ops, 4067 [BTF_KIND_RESTRICT] = &modifier_ops, 4068 [BTF_KIND_FUNC] = &func_ops, 4069 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 4070 [BTF_KIND_VAR] = &var_ops, 4071 [BTF_KIND_DATASEC] = &datasec_ops, 4072 [BTF_KIND_FLOAT] = &float_ops, 4073 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 4074 [BTF_KIND_TYPE_TAG] = &modifier_ops, 4075 }; 4076 4077 static s32 btf_check_meta(struct btf_verifier_env *env, 4078 const struct btf_type *t, 4079 u32 meta_left) 4080 { 4081 u32 saved_meta_left = meta_left; 4082 s32 var_meta_size; 4083 4084 if (meta_left < sizeof(*t)) { 4085 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 4086 env->log_type_id, meta_left, sizeof(*t)); 4087 return -EINVAL; 4088 } 4089 meta_left -= sizeof(*t); 4090 4091 if (t->info & ~BTF_INFO_MASK) { 4092 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 4093 env->log_type_id, t->info); 4094 return -EINVAL; 4095 } 4096 4097 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 4098 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 4099 btf_verifier_log(env, "[%u] Invalid kind:%u", 4100 env->log_type_id, BTF_INFO_KIND(t->info)); 4101 return -EINVAL; 4102 } 4103 4104 if (!btf_name_offset_valid(env->btf, t->name_off)) { 4105 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 4106 env->log_type_id, t->name_off); 4107 return -EINVAL; 4108 } 4109 4110 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 4111 if (var_meta_size < 0) 4112 return var_meta_size; 4113 4114 meta_left -= var_meta_size; 4115 4116 return saved_meta_left - meta_left; 4117 } 4118 4119 static int btf_check_all_metas(struct btf_verifier_env *env) 4120 { 4121 struct btf *btf = env->btf; 4122 struct btf_header *hdr; 4123 void *cur, *end; 4124 4125 hdr = &btf->hdr; 4126 cur = btf->nohdr_data + hdr->type_off; 4127 end = cur + hdr->type_len; 4128 4129 env->log_type_id = btf->base_btf ? btf->start_id : 1; 4130 while (cur < end) { 4131 struct btf_type *t = cur; 4132 s32 meta_size; 4133 4134 meta_size = btf_check_meta(env, t, end - cur); 4135 if (meta_size < 0) 4136 return meta_size; 4137 4138 btf_add_type(env, t); 4139 cur += meta_size; 4140 env->log_type_id++; 4141 } 4142 4143 return 0; 4144 } 4145 4146 static bool btf_resolve_valid(struct btf_verifier_env *env, 4147 const struct btf_type *t, 4148 u32 type_id) 4149 { 4150 struct btf *btf = env->btf; 4151 4152 if (!env_type_is_resolved(env, type_id)) 4153 return false; 4154 4155 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 4156 return !btf_resolved_type_id(btf, type_id) && 4157 !btf_resolved_type_size(btf, type_id); 4158 4159 if (btf_type_is_decl_tag(t)) 4160 return btf_resolved_type_id(btf, type_id) && 4161 !btf_resolved_type_size(btf, type_id); 4162 4163 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 4164 btf_type_is_var(t)) { 4165 t = btf_type_id_resolve(btf, &type_id); 4166 return t && 4167 !btf_type_is_modifier(t) && 4168 !btf_type_is_var(t) && 4169 !btf_type_is_datasec(t); 4170 } 4171 4172 if (btf_type_is_array(t)) { 4173 const struct btf_array *array = btf_type_array(t); 4174 const struct btf_type *elem_type; 4175 u32 elem_type_id = array->type; 4176 u32 elem_size; 4177 4178 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 4179 return elem_type && !btf_type_is_modifier(elem_type) && 4180 (array->nelems * elem_size == 4181 btf_resolved_type_size(btf, type_id)); 4182 } 4183 4184 return false; 4185 } 4186 4187 static int btf_resolve(struct btf_verifier_env *env, 4188 const struct btf_type *t, u32 type_id) 4189 { 4190 u32 save_log_type_id = env->log_type_id; 4191 const struct resolve_vertex *v; 4192 int err = 0; 4193 4194 env->resolve_mode = RESOLVE_TBD; 4195 env_stack_push(env, t, type_id); 4196 while (!err && (v = env_stack_peak(env))) { 4197 env->log_type_id = v->type_id; 4198 err = btf_type_ops(v->t)->resolve(env, v); 4199 } 4200 4201 env->log_type_id = type_id; 4202 if (err == -E2BIG) { 4203 btf_verifier_log_type(env, t, 4204 "Exceeded max resolving depth:%u", 4205 MAX_RESOLVE_DEPTH); 4206 } else if (err == -EEXIST) { 4207 btf_verifier_log_type(env, t, "Loop detected"); 4208 } 4209 4210 /* Final sanity check */ 4211 if (!err && !btf_resolve_valid(env, t, type_id)) { 4212 btf_verifier_log_type(env, t, "Invalid resolve state"); 4213 err = -EINVAL; 4214 } 4215 4216 env->log_type_id = save_log_type_id; 4217 return err; 4218 } 4219 4220 static int btf_check_all_types(struct btf_verifier_env *env) 4221 { 4222 struct btf *btf = env->btf; 4223 const struct btf_type *t; 4224 u32 type_id, i; 4225 int err; 4226 4227 err = env_resolve_init(env); 4228 if (err) 4229 return err; 4230 4231 env->phase++; 4232 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 4233 type_id = btf->start_id + i; 4234 t = btf_type_by_id(btf, type_id); 4235 4236 env->log_type_id = type_id; 4237 if (btf_type_needs_resolve(t) && 4238 !env_type_is_resolved(env, type_id)) { 4239 err = btf_resolve(env, t, type_id); 4240 if (err) 4241 return err; 4242 } 4243 4244 if (btf_type_is_func_proto(t)) { 4245 err = btf_func_proto_check(env, t); 4246 if (err) 4247 return err; 4248 } 4249 4250 if (btf_type_is_func(t)) { 4251 err = btf_func_check(env, t); 4252 if (err) 4253 return err; 4254 } 4255 } 4256 4257 return 0; 4258 } 4259 4260 static int btf_parse_type_sec(struct btf_verifier_env *env) 4261 { 4262 const struct btf_header *hdr = &env->btf->hdr; 4263 int err; 4264 4265 /* Type section must align to 4 bytes */ 4266 if (hdr->type_off & (sizeof(u32) - 1)) { 4267 btf_verifier_log(env, "Unaligned type_off"); 4268 return -EINVAL; 4269 } 4270 4271 if (!env->btf->base_btf && !hdr->type_len) { 4272 btf_verifier_log(env, "No type found"); 4273 return -EINVAL; 4274 } 4275 4276 err = btf_check_all_metas(env); 4277 if (err) 4278 return err; 4279 4280 return btf_check_all_types(env); 4281 } 4282 4283 static int btf_parse_str_sec(struct btf_verifier_env *env) 4284 { 4285 const struct btf_header *hdr; 4286 struct btf *btf = env->btf; 4287 const char *start, *end; 4288 4289 hdr = &btf->hdr; 4290 start = btf->nohdr_data + hdr->str_off; 4291 end = start + hdr->str_len; 4292 4293 if (end != btf->data + btf->data_size) { 4294 btf_verifier_log(env, "String section is not at the end"); 4295 return -EINVAL; 4296 } 4297 4298 btf->strings = start; 4299 4300 if (btf->base_btf && !hdr->str_len) 4301 return 0; 4302 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 4303 btf_verifier_log(env, "Invalid string section"); 4304 return -EINVAL; 4305 } 4306 if (!btf->base_btf && start[0]) { 4307 btf_verifier_log(env, "Invalid string section"); 4308 return -EINVAL; 4309 } 4310 4311 return 0; 4312 } 4313 4314 static const size_t btf_sec_info_offset[] = { 4315 offsetof(struct btf_header, type_off), 4316 offsetof(struct btf_header, str_off), 4317 }; 4318 4319 static int btf_sec_info_cmp(const void *a, const void *b) 4320 { 4321 const struct btf_sec_info *x = a; 4322 const struct btf_sec_info *y = b; 4323 4324 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 4325 } 4326 4327 static int btf_check_sec_info(struct btf_verifier_env *env, 4328 u32 btf_data_size) 4329 { 4330 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 4331 u32 total, expected_total, i; 4332 const struct btf_header *hdr; 4333 const struct btf *btf; 4334 4335 btf = env->btf; 4336 hdr = &btf->hdr; 4337 4338 /* Populate the secs from hdr */ 4339 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 4340 secs[i] = *(struct btf_sec_info *)((void *)hdr + 4341 btf_sec_info_offset[i]); 4342 4343 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 4344 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 4345 4346 /* Check for gaps and overlap among sections */ 4347 total = 0; 4348 expected_total = btf_data_size - hdr->hdr_len; 4349 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 4350 if (expected_total < secs[i].off) { 4351 btf_verifier_log(env, "Invalid section offset"); 4352 return -EINVAL; 4353 } 4354 if (total < secs[i].off) { 4355 /* gap */ 4356 btf_verifier_log(env, "Unsupported section found"); 4357 return -EINVAL; 4358 } 4359 if (total > secs[i].off) { 4360 btf_verifier_log(env, "Section overlap found"); 4361 return -EINVAL; 4362 } 4363 if (expected_total - total < secs[i].len) { 4364 btf_verifier_log(env, 4365 "Total section length too long"); 4366 return -EINVAL; 4367 } 4368 total += secs[i].len; 4369 } 4370 4371 /* There is data other than hdr and known sections */ 4372 if (expected_total != total) { 4373 btf_verifier_log(env, "Unsupported section found"); 4374 return -EINVAL; 4375 } 4376 4377 return 0; 4378 } 4379 4380 static int btf_parse_hdr(struct btf_verifier_env *env) 4381 { 4382 u32 hdr_len, hdr_copy, btf_data_size; 4383 const struct btf_header *hdr; 4384 struct btf *btf; 4385 int err; 4386 4387 btf = env->btf; 4388 btf_data_size = btf->data_size; 4389 4390 if (btf_data_size < 4391 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { 4392 btf_verifier_log(env, "hdr_len not found"); 4393 return -EINVAL; 4394 } 4395 4396 hdr = btf->data; 4397 hdr_len = hdr->hdr_len; 4398 if (btf_data_size < hdr_len) { 4399 btf_verifier_log(env, "btf_header not found"); 4400 return -EINVAL; 4401 } 4402 4403 /* Ensure the unsupported header fields are zero */ 4404 if (hdr_len > sizeof(btf->hdr)) { 4405 u8 *expected_zero = btf->data + sizeof(btf->hdr); 4406 u8 *end = btf->data + hdr_len; 4407 4408 for (; expected_zero < end; expected_zero++) { 4409 if (*expected_zero) { 4410 btf_verifier_log(env, "Unsupported btf_header"); 4411 return -E2BIG; 4412 } 4413 } 4414 } 4415 4416 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 4417 memcpy(&btf->hdr, btf->data, hdr_copy); 4418 4419 hdr = &btf->hdr; 4420 4421 btf_verifier_log_hdr(env, btf_data_size); 4422 4423 if (hdr->magic != BTF_MAGIC) { 4424 btf_verifier_log(env, "Invalid magic"); 4425 return -EINVAL; 4426 } 4427 4428 if (hdr->version != BTF_VERSION) { 4429 btf_verifier_log(env, "Unsupported version"); 4430 return -ENOTSUPP; 4431 } 4432 4433 if (hdr->flags) { 4434 btf_verifier_log(env, "Unsupported flags"); 4435 return -ENOTSUPP; 4436 } 4437 4438 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 4439 btf_verifier_log(env, "No data"); 4440 return -EINVAL; 4441 } 4442 4443 err = btf_check_sec_info(env, btf_data_size); 4444 if (err) 4445 return err; 4446 4447 return 0; 4448 } 4449 4450 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size, 4451 u32 log_level, char __user *log_ubuf, u32 log_size) 4452 { 4453 struct btf_verifier_env *env = NULL; 4454 struct bpf_verifier_log *log; 4455 struct btf *btf = NULL; 4456 u8 *data; 4457 int err; 4458 4459 if (btf_data_size > BTF_MAX_SIZE) 4460 return ERR_PTR(-E2BIG); 4461 4462 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4463 if (!env) 4464 return ERR_PTR(-ENOMEM); 4465 4466 log = &env->log; 4467 if (log_level || log_ubuf || log_size) { 4468 /* user requested verbose verifier output 4469 * and supplied buffer to store the verification trace 4470 */ 4471 log->level = log_level; 4472 log->ubuf = log_ubuf; 4473 log->len_total = log_size; 4474 4475 /* log attributes have to be sane */ 4476 if (!bpf_verifier_log_attr_valid(log)) { 4477 err = -EINVAL; 4478 goto errout; 4479 } 4480 } 4481 4482 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4483 if (!btf) { 4484 err = -ENOMEM; 4485 goto errout; 4486 } 4487 env->btf = btf; 4488 4489 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 4490 if (!data) { 4491 err = -ENOMEM; 4492 goto errout; 4493 } 4494 4495 btf->data = data; 4496 btf->data_size = btf_data_size; 4497 4498 if (copy_from_bpfptr(data, btf_data, btf_data_size)) { 4499 err = -EFAULT; 4500 goto errout; 4501 } 4502 4503 err = btf_parse_hdr(env); 4504 if (err) 4505 goto errout; 4506 4507 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4508 4509 err = btf_parse_str_sec(env); 4510 if (err) 4511 goto errout; 4512 4513 err = btf_parse_type_sec(env); 4514 if (err) 4515 goto errout; 4516 4517 if (log->level && bpf_verifier_log_full(log)) { 4518 err = -ENOSPC; 4519 goto errout; 4520 } 4521 4522 btf_verifier_env_free(env); 4523 refcount_set(&btf->refcnt, 1); 4524 return btf; 4525 4526 errout: 4527 btf_verifier_env_free(env); 4528 if (btf) 4529 btf_free(btf); 4530 return ERR_PTR(err); 4531 } 4532 4533 extern char __weak __start_BTF[]; 4534 extern char __weak __stop_BTF[]; 4535 extern struct btf *btf_vmlinux; 4536 4537 #define BPF_MAP_TYPE(_id, _ops) 4538 #define BPF_LINK_TYPE(_id, _name) 4539 static union { 4540 struct bpf_ctx_convert { 4541 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4542 prog_ctx_type _id##_prog; \ 4543 kern_ctx_type _id##_kern; 4544 #include <linux/bpf_types.h> 4545 #undef BPF_PROG_TYPE 4546 } *__t; 4547 /* 't' is written once under lock. Read many times. */ 4548 const struct btf_type *t; 4549 } bpf_ctx_convert; 4550 enum { 4551 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4552 __ctx_convert##_id, 4553 #include <linux/bpf_types.h> 4554 #undef BPF_PROG_TYPE 4555 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 4556 }; 4557 static u8 bpf_ctx_convert_map[] = { 4558 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4559 [_id] = __ctx_convert##_id, 4560 #include <linux/bpf_types.h> 4561 #undef BPF_PROG_TYPE 4562 0, /* avoid empty array */ 4563 }; 4564 #undef BPF_MAP_TYPE 4565 #undef BPF_LINK_TYPE 4566 4567 static const struct btf_member * 4568 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 4569 const struct btf_type *t, enum bpf_prog_type prog_type, 4570 int arg) 4571 { 4572 const struct btf_type *conv_struct; 4573 const struct btf_type *ctx_struct; 4574 const struct btf_member *ctx_type; 4575 const char *tname, *ctx_tname; 4576 4577 conv_struct = bpf_ctx_convert.t; 4578 if (!conv_struct) { 4579 bpf_log(log, "btf_vmlinux is malformed\n"); 4580 return NULL; 4581 } 4582 t = btf_type_by_id(btf, t->type); 4583 while (btf_type_is_modifier(t)) 4584 t = btf_type_by_id(btf, t->type); 4585 if (!btf_type_is_struct(t)) { 4586 /* Only pointer to struct is supported for now. 4587 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 4588 * is not supported yet. 4589 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 4590 */ 4591 return NULL; 4592 } 4593 tname = btf_name_by_offset(btf, t->name_off); 4594 if (!tname) { 4595 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 4596 return NULL; 4597 } 4598 /* prog_type is valid bpf program type. No need for bounds check. */ 4599 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 4600 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 4601 * Like 'struct __sk_buff' 4602 */ 4603 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 4604 if (!ctx_struct) 4605 /* should not happen */ 4606 return NULL; 4607 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 4608 if (!ctx_tname) { 4609 /* should not happen */ 4610 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 4611 return NULL; 4612 } 4613 /* only compare that prog's ctx type name is the same as 4614 * kernel expects. No need to compare field by field. 4615 * It's ok for bpf prog to do: 4616 * struct __sk_buff {}; 4617 * int socket_filter_bpf_prog(struct __sk_buff *skb) 4618 * { // no fields of skb are ever used } 4619 */ 4620 if (strcmp(ctx_tname, tname)) 4621 return NULL; 4622 return ctx_type; 4623 } 4624 4625 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = { 4626 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) 4627 #define BPF_LINK_TYPE(_id, _name) 4628 #define BPF_MAP_TYPE(_id, _ops) \ 4629 [_id] = &_ops, 4630 #include <linux/bpf_types.h> 4631 #undef BPF_PROG_TYPE 4632 #undef BPF_LINK_TYPE 4633 #undef BPF_MAP_TYPE 4634 }; 4635 4636 static int btf_vmlinux_map_ids_init(const struct btf *btf, 4637 struct bpf_verifier_log *log) 4638 { 4639 const struct bpf_map_ops *ops; 4640 int i, btf_id; 4641 4642 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) { 4643 ops = btf_vmlinux_map_ops[i]; 4644 if (!ops || (!ops->map_btf_name && !ops->map_btf_id)) 4645 continue; 4646 if (!ops->map_btf_name || !ops->map_btf_id) { 4647 bpf_log(log, "map type %d is misconfigured\n", i); 4648 return -EINVAL; 4649 } 4650 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name, 4651 BTF_KIND_STRUCT); 4652 if (btf_id < 0) 4653 return btf_id; 4654 *ops->map_btf_id = btf_id; 4655 } 4656 4657 return 0; 4658 } 4659 4660 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 4661 struct btf *btf, 4662 const struct btf_type *t, 4663 enum bpf_prog_type prog_type, 4664 int arg) 4665 { 4666 const struct btf_member *prog_ctx_type, *kern_ctx_type; 4667 4668 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 4669 if (!prog_ctx_type) 4670 return -ENOENT; 4671 kern_ctx_type = prog_ctx_type + 1; 4672 return kern_ctx_type->type; 4673 } 4674 4675 BTF_ID_LIST(bpf_ctx_convert_btf_id) 4676 BTF_ID(struct, bpf_ctx_convert) 4677 4678 struct btf *btf_parse_vmlinux(void) 4679 { 4680 struct btf_verifier_env *env = NULL; 4681 struct bpf_verifier_log *log; 4682 struct btf *btf = NULL; 4683 int err; 4684 4685 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4686 if (!env) 4687 return ERR_PTR(-ENOMEM); 4688 4689 log = &env->log; 4690 log->level = BPF_LOG_KERNEL; 4691 4692 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4693 if (!btf) { 4694 err = -ENOMEM; 4695 goto errout; 4696 } 4697 env->btf = btf; 4698 4699 btf->data = __start_BTF; 4700 btf->data_size = __stop_BTF - __start_BTF; 4701 btf->kernel_btf = true; 4702 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 4703 4704 err = btf_parse_hdr(env); 4705 if (err) 4706 goto errout; 4707 4708 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4709 4710 err = btf_parse_str_sec(env); 4711 if (err) 4712 goto errout; 4713 4714 err = btf_check_all_metas(env); 4715 if (err) 4716 goto errout; 4717 4718 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 4719 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 4720 4721 /* find bpf map structs for map_ptr access checking */ 4722 err = btf_vmlinux_map_ids_init(btf, log); 4723 if (err < 0) 4724 goto errout; 4725 4726 bpf_struct_ops_init(btf, log); 4727 4728 refcount_set(&btf->refcnt, 1); 4729 4730 err = btf_alloc_id(btf); 4731 if (err) 4732 goto errout; 4733 4734 btf_verifier_env_free(env); 4735 return btf; 4736 4737 errout: 4738 btf_verifier_env_free(env); 4739 if (btf) { 4740 kvfree(btf->types); 4741 kfree(btf); 4742 } 4743 return ERR_PTR(err); 4744 } 4745 4746 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 4747 4748 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 4749 { 4750 struct btf_verifier_env *env = NULL; 4751 struct bpf_verifier_log *log; 4752 struct btf *btf = NULL, *base_btf; 4753 int err; 4754 4755 base_btf = bpf_get_btf_vmlinux(); 4756 if (IS_ERR(base_btf)) 4757 return base_btf; 4758 if (!base_btf) 4759 return ERR_PTR(-EINVAL); 4760 4761 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4762 if (!env) 4763 return ERR_PTR(-ENOMEM); 4764 4765 log = &env->log; 4766 log->level = BPF_LOG_KERNEL; 4767 4768 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4769 if (!btf) { 4770 err = -ENOMEM; 4771 goto errout; 4772 } 4773 env->btf = btf; 4774 4775 btf->base_btf = base_btf; 4776 btf->start_id = base_btf->nr_types; 4777 btf->start_str_off = base_btf->hdr.str_len; 4778 btf->kernel_btf = true; 4779 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 4780 4781 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 4782 if (!btf->data) { 4783 err = -ENOMEM; 4784 goto errout; 4785 } 4786 memcpy(btf->data, data, data_size); 4787 btf->data_size = data_size; 4788 4789 err = btf_parse_hdr(env); 4790 if (err) 4791 goto errout; 4792 4793 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4794 4795 err = btf_parse_str_sec(env); 4796 if (err) 4797 goto errout; 4798 4799 err = btf_check_all_metas(env); 4800 if (err) 4801 goto errout; 4802 4803 btf_verifier_env_free(env); 4804 refcount_set(&btf->refcnt, 1); 4805 return btf; 4806 4807 errout: 4808 btf_verifier_env_free(env); 4809 if (btf) { 4810 kvfree(btf->data); 4811 kvfree(btf->types); 4812 kfree(btf); 4813 } 4814 return ERR_PTR(err); 4815 } 4816 4817 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 4818 4819 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 4820 { 4821 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 4822 4823 if (tgt_prog) 4824 return tgt_prog->aux->btf; 4825 else 4826 return prog->aux->attach_btf; 4827 } 4828 4829 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 4830 { 4831 /* t comes in already as a pointer */ 4832 t = btf_type_by_id(btf, t->type); 4833 4834 /* allow const */ 4835 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) 4836 t = btf_type_by_id(btf, t->type); 4837 4838 return btf_type_is_int(t); 4839 } 4840 4841 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 4842 const struct bpf_prog *prog, 4843 struct bpf_insn_access_aux *info) 4844 { 4845 const struct btf_type *t = prog->aux->attach_func_proto; 4846 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 4847 struct btf *btf = bpf_prog_get_target_btf(prog); 4848 const char *tname = prog->aux->attach_func_name; 4849 struct bpf_verifier_log *log = info->log; 4850 const struct btf_param *args; 4851 u32 nr_args, arg; 4852 int i, ret; 4853 4854 if (off % 8) { 4855 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 4856 tname, off); 4857 return false; 4858 } 4859 arg = off / 8; 4860 args = (const struct btf_param *)(t + 1); 4861 /* if (t == NULL) Fall back to default BPF prog with 4862 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 4863 */ 4864 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 4865 if (prog->aux->attach_btf_trace) { 4866 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 4867 args++; 4868 nr_args--; 4869 } 4870 4871 if (arg > nr_args) { 4872 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 4873 tname, arg + 1); 4874 return false; 4875 } 4876 4877 if (arg == nr_args) { 4878 switch (prog->expected_attach_type) { 4879 case BPF_LSM_MAC: 4880 case BPF_TRACE_FEXIT: 4881 /* When LSM programs are attached to void LSM hooks 4882 * they use FEXIT trampolines and when attached to 4883 * int LSM hooks, they use MODIFY_RETURN trampolines. 4884 * 4885 * While the LSM programs are BPF_MODIFY_RETURN-like 4886 * the check: 4887 * 4888 * if (ret_type != 'int') 4889 * return -EINVAL; 4890 * 4891 * is _not_ done here. This is still safe as LSM hooks 4892 * have only void and int return types. 4893 */ 4894 if (!t) 4895 return true; 4896 t = btf_type_by_id(btf, t->type); 4897 break; 4898 case BPF_MODIFY_RETURN: 4899 /* For now the BPF_MODIFY_RETURN can only be attached to 4900 * functions that return an int. 4901 */ 4902 if (!t) 4903 return false; 4904 4905 t = btf_type_skip_modifiers(btf, t->type, NULL); 4906 if (!btf_type_is_small_int(t)) { 4907 bpf_log(log, 4908 "ret type %s not allowed for fmod_ret\n", 4909 btf_kind_str[BTF_INFO_KIND(t->info)]); 4910 return false; 4911 } 4912 break; 4913 default: 4914 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 4915 tname, arg + 1); 4916 return false; 4917 } 4918 } else { 4919 if (!t) 4920 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 4921 return true; 4922 t = btf_type_by_id(btf, args[arg].type); 4923 } 4924 4925 /* skip modifiers */ 4926 while (btf_type_is_modifier(t)) 4927 t = btf_type_by_id(btf, t->type); 4928 if (btf_type_is_small_int(t) || btf_type_is_enum(t)) 4929 /* accessing a scalar */ 4930 return true; 4931 if (!btf_type_is_ptr(t)) { 4932 bpf_log(log, 4933 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 4934 tname, arg, 4935 __btf_name_by_offset(btf, t->name_off), 4936 btf_kind_str[BTF_INFO_KIND(t->info)]); 4937 return false; 4938 } 4939 4940 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 4941 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 4942 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 4943 u32 type, flag; 4944 4945 type = base_type(ctx_arg_info->reg_type); 4946 flag = type_flag(ctx_arg_info->reg_type); 4947 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 4948 (flag & PTR_MAYBE_NULL)) { 4949 info->reg_type = ctx_arg_info->reg_type; 4950 return true; 4951 } 4952 } 4953 4954 if (t->type == 0) 4955 /* This is a pointer to void. 4956 * It is the same as scalar from the verifier safety pov. 4957 * No further pointer walking is allowed. 4958 */ 4959 return true; 4960 4961 if (is_int_ptr(btf, t)) 4962 return true; 4963 4964 /* this is a pointer to another type */ 4965 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 4966 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 4967 4968 if (ctx_arg_info->offset == off) { 4969 if (!ctx_arg_info->btf_id) { 4970 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 4971 return false; 4972 } 4973 4974 info->reg_type = ctx_arg_info->reg_type; 4975 info->btf = btf_vmlinux; 4976 info->btf_id = ctx_arg_info->btf_id; 4977 return true; 4978 } 4979 } 4980 4981 info->reg_type = PTR_TO_BTF_ID; 4982 if (tgt_prog) { 4983 enum bpf_prog_type tgt_type; 4984 4985 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 4986 tgt_type = tgt_prog->aux->saved_dst_prog_type; 4987 else 4988 tgt_type = tgt_prog->type; 4989 4990 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 4991 if (ret > 0) { 4992 info->btf = btf_vmlinux; 4993 info->btf_id = ret; 4994 return true; 4995 } else { 4996 return false; 4997 } 4998 } 4999 5000 info->btf = btf; 5001 info->btf_id = t->type; 5002 t = btf_type_by_id(btf, t->type); 5003 /* skip modifiers */ 5004 while (btf_type_is_modifier(t)) { 5005 info->btf_id = t->type; 5006 t = btf_type_by_id(btf, t->type); 5007 } 5008 if (!btf_type_is_struct(t)) { 5009 bpf_log(log, 5010 "func '%s' arg%d type %s is not a struct\n", 5011 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]); 5012 return false; 5013 } 5014 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 5015 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)], 5016 __btf_name_by_offset(btf, t->name_off)); 5017 return true; 5018 } 5019 5020 enum bpf_struct_walk_result { 5021 /* < 0 error */ 5022 WALK_SCALAR = 0, 5023 WALK_PTR, 5024 WALK_STRUCT, 5025 }; 5026 5027 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 5028 const struct btf_type *t, int off, int size, 5029 u32 *next_btf_id) 5030 { 5031 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 5032 const struct btf_type *mtype, *elem_type = NULL; 5033 const struct btf_member *member; 5034 const char *tname, *mname; 5035 u32 vlen, elem_id, mid; 5036 5037 again: 5038 tname = __btf_name_by_offset(btf, t->name_off); 5039 if (!btf_type_is_struct(t)) { 5040 bpf_log(log, "Type '%s' is not a struct\n", tname); 5041 return -EINVAL; 5042 } 5043 5044 vlen = btf_type_vlen(t); 5045 if (off + size > t->size) { 5046 /* If the last element is a variable size array, we may 5047 * need to relax the rule. 5048 */ 5049 struct btf_array *array_elem; 5050 5051 if (vlen == 0) 5052 goto error; 5053 5054 member = btf_type_member(t) + vlen - 1; 5055 mtype = btf_type_skip_modifiers(btf, member->type, 5056 NULL); 5057 if (!btf_type_is_array(mtype)) 5058 goto error; 5059 5060 array_elem = (struct btf_array *)(mtype + 1); 5061 if (array_elem->nelems != 0) 5062 goto error; 5063 5064 moff = __btf_member_bit_offset(t, member) / 8; 5065 if (off < moff) 5066 goto error; 5067 5068 /* Only allow structure for now, can be relaxed for 5069 * other types later. 5070 */ 5071 t = btf_type_skip_modifiers(btf, array_elem->type, 5072 NULL); 5073 if (!btf_type_is_struct(t)) 5074 goto error; 5075 5076 off = (off - moff) % t->size; 5077 goto again; 5078 5079 error: 5080 bpf_log(log, "access beyond struct %s at off %u size %u\n", 5081 tname, off, size); 5082 return -EACCES; 5083 } 5084 5085 for_each_member(i, t, member) { 5086 /* offset of the field in bytes */ 5087 moff = __btf_member_bit_offset(t, member) / 8; 5088 if (off + size <= moff) 5089 /* won't find anything, field is already too far */ 5090 break; 5091 5092 if (__btf_member_bitfield_size(t, member)) { 5093 u32 end_bit = __btf_member_bit_offset(t, member) + 5094 __btf_member_bitfield_size(t, member); 5095 5096 /* off <= moff instead of off == moff because clang 5097 * does not generate a BTF member for anonymous 5098 * bitfield like the ":16" here: 5099 * struct { 5100 * int :16; 5101 * int x:8; 5102 * }; 5103 */ 5104 if (off <= moff && 5105 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 5106 return WALK_SCALAR; 5107 5108 /* off may be accessing a following member 5109 * 5110 * or 5111 * 5112 * Doing partial access at either end of this 5113 * bitfield. Continue on this case also to 5114 * treat it as not accessing this bitfield 5115 * and eventually error out as field not 5116 * found to keep it simple. 5117 * It could be relaxed if there was a legit 5118 * partial access case later. 5119 */ 5120 continue; 5121 } 5122 5123 /* In case of "off" is pointing to holes of a struct */ 5124 if (off < moff) 5125 break; 5126 5127 /* type of the field */ 5128 mid = member->type; 5129 mtype = btf_type_by_id(btf, member->type); 5130 mname = __btf_name_by_offset(btf, member->name_off); 5131 5132 mtype = __btf_resolve_size(btf, mtype, &msize, 5133 &elem_type, &elem_id, &total_nelems, 5134 &mid); 5135 if (IS_ERR(mtype)) { 5136 bpf_log(log, "field %s doesn't have size\n", mname); 5137 return -EFAULT; 5138 } 5139 5140 mtrue_end = moff + msize; 5141 if (off >= mtrue_end) 5142 /* no overlap with member, keep iterating */ 5143 continue; 5144 5145 if (btf_type_is_array(mtype)) { 5146 u32 elem_idx; 5147 5148 /* __btf_resolve_size() above helps to 5149 * linearize a multi-dimensional array. 5150 * 5151 * The logic here is treating an array 5152 * in a struct as the following way: 5153 * 5154 * struct outer { 5155 * struct inner array[2][2]; 5156 * }; 5157 * 5158 * looks like: 5159 * 5160 * struct outer { 5161 * struct inner array_elem0; 5162 * struct inner array_elem1; 5163 * struct inner array_elem2; 5164 * struct inner array_elem3; 5165 * }; 5166 * 5167 * When accessing outer->array[1][0], it moves 5168 * moff to "array_elem2", set mtype to 5169 * "struct inner", and msize also becomes 5170 * sizeof(struct inner). Then most of the 5171 * remaining logic will fall through without 5172 * caring the current member is an array or 5173 * not. 5174 * 5175 * Unlike mtype/msize/moff, mtrue_end does not 5176 * change. The naming difference ("_true") tells 5177 * that it is not always corresponding to 5178 * the current mtype/msize/moff. 5179 * It is the true end of the current 5180 * member (i.e. array in this case). That 5181 * will allow an int array to be accessed like 5182 * a scratch space, 5183 * i.e. allow access beyond the size of 5184 * the array's element as long as it is 5185 * within the mtrue_end boundary. 5186 */ 5187 5188 /* skip empty array */ 5189 if (moff == mtrue_end) 5190 continue; 5191 5192 msize /= total_nelems; 5193 elem_idx = (off - moff) / msize; 5194 moff += elem_idx * msize; 5195 mtype = elem_type; 5196 mid = elem_id; 5197 } 5198 5199 /* the 'off' we're looking for is either equal to start 5200 * of this field or inside of this struct 5201 */ 5202 if (btf_type_is_struct(mtype)) { 5203 /* our field must be inside that union or struct */ 5204 t = mtype; 5205 5206 /* return if the offset matches the member offset */ 5207 if (off == moff) { 5208 *next_btf_id = mid; 5209 return WALK_STRUCT; 5210 } 5211 5212 /* adjust offset we're looking for */ 5213 off -= moff; 5214 goto again; 5215 } 5216 5217 if (btf_type_is_ptr(mtype)) { 5218 const struct btf_type *stype; 5219 u32 id; 5220 5221 if (msize != size || off != moff) { 5222 bpf_log(log, 5223 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 5224 mname, moff, tname, off, size); 5225 return -EACCES; 5226 } 5227 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 5228 if (btf_type_is_struct(stype)) { 5229 *next_btf_id = id; 5230 return WALK_PTR; 5231 } 5232 } 5233 5234 /* Allow more flexible access within an int as long as 5235 * it is within mtrue_end. 5236 * Since mtrue_end could be the end of an array, 5237 * that also allows using an array of int as a scratch 5238 * space. e.g. skb->cb[]. 5239 */ 5240 if (off + size > mtrue_end) { 5241 bpf_log(log, 5242 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 5243 mname, mtrue_end, tname, off, size); 5244 return -EACCES; 5245 } 5246 5247 return WALK_SCALAR; 5248 } 5249 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 5250 return -EINVAL; 5251 } 5252 5253 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, 5254 const struct btf_type *t, int off, int size, 5255 enum bpf_access_type atype __maybe_unused, 5256 u32 *next_btf_id) 5257 { 5258 int err; 5259 u32 id; 5260 5261 do { 5262 err = btf_struct_walk(log, btf, t, off, size, &id); 5263 5264 switch (err) { 5265 case WALK_PTR: 5266 /* If we found the pointer or scalar on t+off, 5267 * we're done. 5268 */ 5269 *next_btf_id = id; 5270 return PTR_TO_BTF_ID; 5271 case WALK_SCALAR: 5272 return SCALAR_VALUE; 5273 case WALK_STRUCT: 5274 /* We found nested struct, so continue the search 5275 * by diving in it. At this point the offset is 5276 * aligned with the new type, so set it to 0. 5277 */ 5278 t = btf_type_by_id(btf, id); 5279 off = 0; 5280 break; 5281 default: 5282 /* It's either error or unknown return value.. 5283 * scream and leave. 5284 */ 5285 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 5286 return -EINVAL; 5287 return err; 5288 } 5289 } while (t); 5290 5291 return -EINVAL; 5292 } 5293 5294 /* Check that two BTF types, each specified as an BTF object + id, are exactly 5295 * the same. Trivial ID check is not enough due to module BTFs, because we can 5296 * end up with two different module BTFs, but IDs point to the common type in 5297 * vmlinux BTF. 5298 */ 5299 static bool btf_types_are_same(const struct btf *btf1, u32 id1, 5300 const struct btf *btf2, u32 id2) 5301 { 5302 if (id1 != id2) 5303 return false; 5304 if (btf1 == btf2) 5305 return true; 5306 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 5307 } 5308 5309 bool btf_struct_ids_match(struct bpf_verifier_log *log, 5310 const struct btf *btf, u32 id, int off, 5311 const struct btf *need_btf, u32 need_type_id) 5312 { 5313 const struct btf_type *type; 5314 int err; 5315 5316 /* Are we already done? */ 5317 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 5318 return true; 5319 5320 again: 5321 type = btf_type_by_id(btf, id); 5322 if (!type) 5323 return false; 5324 err = btf_struct_walk(log, btf, type, off, 1, &id); 5325 if (err != WALK_STRUCT) 5326 return false; 5327 5328 /* We found nested struct object. If it matches 5329 * the requested ID, we're done. Otherwise let's 5330 * continue the search with offset 0 in the new 5331 * type. 5332 */ 5333 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 5334 off = 0; 5335 goto again; 5336 } 5337 5338 return true; 5339 } 5340 5341 static int __get_type_size(struct btf *btf, u32 btf_id, 5342 const struct btf_type **bad_type) 5343 { 5344 const struct btf_type *t; 5345 5346 if (!btf_id) 5347 /* void */ 5348 return 0; 5349 t = btf_type_by_id(btf, btf_id); 5350 while (t && btf_type_is_modifier(t)) 5351 t = btf_type_by_id(btf, t->type); 5352 if (!t) { 5353 *bad_type = btf_type_by_id(btf, 0); 5354 return -EINVAL; 5355 } 5356 if (btf_type_is_ptr(t)) 5357 /* kernel size of pointer. Not BPF's size of pointer*/ 5358 return sizeof(void *); 5359 if (btf_type_is_int(t) || btf_type_is_enum(t)) 5360 return t->size; 5361 *bad_type = t; 5362 return -EINVAL; 5363 } 5364 5365 int btf_distill_func_proto(struct bpf_verifier_log *log, 5366 struct btf *btf, 5367 const struct btf_type *func, 5368 const char *tname, 5369 struct btf_func_model *m) 5370 { 5371 const struct btf_param *args; 5372 const struct btf_type *t; 5373 u32 i, nargs; 5374 int ret; 5375 5376 if (!func) { 5377 /* BTF function prototype doesn't match the verifier types. 5378 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 5379 */ 5380 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 5381 m->arg_size[i] = 8; 5382 m->ret_size = 8; 5383 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 5384 return 0; 5385 } 5386 args = (const struct btf_param *)(func + 1); 5387 nargs = btf_type_vlen(func); 5388 if (nargs >= MAX_BPF_FUNC_ARGS) { 5389 bpf_log(log, 5390 "The function %s has %d arguments. Too many.\n", 5391 tname, nargs); 5392 return -EINVAL; 5393 } 5394 ret = __get_type_size(btf, func->type, &t); 5395 if (ret < 0) { 5396 bpf_log(log, 5397 "The function %s return type %s is unsupported.\n", 5398 tname, btf_kind_str[BTF_INFO_KIND(t->info)]); 5399 return -EINVAL; 5400 } 5401 m->ret_size = ret; 5402 5403 for (i = 0; i < nargs; i++) { 5404 if (i == nargs - 1 && args[i].type == 0) { 5405 bpf_log(log, 5406 "The function %s with variable args is unsupported.\n", 5407 tname); 5408 return -EINVAL; 5409 } 5410 ret = __get_type_size(btf, args[i].type, &t); 5411 if (ret < 0) { 5412 bpf_log(log, 5413 "The function %s arg%d type %s is unsupported.\n", 5414 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]); 5415 return -EINVAL; 5416 } 5417 if (ret == 0) { 5418 bpf_log(log, 5419 "The function %s has malformed void argument.\n", 5420 tname); 5421 return -EINVAL; 5422 } 5423 m->arg_size[i] = ret; 5424 } 5425 m->nr_args = nargs; 5426 return 0; 5427 } 5428 5429 /* Compare BTFs of two functions assuming only scalars and pointers to context. 5430 * t1 points to BTF_KIND_FUNC in btf1 5431 * t2 points to BTF_KIND_FUNC in btf2 5432 * Returns: 5433 * EINVAL - function prototype mismatch 5434 * EFAULT - verifier bug 5435 * 0 - 99% match. The last 1% is validated by the verifier. 5436 */ 5437 static int btf_check_func_type_match(struct bpf_verifier_log *log, 5438 struct btf *btf1, const struct btf_type *t1, 5439 struct btf *btf2, const struct btf_type *t2) 5440 { 5441 const struct btf_param *args1, *args2; 5442 const char *fn1, *fn2, *s1, *s2; 5443 u32 nargs1, nargs2, i; 5444 5445 fn1 = btf_name_by_offset(btf1, t1->name_off); 5446 fn2 = btf_name_by_offset(btf2, t2->name_off); 5447 5448 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 5449 bpf_log(log, "%s() is not a global function\n", fn1); 5450 return -EINVAL; 5451 } 5452 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 5453 bpf_log(log, "%s() is not a global function\n", fn2); 5454 return -EINVAL; 5455 } 5456 5457 t1 = btf_type_by_id(btf1, t1->type); 5458 if (!t1 || !btf_type_is_func_proto(t1)) 5459 return -EFAULT; 5460 t2 = btf_type_by_id(btf2, t2->type); 5461 if (!t2 || !btf_type_is_func_proto(t2)) 5462 return -EFAULT; 5463 5464 args1 = (const struct btf_param *)(t1 + 1); 5465 nargs1 = btf_type_vlen(t1); 5466 args2 = (const struct btf_param *)(t2 + 1); 5467 nargs2 = btf_type_vlen(t2); 5468 5469 if (nargs1 != nargs2) { 5470 bpf_log(log, "%s() has %d args while %s() has %d args\n", 5471 fn1, nargs1, fn2, nargs2); 5472 return -EINVAL; 5473 } 5474 5475 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5476 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5477 if (t1->info != t2->info) { 5478 bpf_log(log, 5479 "Return type %s of %s() doesn't match type %s of %s()\n", 5480 btf_type_str(t1), fn1, 5481 btf_type_str(t2), fn2); 5482 return -EINVAL; 5483 } 5484 5485 for (i = 0; i < nargs1; i++) { 5486 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 5487 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 5488 5489 if (t1->info != t2->info) { 5490 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 5491 i, fn1, btf_type_str(t1), 5492 fn2, btf_type_str(t2)); 5493 return -EINVAL; 5494 } 5495 if (btf_type_has_size(t1) && t1->size != t2->size) { 5496 bpf_log(log, 5497 "arg%d in %s() has size %d while %s() has %d\n", 5498 i, fn1, t1->size, 5499 fn2, t2->size); 5500 return -EINVAL; 5501 } 5502 5503 /* global functions are validated with scalars and pointers 5504 * to context only. And only global functions can be replaced. 5505 * Hence type check only those types. 5506 */ 5507 if (btf_type_is_int(t1) || btf_type_is_enum(t1)) 5508 continue; 5509 if (!btf_type_is_ptr(t1)) { 5510 bpf_log(log, 5511 "arg%d in %s() has unrecognized type\n", 5512 i, fn1); 5513 return -EINVAL; 5514 } 5515 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5516 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5517 if (!btf_type_is_struct(t1)) { 5518 bpf_log(log, 5519 "arg%d in %s() is not a pointer to context\n", 5520 i, fn1); 5521 return -EINVAL; 5522 } 5523 if (!btf_type_is_struct(t2)) { 5524 bpf_log(log, 5525 "arg%d in %s() is not a pointer to context\n", 5526 i, fn2); 5527 return -EINVAL; 5528 } 5529 /* This is an optional check to make program writing easier. 5530 * Compare names of structs and report an error to the user. 5531 * btf_prepare_func_args() already checked that t2 struct 5532 * is a context type. btf_prepare_func_args() will check 5533 * later that t1 struct is a context type as well. 5534 */ 5535 s1 = btf_name_by_offset(btf1, t1->name_off); 5536 s2 = btf_name_by_offset(btf2, t2->name_off); 5537 if (strcmp(s1, s2)) { 5538 bpf_log(log, 5539 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 5540 i, fn1, s1, fn2, s2); 5541 return -EINVAL; 5542 } 5543 } 5544 return 0; 5545 } 5546 5547 /* Compare BTFs of given program with BTF of target program */ 5548 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 5549 struct btf *btf2, const struct btf_type *t2) 5550 { 5551 struct btf *btf1 = prog->aux->btf; 5552 const struct btf_type *t1; 5553 u32 btf_id = 0; 5554 5555 if (!prog->aux->func_info) { 5556 bpf_log(log, "Program extension requires BTF\n"); 5557 return -EINVAL; 5558 } 5559 5560 btf_id = prog->aux->func_info[0].type_id; 5561 if (!btf_id) 5562 return -EFAULT; 5563 5564 t1 = btf_type_by_id(btf1, btf_id); 5565 if (!t1 || !btf_type_is_func(t1)) 5566 return -EFAULT; 5567 5568 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 5569 } 5570 5571 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5572 #ifdef CONFIG_NET 5573 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5574 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5575 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5576 #endif 5577 }; 5578 5579 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 5580 static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log, 5581 const struct btf *btf, 5582 const struct btf_type *t, int rec) 5583 { 5584 const struct btf_type *member_type; 5585 const struct btf_member *member; 5586 u32 i; 5587 5588 if (!btf_type_is_struct(t)) 5589 return false; 5590 5591 for_each_member(i, t, member) { 5592 const struct btf_array *array; 5593 5594 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 5595 if (btf_type_is_struct(member_type)) { 5596 if (rec >= 3) { 5597 bpf_log(log, "max struct nesting depth exceeded\n"); 5598 return false; 5599 } 5600 if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1)) 5601 return false; 5602 continue; 5603 } 5604 if (btf_type_is_array(member_type)) { 5605 array = btf_type_array(member_type); 5606 if (!array->nelems) 5607 return false; 5608 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 5609 if (!btf_type_is_scalar(member_type)) 5610 return false; 5611 continue; 5612 } 5613 if (!btf_type_is_scalar(member_type)) 5614 return false; 5615 } 5616 return true; 5617 } 5618 5619 static int btf_check_func_arg_match(struct bpf_verifier_env *env, 5620 const struct btf *btf, u32 func_id, 5621 struct bpf_reg_state *regs, 5622 bool ptr_to_mem_ok) 5623 { 5624 struct bpf_verifier_log *log = &env->log; 5625 bool is_kfunc = btf_is_kernel(btf); 5626 const char *func_name, *ref_tname; 5627 const struct btf_type *t, *ref_t; 5628 const struct btf_param *args; 5629 u32 i, nargs, ref_id; 5630 5631 t = btf_type_by_id(btf, func_id); 5632 if (!t || !btf_type_is_func(t)) { 5633 /* These checks were already done by the verifier while loading 5634 * struct bpf_func_info or in add_kfunc_call(). 5635 */ 5636 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", 5637 func_id); 5638 return -EFAULT; 5639 } 5640 func_name = btf_name_by_offset(btf, t->name_off); 5641 5642 t = btf_type_by_id(btf, t->type); 5643 if (!t || !btf_type_is_func_proto(t)) { 5644 bpf_log(log, "Invalid BTF of func %s\n", func_name); 5645 return -EFAULT; 5646 } 5647 args = (const struct btf_param *)(t + 1); 5648 nargs = btf_type_vlen(t); 5649 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 5650 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, 5651 MAX_BPF_FUNC_REG_ARGS); 5652 return -EINVAL; 5653 } 5654 5655 /* check that BTF function arguments match actual types that the 5656 * verifier sees. 5657 */ 5658 for (i = 0; i < nargs; i++) { 5659 u32 regno = i + 1; 5660 struct bpf_reg_state *reg = ®s[regno]; 5661 5662 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 5663 if (btf_type_is_scalar(t)) { 5664 if (reg->type == SCALAR_VALUE) 5665 continue; 5666 bpf_log(log, "R%d is not a scalar\n", regno); 5667 return -EINVAL; 5668 } 5669 5670 if (!btf_type_is_ptr(t)) { 5671 bpf_log(log, "Unrecognized arg#%d type %s\n", 5672 i, btf_type_str(t)); 5673 return -EINVAL; 5674 } 5675 5676 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 5677 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 5678 if (btf_get_prog_ctx_type(log, btf, t, 5679 env->prog->type, i)) { 5680 /* If function expects ctx type in BTF check that caller 5681 * is passing PTR_TO_CTX. 5682 */ 5683 if (reg->type != PTR_TO_CTX) { 5684 bpf_log(log, 5685 "arg#%d expected pointer to ctx, but got %s\n", 5686 i, btf_type_str(t)); 5687 return -EINVAL; 5688 } 5689 if (check_ptr_off_reg(env, reg, regno)) 5690 return -EINVAL; 5691 } else if (is_kfunc && (reg->type == PTR_TO_BTF_ID || 5692 (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) { 5693 const struct btf_type *reg_ref_t; 5694 const struct btf *reg_btf; 5695 const char *reg_ref_tname; 5696 u32 reg_ref_id; 5697 5698 if (!btf_type_is_struct(ref_t)) { 5699 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n", 5700 func_name, i, btf_type_str(ref_t), 5701 ref_tname); 5702 return -EINVAL; 5703 } 5704 5705 if (reg->type == PTR_TO_BTF_ID) { 5706 reg_btf = reg->btf; 5707 reg_ref_id = reg->btf_id; 5708 } else { 5709 reg_btf = btf_vmlinux; 5710 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 5711 } 5712 5713 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, 5714 ®_ref_id); 5715 reg_ref_tname = btf_name_by_offset(reg_btf, 5716 reg_ref_t->name_off); 5717 if (!btf_struct_ids_match(log, reg_btf, reg_ref_id, 5718 reg->off, btf, ref_id)) { 5719 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 5720 func_name, i, 5721 btf_type_str(ref_t), ref_tname, 5722 regno, btf_type_str(reg_ref_t), 5723 reg_ref_tname); 5724 return -EINVAL; 5725 } 5726 } else if (ptr_to_mem_ok) { 5727 const struct btf_type *resolve_ret; 5728 u32 type_size; 5729 5730 if (is_kfunc) { 5731 /* Permit pointer to mem, but only when argument 5732 * type is pointer to scalar, or struct composed 5733 * (recursively) of scalars. 5734 */ 5735 if (!btf_type_is_scalar(ref_t) && 5736 !__btf_type_is_scalar_struct(log, btf, ref_t, 0)) { 5737 bpf_log(log, 5738 "arg#%d pointer type %s %s must point to scalar or struct with scalar\n", 5739 i, btf_type_str(ref_t), ref_tname); 5740 return -EINVAL; 5741 } 5742 } 5743 5744 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 5745 if (IS_ERR(resolve_ret)) { 5746 bpf_log(log, 5747 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 5748 i, btf_type_str(ref_t), ref_tname, 5749 PTR_ERR(resolve_ret)); 5750 return -EINVAL; 5751 } 5752 5753 if (check_mem_reg(env, reg, regno, type_size)) 5754 return -EINVAL; 5755 } else { 5756 bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i, 5757 is_kfunc ? "kernel " : "", func_name, func_id); 5758 return -EINVAL; 5759 } 5760 } 5761 5762 return 0; 5763 } 5764 5765 /* Compare BTF of a function with given bpf_reg_state. 5766 * Returns: 5767 * EFAULT - there is a verifier bug. Abort verification. 5768 * EINVAL - there is a type mismatch or BTF is not available. 5769 * 0 - BTF matches with what bpf_reg_state expects. 5770 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 5771 */ 5772 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 5773 struct bpf_reg_state *regs) 5774 { 5775 struct bpf_prog *prog = env->prog; 5776 struct btf *btf = prog->aux->btf; 5777 bool is_global; 5778 u32 btf_id; 5779 int err; 5780 5781 if (!prog->aux->func_info) 5782 return -EINVAL; 5783 5784 btf_id = prog->aux->func_info[subprog].type_id; 5785 if (!btf_id) 5786 return -EFAULT; 5787 5788 if (prog->aux->func_info_aux[subprog].unreliable) 5789 return -EINVAL; 5790 5791 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5792 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global); 5793 5794 /* Compiler optimizations can remove arguments from static functions 5795 * or mismatched type can be passed into a global function. 5796 * In such cases mark the function as unreliable from BTF point of view. 5797 */ 5798 if (err) 5799 prog->aux->func_info_aux[subprog].unreliable = true; 5800 return err; 5801 } 5802 5803 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env, 5804 const struct btf *btf, u32 func_id, 5805 struct bpf_reg_state *regs) 5806 { 5807 return btf_check_func_arg_match(env, btf, func_id, regs, true); 5808 } 5809 5810 /* Convert BTF of a function into bpf_reg_state if possible 5811 * Returns: 5812 * EFAULT - there is a verifier bug. Abort verification. 5813 * EINVAL - cannot convert BTF. 5814 * 0 - Successfully converted BTF into bpf_reg_state 5815 * (either PTR_TO_CTX or SCALAR_VALUE). 5816 */ 5817 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 5818 struct bpf_reg_state *regs) 5819 { 5820 struct bpf_verifier_log *log = &env->log; 5821 struct bpf_prog *prog = env->prog; 5822 enum bpf_prog_type prog_type = prog->type; 5823 struct btf *btf = prog->aux->btf; 5824 const struct btf_param *args; 5825 const struct btf_type *t, *ref_t; 5826 u32 i, nargs, btf_id; 5827 const char *tname; 5828 5829 if (!prog->aux->func_info || 5830 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 5831 bpf_log(log, "Verifier bug\n"); 5832 return -EFAULT; 5833 } 5834 5835 btf_id = prog->aux->func_info[subprog].type_id; 5836 if (!btf_id) { 5837 bpf_log(log, "Global functions need valid BTF\n"); 5838 return -EFAULT; 5839 } 5840 5841 t = btf_type_by_id(btf, btf_id); 5842 if (!t || !btf_type_is_func(t)) { 5843 /* These checks were already done by the verifier while loading 5844 * struct bpf_func_info 5845 */ 5846 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 5847 subprog); 5848 return -EFAULT; 5849 } 5850 tname = btf_name_by_offset(btf, t->name_off); 5851 5852 if (log->level & BPF_LOG_LEVEL) 5853 bpf_log(log, "Validating %s() func#%d...\n", 5854 tname, subprog); 5855 5856 if (prog->aux->func_info_aux[subprog].unreliable) { 5857 bpf_log(log, "Verifier bug in function %s()\n", tname); 5858 return -EFAULT; 5859 } 5860 if (prog_type == BPF_PROG_TYPE_EXT) 5861 prog_type = prog->aux->dst_prog->type; 5862 5863 t = btf_type_by_id(btf, t->type); 5864 if (!t || !btf_type_is_func_proto(t)) { 5865 bpf_log(log, "Invalid type of function %s()\n", tname); 5866 return -EFAULT; 5867 } 5868 args = (const struct btf_param *)(t + 1); 5869 nargs = btf_type_vlen(t); 5870 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 5871 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 5872 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 5873 return -EINVAL; 5874 } 5875 /* check that function returns int */ 5876 t = btf_type_by_id(btf, t->type); 5877 while (btf_type_is_modifier(t)) 5878 t = btf_type_by_id(btf, t->type); 5879 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) { 5880 bpf_log(log, 5881 "Global function %s() doesn't return scalar. Only those are supported.\n", 5882 tname); 5883 return -EINVAL; 5884 } 5885 /* Convert BTF function arguments into verifier types. 5886 * Only PTR_TO_CTX and SCALAR are supported atm. 5887 */ 5888 for (i = 0; i < nargs; i++) { 5889 struct bpf_reg_state *reg = ®s[i + 1]; 5890 5891 t = btf_type_by_id(btf, args[i].type); 5892 while (btf_type_is_modifier(t)) 5893 t = btf_type_by_id(btf, t->type); 5894 if (btf_type_is_int(t) || btf_type_is_enum(t)) { 5895 reg->type = SCALAR_VALUE; 5896 continue; 5897 } 5898 if (btf_type_is_ptr(t)) { 5899 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 5900 reg->type = PTR_TO_CTX; 5901 continue; 5902 } 5903 5904 t = btf_type_skip_modifiers(btf, t->type, NULL); 5905 5906 ref_t = btf_resolve_size(btf, t, ®->mem_size); 5907 if (IS_ERR(ref_t)) { 5908 bpf_log(log, 5909 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 5910 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 5911 PTR_ERR(ref_t)); 5912 return -EINVAL; 5913 } 5914 5915 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 5916 reg->id = ++env->id_gen; 5917 5918 continue; 5919 } 5920 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 5921 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname); 5922 return -EINVAL; 5923 } 5924 return 0; 5925 } 5926 5927 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 5928 struct btf_show *show) 5929 { 5930 const struct btf_type *t = btf_type_by_id(btf, type_id); 5931 5932 show->btf = btf; 5933 memset(&show->state, 0, sizeof(show->state)); 5934 memset(&show->obj, 0, sizeof(show->obj)); 5935 5936 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 5937 } 5938 5939 static void btf_seq_show(struct btf_show *show, const char *fmt, 5940 va_list args) 5941 { 5942 seq_vprintf((struct seq_file *)show->target, fmt, args); 5943 } 5944 5945 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 5946 void *obj, struct seq_file *m, u64 flags) 5947 { 5948 struct btf_show sseq; 5949 5950 sseq.target = m; 5951 sseq.showfn = btf_seq_show; 5952 sseq.flags = flags; 5953 5954 btf_type_show(btf, type_id, obj, &sseq); 5955 5956 return sseq.state.status; 5957 } 5958 5959 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 5960 struct seq_file *m) 5961 { 5962 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 5963 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 5964 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 5965 } 5966 5967 struct btf_show_snprintf { 5968 struct btf_show show; 5969 int len_left; /* space left in string */ 5970 int len; /* length we would have written */ 5971 }; 5972 5973 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 5974 va_list args) 5975 { 5976 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 5977 int len; 5978 5979 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 5980 5981 if (len < 0) { 5982 ssnprintf->len_left = 0; 5983 ssnprintf->len = len; 5984 } else if (len > ssnprintf->len_left) { 5985 /* no space, drive on to get length we would have written */ 5986 ssnprintf->len_left = 0; 5987 ssnprintf->len += len; 5988 } else { 5989 ssnprintf->len_left -= len; 5990 ssnprintf->len += len; 5991 show->target += len; 5992 } 5993 } 5994 5995 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 5996 char *buf, int len, u64 flags) 5997 { 5998 struct btf_show_snprintf ssnprintf; 5999 6000 ssnprintf.show.target = buf; 6001 ssnprintf.show.flags = flags; 6002 ssnprintf.show.showfn = btf_snprintf_show; 6003 ssnprintf.len_left = len; 6004 ssnprintf.len = 0; 6005 6006 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 6007 6008 /* If we encontered an error, return it. */ 6009 if (ssnprintf.show.state.status) 6010 return ssnprintf.show.state.status; 6011 6012 /* Otherwise return length we would have written */ 6013 return ssnprintf.len; 6014 } 6015 6016 #ifdef CONFIG_PROC_FS 6017 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 6018 { 6019 const struct btf *btf = filp->private_data; 6020 6021 seq_printf(m, "btf_id:\t%u\n", btf->id); 6022 } 6023 #endif 6024 6025 static int btf_release(struct inode *inode, struct file *filp) 6026 { 6027 btf_put(filp->private_data); 6028 return 0; 6029 } 6030 6031 const struct file_operations btf_fops = { 6032 #ifdef CONFIG_PROC_FS 6033 .show_fdinfo = bpf_btf_show_fdinfo, 6034 #endif 6035 .release = btf_release, 6036 }; 6037 6038 static int __btf_new_fd(struct btf *btf) 6039 { 6040 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 6041 } 6042 6043 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr) 6044 { 6045 struct btf *btf; 6046 int ret; 6047 6048 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel), 6049 attr->btf_size, attr->btf_log_level, 6050 u64_to_user_ptr(attr->btf_log_buf), 6051 attr->btf_log_size); 6052 if (IS_ERR(btf)) 6053 return PTR_ERR(btf); 6054 6055 ret = btf_alloc_id(btf); 6056 if (ret) { 6057 btf_free(btf); 6058 return ret; 6059 } 6060 6061 /* 6062 * The BTF ID is published to the userspace. 6063 * All BTF free must go through call_rcu() from 6064 * now on (i.e. free by calling btf_put()). 6065 */ 6066 6067 ret = __btf_new_fd(btf); 6068 if (ret < 0) 6069 btf_put(btf); 6070 6071 return ret; 6072 } 6073 6074 struct btf *btf_get_by_fd(int fd) 6075 { 6076 struct btf *btf; 6077 struct fd f; 6078 6079 f = fdget(fd); 6080 6081 if (!f.file) 6082 return ERR_PTR(-EBADF); 6083 6084 if (f.file->f_op != &btf_fops) { 6085 fdput(f); 6086 return ERR_PTR(-EINVAL); 6087 } 6088 6089 btf = f.file->private_data; 6090 refcount_inc(&btf->refcnt); 6091 fdput(f); 6092 6093 return btf; 6094 } 6095 6096 int btf_get_info_by_fd(const struct btf *btf, 6097 const union bpf_attr *attr, 6098 union bpf_attr __user *uattr) 6099 { 6100 struct bpf_btf_info __user *uinfo; 6101 struct bpf_btf_info info; 6102 u32 info_copy, btf_copy; 6103 void __user *ubtf; 6104 char __user *uname; 6105 u32 uinfo_len, uname_len, name_len; 6106 int ret = 0; 6107 6108 uinfo = u64_to_user_ptr(attr->info.info); 6109 uinfo_len = attr->info.info_len; 6110 6111 info_copy = min_t(u32, uinfo_len, sizeof(info)); 6112 memset(&info, 0, sizeof(info)); 6113 if (copy_from_user(&info, uinfo, info_copy)) 6114 return -EFAULT; 6115 6116 info.id = btf->id; 6117 ubtf = u64_to_user_ptr(info.btf); 6118 btf_copy = min_t(u32, btf->data_size, info.btf_size); 6119 if (copy_to_user(ubtf, btf->data, btf_copy)) 6120 return -EFAULT; 6121 info.btf_size = btf->data_size; 6122 6123 info.kernel_btf = btf->kernel_btf; 6124 6125 uname = u64_to_user_ptr(info.name); 6126 uname_len = info.name_len; 6127 if (!uname ^ !uname_len) 6128 return -EINVAL; 6129 6130 name_len = strlen(btf->name); 6131 info.name_len = name_len; 6132 6133 if (uname) { 6134 if (uname_len >= name_len + 1) { 6135 if (copy_to_user(uname, btf->name, name_len + 1)) 6136 return -EFAULT; 6137 } else { 6138 char zero = '\0'; 6139 6140 if (copy_to_user(uname, btf->name, uname_len - 1)) 6141 return -EFAULT; 6142 if (put_user(zero, uname + uname_len - 1)) 6143 return -EFAULT; 6144 /* let user-space know about too short buffer */ 6145 ret = -ENOSPC; 6146 } 6147 } 6148 6149 if (copy_to_user(uinfo, &info, info_copy) || 6150 put_user(info_copy, &uattr->info.info_len)) 6151 return -EFAULT; 6152 6153 return ret; 6154 } 6155 6156 int btf_get_fd_by_id(u32 id) 6157 { 6158 struct btf *btf; 6159 int fd; 6160 6161 rcu_read_lock(); 6162 btf = idr_find(&btf_idr, id); 6163 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 6164 btf = ERR_PTR(-ENOENT); 6165 rcu_read_unlock(); 6166 6167 if (IS_ERR(btf)) 6168 return PTR_ERR(btf); 6169 6170 fd = __btf_new_fd(btf); 6171 if (fd < 0) 6172 btf_put(btf); 6173 6174 return fd; 6175 } 6176 6177 u32 btf_obj_id(const struct btf *btf) 6178 { 6179 return btf->id; 6180 } 6181 6182 bool btf_is_kernel(const struct btf *btf) 6183 { 6184 return btf->kernel_btf; 6185 } 6186 6187 bool btf_is_module(const struct btf *btf) 6188 { 6189 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 6190 } 6191 6192 static int btf_id_cmp_func(const void *a, const void *b) 6193 { 6194 const int *pa = a, *pb = b; 6195 6196 return *pa - *pb; 6197 } 6198 6199 bool btf_id_set_contains(const struct btf_id_set *set, u32 id) 6200 { 6201 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL; 6202 } 6203 6204 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6205 struct btf_module { 6206 struct list_head list; 6207 struct module *module; 6208 struct btf *btf; 6209 struct bin_attribute *sysfs_attr; 6210 }; 6211 6212 static LIST_HEAD(btf_modules); 6213 static DEFINE_MUTEX(btf_module_mutex); 6214 6215 static ssize_t 6216 btf_module_read(struct file *file, struct kobject *kobj, 6217 struct bin_attribute *bin_attr, 6218 char *buf, loff_t off, size_t len) 6219 { 6220 const struct btf *btf = bin_attr->private; 6221 6222 memcpy(buf, btf->data + off, len); 6223 return len; 6224 } 6225 6226 static void purge_cand_cache(struct btf *btf); 6227 6228 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 6229 void *module) 6230 { 6231 struct btf_module *btf_mod, *tmp; 6232 struct module *mod = module; 6233 struct btf *btf; 6234 int err = 0; 6235 6236 if (mod->btf_data_size == 0 || 6237 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 6238 goto out; 6239 6240 switch (op) { 6241 case MODULE_STATE_COMING: 6242 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 6243 if (!btf_mod) { 6244 err = -ENOMEM; 6245 goto out; 6246 } 6247 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 6248 if (IS_ERR(btf)) { 6249 pr_warn("failed to validate module [%s] BTF: %ld\n", 6250 mod->name, PTR_ERR(btf)); 6251 kfree(btf_mod); 6252 err = PTR_ERR(btf); 6253 goto out; 6254 } 6255 err = btf_alloc_id(btf); 6256 if (err) { 6257 btf_free(btf); 6258 kfree(btf_mod); 6259 goto out; 6260 } 6261 6262 purge_cand_cache(NULL); 6263 mutex_lock(&btf_module_mutex); 6264 btf_mod->module = module; 6265 btf_mod->btf = btf; 6266 list_add(&btf_mod->list, &btf_modules); 6267 mutex_unlock(&btf_module_mutex); 6268 6269 if (IS_ENABLED(CONFIG_SYSFS)) { 6270 struct bin_attribute *attr; 6271 6272 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 6273 if (!attr) 6274 goto out; 6275 6276 sysfs_bin_attr_init(attr); 6277 attr->attr.name = btf->name; 6278 attr->attr.mode = 0444; 6279 attr->size = btf->data_size; 6280 attr->private = btf; 6281 attr->read = btf_module_read; 6282 6283 err = sysfs_create_bin_file(btf_kobj, attr); 6284 if (err) { 6285 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 6286 mod->name, err); 6287 kfree(attr); 6288 err = 0; 6289 goto out; 6290 } 6291 6292 btf_mod->sysfs_attr = attr; 6293 } 6294 6295 break; 6296 case MODULE_STATE_GOING: 6297 mutex_lock(&btf_module_mutex); 6298 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6299 if (btf_mod->module != module) 6300 continue; 6301 6302 list_del(&btf_mod->list); 6303 if (btf_mod->sysfs_attr) 6304 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 6305 purge_cand_cache(btf_mod->btf); 6306 btf_put(btf_mod->btf); 6307 kfree(btf_mod->sysfs_attr); 6308 kfree(btf_mod); 6309 break; 6310 } 6311 mutex_unlock(&btf_module_mutex); 6312 break; 6313 } 6314 out: 6315 return notifier_from_errno(err); 6316 } 6317 6318 static struct notifier_block btf_module_nb = { 6319 .notifier_call = btf_module_notify, 6320 }; 6321 6322 static int __init btf_module_init(void) 6323 { 6324 register_module_notifier(&btf_module_nb); 6325 return 0; 6326 } 6327 6328 fs_initcall(btf_module_init); 6329 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6330 6331 struct module *btf_try_get_module(const struct btf *btf) 6332 { 6333 struct module *res = NULL; 6334 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6335 struct btf_module *btf_mod, *tmp; 6336 6337 mutex_lock(&btf_module_mutex); 6338 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6339 if (btf_mod->btf != btf) 6340 continue; 6341 6342 if (try_module_get(btf_mod->module)) 6343 res = btf_mod->module; 6344 6345 break; 6346 } 6347 mutex_unlock(&btf_module_mutex); 6348 #endif 6349 6350 return res; 6351 } 6352 6353 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 6354 { 6355 struct btf *btf; 6356 long ret; 6357 6358 if (flags) 6359 return -EINVAL; 6360 6361 if (name_sz <= 1 || name[name_sz - 1]) 6362 return -EINVAL; 6363 6364 btf = bpf_get_btf_vmlinux(); 6365 if (IS_ERR(btf)) 6366 return PTR_ERR(btf); 6367 6368 ret = btf_find_by_name_kind(btf, name, kind); 6369 /* ret is never zero, since btf_find_by_name_kind returns 6370 * positive btf_id or negative error. 6371 */ 6372 if (ret < 0) { 6373 struct btf *mod_btf; 6374 int id; 6375 6376 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 6377 spin_lock_bh(&btf_idr_lock); 6378 idr_for_each_entry(&btf_idr, mod_btf, id) { 6379 if (!btf_is_module(mod_btf)) 6380 continue; 6381 /* linear search could be slow hence unlock/lock 6382 * the IDR to avoiding holding it for too long 6383 */ 6384 btf_get(mod_btf); 6385 spin_unlock_bh(&btf_idr_lock); 6386 ret = btf_find_by_name_kind(mod_btf, name, kind); 6387 if (ret > 0) { 6388 int btf_obj_fd; 6389 6390 btf_obj_fd = __btf_new_fd(mod_btf); 6391 if (btf_obj_fd < 0) { 6392 btf_put(mod_btf); 6393 return btf_obj_fd; 6394 } 6395 return ret | (((u64)btf_obj_fd) << 32); 6396 } 6397 spin_lock_bh(&btf_idr_lock); 6398 btf_put(mod_btf); 6399 } 6400 spin_unlock_bh(&btf_idr_lock); 6401 } 6402 return ret; 6403 } 6404 6405 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 6406 .func = bpf_btf_find_by_name_kind, 6407 .gpl_only = false, 6408 .ret_type = RET_INTEGER, 6409 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6410 .arg2_type = ARG_CONST_SIZE, 6411 .arg3_type = ARG_ANYTHING, 6412 .arg4_type = ARG_ANYTHING, 6413 }; 6414 6415 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 6416 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 6417 BTF_TRACING_TYPE_xxx 6418 #undef BTF_TRACING_TYPE 6419 6420 /* BTF ID set registration API for modules */ 6421 6422 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6423 6424 void register_kfunc_btf_id_set(struct kfunc_btf_id_list *l, 6425 struct kfunc_btf_id_set *s) 6426 { 6427 mutex_lock(&l->mutex); 6428 list_add(&s->list, &l->list); 6429 mutex_unlock(&l->mutex); 6430 } 6431 EXPORT_SYMBOL_GPL(register_kfunc_btf_id_set); 6432 6433 void unregister_kfunc_btf_id_set(struct kfunc_btf_id_list *l, 6434 struct kfunc_btf_id_set *s) 6435 { 6436 mutex_lock(&l->mutex); 6437 list_del_init(&s->list); 6438 mutex_unlock(&l->mutex); 6439 } 6440 EXPORT_SYMBOL_GPL(unregister_kfunc_btf_id_set); 6441 6442 bool bpf_check_mod_kfunc_call(struct kfunc_btf_id_list *klist, u32 kfunc_id, 6443 struct module *owner) 6444 { 6445 struct kfunc_btf_id_set *s; 6446 6447 mutex_lock(&klist->mutex); 6448 list_for_each_entry(s, &klist->list, list) { 6449 if (s->owner == owner && btf_id_set_contains(s->set, kfunc_id)) { 6450 mutex_unlock(&klist->mutex); 6451 return true; 6452 } 6453 } 6454 mutex_unlock(&klist->mutex); 6455 return false; 6456 } 6457 6458 #define DEFINE_KFUNC_BTF_ID_LIST(name) \ 6459 struct kfunc_btf_id_list name = { LIST_HEAD_INIT(name.list), \ 6460 __MUTEX_INITIALIZER(name.mutex) }; \ 6461 EXPORT_SYMBOL_GPL(name) 6462 6463 DEFINE_KFUNC_BTF_ID_LIST(bpf_tcp_ca_kfunc_list); 6464 DEFINE_KFUNC_BTF_ID_LIST(prog_test_kfunc_list); 6465 6466 #endif 6467 6468 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 6469 const struct btf *targ_btf, __u32 targ_id) 6470 { 6471 return -EOPNOTSUPP; 6472 } 6473 6474 static bool bpf_core_is_flavor_sep(const char *s) 6475 { 6476 /* check X___Y name pattern, where X and Y are not underscores */ 6477 return s[0] != '_' && /* X */ 6478 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 6479 s[4] != '_'; /* Y */ 6480 } 6481 6482 size_t bpf_core_essential_name_len(const char *name) 6483 { 6484 size_t n = strlen(name); 6485 int i; 6486 6487 for (i = n - 5; i >= 0; i--) { 6488 if (bpf_core_is_flavor_sep(name + i)) 6489 return i + 1; 6490 } 6491 return n; 6492 } 6493 6494 struct bpf_cand_cache { 6495 const char *name; 6496 u32 name_len; 6497 u16 kind; 6498 u16 cnt; 6499 struct { 6500 const struct btf *btf; 6501 u32 id; 6502 } cands[]; 6503 }; 6504 6505 static void bpf_free_cands(struct bpf_cand_cache *cands) 6506 { 6507 if (!cands->cnt) 6508 /* empty candidate array was allocated on stack */ 6509 return; 6510 kfree(cands); 6511 } 6512 6513 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 6514 { 6515 kfree(cands->name); 6516 kfree(cands); 6517 } 6518 6519 #define VMLINUX_CAND_CACHE_SIZE 31 6520 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 6521 6522 #define MODULE_CAND_CACHE_SIZE 31 6523 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 6524 6525 static DEFINE_MUTEX(cand_cache_mutex); 6526 6527 static void __print_cand_cache(struct bpf_verifier_log *log, 6528 struct bpf_cand_cache **cache, 6529 int cache_size) 6530 { 6531 struct bpf_cand_cache *cc; 6532 int i, j; 6533 6534 for (i = 0; i < cache_size; i++) { 6535 cc = cache[i]; 6536 if (!cc) 6537 continue; 6538 bpf_log(log, "[%d]%s(", i, cc->name); 6539 for (j = 0; j < cc->cnt; j++) { 6540 bpf_log(log, "%d", cc->cands[j].id); 6541 if (j < cc->cnt - 1) 6542 bpf_log(log, " "); 6543 } 6544 bpf_log(log, "), "); 6545 } 6546 } 6547 6548 static void print_cand_cache(struct bpf_verifier_log *log) 6549 { 6550 mutex_lock(&cand_cache_mutex); 6551 bpf_log(log, "vmlinux_cand_cache:"); 6552 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 6553 bpf_log(log, "\nmodule_cand_cache:"); 6554 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 6555 bpf_log(log, "\n"); 6556 mutex_unlock(&cand_cache_mutex); 6557 } 6558 6559 static u32 hash_cands(struct bpf_cand_cache *cands) 6560 { 6561 return jhash(cands->name, cands->name_len, 0); 6562 } 6563 6564 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 6565 struct bpf_cand_cache **cache, 6566 int cache_size) 6567 { 6568 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 6569 6570 if (cc && cc->name_len == cands->name_len && 6571 !strncmp(cc->name, cands->name, cands->name_len)) 6572 return cc; 6573 return NULL; 6574 } 6575 6576 static size_t sizeof_cands(int cnt) 6577 { 6578 return offsetof(struct bpf_cand_cache, cands[cnt]); 6579 } 6580 6581 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 6582 struct bpf_cand_cache **cache, 6583 int cache_size) 6584 { 6585 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 6586 6587 if (*cc) { 6588 bpf_free_cands_from_cache(*cc); 6589 *cc = NULL; 6590 } 6591 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 6592 if (!new_cands) { 6593 bpf_free_cands(cands); 6594 return ERR_PTR(-ENOMEM); 6595 } 6596 /* strdup the name, since it will stay in cache. 6597 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 6598 */ 6599 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 6600 bpf_free_cands(cands); 6601 if (!new_cands->name) { 6602 kfree(new_cands); 6603 return ERR_PTR(-ENOMEM); 6604 } 6605 *cc = new_cands; 6606 return new_cands; 6607 } 6608 6609 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6610 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 6611 int cache_size) 6612 { 6613 struct bpf_cand_cache *cc; 6614 int i, j; 6615 6616 for (i = 0; i < cache_size; i++) { 6617 cc = cache[i]; 6618 if (!cc) 6619 continue; 6620 if (!btf) { 6621 /* when new module is loaded purge all of module_cand_cache, 6622 * since new module might have candidates with the name 6623 * that matches cached cands. 6624 */ 6625 bpf_free_cands_from_cache(cc); 6626 cache[i] = NULL; 6627 continue; 6628 } 6629 /* when module is unloaded purge cache entries 6630 * that match module's btf 6631 */ 6632 for (j = 0; j < cc->cnt; j++) 6633 if (cc->cands[j].btf == btf) { 6634 bpf_free_cands_from_cache(cc); 6635 cache[i] = NULL; 6636 break; 6637 } 6638 } 6639 6640 } 6641 6642 static void purge_cand_cache(struct btf *btf) 6643 { 6644 mutex_lock(&cand_cache_mutex); 6645 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 6646 mutex_unlock(&cand_cache_mutex); 6647 } 6648 #endif 6649 6650 static struct bpf_cand_cache * 6651 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 6652 int targ_start_id) 6653 { 6654 struct bpf_cand_cache *new_cands; 6655 const struct btf_type *t; 6656 const char *targ_name; 6657 size_t targ_essent_len; 6658 int n, i; 6659 6660 n = btf_nr_types(targ_btf); 6661 for (i = targ_start_id; i < n; i++) { 6662 t = btf_type_by_id(targ_btf, i); 6663 if (btf_kind(t) != cands->kind) 6664 continue; 6665 6666 targ_name = btf_name_by_offset(targ_btf, t->name_off); 6667 if (!targ_name) 6668 continue; 6669 6670 /* the resched point is before strncmp to make sure that search 6671 * for non-existing name will have a chance to schedule(). 6672 */ 6673 cond_resched(); 6674 6675 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 6676 continue; 6677 6678 targ_essent_len = bpf_core_essential_name_len(targ_name); 6679 if (targ_essent_len != cands->name_len) 6680 continue; 6681 6682 /* most of the time there is only one candidate for a given kind+name pair */ 6683 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 6684 if (!new_cands) { 6685 bpf_free_cands(cands); 6686 return ERR_PTR(-ENOMEM); 6687 } 6688 6689 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 6690 bpf_free_cands(cands); 6691 cands = new_cands; 6692 cands->cands[cands->cnt].btf = targ_btf; 6693 cands->cands[cands->cnt].id = i; 6694 cands->cnt++; 6695 } 6696 return cands; 6697 } 6698 6699 static struct bpf_cand_cache * 6700 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 6701 { 6702 struct bpf_cand_cache *cands, *cc, local_cand = {}; 6703 const struct btf *local_btf = ctx->btf; 6704 const struct btf_type *local_type; 6705 const struct btf *main_btf; 6706 size_t local_essent_len; 6707 struct btf *mod_btf; 6708 const char *name; 6709 int id; 6710 6711 main_btf = bpf_get_btf_vmlinux(); 6712 if (IS_ERR(main_btf)) 6713 return ERR_CAST(main_btf); 6714 6715 local_type = btf_type_by_id(local_btf, local_type_id); 6716 if (!local_type) 6717 return ERR_PTR(-EINVAL); 6718 6719 name = btf_name_by_offset(local_btf, local_type->name_off); 6720 if (str_is_empty(name)) 6721 return ERR_PTR(-EINVAL); 6722 local_essent_len = bpf_core_essential_name_len(name); 6723 6724 cands = &local_cand; 6725 cands->name = name; 6726 cands->kind = btf_kind(local_type); 6727 cands->name_len = local_essent_len; 6728 6729 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 6730 /* cands is a pointer to stack here */ 6731 if (cc) { 6732 if (cc->cnt) 6733 return cc; 6734 goto check_modules; 6735 } 6736 6737 /* Attempt to find target candidates in vmlinux BTF first */ 6738 cands = bpf_core_add_cands(cands, main_btf, 1); 6739 if (IS_ERR(cands)) 6740 return ERR_CAST(cands); 6741 6742 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 6743 6744 /* populate cache even when cands->cnt == 0 */ 6745 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 6746 if (IS_ERR(cc)) 6747 return ERR_CAST(cc); 6748 6749 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 6750 if (cc->cnt) 6751 return cc; 6752 6753 check_modules: 6754 /* cands is a pointer to stack here and cands->cnt == 0 */ 6755 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 6756 if (cc) 6757 /* if cache has it return it even if cc->cnt == 0 */ 6758 return cc; 6759 6760 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 6761 spin_lock_bh(&btf_idr_lock); 6762 idr_for_each_entry(&btf_idr, mod_btf, id) { 6763 if (!btf_is_module(mod_btf)) 6764 continue; 6765 /* linear search could be slow hence unlock/lock 6766 * the IDR to avoiding holding it for too long 6767 */ 6768 btf_get(mod_btf); 6769 spin_unlock_bh(&btf_idr_lock); 6770 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 6771 if (IS_ERR(cands)) { 6772 btf_put(mod_btf); 6773 return ERR_CAST(cands); 6774 } 6775 spin_lock_bh(&btf_idr_lock); 6776 btf_put(mod_btf); 6777 } 6778 spin_unlock_bh(&btf_idr_lock); 6779 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 6780 * or pointer to stack if cands->cnd == 0. 6781 * Copy it into the cache even when cands->cnt == 0 and 6782 * return the result. 6783 */ 6784 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 6785 } 6786 6787 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 6788 int relo_idx, void *insn) 6789 { 6790 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 6791 struct bpf_core_cand_list cands = {}; 6792 struct bpf_core_spec *specs; 6793 int err; 6794 6795 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 6796 * into arrays of btf_ids of struct fields and array indices. 6797 */ 6798 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 6799 if (!specs) 6800 return -ENOMEM; 6801 6802 if (need_cands) { 6803 struct bpf_cand_cache *cc; 6804 int i; 6805 6806 mutex_lock(&cand_cache_mutex); 6807 cc = bpf_core_find_cands(ctx, relo->type_id); 6808 if (IS_ERR(cc)) { 6809 bpf_log(ctx->log, "target candidate search failed for %d\n", 6810 relo->type_id); 6811 err = PTR_ERR(cc); 6812 goto out; 6813 } 6814 if (cc->cnt) { 6815 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 6816 if (!cands.cands) { 6817 err = -ENOMEM; 6818 goto out; 6819 } 6820 } 6821 for (i = 0; i < cc->cnt; i++) { 6822 bpf_log(ctx->log, 6823 "CO-RE relocating %s %s: found target candidate [%d]\n", 6824 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 6825 cands.cands[i].btf = cc->cands[i].btf; 6826 cands.cands[i].id = cc->cands[i].id; 6827 } 6828 cands.len = cc->cnt; 6829 /* cand_cache_mutex needs to span the cache lookup and 6830 * copy of btf pointer into bpf_core_cand_list, 6831 * since module can be unloaded while bpf_core_apply_relo_insn 6832 * is working with module's btf. 6833 */ 6834 } 6835 6836 err = bpf_core_apply_relo_insn((void *)ctx->log, insn, relo->insn_off / 8, 6837 relo, relo_idx, ctx->btf, &cands, specs); 6838 out: 6839 kfree(specs); 6840 if (need_cands) { 6841 kfree(cands.cands); 6842 mutex_unlock(&cand_cache_mutex); 6843 if (ctx->log->level & BPF_LOG_LEVEL2) 6844 print_cand_cache(ctx->log); 6845 } 6846 return err; 6847 } 6848