xref: /openbmc/linux/kernel/bpf/btf.c (revision 9eda7c1f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <net/sock.h>
25 
26 /* BTF (BPF Type Format) is the meta data format which describes
27  * the data types of BPF program/map.  Hence, it basically focus
28  * on the C programming language which the modern BPF is primary
29  * using.
30  *
31  * ELF Section:
32  * ~~~~~~~~~~~
33  * The BTF data is stored under the ".BTF" ELF section
34  *
35  * struct btf_type:
36  * ~~~~~~~~~~~~~~~
37  * Each 'struct btf_type' object describes a C data type.
38  * Depending on the type it is describing, a 'struct btf_type'
39  * object may be followed by more data.  F.e.
40  * To describe an array, 'struct btf_type' is followed by
41  * 'struct btf_array'.
42  *
43  * 'struct btf_type' and any extra data following it are
44  * 4 bytes aligned.
45  *
46  * Type section:
47  * ~~~~~~~~~~~~~
48  * The BTF type section contains a list of 'struct btf_type' objects.
49  * Each one describes a C type.  Recall from the above section
50  * that a 'struct btf_type' object could be immediately followed by extra
51  * data in order to desribe some particular C types.
52  *
53  * type_id:
54  * ~~~~~~~
55  * Each btf_type object is identified by a type_id.  The type_id
56  * is implicitly implied by the location of the btf_type object in
57  * the BTF type section.  The first one has type_id 1.  The second
58  * one has type_id 2...etc.  Hence, an earlier btf_type has
59  * a smaller type_id.
60  *
61  * A btf_type object may refer to another btf_type object by using
62  * type_id (i.e. the "type" in the "struct btf_type").
63  *
64  * NOTE that we cannot assume any reference-order.
65  * A btf_type object can refer to an earlier btf_type object
66  * but it can also refer to a later btf_type object.
67  *
68  * For example, to describe "const void *".  A btf_type
69  * object describing "const" may refer to another btf_type
70  * object describing "void *".  This type-reference is done
71  * by specifying type_id:
72  *
73  * [1] CONST (anon) type_id=2
74  * [2] PTR (anon) type_id=0
75  *
76  * The above is the btf_verifier debug log:
77  *   - Each line started with "[?]" is a btf_type object
78  *   - [?] is the type_id of the btf_type object.
79  *   - CONST/PTR is the BTF_KIND_XXX
80  *   - "(anon)" is the name of the type.  It just
81  *     happens that CONST and PTR has no name.
82  *   - type_id=XXX is the 'u32 type' in btf_type
83  *
84  * NOTE: "void" has type_id 0
85  *
86  * String section:
87  * ~~~~~~~~~~~~~~
88  * The BTF string section contains the names used by the type section.
89  * Each string is referred by an "offset" from the beginning of the
90  * string section.
91  *
92  * Each string is '\0' terminated.
93  *
94  * The first character in the string section must be '\0'
95  * which is used to mean 'anonymous'. Some btf_type may not
96  * have a name.
97  */
98 
99 /* BTF verification:
100  *
101  * To verify BTF data, two passes are needed.
102  *
103  * Pass #1
104  * ~~~~~~~
105  * The first pass is to collect all btf_type objects to
106  * an array: "btf->types".
107  *
108  * Depending on the C type that a btf_type is describing,
109  * a btf_type may be followed by extra data.  We don't know
110  * how many btf_type is there, and more importantly we don't
111  * know where each btf_type is located in the type section.
112  *
113  * Without knowing the location of each type_id, most verifications
114  * cannot be done.  e.g. an earlier btf_type may refer to a later
115  * btf_type (recall the "const void *" above), so we cannot
116  * check this type-reference in the first pass.
117  *
118  * In the first pass, it still does some verifications (e.g.
119  * checking the name is a valid offset to the string section).
120  *
121  * Pass #2
122  * ~~~~~~~
123  * The main focus is to resolve a btf_type that is referring
124  * to another type.
125  *
126  * We have to ensure the referring type:
127  * 1) does exist in the BTF (i.e. in btf->types[])
128  * 2) does not cause a loop:
129  *	struct A {
130  *		struct B b;
131  *	};
132  *
133  *	struct B {
134  *		struct A a;
135  *	};
136  *
137  * btf_type_needs_resolve() decides if a btf_type needs
138  * to be resolved.
139  *
140  * The needs_resolve type implements the "resolve()" ops which
141  * essentially does a DFS and detects backedge.
142  *
143  * During resolve (or DFS), different C types have different
144  * "RESOLVED" conditions.
145  *
146  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
147  * members because a member is always referring to another
148  * type.  A struct's member can be treated as "RESOLVED" if
149  * it is referring to a BTF_KIND_PTR.  Otherwise, the
150  * following valid C struct would be rejected:
151  *
152  *	struct A {
153  *		int m;
154  *		struct A *a;
155  *	};
156  *
157  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
158  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
159  * detect a pointer loop, e.g.:
160  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
161  *                        ^                                         |
162  *                        +-----------------------------------------+
163  *
164  */
165 
166 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
167 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
168 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
169 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
170 #define BITS_ROUNDUP_BYTES(bits) \
171 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
172 
173 #define BTF_INFO_MASK 0x8f00ffff
174 #define BTF_INT_MASK 0x0fffffff
175 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
176 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
177 
178 /* 16MB for 64k structs and each has 16 members and
179  * a few MB spaces for the string section.
180  * The hard limit is S32_MAX.
181  */
182 #define BTF_MAX_SIZE (16 * 1024 * 1024)
183 
184 #define for_each_member_from(i, from, struct_type, member)		\
185 	for (i = from, member = btf_type_member(struct_type) + from;	\
186 	     i < btf_type_vlen(struct_type);				\
187 	     i++, member++)
188 
189 #define for_each_vsi(i, struct_type, member)			\
190 	for (i = 0, member = btf_type_var_secinfo(struct_type);	\
191 	     i < btf_type_vlen(struct_type);			\
192 	     i++, member++)
193 
194 #define for_each_vsi_from(i, from, struct_type, member)				\
195 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
196 	     i < btf_type_vlen(struct_type);					\
197 	     i++, member++)
198 
199 DEFINE_IDR(btf_idr);
200 DEFINE_SPINLOCK(btf_idr_lock);
201 
202 struct btf {
203 	void *data;
204 	struct btf_type **types;
205 	u32 *resolved_ids;
206 	u32 *resolved_sizes;
207 	const char *strings;
208 	void *nohdr_data;
209 	struct btf_header hdr;
210 	u32 nr_types;
211 	u32 types_size;
212 	u32 data_size;
213 	refcount_t refcnt;
214 	u32 id;
215 	struct rcu_head rcu;
216 };
217 
218 enum verifier_phase {
219 	CHECK_META,
220 	CHECK_TYPE,
221 };
222 
223 struct resolve_vertex {
224 	const struct btf_type *t;
225 	u32 type_id;
226 	u16 next_member;
227 };
228 
229 enum visit_state {
230 	NOT_VISITED,
231 	VISITED,
232 	RESOLVED,
233 };
234 
235 enum resolve_mode {
236 	RESOLVE_TBD,	/* To Be Determined */
237 	RESOLVE_PTR,	/* Resolving for Pointer */
238 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
239 					 * or array
240 					 */
241 };
242 
243 #define MAX_RESOLVE_DEPTH 32
244 
245 struct btf_sec_info {
246 	u32 off;
247 	u32 len;
248 };
249 
250 struct btf_verifier_env {
251 	struct btf *btf;
252 	u8 *visit_states;
253 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
254 	struct bpf_verifier_log log;
255 	u32 log_type_id;
256 	u32 top_stack;
257 	enum verifier_phase phase;
258 	enum resolve_mode resolve_mode;
259 };
260 
261 static const char * const btf_kind_str[NR_BTF_KINDS] = {
262 	[BTF_KIND_UNKN]		= "UNKNOWN",
263 	[BTF_KIND_INT]		= "INT",
264 	[BTF_KIND_PTR]		= "PTR",
265 	[BTF_KIND_ARRAY]	= "ARRAY",
266 	[BTF_KIND_STRUCT]	= "STRUCT",
267 	[BTF_KIND_UNION]	= "UNION",
268 	[BTF_KIND_ENUM]		= "ENUM",
269 	[BTF_KIND_FWD]		= "FWD",
270 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
271 	[BTF_KIND_VOLATILE]	= "VOLATILE",
272 	[BTF_KIND_CONST]	= "CONST",
273 	[BTF_KIND_RESTRICT]	= "RESTRICT",
274 	[BTF_KIND_FUNC]		= "FUNC",
275 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
276 	[BTF_KIND_VAR]		= "VAR",
277 	[BTF_KIND_DATASEC]	= "DATASEC",
278 };
279 
280 static const char *btf_type_str(const struct btf_type *t)
281 {
282 	return btf_kind_str[BTF_INFO_KIND(t->info)];
283 }
284 
285 struct btf_kind_operations {
286 	s32 (*check_meta)(struct btf_verifier_env *env,
287 			  const struct btf_type *t,
288 			  u32 meta_left);
289 	int (*resolve)(struct btf_verifier_env *env,
290 		       const struct resolve_vertex *v);
291 	int (*check_member)(struct btf_verifier_env *env,
292 			    const struct btf_type *struct_type,
293 			    const struct btf_member *member,
294 			    const struct btf_type *member_type);
295 	int (*check_kflag_member)(struct btf_verifier_env *env,
296 				  const struct btf_type *struct_type,
297 				  const struct btf_member *member,
298 				  const struct btf_type *member_type);
299 	void (*log_details)(struct btf_verifier_env *env,
300 			    const struct btf_type *t);
301 	void (*seq_show)(const struct btf *btf, const struct btf_type *t,
302 			 u32 type_id, void *data, u8 bits_offsets,
303 			 struct seq_file *m);
304 };
305 
306 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
307 static struct btf_type btf_void;
308 
309 static int btf_resolve(struct btf_verifier_env *env,
310 		       const struct btf_type *t, u32 type_id);
311 
312 static bool btf_type_is_modifier(const struct btf_type *t)
313 {
314 	/* Some of them is not strictly a C modifier
315 	 * but they are grouped into the same bucket
316 	 * for BTF concern:
317 	 *   A type (t) that refers to another
318 	 *   type through t->type AND its size cannot
319 	 *   be determined without following the t->type.
320 	 *
321 	 * ptr does not fall into this bucket
322 	 * because its size is always sizeof(void *).
323 	 */
324 	switch (BTF_INFO_KIND(t->info)) {
325 	case BTF_KIND_TYPEDEF:
326 	case BTF_KIND_VOLATILE:
327 	case BTF_KIND_CONST:
328 	case BTF_KIND_RESTRICT:
329 		return true;
330 	}
331 
332 	return false;
333 }
334 
335 bool btf_type_is_void(const struct btf_type *t)
336 {
337 	return t == &btf_void;
338 }
339 
340 static bool btf_type_is_fwd(const struct btf_type *t)
341 {
342 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
343 }
344 
345 static bool btf_type_nosize(const struct btf_type *t)
346 {
347 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
348 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
349 }
350 
351 static bool btf_type_nosize_or_null(const struct btf_type *t)
352 {
353 	return !t || btf_type_nosize(t);
354 }
355 
356 /* union is only a special case of struct:
357  * all its offsetof(member) == 0
358  */
359 static bool btf_type_is_struct(const struct btf_type *t)
360 {
361 	u8 kind = BTF_INFO_KIND(t->info);
362 
363 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
364 }
365 
366 static bool __btf_type_is_struct(const struct btf_type *t)
367 {
368 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
369 }
370 
371 static bool btf_type_is_array(const struct btf_type *t)
372 {
373 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
374 }
375 
376 static bool btf_type_is_var(const struct btf_type *t)
377 {
378 	return BTF_INFO_KIND(t->info) == BTF_KIND_VAR;
379 }
380 
381 static bool btf_type_is_datasec(const struct btf_type *t)
382 {
383 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
384 }
385 
386 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
387 {
388 	const struct btf_type *t;
389 	const char *tname;
390 	u32 i;
391 
392 	for (i = 1; i <= btf->nr_types; i++) {
393 		t = btf->types[i];
394 		if (BTF_INFO_KIND(t->info) != kind)
395 			continue;
396 
397 		tname = btf_name_by_offset(btf, t->name_off);
398 		if (!strcmp(tname, name))
399 			return i;
400 	}
401 
402 	return -ENOENT;
403 }
404 
405 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
406 					       u32 id, u32 *res_id)
407 {
408 	const struct btf_type *t = btf_type_by_id(btf, id);
409 
410 	while (btf_type_is_modifier(t)) {
411 		id = t->type;
412 		t = btf_type_by_id(btf, t->type);
413 	}
414 
415 	if (res_id)
416 		*res_id = id;
417 
418 	return t;
419 }
420 
421 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
422 					    u32 id, u32 *res_id)
423 {
424 	const struct btf_type *t;
425 
426 	t = btf_type_skip_modifiers(btf, id, NULL);
427 	if (!btf_type_is_ptr(t))
428 		return NULL;
429 
430 	return btf_type_skip_modifiers(btf, t->type, res_id);
431 }
432 
433 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
434 						 u32 id, u32 *res_id)
435 {
436 	const struct btf_type *ptype;
437 
438 	ptype = btf_type_resolve_ptr(btf, id, res_id);
439 	if (ptype && btf_type_is_func_proto(ptype))
440 		return ptype;
441 
442 	return NULL;
443 }
444 
445 /* Types that act only as a source, not sink or intermediate
446  * type when resolving.
447  */
448 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
449 {
450 	return btf_type_is_var(t) ||
451 	       btf_type_is_datasec(t);
452 }
453 
454 /* What types need to be resolved?
455  *
456  * btf_type_is_modifier() is an obvious one.
457  *
458  * btf_type_is_struct() because its member refers to
459  * another type (through member->type).
460  *
461  * btf_type_is_var() because the variable refers to
462  * another type. btf_type_is_datasec() holds multiple
463  * btf_type_is_var() types that need resolving.
464  *
465  * btf_type_is_array() because its element (array->type)
466  * refers to another type.  Array can be thought of a
467  * special case of struct while array just has the same
468  * member-type repeated by array->nelems of times.
469  */
470 static bool btf_type_needs_resolve(const struct btf_type *t)
471 {
472 	return btf_type_is_modifier(t) ||
473 	       btf_type_is_ptr(t) ||
474 	       btf_type_is_struct(t) ||
475 	       btf_type_is_array(t) ||
476 	       btf_type_is_var(t) ||
477 	       btf_type_is_datasec(t);
478 }
479 
480 /* t->size can be used */
481 static bool btf_type_has_size(const struct btf_type *t)
482 {
483 	switch (BTF_INFO_KIND(t->info)) {
484 	case BTF_KIND_INT:
485 	case BTF_KIND_STRUCT:
486 	case BTF_KIND_UNION:
487 	case BTF_KIND_ENUM:
488 	case BTF_KIND_DATASEC:
489 		return true;
490 	}
491 
492 	return false;
493 }
494 
495 static const char *btf_int_encoding_str(u8 encoding)
496 {
497 	if (encoding == 0)
498 		return "(none)";
499 	else if (encoding == BTF_INT_SIGNED)
500 		return "SIGNED";
501 	else if (encoding == BTF_INT_CHAR)
502 		return "CHAR";
503 	else if (encoding == BTF_INT_BOOL)
504 		return "BOOL";
505 	else
506 		return "UNKN";
507 }
508 
509 static u32 btf_type_int(const struct btf_type *t)
510 {
511 	return *(u32 *)(t + 1);
512 }
513 
514 static const struct btf_array *btf_type_array(const struct btf_type *t)
515 {
516 	return (const struct btf_array *)(t + 1);
517 }
518 
519 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
520 {
521 	return (const struct btf_enum *)(t + 1);
522 }
523 
524 static const struct btf_var *btf_type_var(const struct btf_type *t)
525 {
526 	return (const struct btf_var *)(t + 1);
527 }
528 
529 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t)
530 {
531 	return (const struct btf_var_secinfo *)(t + 1);
532 }
533 
534 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
535 {
536 	return kind_ops[BTF_INFO_KIND(t->info)];
537 }
538 
539 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
540 {
541 	return BTF_STR_OFFSET_VALID(offset) &&
542 		offset < btf->hdr.str_len;
543 }
544 
545 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
546 {
547 	if ((first ? !isalpha(c) :
548 		     !isalnum(c)) &&
549 	    c != '_' &&
550 	    ((c == '.' && !dot_ok) ||
551 	      c != '.'))
552 		return false;
553 	return true;
554 }
555 
556 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
557 {
558 	/* offset must be valid */
559 	const char *src = &btf->strings[offset];
560 	const char *src_limit;
561 
562 	if (!__btf_name_char_ok(*src, true, dot_ok))
563 		return false;
564 
565 	/* set a limit on identifier length */
566 	src_limit = src + KSYM_NAME_LEN;
567 	src++;
568 	while (*src && src < src_limit) {
569 		if (!__btf_name_char_ok(*src, false, dot_ok))
570 			return false;
571 		src++;
572 	}
573 
574 	return !*src;
575 }
576 
577 /* Only C-style identifier is permitted. This can be relaxed if
578  * necessary.
579  */
580 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
581 {
582 	return __btf_name_valid(btf, offset, false);
583 }
584 
585 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
586 {
587 	return __btf_name_valid(btf, offset, true);
588 }
589 
590 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
591 {
592 	if (!offset)
593 		return "(anon)";
594 	else if (offset < btf->hdr.str_len)
595 		return &btf->strings[offset];
596 	else
597 		return "(invalid-name-offset)";
598 }
599 
600 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
601 {
602 	if (offset < btf->hdr.str_len)
603 		return &btf->strings[offset];
604 
605 	return NULL;
606 }
607 
608 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
609 {
610 	if (type_id > btf->nr_types)
611 		return NULL;
612 
613 	return btf->types[type_id];
614 }
615 
616 /*
617  * Regular int is not a bit field and it must be either
618  * u8/u16/u32/u64 or __int128.
619  */
620 static bool btf_type_int_is_regular(const struct btf_type *t)
621 {
622 	u8 nr_bits, nr_bytes;
623 	u32 int_data;
624 
625 	int_data = btf_type_int(t);
626 	nr_bits = BTF_INT_BITS(int_data);
627 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
628 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
629 	    BTF_INT_OFFSET(int_data) ||
630 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
631 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
632 	     nr_bytes != (2 * sizeof(u64)))) {
633 		return false;
634 	}
635 
636 	return true;
637 }
638 
639 /*
640  * Check that given struct member is a regular int with expected
641  * offset and size.
642  */
643 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
644 			   const struct btf_member *m,
645 			   u32 expected_offset, u32 expected_size)
646 {
647 	const struct btf_type *t;
648 	u32 id, int_data;
649 	u8 nr_bits;
650 
651 	id = m->type;
652 	t = btf_type_id_size(btf, &id, NULL);
653 	if (!t || !btf_type_is_int(t))
654 		return false;
655 
656 	int_data = btf_type_int(t);
657 	nr_bits = BTF_INT_BITS(int_data);
658 	if (btf_type_kflag(s)) {
659 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
660 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
661 
662 		/* if kflag set, int should be a regular int and
663 		 * bit offset should be at byte boundary.
664 		 */
665 		return !bitfield_size &&
666 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
667 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
668 	}
669 
670 	if (BTF_INT_OFFSET(int_data) ||
671 	    BITS_PER_BYTE_MASKED(m->offset) ||
672 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
673 	    BITS_PER_BYTE_MASKED(nr_bits) ||
674 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
675 		return false;
676 
677 	return true;
678 }
679 
680 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
681 					      const char *fmt, ...)
682 {
683 	va_list args;
684 
685 	va_start(args, fmt);
686 	bpf_verifier_vlog(log, fmt, args);
687 	va_end(args);
688 }
689 
690 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
691 					    const char *fmt, ...)
692 {
693 	struct bpf_verifier_log *log = &env->log;
694 	va_list args;
695 
696 	if (!bpf_verifier_log_needed(log))
697 		return;
698 
699 	va_start(args, fmt);
700 	bpf_verifier_vlog(log, fmt, args);
701 	va_end(args);
702 }
703 
704 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
705 						   const struct btf_type *t,
706 						   bool log_details,
707 						   const char *fmt, ...)
708 {
709 	struct bpf_verifier_log *log = &env->log;
710 	u8 kind = BTF_INFO_KIND(t->info);
711 	struct btf *btf = env->btf;
712 	va_list args;
713 
714 	if (!bpf_verifier_log_needed(log))
715 		return;
716 
717 	/* btf verifier prints all types it is processing via
718 	 * btf_verifier_log_type(..., fmt = NULL).
719 	 * Skip those prints for in-kernel BTF verification.
720 	 */
721 	if (log->level == BPF_LOG_KERNEL && !fmt)
722 		return;
723 
724 	__btf_verifier_log(log, "[%u] %s %s%s",
725 			   env->log_type_id,
726 			   btf_kind_str[kind],
727 			   __btf_name_by_offset(btf, t->name_off),
728 			   log_details ? " " : "");
729 
730 	if (log_details)
731 		btf_type_ops(t)->log_details(env, t);
732 
733 	if (fmt && *fmt) {
734 		__btf_verifier_log(log, " ");
735 		va_start(args, fmt);
736 		bpf_verifier_vlog(log, fmt, args);
737 		va_end(args);
738 	}
739 
740 	__btf_verifier_log(log, "\n");
741 }
742 
743 #define btf_verifier_log_type(env, t, ...) \
744 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
745 #define btf_verifier_log_basic(env, t, ...) \
746 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
747 
748 __printf(4, 5)
749 static void btf_verifier_log_member(struct btf_verifier_env *env,
750 				    const struct btf_type *struct_type,
751 				    const struct btf_member *member,
752 				    const char *fmt, ...)
753 {
754 	struct bpf_verifier_log *log = &env->log;
755 	struct btf *btf = env->btf;
756 	va_list args;
757 
758 	if (!bpf_verifier_log_needed(log))
759 		return;
760 
761 	if (log->level == BPF_LOG_KERNEL && !fmt)
762 		return;
763 	/* The CHECK_META phase already did a btf dump.
764 	 *
765 	 * If member is logged again, it must hit an error in
766 	 * parsing this member.  It is useful to print out which
767 	 * struct this member belongs to.
768 	 */
769 	if (env->phase != CHECK_META)
770 		btf_verifier_log_type(env, struct_type, NULL);
771 
772 	if (btf_type_kflag(struct_type))
773 		__btf_verifier_log(log,
774 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
775 				   __btf_name_by_offset(btf, member->name_off),
776 				   member->type,
777 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
778 				   BTF_MEMBER_BIT_OFFSET(member->offset));
779 	else
780 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
781 				   __btf_name_by_offset(btf, member->name_off),
782 				   member->type, member->offset);
783 
784 	if (fmt && *fmt) {
785 		__btf_verifier_log(log, " ");
786 		va_start(args, fmt);
787 		bpf_verifier_vlog(log, fmt, args);
788 		va_end(args);
789 	}
790 
791 	__btf_verifier_log(log, "\n");
792 }
793 
794 __printf(4, 5)
795 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
796 				 const struct btf_type *datasec_type,
797 				 const struct btf_var_secinfo *vsi,
798 				 const char *fmt, ...)
799 {
800 	struct bpf_verifier_log *log = &env->log;
801 	va_list args;
802 
803 	if (!bpf_verifier_log_needed(log))
804 		return;
805 	if (log->level == BPF_LOG_KERNEL && !fmt)
806 		return;
807 	if (env->phase != CHECK_META)
808 		btf_verifier_log_type(env, datasec_type, NULL);
809 
810 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
811 			   vsi->type, vsi->offset, vsi->size);
812 	if (fmt && *fmt) {
813 		__btf_verifier_log(log, " ");
814 		va_start(args, fmt);
815 		bpf_verifier_vlog(log, fmt, args);
816 		va_end(args);
817 	}
818 
819 	__btf_verifier_log(log, "\n");
820 }
821 
822 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
823 				 u32 btf_data_size)
824 {
825 	struct bpf_verifier_log *log = &env->log;
826 	const struct btf *btf = env->btf;
827 	const struct btf_header *hdr;
828 
829 	if (!bpf_verifier_log_needed(log))
830 		return;
831 
832 	if (log->level == BPF_LOG_KERNEL)
833 		return;
834 	hdr = &btf->hdr;
835 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
836 	__btf_verifier_log(log, "version: %u\n", hdr->version);
837 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
838 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
839 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
840 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
841 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
842 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
843 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
844 }
845 
846 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
847 {
848 	struct btf *btf = env->btf;
849 
850 	/* < 2 because +1 for btf_void which is always in btf->types[0].
851 	 * btf_void is not accounted in btf->nr_types because btf_void
852 	 * does not come from the BTF file.
853 	 */
854 	if (btf->types_size - btf->nr_types < 2) {
855 		/* Expand 'types' array */
856 
857 		struct btf_type **new_types;
858 		u32 expand_by, new_size;
859 
860 		if (btf->types_size == BTF_MAX_TYPE) {
861 			btf_verifier_log(env, "Exceeded max num of types");
862 			return -E2BIG;
863 		}
864 
865 		expand_by = max_t(u32, btf->types_size >> 2, 16);
866 		new_size = min_t(u32, BTF_MAX_TYPE,
867 				 btf->types_size + expand_by);
868 
869 		new_types = kvcalloc(new_size, sizeof(*new_types),
870 				     GFP_KERNEL | __GFP_NOWARN);
871 		if (!new_types)
872 			return -ENOMEM;
873 
874 		if (btf->nr_types == 0)
875 			new_types[0] = &btf_void;
876 		else
877 			memcpy(new_types, btf->types,
878 			       sizeof(*btf->types) * (btf->nr_types + 1));
879 
880 		kvfree(btf->types);
881 		btf->types = new_types;
882 		btf->types_size = new_size;
883 	}
884 
885 	btf->types[++(btf->nr_types)] = t;
886 
887 	return 0;
888 }
889 
890 static int btf_alloc_id(struct btf *btf)
891 {
892 	int id;
893 
894 	idr_preload(GFP_KERNEL);
895 	spin_lock_bh(&btf_idr_lock);
896 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
897 	if (id > 0)
898 		btf->id = id;
899 	spin_unlock_bh(&btf_idr_lock);
900 	idr_preload_end();
901 
902 	if (WARN_ON_ONCE(!id))
903 		return -ENOSPC;
904 
905 	return id > 0 ? 0 : id;
906 }
907 
908 static void btf_free_id(struct btf *btf)
909 {
910 	unsigned long flags;
911 
912 	/*
913 	 * In map-in-map, calling map_delete_elem() on outer
914 	 * map will call bpf_map_put on the inner map.
915 	 * It will then eventually call btf_free_id()
916 	 * on the inner map.  Some of the map_delete_elem()
917 	 * implementation may have irq disabled, so
918 	 * we need to use the _irqsave() version instead
919 	 * of the _bh() version.
920 	 */
921 	spin_lock_irqsave(&btf_idr_lock, flags);
922 	idr_remove(&btf_idr, btf->id);
923 	spin_unlock_irqrestore(&btf_idr_lock, flags);
924 }
925 
926 static void btf_free(struct btf *btf)
927 {
928 	kvfree(btf->types);
929 	kvfree(btf->resolved_sizes);
930 	kvfree(btf->resolved_ids);
931 	kvfree(btf->data);
932 	kfree(btf);
933 }
934 
935 static void btf_free_rcu(struct rcu_head *rcu)
936 {
937 	struct btf *btf = container_of(rcu, struct btf, rcu);
938 
939 	btf_free(btf);
940 }
941 
942 void btf_put(struct btf *btf)
943 {
944 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
945 		btf_free_id(btf);
946 		call_rcu(&btf->rcu, btf_free_rcu);
947 	}
948 }
949 
950 static int env_resolve_init(struct btf_verifier_env *env)
951 {
952 	struct btf *btf = env->btf;
953 	u32 nr_types = btf->nr_types;
954 	u32 *resolved_sizes = NULL;
955 	u32 *resolved_ids = NULL;
956 	u8 *visit_states = NULL;
957 
958 	/* +1 for btf_void */
959 	resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
960 				  GFP_KERNEL | __GFP_NOWARN);
961 	if (!resolved_sizes)
962 		goto nomem;
963 
964 	resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
965 				GFP_KERNEL | __GFP_NOWARN);
966 	if (!resolved_ids)
967 		goto nomem;
968 
969 	visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
970 				GFP_KERNEL | __GFP_NOWARN);
971 	if (!visit_states)
972 		goto nomem;
973 
974 	btf->resolved_sizes = resolved_sizes;
975 	btf->resolved_ids = resolved_ids;
976 	env->visit_states = visit_states;
977 
978 	return 0;
979 
980 nomem:
981 	kvfree(resolved_sizes);
982 	kvfree(resolved_ids);
983 	kvfree(visit_states);
984 	return -ENOMEM;
985 }
986 
987 static void btf_verifier_env_free(struct btf_verifier_env *env)
988 {
989 	kvfree(env->visit_states);
990 	kfree(env);
991 }
992 
993 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
994 				     const struct btf_type *next_type)
995 {
996 	switch (env->resolve_mode) {
997 	case RESOLVE_TBD:
998 		/* int, enum or void is a sink */
999 		return !btf_type_needs_resolve(next_type);
1000 	case RESOLVE_PTR:
1001 		/* int, enum, void, struct, array, func or func_proto is a sink
1002 		 * for ptr
1003 		 */
1004 		return !btf_type_is_modifier(next_type) &&
1005 			!btf_type_is_ptr(next_type);
1006 	case RESOLVE_STRUCT_OR_ARRAY:
1007 		/* int, enum, void, ptr, func or func_proto is a sink
1008 		 * for struct and array
1009 		 */
1010 		return !btf_type_is_modifier(next_type) &&
1011 			!btf_type_is_array(next_type) &&
1012 			!btf_type_is_struct(next_type);
1013 	default:
1014 		BUG();
1015 	}
1016 }
1017 
1018 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1019 				 u32 type_id)
1020 {
1021 	return env->visit_states[type_id] == RESOLVED;
1022 }
1023 
1024 static int env_stack_push(struct btf_verifier_env *env,
1025 			  const struct btf_type *t, u32 type_id)
1026 {
1027 	struct resolve_vertex *v;
1028 
1029 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1030 		return -E2BIG;
1031 
1032 	if (env->visit_states[type_id] != NOT_VISITED)
1033 		return -EEXIST;
1034 
1035 	env->visit_states[type_id] = VISITED;
1036 
1037 	v = &env->stack[env->top_stack++];
1038 	v->t = t;
1039 	v->type_id = type_id;
1040 	v->next_member = 0;
1041 
1042 	if (env->resolve_mode == RESOLVE_TBD) {
1043 		if (btf_type_is_ptr(t))
1044 			env->resolve_mode = RESOLVE_PTR;
1045 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1046 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 static void env_stack_set_next_member(struct btf_verifier_env *env,
1053 				      u16 next_member)
1054 {
1055 	env->stack[env->top_stack - 1].next_member = next_member;
1056 }
1057 
1058 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1059 				   u32 resolved_type_id,
1060 				   u32 resolved_size)
1061 {
1062 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1063 	struct btf *btf = env->btf;
1064 
1065 	btf->resolved_sizes[type_id] = resolved_size;
1066 	btf->resolved_ids[type_id] = resolved_type_id;
1067 	env->visit_states[type_id] = RESOLVED;
1068 }
1069 
1070 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1071 {
1072 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1073 }
1074 
1075 /* Resolve the size of a passed-in "type"
1076  *
1077  * type: is an array (e.g. u32 array[x][y])
1078  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1079  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1080  *             corresponds to the return type.
1081  * *elem_type: u32
1082  * *total_nelems: (x * y).  Hence, individual elem size is
1083  *                (*type_size / *total_nelems)
1084  *
1085  * type: is not an array (e.g. const struct X)
1086  * return type: type "struct X"
1087  * *type_size: sizeof(struct X)
1088  * *elem_type: same as return type ("struct X")
1089  * *total_nelems: 1
1090  */
1091 const struct btf_type *
1092 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1093 		 u32 *type_size, const struct btf_type **elem_type,
1094 		 u32 *total_nelems)
1095 {
1096 	const struct btf_type *array_type = NULL;
1097 	const struct btf_array *array;
1098 	u32 i, size, nelems = 1;
1099 
1100 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1101 		switch (BTF_INFO_KIND(type->info)) {
1102 		/* type->size can be used */
1103 		case BTF_KIND_INT:
1104 		case BTF_KIND_STRUCT:
1105 		case BTF_KIND_UNION:
1106 		case BTF_KIND_ENUM:
1107 			size = type->size;
1108 			goto resolved;
1109 
1110 		case BTF_KIND_PTR:
1111 			size = sizeof(void *);
1112 			goto resolved;
1113 
1114 		/* Modifiers */
1115 		case BTF_KIND_TYPEDEF:
1116 		case BTF_KIND_VOLATILE:
1117 		case BTF_KIND_CONST:
1118 		case BTF_KIND_RESTRICT:
1119 			type = btf_type_by_id(btf, type->type);
1120 			break;
1121 
1122 		case BTF_KIND_ARRAY:
1123 			if (!array_type)
1124 				array_type = type;
1125 			array = btf_type_array(type);
1126 			if (nelems && array->nelems > U32_MAX / nelems)
1127 				return ERR_PTR(-EINVAL);
1128 			nelems *= array->nelems;
1129 			type = btf_type_by_id(btf, array->type);
1130 			break;
1131 
1132 		/* type without size */
1133 		default:
1134 			return ERR_PTR(-EINVAL);
1135 		}
1136 	}
1137 
1138 	return ERR_PTR(-EINVAL);
1139 
1140 resolved:
1141 	if (nelems && size > U32_MAX / nelems)
1142 		return ERR_PTR(-EINVAL);
1143 
1144 	*type_size = nelems * size;
1145 	if (total_nelems)
1146 		*total_nelems = nelems;
1147 	if (elem_type)
1148 		*elem_type = type;
1149 
1150 	return array_type ? : type;
1151 }
1152 
1153 /* The input param "type_id" must point to a needs_resolve type */
1154 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1155 						  u32 *type_id)
1156 {
1157 	*type_id = btf->resolved_ids[*type_id];
1158 	return btf_type_by_id(btf, *type_id);
1159 }
1160 
1161 const struct btf_type *btf_type_id_size(const struct btf *btf,
1162 					u32 *type_id, u32 *ret_size)
1163 {
1164 	const struct btf_type *size_type;
1165 	u32 size_type_id = *type_id;
1166 	u32 size = 0;
1167 
1168 	size_type = btf_type_by_id(btf, size_type_id);
1169 	if (btf_type_nosize_or_null(size_type))
1170 		return NULL;
1171 
1172 	if (btf_type_has_size(size_type)) {
1173 		size = size_type->size;
1174 	} else if (btf_type_is_array(size_type)) {
1175 		size = btf->resolved_sizes[size_type_id];
1176 	} else if (btf_type_is_ptr(size_type)) {
1177 		size = sizeof(void *);
1178 	} else {
1179 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1180 				 !btf_type_is_var(size_type)))
1181 			return NULL;
1182 
1183 		size_type_id = btf->resolved_ids[size_type_id];
1184 		size_type = btf_type_by_id(btf, size_type_id);
1185 		if (btf_type_nosize_or_null(size_type))
1186 			return NULL;
1187 		else if (btf_type_has_size(size_type))
1188 			size = size_type->size;
1189 		else if (btf_type_is_array(size_type))
1190 			size = btf->resolved_sizes[size_type_id];
1191 		else if (btf_type_is_ptr(size_type))
1192 			size = sizeof(void *);
1193 		else
1194 			return NULL;
1195 	}
1196 
1197 	*type_id = size_type_id;
1198 	if (ret_size)
1199 		*ret_size = size;
1200 
1201 	return size_type;
1202 }
1203 
1204 static int btf_df_check_member(struct btf_verifier_env *env,
1205 			       const struct btf_type *struct_type,
1206 			       const struct btf_member *member,
1207 			       const struct btf_type *member_type)
1208 {
1209 	btf_verifier_log_basic(env, struct_type,
1210 			       "Unsupported check_member");
1211 	return -EINVAL;
1212 }
1213 
1214 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1215 				     const struct btf_type *struct_type,
1216 				     const struct btf_member *member,
1217 				     const struct btf_type *member_type)
1218 {
1219 	btf_verifier_log_basic(env, struct_type,
1220 			       "Unsupported check_kflag_member");
1221 	return -EINVAL;
1222 }
1223 
1224 /* Used for ptr, array and struct/union type members.
1225  * int, enum and modifier types have their specific callback functions.
1226  */
1227 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1228 					  const struct btf_type *struct_type,
1229 					  const struct btf_member *member,
1230 					  const struct btf_type *member_type)
1231 {
1232 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1233 		btf_verifier_log_member(env, struct_type, member,
1234 					"Invalid member bitfield_size");
1235 		return -EINVAL;
1236 	}
1237 
1238 	/* bitfield size is 0, so member->offset represents bit offset only.
1239 	 * It is safe to call non kflag check_member variants.
1240 	 */
1241 	return btf_type_ops(member_type)->check_member(env, struct_type,
1242 						       member,
1243 						       member_type);
1244 }
1245 
1246 static int btf_df_resolve(struct btf_verifier_env *env,
1247 			  const struct resolve_vertex *v)
1248 {
1249 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1250 	return -EINVAL;
1251 }
1252 
1253 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1254 			    u32 type_id, void *data, u8 bits_offsets,
1255 			    struct seq_file *m)
1256 {
1257 	seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1258 }
1259 
1260 static int btf_int_check_member(struct btf_verifier_env *env,
1261 				const struct btf_type *struct_type,
1262 				const struct btf_member *member,
1263 				const struct btf_type *member_type)
1264 {
1265 	u32 int_data = btf_type_int(member_type);
1266 	u32 struct_bits_off = member->offset;
1267 	u32 struct_size = struct_type->size;
1268 	u32 nr_copy_bits;
1269 	u32 bytes_offset;
1270 
1271 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1272 		btf_verifier_log_member(env, struct_type, member,
1273 					"bits_offset exceeds U32_MAX");
1274 		return -EINVAL;
1275 	}
1276 
1277 	struct_bits_off += BTF_INT_OFFSET(int_data);
1278 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1279 	nr_copy_bits = BTF_INT_BITS(int_data) +
1280 		BITS_PER_BYTE_MASKED(struct_bits_off);
1281 
1282 	if (nr_copy_bits > BITS_PER_U128) {
1283 		btf_verifier_log_member(env, struct_type, member,
1284 					"nr_copy_bits exceeds 128");
1285 		return -EINVAL;
1286 	}
1287 
1288 	if (struct_size < bytes_offset ||
1289 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1290 		btf_verifier_log_member(env, struct_type, member,
1291 					"Member exceeds struct_size");
1292 		return -EINVAL;
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1299 				      const struct btf_type *struct_type,
1300 				      const struct btf_member *member,
1301 				      const struct btf_type *member_type)
1302 {
1303 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1304 	u32 int_data = btf_type_int(member_type);
1305 	u32 struct_size = struct_type->size;
1306 	u32 nr_copy_bits;
1307 
1308 	/* a regular int type is required for the kflag int member */
1309 	if (!btf_type_int_is_regular(member_type)) {
1310 		btf_verifier_log_member(env, struct_type, member,
1311 					"Invalid member base type");
1312 		return -EINVAL;
1313 	}
1314 
1315 	/* check sanity of bitfield size */
1316 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1317 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1318 	nr_int_data_bits = BTF_INT_BITS(int_data);
1319 	if (!nr_bits) {
1320 		/* Not a bitfield member, member offset must be at byte
1321 		 * boundary.
1322 		 */
1323 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1324 			btf_verifier_log_member(env, struct_type, member,
1325 						"Invalid member offset");
1326 			return -EINVAL;
1327 		}
1328 
1329 		nr_bits = nr_int_data_bits;
1330 	} else if (nr_bits > nr_int_data_bits) {
1331 		btf_verifier_log_member(env, struct_type, member,
1332 					"Invalid member bitfield_size");
1333 		return -EINVAL;
1334 	}
1335 
1336 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1337 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1338 	if (nr_copy_bits > BITS_PER_U128) {
1339 		btf_verifier_log_member(env, struct_type, member,
1340 					"nr_copy_bits exceeds 128");
1341 		return -EINVAL;
1342 	}
1343 
1344 	if (struct_size < bytes_offset ||
1345 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1346 		btf_verifier_log_member(env, struct_type, member,
1347 					"Member exceeds struct_size");
1348 		return -EINVAL;
1349 	}
1350 
1351 	return 0;
1352 }
1353 
1354 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1355 			      const struct btf_type *t,
1356 			      u32 meta_left)
1357 {
1358 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1359 	u16 encoding;
1360 
1361 	if (meta_left < meta_needed) {
1362 		btf_verifier_log_basic(env, t,
1363 				       "meta_left:%u meta_needed:%u",
1364 				       meta_left, meta_needed);
1365 		return -EINVAL;
1366 	}
1367 
1368 	if (btf_type_vlen(t)) {
1369 		btf_verifier_log_type(env, t, "vlen != 0");
1370 		return -EINVAL;
1371 	}
1372 
1373 	if (btf_type_kflag(t)) {
1374 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1375 		return -EINVAL;
1376 	}
1377 
1378 	int_data = btf_type_int(t);
1379 	if (int_data & ~BTF_INT_MASK) {
1380 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1381 				       int_data);
1382 		return -EINVAL;
1383 	}
1384 
1385 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1386 
1387 	if (nr_bits > BITS_PER_U128) {
1388 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1389 				      BITS_PER_U128);
1390 		return -EINVAL;
1391 	}
1392 
1393 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1394 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1395 		return -EINVAL;
1396 	}
1397 
1398 	/*
1399 	 * Only one of the encoding bits is allowed and it
1400 	 * should be sufficient for the pretty print purpose (i.e. decoding).
1401 	 * Multiple bits can be allowed later if it is found
1402 	 * to be insufficient.
1403 	 */
1404 	encoding = BTF_INT_ENCODING(int_data);
1405 	if (encoding &&
1406 	    encoding != BTF_INT_SIGNED &&
1407 	    encoding != BTF_INT_CHAR &&
1408 	    encoding != BTF_INT_BOOL) {
1409 		btf_verifier_log_type(env, t, "Unsupported encoding");
1410 		return -ENOTSUPP;
1411 	}
1412 
1413 	btf_verifier_log_type(env, t, NULL);
1414 
1415 	return meta_needed;
1416 }
1417 
1418 static void btf_int_log(struct btf_verifier_env *env,
1419 			const struct btf_type *t)
1420 {
1421 	int int_data = btf_type_int(t);
1422 
1423 	btf_verifier_log(env,
1424 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1425 			 t->size, BTF_INT_OFFSET(int_data),
1426 			 BTF_INT_BITS(int_data),
1427 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1428 }
1429 
1430 static void btf_int128_print(struct seq_file *m, void *data)
1431 {
1432 	/* data points to a __int128 number.
1433 	 * Suppose
1434 	 *     int128_num = *(__int128 *)data;
1435 	 * The below formulas shows what upper_num and lower_num represents:
1436 	 *     upper_num = int128_num >> 64;
1437 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1438 	 */
1439 	u64 upper_num, lower_num;
1440 
1441 #ifdef __BIG_ENDIAN_BITFIELD
1442 	upper_num = *(u64 *)data;
1443 	lower_num = *(u64 *)(data + 8);
1444 #else
1445 	upper_num = *(u64 *)(data + 8);
1446 	lower_num = *(u64 *)data;
1447 #endif
1448 	if (upper_num == 0)
1449 		seq_printf(m, "0x%llx", lower_num);
1450 	else
1451 		seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
1452 }
1453 
1454 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
1455 			     u16 right_shift_bits)
1456 {
1457 	u64 upper_num, lower_num;
1458 
1459 #ifdef __BIG_ENDIAN_BITFIELD
1460 	upper_num = print_num[0];
1461 	lower_num = print_num[1];
1462 #else
1463 	upper_num = print_num[1];
1464 	lower_num = print_num[0];
1465 #endif
1466 
1467 	/* shake out un-needed bits by shift/or operations */
1468 	if (left_shift_bits >= 64) {
1469 		upper_num = lower_num << (left_shift_bits - 64);
1470 		lower_num = 0;
1471 	} else {
1472 		upper_num = (upper_num << left_shift_bits) |
1473 			    (lower_num >> (64 - left_shift_bits));
1474 		lower_num = lower_num << left_shift_bits;
1475 	}
1476 
1477 	if (right_shift_bits >= 64) {
1478 		lower_num = upper_num >> (right_shift_bits - 64);
1479 		upper_num = 0;
1480 	} else {
1481 		lower_num = (lower_num >> right_shift_bits) |
1482 			    (upper_num << (64 - right_shift_bits));
1483 		upper_num = upper_num >> right_shift_bits;
1484 	}
1485 
1486 #ifdef __BIG_ENDIAN_BITFIELD
1487 	print_num[0] = upper_num;
1488 	print_num[1] = lower_num;
1489 #else
1490 	print_num[0] = lower_num;
1491 	print_num[1] = upper_num;
1492 #endif
1493 }
1494 
1495 static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1496 				  u8 nr_bits, struct seq_file *m)
1497 {
1498 	u16 left_shift_bits, right_shift_bits;
1499 	u8 nr_copy_bytes;
1500 	u8 nr_copy_bits;
1501 	u64 print_num[2] = {};
1502 
1503 	nr_copy_bits = nr_bits + bits_offset;
1504 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1505 
1506 	memcpy(print_num, data, nr_copy_bytes);
1507 
1508 #ifdef __BIG_ENDIAN_BITFIELD
1509 	left_shift_bits = bits_offset;
1510 #else
1511 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
1512 #endif
1513 	right_shift_bits = BITS_PER_U128 - nr_bits;
1514 
1515 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
1516 	btf_int128_print(m, print_num);
1517 }
1518 
1519 
1520 static void btf_int_bits_seq_show(const struct btf *btf,
1521 				  const struct btf_type *t,
1522 				  void *data, u8 bits_offset,
1523 				  struct seq_file *m)
1524 {
1525 	u32 int_data = btf_type_int(t);
1526 	u8 nr_bits = BTF_INT_BITS(int_data);
1527 	u8 total_bits_offset;
1528 
1529 	/*
1530 	 * bits_offset is at most 7.
1531 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
1532 	 */
1533 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1534 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1535 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1536 	btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
1537 }
1538 
1539 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1540 			     u32 type_id, void *data, u8 bits_offset,
1541 			     struct seq_file *m)
1542 {
1543 	u32 int_data = btf_type_int(t);
1544 	u8 encoding = BTF_INT_ENCODING(int_data);
1545 	bool sign = encoding & BTF_INT_SIGNED;
1546 	u8 nr_bits = BTF_INT_BITS(int_data);
1547 
1548 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
1549 	    BITS_PER_BYTE_MASKED(nr_bits)) {
1550 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1551 		return;
1552 	}
1553 
1554 	switch (nr_bits) {
1555 	case 128:
1556 		btf_int128_print(m, data);
1557 		break;
1558 	case 64:
1559 		if (sign)
1560 			seq_printf(m, "%lld", *(s64 *)data);
1561 		else
1562 			seq_printf(m, "%llu", *(u64 *)data);
1563 		break;
1564 	case 32:
1565 		if (sign)
1566 			seq_printf(m, "%d", *(s32 *)data);
1567 		else
1568 			seq_printf(m, "%u", *(u32 *)data);
1569 		break;
1570 	case 16:
1571 		if (sign)
1572 			seq_printf(m, "%d", *(s16 *)data);
1573 		else
1574 			seq_printf(m, "%u", *(u16 *)data);
1575 		break;
1576 	case 8:
1577 		if (sign)
1578 			seq_printf(m, "%d", *(s8 *)data);
1579 		else
1580 			seq_printf(m, "%u", *(u8 *)data);
1581 		break;
1582 	default:
1583 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1584 	}
1585 }
1586 
1587 static const struct btf_kind_operations int_ops = {
1588 	.check_meta = btf_int_check_meta,
1589 	.resolve = btf_df_resolve,
1590 	.check_member = btf_int_check_member,
1591 	.check_kflag_member = btf_int_check_kflag_member,
1592 	.log_details = btf_int_log,
1593 	.seq_show = btf_int_seq_show,
1594 };
1595 
1596 static int btf_modifier_check_member(struct btf_verifier_env *env,
1597 				     const struct btf_type *struct_type,
1598 				     const struct btf_member *member,
1599 				     const struct btf_type *member_type)
1600 {
1601 	const struct btf_type *resolved_type;
1602 	u32 resolved_type_id = member->type;
1603 	struct btf_member resolved_member;
1604 	struct btf *btf = env->btf;
1605 
1606 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1607 	if (!resolved_type) {
1608 		btf_verifier_log_member(env, struct_type, member,
1609 					"Invalid member");
1610 		return -EINVAL;
1611 	}
1612 
1613 	resolved_member = *member;
1614 	resolved_member.type = resolved_type_id;
1615 
1616 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
1617 							 &resolved_member,
1618 							 resolved_type);
1619 }
1620 
1621 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1622 					   const struct btf_type *struct_type,
1623 					   const struct btf_member *member,
1624 					   const struct btf_type *member_type)
1625 {
1626 	const struct btf_type *resolved_type;
1627 	u32 resolved_type_id = member->type;
1628 	struct btf_member resolved_member;
1629 	struct btf *btf = env->btf;
1630 
1631 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1632 	if (!resolved_type) {
1633 		btf_verifier_log_member(env, struct_type, member,
1634 					"Invalid member");
1635 		return -EINVAL;
1636 	}
1637 
1638 	resolved_member = *member;
1639 	resolved_member.type = resolved_type_id;
1640 
1641 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1642 							       &resolved_member,
1643 							       resolved_type);
1644 }
1645 
1646 static int btf_ptr_check_member(struct btf_verifier_env *env,
1647 				const struct btf_type *struct_type,
1648 				const struct btf_member *member,
1649 				const struct btf_type *member_type)
1650 {
1651 	u32 struct_size, struct_bits_off, bytes_offset;
1652 
1653 	struct_size = struct_type->size;
1654 	struct_bits_off = member->offset;
1655 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1656 
1657 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1658 		btf_verifier_log_member(env, struct_type, member,
1659 					"Member is not byte aligned");
1660 		return -EINVAL;
1661 	}
1662 
1663 	if (struct_size - bytes_offset < sizeof(void *)) {
1664 		btf_verifier_log_member(env, struct_type, member,
1665 					"Member exceeds struct_size");
1666 		return -EINVAL;
1667 	}
1668 
1669 	return 0;
1670 }
1671 
1672 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1673 				   const struct btf_type *t,
1674 				   u32 meta_left)
1675 {
1676 	if (btf_type_vlen(t)) {
1677 		btf_verifier_log_type(env, t, "vlen != 0");
1678 		return -EINVAL;
1679 	}
1680 
1681 	if (btf_type_kflag(t)) {
1682 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1683 		return -EINVAL;
1684 	}
1685 
1686 	if (!BTF_TYPE_ID_VALID(t->type)) {
1687 		btf_verifier_log_type(env, t, "Invalid type_id");
1688 		return -EINVAL;
1689 	}
1690 
1691 	/* typedef type must have a valid name, and other ref types,
1692 	 * volatile, const, restrict, should have a null name.
1693 	 */
1694 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1695 		if (!t->name_off ||
1696 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
1697 			btf_verifier_log_type(env, t, "Invalid name");
1698 			return -EINVAL;
1699 		}
1700 	} else {
1701 		if (t->name_off) {
1702 			btf_verifier_log_type(env, t, "Invalid name");
1703 			return -EINVAL;
1704 		}
1705 	}
1706 
1707 	btf_verifier_log_type(env, t, NULL);
1708 
1709 	return 0;
1710 }
1711 
1712 static int btf_modifier_resolve(struct btf_verifier_env *env,
1713 				const struct resolve_vertex *v)
1714 {
1715 	const struct btf_type *t = v->t;
1716 	const struct btf_type *next_type;
1717 	u32 next_type_id = t->type;
1718 	struct btf *btf = env->btf;
1719 
1720 	next_type = btf_type_by_id(btf, next_type_id);
1721 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1722 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1723 		return -EINVAL;
1724 	}
1725 
1726 	if (!env_type_is_resolve_sink(env, next_type) &&
1727 	    !env_type_is_resolved(env, next_type_id))
1728 		return env_stack_push(env, next_type, next_type_id);
1729 
1730 	/* Figure out the resolved next_type_id with size.
1731 	 * They will be stored in the current modifier's
1732 	 * resolved_ids and resolved_sizes such that it can
1733 	 * save us a few type-following when we use it later (e.g. in
1734 	 * pretty print).
1735 	 */
1736 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1737 		if (env_type_is_resolved(env, next_type_id))
1738 			next_type = btf_type_id_resolve(btf, &next_type_id);
1739 
1740 		/* "typedef void new_void", "const void"...etc */
1741 		if (!btf_type_is_void(next_type) &&
1742 		    !btf_type_is_fwd(next_type) &&
1743 		    !btf_type_is_func_proto(next_type)) {
1744 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1745 			return -EINVAL;
1746 		}
1747 	}
1748 
1749 	env_stack_pop_resolved(env, next_type_id, 0);
1750 
1751 	return 0;
1752 }
1753 
1754 static int btf_var_resolve(struct btf_verifier_env *env,
1755 			   const struct resolve_vertex *v)
1756 {
1757 	const struct btf_type *next_type;
1758 	const struct btf_type *t = v->t;
1759 	u32 next_type_id = t->type;
1760 	struct btf *btf = env->btf;
1761 
1762 	next_type = btf_type_by_id(btf, next_type_id);
1763 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1764 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1765 		return -EINVAL;
1766 	}
1767 
1768 	if (!env_type_is_resolve_sink(env, next_type) &&
1769 	    !env_type_is_resolved(env, next_type_id))
1770 		return env_stack_push(env, next_type, next_type_id);
1771 
1772 	if (btf_type_is_modifier(next_type)) {
1773 		const struct btf_type *resolved_type;
1774 		u32 resolved_type_id;
1775 
1776 		resolved_type_id = next_type_id;
1777 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1778 
1779 		if (btf_type_is_ptr(resolved_type) &&
1780 		    !env_type_is_resolve_sink(env, resolved_type) &&
1781 		    !env_type_is_resolved(env, resolved_type_id))
1782 			return env_stack_push(env, resolved_type,
1783 					      resolved_type_id);
1784 	}
1785 
1786 	/* We must resolve to something concrete at this point, no
1787 	 * forward types or similar that would resolve to size of
1788 	 * zero is allowed.
1789 	 */
1790 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1791 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1792 		return -EINVAL;
1793 	}
1794 
1795 	env_stack_pop_resolved(env, next_type_id, 0);
1796 
1797 	return 0;
1798 }
1799 
1800 static int btf_ptr_resolve(struct btf_verifier_env *env,
1801 			   const struct resolve_vertex *v)
1802 {
1803 	const struct btf_type *next_type;
1804 	const struct btf_type *t = v->t;
1805 	u32 next_type_id = t->type;
1806 	struct btf *btf = env->btf;
1807 
1808 	next_type = btf_type_by_id(btf, next_type_id);
1809 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1810 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1811 		return -EINVAL;
1812 	}
1813 
1814 	if (!env_type_is_resolve_sink(env, next_type) &&
1815 	    !env_type_is_resolved(env, next_type_id))
1816 		return env_stack_push(env, next_type, next_type_id);
1817 
1818 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1819 	 * the modifier may have stopped resolving when it was resolved
1820 	 * to a ptr (last-resolved-ptr).
1821 	 *
1822 	 * We now need to continue from the last-resolved-ptr to
1823 	 * ensure the last-resolved-ptr will not referring back to
1824 	 * the currenct ptr (t).
1825 	 */
1826 	if (btf_type_is_modifier(next_type)) {
1827 		const struct btf_type *resolved_type;
1828 		u32 resolved_type_id;
1829 
1830 		resolved_type_id = next_type_id;
1831 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1832 
1833 		if (btf_type_is_ptr(resolved_type) &&
1834 		    !env_type_is_resolve_sink(env, resolved_type) &&
1835 		    !env_type_is_resolved(env, resolved_type_id))
1836 			return env_stack_push(env, resolved_type,
1837 					      resolved_type_id);
1838 	}
1839 
1840 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1841 		if (env_type_is_resolved(env, next_type_id))
1842 			next_type = btf_type_id_resolve(btf, &next_type_id);
1843 
1844 		if (!btf_type_is_void(next_type) &&
1845 		    !btf_type_is_fwd(next_type) &&
1846 		    !btf_type_is_func_proto(next_type)) {
1847 			btf_verifier_log_type(env, v->t, "Invalid type_id");
1848 			return -EINVAL;
1849 		}
1850 	}
1851 
1852 	env_stack_pop_resolved(env, next_type_id, 0);
1853 
1854 	return 0;
1855 }
1856 
1857 static void btf_modifier_seq_show(const struct btf *btf,
1858 				  const struct btf_type *t,
1859 				  u32 type_id, void *data,
1860 				  u8 bits_offset, struct seq_file *m)
1861 {
1862 	if (btf->resolved_ids)
1863 		t = btf_type_id_resolve(btf, &type_id);
1864 	else
1865 		t = btf_type_skip_modifiers(btf, type_id, NULL);
1866 
1867 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1868 }
1869 
1870 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t,
1871 			     u32 type_id, void *data, u8 bits_offset,
1872 			     struct seq_file *m)
1873 {
1874 	t = btf_type_id_resolve(btf, &type_id);
1875 
1876 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1877 }
1878 
1879 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1880 			     u32 type_id, void *data, u8 bits_offset,
1881 			     struct seq_file *m)
1882 {
1883 	/* It is a hashed value */
1884 	seq_printf(m, "%p", *(void **)data);
1885 }
1886 
1887 static void btf_ref_type_log(struct btf_verifier_env *env,
1888 			     const struct btf_type *t)
1889 {
1890 	btf_verifier_log(env, "type_id=%u", t->type);
1891 }
1892 
1893 static struct btf_kind_operations modifier_ops = {
1894 	.check_meta = btf_ref_type_check_meta,
1895 	.resolve = btf_modifier_resolve,
1896 	.check_member = btf_modifier_check_member,
1897 	.check_kflag_member = btf_modifier_check_kflag_member,
1898 	.log_details = btf_ref_type_log,
1899 	.seq_show = btf_modifier_seq_show,
1900 };
1901 
1902 static struct btf_kind_operations ptr_ops = {
1903 	.check_meta = btf_ref_type_check_meta,
1904 	.resolve = btf_ptr_resolve,
1905 	.check_member = btf_ptr_check_member,
1906 	.check_kflag_member = btf_generic_check_kflag_member,
1907 	.log_details = btf_ref_type_log,
1908 	.seq_show = btf_ptr_seq_show,
1909 };
1910 
1911 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1912 			      const struct btf_type *t,
1913 			      u32 meta_left)
1914 {
1915 	if (btf_type_vlen(t)) {
1916 		btf_verifier_log_type(env, t, "vlen != 0");
1917 		return -EINVAL;
1918 	}
1919 
1920 	if (t->type) {
1921 		btf_verifier_log_type(env, t, "type != 0");
1922 		return -EINVAL;
1923 	}
1924 
1925 	/* fwd type must have a valid name */
1926 	if (!t->name_off ||
1927 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1928 		btf_verifier_log_type(env, t, "Invalid name");
1929 		return -EINVAL;
1930 	}
1931 
1932 	btf_verifier_log_type(env, t, NULL);
1933 
1934 	return 0;
1935 }
1936 
1937 static void btf_fwd_type_log(struct btf_verifier_env *env,
1938 			     const struct btf_type *t)
1939 {
1940 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1941 }
1942 
1943 static struct btf_kind_operations fwd_ops = {
1944 	.check_meta = btf_fwd_check_meta,
1945 	.resolve = btf_df_resolve,
1946 	.check_member = btf_df_check_member,
1947 	.check_kflag_member = btf_df_check_kflag_member,
1948 	.log_details = btf_fwd_type_log,
1949 	.seq_show = btf_df_seq_show,
1950 };
1951 
1952 static int btf_array_check_member(struct btf_verifier_env *env,
1953 				  const struct btf_type *struct_type,
1954 				  const struct btf_member *member,
1955 				  const struct btf_type *member_type)
1956 {
1957 	u32 struct_bits_off = member->offset;
1958 	u32 struct_size, bytes_offset;
1959 	u32 array_type_id, array_size;
1960 	struct btf *btf = env->btf;
1961 
1962 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1963 		btf_verifier_log_member(env, struct_type, member,
1964 					"Member is not byte aligned");
1965 		return -EINVAL;
1966 	}
1967 
1968 	array_type_id = member->type;
1969 	btf_type_id_size(btf, &array_type_id, &array_size);
1970 	struct_size = struct_type->size;
1971 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1972 	if (struct_size - bytes_offset < array_size) {
1973 		btf_verifier_log_member(env, struct_type, member,
1974 					"Member exceeds struct_size");
1975 		return -EINVAL;
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1982 				const struct btf_type *t,
1983 				u32 meta_left)
1984 {
1985 	const struct btf_array *array = btf_type_array(t);
1986 	u32 meta_needed = sizeof(*array);
1987 
1988 	if (meta_left < meta_needed) {
1989 		btf_verifier_log_basic(env, t,
1990 				       "meta_left:%u meta_needed:%u",
1991 				       meta_left, meta_needed);
1992 		return -EINVAL;
1993 	}
1994 
1995 	/* array type should not have a name */
1996 	if (t->name_off) {
1997 		btf_verifier_log_type(env, t, "Invalid name");
1998 		return -EINVAL;
1999 	}
2000 
2001 	if (btf_type_vlen(t)) {
2002 		btf_verifier_log_type(env, t, "vlen != 0");
2003 		return -EINVAL;
2004 	}
2005 
2006 	if (btf_type_kflag(t)) {
2007 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2008 		return -EINVAL;
2009 	}
2010 
2011 	if (t->size) {
2012 		btf_verifier_log_type(env, t, "size != 0");
2013 		return -EINVAL;
2014 	}
2015 
2016 	/* Array elem type and index type cannot be in type void,
2017 	 * so !array->type and !array->index_type are not allowed.
2018 	 */
2019 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2020 		btf_verifier_log_type(env, t, "Invalid elem");
2021 		return -EINVAL;
2022 	}
2023 
2024 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2025 		btf_verifier_log_type(env, t, "Invalid index");
2026 		return -EINVAL;
2027 	}
2028 
2029 	btf_verifier_log_type(env, t, NULL);
2030 
2031 	return meta_needed;
2032 }
2033 
2034 static int btf_array_resolve(struct btf_verifier_env *env,
2035 			     const struct resolve_vertex *v)
2036 {
2037 	const struct btf_array *array = btf_type_array(v->t);
2038 	const struct btf_type *elem_type, *index_type;
2039 	u32 elem_type_id, index_type_id;
2040 	struct btf *btf = env->btf;
2041 	u32 elem_size;
2042 
2043 	/* Check array->index_type */
2044 	index_type_id = array->index_type;
2045 	index_type = btf_type_by_id(btf, index_type_id);
2046 	if (btf_type_nosize_or_null(index_type) ||
2047 	    btf_type_is_resolve_source_only(index_type)) {
2048 		btf_verifier_log_type(env, v->t, "Invalid index");
2049 		return -EINVAL;
2050 	}
2051 
2052 	if (!env_type_is_resolve_sink(env, index_type) &&
2053 	    !env_type_is_resolved(env, index_type_id))
2054 		return env_stack_push(env, index_type, index_type_id);
2055 
2056 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2057 	if (!index_type || !btf_type_is_int(index_type) ||
2058 	    !btf_type_int_is_regular(index_type)) {
2059 		btf_verifier_log_type(env, v->t, "Invalid index");
2060 		return -EINVAL;
2061 	}
2062 
2063 	/* Check array->type */
2064 	elem_type_id = array->type;
2065 	elem_type = btf_type_by_id(btf, elem_type_id);
2066 	if (btf_type_nosize_or_null(elem_type) ||
2067 	    btf_type_is_resolve_source_only(elem_type)) {
2068 		btf_verifier_log_type(env, v->t,
2069 				      "Invalid elem");
2070 		return -EINVAL;
2071 	}
2072 
2073 	if (!env_type_is_resolve_sink(env, elem_type) &&
2074 	    !env_type_is_resolved(env, elem_type_id))
2075 		return env_stack_push(env, elem_type, elem_type_id);
2076 
2077 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2078 	if (!elem_type) {
2079 		btf_verifier_log_type(env, v->t, "Invalid elem");
2080 		return -EINVAL;
2081 	}
2082 
2083 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2084 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2085 		return -EINVAL;
2086 	}
2087 
2088 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2089 		btf_verifier_log_type(env, v->t,
2090 				      "Array size overflows U32_MAX");
2091 		return -EINVAL;
2092 	}
2093 
2094 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2095 
2096 	return 0;
2097 }
2098 
2099 static void btf_array_log(struct btf_verifier_env *env,
2100 			  const struct btf_type *t)
2101 {
2102 	const struct btf_array *array = btf_type_array(t);
2103 
2104 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2105 			 array->type, array->index_type, array->nelems);
2106 }
2107 
2108 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
2109 			       u32 type_id, void *data, u8 bits_offset,
2110 			       struct seq_file *m)
2111 {
2112 	const struct btf_array *array = btf_type_array(t);
2113 	const struct btf_kind_operations *elem_ops;
2114 	const struct btf_type *elem_type;
2115 	u32 i, elem_size, elem_type_id;
2116 
2117 	elem_type_id = array->type;
2118 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2119 	elem_ops = btf_type_ops(elem_type);
2120 	seq_puts(m, "[");
2121 	for (i = 0; i < array->nelems; i++) {
2122 		if (i)
2123 			seq_puts(m, ",");
2124 
2125 		elem_ops->seq_show(btf, elem_type, elem_type_id, data,
2126 				   bits_offset, m);
2127 		data += elem_size;
2128 	}
2129 	seq_puts(m, "]");
2130 }
2131 
2132 static struct btf_kind_operations array_ops = {
2133 	.check_meta = btf_array_check_meta,
2134 	.resolve = btf_array_resolve,
2135 	.check_member = btf_array_check_member,
2136 	.check_kflag_member = btf_generic_check_kflag_member,
2137 	.log_details = btf_array_log,
2138 	.seq_show = btf_array_seq_show,
2139 };
2140 
2141 static int btf_struct_check_member(struct btf_verifier_env *env,
2142 				   const struct btf_type *struct_type,
2143 				   const struct btf_member *member,
2144 				   const struct btf_type *member_type)
2145 {
2146 	u32 struct_bits_off = member->offset;
2147 	u32 struct_size, bytes_offset;
2148 
2149 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2150 		btf_verifier_log_member(env, struct_type, member,
2151 					"Member is not byte aligned");
2152 		return -EINVAL;
2153 	}
2154 
2155 	struct_size = struct_type->size;
2156 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2157 	if (struct_size - bytes_offset < member_type->size) {
2158 		btf_verifier_log_member(env, struct_type, member,
2159 					"Member exceeds struct_size");
2160 		return -EINVAL;
2161 	}
2162 
2163 	return 0;
2164 }
2165 
2166 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2167 				 const struct btf_type *t,
2168 				 u32 meta_left)
2169 {
2170 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2171 	const struct btf_member *member;
2172 	u32 meta_needed, last_offset;
2173 	struct btf *btf = env->btf;
2174 	u32 struct_size = t->size;
2175 	u32 offset;
2176 	u16 i;
2177 
2178 	meta_needed = btf_type_vlen(t) * sizeof(*member);
2179 	if (meta_left < meta_needed) {
2180 		btf_verifier_log_basic(env, t,
2181 				       "meta_left:%u meta_needed:%u",
2182 				       meta_left, meta_needed);
2183 		return -EINVAL;
2184 	}
2185 
2186 	/* struct type either no name or a valid one */
2187 	if (t->name_off &&
2188 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2189 		btf_verifier_log_type(env, t, "Invalid name");
2190 		return -EINVAL;
2191 	}
2192 
2193 	btf_verifier_log_type(env, t, NULL);
2194 
2195 	last_offset = 0;
2196 	for_each_member(i, t, member) {
2197 		if (!btf_name_offset_valid(btf, member->name_off)) {
2198 			btf_verifier_log_member(env, t, member,
2199 						"Invalid member name_offset:%u",
2200 						member->name_off);
2201 			return -EINVAL;
2202 		}
2203 
2204 		/* struct member either no name or a valid one */
2205 		if (member->name_off &&
2206 		    !btf_name_valid_identifier(btf, member->name_off)) {
2207 			btf_verifier_log_member(env, t, member, "Invalid name");
2208 			return -EINVAL;
2209 		}
2210 		/* A member cannot be in type void */
2211 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2212 			btf_verifier_log_member(env, t, member,
2213 						"Invalid type_id");
2214 			return -EINVAL;
2215 		}
2216 
2217 		offset = btf_member_bit_offset(t, member);
2218 		if (is_union && offset) {
2219 			btf_verifier_log_member(env, t, member,
2220 						"Invalid member bits_offset");
2221 			return -EINVAL;
2222 		}
2223 
2224 		/*
2225 		 * ">" instead of ">=" because the last member could be
2226 		 * "char a[0];"
2227 		 */
2228 		if (last_offset > offset) {
2229 			btf_verifier_log_member(env, t, member,
2230 						"Invalid member bits_offset");
2231 			return -EINVAL;
2232 		}
2233 
2234 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2235 			btf_verifier_log_member(env, t, member,
2236 						"Member bits_offset exceeds its struct size");
2237 			return -EINVAL;
2238 		}
2239 
2240 		btf_verifier_log_member(env, t, member, NULL);
2241 		last_offset = offset;
2242 	}
2243 
2244 	return meta_needed;
2245 }
2246 
2247 static int btf_struct_resolve(struct btf_verifier_env *env,
2248 			      const struct resolve_vertex *v)
2249 {
2250 	const struct btf_member *member;
2251 	int err;
2252 	u16 i;
2253 
2254 	/* Before continue resolving the next_member,
2255 	 * ensure the last member is indeed resolved to a
2256 	 * type with size info.
2257 	 */
2258 	if (v->next_member) {
2259 		const struct btf_type *last_member_type;
2260 		const struct btf_member *last_member;
2261 		u16 last_member_type_id;
2262 
2263 		last_member = btf_type_member(v->t) + v->next_member - 1;
2264 		last_member_type_id = last_member->type;
2265 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
2266 						       last_member_type_id)))
2267 			return -EINVAL;
2268 
2269 		last_member_type = btf_type_by_id(env->btf,
2270 						  last_member_type_id);
2271 		if (btf_type_kflag(v->t))
2272 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2273 								last_member,
2274 								last_member_type);
2275 		else
2276 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
2277 								last_member,
2278 								last_member_type);
2279 		if (err)
2280 			return err;
2281 	}
2282 
2283 	for_each_member_from(i, v->next_member, v->t, member) {
2284 		u32 member_type_id = member->type;
2285 		const struct btf_type *member_type = btf_type_by_id(env->btf,
2286 								member_type_id);
2287 
2288 		if (btf_type_nosize_or_null(member_type) ||
2289 		    btf_type_is_resolve_source_only(member_type)) {
2290 			btf_verifier_log_member(env, v->t, member,
2291 						"Invalid member");
2292 			return -EINVAL;
2293 		}
2294 
2295 		if (!env_type_is_resolve_sink(env, member_type) &&
2296 		    !env_type_is_resolved(env, member_type_id)) {
2297 			env_stack_set_next_member(env, i + 1);
2298 			return env_stack_push(env, member_type, member_type_id);
2299 		}
2300 
2301 		if (btf_type_kflag(v->t))
2302 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2303 									    member,
2304 									    member_type);
2305 		else
2306 			err = btf_type_ops(member_type)->check_member(env, v->t,
2307 								      member,
2308 								      member_type);
2309 		if (err)
2310 			return err;
2311 	}
2312 
2313 	env_stack_pop_resolved(env, 0, 0);
2314 
2315 	return 0;
2316 }
2317 
2318 static void btf_struct_log(struct btf_verifier_env *env,
2319 			   const struct btf_type *t)
2320 {
2321 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2322 }
2323 
2324 /* find 'struct bpf_spin_lock' in map value.
2325  * return >= 0 offset if found
2326  * and < 0 in case of error
2327  */
2328 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2329 {
2330 	const struct btf_member *member;
2331 	u32 i, off = -ENOENT;
2332 
2333 	if (!__btf_type_is_struct(t))
2334 		return -EINVAL;
2335 
2336 	for_each_member(i, t, member) {
2337 		const struct btf_type *member_type = btf_type_by_id(btf,
2338 								    member->type);
2339 		if (!__btf_type_is_struct(member_type))
2340 			continue;
2341 		if (member_type->size != sizeof(struct bpf_spin_lock))
2342 			continue;
2343 		if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2344 			   "bpf_spin_lock"))
2345 			continue;
2346 		if (off != -ENOENT)
2347 			/* only one 'struct bpf_spin_lock' is allowed */
2348 			return -E2BIG;
2349 		off = btf_member_bit_offset(t, member);
2350 		if (off % 8)
2351 			/* valid C code cannot generate such BTF */
2352 			return -EINVAL;
2353 		off /= 8;
2354 		if (off % __alignof__(struct bpf_spin_lock))
2355 			/* valid struct bpf_spin_lock will be 4 byte aligned */
2356 			return -EINVAL;
2357 	}
2358 	return off;
2359 }
2360 
2361 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
2362 				u32 type_id, void *data, u8 bits_offset,
2363 				struct seq_file *m)
2364 {
2365 	const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
2366 	const struct btf_member *member;
2367 	u32 i;
2368 
2369 	seq_puts(m, "{");
2370 	for_each_member(i, t, member) {
2371 		const struct btf_type *member_type = btf_type_by_id(btf,
2372 								member->type);
2373 		const struct btf_kind_operations *ops;
2374 		u32 member_offset, bitfield_size;
2375 		u32 bytes_offset;
2376 		u8 bits8_offset;
2377 
2378 		if (i)
2379 			seq_puts(m, seq);
2380 
2381 		member_offset = btf_member_bit_offset(t, member);
2382 		bitfield_size = btf_member_bitfield_size(t, member);
2383 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2384 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2385 		if (bitfield_size) {
2386 			btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
2387 					      bitfield_size, m);
2388 		} else {
2389 			ops = btf_type_ops(member_type);
2390 			ops->seq_show(btf, member_type, member->type,
2391 				      data + bytes_offset, bits8_offset, m);
2392 		}
2393 	}
2394 	seq_puts(m, "}");
2395 }
2396 
2397 static struct btf_kind_operations struct_ops = {
2398 	.check_meta = btf_struct_check_meta,
2399 	.resolve = btf_struct_resolve,
2400 	.check_member = btf_struct_check_member,
2401 	.check_kflag_member = btf_generic_check_kflag_member,
2402 	.log_details = btf_struct_log,
2403 	.seq_show = btf_struct_seq_show,
2404 };
2405 
2406 static int btf_enum_check_member(struct btf_verifier_env *env,
2407 				 const struct btf_type *struct_type,
2408 				 const struct btf_member *member,
2409 				 const struct btf_type *member_type)
2410 {
2411 	u32 struct_bits_off = member->offset;
2412 	u32 struct_size, bytes_offset;
2413 
2414 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2415 		btf_verifier_log_member(env, struct_type, member,
2416 					"Member is not byte aligned");
2417 		return -EINVAL;
2418 	}
2419 
2420 	struct_size = struct_type->size;
2421 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2422 	if (struct_size - bytes_offset < member_type->size) {
2423 		btf_verifier_log_member(env, struct_type, member,
2424 					"Member exceeds struct_size");
2425 		return -EINVAL;
2426 	}
2427 
2428 	return 0;
2429 }
2430 
2431 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2432 				       const struct btf_type *struct_type,
2433 				       const struct btf_member *member,
2434 				       const struct btf_type *member_type)
2435 {
2436 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2437 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2438 
2439 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2440 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2441 	if (!nr_bits) {
2442 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2443 			btf_verifier_log_member(env, struct_type, member,
2444 						"Member is not byte aligned");
2445 			return -EINVAL;
2446 		}
2447 
2448 		nr_bits = int_bitsize;
2449 	} else if (nr_bits > int_bitsize) {
2450 		btf_verifier_log_member(env, struct_type, member,
2451 					"Invalid member bitfield_size");
2452 		return -EINVAL;
2453 	}
2454 
2455 	struct_size = struct_type->size;
2456 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2457 	if (struct_size < bytes_end) {
2458 		btf_verifier_log_member(env, struct_type, member,
2459 					"Member exceeds struct_size");
2460 		return -EINVAL;
2461 	}
2462 
2463 	return 0;
2464 }
2465 
2466 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2467 			       const struct btf_type *t,
2468 			       u32 meta_left)
2469 {
2470 	const struct btf_enum *enums = btf_type_enum(t);
2471 	struct btf *btf = env->btf;
2472 	u16 i, nr_enums;
2473 	u32 meta_needed;
2474 
2475 	nr_enums = btf_type_vlen(t);
2476 	meta_needed = nr_enums * sizeof(*enums);
2477 
2478 	if (meta_left < meta_needed) {
2479 		btf_verifier_log_basic(env, t,
2480 				       "meta_left:%u meta_needed:%u",
2481 				       meta_left, meta_needed);
2482 		return -EINVAL;
2483 	}
2484 
2485 	if (btf_type_kflag(t)) {
2486 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2487 		return -EINVAL;
2488 	}
2489 
2490 	if (t->size > 8 || !is_power_of_2(t->size)) {
2491 		btf_verifier_log_type(env, t, "Unexpected size");
2492 		return -EINVAL;
2493 	}
2494 
2495 	/* enum type either no name or a valid one */
2496 	if (t->name_off &&
2497 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2498 		btf_verifier_log_type(env, t, "Invalid name");
2499 		return -EINVAL;
2500 	}
2501 
2502 	btf_verifier_log_type(env, t, NULL);
2503 
2504 	for (i = 0; i < nr_enums; i++) {
2505 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2506 			btf_verifier_log(env, "\tInvalid name_offset:%u",
2507 					 enums[i].name_off);
2508 			return -EINVAL;
2509 		}
2510 
2511 		/* enum member must have a valid name */
2512 		if (!enums[i].name_off ||
2513 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
2514 			btf_verifier_log_type(env, t, "Invalid name");
2515 			return -EINVAL;
2516 		}
2517 
2518 		if (env->log.level == BPF_LOG_KERNEL)
2519 			continue;
2520 		btf_verifier_log(env, "\t%s val=%d\n",
2521 				 __btf_name_by_offset(btf, enums[i].name_off),
2522 				 enums[i].val);
2523 	}
2524 
2525 	return meta_needed;
2526 }
2527 
2528 static void btf_enum_log(struct btf_verifier_env *env,
2529 			 const struct btf_type *t)
2530 {
2531 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2532 }
2533 
2534 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2535 			      u32 type_id, void *data, u8 bits_offset,
2536 			      struct seq_file *m)
2537 {
2538 	const struct btf_enum *enums = btf_type_enum(t);
2539 	u32 i, nr_enums = btf_type_vlen(t);
2540 	int v = *(int *)data;
2541 
2542 	for (i = 0; i < nr_enums; i++) {
2543 		if (v == enums[i].val) {
2544 			seq_printf(m, "%s",
2545 				   __btf_name_by_offset(btf,
2546 							enums[i].name_off));
2547 			return;
2548 		}
2549 	}
2550 
2551 	seq_printf(m, "%d", v);
2552 }
2553 
2554 static struct btf_kind_operations enum_ops = {
2555 	.check_meta = btf_enum_check_meta,
2556 	.resolve = btf_df_resolve,
2557 	.check_member = btf_enum_check_member,
2558 	.check_kflag_member = btf_enum_check_kflag_member,
2559 	.log_details = btf_enum_log,
2560 	.seq_show = btf_enum_seq_show,
2561 };
2562 
2563 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2564 				     const struct btf_type *t,
2565 				     u32 meta_left)
2566 {
2567 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2568 
2569 	if (meta_left < meta_needed) {
2570 		btf_verifier_log_basic(env, t,
2571 				       "meta_left:%u meta_needed:%u",
2572 				       meta_left, meta_needed);
2573 		return -EINVAL;
2574 	}
2575 
2576 	if (t->name_off) {
2577 		btf_verifier_log_type(env, t, "Invalid name");
2578 		return -EINVAL;
2579 	}
2580 
2581 	if (btf_type_kflag(t)) {
2582 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2583 		return -EINVAL;
2584 	}
2585 
2586 	btf_verifier_log_type(env, t, NULL);
2587 
2588 	return meta_needed;
2589 }
2590 
2591 static void btf_func_proto_log(struct btf_verifier_env *env,
2592 			       const struct btf_type *t)
2593 {
2594 	const struct btf_param *args = (const struct btf_param *)(t + 1);
2595 	u16 nr_args = btf_type_vlen(t), i;
2596 
2597 	btf_verifier_log(env, "return=%u args=(", t->type);
2598 	if (!nr_args) {
2599 		btf_verifier_log(env, "void");
2600 		goto done;
2601 	}
2602 
2603 	if (nr_args == 1 && !args[0].type) {
2604 		/* Only one vararg */
2605 		btf_verifier_log(env, "vararg");
2606 		goto done;
2607 	}
2608 
2609 	btf_verifier_log(env, "%u %s", args[0].type,
2610 			 __btf_name_by_offset(env->btf,
2611 					      args[0].name_off));
2612 	for (i = 1; i < nr_args - 1; i++)
2613 		btf_verifier_log(env, ", %u %s", args[i].type,
2614 				 __btf_name_by_offset(env->btf,
2615 						      args[i].name_off));
2616 
2617 	if (nr_args > 1) {
2618 		const struct btf_param *last_arg = &args[nr_args - 1];
2619 
2620 		if (last_arg->type)
2621 			btf_verifier_log(env, ", %u %s", last_arg->type,
2622 					 __btf_name_by_offset(env->btf,
2623 							      last_arg->name_off));
2624 		else
2625 			btf_verifier_log(env, ", vararg");
2626 	}
2627 
2628 done:
2629 	btf_verifier_log(env, ")");
2630 }
2631 
2632 static struct btf_kind_operations func_proto_ops = {
2633 	.check_meta = btf_func_proto_check_meta,
2634 	.resolve = btf_df_resolve,
2635 	/*
2636 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
2637 	 * a struct's member.
2638 	 *
2639 	 * It should be a funciton pointer instead.
2640 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2641 	 *
2642 	 * Hence, there is no btf_func_check_member().
2643 	 */
2644 	.check_member = btf_df_check_member,
2645 	.check_kflag_member = btf_df_check_kflag_member,
2646 	.log_details = btf_func_proto_log,
2647 	.seq_show = btf_df_seq_show,
2648 };
2649 
2650 static s32 btf_func_check_meta(struct btf_verifier_env *env,
2651 			       const struct btf_type *t,
2652 			       u32 meta_left)
2653 {
2654 	if (!t->name_off ||
2655 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2656 		btf_verifier_log_type(env, t, "Invalid name");
2657 		return -EINVAL;
2658 	}
2659 
2660 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
2661 		btf_verifier_log_type(env, t, "Invalid func linkage");
2662 		return -EINVAL;
2663 	}
2664 
2665 	if (btf_type_kflag(t)) {
2666 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2667 		return -EINVAL;
2668 	}
2669 
2670 	btf_verifier_log_type(env, t, NULL);
2671 
2672 	return 0;
2673 }
2674 
2675 static struct btf_kind_operations func_ops = {
2676 	.check_meta = btf_func_check_meta,
2677 	.resolve = btf_df_resolve,
2678 	.check_member = btf_df_check_member,
2679 	.check_kflag_member = btf_df_check_kflag_member,
2680 	.log_details = btf_ref_type_log,
2681 	.seq_show = btf_df_seq_show,
2682 };
2683 
2684 static s32 btf_var_check_meta(struct btf_verifier_env *env,
2685 			      const struct btf_type *t,
2686 			      u32 meta_left)
2687 {
2688 	const struct btf_var *var;
2689 	u32 meta_needed = sizeof(*var);
2690 
2691 	if (meta_left < meta_needed) {
2692 		btf_verifier_log_basic(env, t,
2693 				       "meta_left:%u meta_needed:%u",
2694 				       meta_left, meta_needed);
2695 		return -EINVAL;
2696 	}
2697 
2698 	if (btf_type_vlen(t)) {
2699 		btf_verifier_log_type(env, t, "vlen != 0");
2700 		return -EINVAL;
2701 	}
2702 
2703 	if (btf_type_kflag(t)) {
2704 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2705 		return -EINVAL;
2706 	}
2707 
2708 	if (!t->name_off ||
2709 	    !__btf_name_valid(env->btf, t->name_off, true)) {
2710 		btf_verifier_log_type(env, t, "Invalid name");
2711 		return -EINVAL;
2712 	}
2713 
2714 	/* A var cannot be in type void */
2715 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
2716 		btf_verifier_log_type(env, t, "Invalid type_id");
2717 		return -EINVAL;
2718 	}
2719 
2720 	var = btf_type_var(t);
2721 	if (var->linkage != BTF_VAR_STATIC &&
2722 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2723 		btf_verifier_log_type(env, t, "Linkage not supported");
2724 		return -EINVAL;
2725 	}
2726 
2727 	btf_verifier_log_type(env, t, NULL);
2728 
2729 	return meta_needed;
2730 }
2731 
2732 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
2733 {
2734 	const struct btf_var *var = btf_type_var(t);
2735 
2736 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
2737 }
2738 
2739 static const struct btf_kind_operations var_ops = {
2740 	.check_meta		= btf_var_check_meta,
2741 	.resolve		= btf_var_resolve,
2742 	.check_member		= btf_df_check_member,
2743 	.check_kflag_member	= btf_df_check_kflag_member,
2744 	.log_details		= btf_var_log,
2745 	.seq_show		= btf_var_seq_show,
2746 };
2747 
2748 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
2749 				  const struct btf_type *t,
2750 				  u32 meta_left)
2751 {
2752 	const struct btf_var_secinfo *vsi;
2753 	u64 last_vsi_end_off = 0, sum = 0;
2754 	u32 i, meta_needed;
2755 
2756 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
2757 	if (meta_left < meta_needed) {
2758 		btf_verifier_log_basic(env, t,
2759 				       "meta_left:%u meta_needed:%u",
2760 				       meta_left, meta_needed);
2761 		return -EINVAL;
2762 	}
2763 
2764 	if (!btf_type_vlen(t)) {
2765 		btf_verifier_log_type(env, t, "vlen == 0");
2766 		return -EINVAL;
2767 	}
2768 
2769 	if (!t->size) {
2770 		btf_verifier_log_type(env, t, "size == 0");
2771 		return -EINVAL;
2772 	}
2773 
2774 	if (btf_type_kflag(t)) {
2775 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2776 		return -EINVAL;
2777 	}
2778 
2779 	if (!t->name_off ||
2780 	    !btf_name_valid_section(env->btf, t->name_off)) {
2781 		btf_verifier_log_type(env, t, "Invalid name");
2782 		return -EINVAL;
2783 	}
2784 
2785 	btf_verifier_log_type(env, t, NULL);
2786 
2787 	for_each_vsi(i, t, vsi) {
2788 		/* A var cannot be in type void */
2789 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
2790 			btf_verifier_log_vsi(env, t, vsi,
2791 					     "Invalid type_id");
2792 			return -EINVAL;
2793 		}
2794 
2795 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
2796 			btf_verifier_log_vsi(env, t, vsi,
2797 					     "Invalid offset");
2798 			return -EINVAL;
2799 		}
2800 
2801 		if (!vsi->size || vsi->size > t->size) {
2802 			btf_verifier_log_vsi(env, t, vsi,
2803 					     "Invalid size");
2804 			return -EINVAL;
2805 		}
2806 
2807 		last_vsi_end_off = vsi->offset + vsi->size;
2808 		if (last_vsi_end_off > t->size) {
2809 			btf_verifier_log_vsi(env, t, vsi,
2810 					     "Invalid offset+size");
2811 			return -EINVAL;
2812 		}
2813 
2814 		btf_verifier_log_vsi(env, t, vsi, NULL);
2815 		sum += vsi->size;
2816 	}
2817 
2818 	if (t->size < sum) {
2819 		btf_verifier_log_type(env, t, "Invalid btf_info size");
2820 		return -EINVAL;
2821 	}
2822 
2823 	return meta_needed;
2824 }
2825 
2826 static int btf_datasec_resolve(struct btf_verifier_env *env,
2827 			       const struct resolve_vertex *v)
2828 {
2829 	const struct btf_var_secinfo *vsi;
2830 	struct btf *btf = env->btf;
2831 	u16 i;
2832 
2833 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
2834 		u32 var_type_id = vsi->type, type_id, type_size = 0;
2835 		const struct btf_type *var_type = btf_type_by_id(env->btf,
2836 								 var_type_id);
2837 		if (!var_type || !btf_type_is_var(var_type)) {
2838 			btf_verifier_log_vsi(env, v->t, vsi,
2839 					     "Not a VAR kind member");
2840 			return -EINVAL;
2841 		}
2842 
2843 		if (!env_type_is_resolve_sink(env, var_type) &&
2844 		    !env_type_is_resolved(env, var_type_id)) {
2845 			env_stack_set_next_member(env, i + 1);
2846 			return env_stack_push(env, var_type, var_type_id);
2847 		}
2848 
2849 		type_id = var_type->type;
2850 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
2851 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
2852 			return -EINVAL;
2853 		}
2854 
2855 		if (vsi->size < type_size) {
2856 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
2857 			return -EINVAL;
2858 		}
2859 	}
2860 
2861 	env_stack_pop_resolved(env, 0, 0);
2862 	return 0;
2863 }
2864 
2865 static void btf_datasec_log(struct btf_verifier_env *env,
2866 			    const struct btf_type *t)
2867 {
2868 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2869 }
2870 
2871 static void btf_datasec_seq_show(const struct btf *btf,
2872 				 const struct btf_type *t, u32 type_id,
2873 				 void *data, u8 bits_offset,
2874 				 struct seq_file *m)
2875 {
2876 	const struct btf_var_secinfo *vsi;
2877 	const struct btf_type *var;
2878 	u32 i;
2879 
2880 	seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off));
2881 	for_each_vsi(i, t, vsi) {
2882 		var = btf_type_by_id(btf, vsi->type);
2883 		if (i)
2884 			seq_puts(m, ",");
2885 		btf_type_ops(var)->seq_show(btf, var, vsi->type,
2886 					    data + vsi->offset, bits_offset, m);
2887 	}
2888 	seq_puts(m, "}");
2889 }
2890 
2891 static const struct btf_kind_operations datasec_ops = {
2892 	.check_meta		= btf_datasec_check_meta,
2893 	.resolve		= btf_datasec_resolve,
2894 	.check_member		= btf_df_check_member,
2895 	.check_kflag_member	= btf_df_check_kflag_member,
2896 	.log_details		= btf_datasec_log,
2897 	.seq_show		= btf_datasec_seq_show,
2898 };
2899 
2900 static int btf_func_proto_check(struct btf_verifier_env *env,
2901 				const struct btf_type *t)
2902 {
2903 	const struct btf_type *ret_type;
2904 	const struct btf_param *args;
2905 	const struct btf *btf;
2906 	u16 nr_args, i;
2907 	int err;
2908 
2909 	btf = env->btf;
2910 	args = (const struct btf_param *)(t + 1);
2911 	nr_args = btf_type_vlen(t);
2912 
2913 	/* Check func return type which could be "void" (t->type == 0) */
2914 	if (t->type) {
2915 		u32 ret_type_id = t->type;
2916 
2917 		ret_type = btf_type_by_id(btf, ret_type_id);
2918 		if (!ret_type) {
2919 			btf_verifier_log_type(env, t, "Invalid return type");
2920 			return -EINVAL;
2921 		}
2922 
2923 		if (btf_type_needs_resolve(ret_type) &&
2924 		    !env_type_is_resolved(env, ret_type_id)) {
2925 			err = btf_resolve(env, ret_type, ret_type_id);
2926 			if (err)
2927 				return err;
2928 		}
2929 
2930 		/* Ensure the return type is a type that has a size */
2931 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2932 			btf_verifier_log_type(env, t, "Invalid return type");
2933 			return -EINVAL;
2934 		}
2935 	}
2936 
2937 	if (!nr_args)
2938 		return 0;
2939 
2940 	/* Last func arg type_id could be 0 if it is a vararg */
2941 	if (!args[nr_args - 1].type) {
2942 		if (args[nr_args - 1].name_off) {
2943 			btf_verifier_log_type(env, t, "Invalid arg#%u",
2944 					      nr_args);
2945 			return -EINVAL;
2946 		}
2947 		nr_args--;
2948 	}
2949 
2950 	err = 0;
2951 	for (i = 0; i < nr_args; i++) {
2952 		const struct btf_type *arg_type;
2953 		u32 arg_type_id;
2954 
2955 		arg_type_id = args[i].type;
2956 		arg_type = btf_type_by_id(btf, arg_type_id);
2957 		if (!arg_type) {
2958 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2959 			err = -EINVAL;
2960 			break;
2961 		}
2962 
2963 		if (args[i].name_off &&
2964 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
2965 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
2966 			btf_verifier_log_type(env, t,
2967 					      "Invalid arg#%u", i + 1);
2968 			err = -EINVAL;
2969 			break;
2970 		}
2971 
2972 		if (btf_type_needs_resolve(arg_type) &&
2973 		    !env_type_is_resolved(env, arg_type_id)) {
2974 			err = btf_resolve(env, arg_type, arg_type_id);
2975 			if (err)
2976 				break;
2977 		}
2978 
2979 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2980 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2981 			err = -EINVAL;
2982 			break;
2983 		}
2984 	}
2985 
2986 	return err;
2987 }
2988 
2989 static int btf_func_check(struct btf_verifier_env *env,
2990 			  const struct btf_type *t)
2991 {
2992 	const struct btf_type *proto_type;
2993 	const struct btf_param *args;
2994 	const struct btf *btf;
2995 	u16 nr_args, i;
2996 
2997 	btf = env->btf;
2998 	proto_type = btf_type_by_id(btf, t->type);
2999 
3000 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3001 		btf_verifier_log_type(env, t, "Invalid type_id");
3002 		return -EINVAL;
3003 	}
3004 
3005 	args = (const struct btf_param *)(proto_type + 1);
3006 	nr_args = btf_type_vlen(proto_type);
3007 	for (i = 0; i < nr_args; i++) {
3008 		if (!args[i].name_off && args[i].type) {
3009 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3010 			return -EINVAL;
3011 		}
3012 	}
3013 
3014 	return 0;
3015 }
3016 
3017 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3018 	[BTF_KIND_INT] = &int_ops,
3019 	[BTF_KIND_PTR] = &ptr_ops,
3020 	[BTF_KIND_ARRAY] = &array_ops,
3021 	[BTF_KIND_STRUCT] = &struct_ops,
3022 	[BTF_KIND_UNION] = &struct_ops,
3023 	[BTF_KIND_ENUM] = &enum_ops,
3024 	[BTF_KIND_FWD] = &fwd_ops,
3025 	[BTF_KIND_TYPEDEF] = &modifier_ops,
3026 	[BTF_KIND_VOLATILE] = &modifier_ops,
3027 	[BTF_KIND_CONST] = &modifier_ops,
3028 	[BTF_KIND_RESTRICT] = &modifier_ops,
3029 	[BTF_KIND_FUNC] = &func_ops,
3030 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3031 	[BTF_KIND_VAR] = &var_ops,
3032 	[BTF_KIND_DATASEC] = &datasec_ops,
3033 };
3034 
3035 static s32 btf_check_meta(struct btf_verifier_env *env,
3036 			  const struct btf_type *t,
3037 			  u32 meta_left)
3038 {
3039 	u32 saved_meta_left = meta_left;
3040 	s32 var_meta_size;
3041 
3042 	if (meta_left < sizeof(*t)) {
3043 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3044 				 env->log_type_id, meta_left, sizeof(*t));
3045 		return -EINVAL;
3046 	}
3047 	meta_left -= sizeof(*t);
3048 
3049 	if (t->info & ~BTF_INFO_MASK) {
3050 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3051 				 env->log_type_id, t->info);
3052 		return -EINVAL;
3053 	}
3054 
3055 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3056 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3057 		btf_verifier_log(env, "[%u] Invalid kind:%u",
3058 				 env->log_type_id, BTF_INFO_KIND(t->info));
3059 		return -EINVAL;
3060 	}
3061 
3062 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
3063 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3064 				 env->log_type_id, t->name_off);
3065 		return -EINVAL;
3066 	}
3067 
3068 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3069 	if (var_meta_size < 0)
3070 		return var_meta_size;
3071 
3072 	meta_left -= var_meta_size;
3073 
3074 	return saved_meta_left - meta_left;
3075 }
3076 
3077 static int btf_check_all_metas(struct btf_verifier_env *env)
3078 {
3079 	struct btf *btf = env->btf;
3080 	struct btf_header *hdr;
3081 	void *cur, *end;
3082 
3083 	hdr = &btf->hdr;
3084 	cur = btf->nohdr_data + hdr->type_off;
3085 	end = cur + hdr->type_len;
3086 
3087 	env->log_type_id = 1;
3088 	while (cur < end) {
3089 		struct btf_type *t = cur;
3090 		s32 meta_size;
3091 
3092 		meta_size = btf_check_meta(env, t, end - cur);
3093 		if (meta_size < 0)
3094 			return meta_size;
3095 
3096 		btf_add_type(env, t);
3097 		cur += meta_size;
3098 		env->log_type_id++;
3099 	}
3100 
3101 	return 0;
3102 }
3103 
3104 static bool btf_resolve_valid(struct btf_verifier_env *env,
3105 			      const struct btf_type *t,
3106 			      u32 type_id)
3107 {
3108 	struct btf *btf = env->btf;
3109 
3110 	if (!env_type_is_resolved(env, type_id))
3111 		return false;
3112 
3113 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3114 		return !btf->resolved_ids[type_id] &&
3115 		       !btf->resolved_sizes[type_id];
3116 
3117 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3118 	    btf_type_is_var(t)) {
3119 		t = btf_type_id_resolve(btf, &type_id);
3120 		return t &&
3121 		       !btf_type_is_modifier(t) &&
3122 		       !btf_type_is_var(t) &&
3123 		       !btf_type_is_datasec(t);
3124 	}
3125 
3126 	if (btf_type_is_array(t)) {
3127 		const struct btf_array *array = btf_type_array(t);
3128 		const struct btf_type *elem_type;
3129 		u32 elem_type_id = array->type;
3130 		u32 elem_size;
3131 
3132 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3133 		return elem_type && !btf_type_is_modifier(elem_type) &&
3134 			(array->nelems * elem_size ==
3135 			 btf->resolved_sizes[type_id]);
3136 	}
3137 
3138 	return false;
3139 }
3140 
3141 static int btf_resolve(struct btf_verifier_env *env,
3142 		       const struct btf_type *t, u32 type_id)
3143 {
3144 	u32 save_log_type_id = env->log_type_id;
3145 	const struct resolve_vertex *v;
3146 	int err = 0;
3147 
3148 	env->resolve_mode = RESOLVE_TBD;
3149 	env_stack_push(env, t, type_id);
3150 	while (!err && (v = env_stack_peak(env))) {
3151 		env->log_type_id = v->type_id;
3152 		err = btf_type_ops(v->t)->resolve(env, v);
3153 	}
3154 
3155 	env->log_type_id = type_id;
3156 	if (err == -E2BIG) {
3157 		btf_verifier_log_type(env, t,
3158 				      "Exceeded max resolving depth:%u",
3159 				      MAX_RESOLVE_DEPTH);
3160 	} else if (err == -EEXIST) {
3161 		btf_verifier_log_type(env, t, "Loop detected");
3162 	}
3163 
3164 	/* Final sanity check */
3165 	if (!err && !btf_resolve_valid(env, t, type_id)) {
3166 		btf_verifier_log_type(env, t, "Invalid resolve state");
3167 		err = -EINVAL;
3168 	}
3169 
3170 	env->log_type_id = save_log_type_id;
3171 	return err;
3172 }
3173 
3174 static int btf_check_all_types(struct btf_verifier_env *env)
3175 {
3176 	struct btf *btf = env->btf;
3177 	u32 type_id;
3178 	int err;
3179 
3180 	err = env_resolve_init(env);
3181 	if (err)
3182 		return err;
3183 
3184 	env->phase++;
3185 	for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3186 		const struct btf_type *t = btf_type_by_id(btf, type_id);
3187 
3188 		env->log_type_id = type_id;
3189 		if (btf_type_needs_resolve(t) &&
3190 		    !env_type_is_resolved(env, type_id)) {
3191 			err = btf_resolve(env, t, type_id);
3192 			if (err)
3193 				return err;
3194 		}
3195 
3196 		if (btf_type_is_func_proto(t)) {
3197 			err = btf_func_proto_check(env, t);
3198 			if (err)
3199 				return err;
3200 		}
3201 
3202 		if (btf_type_is_func(t)) {
3203 			err = btf_func_check(env, t);
3204 			if (err)
3205 				return err;
3206 		}
3207 	}
3208 
3209 	return 0;
3210 }
3211 
3212 static int btf_parse_type_sec(struct btf_verifier_env *env)
3213 {
3214 	const struct btf_header *hdr = &env->btf->hdr;
3215 	int err;
3216 
3217 	/* Type section must align to 4 bytes */
3218 	if (hdr->type_off & (sizeof(u32) - 1)) {
3219 		btf_verifier_log(env, "Unaligned type_off");
3220 		return -EINVAL;
3221 	}
3222 
3223 	if (!hdr->type_len) {
3224 		btf_verifier_log(env, "No type found");
3225 		return -EINVAL;
3226 	}
3227 
3228 	err = btf_check_all_metas(env);
3229 	if (err)
3230 		return err;
3231 
3232 	return btf_check_all_types(env);
3233 }
3234 
3235 static int btf_parse_str_sec(struct btf_verifier_env *env)
3236 {
3237 	const struct btf_header *hdr;
3238 	struct btf *btf = env->btf;
3239 	const char *start, *end;
3240 
3241 	hdr = &btf->hdr;
3242 	start = btf->nohdr_data + hdr->str_off;
3243 	end = start + hdr->str_len;
3244 
3245 	if (end != btf->data + btf->data_size) {
3246 		btf_verifier_log(env, "String section is not at the end");
3247 		return -EINVAL;
3248 	}
3249 
3250 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3251 	    start[0] || end[-1]) {
3252 		btf_verifier_log(env, "Invalid string section");
3253 		return -EINVAL;
3254 	}
3255 
3256 	btf->strings = start;
3257 
3258 	return 0;
3259 }
3260 
3261 static const size_t btf_sec_info_offset[] = {
3262 	offsetof(struct btf_header, type_off),
3263 	offsetof(struct btf_header, str_off),
3264 };
3265 
3266 static int btf_sec_info_cmp(const void *a, const void *b)
3267 {
3268 	const struct btf_sec_info *x = a;
3269 	const struct btf_sec_info *y = b;
3270 
3271 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3272 }
3273 
3274 static int btf_check_sec_info(struct btf_verifier_env *env,
3275 			      u32 btf_data_size)
3276 {
3277 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3278 	u32 total, expected_total, i;
3279 	const struct btf_header *hdr;
3280 	const struct btf *btf;
3281 
3282 	btf = env->btf;
3283 	hdr = &btf->hdr;
3284 
3285 	/* Populate the secs from hdr */
3286 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
3287 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
3288 						   btf_sec_info_offset[i]);
3289 
3290 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
3291 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
3292 
3293 	/* Check for gaps and overlap among sections */
3294 	total = 0;
3295 	expected_total = btf_data_size - hdr->hdr_len;
3296 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
3297 		if (expected_total < secs[i].off) {
3298 			btf_verifier_log(env, "Invalid section offset");
3299 			return -EINVAL;
3300 		}
3301 		if (total < secs[i].off) {
3302 			/* gap */
3303 			btf_verifier_log(env, "Unsupported section found");
3304 			return -EINVAL;
3305 		}
3306 		if (total > secs[i].off) {
3307 			btf_verifier_log(env, "Section overlap found");
3308 			return -EINVAL;
3309 		}
3310 		if (expected_total - total < secs[i].len) {
3311 			btf_verifier_log(env,
3312 					 "Total section length too long");
3313 			return -EINVAL;
3314 		}
3315 		total += secs[i].len;
3316 	}
3317 
3318 	/* There is data other than hdr and known sections */
3319 	if (expected_total != total) {
3320 		btf_verifier_log(env, "Unsupported section found");
3321 		return -EINVAL;
3322 	}
3323 
3324 	return 0;
3325 }
3326 
3327 static int btf_parse_hdr(struct btf_verifier_env *env)
3328 {
3329 	u32 hdr_len, hdr_copy, btf_data_size;
3330 	const struct btf_header *hdr;
3331 	struct btf *btf;
3332 	int err;
3333 
3334 	btf = env->btf;
3335 	btf_data_size = btf->data_size;
3336 
3337 	if (btf_data_size <
3338 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
3339 		btf_verifier_log(env, "hdr_len not found");
3340 		return -EINVAL;
3341 	}
3342 
3343 	hdr = btf->data;
3344 	hdr_len = hdr->hdr_len;
3345 	if (btf_data_size < hdr_len) {
3346 		btf_verifier_log(env, "btf_header not found");
3347 		return -EINVAL;
3348 	}
3349 
3350 	/* Ensure the unsupported header fields are zero */
3351 	if (hdr_len > sizeof(btf->hdr)) {
3352 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
3353 		u8 *end = btf->data + hdr_len;
3354 
3355 		for (; expected_zero < end; expected_zero++) {
3356 			if (*expected_zero) {
3357 				btf_verifier_log(env, "Unsupported btf_header");
3358 				return -E2BIG;
3359 			}
3360 		}
3361 	}
3362 
3363 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
3364 	memcpy(&btf->hdr, btf->data, hdr_copy);
3365 
3366 	hdr = &btf->hdr;
3367 
3368 	btf_verifier_log_hdr(env, btf_data_size);
3369 
3370 	if (hdr->magic != BTF_MAGIC) {
3371 		btf_verifier_log(env, "Invalid magic");
3372 		return -EINVAL;
3373 	}
3374 
3375 	if (hdr->version != BTF_VERSION) {
3376 		btf_verifier_log(env, "Unsupported version");
3377 		return -ENOTSUPP;
3378 	}
3379 
3380 	if (hdr->flags) {
3381 		btf_verifier_log(env, "Unsupported flags");
3382 		return -ENOTSUPP;
3383 	}
3384 
3385 	if (btf_data_size == hdr->hdr_len) {
3386 		btf_verifier_log(env, "No data");
3387 		return -EINVAL;
3388 	}
3389 
3390 	err = btf_check_sec_info(env, btf_data_size);
3391 	if (err)
3392 		return err;
3393 
3394 	return 0;
3395 }
3396 
3397 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
3398 			     u32 log_level, char __user *log_ubuf, u32 log_size)
3399 {
3400 	struct btf_verifier_env *env = NULL;
3401 	struct bpf_verifier_log *log;
3402 	struct btf *btf = NULL;
3403 	u8 *data;
3404 	int err;
3405 
3406 	if (btf_data_size > BTF_MAX_SIZE)
3407 		return ERR_PTR(-E2BIG);
3408 
3409 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3410 	if (!env)
3411 		return ERR_PTR(-ENOMEM);
3412 
3413 	log = &env->log;
3414 	if (log_level || log_ubuf || log_size) {
3415 		/* user requested verbose verifier output
3416 		 * and supplied buffer to store the verification trace
3417 		 */
3418 		log->level = log_level;
3419 		log->ubuf = log_ubuf;
3420 		log->len_total = log_size;
3421 
3422 		/* log attributes have to be sane */
3423 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
3424 		    !log->level || !log->ubuf) {
3425 			err = -EINVAL;
3426 			goto errout;
3427 		}
3428 	}
3429 
3430 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3431 	if (!btf) {
3432 		err = -ENOMEM;
3433 		goto errout;
3434 	}
3435 	env->btf = btf;
3436 
3437 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
3438 	if (!data) {
3439 		err = -ENOMEM;
3440 		goto errout;
3441 	}
3442 
3443 	btf->data = data;
3444 	btf->data_size = btf_data_size;
3445 
3446 	if (copy_from_user(data, btf_data, btf_data_size)) {
3447 		err = -EFAULT;
3448 		goto errout;
3449 	}
3450 
3451 	err = btf_parse_hdr(env);
3452 	if (err)
3453 		goto errout;
3454 
3455 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3456 
3457 	err = btf_parse_str_sec(env);
3458 	if (err)
3459 		goto errout;
3460 
3461 	err = btf_parse_type_sec(env);
3462 	if (err)
3463 		goto errout;
3464 
3465 	if (log->level && bpf_verifier_log_full(log)) {
3466 		err = -ENOSPC;
3467 		goto errout;
3468 	}
3469 
3470 	btf_verifier_env_free(env);
3471 	refcount_set(&btf->refcnt, 1);
3472 	return btf;
3473 
3474 errout:
3475 	btf_verifier_env_free(env);
3476 	if (btf)
3477 		btf_free(btf);
3478 	return ERR_PTR(err);
3479 }
3480 
3481 extern char __weak __start_BTF[];
3482 extern char __weak __stop_BTF[];
3483 extern struct btf *btf_vmlinux;
3484 
3485 #define BPF_MAP_TYPE(_id, _ops)
3486 #define BPF_LINK_TYPE(_id, _name)
3487 static union {
3488 	struct bpf_ctx_convert {
3489 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3490 	prog_ctx_type _id##_prog; \
3491 	kern_ctx_type _id##_kern;
3492 #include <linux/bpf_types.h>
3493 #undef BPF_PROG_TYPE
3494 	} *__t;
3495 	/* 't' is written once under lock. Read many times. */
3496 	const struct btf_type *t;
3497 } bpf_ctx_convert;
3498 enum {
3499 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3500 	__ctx_convert##_id,
3501 #include <linux/bpf_types.h>
3502 #undef BPF_PROG_TYPE
3503 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
3504 };
3505 static u8 bpf_ctx_convert_map[] = {
3506 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3507 	[_id] = __ctx_convert##_id,
3508 #include <linux/bpf_types.h>
3509 #undef BPF_PROG_TYPE
3510 	0, /* avoid empty array */
3511 };
3512 #undef BPF_MAP_TYPE
3513 #undef BPF_LINK_TYPE
3514 
3515 static const struct btf_member *
3516 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
3517 		      const struct btf_type *t, enum bpf_prog_type prog_type,
3518 		      int arg)
3519 {
3520 	const struct btf_type *conv_struct;
3521 	const struct btf_type *ctx_struct;
3522 	const struct btf_member *ctx_type;
3523 	const char *tname, *ctx_tname;
3524 
3525 	conv_struct = bpf_ctx_convert.t;
3526 	if (!conv_struct) {
3527 		bpf_log(log, "btf_vmlinux is malformed\n");
3528 		return NULL;
3529 	}
3530 	t = btf_type_by_id(btf, t->type);
3531 	while (btf_type_is_modifier(t))
3532 		t = btf_type_by_id(btf, t->type);
3533 	if (!btf_type_is_struct(t)) {
3534 		/* Only pointer to struct is supported for now.
3535 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
3536 		 * is not supported yet.
3537 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
3538 		 */
3539 		if (log->level & BPF_LOG_LEVEL)
3540 			bpf_log(log, "arg#%d type is not a struct\n", arg);
3541 		return NULL;
3542 	}
3543 	tname = btf_name_by_offset(btf, t->name_off);
3544 	if (!tname) {
3545 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
3546 		return NULL;
3547 	}
3548 	/* prog_type is valid bpf program type. No need for bounds check. */
3549 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
3550 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
3551 	 * Like 'struct __sk_buff'
3552 	 */
3553 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
3554 	if (!ctx_struct)
3555 		/* should not happen */
3556 		return NULL;
3557 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
3558 	if (!ctx_tname) {
3559 		/* should not happen */
3560 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
3561 		return NULL;
3562 	}
3563 	/* only compare that prog's ctx type name is the same as
3564 	 * kernel expects. No need to compare field by field.
3565 	 * It's ok for bpf prog to do:
3566 	 * struct __sk_buff {};
3567 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
3568 	 * { // no fields of skb are ever used }
3569 	 */
3570 	if (strcmp(ctx_tname, tname))
3571 		return NULL;
3572 	return ctx_type;
3573 }
3574 
3575 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
3576 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
3577 #define BPF_LINK_TYPE(_id, _name)
3578 #define BPF_MAP_TYPE(_id, _ops) \
3579 	[_id] = &_ops,
3580 #include <linux/bpf_types.h>
3581 #undef BPF_PROG_TYPE
3582 #undef BPF_LINK_TYPE
3583 #undef BPF_MAP_TYPE
3584 };
3585 
3586 static int btf_vmlinux_map_ids_init(const struct btf *btf,
3587 				    struct bpf_verifier_log *log)
3588 {
3589 	const struct bpf_map_ops *ops;
3590 	int i, btf_id;
3591 
3592 	for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
3593 		ops = btf_vmlinux_map_ops[i];
3594 		if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
3595 			continue;
3596 		if (!ops->map_btf_name || !ops->map_btf_id) {
3597 			bpf_log(log, "map type %d is misconfigured\n", i);
3598 			return -EINVAL;
3599 		}
3600 		btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
3601 					       BTF_KIND_STRUCT);
3602 		if (btf_id < 0)
3603 			return btf_id;
3604 		*ops->map_btf_id = btf_id;
3605 	}
3606 
3607 	return 0;
3608 }
3609 
3610 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
3611 				     struct btf *btf,
3612 				     const struct btf_type *t,
3613 				     enum bpf_prog_type prog_type,
3614 				     int arg)
3615 {
3616 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
3617 
3618 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
3619 	if (!prog_ctx_type)
3620 		return -ENOENT;
3621 	kern_ctx_type = prog_ctx_type + 1;
3622 	return kern_ctx_type->type;
3623 }
3624 
3625 BTF_ID_LIST(bpf_ctx_convert_btf_id)
3626 BTF_ID(struct, bpf_ctx_convert)
3627 
3628 struct btf *btf_parse_vmlinux(void)
3629 {
3630 	struct btf_verifier_env *env = NULL;
3631 	struct bpf_verifier_log *log;
3632 	struct btf *btf = NULL;
3633 	int err;
3634 
3635 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3636 	if (!env)
3637 		return ERR_PTR(-ENOMEM);
3638 
3639 	log = &env->log;
3640 	log->level = BPF_LOG_KERNEL;
3641 
3642 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3643 	if (!btf) {
3644 		err = -ENOMEM;
3645 		goto errout;
3646 	}
3647 	env->btf = btf;
3648 
3649 	btf->data = __start_BTF;
3650 	btf->data_size = __stop_BTF - __start_BTF;
3651 
3652 	err = btf_parse_hdr(env);
3653 	if (err)
3654 		goto errout;
3655 
3656 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3657 
3658 	err = btf_parse_str_sec(env);
3659 	if (err)
3660 		goto errout;
3661 
3662 	err = btf_check_all_metas(env);
3663 	if (err)
3664 		goto errout;
3665 
3666 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
3667 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
3668 
3669 	/* find bpf map structs for map_ptr access checking */
3670 	err = btf_vmlinux_map_ids_init(btf, log);
3671 	if (err < 0)
3672 		goto errout;
3673 
3674 	bpf_struct_ops_init(btf, log);
3675 
3676 	btf_verifier_env_free(env);
3677 	refcount_set(&btf->refcnt, 1);
3678 	return btf;
3679 
3680 errout:
3681 	btf_verifier_env_free(env);
3682 	if (btf) {
3683 		kvfree(btf->types);
3684 		kfree(btf);
3685 	}
3686 	return ERR_PTR(err);
3687 }
3688 
3689 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
3690 {
3691 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
3692 
3693 	if (tgt_prog) {
3694 		return tgt_prog->aux->btf;
3695 	} else {
3696 		return btf_vmlinux;
3697 	}
3698 }
3699 
3700 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
3701 {
3702 	/* t comes in already as a pointer */
3703 	t = btf_type_by_id(btf, t->type);
3704 
3705 	/* allow const */
3706 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
3707 		t = btf_type_by_id(btf, t->type);
3708 
3709 	/* char, signed char, unsigned char */
3710 	return btf_type_is_int(t) && t->size == 1;
3711 }
3712 
3713 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
3714 		    const struct bpf_prog *prog,
3715 		    struct bpf_insn_access_aux *info)
3716 {
3717 	const struct btf_type *t = prog->aux->attach_func_proto;
3718 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
3719 	struct btf *btf = bpf_prog_get_target_btf(prog);
3720 	const char *tname = prog->aux->attach_func_name;
3721 	struct bpf_verifier_log *log = info->log;
3722 	const struct btf_param *args;
3723 	u32 nr_args, arg;
3724 	int i, ret;
3725 
3726 	if (off % 8) {
3727 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
3728 			tname, off);
3729 		return false;
3730 	}
3731 	arg = off / 8;
3732 	args = (const struct btf_param *)(t + 1);
3733 	/* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
3734 	nr_args = t ? btf_type_vlen(t) : 5;
3735 	if (prog->aux->attach_btf_trace) {
3736 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
3737 		args++;
3738 		nr_args--;
3739 	}
3740 
3741 	if (arg > nr_args) {
3742 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
3743 			tname, arg + 1);
3744 		return false;
3745 	}
3746 
3747 	if (arg == nr_args) {
3748 		switch (prog->expected_attach_type) {
3749 		case BPF_LSM_MAC:
3750 		case BPF_TRACE_FEXIT:
3751 			/* When LSM programs are attached to void LSM hooks
3752 			 * they use FEXIT trampolines and when attached to
3753 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
3754 			 *
3755 			 * While the LSM programs are BPF_MODIFY_RETURN-like
3756 			 * the check:
3757 			 *
3758 			 *	if (ret_type != 'int')
3759 			 *		return -EINVAL;
3760 			 *
3761 			 * is _not_ done here. This is still safe as LSM hooks
3762 			 * have only void and int return types.
3763 			 */
3764 			if (!t)
3765 				return true;
3766 			t = btf_type_by_id(btf, t->type);
3767 			break;
3768 		case BPF_MODIFY_RETURN:
3769 			/* For now the BPF_MODIFY_RETURN can only be attached to
3770 			 * functions that return an int.
3771 			 */
3772 			if (!t)
3773 				return false;
3774 
3775 			t = btf_type_skip_modifiers(btf, t->type, NULL);
3776 			if (!btf_type_is_small_int(t)) {
3777 				bpf_log(log,
3778 					"ret type %s not allowed for fmod_ret\n",
3779 					btf_kind_str[BTF_INFO_KIND(t->info)]);
3780 				return false;
3781 			}
3782 			break;
3783 		default:
3784 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
3785 				tname, arg + 1);
3786 			return false;
3787 		}
3788 	} else {
3789 		if (!t)
3790 			/* Default prog with 5 args */
3791 			return true;
3792 		t = btf_type_by_id(btf, args[arg].type);
3793 	}
3794 
3795 	/* skip modifiers */
3796 	while (btf_type_is_modifier(t))
3797 		t = btf_type_by_id(btf, t->type);
3798 	if (btf_type_is_small_int(t) || btf_type_is_enum(t))
3799 		/* accessing a scalar */
3800 		return true;
3801 	if (!btf_type_is_ptr(t)) {
3802 		bpf_log(log,
3803 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
3804 			tname, arg,
3805 			__btf_name_by_offset(btf, t->name_off),
3806 			btf_kind_str[BTF_INFO_KIND(t->info)]);
3807 		return false;
3808 	}
3809 
3810 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
3811 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
3812 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
3813 
3814 		if (ctx_arg_info->offset == off &&
3815 		    (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
3816 		     ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
3817 			info->reg_type = ctx_arg_info->reg_type;
3818 			return true;
3819 		}
3820 	}
3821 
3822 	if (t->type == 0)
3823 		/* This is a pointer to void.
3824 		 * It is the same as scalar from the verifier safety pov.
3825 		 * No further pointer walking is allowed.
3826 		 */
3827 		return true;
3828 
3829 	if (is_string_ptr(btf, t))
3830 		return true;
3831 
3832 	/* this is a pointer to another type */
3833 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
3834 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
3835 
3836 		if (ctx_arg_info->offset == off) {
3837 			info->reg_type = ctx_arg_info->reg_type;
3838 			info->btf_id = ctx_arg_info->btf_id;
3839 			return true;
3840 		}
3841 	}
3842 
3843 	info->reg_type = PTR_TO_BTF_ID;
3844 	if (tgt_prog) {
3845 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_prog->type, arg);
3846 		if (ret > 0) {
3847 			info->btf_id = ret;
3848 			return true;
3849 		} else {
3850 			return false;
3851 		}
3852 	}
3853 
3854 	info->btf_id = t->type;
3855 	t = btf_type_by_id(btf, t->type);
3856 	/* skip modifiers */
3857 	while (btf_type_is_modifier(t)) {
3858 		info->btf_id = t->type;
3859 		t = btf_type_by_id(btf, t->type);
3860 	}
3861 	if (!btf_type_is_struct(t)) {
3862 		bpf_log(log,
3863 			"func '%s' arg%d type %s is not a struct\n",
3864 			tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
3865 		return false;
3866 	}
3867 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
3868 		tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
3869 		__btf_name_by_offset(btf, t->name_off));
3870 	return true;
3871 }
3872 
3873 int btf_struct_access(struct bpf_verifier_log *log,
3874 		      const struct btf_type *t, int off, int size,
3875 		      enum bpf_access_type atype,
3876 		      u32 *next_btf_id)
3877 {
3878 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
3879 	const struct btf_type *mtype, *elem_type = NULL;
3880 	const struct btf_member *member;
3881 	const char *tname, *mname;
3882 	u32 vlen;
3883 
3884 again:
3885 	tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
3886 	if (!btf_type_is_struct(t)) {
3887 		bpf_log(log, "Type '%s' is not a struct\n", tname);
3888 		return -EINVAL;
3889 	}
3890 
3891 	vlen = btf_type_vlen(t);
3892 	if (off + size > t->size) {
3893 		/* If the last element is a variable size array, we may
3894 		 * need to relax the rule.
3895 		 */
3896 		struct btf_array *array_elem;
3897 
3898 		if (vlen == 0)
3899 			goto error;
3900 
3901 		member = btf_type_member(t) + vlen - 1;
3902 		mtype = btf_type_skip_modifiers(btf_vmlinux, member->type,
3903 						NULL);
3904 		if (!btf_type_is_array(mtype))
3905 			goto error;
3906 
3907 		array_elem = (struct btf_array *)(mtype + 1);
3908 		if (array_elem->nelems != 0)
3909 			goto error;
3910 
3911 		moff = btf_member_bit_offset(t, member) / 8;
3912 		if (off < moff)
3913 			goto error;
3914 
3915 		/* Only allow structure for now, can be relaxed for
3916 		 * other types later.
3917 		 */
3918 		elem_type = btf_type_skip_modifiers(btf_vmlinux,
3919 						    array_elem->type, NULL);
3920 		if (!btf_type_is_struct(elem_type))
3921 			goto error;
3922 
3923 		off = (off - moff) % elem_type->size;
3924 		return btf_struct_access(log, elem_type, off, size, atype,
3925 					 next_btf_id);
3926 
3927 error:
3928 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
3929 			tname, off, size);
3930 		return -EACCES;
3931 	}
3932 
3933 	for_each_member(i, t, member) {
3934 		/* offset of the field in bytes */
3935 		moff = btf_member_bit_offset(t, member) / 8;
3936 		if (off + size <= moff)
3937 			/* won't find anything, field is already too far */
3938 			break;
3939 
3940 		if (btf_member_bitfield_size(t, member)) {
3941 			u32 end_bit = btf_member_bit_offset(t, member) +
3942 				btf_member_bitfield_size(t, member);
3943 
3944 			/* off <= moff instead of off == moff because clang
3945 			 * does not generate a BTF member for anonymous
3946 			 * bitfield like the ":16" here:
3947 			 * struct {
3948 			 *	int :16;
3949 			 *	int x:8;
3950 			 * };
3951 			 */
3952 			if (off <= moff &&
3953 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
3954 				return SCALAR_VALUE;
3955 
3956 			/* off may be accessing a following member
3957 			 *
3958 			 * or
3959 			 *
3960 			 * Doing partial access at either end of this
3961 			 * bitfield.  Continue on this case also to
3962 			 * treat it as not accessing this bitfield
3963 			 * and eventually error out as field not
3964 			 * found to keep it simple.
3965 			 * It could be relaxed if there was a legit
3966 			 * partial access case later.
3967 			 */
3968 			continue;
3969 		}
3970 
3971 		/* In case of "off" is pointing to holes of a struct */
3972 		if (off < moff)
3973 			break;
3974 
3975 		/* type of the field */
3976 		mtype = btf_type_by_id(btf_vmlinux, member->type);
3977 		mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
3978 
3979 		mtype = btf_resolve_size(btf_vmlinux, mtype, &msize,
3980 					 &elem_type, &total_nelems);
3981 		if (IS_ERR(mtype)) {
3982 			bpf_log(log, "field %s doesn't have size\n", mname);
3983 			return -EFAULT;
3984 		}
3985 
3986 		mtrue_end = moff + msize;
3987 		if (off >= mtrue_end)
3988 			/* no overlap with member, keep iterating */
3989 			continue;
3990 
3991 		if (btf_type_is_array(mtype)) {
3992 			u32 elem_idx;
3993 
3994 			/* btf_resolve_size() above helps to
3995 			 * linearize a multi-dimensional array.
3996 			 *
3997 			 * The logic here is treating an array
3998 			 * in a struct as the following way:
3999 			 *
4000 			 * struct outer {
4001 			 *	struct inner array[2][2];
4002 			 * };
4003 			 *
4004 			 * looks like:
4005 			 *
4006 			 * struct outer {
4007 			 *	struct inner array_elem0;
4008 			 *	struct inner array_elem1;
4009 			 *	struct inner array_elem2;
4010 			 *	struct inner array_elem3;
4011 			 * };
4012 			 *
4013 			 * When accessing outer->array[1][0], it moves
4014 			 * moff to "array_elem2", set mtype to
4015 			 * "struct inner", and msize also becomes
4016 			 * sizeof(struct inner).  Then most of the
4017 			 * remaining logic will fall through without
4018 			 * caring the current member is an array or
4019 			 * not.
4020 			 *
4021 			 * Unlike mtype/msize/moff, mtrue_end does not
4022 			 * change.  The naming difference ("_true") tells
4023 			 * that it is not always corresponding to
4024 			 * the current mtype/msize/moff.
4025 			 * It is the true end of the current
4026 			 * member (i.e. array in this case).  That
4027 			 * will allow an int array to be accessed like
4028 			 * a scratch space,
4029 			 * i.e. allow access beyond the size of
4030 			 *      the array's element as long as it is
4031 			 *      within the mtrue_end boundary.
4032 			 */
4033 
4034 			/* skip empty array */
4035 			if (moff == mtrue_end)
4036 				continue;
4037 
4038 			msize /= total_nelems;
4039 			elem_idx = (off - moff) / msize;
4040 			moff += elem_idx * msize;
4041 			mtype = elem_type;
4042 		}
4043 
4044 		/* the 'off' we're looking for is either equal to start
4045 		 * of this field or inside of this struct
4046 		 */
4047 		if (btf_type_is_struct(mtype)) {
4048 			/* our field must be inside that union or struct */
4049 			t = mtype;
4050 
4051 			/* adjust offset we're looking for */
4052 			off -= moff;
4053 			goto again;
4054 		}
4055 
4056 		if (btf_type_is_ptr(mtype)) {
4057 			const struct btf_type *stype;
4058 			u32 id;
4059 
4060 			if (msize != size || off != moff) {
4061 				bpf_log(log,
4062 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
4063 					mname, moff, tname, off, size);
4064 				return -EACCES;
4065 			}
4066 
4067 			stype = btf_type_skip_modifiers(btf_vmlinux, mtype->type, &id);
4068 			if (btf_type_is_struct(stype)) {
4069 				*next_btf_id = id;
4070 				return PTR_TO_BTF_ID;
4071 			}
4072 		}
4073 
4074 		/* Allow more flexible access within an int as long as
4075 		 * it is within mtrue_end.
4076 		 * Since mtrue_end could be the end of an array,
4077 		 * that also allows using an array of int as a scratch
4078 		 * space. e.g. skb->cb[].
4079 		 */
4080 		if (off + size > mtrue_end) {
4081 			bpf_log(log,
4082 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
4083 				mname, mtrue_end, tname, off, size);
4084 			return -EACCES;
4085 		}
4086 
4087 		return SCALAR_VALUE;
4088 	}
4089 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
4090 	return -EINVAL;
4091 }
4092 
4093 int btf_resolve_helper_id(struct bpf_verifier_log *log,
4094 			  const struct bpf_func_proto *fn, int arg)
4095 {
4096 	int id;
4097 
4098 	if (fn->arg_type[arg] != ARG_PTR_TO_BTF_ID || !btf_vmlinux)
4099 		return -EINVAL;
4100 	id = fn->btf_id[arg];
4101 	if (!id || id > btf_vmlinux->nr_types)
4102 		return -EINVAL;
4103 	return id;
4104 }
4105 
4106 static int __get_type_size(struct btf *btf, u32 btf_id,
4107 			   const struct btf_type **bad_type)
4108 {
4109 	const struct btf_type *t;
4110 
4111 	if (!btf_id)
4112 		/* void */
4113 		return 0;
4114 	t = btf_type_by_id(btf, btf_id);
4115 	while (t && btf_type_is_modifier(t))
4116 		t = btf_type_by_id(btf, t->type);
4117 	if (!t) {
4118 		*bad_type = btf->types[0];
4119 		return -EINVAL;
4120 	}
4121 	if (btf_type_is_ptr(t))
4122 		/* kernel size of pointer. Not BPF's size of pointer*/
4123 		return sizeof(void *);
4124 	if (btf_type_is_int(t) || btf_type_is_enum(t))
4125 		return t->size;
4126 	*bad_type = t;
4127 	return -EINVAL;
4128 }
4129 
4130 int btf_distill_func_proto(struct bpf_verifier_log *log,
4131 			   struct btf *btf,
4132 			   const struct btf_type *func,
4133 			   const char *tname,
4134 			   struct btf_func_model *m)
4135 {
4136 	const struct btf_param *args;
4137 	const struct btf_type *t;
4138 	u32 i, nargs;
4139 	int ret;
4140 
4141 	if (!func) {
4142 		/* BTF function prototype doesn't match the verifier types.
4143 		 * Fall back to 5 u64 args.
4144 		 */
4145 		for (i = 0; i < 5; i++)
4146 			m->arg_size[i] = 8;
4147 		m->ret_size = 8;
4148 		m->nr_args = 5;
4149 		return 0;
4150 	}
4151 	args = (const struct btf_param *)(func + 1);
4152 	nargs = btf_type_vlen(func);
4153 	if (nargs >= MAX_BPF_FUNC_ARGS) {
4154 		bpf_log(log,
4155 			"The function %s has %d arguments. Too many.\n",
4156 			tname, nargs);
4157 		return -EINVAL;
4158 	}
4159 	ret = __get_type_size(btf, func->type, &t);
4160 	if (ret < 0) {
4161 		bpf_log(log,
4162 			"The function %s return type %s is unsupported.\n",
4163 			tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
4164 		return -EINVAL;
4165 	}
4166 	m->ret_size = ret;
4167 
4168 	for (i = 0; i < nargs; i++) {
4169 		ret = __get_type_size(btf, args[i].type, &t);
4170 		if (ret < 0) {
4171 			bpf_log(log,
4172 				"The function %s arg%d type %s is unsupported.\n",
4173 				tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4174 			return -EINVAL;
4175 		}
4176 		m->arg_size[i] = ret;
4177 	}
4178 	m->nr_args = nargs;
4179 	return 0;
4180 }
4181 
4182 /* Compare BTFs of two functions assuming only scalars and pointers to context.
4183  * t1 points to BTF_KIND_FUNC in btf1
4184  * t2 points to BTF_KIND_FUNC in btf2
4185  * Returns:
4186  * EINVAL - function prototype mismatch
4187  * EFAULT - verifier bug
4188  * 0 - 99% match. The last 1% is validated by the verifier.
4189  */
4190 static int btf_check_func_type_match(struct bpf_verifier_log *log,
4191 				     struct btf *btf1, const struct btf_type *t1,
4192 				     struct btf *btf2, const struct btf_type *t2)
4193 {
4194 	const struct btf_param *args1, *args2;
4195 	const char *fn1, *fn2, *s1, *s2;
4196 	u32 nargs1, nargs2, i;
4197 
4198 	fn1 = btf_name_by_offset(btf1, t1->name_off);
4199 	fn2 = btf_name_by_offset(btf2, t2->name_off);
4200 
4201 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
4202 		bpf_log(log, "%s() is not a global function\n", fn1);
4203 		return -EINVAL;
4204 	}
4205 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
4206 		bpf_log(log, "%s() is not a global function\n", fn2);
4207 		return -EINVAL;
4208 	}
4209 
4210 	t1 = btf_type_by_id(btf1, t1->type);
4211 	if (!t1 || !btf_type_is_func_proto(t1))
4212 		return -EFAULT;
4213 	t2 = btf_type_by_id(btf2, t2->type);
4214 	if (!t2 || !btf_type_is_func_proto(t2))
4215 		return -EFAULT;
4216 
4217 	args1 = (const struct btf_param *)(t1 + 1);
4218 	nargs1 = btf_type_vlen(t1);
4219 	args2 = (const struct btf_param *)(t2 + 1);
4220 	nargs2 = btf_type_vlen(t2);
4221 
4222 	if (nargs1 != nargs2) {
4223 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
4224 			fn1, nargs1, fn2, nargs2);
4225 		return -EINVAL;
4226 	}
4227 
4228 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
4229 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
4230 	if (t1->info != t2->info) {
4231 		bpf_log(log,
4232 			"Return type %s of %s() doesn't match type %s of %s()\n",
4233 			btf_type_str(t1), fn1,
4234 			btf_type_str(t2), fn2);
4235 		return -EINVAL;
4236 	}
4237 
4238 	for (i = 0; i < nargs1; i++) {
4239 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
4240 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
4241 
4242 		if (t1->info != t2->info) {
4243 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
4244 				i, fn1, btf_type_str(t1),
4245 				fn2, btf_type_str(t2));
4246 			return -EINVAL;
4247 		}
4248 		if (btf_type_has_size(t1) && t1->size != t2->size) {
4249 			bpf_log(log,
4250 				"arg%d in %s() has size %d while %s() has %d\n",
4251 				i, fn1, t1->size,
4252 				fn2, t2->size);
4253 			return -EINVAL;
4254 		}
4255 
4256 		/* global functions are validated with scalars and pointers
4257 		 * to context only. And only global functions can be replaced.
4258 		 * Hence type check only those types.
4259 		 */
4260 		if (btf_type_is_int(t1) || btf_type_is_enum(t1))
4261 			continue;
4262 		if (!btf_type_is_ptr(t1)) {
4263 			bpf_log(log,
4264 				"arg%d in %s() has unrecognized type\n",
4265 				i, fn1);
4266 			return -EINVAL;
4267 		}
4268 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
4269 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
4270 		if (!btf_type_is_struct(t1)) {
4271 			bpf_log(log,
4272 				"arg%d in %s() is not a pointer to context\n",
4273 				i, fn1);
4274 			return -EINVAL;
4275 		}
4276 		if (!btf_type_is_struct(t2)) {
4277 			bpf_log(log,
4278 				"arg%d in %s() is not a pointer to context\n",
4279 				i, fn2);
4280 			return -EINVAL;
4281 		}
4282 		/* This is an optional check to make program writing easier.
4283 		 * Compare names of structs and report an error to the user.
4284 		 * btf_prepare_func_args() already checked that t2 struct
4285 		 * is a context type. btf_prepare_func_args() will check
4286 		 * later that t1 struct is a context type as well.
4287 		 */
4288 		s1 = btf_name_by_offset(btf1, t1->name_off);
4289 		s2 = btf_name_by_offset(btf2, t2->name_off);
4290 		if (strcmp(s1, s2)) {
4291 			bpf_log(log,
4292 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
4293 				i, fn1, s1, fn2, s2);
4294 			return -EINVAL;
4295 		}
4296 	}
4297 	return 0;
4298 }
4299 
4300 /* Compare BTFs of given program with BTF of target program */
4301 int btf_check_type_match(struct bpf_verifier_env *env, struct bpf_prog *prog,
4302 			 struct btf *btf2, const struct btf_type *t2)
4303 {
4304 	struct btf *btf1 = prog->aux->btf;
4305 	const struct btf_type *t1;
4306 	u32 btf_id = 0;
4307 
4308 	if (!prog->aux->func_info) {
4309 		bpf_log(&env->log, "Program extension requires BTF\n");
4310 		return -EINVAL;
4311 	}
4312 
4313 	btf_id = prog->aux->func_info[0].type_id;
4314 	if (!btf_id)
4315 		return -EFAULT;
4316 
4317 	t1 = btf_type_by_id(btf1, btf_id);
4318 	if (!t1 || !btf_type_is_func(t1))
4319 		return -EFAULT;
4320 
4321 	return btf_check_func_type_match(&env->log, btf1, t1, btf2, t2);
4322 }
4323 
4324 /* Compare BTF of a function with given bpf_reg_state.
4325  * Returns:
4326  * EFAULT - there is a verifier bug. Abort verification.
4327  * EINVAL - there is a type mismatch or BTF is not available.
4328  * 0 - BTF matches with what bpf_reg_state expects.
4329  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
4330  */
4331 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
4332 			     struct bpf_reg_state *reg)
4333 {
4334 	struct bpf_verifier_log *log = &env->log;
4335 	struct bpf_prog *prog = env->prog;
4336 	struct btf *btf = prog->aux->btf;
4337 	const struct btf_param *args;
4338 	const struct btf_type *t;
4339 	u32 i, nargs, btf_id;
4340 	const char *tname;
4341 
4342 	if (!prog->aux->func_info)
4343 		return -EINVAL;
4344 
4345 	btf_id = prog->aux->func_info[subprog].type_id;
4346 	if (!btf_id)
4347 		return -EFAULT;
4348 
4349 	if (prog->aux->func_info_aux[subprog].unreliable)
4350 		return -EINVAL;
4351 
4352 	t = btf_type_by_id(btf, btf_id);
4353 	if (!t || !btf_type_is_func(t)) {
4354 		/* These checks were already done by the verifier while loading
4355 		 * struct bpf_func_info
4356 		 */
4357 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
4358 			subprog);
4359 		return -EFAULT;
4360 	}
4361 	tname = btf_name_by_offset(btf, t->name_off);
4362 
4363 	t = btf_type_by_id(btf, t->type);
4364 	if (!t || !btf_type_is_func_proto(t)) {
4365 		bpf_log(log, "Invalid BTF of func %s\n", tname);
4366 		return -EFAULT;
4367 	}
4368 	args = (const struct btf_param *)(t + 1);
4369 	nargs = btf_type_vlen(t);
4370 	if (nargs > 5) {
4371 		bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
4372 		goto out;
4373 	}
4374 	/* check that BTF function arguments match actual types that the
4375 	 * verifier sees.
4376 	 */
4377 	for (i = 0; i < nargs; i++) {
4378 		t = btf_type_by_id(btf, args[i].type);
4379 		while (btf_type_is_modifier(t))
4380 			t = btf_type_by_id(btf, t->type);
4381 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
4382 			if (reg[i + 1].type == SCALAR_VALUE)
4383 				continue;
4384 			bpf_log(log, "R%d is not a scalar\n", i + 1);
4385 			goto out;
4386 		}
4387 		if (btf_type_is_ptr(t)) {
4388 			if (reg[i + 1].type == SCALAR_VALUE) {
4389 				bpf_log(log, "R%d is not a pointer\n", i + 1);
4390 				goto out;
4391 			}
4392 			/* If function expects ctx type in BTF check that caller
4393 			 * is passing PTR_TO_CTX.
4394 			 */
4395 			if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
4396 				if (reg[i + 1].type != PTR_TO_CTX) {
4397 					bpf_log(log,
4398 						"arg#%d expected pointer to ctx, but got %s\n",
4399 						i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4400 					goto out;
4401 				}
4402 				if (check_ctx_reg(env, &reg[i + 1], i + 1))
4403 					goto out;
4404 				continue;
4405 			}
4406 		}
4407 		bpf_log(log, "Unrecognized arg#%d type %s\n",
4408 			i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4409 		goto out;
4410 	}
4411 	return 0;
4412 out:
4413 	/* Compiler optimizations can remove arguments from static functions
4414 	 * or mismatched type can be passed into a global function.
4415 	 * In such cases mark the function as unreliable from BTF point of view.
4416 	 */
4417 	prog->aux->func_info_aux[subprog].unreliable = true;
4418 	return -EINVAL;
4419 }
4420 
4421 /* Convert BTF of a function into bpf_reg_state if possible
4422  * Returns:
4423  * EFAULT - there is a verifier bug. Abort verification.
4424  * EINVAL - cannot convert BTF.
4425  * 0 - Successfully converted BTF into bpf_reg_state
4426  * (either PTR_TO_CTX or SCALAR_VALUE).
4427  */
4428 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
4429 			  struct bpf_reg_state *reg)
4430 {
4431 	struct bpf_verifier_log *log = &env->log;
4432 	struct bpf_prog *prog = env->prog;
4433 	enum bpf_prog_type prog_type = prog->type;
4434 	struct btf *btf = prog->aux->btf;
4435 	const struct btf_param *args;
4436 	const struct btf_type *t;
4437 	u32 i, nargs, btf_id;
4438 	const char *tname;
4439 
4440 	if (!prog->aux->func_info ||
4441 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
4442 		bpf_log(log, "Verifier bug\n");
4443 		return -EFAULT;
4444 	}
4445 
4446 	btf_id = prog->aux->func_info[subprog].type_id;
4447 	if (!btf_id) {
4448 		bpf_log(log, "Global functions need valid BTF\n");
4449 		return -EFAULT;
4450 	}
4451 
4452 	t = btf_type_by_id(btf, btf_id);
4453 	if (!t || !btf_type_is_func(t)) {
4454 		/* These checks were already done by the verifier while loading
4455 		 * struct bpf_func_info
4456 		 */
4457 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
4458 			subprog);
4459 		return -EFAULT;
4460 	}
4461 	tname = btf_name_by_offset(btf, t->name_off);
4462 
4463 	if (log->level & BPF_LOG_LEVEL)
4464 		bpf_log(log, "Validating %s() func#%d...\n",
4465 			tname, subprog);
4466 
4467 	if (prog->aux->func_info_aux[subprog].unreliable) {
4468 		bpf_log(log, "Verifier bug in function %s()\n", tname);
4469 		return -EFAULT;
4470 	}
4471 	if (prog_type == BPF_PROG_TYPE_EXT)
4472 		prog_type = prog->aux->linked_prog->type;
4473 
4474 	t = btf_type_by_id(btf, t->type);
4475 	if (!t || !btf_type_is_func_proto(t)) {
4476 		bpf_log(log, "Invalid type of function %s()\n", tname);
4477 		return -EFAULT;
4478 	}
4479 	args = (const struct btf_param *)(t + 1);
4480 	nargs = btf_type_vlen(t);
4481 	if (nargs > 5) {
4482 		bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
4483 			tname, nargs);
4484 		return -EINVAL;
4485 	}
4486 	/* check that function returns int */
4487 	t = btf_type_by_id(btf, t->type);
4488 	while (btf_type_is_modifier(t))
4489 		t = btf_type_by_id(btf, t->type);
4490 	if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
4491 		bpf_log(log,
4492 			"Global function %s() doesn't return scalar. Only those are supported.\n",
4493 			tname);
4494 		return -EINVAL;
4495 	}
4496 	/* Convert BTF function arguments into verifier types.
4497 	 * Only PTR_TO_CTX and SCALAR are supported atm.
4498 	 */
4499 	for (i = 0; i < nargs; i++) {
4500 		t = btf_type_by_id(btf, args[i].type);
4501 		while (btf_type_is_modifier(t))
4502 			t = btf_type_by_id(btf, t->type);
4503 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
4504 			reg[i + 1].type = SCALAR_VALUE;
4505 			continue;
4506 		}
4507 		if (btf_type_is_ptr(t) &&
4508 		    btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
4509 			reg[i + 1].type = PTR_TO_CTX;
4510 			continue;
4511 		}
4512 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
4513 			i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
4514 		return -EINVAL;
4515 	}
4516 	return 0;
4517 }
4518 
4519 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
4520 		       struct seq_file *m)
4521 {
4522 	const struct btf_type *t = btf_type_by_id(btf, type_id);
4523 
4524 	btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
4525 }
4526 
4527 #ifdef CONFIG_PROC_FS
4528 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
4529 {
4530 	const struct btf *btf = filp->private_data;
4531 
4532 	seq_printf(m, "btf_id:\t%u\n", btf->id);
4533 }
4534 #endif
4535 
4536 static int btf_release(struct inode *inode, struct file *filp)
4537 {
4538 	btf_put(filp->private_data);
4539 	return 0;
4540 }
4541 
4542 const struct file_operations btf_fops = {
4543 #ifdef CONFIG_PROC_FS
4544 	.show_fdinfo	= bpf_btf_show_fdinfo,
4545 #endif
4546 	.release	= btf_release,
4547 };
4548 
4549 static int __btf_new_fd(struct btf *btf)
4550 {
4551 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
4552 }
4553 
4554 int btf_new_fd(const union bpf_attr *attr)
4555 {
4556 	struct btf *btf;
4557 	int ret;
4558 
4559 	btf = btf_parse(u64_to_user_ptr(attr->btf),
4560 			attr->btf_size, attr->btf_log_level,
4561 			u64_to_user_ptr(attr->btf_log_buf),
4562 			attr->btf_log_size);
4563 	if (IS_ERR(btf))
4564 		return PTR_ERR(btf);
4565 
4566 	ret = btf_alloc_id(btf);
4567 	if (ret) {
4568 		btf_free(btf);
4569 		return ret;
4570 	}
4571 
4572 	/*
4573 	 * The BTF ID is published to the userspace.
4574 	 * All BTF free must go through call_rcu() from
4575 	 * now on (i.e. free by calling btf_put()).
4576 	 */
4577 
4578 	ret = __btf_new_fd(btf);
4579 	if (ret < 0)
4580 		btf_put(btf);
4581 
4582 	return ret;
4583 }
4584 
4585 struct btf *btf_get_by_fd(int fd)
4586 {
4587 	struct btf *btf;
4588 	struct fd f;
4589 
4590 	f = fdget(fd);
4591 
4592 	if (!f.file)
4593 		return ERR_PTR(-EBADF);
4594 
4595 	if (f.file->f_op != &btf_fops) {
4596 		fdput(f);
4597 		return ERR_PTR(-EINVAL);
4598 	}
4599 
4600 	btf = f.file->private_data;
4601 	refcount_inc(&btf->refcnt);
4602 	fdput(f);
4603 
4604 	return btf;
4605 }
4606 
4607 int btf_get_info_by_fd(const struct btf *btf,
4608 		       const union bpf_attr *attr,
4609 		       union bpf_attr __user *uattr)
4610 {
4611 	struct bpf_btf_info __user *uinfo;
4612 	struct bpf_btf_info info;
4613 	u32 info_copy, btf_copy;
4614 	void __user *ubtf;
4615 	u32 uinfo_len;
4616 
4617 	uinfo = u64_to_user_ptr(attr->info.info);
4618 	uinfo_len = attr->info.info_len;
4619 
4620 	info_copy = min_t(u32, uinfo_len, sizeof(info));
4621 	memset(&info, 0, sizeof(info));
4622 	if (copy_from_user(&info, uinfo, info_copy))
4623 		return -EFAULT;
4624 
4625 	info.id = btf->id;
4626 	ubtf = u64_to_user_ptr(info.btf);
4627 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
4628 	if (copy_to_user(ubtf, btf->data, btf_copy))
4629 		return -EFAULT;
4630 	info.btf_size = btf->data_size;
4631 
4632 	if (copy_to_user(uinfo, &info, info_copy) ||
4633 	    put_user(info_copy, &uattr->info.info_len))
4634 		return -EFAULT;
4635 
4636 	return 0;
4637 }
4638 
4639 int btf_get_fd_by_id(u32 id)
4640 {
4641 	struct btf *btf;
4642 	int fd;
4643 
4644 	rcu_read_lock();
4645 	btf = idr_find(&btf_idr, id);
4646 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
4647 		btf = ERR_PTR(-ENOENT);
4648 	rcu_read_unlock();
4649 
4650 	if (IS_ERR(btf))
4651 		return PTR_ERR(btf);
4652 
4653 	fd = __btf_new_fd(btf);
4654 	if (fd < 0)
4655 		btf_put(btf);
4656 
4657 	return fd;
4658 }
4659 
4660 u32 btf_id(const struct btf *btf)
4661 {
4662 	return btf->id;
4663 }
4664